
CAEWDC-1

IAR Runtime Environment and
Library
User Guide

Addendum to
IAR C/C++ Compiler Reference Guide

CAEWDC-1

COPYRIGHT NOTICE
© Copyright 1986–2004 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR, IAR Embedded Workbench, IAR XLINK Linker, IAR XAR Library Builder, IAR
XLIB Librarian, IAR MakeApp, and IAR PreQual are trademarks owned by IAR
Systems. C-SPY is a trademark registered in Sweden by IAR Systems. IAR
visualSTATE is a registered trademark owned by IAR Systems.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

First edition: May 2004

Part number: CAEWDC-1

This guide applies to version 4.x of the IAR Embedded Workbench™ IDE.

Contents
Tables .. vii

Preface ... ix

Who should read this guide .. ix

How to use this guide ... ix

Document conventions ... ix

Typographic conventions .. ix

Overview .. 1

IAR language overview ... 1

Getting started using the runtime environment 2

Two sets of runtime libraries ... 2

Compiling and linking with the DLIB runtime library 3

The DLIB runtime environment ... 5

Introduction to the runtime environment 5

Runtime environment functionality ... 5

Library selection .. 6

Situations that require library building .. 7

Library configurations .. 7

Debug support in the runtime library ... 8

Using a prebuilt library .. 9

Customizing a prebuilt library without rebuilding 9

Choosing formatting capabilities ... 10

Choosing printf formatter ... 10

Choosing scanf formatter ... 11

Overriding library modules .. 12

Building and using a customized library 14

Setting up a library project ... 14

Modifying the library functionality .. 14

Using a customized library .. 15
CAEWDC-1

iii

iv
System startup and termination .. 16

System startup .. 17

System termination .. 17

Customizing system initialization ... 18

__low_level_init ... 18

Modifying the cstartup file .. 18

Standard streams for input and output .. 18

Implementing low-level character input and output 19

Configuration symbols for printf and scanf 20

Customizing formatting capabilities .. 21

File input and output ... 21

Locale ... 22

Locale support in prebuilt libraries .. 22

Customizing the locale support .. 23

Changing locales at runtime ... 23

Environment interaction ... 24

Signal and raise .. 25

Time ... 25

Strtod ... 26

Assert ... 26

The stack .. 26

The heap .. 27

Heap segments in the DLIB runtime environment 27

Heap segments in the CLIB runtime environment 28

Heap size allocation in the IAR Embedded Workbench 28

Heap size allocation from the command line 28

Placement of heap segment .. 28

Heap size and standard I/O .. 28

C-SPY Debugger runtime interface .. 29

Low-level debugger runtime interface ... 29

The debugger terminal I/O window ... 30

Implementation of cstartup .. 30

Modules and segment parts .. 30
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Contents
Added C functionality ... 32

stdint.h .. 32

stdbool.h ... 32

math.h ... 32

stdio.h ... 33

stdlib.h .. 33

printf, scanf and strtod ... 33

The CLIB runtime environment .. 35

Runtime environment .. 35

Input and output ... 36

Character-based I/O ... 36

Formatters used by printf and sprintf ... 37

Formatters used by scanf and sscanf .. 38

System startup and termination .. 39

System startup .. 39

System termination .. 39

Overriding default library modules .. 39

Customizing system initialization ... 40

Implementation of cstartup .. 40

C-SPY runtime interface .. 40

The debugger terminal I/O window ... 40

Termination .. 40

Using C++ .. 41

Overview .. 41

Standard Embedded C++ ... 41

Extended Embedded C++ .. 42

Enabling C++ support .. 42

Feature descriptions .. 43

Using IAR-specific attributes on class members 43

Functions .. 46

New and Delete operators .. 46

Templates .. 47

Variants of casts ... 50
CAEWDC-1

v

vi
Mutable .. 50

Namespace .. 50

The STD namespace .. 50

Pointer to member functions .. 50

Using interrupts and C++ destructors .. 51

Reference information ... 53

Descriptions of options .. 53

Descriptions of pragma directives .. 56

Implementation-defined behavior ... 56

IAR DLIB Library functions .. 57

Library functions ... 59

Introduction .. 59

Header files .. 59

Library object files ... 60

Reentrancy ... 60

IAR DLIB Library .. 60

C header files ... 61

C++ header files ... 62

IAR CLIB Library .. 64

Library definitions summary .. 64

Index ... 67
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Tables
1: Typographic conventions used in this guide .. ix

2: Command line used when compiling .. 3

3: Command line used when linking ... 4

4: Library configurations ... 7

5: Levels of debugging support in runtime libraries ... 8

6: Customizable items ... 9

7: Formatters for printf .. 11

8: Formatters for scanf .. 12

9: Descriptions of printf configuration symbols ... 20

10: Descriptions of scanf configuration symbols .. 21

11: Low-level I/O files .. 22

12: Functions with special meanings when linked with debug info 29

13: Traditional standard C header files—DLIB ... 61

14: Embedded C++ header files .. 62

15: Additional Embedded C++ header files—DLIB ... 62

16: Standard template library header files ... 63

17: New standard C header files—DLIB ... 63

18: IAR CLIB Library header files ... 64

19: Miscellaneous IAR CLIB Library header files ... 65
CAEWDC-1

vii

viii
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Preface
Welcome to the IAR Runtime Environment and Library User Guide. The
purpose of this guide is to provide you with detailed information that can help
you to use the new features related to the runtime environment, the libraries,
and the programming languages provided by the IAR C/C++ Compiler.

Who should read this guide
You should read this guide if you plan to develop an application using the C or C++
language and need to get detailed information on how to use the runtime environment
and the runtime library.

How to use this guide
When you start using the IAR C/C++ Compiler, you should read this guide in
combination with the IAR C/C++ Compiler Reference Guide. Note that the information
in this guide replaces the corresponding information in the IAR C/C++ Compiler
Reference Guide.

Document conventions
When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command. Note that this style is also used for cpuname,
configfile, libraryfile, and other labels representing your
product, as well as for the numeric part of filename extensions—xx.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

Table 1: Typographic conventions used in this guide
CAEWDC-1

ix

x

Document conventions
bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

reference A cross-reference within this guide or to another guide.

Identifies instructions specific to the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Style Used for

Table 1: Typographic conventions used in this guide (Continued)
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Overview
This chapter gives you an overview of the supported programming languages,
followed by a short introduction about how to get started using the runtime
environment.

IAR language overview
There are two high-level programming languages available for use with the IAR
C/C++ Compiler:

● C, the most widely used high-level programming language used in the embedded
systems industry. Using the IAR C/C++ Compiler, you can build freestanding
applications that follow the standard ISO 9899:1990. This standard is commonly
known as ANSI C.

● C++, a modern object-oriented programming language with a full-featured library
well suited for modular programming. IAR Systems supports two levels of the
C++ language:

● Embedded C++ (EC++), a proper subset of the C++ programming standard,
which is intended for embedded systems programming. It is defined by an
industry consortium, the Embedded C++ Technical committee.

● Extended EC++, with additional features such as full template support,
namespace support, the new cast operators, as well as the Standard Template
Library (STL).

For more information about the Embedded C++ language and IAR Extended Embedded
EC++, see the chapter Using C++.

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some deviations from the standard.

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the IAR Assembler Reference Guide.
CAEWDC-1

1

2

Getting started using the runtime environment
Getting started using the runtime environment
To create the required runtime environment you should choose a runtime library and set
library options. You may also need to override certain library modules with your own
customized versions.

TWO SETS OF RUNTIME LIBRARIES

There are two different sets of runtime libraries provided:

● The IAR DLIB Library, which supports ISO/ANSI C and C++. This library also
supports floating-point numbers in IEEE 754 format and it can be configured to
include different levels of support for locale, file descriptors, multibytes, et cetera.

● The IAR CLIB Library is a light-weight library, which is not fully compliant with
ISO/ANSI C. Neither does it fully support floating-point numbers in IEEE 754
format or does it support Embedded C++. (This library is used by default).

To build code produced by any version of the compiler, you should use the runtime
environment components it provides. It is not always possible to link object code
produced using an older compiler version with components provided with a newer
compiler version.

The runtime library you choose can be one of the prebuilt libraries, or a library that you
have customized and built yourself. The IAR Embedded Workbench IDE provides a
library project template for both libraries, that you can use for building your own library
version. This gives you full control of the runtime environment. If your project only
contains assembler source code, there is no need to choose a runtime library.

For detailed information about the runtime environments, see the chapters The DLIB
runtime environment and The CLIB runtime environment, respectively.

The way you set up a runtime environment and locate all the related files differs
depending on which build interface you are using—the IAR Embedded Workbench IDE
or the command line.

Migration from CLIB to DLIB

There are some considerations to have in mind if you want to migrate from the CLIB
library, the legacy C library, to the modern DLIB C/C++ library:

● The CLIB exp10() function defined in iccext.h is not available in DLIB.
● The DLIB library uses the low-level I/O routines __write and __read instead of

putchar and getchar.
● If the heap size in your old compiler version using CLIB was defined in a file

named heap.c, you must now set the heap size either in the extended linker
command file (*.xcl) or in the Embedded Workbench to use the DLIB library.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Overview
COMPILING AND LINKING WITH THE DLIB RUNTIME
LIBRARY

In earlier versions, the choice of runtime library did not have any impact on the
compilation. This has changed in this version. Now you can configure the runtime
library to contain the features that are needed by your application.

One example is input and output. An application may use the fprintf function for
terminal I/O (stdout), but the application does not use file I/O functionality on file
descriptors associated with the files. In this case the library can be configured so that
code related to file I/O is removed but still provides terminal I/O functionality.

This configuration involves the library header files, for example stdio.h. This means
that when you build your application, the same header file setup must be used as when
the library was built. The library setup is specified in a library configuration file, which
is a header file that defines the library functionality.

Choosing a runtime library in the IAR Embedded Workbench

To choose a library, choose Project>Options, and click the Library Configuration tab
in the General Options category. Choose the appropriate library from the Library
drop-down menu.

When building an application using the IAR Embedded Workbench, there are three
library configuration alternatives to choose between: Normal, Full, and Custom.
Normal and Full are prebuilt library configurations delivered with the product. Custom
is used for your own libraries. See Library configurations, page 7, for more information.

Based on which library configuration you choose and your other project settings, the
correct library file is used automatically. For the device-specific include files, a correct
include path is set up.

Choosing a runtime library from the command line

When building an application from the command line, you must use the same library
configuration file as when the library was built. For the prebuilt libraries (rxx) there is
a corresponding library configuration file (h), which has the same name as the library.
The files are located in the cpuname\lib directory.

The command line used when compiling could look like this:

Command line used when compiling Description

-I\cpuname\inc Specifies the include paths

-I\cpuname\inc\{clib|dlib} Specifies the library-specific include path. Use clib or
dlib depending on which library you are using

Table 2: Command line used when compiling
CAEWDC-1

3

4

Getting started using the runtime environment
In case you intend to build your own library version, use the default library configuration
file dlcpunameCustom.h.

The command line used when linking could look like this:

For information about the prebuilt libraries and how they are configured, see the release
notes provided with the IAR product installation.

Setting library and runtime environment options

You can set certain options to reduce the library and runtime environment size:

● The formatters used by the functions printf, scanf, and their variants, see
Choosing formatting capabilities, page 10 (DLIB), and Input and output, page 36
(CLIB).

● The size of the stack and the heap, see The stack, page 26, and The heap, page 27,
respectively.

-D_DLIB_CONFIG_FILE=

C:\..\cpuname\lib\

configfile.h

Specifies the library configuration file (for the IAR DLIB
Library only)

Command line used when linking Description

-s __program_start Specifies the label where the application starts

libraryfile.rxx Specifies the library object file

Table 3: Command line used when linking

Command line used when compiling Description

Table 2: Command line used when compiling (Continued)
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime
environment
This chapter describes the runtime environment in which an application
executes. In particular, the chapter covers the DLIB runtime library and how
you can modify it—setting options, overriding default library modules, or
building your own library—to optimize it for your application.

The chapter also covers system initialization and termination; how an
application can control what happens before the function main is called, and
how you can customize the initialization.

The chapter then describes how to configure functionality like locale and file
I/O, and how to get C-SPY runtime support.

For information about the CLIB runtime environment, see the chapter The
CLIB runtime environment.

Introduction to the runtime environment
The runtime environment is the environment in which your application executes. The
runtime environment depends on the target hardware, the software environment, and the
application code. The IAR DLIB runtime environment can be used as is together with
the IAR C-SPY Debugger. However, to be able to run the application on hardware, you
must adapt the runtime environment.

This section gives an overview of:

● The runtime environment and its components
● Library selection.

RUNTIME ENVIRONMENT FUNCTIONALITY

The runtime environment (RTE) supports ISO/ANSI C and C++ including the standard
template library (STL). The runtime environment consists of the runtime library, which
contains the functions defined by these standards, and include files that define the library
interface.
CAEWDC-1

5

6

Introduction to the runtime environment
The runtime library is delivered both as prebuilt libraries and as source files, and you
can find them in the product subdirectories cpuname\lib and cpuname\src,
respectively.

The runtime environment also consists of a part with specific support for the target
system, which includes:

● Support for hardware features:
● Direct access to low-level processor operations by means of intrinsic functions,

such as functions for register handling
● Peripheral unit registers and interrupt definitions in include files
● Target-specific arithmetic support modules like hardware multipliers or

floating-point coprocessors.
● Runtime environment support, that is, startup and exit code and low-level interface

to some library functions.
● Special compiler support for some functions, for instance functions for

floating-point arithmetics

Some parts, like the startup and exit code and the size of heaps must be tailored for the
specific hardware and application requirements.

For reference information about the library functions, see the online help system
available from the Help menu.

LIBRARY SELECTION

To configure the most code-efficient runtime environment, you must determine your
application and hardware requirements. The more functionality you need, the larger
your code will get.

The IAR Embedded Workbench comes with a set of prebuilt runtime libraries. To get
the required runtime environment, you can customize it by:

● Setting library options, for example, for choosing scanf input and printf output
formatters, and for specifying the size of the stack and the heap

● Overriding certain library functions, for example cstartup, with your own
customized versions

● Choosing the level of support for certain standard library functionality, for example,
locale, file descriptors, and multibyte characters, by choosing a library
configuration: normal or full.

In addition, you can also make your own library configuration, but that requires that you
rebuild the library. This allows you to get full control of the runtime environment.

Note: Your application project must be able to locate the library, include files, and the
library configuration file.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
SITUATIONS THAT REQUIRE LIBRARY BUILDING

Building a customized library is complex. You should therefore carefully consider
whether it is really necessary.

You must build your own library when:

● There is no prebuilt library for the required combination of compiler options or
hardware support

● You want to define your own library configuration with support for locale, file
descriptors, multibyte characters, et cetera.

For information about how to build a customized library, see Building and using a
customized library, page 14.

LIBRARY CONFIGURATIONS

It is possible to configure the level of support for, for example, locale, file descriptors,
and multibyte characters. The runtime library configuration is defined in the library
configuration file. It contains information about what functionality is part of the runtime
environment. The configuration file is used for tailoring a build of a runtime library, as
well as tailoring the system header files used when compiling your application. The less
functionality you need in the runtime environment, the smaller it is.

The following DLIB library configurations are available:

In addition to these configurations, you can define your own configurations, which
means that you must modify the configuration file. Note that the library configuration
file describes how a library was built and thus cannot be changed unless you rebuild the
library. For further information, see Building and using a customized library, page 14.

The prebuilt libraries are based on the default configurations. For a list of all runtime
libraries, see the release notes provided with the IAR product installation. There is also
a ready-made library project template that you can use if you want to rebuild the runtime
library.

Library configuration Description

Normal DLIB No locale interface, C locale, no file descriptor support, no multibyte
characters in printf and scanf, and no hex floats in strtod.

Full DLIB Full locale interface, C locale, file descriptor support, multibyte
characters in printf and scanf, and hex floats in strtod.

Table 4: Library configurations
CAEWDC-1

7

8

Introduction to the runtime environment
DEBUG SUPPORT IN THE RUNTIME LIBRARY

You can make the library provide different levels of debugging support—basic, runtime,
and I/O debugging.

The following table describes the different levels of debugging support:

If you build your application project with the XLINK options With runtime control
modules or With I/O emulation modules, certain functions in the library will be
replaced by functions that communicate with the IAR C-SPY Debugger. For further
information, see C-SPY Debugger runtime interface, page 29.

To choose linker option for debug support in the IAR Embedded Workbench, choose
Project>Options and select the Linker category. On the Output page, select the
appropriate Format option.

Debugging

support

Linker option in IAR

Embedded Workbench

Linker command

line option
Description

Basic debugging Debug information for
C-SPY

-Fubrof Debug support for C-SPY
without any runtime support

Runtime debugging With runtime control
modules

-r The same as -Fubrof, but also
includes debugger support for
handling program abort, exit,
and assertions.

I/O debugging With I/O emulation
modules

-rt The same as -r, but also
includes debugger support for
I/O handling, which means that
stdin and stdout are
redirected to the C-SPY
Terminal I/O window, and that it
is possible to access files on the
host computer during
debugging.

Table 5: Levels of debugging support in runtime libraries
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
Using a prebuilt library
The IAR C/C++ Compiler comes with a set of prebuilt libraries configured for different
combinations of certain options. For information about available prebuilt libraries and
how they are configured, see the release notes delivered with the IAR product
installation.

Each library comes with a corresponding library configuration file. The library
configuration file has the same base name as the library. You can find the library object
files and the library configuration files in the subdirectory cpuname\lib.

The IAR Embedded Workbench will include the correct library object file and library
configuration file based on the options you select. See the IAR Embedded Workbench™
IDE User Guide for additional information.

On the command line, you must specify the following items:

● Specify which library object file to use on the XLINK command line, for instance:
dlcpuname.rxx

You can find the library variants as object files in the directory cpuname\lib.

● Specify the include paths for the compiler and assembler:
-I cpuname\inc

● Specify the library configuration file for the compiler:
-D_DLIB_CONFIG_FILE=C:\...\dlcpuname.h

You can find the library object files and the library configuration files in the subdirectory
cpuname\lib.

CUSTOMIZING A PREBUILT LIBRARY WITHOUT REBUILDING

The prebuilt libraries delivered with the IAR C/C++ Compiler can be used as is.
However, it is possible to customize parts of a library without rebuilding it. There are
two different methods:

● Setting options for:
● Formatters used by printf and scanf
● The sizes of the heap and stack, see page 26.

● Overriding library modules with your own customized versions.

The following items can be customized without rebuilding:

Items that can be customized Described on page

Formatters for printf and scanf page 10

Startup and termination code page 16

Table 6: Customizable items
CAEWDC-1

9

10

Choosing formatting capabilities
For a description about how to override library modules, see Overriding library
modules, page 12.

Choosing formatting capabilities
To override the default formatter for all the printf- and scanf-related functions,
except for wprintf and wscanf variants, you simply set the appropriate library
options. This section describes the different options available.

Note: If you rebuild the library, it is possible to optimize these functions even further,
see Configuration symbols for printf and scanf, page 20.

CHOOSING PRINTF FORMATTER

The printf function uses a formatter called _Printf. The default version is quite
large, and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided in the
standard C/EC++ library.

Low-level input and output page 19

File input and output page 21

Low-level environment functions page 24

Low-level signal functions page 25

Low-level time functions page 25

Size of heaps, stacks, and segments page 26

Items that can be customized Described on page

Table 6: Customizable items (Continued)
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
The following table summarizes the capabilities of the different formatters:

* Depends on which library configuration is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 20.

 Specifying the print formatter in the IAR Embedded Workbench

To specify the printf formatter in the IAR Embedded Workbench, choose
Project>Options and select the General Options category. Select the appropriate
option on the Library options page.

Specifying printf formatter from the command line

To use any other variant than the default (_PrintfFull), add one of the following lines
in the linker command file you are using:

-e_PrintfLarge=_Printf
-e_PrintfSmall=_Printf
-e_PrintfTiny=_Printf

CHOOSING SCANF FORMATTER

In a similar way to the printf function, scanf uses a common formatter, called
_Scanf. The default version is very large, and provides facilities that are not required
in many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided in the standard C/C++ library.

Formatting capabilities
_PrintfFull

(default)
_PrintfLarge _PrintfSmall _PrintfTiny

Basic specifiers c, d, i, o, p, s, u, X,
x, and %

Yes Yes Yes Yes

Multibyte support * * * No

Floating-point specifiers a, and A Yes No No No

Floating-point specifiers e, E, f, F, g,
and G

Yes Yes No No

Conversion specifier n Yes Yes No No

Format flag space, +, -, #, and 0 Yes Yes Yes No

Length modifiers h, l, L, s, t, and Z Yes Yes Yes No

Field width and precision, including * Yes Yes Yes No

long long support Yes Yes No No

Table 7: Formatters for printf
CAEWDC-1

11

12

Overriding library modules
The following table summarizes the capabilities of the different formatters:

* Depends on which library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 20.

Specifying scanf formatter in the IAR Embedded Workbench

To specify the scanf formatter in the IAR Embedded Workbench, choose
Project>Options and select the General Options category. Select the appropriate
option on the Library options page.

Specifying scanf formatter from the command line

To use any other variant than the default (_ScanfFull), add one of the following lines
in the linker command file you are using:

-e_ScanfLarge=_Scanf
-e_ScanfSmall=_Scanf

Overriding library modules
The library contains modules which you probably need to override with your own
customized modules, for example functions for character-based I/O and cstartup.
This can be done without rebuilding the entire library. This section describes the
procedure for including your version of the module in the application project build
process. The library files that you can override with your own versions are located in the
cpuname\src\lib directory.

Formatting capabilities _ScanfFull (default) _ScanfLarge _ScanfSmall

Basic specifiers c, d, i, o, p, s, u, X,
x, and %

Yes Yes Yes

Multibyte support * * *

Floating-point specifiers a, and A Yes No No

Floating-point specifiers e, E, f, F, g,
and G

Yes No No

Conversion specifier n Yes No No

Scan set [and] Yes Yes No

Assignment suppressing * Yes Yes No

long long support Yes No No

Table 8: Formatters for scanf
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
Note: If you override a default I/O library module with your own module, C-SPY
support for the module is turned off. For example, if you replace the module __write
with your own version, the C-SPY Terminal I/O window will not be supported.

Overriding library modules using the IAR Embedded Workbench

This procedure is applicable to any source file in the library, which means
library_module.c in this example can be any module in the library.

1 Copy the appropriate library_module.c file to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure to save it under the same name.

3 Add the customized file to your project.

4 Rebuild your project.

Overriding library modules from the command line

This procedure is applicable to any source file in the library, which means
library_module.c in this example can be any module in the library.

1 Copy the appropriate library_module.c to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure to save it under the same name.

3 Compile the modified file using the same options as for the rest of the project.

This creates a replacement object module file named library_module.rxx.

Note: The library configuration file and some other project options must be the same
for library_module as for the rest of your code. For a list of necessary project options,
see the release notes provided with the IAR product installation.

4 Add library_module.rxx to the XLINK command line.

Make sure that library_module is located before the library on the command line.
This ensures that your module is used instead of the one in the library.

Run XLINK to rebuild your application.

This will use your version of library_module.rxx, instead of the one in the library.
For information about the XLINK options, see the IAR Linker and Library Tools
Reference Guide.
CAEWDC-1

13

14

Building and using a customized library
Building and using a customized library
In some situations, see Situations that require library building, page 7, it is necessary to
rebuild the library. In those cases you need to:

● Set up a library project
● Make the required library modifications
● Build your customized library
● Finally, make sure your application project will use the customized library.

Information about the build process is described in IAR Embedded Workbench™ IDE
User Guide.

Note: It is possible to build IAR Embedded Workbench projects from the command
line by using the iarbuild.exe utility. However, no make or batch files for building
the library from the command line are provided.

SETTING UP A LIBRARY PROJECT

The IAR Embedded Workbench provides a library project template which can be used
for customizing the runtime environment configuration. This library template has full
library configuration, see Table 4, Library configurations, page 7.

In the IAR Embedded Workbench, modify the generic options in the created library
project to suit your application.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

MODIFYING THE LIBRARY FUNCTIONALITY

You must modify the library configuration file and build your own library to modify
support for, for example, locale, file descriptors, and multibytes. This will include or
exclude certain parts of the runtime environment.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the Dlib_defaults.h file. This read-only file
describes the configuration possibilities. In addition, your library has its own library
configuration file dlcpunameCustom.h, which sets up that specific library with full
library configuration. For more information, see Table 6, Customizable items, page 9.

The library configuration file is used for tailoring a build of the runtime library, as well
as tailoring the system header files.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
Modifying the library configuration file

In your library project, open the dlcpunameCustom.h file and customize it by setting
the values of the configuration symbols according to the application requirements.

When you are finished, build your library project with the appropriate project options.

USING A CUSTOMIZED LIBRARY

After you have built your library, you must make sure to use it in your application
project.

In the IAR Embedded Workbench you must perform the following steps:

1 Choose Project>Options and click the Library Configuration tab in the General
Options category.

2 Choose Custom DLIB from the Library drop-down menu.

3 In the Library file text box, locate your library file.

4 In the Configuration file text box, locate your library configuration file.
CAEWDC-1

15

16

System startup and termination
System startup and termination
This section describes the runtime environment actions performs during startup and
termination of applications. The following figure gives a graphical overview of the
startup and exit sequences:

Figure 1: Startup and exit sequences

The code for handling startup and termination is located in the source files
cstartup.sxx, cmain.sxx, cexit.sxx, and low_level_init.c located in the
cpuname\src\lib directory.

Note: Depending on your product installation, the functionality provided by
cmain.sxx might be included in cstartup.sxx instead of being in a separate file.

Reset

__low_level_init

Hardware setup

Static initialization

Dynamic C++ initialization

exit

abort

_Exit

__exit

Application

main

Program entry label

cstartup

Return from main and call exit

System terminated

_exit

Dynamic C++ destruction
 and atexit execution

cmain

cexit
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
SYSTEM STARTUP

When an application is initialized, a number of steps are performed:

● When the cpu is reset it will jump to the program entry label __program_start in
the cstartup module.

● The function __low_level_init is called, giving the application a chance to
perform early initializations

● Static variables are initialized; this includes clearing zero-initialized memory and
copying the ROM image of the RAM memory of the rest of the initialized variables
depending on the return value of __low_level_init

● Static C++ objects are constructed
● The main function is called, which starts the application.

SYSTEM TERMINATION

An application can terminate normally in two different ways:

● Return from the main function
● Call the exit function.

Since the ISO/ANSI C standard states that the two methods should be equivalent, the
cstartup code calls the exit function if main returns. The parameter passed to the
exit function is the return value of main.

The default exit function is written in C. It calls a small function _exit provided by
the cstartup file.

The _exit function will perform the following operations:

● Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard C function atexit

● Close all open files
● Call __exit
● When __exit is reached, stop the system.

An application can also exit by calling the abort function. The default abort function
just calls __exit in order to halt the system without performing any type of cleanup.

C-SPY interface to system termination

If your project is linked with support for runtime debugging, the normal __exit and
abort functions are replaced with special ones. C-SPY will then recognize when those
functions are called and can take appropriate actions to simulate program termination.
For more information, see C-SPY Debugger runtime interface, page 29.
CAEWDC-1

17

18

Customizing system initialization
Customizing system initialization
It is likely that you need to customize the code for system initialization. For example,
your application might need to initialize memory-mapped special function registers
(SFRs), or omit the default initialization of data segments performed by cstartup.

You can do this by providing a customized version of the routine __low_level_init,
which is called from cmain before the data segments are initialized. Modifying the
cstartup file directly should be avoided.

The code for handling system startup is located in the source files cstartup.sxx and
low_level_init.c, located in the cpuname\src directory. If you intend to rebuild
the library, the source files are available in the template library project, see Building and
using a customized library, page 14.

Note: Regardless of whether you modify the __low_level_init routine or the
cstartup code, you do not have to rebuild the library.

__LOW_LEVEL_INIT

There is a skeleton low-level initialization file supplied with the product—the C source
file low_level_init.c. The only limitation using a C source version is that static
initialized variables cannot be used within the file, as variable initialization has not been
performed at this point.

The value returned by __low_level_init determines whether or not data segments
should be initialized by cstartup. If the function returns 0, the data segments will not
be initialized.

MODIFYING THE CSTARTUP FILE

As noted earlier, you should not modify the cstartup.sxx file if a customized version
of __low_level_init is enough for your needs. However, if you do need to modify
the cstartup.sxx file, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 12.

Standard streams for input and output
There are three standard communication channels (streams)—stdin, stdout, and
stderr—which are defined in stdio.h. If any of these streams are used by your
application, for example by the functions printf and scanf, you need to customize the
low-level functionality to suit your hardware.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
There are primitive I/O functions, which are the fundamental functions through which
C and C++ performs all character-based I/O. For any character-based I/O to be available,
you must provide definitions for these functions using whatever facilities the hardware
environment provides.

IMPLEMENTING LOW-LEVEL CHARACTER INPUT AND
OUTPUT

To implement low-level functionality of the stdin and stdout streams, you must write
the functions __read and __write, respectively. You can find template source code for
these functions in the cpuname\src directory.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 14. Note that customizing the
low-level routines for input and output does not require you to rebuild the library.

Note: If you write your own variants of __read or __write, special considerations
for the C-SPY runtime interface are needed, see C-SPY Debugger runtime interface,
page 29.

Example of using __write and __read

The code in the following examples use memory-mapped I/O to write to an LCD
display:

__no_init volatile unsigned char LCD_IO @ address;
size_t __write(int Handle, const unsigned char * Buf,

 size_t Bufsize)
{
 int nChars = 0;
 /* Check for stdout and stderr
 (only necessary if file descriptors are enabled.) */
 if (Handle != 1 && Handle != 2)
 {
 return -1;
 }
 for (/*Empty */; Bufsize > 0; --Bufsize)
 {
 LCD_IO =* Buff++;
 ++nChars;
 }
 return nChars;
}
size_t __read(int Handle, unsigned char *Buf, size_t BufSize)
{
 int nChars = 0;
 /* Check for stdin
CAEWDC-1

19

20

Configuration symbols for printf and scanf
 (only necessary if FILE descriptors are enabled) */
 if (Handle != 0)
 {
 return -1;
 }
 for (/*Empty*/; BufSize > 0; --BufSize)
 {
 int c = LCD_IO;
 if (c < 0)
 break;
 *Buf ++= c;
 ++nChars;
 }
 return nChars;
}

For information about the @ operator, see the IAR C/C++ Compiler Reference Guide.

Configuration symbols for printf and scanf
When you set up your application project, you typically need to consider what printf
and scanf formatting capabilities your application requires, see Choosing formatting
capabilities, page 10.

If the provided formatters do not meet your requirements, you can customize the full
formatters. However, that means you need to rebuild the runtime library.

The default behavior of the printf and scanf formatters are defined by configuration
symbols in the DLIB_Defaults.h file.

The following configuration symbols determine what capabilities the function printf
should have:

Printf configuration symbols Includes support for

_DLIB_PRINTF_MULTIBYTE Multibyte characters

_DLIB_PRINTF_LONG_LONG Long long (ll qualifier)

_DLIB_PRINTF_SPECIFIER_FLOAT Floating-point numbers

_DLIB_PRINTF_SPECIFIER_A Hexadecimal floats

_DLIB_PRINTF_SPECIFIER_N Output count (%n)

_DLIB_PRINTF_QUALIFIERS Qualifiers h, l, L, v, t, and z

_DLIB_PRINTF_FLAGS Flags -, +, #, and 0

_DLIB_PRINTF_WIDTH_AND_PRECISION Width and precision

Table 9: Descriptions of printf configuration symbols
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
When you build a library, the following configurations determine what capabilities the
function scanf should have:

CUSTOMIZING FORMATTING CAPABILITIES

To customize the formatting capabilities, you need to set up a library project, see
Building and using a customized library, page 14. Define the configuration symbols
according to your application requirements.

File input and output
The library contains a large number of powerful functions for file I/O operations. If you
use any of these functions you need to customize them to suit your hardware. In order
to simplify adaptation to specific hardware, all I/O functions call a small set of primitive
functions, each designed to accomplish one particular task; for example, __open opens
a file, and __write outputs a number of characters.

Note that file I/O capability in the library is only supported by libraries with full library
configuration, see Library configurations, page 7. In other words, file I/O is supported
when the configuration symbol __DLIB_FILE_DESCRIPTOR is enabled. If not enabled,
functions taking a FILE * argument cannot be used.

_DLIB_PRINTF_CHAR_BY_CHAR Output char by char or buffered

Scanf configuration symbols Includes support for

_DLIB_SCANF_MULTIBYTE Multibyte characters

_DLIB_SCANF_LONG_LONG Long long (ll qualifier)

_DLIB_SCANF_SPECIFIER_FLOAT Floating-point numbers

_DLIB_SCANF_SPECIFIER_N Output count (%n)

_DLIB_SCANF_QUALIFIERS Qualifiers h, j, l, t, z, and L

_DLIB_SCANF_SCANSET Scanset ([*])

_DLIB_SCANF_WIDTH Width

_DLIB_SCANF_ASSIGNMENT_SUPPRESSING Assignment suppressing ([*])

Table 10: Descriptions of scanf configuration symbols

Printf configuration symbols Includes support for

Table 9: Descriptions of printf configuration symbols (Continued)
CAEWDC-1

21

22

Locale
Template code for the following I/O files are included in the product:

The primitive functions identify I/O streams, such as an open file, with a file descriptor
that is a unique integer. The I/O streams normally associated with stdin, stdout, and
stderr have the file descriptors 0, 1, and 2, respectively.

Note: If you link your library with I/O debugging support, C-SPY variants of the
low-level I/O functions will be linked for interaction with C-SPY. For more
information, see Debug support in the runtime library, page 8.

Locale
Locale is a part of the C language that allows language- and country-specific settings for
a number of areas, such as currency symbols, date and time, and multibyte encoding.

Depending on what runtime library you are using you get different level of locale
support. However, the more locale support, the larger your code will get. It is therefore
necessary to consider what level of support your application needs.

The DLIB library can be used in two major modes:

● With locale interface, which makes it possible to switch between different locales
during runtime

● Without locale interface, where one selected locale is hardwired into the
application.

LOCALE SUPPORT IN PREBUILT LIBRARIES

The level of locale support in the prebuilt libraries depends on the library configuration.

● All prebuilt libraries supports the C locale only
● All libraries with full library configuration have support for the locale interface. For

prebuilt libraries with locale interface, it is by default only supported to switch
multibyte encoding during runtime.

I/O function File Description

__close() close.c Closes a file.

__lseek() lseek.c Sets the file position indicator.

__open() open.c Opens a file.

__read() read.c Reads a character buffer.

__write() write.c Writes a character buffer.

remove() remove.c Removes a file.

rename() rename.c Renames a file.

Table 11: Low-level I/O files
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
● Libraries with normal library configuration do not have support for the locale
interface.

If your application requires a different locale support, you need to rebuild the library.

CUSTOMIZING THE LOCALE SUPPORT

If you decide to rebuild the library, you can choose between the following locales:

● The standard C locale
● The POSIX locale
● A wide range of international locales.

Locale configuration symbols

The configuration symbol _DLIB_FULL_LOCALE_SUPPORT, which is defined in the
library configuration file, determines whether a library has support for a locale interface
or not. The locale configuration symbols _LOCALE_USE_LANG_REGION and
_ENCODING_USE_ENCODING define all the supported locales and encodings.

If you want to customize the locale support, you simply define the locale configuration
symbols required by your application. For more information, see Building and using a
customized library, page 14.

Note: If you use multibyte characters in your C or assembler source code, make sure
that you select the correct locale symbol (the local host locale).

Building a library without support for locale interface

The locale interface is not included if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 0 (zero). This means that a hardwired locale
is used—by default the standard C locale—but you can choose one of the supported
locale configuration symbols. The setlocale function is not available and can
therefore not be used for changing locales at runtime.

Building a library with support for locale interface

Support for the locale interface is obtained if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 1. By default, the standard C locale is used,
but you can define as many configuration symbols as required. Because the setlocale
function will be available in your application, it will be possible to switch locales at
runtime.

CHANGING LOCALES AT RUNTIME

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.
CAEWDC-1

23

24

Environment interaction
The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern LC_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang_REGION

or

lang_REGION.encoding

The lang part specifies the language code, and the REGION part specifies a region
qualifier, and encoding specifies the multibyte encoding that should be used.

The lang_REGION part matches the _LOCALE_USE_LANG_REGION preprocessor
symbols that can be specified in the library configuration file.

Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte encoding:

setlocale (LC_ALL, "sv_FI.Utf8");

Environment interaction
According to the C standard, your application can interact with the environment using
the functions getenv and system.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

The getenv function searches the string, pointed to by the global variable __environ,
for the key that was passed as argument. If the key is found, the value of it is returned,
otherwise 0 (zero) is returned. By default, the string is empty.

To create or edit keys in the string, you must create a sequence of null terminated strings
where each string has the format:

key=value\0

The last string must be empty. Assign the created sequence of strings to the __environ
variable.

For example:

const char MyEnv[] = ”Key=Value\0Key2=Value2\0”;
__environ = MyEnv;
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function. This does not require that you rebuild
the library. You can find source templates in the files getenv.c and environ.c in the
cpuname\src\lib directory. For information about overriding default library
modules, see Overriding library modules, page 12.

If you need to use the system function, you need to implement it yourself. The system
function available in the library simply returns -1.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 14.

Note: If you link your application with support for I/O debugging, the functions
getenv and system will be replaced by C-SPY variants. For further information, see
Debug support in the runtime library, page 8.

Signal and raise
There are default implementations of the functions signal and raise available. If
these functions do not provide the functionality that you need, you can implement your
own versions.

This does not require that you rebuild the library. You can find source templates in the
files Signal.c and Raise.c in the cpuname\src\lib directory. For information
about overriding default library modules, see Overriding library modules, page 12.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 14.

Time
To make the time and date functions work, you must implement the three functions
clock, time, and __getzone.

This does not require that you rebuild the library. You can find source templates in the
files Clock.c and Time.c, and Getzone.c in the cpuname\src\lib directory. For
information about overriding default library modules, see Overriding library modules,
page 12.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 14.

The default implementation of __getzone specifies UTC as the time-zone.
CAEWDC-1

25

26

Strtod
Note: If you link your application with support for I/O debugging, the functions clock
and time will be replaced by C-SPY variants that return the host clock and time
respectively. For further information, see C-SPY Debugger runtime interface, page 29.

Strtod
The function strtod does not accept hexadecimal floating-point strings in libraries
with the normal library configuration. To make a library do so, you need to rebuild the
library, see Building and using a customized library, page 14. Enable the configuration
symbol _DLIB_STRTOD_HEX_FLOAT in the library configuration file.

Assert
If you have linked your application with support for runtime debugging, C-SPY will be
notified about failed asserts. If this is not the behavior you require, you must add the
source file xReportAssert.c to your application project. Alternatively, you can
rebuild the library. The __ReportAssert function generates the assert notification.You
can find template code in the cpuname\src directory. For further information, see
Building and using a customized library, page 14.

The stack
The stack is used by functions to store variables and other information that is used
locally by functions, as described in the chapter Data storage. It is a continuous block
of memory pointed to by the processor stack pointer register.

The data segment used for holding the stack is called CSTACK. The cstartup module
initializes the stack pointer to the end of the stack segment.

Allocating a memory area for the stack is done differently when you use the command
line interface compared to when you use the IAR Embedded Workbench IDE.

Stack size allocation in the IAR Embedded Workbench

Select Project>Options. In the General Options category, click the Stack/Heap page.

Add the required stack size in the Stack size text box.

Stack size allocation from the command line

The size of the CSTACK segment is defined in the linker command file.

The default linker file sets up a constant representing the size of the stack, at the
beginning of the linker file:
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
\\-D_CSTACK_SIZE=size

Remove the comment characters and specify the appropriate size. Note that the size is
written hexadecimally without the 0x notation.

Placement of stack segment

Further down in the linker file, the actual stack segment is defined in the memory area
available for the stack, for example:

-Z(DATA)CSTACK+_CSTACK_SIZE=A000-FE1F

Note: This range is not the size of the stack, but the range of the available memory.

Stack size considerations

The compiler uses the internal data stack, CSTACK, for a variety of user program
operations, and the required stack size depends heavily on the details of these
operations. If the given stack size is too small, the stack will normally overwrite the
variable storage, which is likely to result in program failure. If the given stack size is too
large, RAM will be wasted.

The heap
The heap contains dynamic data allocated by use of the C function malloc (or one of
the related functions) or the C++ operator new.

If your application uses dynamic memory allocation you should be familiar with the
following:

● Linker segments used for the heap, which differs between the DLIB and the CLIB
runtime environment

● Allocating the heap size, which differs depending on which build interface you are
using

● Placing the heap segments in memory.

HEAP SEGMENTS IN THE DLIB RUNTIME ENVIRONMENT

The compiler supports heaps in different memory types. To access a specific heap, use
the appropriate memory attribute as a prefix to the standard functions malloc, free,
calloc, and realloc. If you use any of the default functions it will be mapped to one
of the memory-specific variants depending on your project settings, such as data model.

Each heap will reside in a segment with the name _HEAP prefixed by a memory attribute.

For more information about this, see the release notes provided with the IAR product
installation.
CAEWDC-1

27

28

The heap
HEAP SEGMENTS IN THE CLIB RUNTIME ENVIRONMENT

The memory allocated to the heap is placed in the segment HEAP, which is only included
in the application if dynamic memory allocation is actually used.

HEAP SIZE ALLOCATION IN THE IAR EMBEDDED
WORKBENCH

Select Project>Options. Options for setting the heap size are available in the General
Options category.

Add the required heap size in the Heap size text box.

HEAP SIZE ALLOCATION FROM THE COMMAND LINE

The size of the heap segment is defined in the linker command file.

The default linker file sets up a constant representing the size of the heap, at the
beginning of the linker file:

-D_HEAP_SIZE=size

Remove the comment characters and specify the appropriate size.

PLACEMENT OF HEAP SEGMENT

The actual heap segment is allocated in the memory area available for the heap, for
example:

-Z(DATA)HEAP+_HEAP_SIZE=08000-08FFF

Note: This range is not the size of the heap, but the range of the available memory.

HEAP SIZE AND STANDARD I/O

If you have excluded FILE descriptors from the DLIB runtime environment, like in the
normal configuration, there are no input and output buffers at all. Otherwise, like in the
full configuration, be aware that the size of the input and output buffers is set to 512
bytes in the stdio library header file. If the heap is too small, I/O will not be buffered,
which is considerably slower than when I/O is buffered. If you execute the application
using the simulator driver of the IAR C-SPY Debugger, you are not likely to notice the
speed penalty, but it is quite noticeable when the application runs on a hardware target
system. If you use the standard I/O library, you should set the heap size to a value which
accommodates the needs of the standard I/O buffer, for example 1 Kbyte.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
C-SPY Debugger runtime interface
To include support for runtime and I/O debugging, you must link your application
with the XLINK options With runtime control modules or With I/O emulation
modules, see Debug support in the runtime library, page 8. In this case, C-SPY
variants of the following library functions will be linked to the application:

* The linker option With I/O emulation modules is not required for these functions.

LOW-LEVEL DEBUGGER RUNTIME INTERFACE

The low-level debugger runtime interface is used for communication between the
application being debugged and the debugger itself. The debugger provides runtime
services to the application via this interface; services that allow capabilities like file and
terminal I/O to be performed on the host computer.

These capabilities can be valuable during the early development of an application, for
example in an application using file I/O before any flash file system I/O drivers have
been implemented. Or, if you need to debug constructions in your application that use
stdin and stdout without the actual hardware device for input and output being
available. Another debugging purpose can be to produce debug trace printouts.

Function Description

abort C-SPY notifies that the application has called abort *

__exit C-SPY notifies that the end of the application has been reached *

__read stdin, stdout, and stderr will be directed to the Terminal I/O
window; all other files will read the associated host file

__write stdin, stdout, and stderr will be directed to the Terminal I/O
window, all other files will write to the associated host file

__open Opens a file on the host computer

__close Closes the associated host file on the host computer

__seek Seeks in the associated host file on the host computer

remove Writes a message to the Debug Log window and returns -1

rename Writes a message to the Debug Log window and returns -1

time Returns the time on the host computer

clock Returns the clock on the host computer

system Writes a message to the Debug Log window and returns -1

_ReportAssert Handles failed asserts *

Table 12: Functions with special meanings when linked with debug info
CAEWDC-1

29

30

Implementation of cstartup
The mechanism used for implementing this feature works as follows. The debugger will
detect the presence of the function __DebugBreak, which will be part of the application
if you have linked it with the XLINK options for the C-SPY runtime interface. In this
case, the debugger will automatically set a breakpoint at the __DebugBreak function.
When the application calls, for example open, the __DebugBreak function is called,
which will cause the application to break and perform the necessary services. The
execution will then resume.

THE DEBUGGER TERMINAL I/O WINDOW

To make the Terminal I/O window available, the application must be linked with
support for I/O debugging, see Debug support in the runtime library, page 8. This
means that when the functions __read or __write are called to perform I/O
operations on the streams stdin, stdout, or stderr, data will be sent to or read
from the C-SPY Terminal I/O window.

Note: The Terminal I/O window is not opened automatically even though __read or
__write is called; you must open it manually.

See the IAR Embedded Workbench™ IDE User Guide for more information about the
Terminal I/O window.

Implementation of cstartup
This section presents some general techniques used in the cstartup.sxx file,
including background information that might be useful if you need to modify it. The
cstartup.sxx file itself is well commented and is not described in detail in this guide.

Note: Do not modify the cstartup.sxx file unless required by your application. Your
first option should always be to use a customized version of __low_level_init for
initialization code.

For information about assembler source files, see the IAR Assembler Reference Guide.

MODULES AND SEGMENT PARTS

To understand how the startup code is designed, you must have a clear understanding of
modules and segment parts, and how the IAR XLINK Linker treats them.

An assembler module starts with a MODULE directive and ends with an ENDMOD directive.
Each module is logically divided into segment parts, which are the smallest linkable
units. There will be segment parts for constants, code bytes, and for reserved space for
data. Each segment part begins with an RSEG directive.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
When XLINK builds an application, it starts with a small number of modules that have
either been declared using the __root keyword or have the program entry label. It then
continues to include all modules that are referred from the already included modules.
XLINK then discards unused segment parts.

Segment parts, REQUIRE, and the falling-through trick

The cstartup.sxx file has been designed to use the mechanism described in the
previous paragraph, so that as little as possible of unused code will be included in the
linked application.

For example, every piece of code used for initializing one type of memory is stored in a
segment part of its own. If a variable is stored in a certain memory type, the
corresponding initialization code will be referenced by the code generated by the
compiler, and included in your application. Should no variables of a certain type exist,
the code is simply discarded.

A piece of code or data is not included if it is not used or referred to. To make the linker
always include a piece of code or data, the assembler directive REQUIRE can be used.

The segment parts defined in the cstartup.sxx file are guaranteed to be placed
immediately after each other. XLINK will not change the order of the segment parts or
modules, because the segments are placed using the -Z option.

This lets the cstartup.sxx file specify code in subsequent segment parts and modules
that are designed so that some of the parts may not be included by XLINK. The code
simply falls through to the next piece of code not discarded by the linker. The following
example shows this technique:

 MODULE doSomething

 RSEG MYSEG:CODE:NOROOT(1) // First segment part.
 PUBLIC ?do_something
 EXTERN ?end_of_test
 REQUIRE ?end_of_test

?do_something: // This will be included if someone refers to
 ... // ?do_something. If this is included then
 // the REQUIRE directive above ensures that
 // the RETURN instruction below is included.

 RSEG MYSEG:CODE:NOROOT(1) // Second segment part.
 PUBLIC ?do_something_else

?do_something_else:
 ... // This will only be included in the linked
 // application if someone outside this function
CAEWDC-1

31

32

Added C functionality
 // refers to or requires ?do_something_else

 RSEG MYSEG:CODE:NOROOT(1) // Third segment part.
 PUBLIC ?end_of_test

?end_of_test:
 RETURN // This instruction differs depending on which
 // compiler you are using. The instruction is
 // included if ?do_something above
 // is included.
 ENDMOD

Added C functionality
The IAR DLIB Library includes some added C functionality, partly taken from the C99
standard.

The following include files provide this added functionality:

● stdint.h

● stdbool.h
● math.h
● stdio.h
● stdlib.h

STDINT.H

This include file provides integer characteristics.

STDBOOL.H

This include file makes the bool type available if the Allow IAR extensions (-e) option
is used.

MATH.H

In math.h all functions exist in a float variant and a long double variant, suffixed
by f and l respectively. For example, sinf and sinl.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The DLIB runtime environment
STDIO.H

In stdio.h, the following functions have been added from the C99 standard:

The following functions have been added to provide I/O functionality for libraries built
without FILE support:

STDLIB.H

In stdlib.h, the following functions have been added:

PRINTF, SCANF AND STRTOD

The functions printf, scanf and strtod have added functionality from the C99
standard. For reference information about these functions, see the library reference
available from the Help menu.

vscanf

vfscanf

vsscanf

vsnprintf

Variants that have a va_list as argument.

snprintf Same as sprintf, but writes to a size-limited array.

__write_array Corresponds to fwrite on stdout.

__ungetchar Corresponds to ungetc on stdout.

__gets Corresponds to fgets on stdin.

_exit Exits without closing files et cetera.

__qsortbbl A qsort function that uses the bubble sort algorithm. Useful
for applications that have limited stack.
CAEWDC-1

33

34

Added C functionality
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The CLIB runtime
environment
This chapter describes the runtime environment in which an application
executes. In particular, it covers the CLIB runtime library and how you can
optimize it for your application.

The standard library uses a small set of low-level input and output routines for
character-based I/O. This chapter describes how the low-level routines can be
replaced by your own version.

The chapter also describes how you can choose printf and scanf formatters.

Finally, the chapter describes system initialization and termination. It presents
how an application can control what happens before the start function main is
called, and the method for how you can customize the initialization.

Note that the legacy CLIB runtime environment is provided for backward
compatibility and should not be used for new application projects.

For information about migrating from CLIB to DLIB, see Migration from CLIB to
DLIB, page 2.

Runtime environment
The CLIB runtime environment includes the C standard library. The linker will include
only those routines that are required—directly or indirectly—by your application. For
reference information about the runtime libraries, see the online help system available
from the Help menu.
CAEWDC-1

35

36

Input and output
The IAR C/C++ Compiler comes with a set of prebuilt libraries configured for different
combinations of certain options. For information about available prebuilt libraries and
how they are configured, see the release notes delivered with the IAR product
installation. You can find the library object files and the library configuration files in the
subdirectory cpuname\lib.

The IAR Embedded Workbench includes the correct runtime library based on the
options you select. See the IAR Embedded Workbench™ IDE User Guide for additional
information.

Specify which runtime library object file to use on the XLINK command line.

Input and output
You can customize:

● The functions related to character-based I/O
● The formatters used by printf/sprintf and scanf/sscanf.

CHARACTER-BASED I/O

The functions putchar and getchar are the fundamental functions through which C
performs all character-based I/O. For any character-based I/O to be available, you must
provide definitions for these two functions, using whatever facilities the hardware
environment provides.

The creation of new I/O routines is based on the following files:

● putchar.c, which serves as the low-level part of functions such as printf
● getchar.c, which serves as the low-level part of functions such as scanf.

The code example below shows how memory-mapped I/O could be used to write to a
memory-mapped I/O device:

__no_init volatile unsigned char DEV_IO @ address;

 int putchar(int outchar)
 {
 DEV_IO = outchar;
 return (outchar);
 }

The exact address is a design decision. For example, it can depend on the selected
processor variant.

For information about how to include your own modified version of putchar and
getchar in your project build process, see Overriding library modules, page 12.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The CLIB runtime environment
FORMATTERS USED BY PRINTF AND SPRINTF

The printf and sprintf functions use a common formatter, called
_formatted_write. The full version of _formatted_write is very large, and
provides facilities not required in many embedded applications. To reduce the memory
consumption, two smaller, alternative versions are also provided in the standard C
library.

_medium_write

The _medium_write formatter has the same functions as _formatted_write, except
that floating-point numbers are not supported. Any attempt to use a %f, %g, %G, %e, or
%E specifier will produce a runtime error:

FLOATS? wrong formatter installed!

_medium_write is considerably smaller than _formatted_write.

_small_write

The _small_write formatter works in the same way as _medium_write, except that
it supports only the %%, %d, %o, %c, %s, and %x specifiers for integer objects, and does
not support field width or precision arguments. The size of _small_write is 10–15%
that of _formatted_write.

Specifying the printf formatter in the IAR Embedded Workbench

1 Choose Project>Options and select the General Options category. Click the Library
options tab.

2 Select the appropriate Printf formatter option, which can be either Small, Medium,
or Large.

Specifying the printf formatter from the command line

To use the _small_write or _medium_write formatter, add the corresponding line in
the linker command file:

-e_small_write=_formatted_write

or

-e_medium_write=_formatted_write

To use the full version, remove the line.
CAEWDC-1

37

38

Input and output
Customizing printf

For many embedded applications, sprintf is not required, and even printf with
_small_write provides more facilities than are justified, considering the amount of
memory it consumes. Alternatively, a custom output routine may be required to support
particular formatting needs or non-standard output devices.

For such applications, a much reduced version of the printf function (without
sprintf) is supplied in source form in the file intwri.c. This file can be modified to
meet your requirements, and the compiled module inserted into the library in place of
the original file; see Overriding library modules, page 12.

FORMATTERS USED BY SCANF AND SSCANF

Similar to the printf and sprintf functions, scanf and sscanf use a common
formatter, called _formatted_read. The full version of _formatted_read is very
large, and provides facilities that are not required in many embedded applications. To
reduce the memory consumption, an alternative smaller version—_medium_read— is
also provided.

_medium_read

The _medium_read formatter has the same functions as the full version, except that
floating-point numbers are not supported. _medium_read is considerably smaller than
the full version.

Specifying the scanf formatter in the IAR Embedded Workbench

1 Choose Project>Options and select the General Options category. Click the Library
options tab.

2 Select the appropriate Scanf formatter option, which can be either Medium or Large.

Specifying the read formatter from the command line

To use the _medium_read formatter, add the following line in the linker command file:

-e_medium_read=_formatted_read

To use the full version, remove the line.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

The CLIB runtime environment
System startup and termination
This section describes the actions the runtime environment performs during startup and
termination of applications.

The code for handling startup and termination is located in the source files
cstartup.sxx and low_level_init.c, located in the cpuname\src directory.

SYSTEM STARTUP

When an application is initialized, a number of steps are performed:

● The custom function __low_level_init is called, giving the application a chance
to perform early initializations

● Static variables are initialized; this includes clearing zero-initialized memory and
copying the ROM image of the RAM memory of the remaining initialized variables

● The main function is called, which starts the application.

Note that cstartup contains code for more steps than described here. The other steps
are applicable to the DLIB runtime environment.

SYSTEM TERMINATION

An application can terminate normally in two different ways:

● Return from the main function
● Call the exit function.

Because the ISO/ANSI C standard states that the two methods should be equivalent, the
cstartup code calls the exit function if main returns. The parameter passed to the
exit function is the return value of main. The default exit function is written in
assembler.

When the application is built in debug mode, C-SPY stops when it reaches the special
code label ?C_EXIT.

An application can also exit by calling the abort function. The default function just
calls __exit in order to halt the system, without performing any type of cleanup.

Overriding default library modules
The IAR CLIB Library contains modules which you probably need to override with
your own customized modules, for example for character-based I/O, without rebuilding
the entire library. For information about how to override default library modules, see
Overriding library modules, page 12 in the chapter The DLIB runtime environment.
CAEWDC-1

39

40

Customizing system initialization
Customizing system initialization
For information about how to customize system initialization, see Customizing system
initialization, page 18.

Implementation of cstartup
For information about cstartup implementation, see Implementation of cstartup, page
30, in the chapter The DLIB runtime environment.

C-SPY runtime interface
The low-level debugger interface is used for communication between the application
being debugged and the debugger itself. The interface is simple: C-SPY will place
breakpoints on certain assembler labels in the application. When code located at the
special labels is about to be executed, C-SPY will be notified and can perform an action.

THE DEBUGGER TERMINAL I/O WINDOW

When code at the labels ?C_PUTCHAR and ?C_GETCHAR is executed, data will be sent to
or read from the debugger window.

For the ?C_PUTCHAR routine, one character is taken from the output stream and written.
If everything goes well, the character itself is returned, otherwise -1 is returned.

When the label ?C_GETCHAR is reached, C-SPY returns the next character in the input
field. If no input is given, C-SPY waits until the user has typed some input and pressed
the Return key.

To make the Terminal I/O window available, the application must be linked with the
XLINK option With I/O emulation modules selected. See the IAR Embedded
Workbench™ IDE User Guide.

TERMINATION

The debugger stops executing when it reaches the special label ?C_EXIT.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Using C++
IAR Systems supports two levels of the C++ language: The industry-standard
Embedded C++ and IAR Extended Embedded C++. They are described in this
chapter.

Overview
Embedded C++ is a subset of the C++ programming language which is intended for
embedded systems programming. It was defined by an industry consortium, the
Embedded C++ Technical Committee. The fact that performance and portability are
particularly important in embedded systems development was considered when defining
the language.

STANDARD EMBEDDED C++

The following C++ features are supported:

● Classes, which are user-defined types that incorporate both data structure and
behavior; the essential feature of inheritance allows data structure and behavior to
be shared among classes

● Polymorphism, which means that an operation can behave differently on different
classes, is provided by virtual functions

● Overloading of operators and function names, which allows several operators or
functions with the same name, provided that there is a sufficient difference in their
argument lists

● Type-safe memory management using operators new and delete
● Inline functions, which are indicated as particularly suitable for inline expansion.

C++ features which have been excluded are those that introduce overhead in execution
time or code size that are beyond the control of the programmer. Also excluded are
recent additions to the ISO/ANSI C++ standard. This is because they represent potential
portability problems, due to the fact that few development tools support the standard.
Embedded C++ thus offers a subset of C++ which is efficient and fully supported by
existing development tools.

Standard Embedded C++ lacks the following features of C++:

● Templates
● Multiple inheritance
● Exception handling
● Runtime type information
CAEWDC-1

41

42

Overview
● New cast syntax (the operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

● Namespaces.

The exclusion of these language features makes the runtime library significantly more
efficient. The Embedded C++ library furthermore differs from the full C++ library in
that:

● The standard template library (STL) is excluded
● Streams, strings, and complex numbers are supported without the use of templates
● Library features which relate to exception handling and runtime type information

(the headers except, stdexcept, and typeinfo) are excluded.

Note: The library is not in the std namespace, because Embedded C++ does not
support namespaces.

EXTENDED EMBEDDED C++

IAR Extended EC++ is a slightly larger subset of C++ which adds the following features
to the standard EC++:

● Full template support
● Namespace support
● Mutable attribute
● The cast operators static_cast(), const_cast(), and reinterpret_cast().

All these added features conform to the C++ standard.

To support Extended EC++, this product includes a version of the standard template
library (STL), in other words, the C++ standard chapters utilities, containers, iterators,
algorithms, and some numerics. This STL has been tailored for use with the Extended
EC++ language, which means that there are no exceptions, no multiple inheritance, and
no rtti support. Moreover, the library is not in the std namespace.

ENABLING C++ SUPPORT

In the IAR C/C++ Compiler, the default language is C. To be able to compile files
written in Embedded C++, you must use the --ec++ compiler option. See the IAR
C/C++ Compiler Reference Guide. You must also use the IAR DLIB runtime library.

To take advantage of Extended Embedded C++ features in your source code, you must
use the --eec++ compiler option. See --eec++, page 53.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>C/C++ Compiler>Language.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Using C++
Feature descriptions
When writing C++ source code for the IAR C/C++ Compiler, you need to know the
effects of mixing C++ features—such as classes, and class members—with IAR
language extensions, such as IAR-specific attributes.

In this guide, attributes that affect placement of data are referred to as __data_mem1,
__data_mem2, and __data_mem3. Attributes that affect placement of functions are
referred to as __func_mem1 and __func_mem2. For information about which
IAR-specific attributes that are supported by the IAR C/C++ Compiler you are using,
see the IAR C/C++ Compiler Reference Guide.

USING IAR-SPECIFIC ATTRIBUTES ON CLASS MEMBERS

A class type, class, or struct in C++ can have static and non-static data members,
and static and non-static function members. The non-static function members can be
further divided into virtual and non-virtual function members. For the static data
members, static function members, and non-static non-virtual function members the
same rules apply as for statically linked symbols outside of a class. In other words, they
can have any applicable IAR-specific type, memory, and object attribute.

The non-static virtual function members can have any applicable IAR-specific type,
memory, and object attribute as long as a pointer to the member function can be
implicitly cast to the default function pointer type. The non-static data members cannot
have any IAR attributes.

Example

class A {
 public:
 static __data_mem1 int i @ 60; //Located in data_mem1

 at address 60
 static __func_mem1 void f(); //Located in func_mem1 memory
 __func_mem1 void g(); //Located in func_mem1 memory
 virtual __func_mem1 void h();//Located in func_mem1 memory
};

Class memory

The this pointer used for referring to a class object will by default have the data
memory attribute for the default data pointer type. This means that such a class object
can only be defined to reside in memory from which pointers can be implicitly casted to
a default data pointer.
CAEWDC-1

43

44

Feature descriptions
To compensate for this limitation, a class can be associated with a class memory type.
The class memory type changes:

● the this pointer type in all member functions, constructors, and destructors into a
pointer to class memory

● the default memory for static storage duration variables—that is, not auto
variables—of the class type, into the specified class memory

● the pointer type used for pointing to objects of the class type, into a pointer to class
memory.

Example

class __data_mem2 C {
 public:
 void f(); // Has a this pointer of type
 // C __data_mem2 *
 void f() const; // Has a this pointer of type
 // C __data_mem2 const *
 C(); // Has a this pointer pointing into data_mem2
 // memory
 C(C const &); // Takes a parameter of type
 // C __data_mem2 const &
 // (also true of generated copy constructor)
 int i;
};
C Ca; // Resides in data_mem2 memory instead of the
 // default memory
C __data_mem1 Cb; // Resides in data_mem1 memory, the 'this'
 // pointer still points into data_mem2 memory
C __data_mem3 Cc; // Not allowed, __data_mem3 pointer can't be
 // implicitly casted into a __data_mem2
pointer
void h()
{
 C Cd; // Resides on the stack
}
C * Cp; // Creates a pointer to data_mem2 memory
C __data_mem1 * Cp; // Creates a pointer to data_mem1
memory

Note: Whenever a class type associated with a class memory type, like C, must be
declared, the class memory type must be mentioned as well:

class __data_mem2 C;

Also note that class types associated with different class memories are not compatible
types.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Using C++
There is a built-in operator that returns the class memory type associated with a class,
__memory_of(class). For instance, __memory_of(C) returns __data_mem2.

Inheritance of a base class with class memory restricts the memory type associated with
the subclass to be associated with a class memory that resides in the class memory
associated with the base class. (A pointer to it can implicitly be casted to a pointer to the
class memory associated with the base class.)

class __data_mem2 D : public C { // OK, same class memory
 public:
 void g();
 int j;
};

class __data_mem1 E : public C { // OK, data_mem1 memory is
 // inside data_mem2
 public:
 void g() // Has a this pointer pointing into data_mem1
 // memory
 {
 f(); // Gets a this pointer into data_mem2 memory
 }
 int j;
};

class __data_mem3 F : public C { // Not OK, data_mem3 memory
 // isn’t inside data_mem3 memory
 public:
 void g();
 int j;
};

class G : public C { // OK, will be associated with same class
 // memory as C
 public:
 void g();
 int j;
};

A new expression on the class will allocate memory in the heap residing in the class
memory. A delete expression will naturally deallocate the memory back to the same
heap. To override the default new and delete operator for a class, declare

void *operator new(size_t);
void operator delete(void *);

as member functions.
CAEWDC-1

45

46

Feature descriptions
If a pointer to class memory cannot be implicitly casted into a default pointer type, no
temporaries can be created for that class.

For more information about memory types, see the IAR C/C++ Compiler Reference
Guide.

FUNCTIONS

A function with extern "C" linkage is compatible with a function that has C++ linkage.

Example

extern "C" {
 typedef void (*fpC)(void); // A C function typedef
};
void (*fpCpp)(void); // An C++ function typedef

fpC f1;
fpCpp f2;
void f(fpC);

f(f1); // Always works
f(f2); // fpCpp is compatible with fpC

NEW AND DELETE OPERATORS

A new expression can allocate a data type in any memory that has a heap with the
following syntax:

new attribute datatype;

Example

int __data_mem2 *p = new __data_mem2 int;
int __data_mem2 *q = new __data_mem1 int;
int __data_mem2 *r = new __data_mem2 int[10];

The delete expression must mention the memory in which the object was allocated,
like:

delete __data_mem2 p;
delete __data_mem1 q;
delete[] __data_mem2 r;

Note that the delete of an allocated object must use the same memory as the new used.

delete __data_mem2 q; // Corrupts the heaps
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Using C++
To override a global or class-local new or delete operator for a specific memory type,
use the following syntax:

void mem *operator new mem(mem-itype);
void operator delete(void mem *);
void mem *operator new[] mem(mem-itype);
void operator delete[](void mem *);

where mem is a data memory attribute and mem-itype is the index type of the pointer
that points into the memory type corresponding to mem.

Note that not all memory types have a heap implemented.

TEMPLATES

Extended EC++ supports templates according to the C++ standard, except for the
support of the export keyword. The implementation uses a two-phase lookup which
means that the keyword typename has to be inserted wherever needed. Furthermore, at
each use of a template, the definitions of all possible templates must be visible. This
means that the definitions of all templates have to be in include files or in the actual
source file.

Templates and data memory attributes

For data memory attributes to work as expected in templates, two elements of the
standard C++ template handling have been changed—class template partial
specialization matching and function template parameter deduction.

In Extended Embedded C++, the class template partial specialization matching
algorithm works like this:

When a pointer or reference type is matched against a pointer or reference to a
template parameter type, the template parameter type will be the type pointed to,
stripped of any data memory attributes, if the resulting pointer or reference type is
the same.

Example

// We assume that data_mem2 is the memory type of the default
pointer.
template<typename> class Z;
template<typename T> class Z<T *>;

Z<int __data_mem1 *> zn; // T = int __data_mem1
Z<int __data_mem2 *> zf; // T = int
Z<int *> zd; // T = int
Z<int __data_mem3 *> zh; // T = int __data_mem3
CAEWDC-1

47

48

Feature descriptions
In Extended Embedded C++, the function template parameter deduction algorithm
works like this:

When function template matching is performed and an argument is used for the
deduction; if that argument is a pointer to a memory that can be implicitly converted
to a default pointer, do the parameter deduction as if it was a default pointer.

When an argument is matched against a reference, do the deduction as if the
argument and the parameter were both pointers.

Example

template<typename T> void fun(T *);

fun((int __data_mem1 *) 0); // T = int
fun((int *) 0); // T = int
fun((int __data_mem2 *) 0); // T = int
fun((int __data_mem3 *) 0); // T = int __data_mem3

Note that line 3 above gets a different result than the analogous situation with class
template specializations.

For templates that are matched using this modified algorithm, it is impossible to get
automatic generation of special code for pointers to small memory types. However, for
large and “other” memory types (memory that cannot be pointed to by a default pointer)
it is possible. In order to make it possible to write templates that are fully
memory-aware—in the rare cases where this is useful—use the #pragma
basic_template_matching directive in front of the template function declaration.
That template function will then match without the modifications described above.

Example

#pragma basic_template_matching
template<typename T> void fun(T *);

fun((int __data_mem1 *) 0); // T = int __data_mem1

Non-type template parameters

It is allowed to have a reference to a memory type as a template parameter, even if
pointers to that memory type are not allowed.

Example

extern int __sfr x; // Not possible to point at x

template<__sfr int &y>
void foo()
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Using C++
{
 y = 17;
}

void bar()
{
 foo<x>();
}

Note:

The standard template library

The STL (standard template library) delivered with the product is tailored for Extended
EC++, as described in Extended Embedded C++, page 42.

The containers in the STL, like vector and map, are memory attribute aware. This
means that a container can be declared to reside in a specific memory type which has the
following consequences:

● The container itself will reside in the chosen memory
● Allocations of elements in the container will use a heap for the chosen memory
● All references inside it use pointers to the chosen memory.

Example

vector<int > d; // d placed in default memory, using
 // the default heap, uses default
 // pointers
vector<int __data_mem1> __data_mem1 x; // x placed in data_mem1
 // memory, heap allocation
 // from data_mem1, uses
 // pointers to data_mem1
 // memory
vector<int __data_mem3> __data_mem1 y; // y placed in data_mem1
 // memory, heap allocation
 // from data_mem3, uses
 // pointers to data_mem3
 // memory
vector<int __data_mem1> __data_mem3 z; // Illegal

Note that map<key, T>, multimap<key, T>, hash_map<key, T>, and
hash_multimap<key, T> all use the memory of T. This means that the value_type
of these collections will be pair<key, const T> mem where mem is the memory type
of T. Supplying a key with a memory type is not useful.

Note that two containers that only differ by the data memory attribute they use cannot
be assigned to each other.
CAEWDC-1

49

50

Feature descriptions
Example

vector<int __data_mem1> x;
vector<int __data_mem3> y;

x = y; // Illegal
y = x; // Illegal

However, the templated assign member method will work:

x.assign(y.begin(), y.end());
y.assign(x.begin(), x.end());

STL and the IAR C-SPY Debugger

C-SPY has built-in display support for the STL containers.

VARIANTS OF CASTS

In Extended EC++ the following additional C++ cast variants can be used:

 const_cast<t2>(t), static_cast<t2>(t), reinterpret_cast<t2>(t).

MUTABLE

The mutable attribute is supported in Extended EC++. A mutable symbol can be
changed even though the whole class object is const.

NAMESPACE

The namespace feature is only supported in Extended EC++. This means that you can
use namespaces to partition your code. Note, however, that the library itself is not placed
in the std namespace.

THE STD NAMESPACE

The std namespace is not used in either standard EC++ or in Extended EC++. If you
have code that refers to symbols in the std namespace, simply define std as nothing;
for example:

#define std // Nothing here

POINTER TO MEMBER FUNCTIONS

A pointer to a member function can only contain a default function pointer, or a function
pointer that can implicitly be casted to a default function pointer. To use a pointer to a
member function, make sure that all functions that should be pointed to reside in the
default memory or a memory contained in the default memory. To read more about
available pointer types, see the IAR C/C++ Compiler Reference Guide.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Using C++
Example

class X{
 __func_mem1 void f();
};
void (__func_mem1 X::*pmf)(void) = &X::f;

USING INTERRUPTS AND C++ DESTRUCTORS

If interrupts are enabled and the interrupt functions use class objects that have
destructors, there may be problems if the program exits either by using exit or by
returning from main. If an interrupt occurs after an object has been destroyed, there is
no guarantee that the program will work properly.

To avoid this, you must override the function exit(int).

The standard implementation of this function (located in the file exit.c) looks like this:

extern void _exit(int arg);
void exit(int arg)
{
 _exit(arg);
}

_exit(int) is responsible for calling the destructors of global class objects before
ending the program.

To avoid interrupts, place a call to the intrinsic function __disable_interrupts()
before the call to _exit().
CAEWDC-1

51

52

Feature descriptions
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Reference information
This chapter gives detailed reference information about new features related
to the runtime environment and the library. Note that other features might
have been added after the writing of this guide, see the release notes provided
with your IAR product installation.

Descriptions of options
This section gives detailed reference information about new compiler options.

--eec++ --eec++

In the IAR C/C++ Compiler, the default language is C. If you take advantage of
Extended Embedded C++ features like namespaces or the standard template library in
your source code, you must use this option to change the language to Extended
Embedded C++. See Extended Embedded C++, page 42.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>C/C++ Compiler>Language.

--error_limit --error_limit=n

Use the --error_limit option to specify the number of errors allowed before the
compiler stops the compilation. By default, 100 errors are allowed. n must be a positive
number; 0 indicates no limit.

--no_tbaa --no_tbaa

Use --no_tbaa to disable type-based alias analysis. When this options is not used, the
compiler is free to assume that objects are only accessed through the declared type or
through unsigned char.

This option is related to the Optimization options in the C/C++ Compiler category in
the IAR Embedded Workbench.
CAEWDC-1

53

54

Descriptions of options
Description of type-based alias analysis

Type-based alias analysis means that the compiler assumes that an assignment, for
example via pointers, to an object of one type does not change the value of objects of
other types, except for char objects. This is according to the ISO/ANSI standard.

A C or C++ application that conforms to the ISO/ANSI standard thus accesses an object
only by a modifiable value that has one of the following types:

● a const or volatile qualified version of the declared type of the object
● a type that is the signed or unsigned type corresponding to a const or volatile

qualified version of the declared type of the object
● an aggregate or union type that includes one of the above types among its members
● a character type.

By default, the compiler does not assume that objects are only accessed through the
declared type or through unsigned char. However, at optimization level High the
type-based alias analysis transformation is used, which means that the optimizer will
assume that the program is standards compliant and the rules above will be used for
determining what objects may be affected when a pointer indirection is used in an
assignment.

Consider the following example:

short s;
unsigned short us;
long l;
unsigned long ul;
float f;

unsigned short *usptr;
char *cptr;

struct A
{
 short s;
 float f;
} a;

void test(float *fptr, long *lptr)
{ /* May affect: */
 lptr = 0; / l, ul */
 fptr = 1.0; / f, a */
 usptr = 4711; / s, us, a */
 cptr = 17; / s, us, l, ul, f, usptr, cptr, a */
}

CAEWDC-1

IAR Runtime Environment and Library
User Guide

Reference information
Because an object shall only be accessed as its declared type (or a qualified version of
its declared type, or a signed/unsigned type corresponding to its declared type) it is also
assumed that the object that fptr points to will not be affected by an assignment to the
object that lptr points to.

This may cause unexpected behavior for some non-conforming programs. The
following example illustrates one of the benefits of type-based alias analysis and what
can happen when a non-conforming program breaks the rules above.

short f(short *sptr, long *lptr)
{
 short x = *sptr;
 *lptr = 0;
 return *sptr + x;
}

Because the *lptr = 0 assignment cannot affect the object sptr points to, the
optimizer will assume that *sptr in the return statement has the same value as variable
x was assigned at the beginning of the function. Hence, it is possible to eliminate a
memory access by returning x << 1 instead of *sptr + x.

Consider the following example, which is not ISO/ANSI compliant:

short fail()
{
 union
 {
 short s[2];
 long l;
 } u;
 u.s[0] = 4711;

 return f(&u.s[0], &u.l);
}

When the function fail passes the address of the same object as both a pointer to short
and as a pointer to long for the function f, the result will most likely not be the
expected.

Note: This option has no effect at optimization levels None, Low, and Medium.
CAEWDC-1

55

56

Descriptions of pragma directives
Descriptions of pragma directives
This section gives detailed reference information about new pragma directives.

 #pragma basic_template_matching #pragma basic_template_matching

Use this pragma directive in front of a template function declaration to make the
function fully memory-aware, in the rare cases where this is useful. This template
function will then match the template without any modifications. Read more about
memory attributes and templates in Feature descriptions, page 43.

Example

#pragma basic_template_matching
template<typename T> void fun(T *);

fun((int __data_mem1 *) 0); // T = int __data_mem1

Implementation-defined behavior
This section lists changes related to implementation-defined behavior.

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. The
default source character set is the standard ASCII character set. However, if you use the
command line option --enable_multibytes, the source character set will be the host
computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. The default execution character set is the standard ASCII character set.
However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library
needs a multibyte character scanner to support a multibyte execution character set. The
IAR CLIB Library does not support multibyte characters.

See Locale, page 22.

Converting multibyte characters (6.1.3.4)

The only locale supported—that is, the only locale supplied with the IAR C/C++
Compiler—is the ‘C’ locale. If you use the command line option
--enable_multibytes, the IAR DLIB Library will support multibyte characters if
you add a locale with multibyte support or a multibyte character scanner to the library.
The IAR CLIB Library does not support multibyte characters.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Reference information
See Locale, page 22.

IAR DLIB LIBRARY FUNCTIONS

The information in this section is valid only if the runtime library configuration you have
chosen supports file descriptors. See the chapter The DLIB runtime environment for
more information about runtime library configurations.

signal() (7.7.1.1)

The signal part of the library is not supported.

Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Signal and raise, page 25.

Files (7.9.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 21.

remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 21.

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 21.

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in Environment interaction, page 24.

system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See Environment interaction, page 24.

The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in Time, page
25.
CAEWDC-1

57

58

Implementation-defined behavior
clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See Time, page 25.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Library functions
This chapter gives an introduction to the C and C++ library functions. It also
lists the header files used for accessing library definitions.

Introduction
The IAR C/C++ Compiler provides two different libraries:

● IAR DLIB Library is a complete ISO/ANSI C and C++ library. This library also
supports floating-point numbers in IEEE 754 format and it can be configured to
include different levels of support for locale, file descriptors, multibytes, et cetera.

● IAR CLIB Library is a light-weight library, which is not fully compliant with
ISO/ANSI C. Neither does it fully support floating-point numbers in IEEE 754
format or does it support Embedded C++.

Note that different customization methods are normally needed for these two libraries.
For additional information, see the chapter The DLIB runtime environment and The
CLIB runtime environment, respectively.

For detailed information about the library functions, see the online documentation
supplied with the product. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

For additional information about library functions, see Implementation-defined
behavior, page 56.

HEADER FILES

Your application program gains access to library definitions through header files, which
is incorporated using the #include directive. The definitions are divided into a number
of different header files, each covering a particular functional area, letting you include
just those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.
CAEWDC-1

59

60

IAR DLIB Library
LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
choose a runtime library, see Getting started using the runtime environment, page 2. The
linker will include only those routines that are required—directly or indirectly—by your
application.

REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant. Most parts of the DLIB library are reentrant, but the following
functions and parts are not reentrant:

In addition, some functions share the same storage for errno. These functions are not
reentrant, since an errno value resulting from one of these functions can be destroyed
by a subsequent use of the function before it has been read. Among these functions are:

exp, exp10, ldexp, log, log10, pow, sqrt, acos, asin, atan2,
cosh, sinh, strtod, strtol, strtoul

Remedies for this are:

● Do not use non-reentrant functions in interrupt service routines
● Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

IAR DLIB Library
The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. These are of the following types:

● Adherence to a free-standing implementation of the ISO/ANSI standard for the
programming language C. For additional information, see Implementation-defined
behavior, page 56.

● Standard C library definitions, for user programs.

atexit Needs static data

heap functions Need static data for memory allocation tables

strerror Needs static data

strtok Designed by ISO/ANSI standard to need static data

I/O Every function that uses files in some way. This includes
printf, scanf, getchar, and putchar. The
functions sprintf and sscanf are not included.
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Library functions
● Embedded C++ library definitions, for user programs.
● CSTARTUP, the module containing the start-up code. It is described in the The DLIB

runtime environment chapter in this guide.
● Runtime support libraries; for example, low-level floating-point routines.
● Intrinsic functions, allowing low-level use of device-specific features. See IAR

C/C++ Compiler Reference Guide for more information.

C HEADER FILES

This section lists the header files specific to the DLIB library C definitions. Header files
may additionally contain target-specific definitions; these are documented in the IAR
C/C++ Compiler Reference Guide.

The following table lists the C header files:

Header file Usage

assert.h Enforcing assertions when functions execute

ctype.h Classifying characters

errno.h Testing error codes reported by library functions

float.h Testing floating-point type properties

iso646.h Using Amendment 1—iso646.h standard header

limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions

setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions

stdarg.h Accessing a varying number of arguments

stdbool.h Adds support for the bool data type in C.

stddef.h Defining several useful types and macros

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

time.h Converting between various time and date formats

wchar.h Support for wide characters

wctype.h Classifying wide characters

Table 13: Traditional standard C header files—DLIB
CAEWDC-1

61

62

IAR DLIB Library
C++ HEADER FILES

This section lists the C++ header files.

Embedded C++

The following table lists the Embedded C++ header files:

The following table lists additional C++ header files:

Header file Usage

complex Defining a class that supports complex arithmetic

exception Defining several functions that control exception handling

fstream Defining several I/O streams classes that manipulate external files

iomanip Declaring several I/O streams manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams classes

iosfwd Declaring several I/O streams classes before they are necessarily defined

iostream Declaring the I/O streams objects that manipulate the standard streams

istream Defining the class that performs extractions

new Declaring several functions that allocate and free storage

ostream Defining the class that performs insertions

sstream Defining several I/O streams classes that manipulate string containers

stdexcept Defining several classes useful for reporting exceptions

streambuf Defining classes that buffer I/O streams operations

string Defining a class that implements a string container

strstream Defining several I/O streams classes that manipulate in-memory character
sequences

Table 14: Embedded C++ header files

Header file Usage

fstream.h Defining several I/O stream classes that manipulate external files

iomanip.h Declaring several I/O streams manipulators that take an argument

iostream.h Declaring the I/O streams objects that manipulate the standard streams

new.h Declaring several functions that allocate and free storage

Table 15: Additional Embedded C++ header files—DLIB
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Library functions
Extended Embedded C++ standard template library

The following table lists the Extended Embedded C++ standard template library (STL)
header files:

Using standard C libraries in C++

The C++ library works in conjunction with 15 of the header files from the standard C
library, sometimes with small alterations. The header files come in two forms—new and
traditional—for example, cassert and assert.h.

The following table shows the new header files:

Header file Description

algorithm Defines several common operations on sequences

deque A deque sequence container

functional Defines several function objects

hash_map A map associative container, based on a hash algorithm

hash_set A set associative container, based on a hash algorithm

iterator Defines common iterators, and operations on iterators

list A doubly-linked list sequence container

map A map associative container

memory Defines facilities for managing memory

numeric Performs generalized numeric operations on sequences

queue A queue sequence container

set A set associative container

slist A singly-linked list sequence container

stack A stack sequence container

utility Defines several utility components

vector A vector sequence container

Table 16: Standard template library header files

Header file Usage

cassert Enforcing assertions when functions execute

cctype Classifying characters

cerrno Testing error codes reported by library functions

cfloat Testing floating-point type properties

climits Testing integer type properties

Table 17: New standard C header files—DLIB
CAEWDC-1

63

64

IAR CLIB Library
IAR CLIB Library
The IAR CLIB Library provides most of the important C library definitions that apply
to embedded systems. These are of the following types:

● Standard C library definitions available for user programs. These are documented in
this chapter.

● CSTARTUP, the single program module containing the start-up code. It is described
in the The CLIB runtime environment chapter in this guide.

● Runtime support libraries; for example low-level floating-point routines.
● Intrinsic functions, allowing low-level use of device-specific features. See the IAR

C/C++ Compiler Reference Guide for more information.

LIBRARY DEFINITIONS SUMMARY

This section lists the header files. Header files may additionally contain target-specific
definitions.

clocale Adapting to different cultural conventions

cmath Computing common mathematical functions

csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions

cstdarg Accessing a varying number of arguments

cstddef Defining several useful types and macros

cstdio Performing input and output

cstdlib Performing a variety of operations

cstring Manipulating several kinds of strings

ctime Converting between various time and date formats

Header file Usage

Table 17: New standard C header files—DLIB (Continued)

Header file Description

assert.h Assertions

ctype.h* Character handling

iccbutl.h Low-level routines

math.h Mathematics

setjmp.h Non-local jumps

stdarg.h Variable arguments

Table 18: IAR CLIB Library header files
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Library functions
* The functions isxxx, toupper, and tolower declared in the header file ctype.h evaluate
their argument more than once. This is not according to the ISO/ANSI standard.

The following table shows header files that do not contain any functions, but specify
various definitions and data types:

stdio.h Input/output

stdlib.h General utilities

string.h String handling

Header file Description

errno.h Error return values

float.h Limits and sizes of floating-point types

limits.h Limits and sizes of integral types

stdbool.h Adds support for the bool data type in C

stddef.h Common definitions including size_t, NULL,
ptrdiff_t, and offsetof

Table 19: Miscellaneous IAR CLIB Library header files

Header file Description

Table 18: IAR CLIB Library header files (Continued)
CAEWDC-1

65

66

IAR CLIB Library
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Index

Index
A
algorithm (STL header file) . 63
applications

initializing . 17, 39
terminating. 17, 39

assembler directives
ENDMOD . 30
MODULE . 30
REQUIRE . 31
RSEG. 30

assembler labels
?C_EXIT . 40
?C_GETCHAR . 40
?C_PUTCHAR . 40

assert.h (library header file) . 61, 64
assumptions (programming experience) ix

B
basic_template_matching (pragma directive) 48, 56
bool (data type)

adding support for in CLIB . 65
adding support for in DLIB . 61
making available in C . 32

bubble sort algorithm, adding support for 33

C
C header files . 61
cassert (library header file) . 63
cast operators

in Extended EC++ . 42
missing from Embedded C++ . 42

cctype (library header file) . 63
cerrno (library header file) . 63
cfloat (library header file) . 63
class memory (extended EC++) . 43

class template
partial specialization matching (extended EC++) 47
classes. 43
CLIB. 2, 64

documentation . 59
header files. 59
library object files . 60

climits (library header file) . 63
clocale (library header file) . 64
_ _close (library function). 22
cmath (library header file). 64
code, excluding when linking . 31
compiler options

--eec++. 53
--error_limit . 53
--no_tbaa . 53

complex numbers, supported in Embedded C++. 42
complex (library header file). 62
computer style, typographic convention ix
configuration symbols, in library configuration files. 14
const_cast() (cast operator) . 42
conventions, typographic . ix
copyright notice . ii
csetjmp (library header file) . 64
csignal (library header file) . 64
CSTACK (segment) . 26
cstartup . 39

implementation . 40
cstartup, customizing . 18
cstartup, implementation. 30
cstdarg (library header file) . 64
cstddef (library header file) . 64
cstdio (library header file). 64
cstdlib (library header file) . 64
cstring (library header file) . 64
ctime (library header file) . 64
ctype.h (library header file). 61, 64
customization, _ _low_level_init. 18
C++

features excluded from EC++ . 41
CAEWDC-1

67

68
See also Embedded C++ and Extended Embedded C++
terminology . ix

C++ header files . 62
C-SPY

low-level interface (CLIB) . 40
low-level interface (DLIB). 29
STL container support . 50

?C_EXIT (assembler label). 40
?C_GETCHAR (assembler label) . 40
?C_PUTCHAR (assembler label) . 40
C99 standard, added functionality from 32

D
data, excluding when linking . 31
date (library function), configuring support for. 25
delete operator (extended EC++) . 46
deque (STL header file) . 63
destructors and interrupts, using . 51
disclaimer . ii
DLIB. 2, 60

documentation . 59
using . 3

document conventions. ix
dynamic initialization . 16, 36–39

E
EC++ header files . 62
--eec++ (compiler option) . 53
Embedded C++. 41

differences from C++. 41
language extensions . 41
overview . 41

ENDMOD (assembler directive). 30
environment, runtime . 35
errno.h (library header file) . 61, 65
exception handling, missing from Embedded C++ 41
exception (library header file) . 62

export keyword, missing from Extended EC++ 47
Extended Embedded C++ . 42

enabling . 53
standard template library (STL) 63

F
float.h (library header file) . 61, 65
_formatted_write (library function) 10, 37
fstream (library header file) . 62
fstream.h (library header file) . 62
function template parameter deduction (extended EC++) . . 48
functional (STL header file) . 63
functions, reentrancy (DLIB) . 60

G
getchar (library function) . 36
getenv (library function), configuring support for 24
getzone (library function), configuring support for 25
guidelines, reading . ix

H
hash_map (STL header file) . 63
hash_set (STL header file) . 63
header files

assert.h . 64
C . 61
CLIB . 59
ctype.h . 64
C++ . 62
EC++ . 62
errno.h . 65
float.h. 65
iccbutl.h . 64
limits.h. 65
math.h . 64
setjmp.h . 64
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Index
stdarg.h . 64
stdbool.h . 61, 65
stddef.h . 65
stdio.h . 65
stdlib.h . 65
STL . 63
string.h . 65

heap
changing default size (cl) . 28
changing default size (IDE) . 28
size. 26–28

HEAP (segment) . 28

I
iccbutl.h (library header file). 64
implementation

cstartup . 30
inheritance, in Embedded C++ . 41
initialization

dynamic . 16, 36–39
integer characteristics, adding . 32
interrupts and EC++ destructors, using 51
iomanip (library header file) . 62
iomanip.h (library header file) . 62
ios (library header file) . 62
iosfwd (library header file) . 62
iostream (library header file). 62
iostream.h (library header file) . 62
ISO/ANSI C . 2, 59

C++ features excluded from EC++ 41
iso646.h (library header file). 61
istream (library header file). 62
iterator (STL header file) . 63

L
language extensions

Embedded C++ . 41

libraries
runtime. 35
standard template library . 63

library configuration file, modifying. 15
library documentation . 59
library features, missing from Embedded C++ 42
library functions . 59

getchar . 36
printf

choosing formatter in DLIB 10
printf, choosing formatter in CLIB. 37
putchar . 36
remove . 22
rename . 22
scanf

choosing formatter in DLIB 11
scanf, choosing formatter in CLIB. 38
sprintf

choosing formatter in DLIB 10
sprintf, choosing formatter in CLIB 37
sscanf, choosing formatter in CLIB 38
summary . 61, 64
_ _close . 22
_ _lseek . 22
_ _open . 22
_ _read . 22
_ _write . 22

library object files, CLIB . 60
limits.h (library header file) . 61, 65
list (STL header file). 63
locale.h (library header file) . 61
_ _low_level_init, customizing . 18
_ _lseek (library function). 22

M
map (STL header file) . 63
math.h (library header file) 32, 61, 64
_medium_write (library function). 37
CAEWDC-1

69

70
memory management, type-safe . 41
memory (STL header file). 63
MODULE (assembler directive) . 30
modules, assembler. 30
multiple inheritance, missing from Embedded C++ 41
mutable attribute, in Extended EC++ 50

N
namespace support

in Extended EC++ . 42, 50
missing from Embedded C++ . 42

new operator (extended EC++) . 46
new (library header file) . 62
new.h (library header file) . 62
NULL . 65
numeric (STL header file). 63

O
offsetof . 65
_ _open (library function) . 22
optimization

type-based alias analysis . 54
--no_tbaa . 53

ostream (library header file) . 62

P
parameters

typographic convention . ix
polymorphism, in Embedded C++ 41
pragma directives

basic_template_matching. 48, 56
prerequisites (programming experience) ix
printf (library function)

choosing formatter in CLIB . 37
choosing formatter in DLIB. 10

programming experience, required ix

ptrdiff_t (integer type). 65
putchar (library function) . 36

Q
queue (STL header file) . 63

R
raise (library function), configuring support for 25
_ _read (library function) . 22
read formatter, selecting . 12, 38
reading guidelines. ix
reentrancy (DLIB). 60
reinterpret_cast() (cast operator) . 42
remove (library function) . 22
rename (library function) . 22
REQUIRE (assembler directive) . 31
RSEG (assembler directive) . 30
rtti support, missing from STL . 42
runtime environment . 35
runtime libraries . 35

introduction . 59
runtime type information, missing from Embedded C++ . . 41

S
scanf (library function)

choosing formatter in CLIB . 38
choosing formatter in DLIB. 11

segment parts, unused . 31
segments

CSTACK . 26
HEAP. 28

set (STL header file) . 63
setjmp.h (library header file). 61, 64
signal (library function), configuring support for 25
signal.h (library header file) . 61
size_t (integer type) . 65
CAEWDC-1

IAR Runtime Environment and Library
User Guide

Index
slist (STL header file) . 63
_small_write (library function) . 37
sprintf (library function)

choosing formatter in CLIB . 37
choosing formatter in DLIB. 10

sscanf (library function)
choosing formatter in CLIB . 38
choosing formatter in DLIB. 11

sstream (library header file) . 62
stack

changing default size (from command line) 26
changing default size (in Embedded Workbench) 26
size. 27

stack (STL header file) . 63
standard template library (STL)

in Extended EC++ . 42, 49, 63
missing from Embedded C++ . 42

startup, system . 17, 39
static_cast() (cast operator) . 42
std namespace, missing from EC++
and Extended EC++ . 50
stdarg.h (library header file) . 61, 64
stdbool.h (library header file) 32, 61, 65
stddef.h (library header file) . 61, 65
stderr. 22
stdexcept (library header file) . 62
stdin . 22
stdint.h (library header file). 32
stdio.h (library header file) 33, 61, 65
stdlib.h (library header file). 33, 61, 65
stdout . 22
streambuf (library header file). 62
streams, supported in Embedded C++. 42
string (library header file) . 62
strings, supported in Embedded C++ 42
string.h (library header file) . 61, 65
strstream (library header file) . 62
strtod (library function), configuring support for 26
system startup . 17, 39
system termination . 17, 39

system (library function), configuring support for 24

T
template support

in Extended EC++ . 42, 47
missing from Embedded C++ . 41

Terminal I/O window, in C-SPY . 40
termination, system. 17, 39
terminology. ix
this pointer, referring to a class object (extended EC++). . . 43
time (library function), configuring support for 25
time.h (library header file) . 61
Type-based alias analysis, optimization 54
type-safe memory management . 41
typographic conventions . ix

U
utility (STL header file) . 63

V
vector (STL header file) . 63

W
wchar.h (library header file) . 61
wctype.h (library header file) . 61
_ _write (library function). 22
write formatter, selecting . 37–38

Symbols
--eec++ (compiler option) . 53
--error_limit (compiler option) . 53
--no_tbaa (compiler option) . 53
?C_EXIT (assembler label). 40
?C_GETCHAR (assembler label) . 40
CAEWDC-1

71

72
?C_PUTCHAR (assembler label) . 40
_ _close (library function). 22
_ _low_level_init, customizing . 18
_ _lseek (library function). 22
_ _open (library function) . 22
_ _read (library function) . 22
_ _write (library function). 22
_formatted_write (library function) 10, 37
_medium_write (library function). 37
_small_write (library function) . 37
CAEWDC-1

IAR Runtime Environment and Library
User Guide

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	Document conventions
	Typographic conventions

	Overview
	IAR language overview
	Getting started using the runtime environment
	Two sets of runtime libraries
	Migration from CLIB to DLIB

	Compiling and linking with the DLIB runtime library
	Choosing a runtime library in the IAR Embedded Workbench
	Choosing a runtime library from the command line
	Setting library and runtime environment options

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Library selection
	Situations that require library building
	Library configurations
	Debug support in the runtime library

	Using a prebuilt library
	Customizing a prebuilt library without rebuilding

	Choosing formatting capabilities
	Choosing printf formatter
	For information about how to fine-tune the formatting capabilities even further, see Configuration symbols for printf and scanf, page 20.
	Specifying the print formatter in the IAR Embedded Workbench
	Specifying printf formatter from the command line

	Choosing scanf formatter
	For information about how to fine-tune the formatting capabilities even further, see Configuration symbols for printf and scanf, page 20.
	Specifying scanf formatter in the IAR Embedded Workbench
	Specifying scanf formatter from the command line

	Overriding library modules
	Overriding library modules using the IAR Embedded Workbench
	Overriding library modules from the command line

	Building and using a customized library
	Setting up a library project
	Modifying the library functionality
	Modifying the library configuration file

	Using a customized library

	System startup and termination
	System startup
	System termination
	C-SPY interface to system termination

	Customizing system initialization
	_ _low_level_init
	Modifying the cstartup file

	Standard streams for input and output
	Implementing low-level character input and output
	Example of using _ _write and _ _read

	Configuration symbols for printf and scanf
	Customizing formatting capabilities

	File input and output
	Locale
	Locale support in prebuilt libraries
	Customizing the locale support
	Locale configuration symbols
	Building a library without support for locale interface
	Building a library with support for locale interface

	Changing locales at runtime
	Example

	Environment interaction
	Signal and raise
	Time
	Strtod
	Assert
	The stack
	Stack size allocation in the IAR Embedded Workbench
	Stack size allocation from the command line
	Placement of stack segment
	Stack size considerations

	The heap
	Heap segments in the DLIB runtime environment
	Heap segments in the CLIB runtime environment
	Heap size allocation in the IAR Embedded Workbench
	Heap size allocation from the command line
	Placement of heap segment
	Heap size and standard I/O

	C-SPY Debugger runtime interface
	Low-level debugger runtime interface
	The debugger terminal I/O window

	Implementation of cstartup
	Modules and segment parts
	Segment parts, REQUIRE, and the falling-through trick

	Added C functionality
	stdint.h
	stdbool.h
	math.h
	stdio.h
	stdlib.h
	printf, scanf and strtod

	The CLIB runtime environment
	Runtime environment
	Input and output
	Character-based I/O
	Formatters used by printf and sprintf
	_medium_write
	_small_write
	Specifying the printf formatter in the IAR Embedded Workbench
	Specifying the printf formatter from the command line
	Customizing printf

	Formatters used by scanf and sscanf
	_medium_read
	Specifying the scanf formatter in the IAR Embedded Workbench
	Specifying the read formatter from the command line

	System startup and termination
	System startup
	System termination

	Overriding default library modules
	Customizing system initialization
	Implementation of cstartup
	C-SPY runtime interface
	The debugger terminal I/O window
	Termination

	Using C++
	Overview
	Standard Embedded C++
	Extended Embedded C++
	Enabling C++ support

	Feature descriptions
	Using IAR-specific attributes on class members
	Class memory

	Functions
	New and Delete operators
	Templates
	Templates and data memory attributes
	Non-type template parameters
	The standard template library
	STL and the IAR C-SPY Debugger

	Variants of casts
	Mutable
	Namespace
	The STD namespace
	Pointer to member functions
	Using interrupts and C++ destructors

	Reference information
	Descriptions of options
	--eec++
	--error_limit
	--no_tbaa
	Description of type-based alias analysis

	Descriptions of pragma directives
	#pragma basic_template_matching
	Implementation-defined behavior
	Source and execution character sets (5.2.1)
	Converting multibyte characters (6.1.3.4)
	IAR DLIB Library functions
	signal() (7.7.1.1)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	Library functions
	Introduction
	Header files
	Library object files
	Reentrancy

	IAR DLIB Library
	C header files
	C++ header files
	Embedded C++
	Extended Embedded C++ standard template library
	Using standard C libraries in C++

	IAR CLIB Library
	Library definitions summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Symbols

