
MHCS12-2

IAR Embedded Workbench
Migration Guide

for Freescale’s
HCS12 Microcontroller Family

MHCS12-2

MHCS12-2

COPYRIGHT NOTICE
Copyright © 1997–2010 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Freescale is a registered trademark of Freescale Inc.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Second edition: February 2010

Part number: MHCS12-2

This guide applies to version 3.x of IAR Embedded Workbench® for HCS12.

MHCS12-2

iii

Contents
Tables .. v

Migrating to IAR Embedded Workbench

for HCS12 version 3.x ... 1

The migration process ... 1

Project file and project setup .. 1

C source code and compiler considerations 3

Nested comments ... 4

Sizeof in preprocessor directives ... 5

Assembler considerations ... 6

Runtime library and runtime environment 6

Compiling and linking with the DLIB runtime library 7

Program entry ... 8

System startup and exit code—Cstartup .. 8

Migrating from CLIB to DLIB .. 9

Device-specific header files ... 9

Linker considerations .. 9

Reference information for migrating to version 3.x 11

Compiler options .. 11

Migrating project options ... 11

Filenames ... 14

List files .. 14

Object file format ... 14

Extended keywords .. 15

Storage modifiers ... 15

Interrupt functions and vectors .. 16

Pragma directives ... 17

Intrinsic functions ... 18

Segments .. 19

MHCS12-2

iv
IAR Embedded Workbench
Migration Guide for HCS12

MHCS12-2

v

Tables
1: Old and new assembler environment variables ... 6

2: Version 2.x compiler options not available in version 3.x 12

3: Compiler options identical in both compiler versions .. 13

4: Renamed or modified options ... 13

5: Specifying filename and directory in version 2.x and version 3.x 14

6: Old and new extended keywords .. 15

7: Old and new pragma directives ... 17

8: Old and new intrinsic functions .. 18

9: Old and new segments .. 19

MHCS12-2

vi
IAR Embedded Workbench
Migration Guide for HCS12

MHCS12-2

1

Migrating to IAR
Embedded Workbench for
HCS12 version 3.x
This guide gives hints for porting your application code and projects to the IAR
Embedded Workbench IDE for HCS12 version 3.x.

C source code that was originally written for the IAR 68HC12 C Compiler
version 2.x can be used also with the new IAR C/C++ Compiler for HCS12
version 3.x. However, some modifications are required. Hereafter, the two
compiler versions are referred to as version 2.x and version 3.x, respectively.

This chapter describes the migration considerations and the steps involved.

The migration process
In short, to migrate to version 3.x, consider the following:

● The project file and project setup
● C source code and compiler considerations
● Assembler considerations
● Runtime environment and runtime library
● Linker considerations.

To migrate your old project, follow the described migration process. Note that not all
items in the described migration process may be relevant for your project. Consider
carefully what actions are needed in your case.

Project file and project setup
If you are using the IAR Embedded Workbench IDE, follow these steps to verify that
your project file has been properly converted:

1 Start your new version of IAR Embedded Workbench for HCS12 and create a new
workspace by choosing File>New and then Workspace.

MHCS12-2

2

Project file and project setup

IAR Embedded Workbench
Migration Guide for HCS12

2 Choose Project>Add Existing Project to insert your old project into the workspace.
This step will create two new project files with the same name as the old file, but with
the extensions ewp and ewd. The ewp file contains all settings required to build the
application, while the ewd file contains all settings related to the debugger. The old
project file will remain untouched.

3 It is strongly recommended that you verify that your options have been set up correctly.

To generate a text file with the command line equivalents of the project options in your
old project, see Migrating project options, page 11.

4 In version 2.x, you can choose between three different memory models:

● The Small memory model; by default, all variables were placed in zpage and all
code in non-banked memory

● The Large memory model; by default, all variables were placed anywhere in
memory and all code in non-banked memory

● The Banked memory model; by default, all variables were placed anywhere in
memory and allowed code size to exceed 64 Kbytes.

In version 3.x, the memory models have been replaced with a new improved mechanism
that allows you to control placement of code and data independently.

By default, data can be placed anywhere within the first 64 Kbytes of memory—data16
memory (npage). For individual objects you can use the __data8 data memory attribute
to place the data within the first 256 bytes of memory—data8 memory (zpage).

To control how code is placed in memory you can choose between two different code
models—Normal for non-banked code, and Banked for banked code. For individual
functions it is possible to override the default behavior in each code model by using the
function memory attributes __non_banked and __banked.

Read more about data8 and data16 memory, code models, and memory attributes in the
IAR C/C++ Compiler Reference Guide for HCS12.

MHCS12-2

Migrating to IAR Embedded Workbench for HCS12 version 3.x

3

C source code and compiler considerations
In general, version 3.x adheres more strictly to the ISO/ANSI C standard. Most
significantly, the checking of data types now adheres more strictly to the ISO/ANSI C
standard, compared to version 2.x. This helps you to identify and correct problems in
the code, which improves the quality of the object code.

For this reason, it is important to be aware of the fact that code written for version 2.x
may generate warnings or errors in version 3.x. A few programming mistakes can
generate a vast amount of errors and warnings, where many of them are just
consequences of the first ones. Therefore, it is recommended to start with correcting the
first one or two errors and then recompile the code. A few measures will most certainly
dramatically reduce the number of errors and warnings.

In short, the process of migrating from version 2.x to version 3.x involves the following
steps:

1 Replace or modify extended keywords according to the description in the section
Extended keywords, page 15. To simplify the migration, the file migration.h is
delivered with version 3.x. This include file maps the old keywords with their new
counterparts, if possible.

2 The syntax for specifying interrupt vectors has changed. For more details, see Interrupt
functions and vectors, page 16.

3 Replace or modify intrinsic functions according to the section Intrinsic functions, page
18. To simplify the migration, the file migration.h is delivered with version 3.x.
Whenever possible, the include file maps old and new intrinsic functions.

4 Replace or modify pragma directives according to the section Pragma directives, page
17.

5 Make sure not to use nested comments in your source code. In version 3.x, nested
comments are never allowed. For more information, see Nested comments, page 4.

6 Version 3.x will by default not accept preprocessor expressions containing any of the
following:

● Floating-point expressions
● Basic type names and sizeof, see Sizeof in preprocessor directives, page 5
● All symbol names (including typedefs, enums and variables).

With the option --migration_preprocessor_extensions, version 3.x will accept
such non-standard expressions. For details about this option, see the IAR C/C++
Compiler Reference Guide for HCS12.

MHCS12-2

4

C source code and compiler considerations

IAR Embedded Workbench
Migration Guide for HCS12

7 The version 3.x compiler uses a different C parser, and a large number of new
optimizations have been added. Depending on your old source code, this might require
you to modify your source code. One example of this is a simple delay loop, such as:

i = 50000;
do {i--;}
while (i-- != 0);

This code will be removed by the optimizer, unless you declare the variable i as
volatile.

In order to produce more efficient code, the compiler performs transformations like, for
example, removing redundant calculations, replacing division by shift and removing
useless calculations. Code that the compiler considers as not useful is removed. This
may cause unexpected effects like in this example.

8 All predefined symbols supported in version 2.x are also supported in version 3.x. In
version 3.x, there are also additional ones. The predefined symbol
__IAR_SYSTEMS_ICC is provided only for compatibility with version 2.x. Version 3.x
also has the __IAR_SYSTEMS_ICC__ symbol.

See the IAR C/C++ Compiler Reference Guide for HCS12 for information about the
predefined symbols available in version 3.x.

NESTED COMMENTS

In version 2.x, nested comments are allowed if the option -C is used. In version 3.x,
nested comments are never allowed. For example, if a comment was used for removing
a statement like in the following example, it would not have the desired effect.

/*
/* x is a counter */
int x = 0;
*/

The variable x will still be defined, there will be a warning where the inner comment
begins, and there will be an error where the outer comment ends.

 /* x is a counter */
 ^
"c:\bar.c",2 Warning[Pe009]: nested comment is not allowed

 */
 ^
"c:\bar.c",4 Error[Pe040]: expected an identifier

MHCS12-2

Migrating to IAR Embedded Workbench for HCS12 version 3.x

5

The solution is to use #if 0 to “hide” portions of the source code when compiling:

#if 0
/* x is a counter */
int x = 0;
#endif

Note: #if statements may be nested.

SIZEOF IN PREPROCESSOR DIRECTIVES

In version 2.x, sizeof can be used in #if directives, for example:

#if sizeof(int)==2
int i = 0;
#endif

In version 3.x, sizeof is not allowed in #if directives (unless the
--migration_preprocessor_extensions option is used). The following error
message will be produced:

 #if sizeof(int)==2
 ^
"c:\bar.c",1 Error[Pe059]: function call is not allowed in a
constant expression.

Macros can be used instead, for example SIZEOF_INT. Macros can be defined using the
-D option, or a #define statement in the source code:

#if SIZEOF_INT==2
int i = 0;
#endif

To find the size of a predefined data type, see IAR C/C++ Compiler Reference Guide
for HCS12.

Complex data types may be computed using one of two methods:

● Write a small program and run it in the simulator, with terminal I/O.
#include <stdio.h>
struct s { char c; int a; };

void main(void)
{
 printf("sizeof(struct s)=%d \n", sizeof(struct s));
}

● Write a small program, compile it with the option -la . to get an assembler listing
in the current directory, and look for the definition of the constant x.
struct s { char c; int a; };
const int x = sizeof(struct s);

MHCS12-2

6

Assembler considerations

IAR Embedded Workbench
Migration Guide for HCS12

Assembler considerations
In short, consider the following:

1 If your application is written partly in assembler and partly in C, you must consider the
calling convention used. For backward compatibility, version 3.x supports the calling
convention used by version 2.x—the calling convention Simple. Version 3.x also
supports a new calling convention—the calling convention Normal. To use the calling
convention Simple in version 3.x, define and declare your functions with the
__simple keyword. Both calling conventions are documented in the IAR C/C++
Compiler Reference Guide for HCS12.

2 If your application is written partly in assembler and partly in C, and if you have used
any of the memory segments specific to version 2.x in assembler source code, you must
replace all old segment names with new segment names. For further details, see the
section Segments, page 19.

3 The assembler environment variables have changed:

4 If your application is written entirely in assembler, you should not include a library in
your application. To exclude the library from the build, choose Project>Options,
select the General Options category and click the Library Configuration tab. Select
None from the Library drop-down list.

Runtime library and runtime environment
In version 3.x, a new runtime library is provided—the IAR DLIB Library—replacing
the runtime library provided with version 2.x—the IAR CLIB Library.

For information about how to migrate from the CLIB library to the DLIB library, see
Migrating from CLIB to DLIB, page 9. For detailed information about the new library,
and the runtime environment it provides, see the IAR C/C++ Compiler Reference Guide
for HCS12.

To build code produced by version 3.x of the compiler, you must use the runtime
environment components it provides.

Version 2.x assembler Version 3.x assembler

ASM_6812 ASM_HCS12

6812_INC HCS12_INC

Table 1: Old and new assembler environment variables

MHCS12-2

Migrating to IAR Embedded Workbench for HCS12 version 3.x

7

COMPILING AND LINKING WITH THE DLIB RUNTIME
LIBRARY

In earlier versions, the choice of runtime library did not have any impact on the
compilation. In IAR Embedded Workbench for HCS12 version 3.x, this has changed.
Now you can configure the runtime library to contain the features that are needed by
your application.

One example is input and output. An application may use the fprintf function for
terminal I/O (stdout), but the application does not use file I/O functionality on file
descriptors associated with the files. In this case the library can be configured so that
code related to file I/O is removed but still provides terminal I/O functionality.

This configuration involves the library header files, for example stdio.h. This means
that when you build your application, the same header file setup must be used as when
the library was built. The library setup is specified in a library configuration file, which
is a header file that defines the library functionality.

When building an application using IAR Embedded Workbench, there are three library
configuration alternatives to choose between: Normal, Full, and Custom. Normal and
Full are prebuilt library configurations delivered with the product, where Normal
should be used in the above example with file I/O. Custom is used for custom-built
libraries. Note that the choice of the library configuration file is handled automatically.

When building an application from the command line, you must use the same library
configuration file as when the library was built. For the prebuilt libraries (r12) there is
a corresponding library configuration file (h), which has the same name as the library.
The files are located in the hcs12\lib\dlib directory. The command lines for
specifying the library configuration file and library object file could look like this:

icchcs12 --dlib_config
<install_dir>\hcs12\lib\dlib\dlhcs12bdn.h

xlink dlhcs12bdn.r12

In case you intend to build your own library version, use the default library configuration
file dlhcs12Custom.h.

To take advantage of all the features, it is recommended that you read about the runtime
environment in the IAR C/C++ Compiler Reference Guide for HCS12.

MHCS12-2

8

Runtime library and runtime environment

IAR Embedded Workbench
Migration Guide for HCS12

PROGRAM ENTRY

By default, the linker includes all root declared segment parts in program modules
when building an application. However, there is a new mechanism that affects the load
procedure.

There is a new linker option Entry label (-s) to specify a start label. By specifying the
start label, the linker will look in all modules for a matching start label, and start loading
from that point. Like before, any program modules containing a root segment part will
also be loaded.

In version 3.x, the default program entry label in cstartup.s12 is
__program_start, which means the linker will start loading from there. The
advantage of this new behavior is that it is much easier to override cstartup.s12.

If you build your application in IAR Embedded Workbench, just add your customized
cstartup file to your project. It will then be used instead of the cstartup module in
the library. It is also possible to switch startup files just by overriding the name of the
program entry point.

If you build your application from the command line, the -s option must be explicitly
specified when linking a C/C++ application. If you link without the option, the resulting
output executable will be empty because no modules will be referred to.

SYSTEM STARTUP AND EXIT CODE—CSTARTUP

In version 3.x, the content of the cstartup.s12 file has been split up into three files:

cstartup.s12, cmain.s12, and cexit.s12

Now, the cstartup.s12 file contains the reset vector, initial startup code to setup
stacks, and a jump to the cmain.s12 file. The cmain.s12 file initializes data segments
and executes C++ constructors.

The cexit.s12 file contains termination code, for example, execution of C++
destructors.

Note: Normally there is no need for customizing the cmain.s12 file or the
cexit.s12 file.

For old applications that used a modified copy of cstartup.s33, you must make a
copy of the supplied new cstartup.s12 file and adapt it to your needs.

MHCS12-2

Migrating to IAR Embedded Workbench for HCS12 version 3.x

9

MIGRATING FROM CLIB TO DLIB

There are some considerations to have in mind if you want to migrate from the CLIB,
the legacy C library, to the modern DLIB C/C++ library:

● The CLIB exp10() function defined in iccext.h is not available in DLIB.
● The DLIB library uses the low-level I/O routines __write and __read instead of

putchar and getchar.
● If the heap size in your version 2.x project using CLIB was defined in a file named

heap.c, you must now set the heap size either in the extended linker command file
(*.xcl) or in IAR Embedded Workbench.

You should also see the chapter The DLIB runtime environment in the IAR C/C++
Compiler Reference Guide for HCS12.

DEVICE-SPECIFIC HEADER FILES

The header files that define peripheral registers delivered with version 2.x can be used
with version 3.x. However, for version 3.x applications, it is recommended to use the
header files delivered with version 3.x as they are more robust.

Linker considerations
If you have created your own customized linker command file, compare this file with
the original file in the old installation and make the required changes in a copy of the
corresponding file in the new installation. Note that many of the segment names have
changed, see Segments, page 19.

In version 2.x, whenever a module is included in the final link, all functions and
variables defined in that module were included. In version 3.x, only those functions and
variables that are actually needed, as far as the linker can tell, are included.

If this is a problem, you can use the __root attribute in C/C++, or the ROOT property in
assembler, to force inclusion of particular functions, variables, or segment parts. You
can also use the -g command line option to XLINK to request inclusion of a certain
symbol at link time.

MHCS12-2

10

Linker considerations

IAR Embedded Workbench
Migration Guide for HCS12

MHCS12-2

11

Reference information for
migrating to version 3.x
This chapter gives detailed information about the changes in the new version
and describes migration considerations related to compiler options, extended
keywords, pragma directives, intrinsic functions, and segments.

Compiler options
The command line options in version 3.x follow two different syntax styles:

● Long option names containing one or more words prefixed with two dashes, and
sometimes followed by an equal sign and a modifier, for example --strict_ansi
and --module_name=test.

● Short option names consisting of a single letter prefixed with a single dash, and
sometimes followed by a modifier, for example -r.

Some options appear in one style only, while other options appear as synonyms in both
styles. A number of new command line options have been added. For a complete list of
the available command line options, see the IAR C/C++ Compiler Reference Guide for
HCS12.

The old environment variable QCC6812 has changed to QCCHCS12.

MIGRATING PROJECT OPTIONS

Since the available compiler options differ between version 2.x and version 3.x, you
should verify your option settings after you have converted an old project.

If you are using the command line interface, you can simply compare your makefile with
the option tables in this section, and modify the makefile accordingly.

If you are using the IAR Embedded Workbench IDE, all option settings are
automatically converted during the project conversion.

However, it is still recommended to verify the options manually. Follow these steps:

1 Open the old project in 6812 IAR Embedded Workbench version 2.x.

2 In the project window, select the project level to get information about options on all
levels in your project.

MHCS12-2

12

Compiler options

IAR Embedded Workbench
Migration Guide for HCS12

3 To save the project settings to a file, right-click in the project window. On the context
menu that appears, choose Save As Text, and save the settings to an appropriate
destination.

4 Use this file and the option tables in this section to verify whether the options you used
in your old project are still available or needed. Also check whether you need to use
any of the new options.

For information about where to set the equivalent options in the IAR Embedded
Workbench IDE, see the IAR C/C++ Compiler Reference Guide for HCS12.

Removed options

The following table shows the command line options that have been removed:

Old option Description

-C Nested comments

-d Static locals

-F Form-feed in list file after each function

-G Opens standard input as source; replaced by - (dash) as source file
name in version 3.x

-h Disables assignment compatibility attribute test

-i Adds #include file text

-K Enables the use of '//' comments; in version 3.x, '//' comments are
allowed unless the option --strict_ansi is used

-ms Small memory model

-P Generates promable code

-pnn Lines/page

-T Active lines only

-tn Tab spacing

-Usymb Undefined preprocessor symbol

-v Specifies the microcontroller core

-X Explains C declarations

-x[DFT2] Cross-reference

Table 2: Version 2.x compiler options not available in version 3.x

MHCS12-2

Reference information for migrating to version 3.x

13

Identical options

The following table shows the command line options that are identical in version 2.x and
version 3.x:

Renamed or modified options

The following version 2.x command line options have been renamed and/or modified:

Option Comment

-Dsymb=value Defines symbols

-e Language extensions

-f filename Extends the command line

-I Specifies include paths (The syntax is more free in version 3.x)

-o filename Sets object filename

Table 3: Compiler options identical in both compiler versions

Old option New option Description

-A

-a filename
-la .

-la filename

Assembler output; see Filenames, page 14

-b --library_module Makes an object a library module

-c --char_is_signed ‘char’ is ‘signed char’

-gA --strict_ansi Flags old-style functions

-g, -gO --omit_types No type information in object code

-Hname --module_name=name Sets object module name

-L[prefix], -l filename -l[a|A|b|B|c|C|D][N][H]
{filename|directory}

Generates list file; the modifiers specify the type
of list file to create

-ml --code_model normal Model for non-banked function calls

-mb --code_model banked Model for banked function calls

-Nprefix, -n filename --preprocess=[c][n][l]

filename

Preprocessor output

-q -lA .

-lC .

Inserts mnemonics; list file syntax has changed

-r[012][i][n][r][e] -r

--debug

Generates debug information; the modifiers have
been removed

-R --segment Code segment name

-s[0–9] -s[2|3|6|9] Optimizes for speed

-S --silent Sets silent operation

Table 4: Renamed or modified options

MHCS12-2

14

Compiler options

IAR Embedded Workbench
Migration Guide for HCS12

FILENAMES

In version 2.x, file references can be made in either of the following ways:

● With a specific filename, and in some cases with a default extension added, using a
command line option such as -a filename (assembler output to named file).

● With a prefix string added to the default name, using a command line option such as
-A[prefix] (assembler output to prefixed filename).

In version 3.x, a file reference is always regarded as a file path that can be a directory
which the compiler will check and then add a default filename to, or a filename.

The following table shows some examples where it is assumed that the source file is
named test.c, myfile is not a directory and mydir is a directory:

LIST FILES

In version 2.x, only one C list file and one assembler list file can be produced; in version
3.x there is no upper limit on the number of list files that can be generated. The new
command line option -l[a|A|b|B|c|C|D][N][H] {filename|directory} is used
for specifying the behavior of each list file.

OBJECT FILE FORMAT

In version 2.x, two types of source references can be generated in the object file. When
the command line option -r is used, the source statements are being referred to. When
the command line option -re is used, the actual source code is embedded in the object
format.

In version 3.x, when the command line option -r or --debug is used, source file
references are always generated. Embedding of the source code is not supported.

-w --no_warnings Disables warnings

-z[0–9] -z[2|3|6|9] Optimizes for size

Old option New option Description

Table 4: Renamed or modified options (Continued)

Old command New command Result

-l myfile -l myfile myfile.lst

-Lmyfile -l myfiletest myfiletest.lst

-L -l . test.lst

-Lmydir/ -l mydir mydir/test.lst

Table 5: Specifying filename and directory in version 2.x and version 3.x

MHCS12-2

Reference information for migrating to version 3.x

15

Extended keywords
The set of extended keywords has changed in version 3.x. Some keywords have been
added, some keywords have been removed, and for some keywords the syntax has
changed. In addition, memory attributes have a different interpretation if used in
combination with typedef.

In version 3.x, all extended keywords start with two underscores, for example
__no_init.

The following table lists the old keywords and their new equivalents:

To simplify the migration, the include file migration.h is delivered with version 3.x.
This include file maps the old keywords with their new counterparts, if possible. For
example: #define zpage __data8

For detailed information about the extended keywords available in version 3.x, see the
IAR C/C++ Compiler Reference Guide for HCS12.

STORAGE MODIFIERS

Both version 2.x and version 3.x allow keywords that specify the memory location of an
object—memory attributes. Each of these attributes can be used either as a placement
attribute for an object, or as a pointer type attribute denoting a pointer that can point to
the specified memory.

When the attributes are used directly in the source code, they behave in a similar way in
both compiler versions. However, the usage of memory attributes in combination with
the keyword typedef is more strict in version 3.x than in version 2.x.

Old keyword New keyword

asm asm, __asm

banked __banked

non_banked __non_banked

zpage __data8

npage __data16

interrupt __interrupt

monitor __monitor

C_task __task

no_init __no_init

Table 6: Old and new extended keywords

MHCS12-2

16

Extended keywords

IAR Embedded Workbench
Migration Guide for HCS12

Version 2.x behaves unexpectedly in some cases:

typedef int zpage MYINT;
MYINT a,b;
MYINT npage c; /* Illegal */
MYINT *p; /* p stored in zpage memory, points to default

 memory type */

The first variable declaration works as expected, that is a and b are located in zpage
memory. However, the declaration of c is illegal.

In the last declaration, the zpage keyword of the type definition affects the location of
the pointer variable p, not the pointer type. The pointer type is default.

The corresponding example for version 3.x is:

typedef int __data8 MYINT;
MYINT a,b;
MYINT __data16 c; /* c stored in data16 memory; override

 keyword in type definition */
MYINT *p; /* p stored in default memory (always data16 in

 version 3.x), points to data8 memory */

The declaration of c and p differ. The __data16 keyword in the declaration of c will
always compile. It overrides the keyword used in the the typedef statement. In the last
declaration the __data8 keyword in the typedef statement affects the type of the
pointer. It is thus a pointer to a data8 int. However, the location of the variable p is not
affected.

INTERRUPT FUNCTIONS AND VECTORS

The syntax for defining interrupt functions has changed from version 2.x. To simplify
the conversion from version 2.x syntax to version 3.x syntax, a Perl script is delivered
with version 3.x . The script is located in the hcs12\src\scripts directory.

Syntax in version 2.x

The syntax when defining interrupt functions using version 2.x:

interrupt [vector] void function_name(void);

where vector is the vector offset in the vector table.

Syntax in version 3.x

The syntax when defining interrupt functions using version 3.x:

#pragma vector=vector
__interrupt void function_name(void);

MHCS12-2

Reference information for migrating to version 3.x

17

where vector is an absolute address.

For further details of the new pragma directives, see the IAR C/C++ Compiler Reference
Guide for HCS12.

Pragma directives
Version 2.x and version 3.x have different sets of pragma directives for specifying
attributes, and they also behave differently:

● In version 2.x, #pragma memory specifies the default location of data objects, and
#pragma function specifies the default location of functions. They change the
default attribute to use for declared objects until reset back to default behavior or
changed to something else; they do not have an effect on pointer types.

● In version 3.x, the #pragma type_attribute and #pragma object_attribute
directives only change the next declared object or typedef.

See the IAR C/C++ Compiler Reference Guide for HCS12 for information about the
pragma directives available in version 3.x.

The following pragma directives have been removed:

● codeseg

● function

● memory

● warnings

They are recognized and will give a diagnostic message but will not work in version 3.x.

Note: Instead of the #pragma codeseg directive, the #pragma location directive or
the @ operator can be used for specifying an absolute location.

The following table shows the mapping of pragma directives:

Old directive New pragma directive

#pragma function=interrupt #pragma type_attribute=__interrupt

#pragma function=monitor #pragma object_attribute=__monitor

#pragma memory=constseg #pragma constseg, #pragma location

#pragma memory=dataseg #pragma dataseg, #pragma location

#message #pragma message

Table 7: Old and new pragma directives

MHCS12-2

18

Intrinsic functions

IAR Embedded Workbench
Migration Guide for HCS12

It is important to note that the new directives #pragma type_attribute, #pragma
object_attribute, and #pragma vector affect only the first of the declarations that
follow after the directive. In the following example, x is affected, but z and y are not
affected by the directive:

#pragma object_attribute=__no_init
int x,z;
int y;

Specific segment placement

In version 2.x, the #pragma memory directive supports a syntax that enables subsequent
data objects that match certain criteria to end up in a specified segment. Each object
found after the invocation of a segment placement directive will be placed in the
segment, provided that it does not have a memory attribute placement, and that it has the
correct constant attribute. For constseg, it must be a constant, while for dataseg, it
cannot be declared const.

In version 3.x, the directive #pragma location and the @ operator are available for this
purpose.

Intrinsic functions
Version 3.x has a new naming convention for intrinsic functions, as well as a large
number of additional functions.

The old intrinsic functions _args$ and _argt$ available in version 2.x are removed
and cannot be used in version 3.x. However, except for these two functions, all intrinsic
functions available in version 2.x can be used also in version 3.x.

In version 2.x, intrinsic functions are defined in the file in6812.h. To use intrinsic
functions in version 3.x, include the file intrinsics.h. To simplify the migration, the
file migration.h is delivered with version 3.x. Whenever possible, this include file
maps old and new intrinsic functions.

The following table lists the old intrinsic functions and their new equivalents:

Old intrinsic function New intrinsic function

_args$ --

_argt$ --

_asm __asm, asm

disable_interrupt __disable_interrupt

enable_interrupt __enable_interrupt

Table 8: Old and new intrinsic functions

MHCS12-2

Reference information for migrating to version 3.x

19

See the IAR C/C++ Compiler Reference Guide for HCS12 for further information about
the intrinsic functions available in version 3.x.

Segments
The segment naming convention has changed since version 2.x. Some of the old
segments have been removed, and new ones have been introduced.

For details of the new segments, their names and how they are used, see the IAR C/C++
Compiler Reference Guide for HCS12.

This table lists the old segment names, their counterparts in version 3.x, and additional
segments:

None __get_interrupt_state

None __set_interrupt_state

wait_for_interrupt __wait_for_interrupt

software_interrupt __software_interrupt

None __set_ccr_register

None __get_ccr_register

address_24_of __address_24_of

min8 __min8

max8 __max8

min16 __min16

max16 __max16

stop_CPU __stop_CPU

_opc __op_code

Old intrinsic function New intrinsic function

Table 8: Old and new intrinsic functions (Continued)

Old segment New segment

CCSTR 1 –-

CDATA0 DATA8_ID

CDATA1 DATA16_ID

CODE CODE, BANKED_CODE

CONST DATA16_C

CSTACK CSTACK

Table 9: Old and new segments

MHCS12-2

20

Segments

IAR Embedded Workbench
Migration Guide for HCS12

1) Version 3.x does not support placing strings in writable memory. For this reason, the old seg-
ments used for this task have no counterparts in version 3.x.
2) Segments ending in _AN and _AC contain data located at absolute addresses, and should not
be included in the linker command file.

Segment control directive -b versus -P

If you were using the linker segment control directive -b for locating your banked code
in memory, be aware that this directive is now obsolete and superseded by the new linker
segment control directive -P. For details of the -P directive, see the IAR Linker and
Library Tools Reference Guide.

CSTR DATA16_C

ECSTR 1 –-

IDATA0 DATA8_I

IDATA1 DATA16_I

NO_INIT DATA8_N, DATA16_N

RCODE CODE

UDATA0 DATA8_Z

UDATA1 DATA16_Z

–- DATA8_AC 2

–- DATA8_AN 2

–- HEAP

–- DATA16_AC 2

–- DATA16_AN 2

–- DIFUNCT

–- INITTAB

Old segment New segment

Table 9: Old and new segments (Continued)

	Contents
	Tables
	Migrating to IAR Embedded Workbench for HCS12 version 3.x
	The migration process
	Project file and project setup
	C source code and compiler considerations
	Nested comments
	Sizeof in preprocessor directives

	Assembler considerations
	Runtime library and runtime environment
	Compiling and linking with the DLIB runtime library
	Program entry
	System startup and exit code—Cstartup
	Migrating from CLIB to DLIB
	Device-specific header files

	Linker considerations

	Reference information for migrating to version 3.x
	Compiler options
	Migrating project options
	Removed options
	Identical options
	Renamed or modified options

	Filenames
	List files
	Object file format

	Extended keywords
	Storage modifiers
	Interrupt functions and vectors
	Syntax in version 2.x
	Syntax in version 3.x

	Pragma directives
	Specific segment placement

	Intrinsic functions
	Segments
	Segment control directive -b versus -P

