
IAR Application Note G - 001

1

IAR Application Note G - 001

Generic Software Uart
written in C

SUMMARY
This application note details a generic software UART written in C which
can be implemented on any microprocessor with a C compiler. It requires a
timer interrupt to be set to 3 times the baud rate, and two software-
controlled pins for the receive and transmit functions.

KEYWORDS
UART, C code

The Problem to be solved
Software UARTs are generally coded in assembly for speed purposes, but
with the increasing speed of processors, a software UART written in C is now
easily implemented and highly portable.

The Difficulties Involved
The implementation has three fundamental requirements:

1. A compiler must exist for the microprocessor.
2. A timer interrupt must be set to interrupt at three times the required

baud rate. Most microprocessors have a timer interrupt that can be
used for this, or an external clock interrupt could be used to achieve
the same goal.

3. There must be a transmit pin which can be set from the software, and a
receive pin which can be read by the software.

The Solution

The C source file must be linked into the user’s application with the necessary
interface routines listed as follows:

1. void get_rx_pin_status(void)
Returns 0 or 1 dependent on whether the receive pin is high or low.

2. void set_tx_pin_high(void)
Sets the transmit pin to the high state.

3. void set_tx_pin_low(void)
Sets the transmit pin to the low state.

4. void idle(void)
Background functions to execute while waiting for input.

5. void timer_set(int BAUD_RATE)
Sets the timer to 3 times the baud rate.

IAR Application Note G - 001

2

6. void set_timer_interrupt(timer_isr)
Enables the timer interrupt.

The baud rate is selectable by changing the BAUD_RATE macro at the top of
the source file, and can be set to as high a value as the timer can support.

#define BAUD_RATE 19200.0

The user’s initialization routine must initially call the init_uart() function
before any other UART function.

The following standard functions are provided:
a. void flush_input_buffer(void)

Clears the contents of the input buffer.
b. char kbhit(void)

Tests whether an input character has been received.
c. char getchar(void)

Reads a character from the input buffer, waiting if necessary.
d. void putchar(char)

Writes a character to the serial port.
e. void turn_rx_on(void)

Turns on the receive function.
f. void turn_rx_off(void)

Turns off the receive function.

Note that received characters are buffered so that there is no loss of data for a
continuous sequence of characters. The idle() function provides the user with
the capability to perform background processing while the getchar() function
is called waiting on keystroke input.

User Benefits
Clearly, the low-level adaptations that require many lines of assembly code
can be done in C using the IAR C language extensions, thus increasing
readability and portability.

Conclusions
The solution can also be modified to similar serial protocols to RS232, such as
the 1553 bus.

References
See the attached listing of the C source code UART.C.

