
MARM-3

IAR Embedded Workbench
Migration Guide

for Advanced RISC Machines Ltd’s
ARM Cores

MARM-3

MARM-3

COPYRIGHT NOTICE
© Copyright 1999–2010 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions. In no event shall IAR Systems, its employees, its contractors, or the
authors of this document be liable for special, direct, indirect, or consequential damage,
losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any
nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

ARM, Thumb, and Cortex are registered trademarks of Advanced RISC Machines
Ltd. EmbeddedICE is a trademark of Advanced RISC Machines Ltd. OCDemon is a
trademark of Macraigor Systems LLC. μC/OS-II is a trademark of Micriμm, Inc.
CMX-RTX is a trademark of CMX Systems, Inc. ThreadX is a trademark of Express
Logic. RTXC is a trademark of Quadros Systems. Fusion is a trademark of Unicoi
Systems.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Adobe and
Acrobat Reader are registered trademarks of Adobe Systems Incorporated. CodeWright
is a registered trademark of Starbase Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Sixth edition: October 2010

Part number: MARM-3

This guide applies to version 6.1x of IAR Embedded Workbench® for ARM®.

Internal reference: M7, Too6.1, V_101029, ISUD.

Migrating from version 5.x
to 6.x
This chapter gives hints for porting your application code and projects to the
new version 6.x from the old version 5.x of IAR Embedded Workbench for
ARM®.

Note that if you are migrating from an older version than 5.x, you must first
read the previous migration chapters in this guide.

Migration considerations
To migrate your old project, consider these topics:

● IAR Embedded Workbench IDE

● C/C++ language changes

● Runtime library changes

Note that not all items in the list might be relevant for your project. Consider carefully
which actions that are needed in your case.

Code written for version 5.x might generate warnings or errors in version 6.x.

CHANGES IN USER DOCUMENTATION

The IAR Embedded Workbench® IDE User Guide for ARM® has been replaced by:

● The C-SPY® Debugging Guide for ARM®, which replaces all information related
to debugging

● The IDE Project Management and Building for ARM®, which replaces all
information related to project management and building in the IDE.

IAR Embedded Workbench IDE
When you upgrade to the new version of the IAR Embedded Workbench IDE, you must
consider the issues described in this section.
MARM-3

Migration and portability 1

2

C/C++ language changes
INSTALLATION DIRECTORY

When you install your new version of the IAR Embedded Workbench IDE, you cannot
install it in the same installation directory as your old version.

The old default installation path is:

c:\Program Files\IAR Systems\Embedded Workbench 5.n\

The new default installation path is:

c:\Program Files\IAR Systems\Embedded Workbench 6.n\

Note the difference in version number of IAR Embedded Workbench.

PROJECT SETTINGS IN THE OPTIONS DIALOG BOX

The Options dialog box—available from the Project menu—has changed. This table
lists the most important changes:

PROJECT FILES

Even though some of the pages in the Options dialog box have changed, your old
project file can be used in your new version of the IAR Embedded Workbench IDE.

When you convert an old project, the new option C++ inline semantics will be enabled.
If you want your source code to be compliant to Standard C (C99), make sure to disable
this option. For more information, read about --use_c++_inlines in the IAR C/C++
Development Guide for ARM®.

C/C++ language changes
In version 6.x, the compiler by default conforms to the C99 standard (ISO/IEC
9899:1999 including technical corrigendum No.3), hereafter referred to as Standard C
in this guide. Optionally, you can make the compiler conform to the C89 standard
instead (ISO 9899:1990 including all technical corrigenda and addenda). In C89 mode,
you cannot use any C99 language features or any C99 library symbols.

In version 5.x, the compiler by default conforms to the C89 standard. Optionally, you
can use some C99 features.

To migrate to version 6.x, you must consider:

● Options for language support

Category>Page Changes

C/C++ Compiler>Language See C/C++ language changes, page 2.

Table 1: Overview of changes in the Project options dialog box
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating from version 5.x to 6.x
● Options for language conformance

● Obsolete C89 features in your source code.

OPTIONS FOR LANGUAGE SUPPORT

This table lists the differences in the options for enabling language support:

* C89 and C99, respectively, but with some minor exceptions. For more information, see the
compiler documentation.
† --c89 disables C99 library symbols and C99 language features.

Note: C99 mode does not allow variable length arrays (VLA) by default; use the
command line option --vla or Allow VLA in the IDE to enable such support.

OPTIONS FOR LANGUAGE CONFORMANCE

The options for C/C++ language conformance differ between the two versions; this table
lists these differences:

EMBEDDED C++ AND STANDARD C++

Standard C++ is supported in version 6.x. For more information about using Standard
C++, see the IAR C/C++ Development Guide for ARM®. There is no automatic way to
convert an old Embedded C++ project to a Standard C++ project. Note also that the
EC++ library is not compatible with the C++ library. The implementation of Embedded
C++ has not changed.

Language features In version 6.x In version 5.x

C89* --c89† Supported by default.

C99* (Standard C) Supported by default. Some features available when -e
is used.

Table 2: Enabling language features

In version 6.x

Option in IDE vs

on the command line

In version 5.x

Option in IDE vs

on the command line

Description

Standard with IAR
extensions
-e

Allow IAR extensions
-e

Accepts IAR extensions and IAR
relaxations to Standard C.

Standard
Supported by default on the
command line

Relaxed ISO/ANSI
Supported by default on the
command line

Accepts IAR relaxations to Standard
C.

Strict
--strict

Strict ISO/ANSI
--strict_ansi

Strict adherence to the standard.

Table 3: Options for language conformance
MARM-3

Migration and portability 3

4

C/C++ language changes
C99 INLINE

In version 5.x, an inline version of a function should have the same code wherever it is
defined. At link time, any of them can be used as the non-inlined version. In C99, an
inline function can have different code in every location where it is defined, but at link
time there can only be one non-inlined version (the one declared extern inline). For
example:

static int x;
inline void f()
{
 //static int y; // Can not refer to statics.
 //x; // Can not refer to statics.
}

// Declare this f as the non-inlined version to use.
extern inline void f();

OBSOLETE C89 FEATURES IN YOUR SOURCE CODE

There are some C89 features that are accepted by the compiler in version 5.x, but which
are not accepted by the compiler in version 6.x when you compile in C99 mode.
Warnings or errors will be generated. To omit these diagnostic messages, you must
either compile the source code in C89 mode or rewrite your source code.

These C89 features are not accepted by the compiler in version 6.x when compiling in
C99 mode:

● Implicit int variables

static k; /* k was implicit int. */

● Implicit int parameters

myFunction(i,j)
{
 /* i and j were implicit int. */
}

● Implicit int returns

myFunction()
{
 /* Returned implicit int 0. */
}

● Implicit returns

myFunction()
{
 /* Returned 0. */
}

MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating from version 5.x to 6.x
● Implicit returns

myFunction()
{
 return; /* Returned 0. */
}

Runtime library changes
In version 6.x, the compiler and assembler automatically search for system header files
in a predestined directory (relative to the compiler/assembler executable file). In version
5.x, you must specify the include file search paths explicitly.

In version 6.x, these compiler options are available for this:

These corresponding assembler options are available:

For detailed reference information about these options, see the ARM® IAR C/C++
Compiler Reference Guide and the ARM® IAR Assembler Reference Guide.

--dlib_config token Uses DLIB system header files. The option also lets you
specify the runtime library configuration to use. In
version 5.x, the option lets you specify a runtime library
configuration file, but in version 6.x the option also
accepts tokens.

--no_system_include Disables the automatic search for system header files.
You must specify the include file search path explicitly,
just as in version 5.x. This option is useful if you have
well-established script files for building your
application project and you do not want to apply to the
new include file system immediately.

--system_include_dir Specifies the include directory explicitly, where the
compiler can find the system header files.

-g Disables the automatic search for system header files.
You must specify the include file search path explicitly,
just as in version 5.x. This option is useful if you have
well-established script files for building your
application project and you do not want to apply to the
new include file system immediately.

--system_include_dir Specifies the inc directory explicitly, where the
assembler can find the system header files.
MARM-3

Migration and portability 5

6

Runtime library changes
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating from version 4.x
to version 5.x
This guide presents the major differences between ARM IAR Embedded
Workbench® version 4.x and ARM IAR Embedded Workbench version 5.x,
and describes the migration considerations. Primarily, these include how to:

● Make your existing application source code compile and link successfully

● Identify potential changes in runtime behavior.

This guide helps you to port your application source code and other project
files to the new version 5.x.

Note that if you are migrating from ARM IAR Embedded Workbench version
3.x, you must first read the chapter Migrating to ARM® IAR Embedded
Workbench version 4.x.

The migration process
The main conceptual difference between version 4.x and version 5.x is that the internal
object format used by the IAR build tools has changed. In version 4.x, the IAR Systems
format UBROF is used, whereas version 5.x uses the industry-standard format
Executable and Linking Format including DWARF for debug information
(ELF/DWARF). This implies a completely new linker—the IAR ILINK
Linker—which replaces the IAR XLINK Linker.

The object format has changed to be compatible with tools from other vendors that
also support ELF/DWARF.

The differences force you to modify your application source code and other related
project files. In short, to migrate from version 4.x to 5.x, you must consider changes in
the:

● Compiler and C source code

● Assembler and assembler source code

● Linker and linker configuration

● Runtime environment and object files
MARM-3

Migration and portability 7

8

Compiler and C source code
● Project files and project setup in the IAR Embedded Workbench IDE

● Debugger.

To migrate your old project, follow the described migration process. Note that not all
steps in the described migration process may be relevant for your project. Consider
carefully what actions are needed in your case.

Note: In version 5.x:

● The IAR Systems applications XAR and XLIB for maintaining libraries have
been replaced by the IAR Archive Builder—iarchive—and a set of GNU
utilities, also provided with the IAR product installation.

● The structure of the user documentation has changed. Earlier, the compiler and
linker were documented in two separate guides. Now, the compiler and linker are
both documented in the IAR C/C++ Development Guide for ARM®.

Compiler and C source code
C or C++ source code that was originally written for the ARM IAR C/C++ Compiler
version 4.x can be used also with the new ARM IAR C/C++ Compiler version 5.x.
However, before using the new compiler to compile existing source code, you should
check the following details:

1 In your C/C++ source code files, be aware of the following changes:

● Initializers are no longer allowed for absolute placed constants, which means the
following type of constructions are no longer allowed:

int const a @ 10 = 20;

● The #pragma vector directive is no longer available. Interrupt vectors now have
predefined names, for example IRQ_Handler as defined in cstartup.o.

● The #pragma swi_number directive and the __swi keyword are now only
available for function declaration, not for function definition.

● The intrinsic functions __enable_interrupt and __disable_interrupt are
no longer available as intrinsic functions; however, they are available as library
functions, which means they are backwards compatible on source code level.
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating from version 4.x to version 5.x
● The __monitor keyword is no longer available. You can replace the keyword with
the following code sequence:

void function_that_was_declared_monitor_in_ewarm_4xx()
{
 __istate_t isate = __get_interrupt_state();
 __disable_interrupt();
 ...
 __set_interrupt_state(istate);
}

● The #pragma optimize directive has changed behavior. The following parameters
are recognized but ignored in version 5.x: s for speed, z for size, 2 for none, 3 for
low, 6 for medium, and 9 for high. In version 5.x, they have been replaced by the
parameters speed, size, and balanced, where the latter balances between speed
and size. They can be combined with the parameter high.

● The segment operator __segment_size is no longer available. To replace this
operator, you can use the following type of construction:

size = __section_end("xxx") - __section_begin("xxx");

● The default layout for bitfields has changed from disjoint_types to
joint_types. However, for migration you only have to pay attention to bitfields
that are part of an external interface. In this case, refer to the IAR C/C++
Development Guide for ARM® for information about bitfields.

Note that in little-endian mode, the layout for structures where all bitfields have the
same base type is the same as before.

2 Instead of segments, the compiler now places code and data in sections. This internal
change does not require any changes in your C/C++ source code, unless you are using
any predefined segment names explicitly in your source code. In that case, you must
make sure to use the new section names, see Segments versus sections, page 21.

Also, the handling of initialized segments has changed, see Segments for initialization,
page 22.

3 There are some changes related to the compiler options. Some options have been
removed, some options have changed, and there are some new options. For a list of
changes, see Tools options, page 18.

4 For information about changes related to filename extensions, see Filename extensions,
page 24.
MARM-3

Migration and portability 9

10

Assembler and assembler source code
5 The directory structure for I/O definition header files has changed. In version 5.x, these
files are placed in device-specific subfolders. This affects the search path, which means
you must modify the header file accordingly. For example:

#incude <ioml671000.h>

should be changed to:

#incude <oki/ioml671000.h>

For more details about the functionality in version 5.x, refer to the IAR C/C++
Development Guide for ARM®.

Assembler and assembler source code
The name of the assembler executable file has been renamed from aarm to iasmarm.

In your assembler source code, consider the following issues:

1 Modules

In version 5.x, neither the assembler nor the compiler can make a distinction between
program and library modules. If you want a module to be treated as a library module,
thus conditionally linked, you must place the module in a library.

This means that if you have used either the LIBRARY or the MODULE directive in your
existing assembler source code, these will no longer have any effect.

In version 4.x, you could define one or several assembler modules in each file. In version
5.x, there can only be one module per file. This means that you have to restructure your
files accordingly.

To read more about modular programming and the new syntax of the module directives.
see the ARM® IAR Assembler Reference Guide.

2 Segments versus sections

The segment concept has been replaced by the concept of sections. This means that:

● Assembler directives operating on segments have been either removed or replaced
by new directives operating on sections instead, which means you must modify your
assembler source code accordingly. For more information, read about section
control directives in the ARM® IAR Assembler Reference Guide

● If you have used any of the predefined segments specific to version 4.x in assembler
source code, you must replace all old segment names with new section names. For
further details, see the section Segments versus sections, page 21.
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating from version 4.x to version 5.x
3 Expressions

In version 5.x, it is not possible to have two symbols in one expression, or any other
complex expressions, unless the expression can be resolved at assembly time. Any such
expressions must be rewritten, otherwise the assembler will generate an error. The
following examples list expressions that cannot be solved at linktime:

 public glob_var
 extern ext_var
var1 DC32 glob_var + ext_var ; will fail
var2 DC32 glob_var * 5 + 3 ; will fail
var3 DC32 glob_var + 3 ; OK

4 Assembler directives

Some of the assembler directives have been removed and some use a new syntax or have
other changes. For a list of assembler directives which are not the same in 5.x as in
version 4.x, see Assembler directives, page 23.

If you have used any of these directives in your assembler source code, you must rewrite
these constructions.

For detailed information about these directives, see the ARM® IAR Assembler Reference
Guide.

5 Predefined symbols

The predefined symbol __ASMARM__ has been replaced by the symbol __IASMARM__.

6 Calling convention

The calling convention used by the compiler has changed. In version 4.x, the stack is by
default aligned to 4, but it is possible to align the stack to 8 according to the Advanced
RISC Machines Ltd Arm/Thumb Procedure Call Standard (ATPCS). In version 5.x, the
compiler instead follows the ARM Architecture Procedure Call Standard (AAPCS).
This means that the stack is now aligned to 8 bytes.

This means that if you have C functions calling assembler functions, or vice versa, you
must rewrite your assembler routines so that they follow the new calling convention.

To read more about these procedure call standards and the differences between them,
refer to the IAR C/C++ Development Guide for ARM®, but also to the www.arm.com
web site.
MARM-3

Migration and portability 11

12

Linker and linker configuration
7 Backtrace information for the C-SPY Call stack window

The compiler resource names for backtrace information in the C-SPY Call Stack
window have been standardized, and are defined in CfiCommon.h. This means that you
can no longer define your own resource names. If you have used the CFI assembler
directive to define your names object, this must contain a subset of the standardized
resource names. For a list of the standardized resource names, see the IAR C/C++
Development Guide for ARM®.

8 For information about changes related to filename extensions, see Filename extensions,
page 24.

9 The environment variables ASMARM and AARM_INC have changed to IASMARM and
IASMARM_INC, respectively.

Linker and linker configuration
The IAR XLINK Linker has been replaced by the IAR ILINK Linker.

XLINK VERSUS ILINK

Both XLINK and ILINK combine one or more relocatable object files with selected
parts of one or more object libraries to produce an executable image. XLINK can only
take object files in UBROF format, produced by tools from IAR Systems and produce
output in the output format UBROF or in any of the other supported output formats.
ILINK can take object files in ELF format and produces an executable image in the ELF
format.

In version 4.x, the compiler places code and data in UBROF segments, which XLINK
allocates in memory according to directives specified in the linker command file. This
file is an extension of the command line, which means that you can simply specify any
XLINK command line option in it. In version 5.x, the compiler places code and data in
ELF sections. ILINK allocates these sections according to the configuration specified in
the ILINK configuration file. This file also supports automatic handling of the
application’s initialization phase, which means initializing global variable areas and
code areas by copying initializers and possibly decompressing them as well. However,
the file cannot contain any command line options; these must be specified on the
command line.

MIGRATING FROM XLINK TO ILINK

1 The new IAR ILINK Linker is target-specific and it replaces the IAR XLINK Linker;
the name of the executable file has been renamed from xlink to ilinkarm.

2 To migrate your linker command file to a new ILINK configuration file, see
Converting XLINK.xcl to ILINK.icf, page 13 for an example.
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating from version 4.x to version 5.x
3 For information about how to map segments to sections, see Segments versus sections,
page 21.

4 For information about changes related to filename extensions, see Filename extensions,
page 24.

5 Use the provided GNU utilities if you need to convert the ELF output to either
Intel-hex or Motorola S-records.

To learn about the more advanced features of ILINK, read the chapters about linking
available in the IAR C/C++ Development Guide for ARM®.

CONVERTING XLINK.XCL TO ILINK.ICF

Because the linker command file (XLINK) and the linker configuration file (ILINK) are
based on two different paradigms, nothing in the linker command file is automatically
converted. Instead, you have to convert your linker setup manually.

If you are using the IAR Embedded Workbench IDE, you can use the linker
configuration file editor to set up your linker configuration.

1 Choose Project>Options, select the Linker category and then click the Config tab.

2 To open the linker configuration file editor, select the Override default option and
click the Edit button.

3 In the dialog box that appears you can define the:

● Start address for the interrupt vector table

● Start and end addresses for the RAM and ROM memory regions

● Sizes of the stacks and heaps.

4 When you are finished, click the Save button. When you do this for the first time, a
Save As dialog box appears.

Note: You must explicitly select a dedicated linker configuration file for all your build
configurations.

If you build your project from the command line, you can use the linker configuration
file generic.icf located in the arm\config directory or any of the configuration files
that are available in the example projects located in the examples directory. You can
use any of these configuration files as a template for creating a configuration file that
suits your target hardware and application requirements.
MARM-3

Migration and portability 13

14

Linker and linker configuration
As an example, below is an XLINK linker command file (xcl) and a corresponding
ILINK linker configuration file (icf).

-!========================
-!xlink xcl file
-!========================
-carm

-DROMSTART=08000
-DROMEND=FFFFF

-Z(CODE)INTVEC=00-3F
-Z(CODE)ICODE,DIFUNCT=ROMSTART-ROMEND
-Z(CODE)SWITAB=ROMSTART-ROMEND
-Z(CODE)CODE=ROMSTART-ROMEND
-Z(CONST)CODE_ID=ROMSTART-ROMEND
-Z(CONST)INITTAB,DATA_ID,DATA_C=ROMSTART-ROMEND
-Z(CONST)CHECKSUM=ROMSTART-ROMEND

-DRAMSTART=100000
-DRAMEND=7FFFFF

-Z(DATA)DATA_I,DATA_Z,DATA_N=RAMSTART-RAMEND
-Z(DATA)CODE_I=RAMSTART-RAMEND
-QCODE_I=CODE_ID

-D_CSTACK_SIZE=2000
-D_IRQ_STACK_SIZE=100
-D_HEAP_SIZE=8000

-Z(DATA)CSTACK+_CSTACK_SIZE=RAMSTART-RAMEND
-Z(DATA)IRQ_STACK+_IRQ_STACK_SIZE,HEAP+_HEAP_SIZE=RAMSTART-RAMEND
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating from version 4.x to version 5.x
This is the corresponding icf file:

//========================
//ilink icf file
//-carm is not relevant to migrate because ilinkarm is
//ARM-specific.
//========================
define memory mem with size = 4G;

define region ROM_region = mem:[from 0x8000 to 0xFFFFF];
define region RAM_region = mem:[from 0x100000 to 0x7FFFFF];

initialize by copy { rw };
do not initialize { section .noinit };

define block CSTACK with alignment = 8, size = 0x2000 { };
define block IRQ_STACK with alignment = 8, size = 0x100 { };
define block HEAP with alignment = 8, size = 0x8000 { };

place at address mem:0x0 { ro section .intvec };
place in ROM_region { ro };
place in RAM_region { rw, block CSTACK, block IRQ_STACK,
 block HEAP };

Project files and project setup in the IAR Embedded Workbench IDE
Upgrading to the new version of the IAR Embedded Workbench IDE requires some
manual adaptations.

CONVERTING YOUR PROJECT FILE

If you are using the IAR Embedded Workbench IDE, start your new version of the ARM
IAR Embedded Workbench IDE and open your old workspace. When you open a
workspace that contains old projects created with version 4.x, a dialog box asks you if
you want the project file to be converted for version 5.x. If you click OK, a backup of
your old project is first created, and then the project is converted.

MIGRATING PROJECT OPTIONS

Because the available tools options differ between version 4.x and version 5.x, you
should verify your option settings after you have converted an old project.

If you are using the command line interface, you can simply compare your makefile with
the mapping tables in Tools options, page 18, and modify the makefile accordingly.
MARM-3

Migration and portability 15

16

Project files and project setup in the IAR Embedded Workbench IDE
If you are using the IAR Embedded Workbench IDE, the options that are the same in
both versions are automatically converted during the project conversion. The options
that have changed will be set to default values.

To verify the options manually, follow these instructions:

● Compiler category

The Code page is new, but the options were earlier available in the General category.
The options will keep their settings.

The Optimizations page has changed, because the -O compiler option replaces the
-s and -z options, see -s and -z versus -O, page 18.

The Output page has changed. If you have defined your own segment name, this will
not be automatically converted to a section name. The default code section name is
.text. For more information about segment versus section names, see Segments
versus sections, page 21.

● Linker category

No linker options are converted automatically. During the project conversion, all
linker options will be set to default values. For more information about XLINK
options versus ILINK options, see Differences related to linker options, page 19. See
also Linker and linker configuration, page 12.

● Output Converter category

In version 4.x, XLINK can produce a number of output formats and you specify on
the linker Output page which one to be used. In version 5.x, ILINK produces
ELF/DWARF. Use the Output Converter options to convert the ELF output to
either Intel-hex or Motorola S-records.

● Library Builder category

In version 5.x, there is a new library builder, which means no options are converted
automatically. During the project conversion, all library builder options will be set to
default values.

Remember to set any new options.

For information about where to set the equivalent options in the IAR Embedded
Workbench IDE, see the IAR Embedded Workbench® IDE User Guide for ARM®.
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating from version 4.x to version 5.x
Runtime environment and object files
INTEROPERABILITY

To build code produced by version 5.x of the compiler, you must use the runtime
environment components it provides. It is not possible to link object code produced
using version 5.x with components provided with version 4.x. This means that you must
rebuild your version 4.x object code and in some cases you might need to make some
source code modifications.

If you want your application to be AEABI compliant (Embedded Application Binary
Interface for the ARM architecture), thus be able to build an application containing
object files from different vendors using a third-party linker, you must enable AEABI
compliance in the tools. For information about how to do this, see the IAR C/C++
Development Guide for ARM®.

SELECTING RUNTIME LIBRARY FILES

In version 4.x, the C/C++ standard library is provided as prebuilt runtime library files
including additional support routines, where each file is built using a specific set of
compiler options.

Depending on the compiler options you are using for your project, you should specify a
runtime library file on the command line that matches your project options. In the IAR
Embedded Workbench IDE version 4.x, the correct library file is automatically used
based on your project settings.

In version 5.x, different groups of runtime library files are provided, where each group
is built using a specific set of compiler options.

Depending on the compiler options you are using for your project, ILINK automatically
uses the correct standard library file. If necessary, you can also specify library files
manually directly on the command line or in the IAR Embedded Workbench IDE
version 5.x.

To read more about the library files available in version 5.x, see the IAR C/C++
Development Guide for ARM®.

Debugger
The directory structure for device description files (ddf files) has changed. In version
5.x, these files are placed in device-specific subfolders. If you choose a device
description file explicitly, you must pay attention to the new directory structure.
MARM-3

Migration and portability 17

18

Tools options
FLASH LOADERS

To use a flash loader for downloading your application, an additional output file in the
simple-code format is required. In version 4.x, you have to manually set up XLINK
to generate this extra sim file. In version 5.x, this additional file is not required as C-SPY
automatically generates the information for the download.

Tools options
This section lists the differences between the command line options in version 4.x and
version 5.x, for the compiler, assembler, and the linker.

DIFFERENCES RELATED TO COMPILER OPTIONS

The following table shows the version 4.x compiler command line options that have
changed:

-s and -z versus -O

In version 5.x, the compiler option for setting the optimization level behaves differently
compared to in version 4.x. In version 4.x, there is one option for setting the level of
speed optimization and one for settingthe level of size optimization, and you choose one
of them. In version 5.x, there is an option for setting the level of optimization, and for
each level the compiler balances between size and speed. For the highest level it is
possible to fine-tune the optimizations explicitly for either size or speed.

The following table shows the mapping between -s and -z compared to -O:

Old compiler option Description In version 5.x

--library_module Creates a library module Removed

--module_name Sets the object module name Removed

--omit_types Excludes type information Removed

--segment Changes a segment/section name --section

--separate_cluster_for_

initialized_variables

Separates initialized and
non-initialized variables

Removed

-s and -z Sets optimization level -O

Table 4: Differences in compiler options

In version 4.x In version 5.x

-s2, -z2 -On (none)

-s3, -z3 -Ol (low)

Table 5: Differences in compiler options
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating from version 4.x to version 5.x
Note: In version 5.x, using the options -s and -z will result in a diagnostic message.

DIFFERENCES RELATED TO ASSEMBLER OPTIONS

The following table shows the version 4.x assembler command line options that have
changed:

DIFFERENCES RELATED TO LINKER OPTIONS

The following table summarizes the XLINK command line options and refers you to the
corresponding functionality in ILINK:

-s6, -z6 -Om (medium)

-z9 -Ohz (high, favoring size)

-s9 -Oh (high, balancing between speed and size)

-- -Ohs (high, favoring speed)

Old assembler option Description In version 5.x

-b Creates a library module Removed

-X Unreferenced externals in object
files

Removed

Table 6: Differences in assembler options

XLINK option Description In ILINK

-! Comment delimiter In the icf file, /*...*/ or //.

-A Loads as program Removed, see Assembler and assembler
source code, page 10.

-a Disables static overlay Removed

-B Always generates output --force_output

-b Defines banked segments In the icf file *

-C Loads as a library Removed, see Assembler and assembler
source code, page 10.

-c Specifies the processor type Removed

-D Defines a symbol --define_symbol

-d Disables code generation Removed

-E Inherent, no object code Removed

-e Renames external symbols --redirect

Table 7: Counterparts to XLINK options in ILINK

In version 4.x In version 5.x

Table 5: Differences in compiler options (Continued)
MARM-3

Migration and portability 19

20

Tools options
-F Specifies the output format Removed

-f Specifies the XCL filename -f; in ILINK the configuration file is
specified using the option --config

-G Disables global type checking Removed

-g Requires global entries --keep

-H Fills unused code memory --fill

-h Fills ranges --fill

-I Specifies the include paths Removed

-J Generates a checksum --checksum

-K Duplicates code In the icf file *

-L Lists to directory --log_file

-l Lists to a named file --log_file

-M Maps logical addresses to physical
addresses

In the icf file *

-n Ignores local symbols --no_locals

-O Multiple output files Removed

-o Output file Unchanged, but --output can also be
used as an alias.

-P Defines packed segments In the icf file *

-p Specifies lines/page Removed

-Q Scatter loading In the icf file *

-q Disables relay function optimization Removed

-R Disables range check --diag_suppress

-r Debug information Removed. In ILINK, debug information is
included by default, and removed by
using --no_debug.

-rt Debug information with terminal
I/O

--semihosting

-S Silent operation --silent

-s Specifies a new application entry
point

--entry

-U Address space sharing In the icf file *

-V Declares relocation areas for code
and data

In the icf file *

XLINK option Description In ILINK

Table 7: Counterparts to XLINK options in ILINK (Continued)
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating from version 4.x to version 5.x
* In ILINK, this functionality is not available as a linker option that you specify either on the com-
mand line or in the IAR Embedded Workbench IDE. Instead, it is part of the configuration that
you specify in the linker configuration file.

The following options have not changed in any significant way:

--image_input, --misrac, --misrac_verbose.

Segments versus sections
This part describes the differences between segments in version 4.x and sections in
version 5.x.

For detailed information about the new sections, their names, and how they are used, see
the IAR C/C++ Development Guide for ARM®.

NAMING CONVENTIONS

The naming convention for segments differs slightly compared to the naming
convention for sections.

In 4.x, all segment names are written with capital letters. For the code and data
segments, the segment base name indicates the memory type. In addition, the static data
segments also have a suffix indicating type of contents.

In 5.x, some sections are written with capital letters and some with lower-case letters
with a preceding period. For these sections, the section name indicates the type of
contents and the suffix indicates the memory type.

-w Sets diagnostics control --diag_error, --diag_remark,
--diag_suppress,
--diag_warning,
--diagnostics_tables,
--error_list, --no_warnings,
--remarks,
--warnings_are_errors,
--warnings_affect_exit_code

-x Specifies cross-reference --map

-Y Format variant Removed

-y Format variant Removed

-Z Defines segments In the icf file *

-z Segment overlap warnings Removed

XLINK option Description In ILINK

Table 7: Counterparts to XLINK options in ILINK (Continued)
MARM-3

Migration and portability 21

22

Segments versus sections
SEGMENTS FOR INITIALIZATION

In 4.x, the compiler creates one segment for initializers and one segment for the
initialized variables. In 5.x, the compiler creates one data section that contains the
initializers. ILINK then transforms that section into proper handling of the initialization.
To read more about initializations, see the IAR C/C++ Development Guide for ARM®.

MAPPING OLD SEGMENTS TO NEW SECTIONS

Some of the old segments have disappeared entirely, and some of the new sections do
not have any counterparts among the old segments.

This table lists the old segment names, their counterparts in version 5.x, and additional
sections:

Old segment New section Comments

CODE .text

CODE_I .textrw

CODE_ID .textrw Initializers no longer have a section of
their own.

CSTACK CSTACK

DATA_AC -- Absolute placement of constants is no
longer supported, which means a
dedicated segment/section is no longer
needed.

DATA_AN -- Absolute __no_init declared
variables no longer reserves space,
which means a dedicated
segment/section is no longer needed.

DATA_C .rodata

DATA_I .data

DATA_ID .data Initializers no longer have a section of
their own.

DATA_N .noinit

DATA_Z .bss

DIFUNCT .difunct,

PREDIFUNCT

HEAP HEAP

ICODE .text

Table 8: Mapping segments and sections
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating from version 4.x to version 5.x
Assembler directives
Some of the assembler directives have been removed or behave differently. The
following table lists the assembler directives which are not the same in version 5.x as in
version 4.x:

INITTAB -- ILINK uses a different method to solve
this, which means a dedicated
segment/section is no longer needed.

INTVEC .intvec

IRQ_STACK IRQ_STACK

SWITAB -- This functionality has been removed,
which means a dedicated
segment/section is no longer needed.

Old segment New section Comments

Table 8: Mapping segments and sections (Continued)

Assembler directives in

version 4.x
In version 5.x

ARGFRAME Removed

ASEG Removed

ASEGN Removed

BLOCK Removed

CFI The resource names are standardized. A CFI names block must
contain a subset of these resource names.

COMMON Removed

DEFFN Removed

END No longer takes a program start address as an argument.

ENDMOD Recognized but without effect; a warning is generated.

FUNCALL Removed

FUNCTION Removed

LIBRARY Instead of starting a library module, it now starts an ELF module. New
syntax.

LIMIT Removed

LOCFRAME Removed

MODULE Instead of starting a library module, it now starts an ELF module. New
syntax.

Table 9: Differences in assembler directives
MARM-3

Migration and portability 23

24

Filename extensions
For information about assembler directives in version 5.x, see the ARM® IAR Assembler
Reference Guide.

Filename extensions
The following table lists the differences related to default filename extensions:

MULTWEAK Removed

NAME Starts an ELF program module. New syntax.

ORG Removed

OVERLOAD Removed

PROGRAM Starts an ELF program module. New syntax.

RSEG The first instance of the RSEG directive used must not be preceded by
any code generating directives, such as DC or DS, or by any assembler
instructions. This directive is now an alias for the new directive
SECTION. New syntax.

STACK Removed

SYMBOL Removed

Assembler directives in

version 4.x
In version 5.x

Table 9: Differences in assembler directives (Continued)

Old filename extension New filename extension Description/Comments

s79 s Assembler source file

r79 o Object module

r79 a Library object module

a79 out Target program

d79 out Target program for debugging

Table 10: Differences in filename extensions
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating to ARM® IAR
Embedded Workbench
version 4.x
This guide gives hints for porting your application code and projects to version
4.x.

Code that was originally written for the ARM IAR C/C++ Compiler version
3.x can be used also with ARM IAR C/C++ Compiler version 4.x, although
some modifications may be required.

This guide first presents the major differences between the two product
versions and then gives an overview of the migration process. Finally, it
describes the differences between the ARM IAR Embedded Workbench
version 3.x and version 4.x. Both differences and similarities between the
products are briefly discussed.

Key advantages
This section lists the major advantages in the ARM IAR Embedded Workbench version
3.x as compared to the ARM IAR Embedded Workbench version 4.x. Hereafter, the two
versions are referred to as version 3.x and version 4.x, respectively.

● Efficient window management through dockable windows optionally organized in
tab groups

● Source browser with a catalog of functions, classes, and variables, for a quick
navigation to symbol definitions

● Template projects to get a project that links and runs out of the box for a smooth
development start-up

● Batch build with ordered lists of configurations to build
● Improved context-sensitive help for C/C++ library functions
● Generic flash downloader framework
● Improved compiler optimizations with up to 10% smaller code
● Support for ARM Embedded Trace Macrocell using the EPI Majic JTAG interface
● New coprocessor intrinsics
● Easy configuration of the C/C++ libraries
MARM-3

Migration and portability 25

26

Migration considerations
● New keywords with support for nested interrupts
● Smart display of STL containers at debugging
● Auto-display debugger watch window
● A broad range of feature enhancements.

Migration considerations
To migrate your old project consider the following:

● IAR Embedded Workbench IDE
● Code models and code generation
● Project options
● Runtime library and object files considerations.

Note that not all items in the list may be relevant for your project. Consider carefully
what actions are needed in your case.

Note: It is important to be aware of the fact that code written for version 3.x may
generate warnings or errors in version 4.x.

IAR Embedded Workbench IDE
Upgrading to the new version of the IAR Embedded Workbench IDE should be a
smooth process as the improvements do not have any major influence on the
compatibility between the versions.

WORKSPACE AND PROJECTS

The workpaces and projects you have created with 3.x are compatible with version 4.x.
Note that there are some differences in the project settings. Therefore, make sure to
check the options carefully. For further information, see Project options, page 29.

C-SPY LAYOUT FILES

Because of new improved window management system, the C-SPY layout files support
in 3.x has been removed. Any custom made lew files can safely be removed from your
projects.
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating to ARM® IAR Embedded Workbench version 4.x
Code models and code generation
In version 3.x, you could choose between two different code models in the IAR
Embedded Workbench for ARM. The small code model was limited to 4 Mbytes of code
in Thumb mode and 32 Mbytes in ARM mode, whereas the large code model allowed
unlimited use of the entire addressable memory space in the ARM core. However, even
in the large code model, the individual linker segments were limited to 4 and 32 Mbytes
for Thumb and ARM mode respectively.

The placement of code into specifically named segments was based on a number of
factors, such as used code model, function memory attributes, pragma segment
directives, and the --segment command line option.

Due to improvements in the compiler, and particularly the linker, the split into two code
models has become obsolete. This change also affects:

● Segments
● Extended keywords
● Pragma directives.

SEGMENTS

Segment parts containing Thumb and ARM code are now placed side by side in the
same segments. Some of the advantages are: automatic generation of more compact
code, unlimited segment sizes, and a simplified configuration process.

As a direct consequence, the segment naming has been changed. The linker command
files shipped with version 4.x have been modified accordingly, but if you use a
customized linker command file, you also need to modify your linker command file
accordingly. Note that the name changes affect data segments as well as code segments.

Old and new segments

The following table summarizes the segment transition needed when migrating from an
earlier version of IAR Embedded Workbench than version 4.x:

Old segment New segment

FARFUNC_A CODE

FARFUNC_T CODE

NEARFUNC_A CODE

NEARFUNC_T CODE

FARFUNC_A_I CODE_I

FARFUNC_T_I CODE_I

Table 11: Old and new segments
MARM-3

Migration and portability 27

28

Code models and code generation
Note: Segments ending in _AN and _AC contain data located at absolute addresses, and
should not be included in the linker command file.

EXTENDED KEYWORDS

As there is no longer a choice of code or data models, all function and data memory
attributes have become obsolete. The compiler will therefore issue a warning message
for any of the following obsolete keywords:

__farfunc, __nearfunc, __huge

PRAGMA DIRECTIVES

The removal of all function and data memory attributes has implicated a change to the
pragma directive

#pragma segment="segment"

For information about the new syntax, see ARM® IAR C/C++ Compiler Reference
Guide.

NEARFUNC_A_I CODE_I

NEARFUNC_T_I CODE_I

FARFUNC_A_ID CODE_ID

FARFUNC_T_ID CODE_ID

NEARFUNC_A_ID CODE_ID

NEARFUNC_T_ID CODE_ID

HUGE_AC DATA_AC

HUGE_AN DATA_AN

HUGE_C DATA_C

HUGE_I DATA_I

HUGE_ID DATA_ID

HUGE_N DATA_N

HUGE_Z DATA_Z

Old segment New segment

Table 11: Old and new segments (Continued)
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating to ARM® IAR Embedded Workbench version 4.x
Project options
In version 4.x, there are several new project options. For information about the
command line variants, see the ARM® IAR C/C++ Compiler Reference Guide. For
information about the IAR Embedded Workbench variants, see the IAR Embedded
Workbench® IDE User Guide for ARM®.

When migrating from an earlier version of the ARM IAR Embedded Workbench, the
following changes to the project options are particularly important:

As there is no longer a choice of code or data models, the --code_model option has
become obsolete. The compiler will therefore issue a warning message when
encountering this option. For more information, see Code models and code generation,
page 27.

The syntax of the option --segment has changed. The compiler will issue a warning
message when the old syntax is used.

A new compiler optimization, Type-based alias analysis, is enabled by default. This
optimization can be disabled with the option --no_tbaa or by deselecting the IAR
Embedded Workbench counterpart.

Runtime library and object files considerations
To build code produced by version 4.x of the compiler, you must use the runtime
environment components it provides. It is not possible to link object code produced
using version 4.x with components provided with version 3.x.

COMPILING AND LINKING WITH THE DLIB RUNTIME
LIBRARY

In earlier versions, the choice of runtime library did not have any impact on the
compilation. In ARM IAR Embedded Workbench version 4.x, this has changed. Now
you can configure the runtime library to contain the features that are needed by your
application.

Command line IAR Embedded Workbench Description

--code_model Code model Obsolete

--segment Segment names Changed syntax

--no_tbaa Type-based alias analysis New optimization, enabled by default

Table 12: Project options
MARM-3

Migration and portability 29

30

Runtime library and object files considerations
One example is input and output. An application may use the fprintf function for
terminal I/O (stdout), but the application does not use file I/O functionality on file
descriptors associated with the files. In this case the library can be configured so that
code related to file I/O is removed but still provides terminal I/O functionality.

This configuration involves the library header files, for example stdio.h. This means
that when you build your application, the same header file setup must be used as when
the library was built. The library setup is specified in a library configuration file, which
is a header file that defines the library functionality.

When building an application using the IAR Embedded Workbench, there are three
library configuration alternatives to choose between: Normal, Full, and Custom.
Normal and Full are prebuilt library configurations delivered with the product, where
Normal should be used in the above example with file I/O. Custom is used for custom
built libraries. Note that the choice of the library configuration file is handled
automatically.

When building an application from the command line, the same library configuration
file must be used as when the library was built. For the prebuilt libraries (r79) there is
a corresponding library configuration file (h), which has the same name as the library.
The files are located in arm\lib. The command lines for specifying the library
configuration file and library object file could look like this:

iccarm -D_DLIB_CONFIG_FILE=...\arm\lib dl4tpainl8n.h
xlink dl4tpainl8n.r79

In case you intend to build your own library version, use the default library configuration
file dlArmCustom.h.

To take advantage of the features it is recommended that you read about the runtime
environment in the ARM® IAR C/C++ Compiler Reference Guide.

PROGRAM ENTRY

By default, the linker includes all root declared segment parts in program modules
when building an application. However, there is a new mechanism that affects the load
procedure.

There is a new linker option Entry label (-s) to specify a start label. By specifying the
start label, the linker will look in all modules for a matching start label, and start loading
from that point. Like before, any program modules containing a root segment part will
also be loaded.

In version 4.x, the default program entry label in cstartup.s79 is
__program_start, which means the linker will start loading from there. The
advantage of this new behavior is that it is much easier to override cstartup.s79.
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

Migrating to ARM® IAR Embedded Workbench version 4.x
If you build your application in the IAR Embedded Workbench, just add your
customized cstartup file to your project. It will then be used instead of the cstartup
module in the library. It is also possible to switch startup files just by overriding the
name of the program entry point.

If you build your application from the command line, the -s option must be explicitly
specified when linking a C/C++ application. If you link without the option, the resulting
output executable will be empty because no modules will be referred to.

SYSTEM INITIALIZATION—CSTARTUP

The content of the cstartup.s79 file has been split up into three files:

cstartup.s79, cmain.s79, cexit.s79

Now, the cstartup.s79 only contains exception vectors and initial startup code to
setup stacks and processor mode. Note that the cstartup.s79 file is the only one of
these three files that may require any modifications.

The cmain.s79 file initializes data segments and executes C++ constructors. The
cexit.s79 file contains termination code, for example, execution of C++ destructors.

For applications that use a modified copy of cstartup.s79, you must adapt it to the
new file structure.

CSTARTUP RESET VECTOR

Before version 3.x, the reset vector in cstartup.s79 was implemented as a relative
branch to the first instruction at ?cstartup

B ?cstartup

The drawback of this approach was that the branch range with the B instruction is limited
to 32 Mbyte. It is fairly common, especially during debugging, to place the code in a
memory in the upper part of the address map, which means the code is located beyond
the reach of the B branch instruction.

To remove this limitation, 3.x was changed so that an absolute jump is made instead of
a branch instruction:

LDR PC,=?cstartup

To accommodate for the extra constant value, the reserved vector area was increased
from 32 bytes to 64 bytes. With this solution, the reset vector can reach anywhere within
the full 4 Gbyte address space. This usually works fine when debugging an application.

However, there are two situations when the solution can cause problems:

● When downloading a program to flash memory located at zero that will later be
remapped to another location
MARM-3

Migration and portability 31

32

Runtime library and object files considerations
● If the code is copied and executed in RAM.

For an application with the reset vector at zero and code that will be relocated to the
address 0x100000, the application will be linked with the assumption that it is located
at that address. At reset, the content of address 0x100000 will be seen at address zero.
Because the reset vector contains an absolute jump, for example to 0x100100, the jump
will fail, because the code is not yet mapped or copied to that address. In this situation,
a relative branch instruction would work.

If your application uses the remap or copy mechanism, you should modify the
cstartup.s79 file and change the reset vector to do a relative jump instead of the
default absolute jump.

DEVICE SPECIFIC HEADER FILES

Some of the header files defining peripheral registers have changed their register naming
convention. The double underscores __ preceeding the register name have been
removed. A copy of the old style file is delivered with the product for backward
compatibility. For example, the old version of iolpc210x.h is now available as
iolpc210x_old.h.
MARM-3

IAR Embedded Workbench
Migration Guide for ARM

	Migrating from version 5.x to 6.x
	Migration considerations
	Changes in user documentation

	IAR Embedded Workbench IDE
	Installation directory
	Project settings in the Options dialog box
	Project files

	C/C++ language changes
	Options for language support
	Options for language conformance
	Embedded C++ and Standard C++
	C99 inline
	Obsolete C89 features in your source code

	Runtime library changes

	Migrating from version 4.x to version 5.x
	The migration process
	Compiler and C source code
	Assembler and assembler source code
	Linker and linker configuration
	XLINK versus ILINK
	Migrating from XLINK to ILINK
	Converting XLINK.xcl to ILINK.icf

	Project files and project setup in the IAR Embedded Workbench IDE
	Converting your project file
	Migrating project options

	Runtime environment and object files
	Interoperability
	Selecting Runtime library files

	Debugger
	Flash loaders

	Tools options
	Differences related to compiler options
	-s and -z versus -O

	Differences related to assembler options
	Differences related to linker options

	Segments versus sections
	Naming conventions
	Segments for initialization
	Mapping old segments to new sections

	Assembler directives
	Filename extensions

	Migrating to ARM® IAR Embedded Workbench version 4.x
	Key advantages
	Migration considerations
	IAR Embedded Workbench IDE
	Workspace and Projects
	C-SPY layout files

	Code models and code generation
	Segments
	Old and new segments

	Extended keywords
	Pragma directives

	Project options
	Runtime library and object files considerations
	Compiling and linking with the DLIB runtime library
	Program entry
	System initialization—Cstartup
	CSTARTUP reset vector
	Device specific header files

