

UFLX-4

1

Flash Loader Development Guide
for IAR Embedded Workbench®

This guide describes the flash loader mechanism in IAR Embedded Workbench.
You will get information about how to use the flash loader in the IAR Embedded
Workbench IDE. The guide also describes how to write and debug your own flash
loader. Finally, the flash loader framework API functions are described in detail.

Flash loader framework version 2.

IAR, IAR Systems, IAR Embedded Workbench, C-SPY, visualState, From Idea To Target, IAR KickStart Kit,
IAR PowerPac and the logotype are trademarks or registered trademarks owned by IAR Systems.

All information is subject to change without notice. IAR Systems assumes no responsibility for errors and shall
not be liable for any damage or expenses.

© Copyright 2010 IAR Systems AB. Part number: UFLX-4. Fourth edition: January 2010

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

2

Content

Introduction ... 4

The process in brief ... 4

Flash loading components .. 5

The flash loader ..5

The flash memory device configuration files ...5

The flash memory system configuration file ...5

Flash memory concepts .. 6

Using flash loaders ... 6

The flash programming process in more detail ... 8

Creating a flash loader .. 9

A simple example ... 10

Building a flash loader .. 11

The flash memory device configuration file in detail 11

Mandatory elements .. 12

Optional elements .. 12

The flash memory system configuration file in detail 13

Mandatory elements .. 13

Optional elements .. 14

Framework reference ... 14

FlashWrite .. 14

FlashErase ... 15

FlashInit ... 15

Advanced FlashInit functionality .. 15

Overriding the page size ... 16

Overriding the buffer size ... 16

Overriding the block layout ... 16

Combining overrides ... 17

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

3

Overriding the flash loader itself .. 17

Flags.. 18

FlashChecksum .. 18

FlashSignoff ... 18

Debugging ... 18

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

4

Introduction

Many development boards use flash memory as the primary code memory. Normally, flash
memory cannot be written directly from C-SPY when a program is to be downloaded and
debugged, but must instead be flashed or programmed by a dedicated program—the flash
loader—that executes on the target system.

Note: The flash loader mechanism is useful for any sort of memory that cannot be directly
written to by the debugger, but instead has to be written to by a dedicated program that executes
on the target system. Although, the flash loader is mostly used for flash memory, it can for
example also be used for various forms of external RAM or disk-like storage devices. However,
in the rest of this guide, flash memory is the assumed memory.

The process in brief

This is the problem: you need to download an application image to flash memory, but C-SPY
can only download data directly to RAM.

To solve the problem, this procedure is performed:

1 Download a dedicated flash loader into RAM.

Part of RAM is also reserved for a download buffer.

2 The image is written to the RAM buffer.

3 The flash loader is started by C-SPY. The flash loader reads data from the RAM buffer and
programs the flash memory.

Memory: Flash Flash loader
running Image

Memory: Flash Flash loader RAM Buffer

Image

Memory: Flash RAM

Flash loader

Memory: Flash RAM

Image

?

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

5

Flash loading components

When using flash loading, there are two major components involved:

 The flash loader program (in short, the flash loader)

 The flash loader configuration files (the flash memory device configuration file and the flash
memory system configuration file)

The flash loader

A flash loader is usually a rather small program which can program a certain flash memory
device, or family of devices. The flash loader consists of a small set of functions, mainly for
erasing or writing designated portions of the flash memory. C-SPY downloads this program into
RAM (it must be linked to an address in RAM). To run the program, C-SPY positions the PC at
one of the functions in the flash loader, writes data and directives for that function into a RAM
buffer, and starts execution. When the function returns, execution will hit a breakpoint. C-SPY
will then know that the function has finished and can proceed to make further calls to continue
the flash loading process. In short, C-SPY calls functions in the flash loader.

The flash memory device configuration files

The flash memory device configuration file is an XML file (filename extension flash) which
describes for C-SPY all relevant properties of a certain flash device. For example, the base
address of the flash memory and details such as block and page sizes. The file also specifies
which flash loader to use.

The flash memory system configuration file

The flash memory system specification file is an XML file (filename extension board) which
describes for C-SPY the flash loading properties of the complete development board. This file
can sometimes contain references to more than one flash device (through the appropriate .flash
files), if the board has more than one type of flash memory that needs to be programmed
separately in several passes. In this case, the .board file also specifies specific address ranges of
the image which belongs to different flash devices.

One .board file fully specifies the information needed to perform flash loading for a specific
board. Such a file can be prepared in advance for various development boards, and can also be
created or modified in the project Options dialog box in the IAR Embedded Workbench IDE.

Note that a .board file does not necessarily describe everything about the flash memory of a
certain board, but rather everything that is needed for using the board with a given IAR
Embedded Workbench project. For example, if a board contains two flash devices, where one is
used only for a boot loader and the other for the application, only one of them would be relevant
for any given project. There would then be two different .board files, one for each kind of
project.

4 The image now resides in flash memory and can be started. The flash loader and the RAM
buffer are no longer needed, so RAM is fully available to the application in the flash
memory.

In practice, the process is a bit more complicated. For example, the RAM buffer is usually much
smaller than the image to be downloaded, so the flash programming must be performed in
several steps.

Memory: Image RAM

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

6

Flash memory concepts

To accommodate a large range of different flash devices, C-SPY uses a few concepts which
detail the characteristics of flash devices.

Page A page is the smallest writable unit of the flash memory. Many flash
devices cannot write less than for example 128 or 256 bytes in a single
write operation. C-SPY will never request the flash loader to write
anything smaller than a page, and uses padding if necessary to fill out a
page. Of course, some flash devices have no such restrictions and can
specify a page size of 1 byte.

 Block A block is the smallest erasable unit of the flash memory. For example,
a flash device with a 256-byte page size could still require that flash
memory should be erased in 4-Kbyte chunks. The block size must
always be a multiple of the page size. A flash device can consist of
several blocks of different sizes. It can also lack such restrictions, in
which case the block size would be the same as the page size.

Base address This is the start address of the flash memory device, when it is written.
Some flash memories are simply memory mapped into a fixed address
range and the base address is then the start of that range. Other flash
memories are mapped into different addresses when being programmed
and when the application is later executing. The base address is then the
address where these memories are mapped when being programmed.
Yet other flash memories are not memory mapped at all, but work more
like external disk-like devices. The base address is then simply the
preferred address to be used for the start of the memory when it is being
programmed.

From the C-SPY perspective, a flash memory device starts at a given address and consists of a
sequence of blocks (possibly of different sizes), each of which consists of a number of pages.
The sequence can also contain gaps.

Using flash loaders

1 To activate flash loading using the IAR Embedded Workbench IDE, choose
Project>Options>Debugger>Download.

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

7

Select the options Use flash loader(s) and Override default board file, and specify a flash
memory system configuration file (.board). Use the browse button to select a predefined
file suitable for your system. If no such file is available, you can create a new file or modify
an existing file by clicking the Edit button.

2 The Flash Loader Overview dialog box is displayed. Note that if you edit one of the
predefined files located in the IAR Embedded Workbench installation directory, you will
subsequently be prompted to save the modified file to a different directory.

The dialog box displays one row of information for each separate flash memory device on
the board, or for each flash loader pass. Click New to define a new pass, Edit to modify an
existing pass, or Delete to remove a pass from the list.

3 Click the New or Edit button to display the Flash Loader Configuration dialog box.

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

8

The flash programming process in more detail

The two most important functions in the flash loader are called FlashWrite and FlashErase.
The former writes or copies, a number of bytes (always a whole number of pages) of data from
the RAM buffer to the flash memory. The latter erases one flash memory block. Using data from
the image file, C-SPY repeatedly writes data to the RAM buffer and invokes the FlashWrite
operation in the flash loader, with these constraints:

 Writing is sequential, starting at the lowest address

 The buffer will always contain an integral number of pages

 The buffer is padded whenever the data does not naturally fill a page

 Before the first page of any given block is written, the FlashErase function is invoked to
erase that whole block.

In more detail, this is what happens:

1 The application to be downloaded to flash memory exists as an image file. A .board file is
read by C-SPY and specifies one or more flash loading passes, one for each flash memory
device on the board.

The Memory range section specifies which subset of the full debug file to be used for this
pass. The Relocate section specifies an optional relocation of the debug file data before
programming the flash. The Flash loader path text field specifies the .flash file for this
particular flash memory device. The Extra parameters text field contains space-separated
command line arguments to be passed to the flash loader (that is, argc/argv parameters
to the FlashInit function). The Parameter descriptions text field displays information
about the possible extra parameters that can be used, if any.

Click OK when you are finished.

4 The result is one .board file, which specifies the full flash loading sequence.

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

9

2 For each pass, a specific address range (or subset) of the original image file is specified.
The image file is split accordingly into a separate image file for each pass. If there is only
one pass, the original image file is used as is.

3 Each pass specifies a flash device file (a .flash file) which, among other things,
designates a specific flash loader.

4 C-SPY downloads the flash loader of the current pass into RAM.

5 If the pass specifies an offset, all records from the image file are relocated accordingly.

6 C-SPY sets PC to FlashInit (or technically, to a label that will subsequently call
FlashInit).

7 Parameters and data are written to the RAM buffer.

8 Execution is started, FlashInit is executed, and C-SPY regains control when execution
hits a special breakpoint. FlashInit has the opportunity to override some information
from the .flash file, such as the page size and block layout.

9 C-SPY partitions the data from the image file into suitable pieces with respect to the page
and block layout of the flash memory, and to the size of the RAM buffer.

10 Before a certain block can be written to for the first time, the block must first be erased. In
this case, the procedure continues with the next step. Otherwise, the procedure continues at
step 13.

11 The RAM parameters are assigned the size of the block and its address.

12 C-SPY sets PC to FlashErase and starts the execution. When the function is done, the
breakpoint is hit.

13 C-SPY writes some of the data to the RAM buffer.

14 C-SPY sets PC to FlashWrite and starts the execution. When the function is done, the
breakpoint is hit.

15 If there is more data, the procedure returns to step 10.

16 If there are more passes, the procedure returns to step 3.

17 The debug information that corresponds to the final application is read.

18 C-SPY sets PC to the start address of the final application.

19 Optionally, execution starts at main.

Creating a flash loader

If there is no ready-made flash loader suitable for your target system, you can develop your own
flash loader.

The flash loader is a native application that you can develop using IAR Embedded Workbench,
and it consists of two parts:

 The flash loader framework source code, supplied with IAR Embedded Workbench

 The device-specific source code—normally, a small set of C functions—which you must
implement.

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

10

A simple example

The following example shows the source code for a complete flash loader (except the source
code for the framework), but with a flash programming algorithm which simply copies bytes
from the RAM buffer to the destination address:
#include "flash_loader.h"

uint32_t FlashInit(void *base_of_flash, uint32_t image_size,
 uint32_t link_address, uint32_t flags)
{
 return RESULT_OK;
}

uint32_t FlashWrite(void *block_start,
 uint32_t offset_into_block,
 uint32_t count,
 char const *buffer)
{
 char *to = (char*)block_start + offset_into_block;
 while (count--)
 {
 *to++ = *buffer++;
 }
 return RESULT_OK;
}

uint32_t FlashErase(void *block_start, uint32_t block_size)
{
 char *p = (char*)block_start;
 while (block_size--)
 {
 *p++ = 0;
 }
 return RESULT_OK;
}

Framework:
C-SPY uses labels and
variables defined here to
interact with the flash
loader.

Device specific code:
Called by framework.
FlashWrite()
FlashErase()
FlashConfigure()

Framework:
C-SPY uses labels and
variables defined here to
interact with the flash
loader.

Device-specific code:
Called by framework.
FlashWrite()
FlashErase()
FlashInit()

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

11

The parameters to FlashWrite and FlashErase, in combination with the flash memory base
address given in FlashInit, fully specify the addresses of the portions of the flash memory to
be programmed. Thus, a given flash loader can be used for any number of different flash
devices, with different total size, page size, or block layout, provided that they all employ the
same flash programming algorithm. The flash memory device configuration file (.flash) is used
for specifying such variations between flash memory devices.

The reference section at the end of this document describes all framework functions in detail.

Building a flash loader

As already mentioned, the flash loader is built from some framework source code and some
device-specific source code that you provide. The following files are part of the framework and
should be available for use in your flash loader:
flash_loader.c Framework source code. This file should be part of your flash

loader project, but should be used as is and not modified.
flash_loader.h Framework declarations, for example the C prototypes of your

source code.
flash_loader_extra.h Additional framework declarations, rarely needed by your

source code.
flash_loader_asm.s Low-level, processor-specific framework source code. Note

that this file might have a different filename extension
depending on your microcontroller. This file should be part of
your flash loader project, but should be used as is and not be
modified.

Template\flash_config.h Template for your own configuration file. You should make a
copy of it and edit your copy according to the guidelines
available in the file.

Copies of the files and examples of flash loaders can be found in target\src\flashloader
in the installation directory. When you build the flash loader there are some considerations to
make, for example, the flash loader must be linked to an address in RAM, and the flash loader
does not contain an entry point like a main function.

The flash memory device configuration file in detail

As already mentioned, the flash memory device configuration file (.flash) is an XML file that
specifies the properties of a certain flash memory device, including which flash loader to be used
for programming it. This is an example of such a file:
<?xml version="1.0" encoding="iso-8859-1"?>

<flash_device>
 <exe>$TOOLKIT_DIR$\config\flash\P8_family\flash_p8.out</exe>
 <flash_base>0x20000</flash_base>
 <page>256</page>
 <block>2 0x100</block>
 <block>3 0x200</block>
</flash_device>

The file consists of elements (some mandatory and some optional), where each element consists
of tags and some contents.

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

12

Mandatory elements
exe Specifies the path to the flash loader. The path can contain an argument

variable such as $TOOLKIT_DIR$.
flash_base Specifies the base address of the flash memory when it is written to.
page Specifies the flash memory page size.
block Specifies the block layout of the flash memory using one or more of this

element, in order. Each element contains a decimal count value followed
by a block size in hexadecimal form. The element sequence should fully
specify the sequence of blocks for the flash memory. In the above
example, the flash device contains two blocks of size 0x100, followed
by three blocks of size 0x200, for a total size of 0x800.

Optional elements
gap The specified block sequence can also contain one or more gap

elements intermixed with block elements. Each gap element contains a
gap size in hexadecimal form. The gap size specifies an area within the
extent of the flash memory device which does not contain flash memory.
C-SPY will issue an error for any data in the image file that would be
placed in a gap.

macro Specifies the path to a C-SPY macro file, which will be loaded in
conjunction with downloading the flash loader. There are three C-SPY
macro functions that will be called automatically if they are defined in
this macro file.

execUserFlashInit is called immediately before loading the flash
loader.

execUserFlashReset is called immediately after the reset that
follows the loading.

execUserFlashExit is called immediately after flash loading has
finished, but before the flash loader is unloaded.

filler Specifies a decimal number which is the byte value to use when padding
write operations to page boundaries. The default value is 255 (0xFF).

checks If this element contains 0, the error return values from the flash loader
functions (such as FlashWrite) are not checked. Disabling these
checks will lead to slightly increased performance. Note that this
element should only be used when you know from experience that these
checks are superfluous.

aggregate If this element contains 1, C-SPY will try to use the RAM download
buffer more efficiently by combining write operations to more than one
block. This is a useful performance optimization if, and only if, block
sizes are significantly smaller than the RAM buffer, so that at least two
(or preferably more) blocks will fit in the download buffer. This element
requires that the flash loader can program more than one block in a
single operation.

args Passes arguments to the flash loader, in the form argc/argv to the
FlashInit function. The parameters should be separated by the
newline character.

args_doc Specifies descriptions of the parameters accepted by the flash loader
FlashInit function. The descriptions are displayed in the Flash

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

13

Loader Configuration dialog box in the IAR Embedded Workbench
IDE. This element can contain multiple lines of text, separated by the
newline character.

Often, a certain microprocessor is available in many variants, each with the same type of flash
memory but with different sizes and addresses, and possibly block layouts. For such a scenario,
only one flash loader is needed, but several .flash files. Consider the following table which
describes some variants of the hypothetical P8 processor family:

Variant
Flash
size
(Kbyte)

Flash base
address

Flash block layout Configuration file

P8_1 1 0x10000 4 * 0x100 flash_p8_1.flash

P8_2a 2 0x10000 8 * 0x100 flash_p8_2a.flash

P8_2b 2 0x10000 4 * 0x200 flash_p8_2b.flash

P8_4a 4 0x10000
8 * 0x100

4 * 0x200

flash_p8_4a.flash

P8_4b 4 0x20000 16 * 0x100 flash_p8_bb.flash

In this example, there would be five different .flash files, but each of the files would specify
the same flash loader, because each of the processor variant has a flash memory device of the
same type, requiring the same flash programming algorithm.

The flash memory system configuration file in detail

As already mentioned, the flash memory system configuration file (.board) is an XML file that
specifies the properties of a certain development board with respect to flash memory devices.
The file consists of elements, where each element consists of tags and some contents. On the
highest level, the file describes one or more passes, each specified by a pass element. This is an
example of such a file, which specifies two programming passes for two different flash memory
devices.
<?xml version="1.0" encoding="iso-8859-1"?>

<flash_board>
 <pass>
 <loader>$TOOLKIT_DIR$\config\flash\flash_p8_2a.flash</loader>
 <range>CODE 0x20000 0x207ff</range>
 <abs_offset>0x10000</abs_offset>
 </pass>
 <pass>
 <loader>$TOOLKIT_DIR$\config\flash\flash_p8_2b.flash</loader>
 <range>CODE 0x20800 0x21000</range>
 <abs_offset>0x10000</abs_offset>
 </pass>
 <ignore>CODE 0x22000 0x220ff</ignore>
</flash_board>

Each pass element contains additional elements, some mandatory and some optional, as follows:

Mandatory elements
loader Specifies the path to the flash memory device configuration file

(.flash). The path can contain an argument variable such as

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

14

$TOOLKIT_DIR$.

Optional elements
range Specifies the subset of the original image file, which should be

programmed in this particular flash memory device. The contents of this
element is a segment name (usually CODE), followed by the address of
the first and last byte of the range in hexadecimal form. If there is only
one flash memory device, the default range is the range of the whole
image file. If there is more than one pass, this element is mandatory
because C-SPY needs to know how to partition the image.

abs_offset This element is used for writing the image to flash memory at an address
different from the address where the image was placed by the linker. For
example, if the flash memory device is mapped into the memory at a
certain address when it is programmed and then later remapped to
another address when executing, we would need to use an appropriate
offset to compensate when programming the flash memory. This
element specifies an absolute address where the first byte of the image
file should be placed.

rel_offset This element is similar to the abs_offset, but specifies a relative
offset with which each record in the image file should be displaced
before writing to flash. The offset can be either a positive or a negative
number. You must use either abs_offset or rel_offset as both
cannot be used for the same pass.

flash_base Specifies the base address of the flash memory when it is written to. If
this element is included, it overrides the corresponding element in the
.flash file.

args Passes arguments to the flash loader, in the form argc/argv to the
FlashInit function. The parameters should be separated by the
newline character. The parameters are appended to any parameters
specified in the .flash file. If the flash loader handles parameters
appropriately, these parameters can thus override the ones specified in
the device configuration file.

ignore Specifies a subset of the original image file which should not be subject
to flash loading. This element consists of a segment name (usually
CODE), followed by the address of the first and last byte of the range, in
hexadecimal form. The element can be used for example, when parts of
the original image shall be downloaded to RAM or when parts are
already present in some ROM. The element can be repeated to specify
several ranges. Note that this element is specified on the same level as
the pass elements.

Framework reference

The following functions must be implemented by a flash loader:

FlashWrite
uint32_t FlashWrite(void *block_start,
 uint32_t offset_into_block,
 uint32_t count,
 char const *buffer);

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

15

Parameters:
block_start Points to the first byte of the block into which this write

operation writes.
offset_into_block Specifies how far into the current block that this write

operation shall start. The absolute address of the first byte to
write is block_start + offset_into_block.

count Specifies the number of bytes to write.
buffer A pointer to the buffer that contains the bytes to write.

Return value: Either RESULT_OK or RESULT_ERROR.

FlashErase
uint32_t FlashErase(void *block_start,
 uint32_t block_size);
Parameters:
block_start Points to the first byte of the block to erase.
block_size Specifies the size of the block, in bytes.

Return value: Either RESULT_OK or RESULT_ERROR.

FlashInit
#if USE_ARGC_ARGV
 uint32_t FlashInit(void *base_of_flash, uint32_t image_size,
 uint32_t link_address, uint32_t flags,
 int argc, char const *argv[]);
#else
 uint32_t FlashInit(void *base_of_flash, uint32_t image_size,
 uint32_t link_address, uint32_t flags);
#endif;

As shown above, there are two different prototypes for FlashInit, determined by the value of
the pre-processor macro USE_ARGC_ARGV which you must specify in flash_config.h. Use
the flavour with arguments if you need that extra flexibility. The actual arguments can be
specified in the .flash file, or in the project Options dialog box in the IAR Embedded
Workbench IDE.

Parameters:
base_of_flash Points to the first byte of the whole flash memory range.
image_size Specifies the size of the whole image that is to be written to

flash memory, in bytes.
link_address Specifies the original link address of the first byte of the

image, before any offsets or, if there are multiple passes, the
first byte of the subset of the image used for this pass. Not all
flash loaders need this parameter.

flags Specifies optional flags. See below for details.

Return value: Either RESULT_OK or RESULT_ERROR, but also other return values can be used
(see below for details).

Advanced FlashInit functionality

The FlashInit function is the first function called in the flash loader. As such, it provides an
opportunity to provide extra information to C-SPY before the actual flash programming starts.

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

16

To provide extra information you must override the properties specified in the .flash file. Use a
set of macros which are defined in the optional header file flash_loader_extra.h.
Internally, this functionality requires access to a structure variable defined in the framework,
which is used for passing information back and forth between C-SPY and the flash loader. The
name of the variable is theFlashParams and is also declared in the header file, like this:
typedef struct {
 uint32_t base_ptr;
 uint32_t count;
 uint32_t offset_into_block;
 void *buffer;
 uint32_t block_size;
} FlashParamsHolder;

extern FlashParamsHolder theFlashParams;

Overriding the page size

To override the page size, use the SET_PAGESIZE_OVERRIDE macro and set the bit
OVERRIDE_PAGESIZE in the return value, like in this example:
uint32_t FlashInit(void *base_of_flash, uint32_t image_size)
{
 SET_PAGESIZE_OVERRIDE(128); // New page size
 return RESULT_OK | OVERRIDE_PAGESIZE;
}

Overriding the buffer size

The download buffer size is normally determined by the position of two labels,
FlashBufferStart and FlashBufferEnd, which get their positions at link time. To use the
same flash loader for multiple devices which only differ in RAM size, the flash loader can
override the buffer size (if the flash loader can determine the actual amount of RAM available).
Use the SET_BUFSIZE_OVERRIDE macro and set the OVERRIDE_BUFSIZE bit in the return
value from the FlashInit function. Do not try to decrease the buffer size.
uint32_t FlashInit(void *base_of_flash, uint32_t image_size)
{
 SET_BUFSIZE_OVERRIDE(0x1000); // New buffer size
 return RESULT_OK | OVERRIDE_BUFSIZE;
}

Overriding the block layout

Normally, the .flash file specifies the block layout of the flash memory, using the block and
gap tags. Sometimes, it is more practical to let the flash loader determine the block layout by
quering the flash memory device itself in some fashion. If the flash loader wants to specify a
layout, it should put the layout description in the flash download buffer and add the constant
OVERRIDE_LAYOUT to the result code of FlashInit. A pointer to the download buffer is
available using the OVERRIDE_BUFFER_PTR macro. The syntax is the same as in the file (a
decimal block count followed by a hexadecimal block size), except that blocks are separated by
comma, like in this example:
uint32_t FlashInit(void *base_of_flash, uint32_t image_size)
{
 strcpy(OVERRIDE_BUFFER_PTR, "2 0x100,7 0x200,7 0x1000");
 return RESULT_OK | OVERRIDE_LAYOUT;
}

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

17

To specify a gap, use a block count of 0. For example, "0 0x1000" specifies a gap of 0x1000
bytes.

Combining overrides

All of the above overrides can be combined. This example uses all overrides:
uint32_t FlashInit(void *base_of_flash, uint32_t image_size)
{
 strcpy(LAYOUT_OVERRIDE_BUFFER, "2 0x100,7 0x200,7 0x1000");
 SET_PAGESIZE_OVERRIDE(128); // New page size
 SET_BUFSIZE_OVERRIDE(0x1000); // New buffer size
 return RESULT_OK | OVERRIDE_LAYOUT
 | OVERRIDE_PAGESIZE | OVERRIDE_BUFSIZE;
};

Overriding the flash loader itself

The most drastic override is if the flash loader detects that the flash memory device does not
match the capabilities of the flash loader, typically, that the wrong flash loader has started. This
would normally be the consequence of some misconfiguration, and many flash loaders cannot
even check this. But if the flash loader can detect the flash memory device at runtime, it has an
opportunity to report the device to C-SPY and let C-SPY try again with another flash loader.
This is done by putting a device identifier in the buffer and returning the special result code
RESULT_OVERRIDE_DEVICE, for example like this:
uint32_t FlashInit(void *base_of_flash, uint32_t image_size)
{
 if ('unexpected flash device was found')
 {
 strcpy(OVERRIDE_BUFFER_PTR, "P8_16c");
 return RESULT_OVERRIDE_DEVICE;
 }
}

Note that the replacement flash loader is specified indirectly, as a flash memory device identifier.
This identifier is read by C-SPY and is then used as the key in a table lookup to locate another
flash loader. The table is constructed like this:

 C-SPY finds all files with the filename extension flashdict in the
$TOOLKIT_DIR\config\flashloader directory (and all subdirectories).

 Each such file can contribute a portion of the table.
The file should look like this:
<?xml version="1.0" encoding="iso-8859-1"?>
<loaders>
 <loader>
 <key>P8_16c</key>
 <path>$TOOLKIT_DIR$\config\flashloader\P8\f_p8_16c.flash</path>
 </loader>
 <loader>
 <key>P8_16d</key>
 <path>$TOOLKIT_DIR$\config\flashloader\P8\f_p8_16d.flash</path>
 </loader>
</loaders>

If the key is found anywhere in the table, the newly specified flash memory configuration file is
used instead.

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

18

Flags

The flags parameter to FlashInit specifies optional flags bits. Only one flag value is
currently defined.
FLAG_ERASE_ONLY If this bit is set (when the expression (flags &

FLAG_EASE_ONLY) is non-zero), the flash loader has been
invoked with the sole purpose of erasing the whole flash
memory. If the flash device supports a one-step global erase
function, it can be invoked directly from FlashInit, which
should return the constant RESULT_ERASE_DONE. Otherwise,
C-SPY will continue and invoke the FlashErase function for
each block.

FlashChecksum

This is an optional function. You need to implement it if you want to enable checksum
verification of the download flash memory contents, but you can implement it with a helper
function from the framework (Crc16), like this:
OPTIONAL_CHECKSUM
uint32_t FlashChecksum(void const *begin, uint32_t count)
{
 return Crc16((uint8_t const *)begin, count);
}

Note the OPTIONAL_CHECKSUM macro. This is needed to make sure that this optional function
and its framework wrapper are both included in the linking of the flash loader.

FlashSignoff

This is an optional function. You can implement it if you need to perform some cleanup after
flash loading has finished. The function is called after the last call to FlashWrite (or after
FlashChecksum if it exists).
OPTIONAL_SIGNOFF
uint32_t FlashSignoff()
{
 return RESULT_OK;
}

Note the OPTIONAL_SIGNOFF macro. This is needed to make sure that this optional function
and its framework wrapper are both included in the linking of the flash loader.

Debugging

Because the flash loader is not a standalone program, with a main function, it cannot very easily
be debugged.

While developing the flash loader, it is probably best to first make a very simple test harness
containing a main function which simply calls FlashInit, FlashWrite, and FlashErase
with suitably prepared, or generated, data and parameters. This program should be linked to a
RAM address and can then be debugged as a normal application until the basic flash
programming code seems correct.

Then, when the flash loader is used in the actual flash loading process, you will get some help
from a log file which describes the flash loading process in some detail. When you start a debug
session which uses flash loaders, a log file named flash0.trace is generated in the project

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

19

directory ($PROJ_DIR$), the directory where the active project file (ewp) resides. This file is
only generated if a file with that name already exists in that directory. To enable trace output,
simply create an empty file named flash0.trace, and trace output will be produced every
time a debug session with flash loading is started, until the file is removed again.

If there are multiple flash loading passes, multiple trace files will be generated (flash0.trace,
flash1.trace, etc.), but you only need to create flash0.trace to enable tracing.

This is an example log file:
File generated Wed Dec 09 14:53:55 2009

Pass 1 of 1
Starting fragment-style flashloader pass.
FlashInitEntry is at 0x2000012D
FlashWriteEntry is at 0x20000135
FlashEraseWriteEntry is at 0x2000013D
FlashBreak is at 0x20000128
FlashBufferStart is at 0x20000200
FlashBufferEnd is at 0x2000BD94
FlashChecksumEntry not found
FlashSignoffEntry not found
page size is 2 (0x2)
filler is 0xff
buffer size is 48020 (0xbb94)
SimpleCode records (after offset):
 Record 0: @ 0x8000000 [53284 (0xd024) bytes] 0x8000000 - 0x800d023 [0
4 0]
Base of flash at 0x8000000
->init : base @ 0x8000000, image size d024
 Args: (argc = 1)
 C:\sample\blabla.out
 timing(init): 0.0156 (CPU) 0.0500 (elapsed)
Transaction list:
 Transaction @ 0x8000000 (0xb800 bytes) 23 packet(s).
 Will erase 23 block(s):
 0: 0x8000000 (0x800 bytes)
 1: 0x8000800 (0x800 bytes)
 2: 0x8001000 (0x800 bytes)
 3: 0x8001800 (0x800 bytes)
 4: 0x8002000 (0x800 bytes)
 5: 0x8002800 (0x800 bytes)
 6: 0x8003000 (0x800 bytes)
 7: 0x8003800 (0x800 bytes)
 8: 0x8004000 (0x800 bytes)
 9: 0x8004800 (0x800 bytes)
 10: 0x8005000 (0x800 bytes)
 11: 0x8005800 (0x800 bytes)
 12: 0x8006000 (0x800 bytes)
 13: 0x8006800 (0x800 bytes)
 14: 0x8007000 (0x800 bytes)
 15: 0x8007800 (0x800 bytes)
 16: 0x8008000 (0x800 bytes)
 17: 0x8008800 (0x800 bytes)
 18: 0x8009000 (0x800 bytes)
 19: 0x8009800 (0x800 bytes)
 20: 0x800a000 (0x800 bytes)
 21: 0x800a800 (0x800 bytes)
 22: 0x800b000 (0x800 bytes)
 Transaction @ 0x800b800 (0x1824 bytes) 4 packet(s).
 Will erase 4 block(s):

Flash Loader Development Guide for IAR Embedded Workbench®

UFLX-4

20

 0: 0x800b800 (0x800 bytes)
 1: 0x800c000 (0x800 bytes)
 2: 0x800c800 (0x800 bytes)
 3: 0x800d000 (0x800 bytes)
->multi_erase: 23 blocks (0xb8 bytes in buffer) [0 0 0]
 timing(erase): 0.1716 (CPU) 0.5460 (elapsed)
->write : @ 0x8000000 (0xb800 bytes, offset 0x0 into block @
0x8000000) [0 4 0]
 timing(write): 0.0000 (CPU) 1.3960 (elapsed)
->multi_erase: 4 blocks (0x20 bytes in buffer) [0 b8 0]
 timing(erase): 0.0000 (CPU) 0.1310 (elapsed)
->write : @ 0x800b800 (0x1824 bytes, offset 0x0 into block @
0x800b800) [1b 68 1b]
 timing(write): 0.0000 (CPU) 0.2200 (elapsed)
Duration: 1.28 (CPU) 4.34 (elapsed)
 of which on target: 0.1872 (CPU) 2.3430 (elapsed)
Flash loading pass finished

First, the file lists the addresses of some key functions in the flash loader, and some basic
properties of the flash memory and flash loader. Then, the data records from the image to be
downloaded are listed. The main part is the sequence of write and erase operations, each
containing the start address, the size, and at the end of the line, the three first bytes of the data for
that operation. Optionally, at the end of the list file, checksum operations are listed.

