IAR Assembler

Reference Guide

for Freescale’s
HCS 12 Microcontroller Family

o

AHSCI12-3

©IAR

SYSTEMS

COPYRIGHT NOTICE
Copyright © 1997-2010 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
Freescale is a registered trademark of Freescale Inc.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Third edition: February 2010

Part number: AHSC12-3

This guide applies to version 3.x of IAR Embedded Workbench® for HCS12.

Contents

TADIES ..o ix
PrEfACEoooooeo e xi
Who should read this guide ... xi

How to use this guide ... xi
What this guide contains ..., xii
Other documentation ... xii
Document conNVeNntions ... xiii
Introduction to the IAR Assembler for HCSI12 ..., 1
Introduction to assembler programming ..., 1
Getting StArtedc..coeeveeiiieieiiieertetee ettt 1

Modular programming ... 2
SoUrce fOrMAL ..o s 2
Assembler instructions ... 3

Expressions, operands, and operators

Register SYMDOIScouevuiiiiiiiieiiieicicc e 6
Program counter-relative addressing symbol—PCRccccocenine 6
Predefined Symbolscccecievieiinininininnccecceeeee e 7
Absolute and relocatable eXpressionsc.ccoeeveereeeereeieerienenienienienne 8
EXPression reStriCtionsceceereerieeienienieneenieenieesieeeeseeseesseenaeenne 9

List file format ...

HEAART ..o

BOAY e e 10
SUMMATY .eetiieniinieierieeceet ettt ettt e e 10
Symbol and cross-reference tablecc.cocevevieveriinienicnienenieeeeeene 10

Programming hints ... 11

Accessing special function reg@isterscooceveeverieriiereenieeneeneenne 11

Using C-style preprocessor dir€CtiVeso.eeuevververrerenereneneeeenene 11

Assembler OPLIONS ... 13
Setting assembler options ... 13
SpPecitying PArametersccoceeeeueeieieierieiesieriesiesesresiesieereeeeeeeens 14

Environment variablescccocovieiiiiiniiiiiiiiniinienenen 14

EITOI TETUIN COUES ..ottt 15

Summary of assembler options ... 15

Description of assembler options ..., 16
AssembIer OPerators ... 29
Precedence of operators ..., 29
Summary of assembler operators ... 30
Parenthesis Operator — 1ccccovereeininieieieeese e 30

FUNCtion OPerators — 2cccceceeeeeeeeeeienienienienenenesresieseeeeeeeeeneens 30

UNAry OPErators — 3ccuevuevuererenrenienieeieeitete et ees 30

Multiplicative arithmetic Operators — 4ccceeceverereneneneneeeeneas 31

Additive arithmetic operators — 5

Shift OPEIators — 6c.eeveuieriiriiriereneeee et
COmPAriSON OPETALOLS — 7 ...eeuvereerierierieriieieerieiieteieiestesbesieseesieeseeneens 31
Equivalence Operators — 8ccccoceveeeeieieieienienieneneneneeeeeeeeneene 31
Logical 0perators — 9-14ccccoeeerinireeieieeerenesteneseseeeeeeeeee 31
Conditional operator — 15cceviiiiirirereereseseeeeeeeee et 32
Description of assembler operators ... 32
Assembler dir€CtiVES ... 45
Summary of assembler directives ..o 45
Module control directives ... 43

IAR Assembler
Reference Guide for HCS12

Contents °

DESCIIPLONS ..ttt sttt ettt eas 64
EXAMPIES ..oeveiiiiiiiiiiieee et 67
Listing control directives ...

DESCIIPLONS ..ttt ettt sttt eas 74
EXAMPIES ..ouveiniiiiiiiieieee e 76
Data definition or allocation directivesc.cccccocevriiennnn. 77
SYNEAX ettt ettt ettt sttt et e bt et e bt et satesaae st enae s 78

vi

EXAMPIES ...oviiiriiiiiiiiecteeccecer e 79
Assembler control directivesc.ccooooiviiiiiiiie, 80

Descriptions

EXAMPIES ..onveiniiiiieiieieee e
Function directives ... 81
SYNLAX oottt ettt ettt ettt sae e nae s 82
Parameterscococeeieiiininiiiiic e 82
DESCIIPLIONS ...euvivivieiieiieiieietentesteeie ettt ettt st ebe et aene

Call frame information directives

SYNEAX ©eeuiiinieeiieeteete sttt ettt sttt et sttt e st et ebeeane s
Parameterscccovviiiiiiiiii
DESCIIPLONS .evenienieiiienienieeteeieei ettt sttt ees 86
SIMPIE TULES ..ttt s 90
CFI expressions
EXaMPIE ..o e
Pragma dir€CtiVes ... 97
Summary of pragma directives ... 97
Descriptions of pragma directives ..., 97
DIHAgNOSLICS ..o 99
Message fOrmat ... e 99
Severity levels ... 99
Setting the Severity IeVelccccooirieriereniniririeeeeeeeeee 100
INternal €ITOTccoiviiiiiiiiiiiiice e 100
Migrating assembler code ... 101
The Migration ProCess ... 101
ASSEMDIET OPLIONSevvenveniiiintieiieteeiieiiet ettt

Assembler operators

Assembler directives

IAR Assembler
Reference Guide for HCS12

Contents °

vii

IAR Assembler
viii Reference Guide for HCS12

Tables

1: Typographic conventions used in this gUIdec.ccoeverireneneneneninneeieneee Xiii
2: Integer CONStaANt TOIMNALScc.eeieeeierierieierierierte ettt sttt st sbesbeebeeneens 4
3: ASCII character constant fOrmatscocceevereeererneerienieneneneeese e eeeeeeeaeneens 4
4: Predefined re@ister SYMDOLSccccouiriiririnininieiieietee et 6
5: Predefined symbols

6: Symbol and cross-reference tablec.ccccoevirinininiiniinniccceeee 10
7: Environment Variablesccceceeveeiiiiiieiiinieneneneseneee ettt 15
8: EITOT TELUIN COAGS ..uveuvininieiieieiesieste ettt ettt ettt ettt sbe e 15
9: Assembler OPtionS SUMIMATYcceeeereeeeieienrerienrenenenenieneerteseetesensessessesseesens 15
10: Generating a list of dependencies (--dependencies)coceevererererererenene 18
11: Conditional list OPtioNS (1) ..cccveriiriiriiieiiiiieeeeieee ettt 23
12: Directing preprocessor output to file (--preprocess)oceeveeervererierierierereene 26
13: Assembler directives summary 45
14: Module control directives 48
15: Symbol cONtrol dir€CtIVESccceeveruerueriieieieienieieesteeteeeeee ettt 51
16: Segment cONIOl dITECTIVESecueruerueeuieiieieieierierterteet ettt 53
17: Value assignment dir€CVESoc.eevuerriirrierienieniienieenieenieeteeieete st siee e sieesiee e 58
18: Conditional assembly dir€CtiVESccceoeriririninininieieierererereresre e 61
19: Macro processing dir€CtIVESeeererieieierienierieniesreneeieeseeeenteteseeseessesiesiesaenne 63
20: Listing cONtrol dir€CLIVESecueerierriirierienienitenieenieest ettt sttt 69
21: C-style preprocessor dir€CtiVESc.ccoeveririeienieientinrinitereeeeeeererereresreseesieene
22: Data definition or allocation directives

23: Using data definition or allocation dir€CtiVesccoveereerernieerernienneerieeneennne. 78
24: Assembler control dir€CHIVEScoccevieierieiiniiniiniiniieiieteteterer et eaeene 80
25: Call frame information dir€CVEScoceeeruereeierieniiniiniereeeee et 83
26: Unary operators in CFL @XPreSsionsc..ccecueeieriereeneeneeneeneenienieseesneseenenes 92
27: Binary operators in CFL eXpressionsc..cocceceerveienieneneneneeeeierererenenenienne 92
28: Ternary operators in CFL eXpreSSionsc..ceceoereerenereneneneeieneeneenienenenenne 93
29: Code sample with backtrace rows and columnsc..ccecevceeriereeneenennienseennne. 94
30: Pragma directives summary

31: Version 3.10 compiler options not available in version 3.20cc.cccceereeuene. 102

X

IAR Assembler
Reference Guide for HCS12

32: Renamed or modified options

33: Renamed or modified assembler dir€CtiVescceervvieriiieerieenieeniieeeieeenenens

34: Obsolete assembler directives

Preface

Welcome to the IAR Assembler Reference Guide for HCS12. The purpose of
this guide is to provide you with detailed reference information that can help
you to use the IAR Assembler for HCSI2 to develop your application
according to your requirements.

Who should read this guide

You should read this guide if you plan to develop an application, or part of an
application, using assembler language for the HCS12 microcontroller and need to get
detailed reference information on how to use the IAR Assembler for HCS12. In
addition, you should have working knowledge of the following:

o The architecture and instruction set of the HCS12 microcontroller. Refer to the
documentation from Freescale for information about the HCS12 microcontroller

e General assembler language programming

Application development for embedded systems

o The operating system of your host computer.

How to use this guide

When you first begin using the IAR Assembler for HCS12, you should read the chapter
Introduction to the IAR Assembler for HCS12 in this reference guide.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using the IAR Systems toolkit, we recommend that you first read the
initial chapters of the /AR Embedded Workbench® IDE User Guide. They give product
overviews, as well as tutorials that can help you get started. The /AR Embedded
Workbench® IDE User Guide also contains a glossary.

xi

What this guide contains

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

Introduction to the IAR Assembler for HCS12 provides programming information. It
also describes the source code format, and the format of assembler listings.
Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical
summary of the assembler options, and contains detailed reference information
about each option.

Assembler operators gives a summary of the assembler operators, arranged in order
of precedence, and provides detailed reference information about each operator.
Assembler directives gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into
groups according to their function.

Pragma directives describes the pragma directives available in the assembler.
Diagnostics contains information about the formats and severity levels of diagnostic
messages

Migrating assembler code presents the major differences between the [AR
Assembler for HCS12 version 3.20 and the IAR Assembler for HCS12 version 3.10,
and describes the migration considerations.

Other documentation

The complete set of IAR Systems development tools for the HCS12 microcontroller is
described in a series of guides and online help files. For information about:

Using the IAR Embedded Workbench® IDE with the IAR C-SPY® Debugger, refer
to the /AR Embedded Workbench® IDE User Guide

Programming for the IAR C/C++ Compiler for HCS12, refer to the /4R C/C++
Compiler Reference Guide for HCS12

Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the /AR Linker and Library Tools Reference Guide

Using the IAR DLIB Library, refer to the online help system

Using the IAR CLIB Library, refer to the /AR C Library Functions Reference
Guide, available from the online help system

Porting application code and projects created with a previous 68HC12 TAR
Embedded Workbench IDE, refer to the /AR Embedded Workbench® Migration
Guide for HCSI12.

All of these guides are delivered in hyptertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books.

IAR Assembler
xii Reference Guide for HCS12

Preface __4

Document conventions

This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{mandatory} A mandatory part of a command.

a|b]|c Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.
reference A cross-reference within this guide or to another guide.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line interface.

Table 1: Typographic conventions used in this guide

Document conventions

IAR Assembler
Xiv Reference Guide for HCS12

Introduction to the IAR
Assembler for HCS12

This chapter contains the following sections:
e Introduction to assembler programming
e Modular programming

e Source format

e Assembler instructions

e Expressions, operands, and operators

o List file format

e Programming hints.

Introduction to assembler programming

Even if you do not intend to write a complete application in assembler language, there
may be situations where you will find it necessary to write parts of the code in assembler,
for example, when using mechanisms in the HCS12 microcontroller that require precise
timing and special instruction sequences.

To write efficient assembler applications, you should be familiar with the architecture
and instruction set of the HCS12 microcontroller. Refer to Freescale’s hardware
documentation for syntax descriptions of the instruction mnemonics.

GETTING STARTED
To ease the start of the development of your assembler application, you can:

o Work through the tutorials—especially the one about mixing C and assembler
modules—that you find in the /AR Embedded Workbench® IDE User Guide

o Read about the assembler language interface—also useful when mixing C and
assembler modules—in the /AR C/C++ Compiler Reference Guide for HCSI2

o In the IAR Embedded Workbench IDE, you can base a new project on a template
for an assembler project.

Modular programming

Modular programming

Typically, you write your assembler code in assembler source files. In each source file,
you define one or several assembler modules by using the module control directives. By
structuring your code in small modules—in contrast to one single monolithic
module—you can organize your application code in a logical structure, which makes the
code easier to understand, and which benefits:

e an efficient program development
e reuse of modules
e maintenance.

Each module has a name and a type, where the type can be either PROGRAM or LIBRARY.
The linker will always include a PROGRAM module, whereas a LIBRARY module is only
included in the linked code if other modules reference a public symbol in the module. A
module consists of one or more segments.

A segment is a logical entity containing a piece of data or code that should be mapped
to a physical location in memory. You place your code and data in segments by using
the segment control directives. A segment can be either absolute or relocatable. An
absolute segment always has a fixed address in memory, whereas the address for a
relocatable segment is resolved at link time. By using segments, you can control how
your code and data will be placed in memory. Each segment consists of many segment
parts. A segment part is the smallest linkable unit, which allows the linker to include
only those units that are referred to.

Source format

IAR Assembler
2 Reference Guide for HCS12

The format of an assembler source line is as follows:
[label [:]] [operation] [operands] [; comment]

where the components are as follows:

label A definition of a label, which is a symbol that represents an
address. If the label starts in the first column—that is, at the far
left on the line—the : (colon) is optional.

operation An assembler instruction or directive. This must not start in the
first column—there must be some whitespace to the left of it.

operands

comment

Introduction to the IAR Assembler for HCS|12

An assembler instruction or directive can have zero, one, or

more operands. The operands are separated by commas. An

operand can be:

* a constant representing a numeric value or an address

* a symbolic name representing a numeric value or an address
(where the latter also is referred to as a label)

* a register

* a predefined symbol

* the program location counter (PLC)

* an expression

* a register prefixed or suffized by + or - to indicate pre-/post-

inc/dec addressing modes where appropriate

* an expression prefixed by < or T:, > or N:, or suffixed by : 8

or :16 to indicate direct or extended addressing mode where

appropriate.

Comment, preceded by a ; (semicolon)
C or C++ comments are also allowed.

The components are separated by spaces or tabs.

A source line may not exceed 2047 characters.

Tab characters, ASCII 094, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc. This affects the source code output in list files and debug
information. Because tabs may be set up differently in different editors, it is
recommended that you do not use tabs in your source files.

The IAR Assembler for HCS12 uses the default filename extensions s12, asm, and msa

for source files.

Assembler instructions

The IAR Assembler for HCS12 supports the syntax for assembler instructions as
described in the chip manufacturer’s hardware documentation.

Expressions, operands, and operators

Expressions consist of expression operands and operators.

The assembler will accept a wide range of expressions, including both arithmetic and
logical operations. All operators use 32-bit two’s complement integers. Range checking
is performed if a value is used for generating code.

—eo

Expressions, operands, and operators

IAR Assembler
4 Reference Guide for HCS12

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators; see also Assembler operators, page 29.

The following operands are valid in an expression:

o Constants for data or addresses, excluding floating-point constants.

o Symbols—symbolic names—which can represent either data or addresses, where
the latter also is referred to as labels.

o The program location counter (PLC), *.

The operands are described in greater detail on the following pages.

INTEGER CONSTANTS

Since all IAR Systems assemblers use 32-bit two’s complement internal arithmetic,
integers have a (signed) range from -2147483648 to 2147483647.

Constants are written as a sequence of digits with an optional - (minus) sign in front to
indicate a negative number.

Commas and decimal points are not permitted.

The following types of number representation are supported:

Integer type Example

Binary 1010b

Octal 0723,1234qg
Decimal 1234, -1,12344d
Hexadecimal OxFFFF, OFFFFh,

Table 2: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

ASCIlI CHARACTER CONSTANTS

ASCII constants can consist of any number of characters enclosed in single or double
quotes. Only printable characters and spaces may be used in ASCII strings. If the quote
character itself is to be accessed, two consecutive quotes must be used:

Format Value

'ABCD' ABCD (four characters).

"ABCD" ABCD'\0' (five characters the last ASCII null).
'‘A''B' A'B

NER A

Table 3: ASCII character constant formats

Introduction to the IAR Assembler for HCS|12

Format Value

"' (4 quotes) '

' ' (2 quotes) Empty string (no value).

"" (2 double quotes) Empty string (an ASCII null character).

\' ', for quote within a string, as in 'l\'d love to'
\ \, for \ within a string

\" ", for double quote within a string

Table 3: ASCII character constant formats (Continued)

TRUE AND FALSE

In expressions a zero value is considered FALSE, and a non-zero value is considered
TRUE.

Conditional expressions return the value O for FALSE and 1 for TRUE.

SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant. Depending on what kind of operation a symbol is followed by, the symbol
is either a data symbol or an address symbol where the latter is referred to as a label. A
symbol before an instruction is a label and a symbol before, for example the EQU
directive, is a data symbol. A symbol can be:

e absolute—its value is known by the assembler
e relocatable—its value is resolved at link-time.

Symbols must begin with a letter, a—z or A—Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

Case is insignificant for built-in symbols like instructions, registers, operators, and
directives. For user-defined symbols case is by default significant but can be turned on
and off using the Case sensitive user symbols (--case_insensitive) assembler
option. See --case_insensitive, page 17 for additional information.

Use the symbol control directives to control how symbols are shared between modules.
For example, use the PUBLIC directive to make one or more symbols available to other
modules. The EXTERN directive is used for importing an untyped external symbol.

LABELS

Symbols used for memory locations are referred to as labels.

—eo

Expressions, operands, and operators

IAR Assembler
6 Reference Guide for HCS12

Program location counter (PLC)

The assembler keeps track of the start address of the current instruction. This is called
the program location counter.

If you need to refer to the program location counter in your assembler source code you
can use the * sign. For example:

BRA * ; Loop forever

At link time, the * sign will expand to the start address of the current instruction.

REGISTER SYMBOLS

The following table shows the existing predefined register symbols:
Name Address size Description

A,B 8 bits Accumulators

D 16 bits Accumulator

X, Y 16 bits Index registers

SP 16 bits Stack pointer

PC 16 bits Program counter

CCR 8 bits Condition code register
CCRW 16 bits Extended CCR "

DH, DL, XH, XL, YH, YL, SPH, 8 bits High/low part of registers () (*)

SPL, CCRH, CCRL

Table 4: Predefined register symbols

* Core=hcs|2x only
i
Only allowed in register transfer instructions (EXG, SEX, TFR).

PROGRAM COUNTER-RELATIVE ADDRESSING SYMBOL—PCR

To simplify program counter-relative addressing, you can use the symbol PCR instead of
pc for all instructions that accept indexed addressing mode with PC as base register.

When you use the register symbol pc, the offset is added to the program counter to
obtain the effective address.

However, when you use the symbol PCR, the offset is not an offset but an address. The
IAR Assembler for HCS12 will calculate the difference between the specified address
and the PC and generate an instruction with a pc-relative offset, for example:

ORG $1000
LDAA 14,pC
LDAB LABEL, PCR

ORG $1010
LABEL: DC8 $80

Introduction to the IAR Assembler for HCS|12

After this code has been executed, both the registers A and B will contain 0x80, because
both of the LDAx instructions will load the value from the label LABEL.

Note: The generated pc-relative instruction will not be optimized. It will use a 16-bit
offset even if a 5-bit or 9-bit offset would be sufficient.

PREDEFINED SYMBOLS

The IAR Assembler for HCS12 defines a set of symbols for use in assembler source
files. The symbols provide information about the current assembly, allowing you to test
them in preprocessor directives or include them in the assembled code. The strings
returned by the assembler are enclosed in double quotes.

The following predefined symbols are available:

Symbol

Value

__BUILD_NUMBER_ _

A unique integer that identifies the build number of the
assembler currently in use. The build number does not
necessarily increase with an assembler that is released later.

__CORE_ _ A unique integer that identifies the core option in use.
__DATE__ The current date in dd/Mmm/yyyy format (string).
__FILE_ _ The name of the current source file (string).

__TIAR_SYSTEMS_ASM__

IAR assembler identifier (number).

__LINE__ The current source line number (number).

__TID__ TTarget identity, consisting of two bytes (number). The high
byte is the target identity, which is 0x21 for HCS12. The
low byte is the processor option 0.

_ _SUBVERSION_ _ An integer that identifies the version letter of the version
number, for example the C in 4.21C, as an ASCII character.

__TIME_ _ The current time in hh :mm: ss format (string).

__VER__ The version number in integer format; for example, version

4.17 is returned as 417 (number).

Table 5: Predefined symbols

Notice that __TID__ is related to the predefined symbol __TID__ in the IAR C/C++
Compiler for HCS12. It is described in the /AR C/C++ Compiler Reference Guide for
HCSI2.

—eo

Expressions, operands, and operators

IAR Assembler
8 Reference Guide for HCS12

Including symbol values in code

There are several data definition directives provided to make it possible to include a
symbol value in the code. These directives define values or reserve memory. To include
a symbol value in the code, use the symbol in the appropriate data definition directive.

For example, to include the time of assembly as a string for the program to display:

timdat DC8 __TIME__,",",__DATE__,0; time and date
LDX #timdat ; Load address of string
JSR printstring ; Call string output routine

Testing symbols for conditional assembly

To test a symbol at assembly time, you can use one of the conditional assembly
directives. These directives let you control the assembly process at assembly time.

For example, if you want to assemble separate code sections depending on whether you
are using an old assembler version or a new assembler versions, you can do as follows:

#if (__VER__ > 320) ; New assembler version
#else ; 0ld assembler version
#endif

See Conditional assembly directives, page 61.

ABSOLUTE AND RELOCATABLE EXPRESSIONS

Depending on what operands an expression consists of, the expression is either absolute
or relocatable. Absolute expressions are those expressions that only contain absolute
symbols or, in some cases, relocatable symbols that cancel each out.

Expressions that include symbols in relocatable segments cannot be resolved at
assembly time, because they depend on the location of segments.

Such expressions are evaluated and resolved at link time, by the IAR XLINK Linker.
There are no restrictions on the expression; any operator can be used on symbols from
any segment, or any combination of segments.

For example, a program could define the segments DATA and CODE as follows:

EXTERN third

RSEG DATA
first DS8 5
second DS8 3

Introduction to the IAR Assembler for HCS|12

RSEG CODE
start

Then in segment CODE the following instructions are legal:

INC #first+7
INC #first-7
INC #7+first
INC #(first/second) *third

Note: At assembly time, there will be no range check. The range check will occur at link
time and, if the values are too large, there will be a linker error.

EXPRESSION RESTRICTIONS

Expressions can be categorized according to restrictions that apply to some of the
assembler directives. One such example is the expression used in conditional statements
like TF, where the expression must be evaluated at assembly time and therefore cannot
contain any external symbols.

The following expression restrictions are referred to in the description of each directive
they apply to.

No forward

All symbols referred to in the expression must be known, no forward references are
allowed.

No external

No external references in the expression are allowed.

Absolute

The expression must evaluate to an absolute value; a relocatable value (segment offset)
is not allowed.

Fixed

The expression must be fixed, which means that it must not depend on variable-sized
instructions. A variable-sized instruction is an instruction that may vary in size
depending on the numeric value of its operand.

—eo

List file format

10

List file format

IAR Assembler
Reference Guide for HCS12

The format of an assembler list file is as follows:

HEADER

The header section contains product version information, the date and time when the file
was created, and which options were used.

BODY
The body of the listing contains the following fields of information:

o The line number in the source file. Lines generated by macros will, if listed, have a
. (period) in the source line number field.

o The address field shows the location in memory, which can be absolute or relative
depending on the type of segment. The notation is hexadecimal.

o The data field shows the data generated by the source line. The notation is
hexadecimal. Unresolved values are represented by (periods), where two periods
signify one byte. These unresolved values will be resolved during the linking
process.

o The assembler source line.

SUMMARY

The end of the file contains a summary of errors and warnings that were generated.

SYMBOL AND CROSS-REFERENCE TABLE

When you specify the Include cross-reference option, or if the LSTXRF+ directive has
been included in the source file, a symbol and cross-reference table is produced.

The following information is provided for each symbol in the table:

Information Description

Label The label’s user-defined name.

Mode ABS (Absolute), or REL (Relocatable).

Type The label type.

Segment The name of the segment that this label is defined relative to.
Value/Offset The value (address) of the label within the current module, relative to the

beginning of the current segment part.

Table 6: Symbol and cross-reference table

Introduction to the IAR Assembler for HCS|12

Programming hints

This section gives hints on how to write efficient code for the IAR Assembler for
HCS12. For information about projects including both assembler and C or C++ source
files, see the [AR C/C++ Compiler Reference Guide for HCSI12.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for anumber of HCS12 derivatives are included in the AR Systems
product package, in the \hcs12\inc directory. These header files define the
processor-specific special function registers (SFRs) and interrupt vector numbers.

The header files are intended to be used also with the IAR C/C++ Compiler for HCS12,
and they are suitable to use as templates when creating new header files for other HCS12
derivatives.

If any assembler-specific additions are needed in the header file, these can be added
easily in the assembler-specific part of the file:

#ifdef IAR_SYSTEMS_ASM_ _

(assembler-specific defines)
#endif

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with
assembler-style comments. For more information about comments, see Assembler
control directives, page 80.

—eo

Programming hints

IAR Assembler
12 Reference Guide for HCS12

Assembler options

This chapter first explains how to set the options from the command line, and
gives an alphabetical summary of the assembler options. It then provides
detailed reference information for each assembler option.

The IAR Embedded Workbench® IDE User Guide describes how to set assembler
options in the IAR Embedded Workbench® IDE, and gives reference
information about the available options.

Setting assembler options

To set assembler options from the command line, include them on the command line
after the ahcs12 command, either before or after the source filename. For example,
when assembling the source prog.s12, use the following command to generate an
object file with debug information:

ahcsl2 prog --debug

Some options accept a filename, included after the option letter with a separating space.
For example, to generate a listing to the file prog.1lst:

ahcsl2 prog -1 prog.lst

Some other options accept a string that is not a filename. The string is included after the
option letter, but without a space. For example, to define a symbol:

ahcsl2 prog -DDEBUG=1

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order as they are specified on the
command line.

Notice that a command line option has a short name and/or a long name:

e A short option name consists of one character, with or without parameters. You
specify it with a single dash, for example -r.

o A long name consists of one or several words joined by underscores, and it may
have parameters. You specify it with double dashes, for example --debug.

Setting assembler options

14

IAR Assembler
Reference Guide for HCS12

SPECIFYING PARAMETERS

When a parameter is needed for an option with a short name, it can be specified either
immediately following the option or as the next command line argument.

For instance, an include file path of \usr\include can be specified either as:
-I\usr\include

or as

-I \usr\include

Note: / can be used instead of \ as directory delimiter. A trailing backslash can be
added to the last directory name, but is not required.

Additionally, output file options can take a parameter that is a directory name. The
output file will then receive a default name and extension.

When a parameter is needed for an option with a long name, it can be specified either
immediately after the equal sign (=) or as the next command line argument, for example:

--diag_suppress=Pe0001
or
--diag_suppress Pe0001

Options that accept multiple values may be repeated, and may also have
comma-separated values (without space), for example:

--diag_warning=Be0001,Be0002

The current directory is specified with a period (.), for example:

ahcsl2 prog -1

A file specified by - (a single dash) is standard input or output, whichever is appropriate.

Note: When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead you can prefix the parameter with two dashes
(--). The following example will generate a list on standard output:

ahcsl2 prog -1 ---

ENVIRONMENT VARIABLES

Assembler options can also be specified in the ASMHCS12 environment variable. The
assembler automatically appends the value of this variable to every command line, so it
provides a convenient method of specifying options that are required for every assembly.

Assembler options ___¢

The following environment variables can be used with the IAR Assembler for HCS12:

Environment variable Description

AHCS12_INC Specifies directories to search for include files; for example:
AHCS12_INC=c:\program files\iar systems\em
bedded workbench 4.n\hcsl2\inc;c:\headers

ASMHCS12 Specifies command line options; for example:
ASMHCS12=-1 asm.lst

Table 7: Environment variables

ERROR RETURN CODES

The IAR Assembler for HCS12 returns status information to the operating system which
can be tested in a batch file.

The following command line error codes are supported:

Code Description

0 Assembly successful, but there may have been warnings.
| There were warnings, provided that the option --warnings_affect_exit_code was used.
2 There were non-fatal errors or fatal assembly errors (making the assembler abort).

3 There were crashing errors.

Table 8: Error return codes

Summary of assembler options

The following table summarizes the assembler options available from the command

line:

Command line option Description
--case_insensitive Case-insensitive user symbols
--core Core in use

-D Defines preprocessor symbols
--debug Generates debug information
--dependencies Lists file dependencies
--diag_error Treats these diagnostics as errors
--diag_remark Treats these diagnostics as remarks
--diag_suppress Suppresses these diagnostics
--diag_warning Treats these diagnostics as warnings

Table 9: Assembler options summary

Description of assembler options

Command line option

Description

--diagnostics_tables
--dir_first
--enable_multibytes

-—error_limit

-f
--header_context
-I

-1

-M

--mnem_first

--no_path_in_file_macros

--no_warnings
--no_wrap_diagnostics
-o

--only_stdout
--preinclude
--preprocess

-r

--remarks

--silent

--warnings_affect_exit_code

--warnings_are_errors

Lists all diagnostic messages
Allows directives in the first column
Enables support for multibyte characters

Specifies the allowed number of errors before the
assembler stops

Extends the command line

Lists all referred source files

Includes file paths

Output list file

Macro quote characters

Allows mnemonics in the first column

Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

Disables all warnings

Disables wrapping of diagnostic messages

Sets object filename

Uses standard output only

Includes an include file before reading the source file
Preprocessor output to file

Generates debug information

Enables remarks

Sets silent operation

Warnings affect exit code

Treats all warnings as errors

Table 9: Assembler options summary (Continued)

Description of assembler options

The following sections give detailed reference information about each assembler option.

IAR Assembler

16 Reference Guide for HCS12

Note that if you use the page Extra Options to specify specific command line options,
there is no check for consistency problems like conflicting options, duplication of

options, or use of irrelevant options.

--case_insensitive

—-—-Core

Assembler options ___¢

--case_insensitive
Use this option to make user symbols case insensitive.

By default, case sensitivity is on. This means that, for example, LABEL and 1abel refer
to different symbols. Use --case_insensitive to turn case sensitivity off, in which
case LABEL and label will refer to the same symbol.

You can also use the assembler directives CASEON and CASEOFF to control case
sensitivity for user-defined symbols. See Assembler control directives, page 80, for
more information.

Note: The --case_insensitive option does not affect preprocessor symbols.
Preprocessor symbols are always case sensitive, regardless of whether they are defined
in the IAR Embedded Workbench IDE or on the command line. See Defining and
undefining preprocessor symbols, page 74.

Project>Options>Assembler >Language>User symbols are case sensitive

--core={hcsl12|hcsl2x}
Use this option to select the microcontroller for which the code is to be generated.

Project>Options>General Options >Target>Device

-Dsymbol [=value]

Defines a symbol to be used by the preprocessor with the name symbo1l and the value
value. If no value is specified, 1 is used.

The -D option allows you to specify a value or choice on the command line instead of
in the source file.
Example

You may want to arrange your source to produce either the test or production version of
your program dependent on whether the symbol TESTVER was defined. To do this use
include sections such as:

#ifdef TESTVER

.. ; additional code lines for test version only
#endif
Then select the version required on the command line as follows:

Production version: ahcsl12 prog
Test version: ahcsl2 prog -DTESTVER

Description of assembler options

18

--debug, -r

--dependencies

IAR Assembler
Reference Guide for HCS12

Alternatively, your source might use a variable that you need to change often. You can
then leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

ahcsl2 prog -DFRAMERATE=3

Project>Options>Assembler>Preprocessor>Defined symbols

--debug
-r

The --debug option makes the assembler generate debug information that allows a
symbolic debugger such as the IAR C-SPY® Debugger to be used on the program.

In order to reduce the size and link time of the object file, the assembler does not
generate debug information by default.

Project>Options>Assembler >Output>Generate debug information

--dependencies=[1i] [m] {filename| directory}

When you use this option, each source file opened by the assembler is listed in a file.
The following modifiers are available:

Option modifier Description
i Include only the names of files (default)
m Makefile style

Table 10: Generating a list of dependencies (--dependencies)

If a filename is specified, the assembler stores the output in that file.

If a directory is specified, the assembler stores the output in that directory, in a file
with the extension i. The filename will be the same as the name of the assembled source
file, unless a different name has been specified with the option -o, in which case that
name will be used.

To specify the working directory, replace directory with a period (.).

If --dependencies or --dependencies=i is used, the name of each opened source
file, including the full path if available, is output on a separate line. For example:

c:\lar\product\include\stdio.h
d:\myproject\include\foo.h

Assembler options ___¢

If --dependencies=mis used, the output uses makefile style. For each source file, one
line containing a makefile dependency rule is output. Each line consists of the name of
the object file, a colon, a space, and the name of a source file. For example:

foo.rl2: c:\iar\product\include\stdio.h
foo.rl2: d:\myproject\include\foo.h
Example |
To generate a listing of file dependencies to the file 1isting. i, use:

ahcsl2 prog --dependencies=i listing

Example 2

To generate a listing of file dependencies to a file called 1isting. i in the mypath
directory, you would use:

ahcsl2 prog --dependencies \mypath\listing

Note: Both \ and / can be used as directory delimiters.

Example 3
An example of using --dependencies with gmake:
I Set up the rule for assembling files to be something like:

$.rl2 : %.c
S (ASM) $ (ASMFLAGS) S$< --dependencies=m $*.d

That s, besides producing an object file, the command also produces a dependent file
in makefile style (in this example using the extension . d).

2 Include all the dependent files in the makefile using for example:
-include $ (sources:.c=.d)
Because of the -, it works the first time, when the . d files do not yet exist.

This option is not available in the JAR Embedded Workbench IDE.

--diag_error --diag_error=tag, tag, ...
Use this option to classify diagnostic messages as errors.

An error indicates a violation of the assembler language rules, of such severity that
object code will not be generated, and the exit code will not be 0.

Description of assembler options

20

--diag_remark

--diag_suppress

--diag_warning

--diagnostics_tables

IAR Assembler
Reference Guide for HCS12

The following example classifies warning As001 as an error:
--diag_error=As001

Project>Options>Assembler >Diagnostics>Treat these as errors

--diag_remark=tag, tag, ...
Use this option to classify diagnostic messages as remarks.

A remark is the least severe type of diagnostic message and indicates a source code
construct that may cause strange behavior in the generated code.

The following example classifies the warning As001 as a remark:
--diag_remark=As001

Project>Options>Assembler >Diagnostics>Treat these as remarks

--diag_suppress=tag, tag, . ..

Use this option to suppress diagnostic messages. The following example suppresses the
warnings As001 and As002:

--diag_suppress=As001,As002

Project>Options>Assembler >Diagnostics>Suppress these diagnostics

--diag_warning=tag, tag, ...
Use this option to classify diagnostic messages as warnings.

A warning indicates an error or omission that is of concern, but which will not cause the
assembler to stop before the assembly is completed.

The following example classifies the remark As028 as a warning:
--diag_warning=As028

Project>Options>Assembler >Diagnostics>Treat these as warnings

--diagnostics_tables {filename|directory}

Use this option to list all possible diagnostic messages in a named file. This can be very
convenient, for example, if you have used a #pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

--dir_first

--enable_multibytes

Assembler options ___¢

If a £ilename is specified, the assembler stores the output in that file.

If a directory is specified, the assembler stores the output in that directory, in a file
with the name diagnostics_tables.txt. To specify the working directory, replace
directory with a period (.).

Example |

To output a list of all possible diagnostic messages to the file diag. txt, use:

--diagnostics_tables diag

Example 2

If you want to generate a table to a file diagnostics_tables. txt in the working
directory, you could use:

--diagnostics_tables
Note: Both \ and / can be used as directory delimiters.

This option is not available in the IAR Embedded Workbench IDE.

--dir_first

The default behavior of the assembler is to treat all identifiers starting in the first column
as labels.

Use this option to make directive names (without a trailing colon) that start in the first
column to be recognized as directives.

Project>Options>Assembler >Language>Allow directives in first column

--enable_multibytes

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in comments, in string literals, and in character
constants. They are transferred untouched to the generated code.

Project>Options>Assembler>Language>Enable multibyte support

21

Description of assembler options

22

-—error_limit

--header_context

IAR Assembler
Reference Guide for HCS12

-—error_limit=n

Use the --error_1limit option to specify the number of errors allowed before the
assembler stops. By default, 100 errors are allowed. n must be a positive number; 0
indicates no limit.

This option is not available in the IAR Embedded Workbench IDE.

-f filename

Extends the command line with text read from the specified file. Notice that there must
be a space between the option itself and the filename.

The - £ option is particularly useful where there is a large number of options which are
more conveniently placed in a file than on the command line itself. For example, to run
the assembler with further options taken from the file extend.xc1, use:

ahcsl2 prog -f extend.xcl
To set this option, use:

Project>Options>Assembler>Extra Options

--header_context

Occasionally, it is necessary to know which header file that was included from what
source line, to find the cause of a problem. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at
that point.

This option is not available in the IAR Embedded Workbench IDE.

-Iprefix
Adds the #include file search prefix prefix.

By default, the assembler searches for #include files only in the current working
directory and in the paths specified in the AHCS12_INC environment variable. The -1
option allows you to give the assembler the names of directories which it will also search
if it fails to find the file in the current working directory.

Example

For example, using the options:

-Ic:\global\ -Ic:\thisproj\headers\

Assembler options ___¢

and then writing:
#include "asmlib.hdr"

in the source, will make the assembler search first in the current directory, then in the
directory c:\global\, and then in the directory C:\thisproj\headers\. Finally,
the assembler searches the directories specified in the AHCS12_INC environment
variable, provided that this variable is set.

Project>Options>Assembler >Preprocessor>Additional include directories

-1[al[d]l[e]l[m][o] [x][N] {filename|directory}

By default, the assembler does not generate a listing. Use this option to generate a listing
to a file.

You can choose to include one or more of the following types of information:

Command line option Description
-la Assembled lines only
-1d The LSTOUT directive controls if lines are

written to the list file or not. Using -1d turns
the start value for this to off.

-le No macro expansions
-1m Macro definitions

-lo Multiline code

-1x Includes cross-references
-1N Do not include diagnostics

Table 11: Conditional list options (1)
If a £ilename is specified, the assembler stores the output in that file.

If a directory is specified, the assembler stores the output in that directory, in a file
with the extension 1st. The filename will be the same as the name of the assembled
source file, unless a different name has been specified with the option -o, in which case
that name will be used.

To specify the working directory, replace directory with a period (.).

Example |
To generate a listing to the file 1ist.1st, use:

ahcsl2 sourcefile -1 list

23

Description of assembler options

24

--mnem_first

IAR Assembler
Reference Guide for HCS12

Example 2

If you assemble the file mysource.s12 and want to generate a listing to a file
mysource. lst in the working directory, you could use:

ahcsl2 mysource -1
Note: Both \ and / can be used as directory delimiters.
To set related options, select:

Project>Options>Assembler >List

-Mab

Specifies quote characters for macro arguments by setting the characters used for the left
and right quotes of each macro argument to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

Note: Depending on your host environment, it may be necessary to use quote marks
with the macro quote characters, for example:

ahcsl2 filename -M'<>'

Example

For example, using the option:

-M[]

in the source you would write, for example:
print [>]

to call a macro print with > as the argument.

Project>Options>Assembler >Language>Macro quote characters

--mnem_first

The default behavior of the assembler is to treat all identifiers starting in the first column
as labels.

Use this option to make mnemonics names (without a trailing colon) starting in the first
column to be recognized as mnemonics.

Project>Options>Assembler >Language>Allow mnemonics in first column

--no_path_in_file_macros

--no_warnings

--no_wrap_diagnostics

Assembler options ___¢

--no_path_in_file_macros

Use this option to exclude the path but leave the filename as the return value of the
predefined preprocessor symbols __FILE__ and __BASE_FILE__.

This option is not available in the IAR Embedded Workbench IDE.

--no_warnings

By default the assembler issues standard warning messages. Use this option to disable
all warning messages.

This option is not available in the IAR Embedded Workbench IDE.

--no_wrap_diagnostics

By default, long lines in assembler diagnostic messages are broken into several lines to
make the message easier to read. Use this option to disable line wrapping of diagnostic
messages.

This option is not available in the IAR Embedded Workbench IDE.

-o {filename|directory}
Use the -o option to specify an output file.
If a £ilename is specified, the assembler stores the object code in that file.

If a directoryis specified, the assembler stores the object code in that directory, in a
file with the same name as the name of the assembled source file, but with the extension
r12. To specify the working directory, replace directory with a period (.).

Example |

To store the assembler output in a file called obj . r12 in the mypath directory, you
would use:

ahcsl2 sourcefile -o \mypath\obj

Example 2

If you assemble the file mysource.s12 and want to store the assembler output in a file
mysource.rl2 in the working directory, you could use:

ahcsl2 mysource -o

25

Description of assembler options

Note: Both \ and / can be used as directory delimiters. You must include a space
between the option itself and the filename.

Project>Options>General Options>Output>Output directories>Object files

--only_stdout --only_stdout

Causes the assembler to use stdout also for messages that are normally directed to
stderr.

This option is not available in the IAR Embedded Workbench IDE.

--preinclude --preinclude includefile

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

To set this option, use:

Project>Options>Assembler>Extra Options

--preprocess --preprocess=[c][n][1l] {filename| directory}
Use this option to direct preprocessor output to a named file.
The following table shows the mapping of the available preprocessor modifiers:

Command line option Description

--preprocess=c Preserve comments that otherwise are removed by the
preprocessor, that is, C and C++ style comments.
Assembler style comments are always preserved

--preprocess=n Preprocess only

--preprocess=1 Generate #1ine directives

Table 12: Directing preprocessor output to file (—-preprocess)
If a filename is specified, the assembler stores the output in that file.

If a directory is specified, the assembler stores the output in that directory, in a file
with the extension i. The filename will be the same as the name of the assembled source
file, unless a different name has been specified with the option -o, in which case that
name will be used.

To specify the working directory, replace directory with a period (.).

IAR Assembler
26 Reference Guide for HCS12

-r, --debug

--remarks

--silent

Assembler options ___¢

Example |
To store the assembler output with preserved comments to the file output. i, use:

ahcsl2 sourcefile --preprocess=c output

Example 2

If you assemble the file mysource.s12 and want to store the assembler output with
#line directives to a file mysource. i in the working directory, you could use:

ahcsl2 mysource --preprocess=1
Note: Both \ and / can be used as directory delimiters.

Project>Options>Assembler >Preprocessor>Preprocessor output to file

--debug
-r

The --debug option makes the assembler generate debug information that allows a
symbolic debugger such as the IAR C-SPY Debugger to be used on the program.

In order to reduce the size and link time of the object file, the assembler does not
generate debug information by default.

Project>Options>Assembler >Output>Generate debug information

--remarks

Use this option to make the assembler generate remarks, which is the least severe type
of diagnostic message and which indicates a source code construct that may cause
strange behavior in the generated code. By default remarks are not generated.

See Severity levels, page 99, for additional information about diagnostic messages.

Project>Options>Assembler >Diagnostics>Enable remarks

--silent

The --silent option causes the assembler to operate without sending any messages to
the standard output stream.

By default, the assembler sends various insignificant messages via the standard output
stream. You can use the —--silent option to prevent this. The assembler sends error and
warning messages to the error output stream, so they are displayed regardless of this
setting.

27

Description of assembler options

28

--warnings_affect_exit_code

--warnings_are_errors

IAR Assembler
Reference Guide for HCS12

This option is not available in the IAR Embedded Workbench IDE.

--warnings_affect_exit_code

By default the exit code is not affected by warnings, only errors produce a non-zero exit
code. With this option, warnings will generate a non-zero exit code.

This option is not available in the IAR Embedded Workbench IDE.

--warnings_are_errors

Use this option to make the assembler treat all warnings as errors. If the assembler
encounters an error, no object code is generated.

If you want to keep some warnings, you can use this option in combination with the
option --diag_warning. First make all warnings become treated as errors and then
reset the ones that should still be treated as warnings, for example:

--diag_warning=As001
For additional information, see --diag_warning, page 20.

Project>Options>Assembler >Diagnostics>Treat all warnings as errors

Assembler operators

This chapter first describes the precedence of the assembler operators, and
then summarizes the operators, classified according to their precedence.
Finally, this chapter provides reference information about each operator,
presented in alphabetical order.

Precedence of operators

Each operator has a precedence number assigned to it that determines the order in which
the operator and its operands are evaluated. The precedence numbers range from 1 (the
highest precedence, that is, first evaluated) to 15 (the lowest precedence, that is, last
evaluated).

The following rules determine how expressions are evaluated:

o The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are evaluated

o Operators of equal precedence are evaluated from left to right in the expression

o Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, the
following expression evaluates to 1:

7/ (1+(2*%3))

Note: The precedence order in the IAR Assembler for HCS12 closely follows the
precedence order of the ANSI C++ standard for operators, where applicable.

29

Summary of assembler operators

Summary of assembler operators

The following tables give a summary of the operators, in order of priority. Synonymes,
where available, are shown in brackets after the operator name.

PARENTHESIS OPERATOR - |

() Parenthesis.

FUNCTION OPERATORS -2

BYTEL First byte.
BYTE2 Second byte.
BYTE3 Third byte.
BYTE4 Fourth byte.
DATE Current date/time.
HIGH High byte.
HWRD High word.
Low Low byte.
LWRD Low word.

SFB Segment begin.
SFE Segment end.
SIZEOF Segment size.
UPPER Third byte.

UNARY OPERATORS -3

+ Unary plus.
BINNOT [~] Bitwise NOT.
NOT [!] Logical NOT.

- Unary minus.

IAR Assembler
30 Reference Guide for HCS12

Assembler operators ___o

MULTIPLICATIVE ARITHMETIC OPERATORS -4

* Multiplication.
/ Division.
MOD [%] Modulo.

ADDITIVE ARITHMETIC OPERATORS -5

+ Addition.

- Subtraction.

SHIFT OPERATORS -6

SHL [<<] Logical shift left.

SHR [>>] Logical shift right.

COMPARISON OPERATORS -7

GE [>=] Greater than or equal.
GT [>] Greater than.

LE [<=] Less than or equal.

LT [<] Less than.

UGT Unsigned greater than.
ULT Unsigned less than.

EQUIVALENCE OPERATORS -8
EQ [=] [==] Equal.

NE [<>] [!=] Not equal.

LOGICAL OPERATORS -9-14

BINAND [&] Bitwise AND (9).
BINXOR ["] Bitwise exclusive OR (10).
BINOR []] Bitwise OR (11).

31

Description of assembler operators

AND [&&] Logical AND (12).
XOR Logical exclusive OR (13).
OR []]] Logical OR (14).

CONDITIONAL OPERATOR - I5

?: Conditional operator.

Description of assembler operators

The following sections give full descriptions of each assembler operator. The number
within parentheses specifies the priority of the operator

() Parenthesis (1).
(‘and) group expressions to be evaluated separately, overriding the default precedence
order.
Example

1+2*3 —> 7
(1+2)*3 > 9

* Multiplication (4).
* produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.
Example

2*%2 > 4
-2*2 ™ -4

+ Unary plus (3).

Unary plus operator.

Example

+3 ™ 3
3*+2 > 6

IAR Assembler
32 Reference Guide for HCS12

Assembler operators ___o

+ Addition (5).

The + addition operator produces the sum of the two operands which surround it. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example
92+19 — 111

-2+2 ™ 0
-2+-2 > -4

- Unary minus (3).
The unary minus operator performs arithmetic negation on its operand.
The operand is interpreted as a 32-bit signed integer and the result of the operator is the
two’s complement negation of that integer.
Example

3 > -3
3*-2 > -6
4--5 > 9

- Subtraction (5).

The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result is
also signed 32-bit integer.

Example
92-19 — 73

-2-2 > -4
-2--2 7> 0

/ Division (4).

/ produces the integer quotient of the left operand divided by the right operand. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example
9/2 > 4
-12/3 = -4
9/2*6 — 24

33

Description of assembler operators

34

AND [&&]
BINAND [&]
BINNOT [~]

IAR Assembler
Reference Guide for HCS12

Conditional operator (15).

The result of this operator is the first expr if condition evaluates to true and the
second expr if condi tion evaluates to false.

Note: The question mark and a following label must be separated by space or a tab,
otherwise the ? will be considered the first character of the label.

Syntax

condition ? expr : expr

Example

? 6 7 76
26 7 7

5
0

Logical AND (12).

Use AND to perform logical AND between its two integer operands. If both operands are
non-zero the result is 1 (true), otherwise it will be O (false).

Example

1010B AND 0011B — 1
1010B AND 0101B — 1
1010B AND 0000B — O

Bitwise AND (9).

Use BINAND to perform bitwise AND between the integer operands. Each bit in the
32-bit result is the logical AND of the corresponding bits in the operands.
Example

1010B BINAND 0011B —> 0010B
1010B BINAND 0101B — 0000B
1010B BINAND 0000B —> 0000B

Bitwise NOT (3).

Use BINNOT to perform bitwise NOT on its operand. Each bit in the 32-bit result is the
complement of the corresponding bit in the operand.

Assembler operators ___o

Example

BINNOT 1010B — 11111111111111111111111111110101B

BINOR [|] Bitwise OR (11).
Use BINOR to perform bitwise OR on its operands. Each bit in the 32-bit result is the
inclusive OR of the corresponding bits in the operands.
Example

1010B BINOR 0101B — 1111B
1010B BINOR 0000B — 1010B

BINXOR [~] Bitwise exclusive OR (10).
Use BINXOR to perform bitwise XOR on its operands. Each bit in the 32-bit result is the
exclusive OR of the corresponding bits in the operands.
Example

1010B BINXOR 0101B — 1111B
1010B BINXOR 0011B — 1001B

BYTEL First byte (2).
BYTEL takes a single operand, which is interpreted as an unsigned 32-bit integer value.

The result is the low byte (bits 7 to 0) of the operand.

Example

BYTE1 0x12345678 — 0x78

BYTE2 Second byte (2).

BYTE?2 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.

Example

BYTE2 0x12345678 — 0x56

35

Description of assembler operators

BYTE3 Third byte (2).

BYTE3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

Example

BYTE3 0x12345678 — 0x34

BYTE4 Fourth byte (2).
BYTE4 takes a single operand, which is interpreted as an unsigned 32-bit integer value.

The result is the high byte (bits 31 to 24) of the operand.

Example

BYTE4 0x12345678 — 0x12

DATE Current date/time (2).
Use the DATE operator to specify when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59)

DATE 2 Current minute (0-59)

DATE 3 Current hour (0-23)

DATE 4 Current day (1-31)

DATE 5 Current month (1-12)

DATE 6 Current year MOD 100 (1998 —98, 2000 —00, 2002 —02)
Example

To assemble the date of assembly:

today: DC8 DATE 5, DATE 4, DATE 3

EQ [=] [==] Equal (8).

= evaluates to 1 (true) if its two operands are identical in value, or to O (false) if its two
operands are not identical in value.

IAR Assembler
36 Reference Guide for HCS12

GE

GT

[>=]

HIGH

HWRD

Assembler operators ___o

Example

1 =220
2 ==2 1
'"ABC' = 'ABCD' > 0

Greater than or equal (7).

>= evaluates to 1 (true) if the left operand is equal to or has a higher numeric value than
the right operand, otherwise it will be 0 (false).

Example

1>>2—2>0
2>=1—>1
1>=1—>1

Greater than (7).

> evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand, otherwise it will be O (false).

Example

-1 >1 >0
2>1 1
1>1—>0

High byte (2).

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

Example

HIGH OxABCD — OxAB

High word (2).

HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.

37

Description of assembler operators

38

IAR Assembler
Reference Guide for HCS12

LE [<=]
LOW

LT [<]
LWRD

Example

HWRD 0x12345678 — 0x1234

Less than or equal (7).

<= evaluates to 1 (true) if the left operand has a lower or equal numeric value to the right
operand, otherwise it will be O (false).

Example
1 <=2 —>1

2<=1—">0
1 <=1—>1

Low byte (2).

Low takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example

LOW OxABCD — 0xCD

Less than (7).

< evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand, otherwise it will be O (false).

Example

-1 <2 > 1
2<1—=>0
2 <2720

Low word (2).

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

Example

LWRD 0x12345678 — 0x5678

Assembler operators ___o

MOD [%$] Modulo (4).

MOD produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers and the result is also a signed
32-bit integer.

X MOD Y is equivalent to X-Y* (X/Y) using integer division.

Example

2 MOD 2 > 0
12 MOD 7 > 5
3 MOD 2 > 1

NE [<>] [!=] Notequal (8).

<> evaluates to 0 (false) if its two operands are identical in value or to 1 (true) if its two
operands are not identical in value.

Example

1 <>2 > 1
2 <>2 >0
'A' <> 'B' — 1

NOT [!] Logical NOT (3).

Use NOT to negate a logical argument.

Example

NOT 0101B —> O
NOT 0000B — 1

OR [||] Logical OR (14).

Use OR to perform a logical OR between two integer operands.

Example

1010B OR 0000B — 1
0000B OR 0000B — 0

39

Description of assembler operators

40

IAR Assembler
Reference Guide for HCS12

SFB

SFE

Segment begin (2).

SFB accepts a single operand to its right. The operand must be the name of a relocatable
segment. The operator evaluates to the absolute address of the first byte of that segment.
This evaluation takes place at link time.

Syntax

SFB(segment [{+|-}offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFB is used.

offset An optional offset from the start address. The parentheses are
optional if offset is omitted.

Example

NAME demo
RSEG segtab:CONST
start: DC16 SFB(mycode)

Even if the above code is linked with many other modules, start will still be set to the
address of the first byte of the segment.

Segment end (2).

SFE accepts a single operand to its right. The operand must be the name of a relocatable
segment. The operator evaluates to the segment start address plus the segment size. This
evaluation takes place at link time.

Syntax

SFE (segment [{+ | -} offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFE is used.

offset An optional offset from the start address. The parentheses are

optional if offset is omitted.

Assembler operators ___o

Example

NAME demo
RSEG segtab:CONST
end: DCl6 SFE(mycode)

Even if the above code is linked with many other modules, end will still be set to the
first byte after that segment (mycode).

The size of the segment MY_SEGMENT can be calculated as:

SFE (MY_SEGMENT) -SFB (MY_SEGMENT)

SHL [<<] Logical shift left (6).

Use sHL to shift the left operand, which is always treated as unsigned, to the left. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

Example

00011100B SHL 3 — 11100000B
00000111111111111B SHL 5 — 11111111111100000B
14 SHL 1 — 28

SHR [>>] Logical shift right (6).

Use SHR to shift the left operand, which is always treated as unsigned, to the right. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

Example

01110000B SHR 3 — 00001110B
1111111111111111B SHR 20 > 0
14 SHR 1 — 7

SIZEOF Segment size (2).

SIZEOF generates SFE-SFB for its argument, which should be the name of a relocatable
segment; that is, it calculates the size in bytes of a segment. This is done when modules
are linked together.

Syntax

SIZEOF (segment)

41

Description of assembler operators

42

IAR Assembler
Reference Guide for HCS12

UGT

ULT

UPPER

Parameters

segment The name of a relocatable segment, which must be defined before
SIZEOF is used.

Example

The following code sets size to the size of the segment mycode.

MODULE table

RSEG mycode: CODE ; forward declaration of mycode
RSEG segtab:CONST

size: DC32 SIZEOF (mycode)
ENDMOD

MODULE application

RSEG mycode: CODE

NOP ;placeholder for application code
ENDMOD

Unsigned greater than (7).

UGT evaluates to 1 (true) if the left operand has a larger value than the right operand,
otherwise it will be O (false). The operation treats its operands as unsigned values.
Example

2 UGT 1 > 1
-1 UGT 1 > 1

Unsigned less than (7).

ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand,
otherwise it will be O (false). The operation treats the operands as unsigned values.

Example

lLuLT 2 > 1
-1 ULT 2 > 0

Third byte (2).

UPPER takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

Assembler operators ___o

Example

UPPER 0x12345678 — 0x34

XOR Logical exclusive OR (13).

XOR evaluates to 1 (true) if either the left operand or the right operand is non-zero, but
to O (false) if both operands are zero or both are non-zero. Use XOR to perform logical
XOR on its two operands.

Example

0101B XOR 1010B — O
0101B XOR 0000B — 1

43

Description of assembler operators

IAR Assembler
44 Reference Guide for HCS12

Assembler directives

This chapter gives an alphabetical summary of the assembler directives and

provides detailed reference information for each category of directives.

Summary of assembler directives

The following table gives a summary of all the assembler directives.

Directive

Description

Section

#define
#elif

#else
#endif
#error
#if
#ifdef
#ifndef
#include
#line
#pragma
#undef
/*comment*/

/7

ALIGN

ALIGNRAM

ARGFRAME

ASEG
ASEGN
ASSIGN

Assigns a value to a label.

Introduces a new condition ina #1if...#endif
block.

Assembles instructions if a condition is false.
Endsa #if, #ifdef, or #ifndef block.
Generates an error.

Assembles instructions if a condition is true.
Assembles instructions if a symbol is defined.
Assembles instructions if a symbol is undefined.
Includes a file.

Changes the line numbers.

Controls extension features.

Undefines a label.

C-style comment delimiter.

C++style comment delimiter.

Assigns a permanent value local to a module.

Aligns the program location counter by inserting
zero-filled bytes.

Aligns the program location counter.

Declares the space used for the arguments to a
function.

Begins an absolute segment.
Begins a named absolute segment.

Assigns a temporary value.

C-style preprocessor

C-style preprocessor

C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
Assembler control
Assembler control
Value assignment

Segment control

Segment control

Function

Segment control
Segment control

Value assignment

Table 13: Assembler directives summary

45

Summary of assembler directives

46

IAR Assembler

Reference Guide for HCS12

Directive Description Section

CASEOFF Disables case sensitivity. Assembler control

CASEON Enables case sensitivity. Assembler control

CFI Specifies call frame information. Call frame
information

COMMON Begins a common segment. Segment control

DC8 Generates 8-bit constants, including strings. Data definition or
allocation

DC16 Generates | 6-bit constants. Data definition or
allocation

DC24 Generates 24-bit constants. Data definition or
allocation

DC32 Generates 32-bit constants. Data definition or
allocation

DC64 Generates 64-bit constants. Data definition or
allocation

DEFINE Defines a file-wide value. Value assignment

DF32 Generates 32-bit floating-point constants. Data definition or
allocation

DF64 Generates 64-bit floating-point constants. Data definition or
allocation

DS8 Allocates space for 8-bit integers. Data definition or
allocation

DS16 Allocates space for |6-bit integers. Data definition or
allocation

DS24 Allocates space for 24-bit integers. Data definition or
allocation

DS32 Allocates space for 32-bit integers. Data definition or
allocation

DS64 Allocates space for 64-bit integers. Data definition or
allocation

ELSE Assembles instructions if a condition is false. Conditional assembly

ELSEIF Specifies a new condition in an IF...ENDIF block. Conditional assembly

END Terminates the assembly of the last module in a file. Module control

ENDIF Ends an IF block. Conditional assembly

ENDM Ends a macro definition. Macro processing

Table 13: Assembler directives summary (Continued)

Assembler directives ___¢

Directive Description Section
ENDMOD Terminates the assembly of the current module. Module control
ENDR Ends a repeat structure. Macro processing
EQU Assigns a permanent value local to a module. Value assignment
EVEN Aligns the program counter to an even address. Segment control
EXITM Exits prematurely from a macro. Macro processing
EXTERN Imports an external symbol. Symbol control
FUNCALL Declares that the function caller calls the Function
function callee.
FUNCTION Declares a label name to be a function. Function
IF Assembles instructions if a condition is true. Conditional assembly
LIBRARY Begins a library module. Module control
LIMIT Checks a value against limits. Value assignment
LOCAL Creates symbols local to a macro. Macro processing
LOCFRAME Declares the space used for the locals in a function. Function
LSTCND Controls conditional assembler listing. Listing control
LSTCOD Controls multi-line code listing. Listing control
LSTEXP Controls the listing of macro generated lines. Listing control
LSTMAC Controls the listing of macro definitions. Listing control
LSTOUT Controls assembler-listing output. Listing control
LSTREP Controls the listing of lines generated by repeat Listing control
directives.
LSTXRF Generates a cross-reference table. Listing control
MACRO Defines a macro. Macro processing
MODULE Begins a library module. Module control
NAME Begins a program module. Module control
ODD Aligns the program location counter to an odd Segment control
address.
ORG Sets the program location counter. Segment control
PROGRAM Begins a program module. Module control
PUBLIC Exports symbols to other modules. Symbol control
PUBWEAK Exports symbols to other modules, multiple Symbol control

definitions allowed.

RADIX Sets the default base.

Assembler control

Table 13: Assembler directives summary (Continued)

47

Module control directives

Directive

Description

Section

REPT
REPTC
REPTI
REQUIRE
RSEG
RTMODEL
SET
VAR

Assembles instructions a specified number of times.

Repeats and substitutes characters.
Repeats and substitutes strings.
Forces a symbol to be referenced.
Begins a relocatable segment.
Declares runtime model attributes.
Assigns a temporary value.

Assigns a temporary value.

Macro processing
Macro processing
Macro processing
Symbol control
Segment control
Module control
Value assignment

Value assignment

Table 13: Assembler directives summary (Continued)

Module control directives

Module control directives are used for marking the beginning and end of source program
modules, and for assigning names and types to them. See Expression restrictions, page
9, for a description of the restrictions that apply when using a directive in an expression.

Directive

Description

Expression restrictions

END

ENDMOD

LIBRARY

MODULE

NAME

PROGRAM

RTMODEL

Terminates the assembly of the last module in a file.

Terminates the assembly of the current module.

Begins a library module.

Begins a library module.

Begins a program module.

Begins a program module.

Declares runtime model attributes.

Only locally defined labels
or integer constants

Only locally defined labels
or integer constants

No external references
Absolute

No external references
Absolute

No external references
Absolute

No external references
Absolute

Not applicable

Table 14: Module control directives

SYNTAX

END [address]

ENDMOD [address]
LIBRARY symbol [(expr)]
MODULE symbol [(expr)]
NAME symbol [(expr)]

IAR Assembler
48 Reference Guide for HCS12

Assembler directives ___¢

PROGRAM symbol [(expr)]
RTMODEL key, value

PARAMETERS

address An optional expression that determines the start address of the program.
It can take any positive integer value.

expr An optional expression used by the compiler to encode the runtime
options. It must be within the range 0-255 and evaluate to a constant
value. The expression is only meaningful if you are assembling source
code that originates as assembler output from the compiler.

key A text string specifying the key.

symbol Name assigned to module, used by XLINK, XAR, and XLIB when
processing object files.

value A text string specifying the value.

DESCRIPTIONS

Beginning a program module

Use NAME or PROGRAM to begin a program module, and to assign a name for future
reference by the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a library module

Use MODULE or LIBRARY to create libraries containing a number of small modules—Ilike
runtime systems for high-level languages—where each module often represents a single
routine. With the multi-module facility, you can significantly reduce the number of
source and object files needed.

Library modules are only copied into the linked code if other modules reference a public
symbol in the module.

Terminating a module

Use ENDMOD to define the end of a module.

49

Module control directives

50

IAR Assembler
Reference Guide for HCS12

Terminating the source file

Use END to indicate the end of the source file. Any lines after the END directive are
ignored. The END directive also terminates the last module in the file, if this is not done
explicitly with an ENDMOD directive.

Assembling multi-modaule files

Program entries must be either relocatable or absolute, and will show up in XLINK load
maps, as well as in some of the hexadecimal absolute output formats. Program entries
must not be defined externally.

The following rules apply when assembling multi-module files:

o At the beginning of a new module all user symbols are deleted, except for those
created by DEFINE, #define, or MACRO, the location counters are cleared, and the
mode is set to absolute.

e Listing control directives remain in effect throughout the assembly.

Note: END must always be placed after the /ast module, and there must not be any source
lines (except for comments and listing control directives) between an ENDMOD and a
MODULE directive.

If the NAME or MODULE directive is missing, the module will be assigned the name of the
source file and the attribute program.

Declaring runtime model attributes

Use RTMODEL to enforce consistency between modules. All modules that are linked
together and define the same runtime attribute key must have the same value for the
corresponding key value, or the special value *. Using the special value * is equivalent
to not defining the attribute at all. It can however be useful to explicitly state that the
module can handle any runtime model.

A module can have several runtime model definitions.

Note: The compiler runtime model attributes start with double underscores. In order to
avoid confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C or C++ code, and you want to
control the module consistency, refer to the /AR C/C++ Compiler Reference Guide for
HCS12.

Examples

The following example defines three modules where:

e MOD_1 and MOD_2 cannot be linked together since they have different values for
runtime model foo.

Assembler directives ___¢

e MOD_1 and MOD_3 can be linked together since they have the same definition of
runtime model bar and no conflict in the definition of foo.

e MOD_2 and MOD_3 can be linked together since they have no runtime model
conflicts. The value * matches any runtime model value.
MODULE MOD_1

RTMODEL "foo", "1™
RTMODEL "bar", "XXX"
ENDMOD

MODULE MOD_2

RTMODEL "foo", "2"
RTMODEL "bar", "*"
ENDMOD

MODULE MOD_3
RTMODEL "bar", "XXX"

END

Symbol control directives

These directives control how symbols are shared between modules.

Directive Description

EXTERN Imports an external symbol.

PUBLIC Exports symbols to other modules.

PUBWEAK Exports symbols to other modules, multiple definitions allowed.
REQUIRE Forces a symbol to be referenced.

Table 15: Symbol control directives

SYNTAX

EXTERN symbol [,symboll
PUBLIC symbol [,symbol]
PUBWEAK symbol [,symboll]
REQUIRE symbol

PARAMETERS

symbol Symbol to be imported or exported.

51

Symbol control directives

52

IAR Assembler
Reference Guide for HCS12

DESCRIPTIONS

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. Symbols defined
PUBLIC can be relocatable or absolute, and can also be used in expressions (with the
same rules as for other symbols).

The pUBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the Low,
HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit or
16-bit register or word.

There are no restrictions on the number of PUBLIC-defined symbols in a module.

Exporting symbols with multiple definitions to other modules

PUBWEAK is similar to PUBLIC except that it allows the same symbol to be defined
several times. Only one of those definitions will be used by XLINK. If a module
containing a PUBLIC definition of a symbol is linked with one or more modules
containing PUBWEAK definitions of the same symbol, XLINK will use the PUBLIC
definition.

A symbol defined as PUBWEAK must be a label in a segment part, and it must be the only
symbol defined as PUBLIC or PUBWEAK in that segment part.

Note: Library modules are only linked if a reference to a symbol in that module is made,
and that symbol has not already been linked. During the module selection phase, no
distinction is made between PUBLIC and PUBWEAK definitions. This means that to
ensure that the module containing the PUBLIC definition is selected, you should link it
before the other modules, or make sure that a reference is made to some other PUBLIC
symbol in that module.

Importing symbols

Use EXTERN to import an untyped external symbol.

The REQUIRE directive marks a symbol as referenced. This is useful if the segment part
containing the symbol must be loaded for the code containing the reference to work, but
the dependence is not otherwise evident.

EXAMPLES

The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules.

Since the message is enclosed in double quotes, the string will be followed by a zero
byte.

Assembler directives ___¢

It defines print as an external routine; the address will be resolved at link time.

NAME error
EXTERN print
PUBLIC err
err JSR print
DC8 "ok ok Error * kN
RTS
END

Segment control directives
The segment directives control how code and data are located. See Expression
restrictions, page 9, for a description of the restrictions that apply when using a directive
in an expression.

Directive Description Expression restrictions
ALIGN Aligns the program location counter by inserting No external references
zero-filled bytes. Absolute
ALIGNRAM Aligns the program location counter. No external references
Absolute

ASEG Begins an absolute segment. No external references
Absolute

ASEGN Begins a named absolute segment. No external references
Absolute

COMMON Begins a common segment. No external references
Absolute

EVEN Aligns the program counter to an even address. No external references
Absolute

ODD Aligns the program counter to an odd address. No external references
Absolute

ORG Sets the location counter. No external references

Absolute (see below)

RSEG Begins a relocatable segment. No external references
Absolute

Table 16: Segment control directives

SYNTAX

ALIGN align [,valuel

53

Segment control directives

ALIGNRAM align
ASEG [start]

ASEGN segment [:typel, address
COMMON segment [:typel [(align)]

EVEN [valuel

ODD [value]

ORG expr

RSEG segment [:type] [flagl

PARAMETERS

address

align

expr

flag

segment

start

type

value

IAR Assembler
54 Reference Guide for HCS12

Address where this segment part will be placed.

The power of two to which the address should be aligned, in most
cases in the range O to 30.
The default align value is 0.

Address to set the location counter to.

NOROOT, ROOT

NOROOT means that the segment part is discarded by the linker if no
symbols in this segment part are referred to. Normally all segment parts
except startup code and interrupt vectors should set this flag. The default
mode is ROOT which indicates that the segment part must not be discarded.

REORDER, NOREORDER

REORDER allows the linker to reorder segment parts. For a given segment,
all segment parts must specify the same state for this flag. The default mode
is NOREORDER which indicates that the segment parts must remain in
order.

SORT, NOSORT

SORT means that the linker will sort the segment parts in decreasing
alignment order. For a given segment, all segment parts must specify the
same state for this flag. The default mode is NOSORT which indicates that
the segment parts will not be sorted.

The name of the segment.

A start address that has the same effect as using an ORG directive at
the beginning of the absolute segment.

The memory type, typically CODE or DATA. In addition, any of the
types supported by the IAR XLINK Linker.

Byte value used for padding, default is zero.

Assembler directives ___¢

DESCRIPTIONS

Beginning an absolute segment

Use ASEG to set the absolute mode of assembly, which is the default at the beginning of
a module.

If the parameter is omitted, the start address of the first segment is 0, and subsequent
segments continue after the last address of the previous segment.

Beginning a named absolute segment
Use ASEGN to start a named absolute segment located at the address address.

This directive has the advantage of allowing you to specify the memory type of the
segment.

Beginning a relocatable segment

Use RSEG to set the current mode of the assembly to relocatable assembly mode. The
assembler maintains separate location counters (initially set to zero) for all segments,
which makes it possible to switch segments and mode anytime without the need to save
the current segment location counter.

Up to 65536 unique, relocatable segments may be defined in a single module.

Beginning a common segment

Use COMMON to place data in memory at the same location as COMMON segments from
other modules that have the same name. In other words, all coMMon segments of the
same name will start at the same location in memory and overlay each other.

Obviously, the coMMON segment type should not be used for overlaid executable code.
A typical application would be when you want a number of different routines to share a
reusable, common area of memory for data.

It can be practical to have the interrupt vector table in a COMMON segment, thereby
allowing access from several routines.

The final size of the COMMON segment is determined by the size of largest occurrence of
this segment. The location in memory is determined by the XLINK -z command; see
the IAR Linker and Library Tools Reference Guide.

Use the align parameter in any of the above directives to align the segment start
address.

55

Segment control directives

56

IAR Assembler
Reference Guide for HCS12

Setting the program location counter (PLC)

Use ORG to set the program location counter of the current segment to the value of an
expression. The optional parameter will assume the value and type of the new location
counter. When ORG is used in an absolute segment (ASEG), the parameter expression
must be absolute. However, when ORG is used in a relative segment (RSEG), the
expression may be either absolute or relative (and the value is interpreted as an offset
relative to the segment start in both cases).

The program location counter is set to zero at the beginning of an assembler module.

Aligning a segment

Use ALIGN to align the program location counter to a specified address boundary. The
expression gives the power of two to which the program counter should be aligned and
the permitted range is O to 8.

The alignment is made relative to the segment start; normally this means that the
segment alignment must be at least as large as that of the alignment directive to give the
desired result.

ALIGN aligns by inserting zero/filled bytes, up to a maximum of 255. The EVEN directive
aligns the program counter to an even address (which is equivalent to ALIGN 1) and the
opp directive aligns the program location counter to an odd address. The byte value for
padding must be within the range 0 to 255.

Use ALIGNRAM to align the program location counter by incrementing it; no data is
generated. The expression can be within the range 0 to 30.

EXAMPLES

Beginning an absolute segment

The following example assembles interrupt routine entry instructions in the appropriate
interrupt vectors using an absolute segment:

EXTERN irgsrv,nmisrv

ASEG
ORG $1000
main LDAA #1
RTS
ORG SFFF2
FDB irgsrv ; IRQ interrupt
ORG SFFF4
FDB nmisrv ; NMI interrupt
ORG SFFFE

Assembler directives ___¢

FDB main ; Power on
END

The main power-on code is assembled in memory starting at $1000.

Beginning a relocatable segment

In the following example, the data following the first RSEG directive is placed in a
relocatable segment called table; the ORG directive is used for creating a gap of six
bytes in the table.

The code following the second RSEG directive is placed in a relocatable segment called
code:

EXTERN divrtn,mulrtn
RSEG table
FDB divrtn,mulrtn
ORG *+6
FDB subrtn
RSEG code
subrtn LDAA #1
SBA
END

Beginning a common segment

The following example defines two common segments containing variables:

NAME commonl

COMMON data
count RMB 4

ENDMOD

NAME common?2

COMMON data
up RMB 1

ORG *+2
down RMB 1

END

Because the common segments have the same name, data, the variables up and down
refer to the same locations in memory as the first and last bytes of the 4-byte variable
count.

57

Value assignment directives

Aligning a segment

This example starts a relocatable segment, moves to an even address, and adds some
data. It then aligns to a 64-byte boundary before creating a 64-byte table.

RSEG data ; Start a relocatable datasegment

EVEN ; Ensure it’s on an even boundary
target DC16 1 ; target and best will be on an

; even boundary

best DC1l6 1

ALIGN 6 ; Now align to a 64 byte boundary
results DS8 64 ; And create a 64 byte table

END

Value assignment directives

IAR Assembler

58 Reference Guide for HCS12

These directives are used for assigning values to symbols.

Directive Description

=, EQU Assigns a permanent value local to a module.
ASSIGN, SET, VAR Assigns a temporary value.
DEFINE Defines a file-wide value.

LIMIT Checks a value against limits.

Table 17: Value assignment directives

SYNTAX

label = expr

label ASSIGN expr

label DEFINE expr

label EQU expr

LIMIT expr, min, max, message
label SET expr

label VAR expr

PARAMETERS

expr Value assigned to symbol or value to be tested.

label Symbol to be defined.

message A text message that will be printed when expr is out of range.
min, max The minimum and maximum values allowed for expr.

Assembler directives ___¢

DESCRIPTIONS

Defining a temporary value

Use SET, VAR, or ASSIGN to define a symbol that may be redefined, such as for use with
macro variables. Symbols defined with SET, VAR, or ASSIGN cannot be declared
PUBLIC.

Defining a permanent local value

Use EQU or = to assign a value to a symbol.

Use EQU or = to create a local symbol that denotes a number or offset. The symbol is
only valid in the module in which it was defined, but can be made available to other
modules with a PUBLIC directive (but not with a PUBWEAK directive).

Use EXTERN to import symbols from other modules.

Defining a permanent global value

Use DEFINE to define symbols that should be known to the module containing the
directive and all modules following that module in the same source file. If a DEFINE
directive is placed outside of a module, the symbol will be known to all modules
following the directive in the same source file.

A symbol which has been given a value with DEFINE can be made available to modules
in other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file.

Checking symbol values

Use LIMIT to check that expressions lie within a specified range. If the expression is
assigned a value outside the range, an error message will appear.

The check will occur as soon as the expression is resolved, which will be during linking
if the expression contains external references.

EXAMPLES

Redefining a symbol

The following example uses VAR to redefine the symbol cons in a REPT loop to generate
a table of the first 8 powers of 3:

NAME table
cons VAR 1
buildit MACRO times

59

Value assignment directives

DC16 cons
cons VAR cons*3
IF times>1
buildit times-1
ENDIF
ENDM
main buildit 4
END

It generates the following code:

1 NAME table

2 000001 cons VAR 1

10 000000 main buildit 4

10.1 000000 0001 DC1l6 cons
10.2 000003 cons VAR cons*3
10.3 000002 IF 4>1
10.4 000002 buildit 4-1
10.5 000002 0003 DC16 cons
10.6 000009 cons VAR cons*3
10.7 000004 IF 4-1>1
10.8 000004 buildit 4-1-1
10.9 000004 0009 DC16 cons
10.10 00001B cons VAR cons*3
10.11 000006 IF 4-1-1>1
10.12 000006 buildit 4-1-1-1
10.13 000006 001B DC16 cons
10.14 000051 cons VAR cons*3
10.15 000008 IF 4-1-1-1>1
10.16 000008 ENDIF

10.17 000008 ENDIF

10.18 000008 ENDIF

10.19 000008 ENDIF

11 000008 END

Using local and global symbols

In the following example the symbol value defined in module add1 is local to that
module; a distinct symbol of the same name is defined in module add2. The DEFINE
directive is used for declaring 1ocn for use anywhere in the file:

NAME addl
locn DEFINE 100H
value EQU 77

LDAA locn

ADDA value

RTS

ENDMOD

IAR Assembler
60 Reference Guide for HCS12

Assembler directives ___¢

NAME add2
value EQU 88

LDAA locn

ADDA value

RTS

END

The symbol 1ocn defined in module add1 is also available to module addz2.

Using the LIMIT directive

The following example sets the value of a variable called speed and then checks it, at
assembly time, to see if it is in the range 10 to 30. This might be useful if speed is often
changed at compile time, but values outside a defined range would cause undesirable
behavior.

speed SET 23
LIMIT speed, 10,30, "Speed is out of range!"

Conditional assembly directives

These directives provide logical control over the selective assembly of source code. See
Expression restrictions, page 9, for a description of the restrictions that apply when
using a directive in an expression.

Directive Description Expression restrictions

ELSE Assembles instructions if a condition is false.

ELSEIF Specifies a new condition in an IF...ENDIF block. No forward references
No external references
Absolute
Fixed

ENDIF Ends an IF block.

IF Assembles instructions if a condition is true. No forward references
No external references
Absolute
Fixed

Table 18: Conditional assembly directives

SYNTAX

ELSE

ELSEIF condition
ENDIF

IF condition

61

Conditional assembly directives

IAR Assembler

62 Reference Guide for HCS12

PARAMETERS
condition One of the following:

An absolute expression The expression must not contain
forward or external references, and
any non-zero value is considered as
true.

stringl==string2 The condition is true if stringl and
string2 have the same length and
contents.

stringl!=string2 The condition is true if stringl and
string2 have different length or
contents.

DESCRIPTIONS

Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly
time. If the condition following the IF directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until an ELSE
or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembly
directives may be used anywhere in an assembly, but have their greatest use in
conjunction with macro processing.

All assembler directives (except for END) as well as the inclusion of files may be
disabled by the conditional directives. Each IF directive must be terminated by an
ENDIF directive. The ELSE directive is optional, and if used, it must be inside an
IF...ENDIF block. IF. . .ENDIF and IF...ELSE. . .ENDIF blocks may be nested to
any level.

EXAMPLES

The following macro adds a constant to the A register:

ADDV MACRO v
IF v==1
INCA
ELSE
ADDA #v
ENDIF
ENDMAC

If the argument to the macro is 1, an INCA instruction is generated to save instruction
cycles; otherwise an ADDA instruction is generated.

Assembler directives ___¢

It could be tested with the following program:

main LDAA #0
ADDV 1
ADDV 2
END

Macro processing directives

These directives allow user macros to be defined. See Expression restrictions, page 9,
for a description of the restrictions that apply when using a directive in an expression.

Directive Description Expression restrictions

ENDM Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times. No forward references
No external references
Absolute
Fixed

REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes text.

Table 19: Macro processing directives

SYNTAX

ENDM

ENDR

EXITM

LOCAL symbol [, symboll]

name MACRO [argument] [,argument]
REPT expr

REPTC formal, actual

REPTI formal,actual [,actuall

PARAMETERS
actual A string to be substituted.
argument A symbolic argument name.

63

Macro processing directives

64

IAR Assembler
Reference Guide for HCS12

expr An expression.

formal An argument into which each character of actual (REPTC) or each
actual (REPTI) is substituted.

name The name of the macro.
symbol A symbol to be local to the macro.
DESCRIPTIONS

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro you can use it in your program like an
assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

Note: Avoid using C-type preprocessor directives within assembler macros, as this
might lead to unexpected behavior, see Using C-style preprocessor directives, page 11.
Defining a macro

You define a macro with the statement:

name MACRO [argument] [,argument]

Here name is the name you are going to use for the macro, and argument is an argument
for values that you want to pass to the macro when it is expanded.

For example, you could define a macro errmac as follows:

EXTERN abort

errmac MACRO text
JSR abort
DC8 text, 0
ENDM

This macro uses a parameter text to set up an error number for a routine abort. You
would call the macro with a statement such as:

errmac 'Disk not ready'
The assembler will expand this to:

JSR abort
DC8 'Disk not ready',O0

Assembler directives ___¢

If you omit a list of one or more arguments, the arguments you supply when calling the
macro are called \1 to \9 and \A to \z.

The previous example could therefore be written as follows:

errmac2 MACRO

JSR abort
DC8 \1,0
ENDM

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, or REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LocaL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

For example:

macld MACRO op
LDAA op
ENDM

The macro can be called using the macro quote characters:

macld <3, X>
END

You can redefine the macro quote characters with the -M command line option; see -M,
page 24.
Predefined macro symbols

The symbol _args is set to the number of arguments passed to the macro. The following
example shows how _args can be used:

FILL MACRO

IF _args == 2
REPT \1

DC8 \2

ENDR

ELSE

65

Macro processing directives

66

IAR Assembler
Reference Guide for HCS12

DC8 \1
ENDIF
ENDM

RSEG CODE
FILL 3, 4
FILL 3

END

It generates the following code:

10

11 000000

12

13 000000
13.1 000000
13.2 000000
13.3 000000 04
13.4 000001 04
13.5 000002 04
13.6 000003
13.7 000003
13.8 000003

14 000003
14.1 000003
14.2 000003
14.3 000003 03
14.4 000004

15

16 000004

How macros are processed

RSEG CODE

FILL 3, 4
IF _args ==
REPT 3
DC8 4
DC8 4
DC8 4
ENDR

ELSE

ENDIF

FILL 3
IF _args ==
ELSE

DC8 3
ENDIF

END

There are three distinct phases in the macro process:

1 The assembler performs scanning and saving of macro definitions. The text between
MACRO and ENDM is saved but not syntax checked.

2 A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander takes

its input from the requested macro definition.

Assembler directives ___¢

The macro expander has no knowledge of assembler symbols since it only deals with
text substitutions at source level. Before a line from the called macro definition is
handed over to the assembler, the expander scans the line for all occurrences of
symbolic macro arguments, and replaces them with their expansion arguments.

3 The expanded line is then processed as any other assembler source line. The input
stream to the assembler will continue to be the output from the macro processor,
until all lines of the current macro definition have been read.

Repeating statements

Use the REPT. . . ENDR structure to assemble the same block of instructions a number of
times. If expr evaluates to 0 nothing will be generated.

Use REPTC to assemble a block of instructions once for each character in a string. If the
string contains a comma it should be enclosed in quotation marks.

Only double quotes have a special meaning and their only use is to enclose the
characters to iterate over. Single quotes have no special meaning and are treated as any
ordinary character.

Use REPTT to assemble a block of instructions once for each string in a series of strings.
Strings containing commas should be enclosed in quotation marks.

EXAMPLES

This section gives examples of the different ways in which macros can make assembler
programming easier.

Coding inline for efficiency

In time-critical code it is often desirable to code routines inline to avoid the overhead of
a subroutine call and return. Macros provide a convenient way of doing this.

The following example outputs bytes from a buffer to a port:

EXTERN port
RSEG DATA
buffer DS8 512 ;buffer
RSEG CODE
play LDX #buffer
loop LDAA 0,X
CPX #buffer+512
BNE loop
RTS

67

Macro processing directives

IAR Assembler
68 Reference Guide for HCS12

The main program calls this routine as follows:
JSR play
For efficiency we can rewrite this as the following macro:

play MACRO

LOCAL loop
LDX #buffer
loop LDAA 0,x
CPX #buffer+512
BNE loop
ENDMAC
RSEG DATA
buffer DS8 512 ;buffer
RSEG CODE
play
RTS
END

Notice the use of the LoCAL directive to make the label 1oop local to the macro;
otherwise an error will be generated if the macro is used twice, as the 1oop label will
already exist.

Using REPTC and REPTI

The following example assembles a series of calls to a subroutine plot to plot each
character in a string:

NAME reptc
EXTERN plotc
banner REPTC chr, "Welcome"
LDAA #'chr'
JSR plotc
ENDR
END

This produces the following code:

1 NAME reptc

2 000000 EXTERN plotc

3 000000 banner REPTC chr, "Welcome"
3.1 000000 8657 LDAA #'W!

3.2 000002 16.... JSR plotc

3.3 000005 8665 LDAA #'e’

3.4 000007 16.... JSR plotc

3.5 00000A 866C LDAA #'1

3.6 00000C 16.... JSR plotc

3.7 00000F 8663 LDAA #'c'

Assembler directives ___¢

3.8 000011 16.... JSR plotc
3.9 000014 866F LDAA #'0"
3.10 000016 16.... JSR plotc
3.11 000019 866D LDAA #'m'
3.12 00001B 16.... JSR plotc
3.13 00001E 8665 LDAA #'e'
3.14 000020 16.... JSR plotc
3.15 000023 ENDR

7 000023 END

The following example uses REPTI to clear a number of memory locations:

NAME repti

EXTERN base, count, init
banner REPTI adds, base, count, init

CLR adds

ENDR

END

This produces the following code:

1 NAME repti

2 000000 EXTERN base,count, init

3 000000 banner REPTI adds, base, count, init
3.1 000000 79.... CLR base

3.2 000003 79.... CLR count

3.3 000006 79.... CLR init

3.4 000009 ENDR

6 000009 END

Listing control directives

These directives provide control over the assembler list file.

Directive Description

LSTCND Controls conditional assembly listing.

LSTCOD Controls multi-line code listing.

LSTEXP Controls the listing of macro-generated lines.

LSTMAC Controls the listing of macro definitions.

LSTOUT Controls assembly-listing output.

LSTREP Controls the listing of lines generated by repeat directives.
LSTXRF Generates a cross-reference table.

Table 20: Listing control directives

69

Listing control directives

70

IAR Assembler
Reference Guide for HCS12

Note: The directives COL, LSTPAGE, PAGE, and PAGSIZ are included for backward
compatibility reasons; they are recognized but no action is taken.

SYNTAX

LSTCND{+|-}
LSTCOD{+ |-}
LSTEXP{+|-}
LSTMAC{+|-}
LSTOUT{+| -}
LSTREP{+|-}
LSTXRF{+|-}

DESCRIPTIONS

Turning the listing on or off

Use LSTOUT- to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LsToUT+, which lists the output (if a list file was specified).

Listing conditional code and strings

Use LsTCND+ to force the assembler to list source code only for the parts of the assembly
that are not disabled by previous conditional IF statements.

The default setting is LSTCND-, which lists all source lines.

Use LsTCOD+ to list more than one line of code for a source line, if needed; that is, long
ASCII strings will produce several lines of output.

The default setting is LSTCOD-, which restricts the listing of output code to just the first
line of code for a source line.

Using the LSTCND and LSTCOD directives does not affect code generation.

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which disables the
listing of macro definitions.
Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

Assembler directives ___¢

The default is LSTREP+, which lists the generated lines.

Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross-reference table.
EXAMPLES

Turning the listing on or off
To disable the listing of a debugged section of program:

LSTOUT-
; Debugged section
LSTOUT+
; Not yet debugged

Listing conditional code and strings

The following example shows how LSTCND+ hides a call to a subroutine that is disabled
by an IF directive:

NAME lstcndtst

EXTERN print

RSEG prom
debug SET 0
begin IF debug

JSR print

ENDIF

LSTCND+
begin2 IF debug

CALL print

ENDIF

END

This will generate the following listing:

1 NAME lstcndtst
2 000000 EXTERN print

3 000000 RSEG prom

4 000000 debug SET 0

5

6 000000 begin IF debug

8 000000 ENDIF

71

Listing control directives

72

IAR Assembler

Reference Guide for HCS12

9
10
11
13
14

000000
000000
000000

begin2

Controlling the listing of macros

dec?2

inc2

begin

MACRO arg
DEC arg
DEC arg
ENDM
LSTMAC+
MACRO arg
INC arg
INC arg
ENDM

EXTERN memloc
dec?2 memloc

LSTEXP-

inc2 memloc
RTS

END begin

This will produce the following output:

o W 0w J o U

12
13

13.1
13.

14
15
16
17
18

000000
000000

000000 73....
000003 73....

000006
00000C 3D
00000D

inc2

begin

LSTCND+
IF
ENDIF
END

LSTMAC+
MACRO
INC

INC
ENDM

EXTERN
dec2
DEC
DEC

LSTEXP-
inc2
RTS
END

debug

arg
arg
arg

memloc
memloc
memloc

memloc

memloc

begin

Assembler directives ___¢

C-style preprocessor directives

The following C-language preprocessor directives are available:

Directive Description

#define Assigns a value to a preprocessor symbol.

#elif Introduces a new condition ina #if. . .#endif block.

#else Assembles instructions if a condition is false.

#endif Ends a #if, #ifdef, or #ifndef block.

#error Generates an error.

#if Assembles instructions if a condition is true.

#ifdef Assembles instructions if a preprocessor symbol is defined.

#ifndef Assembles instructions if a preprocessor symbol is undefined.

#include Includes a file.

#line Changes the line numbers of the source code lines immidiately
following the #1ine directive, or the filename of the file being
compiled.

#pragma Controls extension features. The supported #pragma directives are

described in the chapter Pragma directives.

#undef Undefines a preprocessor symbol.

Table 21: C-style preprocessor directives

SYNTAX

#define symbol text

#elif condition

#else

#endif

#error "message"

#if condition

#ifdef symbol

#ifndef symbol

#include {"filename" | <filename>}
#undef symbol

PARAMETERS

condition An absolute expression The expression must not
contain any assembler labels or
symbols, and any non-zero
value is considered as true.

73

C-style preprocessor directives

74

IAR Assembler
Reference Guide for HCS12

filename Name of file to be included.

message Text to be displayed.

symbol Preprocessor symbol to be defined,
undefined, or tested.

text Value to be assigned.

DESCRIPTIONS

The preprocessor directives are processed before other directives. As an example avoid
constructs like:

redef macro ; avoid the following
#define \1 \2
endm

since the \1 and \2 macro arguments will not be available during the preprocess.

Also be careful with comments; the preprocessor understands /* */ and //, but not
assembler comments. The following expression will evaluate to 3 since the comment
character will be preserved by #define:

#define x 3 ; comment
exp EQU x*8+5

Note: It is important to avoid mixing the assembler language with the C-style
preprocessor directives. Conceptually, they are different languages and mixing them
may lead to unexpected behavior because an assembler directive is not necessarily
accepted as a part of the C preprocessor language.

The following example illustrates some problems that may occur when assembler
comments are used in the C-style preprocessor:

#define five 5 ; comment
STAA [five, X] ; Syntax error!
; Expands to "STAA [5;comment, X]"
LDAA five + address ; Incorrect code!

; Expanded to "LDAA 5 ; comment + address"

Defining and undefining preprocessor symbols
Use #define to define a value of a preprocessor symbol.

#define symbol value

Assembler directives ___¢

is similar to:
symbol SET value

Use #undef to undefine a symbol; the effect is as if it had not been defined.

Conditional preprocessor directives

Use the #if...#else...#endif directives to control the assembly process at assembly
time. If the condition following the #i £ directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until a
#endif or #else directive is found.

All assembler directives (except for END) and file inclusion may be disabled by the
conditional directives. Each #if directive must be terminated by a #endif directive.
The #else directive is optional and, if used, it must be inside a #1if...#endi £ block.

#if..#endif and #if..#else...#endif blocks may be nested to any level.

Use #ifdef to assemble instructions up to the next #else or #endif directive only if
a symbol is defined.

Use #1ifndef to assemble instructions up to the next #else or #endif directive only if
a symbol is undefined.

Including source files

Use #include to insert the contents of a file into the source file at a specified point. The
filename can be specified within double quotes or within angle brackets.

Following is the full description of the assembler’s #include file search procedure:

e If the name of the #include file is an absolute path, that file is opened.

o When the assembler encounters the name of an #include file in angle brackets
such as:
#include <iohcsl2.h>

it searches the following directories for the file to include:

1 The directories specified with the -T option, in the order that they were
specified.

2 The directories specified using the AHCS12_INC environment variable, if any.

o When the assembler encounters the name of an #include file in double quotes
such as:
#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

75

C-style preprocessor directives

76

IAR Assembler
Reference Guide for HCS12

If there are nested #include files, the assembler starts searching the directory of the
file that was last included, iterating upwards for each included file, searching the
source file directory last.

Use angle brackets for header files provided with the IAR Assembler for HCS12, and
double quotes for header files that are part of your application.
Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

Defining comments
Use /* ... */tocomment sections of the assembler listing.

Use // to mark the rest of the line as comment.
EXAMPLES

Using conditional preprocessor directives

The following example defines a label adjust, and then uses the conditional
directive #ifdef to use the value if it is defined. If it is not defined #error
displays an error:

NAME ifdef

EXTERN input, output
#define adjust 10
main LDAA input
#ifdef adjust

ADDA #adjust
#else
#error "'adjust' not defined"
#endif
#undef adjust

STAA output

RTS

END

Assembler directives ___¢

Including a source file

The following example uses #include to include a file defining macros into the source
file. For example, the following macros could be defined in exchange.s12:

xch MACRO 1locl,loc2
LDAA locl
LDAB loc2
STAA loc2
STAB locl
ENDMAC

The macro definitions can then be included, using #include, as in the following example:

NAME include
meml DS8 1
mem?2 DS8 1
#include "exchange.s33"
main xch meml, mem2
RTS
END

Data definition or allocation directives

These directives define values or reserve memory. See Expression restrictions, page 9,
for a description of the restrictions that apply when using a directive in an expression.

Directive Description

DC8 Generates 8-bit constants, including strings.
DC16 Generates | 6-bit constants.

DC24 Generates 24-bit constants.

DC32 Generates 32-bit constants.

DC64 Generates 64-bit constants.

DF32 Generates 32-bit floating-point constants.
DF64 Generates 64-bit floating-point constants.
DS8 Allocates space for 8-bit integers.

DS16 Allocates space for |6-bit integers.

DS24 Allocates space for 24-bit integers.

DS32 Allocates space for 32-bit integers.

DS64 Allocates space for 64-bit integers.

Table 22: Data definition or allocation directives

77

Data definition or allocation directives

78

IAR Assembler
Reference Guide for HCS12

SYNTAX

DC8 expr [
DC1l6 expr
DC24 expr
DC32 expr
DC64 expr
DF32 value
DF64 value
DS8 count
DS16 count
DS24 count
DS32 count
DS64 count

, expr]

[, expr]
[, expr]

[, expr]
[,expr] ...
[,valuel
[, value]

PARAMETERS

count

expr

value

A valid absolute expression specifying the number of elements to be

reserved.

A valid absolute, relocatable, or external expression, or an ASCII string.
ASCII strings will be zero filled to a multiple of the data size implied by
the directive. Double-quoted strings will be zero-terminated.

A valid absolute expression or floating-point constant.

DESCRIPTIONS

Use the data definition and allocation directives according to the following table; it
shows which directives reserve and initialize memory space or reserve uninitialized
memory space, and their size.

Size

Reserve and initialize memory

Reserve uninitialized memory

8-bit integers
16-bit integers
24-bit integers
32-bit integers
64-bit integers
32-bit floats
64-bit floats

DC8

DC16
DC24
DC32
DC64
DF32

DF64

DS8

DS16
DS24
DS32
DS64
DS32
DS64

Table 23: Using data definition or allocation directives

Assembler directives ___¢

EXAMPLES

Generating a lookup table
The following example generates a lookup table of addresses to routines:

NAME table
RSEG CONST
table DC16 addsubr, subsubr, clrsubr

RSEG CODE
addsubr: ABA

RTS
subsubr: SBA

RTS
clrsubr: CLRA

RTS

END

Defining strings

To define a string:

myMsg DC8 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

To include a single quote in a string, enter it twice; for example:

errMsg DC8 'Don''t understand!'

Reserving space
To reserve space for 0xA bytes:

table DS8 0xA

79

Assembler control directives

80

Assembler control directives

IAR Assembler
Reference Guide for HCS12

These directives provide control over the operation of the assembler. See Expression
restrictions, page 9, for a description of the restrictions that apply when using a directive
in an expression.

Directive Description Expression restrictions

/*comment*/ C-style comment delimiter.

// C++style comment delimiter.
CASEOFF Disables case sensitivity.
CASEON Enables case sensitivity.
RADIX Sets the default base on all numeric No forward references
values. No external references
Absolute
Fixed

Table 24: Assembler control directives

SYNTAX

/*comment*/
// comment
CASEOFF
CASEON
RADIX expr

PARAMETERS

comment Comment ignored by the assembler.
expr Default base; default 10 (decimal).
DESCRIPTIONS

Use /*...*/ to comment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Use RADIX to set the default base for constants. The default base is 10.

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols. By
default case sensitivity is on.

When cASEOFF is active all symbols are stored in upper case, and all symbols used by
XLINK should be written in upper case in the XLINK definition file.

Assembler directives ___¢

EXAMPLES

Defining comments

The following example shows how /*. . .*/ can be used for a multi-line comment:
/*

Program to read serial input.

Version 3: 19.2.06

Author: mjp

*/

Changing the base

To set the default base to 16:

RADIX 16
LDAA #12

The immediate argument will then be interpreted as H' 12.

Controlling case sensitivity
When CASEOFF is set, label and LABEL are identical in the following example:

label NOP ; Stored as "LABEL"
BRA LABEL

The following will generate a duplicate label error:

label NOP
LABEL NOP ; Error, "LABEL" already defined

END

Function directives

The function directives are generated by the IAR C/C++ Compiler for HCS12 to pass
information about functions and function calls to the [AR XLINK Linker. These
directives can be seen if you create an assembler list file by using the compiler option
Output assembler file>Include compiler runtime information (-12).

Note: These directives are primarily intended to support static overlay, a feature which
is useful in smaller microcontrollers. The IAR C/C++ Compiler for HCS12 does not use
static overlay, as it has no use for it.

81

Function directives

82

IAR Assembler
Reference Guide for HCS12

SYNTAX

FUNCTION <label>,<value>

ARGFRAME <segment>, <size>, <type>
LOCFRAME <segment>, <size>, <type>
FUNCALL <caller>, <callee>

PARAMETERS

label A label to be declared as function.

value Function information.

segment The segment in which argument frame or local frame is to be stored.
size The size of the argument frame or the local frame.

type The type of argument or local frame; either STACK or STATIC.
caller The caller to a function.

callee The called function.

DESCRIPTIONS

FUNCTION declares the Iabel name to be a function. value encodes extra information
about the function.

FUNCALL declares that the function caller calls the function callee. callee can be
omitted to indicate an indirect function call.

ARGFRAME and LOCFRAME declare how much space the frame of the function uses in
different memories. ARGFRAME declares the space used for the arguments to the
function, LOCFRAME the space for locals. segment is the segment in which the space
resides. size is the number of bytes used. type is either STACK or STATIC, for
stack-based allocation and static overlay allocation, respectively.

ARGFRAME and LOCFRAME always occur immediately after a FUNCTION or FUNCALL
directive.

After a FUNCTION directive for an external function, there can only be ARGFRAME
directives, which indicate the maximum argument frame usage of any call to that
function. After a FUNCTION directive for a defined function, there can be both
ARGFRAME and LOCFRAME directives.

After a FUNCALL directive, there will first be LOCFRAME directives declaring frame
usage in the calling function at the point of call, and then ARGFRAME directives declaring
argument frame usage of the called function.

Assembler directives ___¢

Call frame information directives

These directives allow backtrace information to be defined in the assembler source code.

The benefit is that you can view the call frame stack when you debug your assembler
code.

Directive

Description

CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI

BASEADDRESS
BLOCK
CODEALIGN
COMMON
CONDITIONAL
DATAALIGN
ENDBLOCK
ENDCOMMON
ENDNAMES
FRAMECELL
FUNCTION
INVALID

NAMES
NOFUNCTION
PICKER
REMEMBERSTATE
RESOURCE
RESOURCEPARTS
RESTORESTATE
RETURNADDRESS

STACKFRAME

STATICOVERLAYFRAME

VALID

VIRTUALRESOURCE

cfa

resource

Declares a base address CFA (Canonical Frame Address).
Starts a data block.

Declares code alignment.

Starts or extends a common block.

Declares data block to be a conditional thread.
Declares data alignment.

Ends a data block.

Ends a common block.

Ends a names block.

Creates a reference into the caller’s frame.
Declares a function associated with data block.
Starts range of invalid backtrace information.
Starts a names block.

Declares data block to not be associated with a function.
Declares data block to be a picker thread.
Remembers the backtrace information state.
Declares a resource.

Declares a composite resource.

Restores the saved backtrace information state.
Declares a return address column.

Declares a stack frame CFA.

Declares a static overlay frame CFA.

Ends range of invalid backtrace information.
Declares a virtual resource.

Declares the value of a CFA.

Declares the value of a resource.

Table 25: Call frame information directives

83

Call frame information directives

84

IAR Assembler
Reference Guide for HCS12

SYNTAX

The syntax definitions below show the syntax of each directive. The directives are
grouped according to usage.

Names block directives

CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI

NAMES name

ENDNAMES name

RESOURCE resource : bits [, resource : bits] ..
VIRTUALRESOURCE resource : bits [, resource : bits] ..
RESOURCEPARTS resource part, part|, part]...

STACKFRAME cfa resource type [, cfa resource typel
STATICOVERLAYFRAME cfa segment [, cfa segment]
BASEADDRESS cfa type [, cfa type]

Extended names block directives

CFI
CFI
CFI

NAMES name EXTENDS namesblock
ENDNAMES name
FRAMECELL cell cfa (offset): size|[, cell cfa(offset): sizel

Common block directives

CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI

COMMON name USING namesblock

ENDCOMMON name

CODEALIGN codealignfactor

DATAALIGN dataalignfactor

RETURNADDRESS resource type

cfa { NOTUSED | USED }

cfa { resource | resource + constant | resource - constant }
cfa cfiexpr

resource { UNDEFINED | SAMEVALUE | CONCAT }
resource { resource | FRAME(cfa, offset) }
resource cfiexpr

Extended common block directives

CFI
CFI

COMMON name EXTENDS commonblock USING namesblock
ENDCOMMON name

Data block directives

CFI
CFI
CFI
CFI
CFI

BLOCK name USING commonblock
ENDBLOCK name

{ NOFUNCTION | FUNCTION label }
{ INVALID | VALID }

{ REMEMBERSTATE | RESTORESTATE }

Assembler directives ___¢

CFI PICKER

CFI CONDITIONAL label [, labell

CFI cfa { resource | resource + constant | resource - constant }

CFI cfa cfiexpr

CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME(cfa, offset) }

CFI resource cfiexpr

PARAMETERS

bits The size of the resource in bits.

cell The name of a frame cell.

cfa The name of a CFA (canonical frame address).

cfiexpr A CFI expression (see CFI expressions, page 92).

codealignfactor The smallest factor of all instruction sizes. Each CFI directive for
a data block must be placed according to this alignment. 1 is the
default and can always be used, but a larger value will shrink the
produced backtrace information in size. The possible range is
1-256.

commonblock The name of a previously defined common block.

constant A constant value or an assembler expression that can be evaluated
to a constant value.

dataalignfactor The smallest factor of all frame sizes. If the stack grows towards
higher addresses, the factor is negative; if it grows towards lower
addresses, the factor is positive. 1 is the default, but a larger value
will shrink the produced backtrace information in size. The
possible ranges are -256 — -1 and 1 — 256.

label A function label.

name The name of the block.

namesblock The name of a previously defined names block.

offset The offset relative the CFA. An integer with an optional sign.

part A part of a composite resource. The name of a previously
declared resource.

resource The name of a resource.

segment The name of a segment.

85

Call frame information directives

86

IAR Assembler
Reference Guide for HCS12

size The size of the frame cell in bytes.

type The memory type, such as CODE, CONST or DATA. In addition, any
of the memory types supported by the IAR XLINK Linker. It is
used solely for the purpose of denoting an address space.

DESCRIPTIONS

The call frame information directives (CFI directives) are an extension to the debugging
format of the IAR C-SPY® Debugger. The CFI directives are used for defining the
backtrace information for the instructions in a program. The compiler normally
generates this information, but for library functions and other code written purely in
assembler language, backtrace information has to be added if you want to use the call
frame stack in the debugger.

The backtrace information is used to keep track of the contents of resources, such as
registers or memory cells, in the assembler code. This information is used by the IAR
C-SPY Debugger to go “back” in the call stack and show the correct values of registers
or other resources before entering the function. In contrast with traditional approaches,
this permits the debugger to run at full speed until it reaches a breakpoint, stop at the
breakpoint, and retrieve backtrace information at that point in the program. The
information can then be used to compute the contents of the resources in any of the
calling functions—assuming they have call frame information as well.

Backtrace rows and columns

At each location in the program where it is possible for the debugger to break execution,
there is a backtrace row. Each backtrace row consists of a set of columns, where each
column represents an item that should be tracked. There are three kinds of columns:

o The resource columns keep track of where the original value of a resource can be
found.

o The canonical frame address columns (CFA columns) keep track of the top of the
function frames.

o The return address column keeps track of the location of the return address.

There is always exactly one return address column and usually only one CFA column,
although there may be more than one.
Defining a names block

A names block is used to declare the resources available for a processor. Inside the
names block, all resources that can be tracked are defined.

Start and end a names block with the directives:

CFI NAMES name

Assembler directives ___¢

CFI ENDNAMES name
where name is the name of the block.
Only one names block can be open at a time.

Inside a names block, four different kinds of declarations may appear: a resource
declaration, a stack frame declaration, a static overlay frame declaration, or a base
address declaration:

o To declare a resource, use one of the directives:
CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. A
virtual resource is a logical concept, in contrast to a “physical” resource such as a
processor register. Virtual resources are usually used for the return address.

More than one resource can be declared by separating them with commas.

A resource may also be a composite resource, made up of at least two parts. To
declare the composition of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part,

The parts are separated with commas. The resource and its parts must have been
previously declared as resources, as described above.
o To declare a stack frame CFA, use the directive:

CFI STACKFRAME cfa resource type

The parameters are the name of the stack frame CFA, the name of the associated
resource (the stack pointer), and the segment type (to get the address space). More
than one stack frame CFA can be declared by separating them with commas.

When going “back” in the call stack, the value of the stack frame CFA is copied into
the associated stack pointer resource to get a correct value for the previous function
frame.

o To declare a static overlay frame CFA, use the directive:

CFI STATICOVERLAYFRAME cfa segment

The parameters are the name of the CFA and the name of the segment where the static
overlay for the function is located. More than one static overlay frame CFA can be
declared by separating them with commas.

o To declare a base address CFA, use the directive:

CFI BASEADDRESS cfa type

87

Call frame information directives

88

IAR Assembler
Reference Guide for HCS12

The parameters are the name of the CFA and the segment type. More than one base
address CFA can be declared by separating them with commas.

A base address CFA is used to conveniently handle a CFA. In contrast to the stack
frame CFA, there is no associated stack pointer resource to restore.

Extending a names block

In some special cases you have to extend an existing names block with new resources.
This occurs whenever there are routines that manipulate call frames other than their
own, such as routines for handling, entering, and leaving C or C++ functions; these
routines manipulate the caller’s frame. Extended names blocks are normally used only
by compiler developers.

Extend an existing names block with the directive:
CFI NAMES name EXTENDS namesblock

where namesblock is the name of the existing names block and name is the name of
the new extended block. The extended block must end with the directive:

CFI ENDNAMES name

Defining a common block

The common block is used for declaring the initial contents of all tracked resources.
Normally, there is one common block for each calling convention used.

Start a common block with the directive:
CFI COMMON name USING namesblock

where name is the name of the new block and namesblock is the name of a previously
defined names block.

Declare the return address column with the directive:
CFI RETURNADDRESS resource type

where resource is a resource defined in namesblock and type is the segment type.
You have to declare the return address column for the common block.

End a common block with the directive:
CFI ENDCOMMON name
where name is the name used to start the common block.

Inside a common block you can declare the initial value of a CFA or a resource by using
the directives listed last in Common block directives, page 84. For more information on
these directives, see Simple rules, page 90, and CFI expressions, page 92.

Assembler directives ___¢

Extending a common block

Since you can extend a names block with new resources, it is necessary to have a
mechanism for describing the initial values of these new resources. For this reason, it is
also possible to extend common blocks, effectively declaring the initial values of the
extra resources while including the declarations of another common block. Just as in the
case of extended names blocks, extended common blocks are normally only used by
compiler developers.

Extend an existing common block with the directive:
CFI COMMON name EXTENDS commonblock USING namesblock

where name is the name of the new extended block, commonblock is the name of the
existing common block, and namesblock is the name of a previously defined names
block. The extended block must end with the directive:

CFI ENDCOMMON name

Defining a data block

The data block contains the actual tracking information for one continuous piece of
code. No segment control directive may appear inside a data block.

Start a data block with the directive:
CFI BLOCK name USING commonblock

where name is the name of the new block and commonblockis the name of a previously
defined common block.

If the piece of code is part of a defined function, specify the name of the function with
the directive:

CFI FUNCTION label

where label is the code label starting the function.

If the piece of code is not part of a function, specify this with the directive:
CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

where name is the name used to start the data block.

Inside a data block you may manipulate the values of the columns by using the directives
listed last in Data block directives, page 84. For more information on these directives,
see Simple rules, page 90, and CFI expressions, page 92.

89

Call frame information directives

90

IAR Assembler
Reference Guide for HCS12

SIMPLE RULES

To describe the tracking information for individual columns, there is a set of simple rules
with specialized syntax:

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }
CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME(cfa, offset) }

These simple rules can be used both in common blocks to describe the initial
information for resources and CFAs, and inside data blocks to describe changes to the
information for resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, a full
CFI expression can be used to describe the information (see CFI expressions, page 92).
However, whenever possible, you should always use a simple rule instead of a CFI
expression.

There are two different sets of simple rules: one for resources and one for CFAs.

Simple rules for resources

The rules for resources conceptually describe where to find a resource when going back
one call frame. For this reason, the item following the resource name in a CFI directive
is referred to as the Jocation of the resource.

To declare that a tracked resource is restored, that is, already correctly located, use
SAMEVALUE as the location. Conceptually, this declares that the resource does not have
to be restored since it already contains the correct value. For example, to declare that a
register REG is restored to the same value, use the directive:

CFI REG SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this
declares that the resource does not have to be restored (when going back one call frame)
since itis not tracked. Usually it is only meaningful to use it to declare the initial location
of aresource. For example, to declare that REG is a scratch register and does not have to
be restored, use the directive:

CFI REG UNDEFINED

To declare that a resource is temporarily stored in another resource, use the resource
name as its location. For example, to declare that a register REG1 is temporarily located
in a register REG2 (and should be restored from that register), use the directive:

CFI REGl REG2

Assembler directives ___¢

To declare that a resource is currently located somewhere on the stack, use FRAME (cfa,
offset) as location for the resource, where cfa is the CFA identifier to use as “frame
pointer” and of fset is an offset relative the CFA. For example, to declare that a register
REG is located at offset -4 counting from the frame pointer CFA_SP, use the directive:

CFI REG FRAME (CFA_SP,-4)

For a composite resource there is one additional location, CONCAT, which declares that
the location of the resource can be found by concatenating the resource parts for the
composite resource. For example, consider a composite resource RET with resource
parts RETLO and RETHI. To declare that the value of RET can be found by investigating
and concatenating the resource parts, use the directive:

CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules
described above.

Simple rules for CFAs

In contrast with the rules for resources, the rules for CFAs describe the address of the
beginning of the call frame. The call frame often includes the return address pushed by
the subroutine calling instruction. The CFA rules describe how to compute the address
to the beginning of the current call frame. There are two different forms of CFAs, stack
frames and static overlay frames, each declared in the associated names block. See
Names block directives, page 84.

Each stack frame CFA is associated with a resource, such as the stack pointer. When
going back one call frame the associated resource is restored to the current CFA. For
stack frame CFAs there are two possible simple rules: an offset from a resource (not
necessarily the resource associated with the stack frame CFA) or NOTUSED.

To declare that a CFA is not used, and that the associated resource should be tracked as
anormal resource, use NOTUSED as the address of the CFA. For example, to declare that
the CFA with the name CFA_SP is not used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify
the resource and the offset. For example, to declare that the CFA with the name CFA_sp
can be obtained by adding 4 to the value of the sp resource, use the directive:

CFI CFA_SP SP + 4

For static overlay frame CFAs, there are only two possible declarations inside common
and data blocks: USED and NOTUSED.

91

Call frame information directives

92

IAR Assembler
Reference Guide for HCS12

CF1 EXPRESSIONS

Call frame information expressions (CFI expressions) can be used when the descriptive
power of the simple rules for resources and CFAs is not enough. However, you should
always use a simple rule when one is available.

CFI expressions consist of operands and operators. Only the operators described below
are allowed in a CFI expression. In most cases, they have an equivalent operator in the
regular assembler expressions.

In the operand descriptions, cfiexpr denotes one of the following:

o A CFI operator with operands
® A numeric constant

o A CFA name

® A resource name.

Unary operators

Overall syntax: OPERATOR (operand)

Operator Operand Description

UMINUS cfiexpr Performs arithmetic negation on a CFl expression.

NOT cfiexpr Negates a logical CFl expression.

COMPLEMENT cfiexpr Performs a bitwise NOT on a CFl expression.

LITERAL expr Get the value of the assembler expression. This can insert

the value of a regular assembler expression into a CFl
expression.

Table 26: Unary operators in CFI expressions

Binary operators

Overall syntax: OPERATOR (operandl, operand2)

Operator Operands Description
ADD cfiexpr,cfiexpr Addition
SUB cfiexpr,cfiexpr Subtraction
MUL cfiexpr,cfiexpr Multiplication
DIV cfiexpr,cfiexpr Division

MOD cfiexpr,cfiexpr Modulo

AND cfiexpr,cfiexpr Bitwise AND
OR cfiexpr,cfiexpr Bitwise OR

Table 27: Binary operators in CFI expressions

Assembler directives ___¢

Operator Operands Description

XOR cfiexpr,cfiexpr Bitwise XOR

EQ cfiexpr,cfiexpr Equal

NE cfiexpr,cfiexpr Not equal

LT cfiexpr,cfiexpr Less than

LE cfiexpr,cfiexpr Less than or equal

GT cfiexpr,cfiexpr Greater than

GE cfiexpr,cfiexpr Greater than or equal

LSHIFT cfiexpr,cfiexpr Logical shift left of the left operand. The number of

bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

RSHIFTL cfiexpr,cfiexpr Logical shift right of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

RSHIFTA cfiexpr,cfiexpr Arithmetic shift right of the left operand. The number
of bits to shift is specified by the right operand. In
contrast with RSHIFTL the sign bit will be preserved
when shifting.

Table 27: Binary operators in CFI expressions (Continued)
Ternary operators

Overall syntax: OPERATOR (operandl, operand2, operand3)

Operator Operands Description

FRAME cfa,size,offset Gets the value from a stack frame. The operands are:
cfa An identifier denoting a previously declared CFA.
size A constant expression denoting a size in bytes.
offsetA constant expression denoting an offset in bytes.
Gets the value at address cfa+offset of size size.

IF cond, true, false Conditional operator. The operands are:
cond A CFA expression denoting a condition.
true Any CFA expression.
falseAny CFA expression.
If the conditional expression is non-zero, the result is the
value of the true expression; otherwise the result is the
value of the false expression.

Table 28: Ternary operators in CFI expressions

93

Call frame information directives

94

IAR Assembler
Reference Guide for HCS12

Operator Operands Description

LOAD size, type,addr Gets the value from memory. The operands are:
size A constant expression denoting a size in bytes.
type A memory type.
addr A CFA expression denoting a memory address.
Gets the value at address addr in segment type type of

size size.

Table 28: Ternary operators in CFI expressions (Continued)

EXAMPLE

The following is a generic example and not an example specific to the HCS12
microcontroller. This will simplify the example and clarify the usage of the CFI
directives. A target-specific example can be obtained by generating assembler output
when compiling a C source file.

Consider a generic processor with a stack pointer Sp, and two registers R0 and R1.
Register RO will be used as a scratch register (the register is destroyed by the function
call), whereas register R1 has to be restored after the function call. For reasons of
simplicity, all instructions, registers, and addresses will have a width of 16 bits.

Consider the following short code sample with the corresponding backtrace rows and
columns. At entry, assume that the stack contains a 16-bit return address. The stack
grows from high addresses towards zero. The CFA denotes the top of the call frame, that
is, the value of the stack pointer after returning from the function.

Address CFA SP RO RI RET Assembler code

0000 SP+2 — SAME CFA-2 funcl: PUSH R1
0002 SP + 4 CFA -4 MOV R1,#4
0004 CALL func2
0006 POP RO
0008 SP+2 RO MOV R1,RO
000A SAME RET

Table 29: Code sample with backtrace rows and columns

Each backtrace row describes the state of the tracked resources before the execution of
the instruction. As an example, for the MOV R1, RO instruction the original value of the
R1 register is located in the RO register and the top of the function frame (the CFA
column) is SP + 2. The backtrace row at address 0000 is the initial row and the result
of the calling convention used for the function.

Assembler directives ___¢

The SP column is empty since the CFA is defined in terms of the stack pointer. The RET
column is the return address column—that is, the location of the return address. The RO
column has a ‘—’ in the first line to indicate that the value of RO is undefined and does
not need to be restored on exit from the function. The R1 column has SAME in the initial
row to indicate that the value of the R1 register will be restored to the same value it
already has.

Defining the names block
The names block for the small example above would be:

CFI NAMES trivialNames
CFI RESOURCE SP:16, R0:16, R1:16
CFI STACKFRAME CFA SP DATA

;; The virtual resource for the return address column
CFI VIRTUALRESOURCE RET:16
CFI ENDNAMES trivialNames

Defining the common block

The common block for the simple example above would be:

CFI COMMON trivialCommon USING trivialNames

CFI RETURNADDRESS RET DATA

CFI CFA SP + 2

CFI RO UNDEFINED

CFI R1 SAMEVALUE

CFI RET FRAME (CFA,-2) ; Offset -2 from top of frame
CFI ENDCOMMON trivialCommon

Note: sp may not be changed using a CFI directive since it is the resource associated
with CFA.

Defining the data block

Continuing the simple example, the data block would be:

RSEG CODE:CODE

CFI BLOCK funclblock USING trivialCommon
CFI FUNCTION funcl
funcl:
PUSH R1
CFI CFA SP + 4
CFI R1 FRAME (CFA, -4)
MOV R1,#4
CALL func?2
POP RO
CFI R1 RO

95

Call frame information directives

CFI CFA SP + 2
MOV R1,RO

CFI R1 SAMEVALUE
RET

CFI ENDBLOCK funclblock

Note that the CFI directives are placed after the instruction that affects the backtrace
information.

IAR Assembler
96 Reference Guide for HCS12

Pragma directives

This chapter describes the pragma directives of the IAR Assembler for HCS 2.

The pragma directives control the behavior of the assembler, for example
whether it outputs warning messages. The pragma directives are
preprocessed, which means that macros are substituted in a pragma directive.

Summary of pragma directives

The following table shows the pragma directives of the assembler:

#pragma directive Description

#pragma diag_default Changes the severity level of diagnostic messages
#pragma diag_error Changes the severity level of diagnostic messages
#pragma diag_remark Changes the severity level of diagnostic messages
#pragma diag_suppress Suppresses diagnostic messages

#pragma diag_warning Changes the severity level of diagnostic messages
#pragma message Prints a message

Table 30: Pragma directives summary

Descriptions of pragma directives

#pragma diag_default

All pragma directives using = for value assignment should be entered like:
#pragma pragmaname=pragmavalue
or

#pragma pragmaname = pragmavalue

#pragma diag_default=tag, tag, ...

Changes the severity level back to default or as defined on the command line for the
diagnostic messages with the specified tags. For example:

#pragma diag_default=Pell?7

See the chapter Diagnostics for more information about diagnostic messages.

97

Descriptions of pragma directives

98

#pragma diag_error

#pragma diag_remark

#pragma diag_suppress

#pragma diag_warning

#pragma message

IAR Assembler
Reference Guide for HCS12

#pragma diag_error=tag, tag, ...
Changes the severity level to error for the specified diagnostics. For example:
#pragma diag_error=Pell?7

See the chapter Diagnostics for more information about diagnostic messages.

#pragma diag_remark=tag, tag, ...
Changes the severity level to remark for the specified diagnostics. For example:
#pragma diag_remark=Pel77

See the chapter Diagnostics for more information about diagnostic messages.

#pragma diag_suppress=tag, tag, ...
Suppresses the diagnostic messages with the specified tags. For example:
#pragma diag_suppress=Pell7,Pel77

See the chapter Diagnostics for more information about diagnostic messages.

#pragma diag_warning=tag, tag, ...
Changes the severity level to warning for the specified diagnostics. For example:
#pragma diag_warning=Pe826

See the chapter Diagnostics for more information about diagnostic messages.

#pragma message (string)

Makes the assembler print a message on stdout when the file is assembled. For
example:

#ifdef TESTING
#pragma message ("Testing")
#endif

Diagnostics

This chapter describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

Message format

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the assembler is produced in the form:

filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered;
1linenumber is the line number at which the assembler detected the error; 1evel is the
level of seriousness of the diagnostic; tag is a unique tag that identifies the diagnostic
message; message is a self-explanatory message, possibly several lines long.

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file. In the IAR Embedded Workbench IDE, diagnostic messages are displayed in the
Build messages window.

Severity levels

The diagnostics are divided into different levels of severity:

Remark

A diagnostic message that is produced when the assembler finds a source code construct
that can possibly lead to erroneous behavior in the generated code. Remarks are by
default not issued but can be enabled, see --remarks, page 27.

Warning

A diagnostic message that is produced when the assembler finds a programming error
or omission which is of concern but not so severe as to prevent the completion of
compilation. Warnings can be disabled by use of the command-line option
--no_warnings, see --no_warnings, page 25.

Error

A diagnostic message that is produced when the assembler has found a construct which
clearly violates the language rules, such that code cannot be produced. An error will
produce a non-zero exit code.

929

Severity levels

100

IAR Assembler
Reference Guide for HCS12

Fatal error

A diagnostic message that is produced when the assembler has found a condition that
not only prevents code generation, but which makes further processing of the source
code pointless. After the diagnostic has been issued, compilation terminates. A fatal
error will produce a non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
types of diagnostics except for fatal errors and some of the regular errors.

See Summary of assembler options, page 15, for a description of the assembler options
that are available for setting severity levels.

See the chapter Pragma directives, for a description of the pragma directives that are
available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there has been a serious and
unexpected failure due to a fault in the assembler. It is produced using the following
form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Technical Support. Please include
information enough to reproduce the problem. This would typically include:

o The product name

The version number of the assembler, which can be seen in the header of the list
files generated by the assembler

Your license number

The exact internal error message text

The source file of the program that generated the internal error

A list of the options that were used when the internal error occurred.

Migrating assembler code

This chapter presents the major differences between the IAR Assembler for
HCS12 version 3.20 and the IAR Assembler for HCSI2 version 3.10, and
describes the migration considerations.

The migration process

In short, to migrate from version 3.10 to 3.20, you must consider the following:

o Assembler options
o Assembler operators
o Assembler directives.

To migrate your old project, follow the described migration process. Note that not all
steps in the described migration process may be relevant for your project. Consider
carefully what actions are needed in your case.

ASSEMBLER OPTIONS
The command line options in version 3.20 follow two different syntax styles:

e Long option names containing one or more words prefixed with two dashes, and
sometimes followed by an equal sign and a modifier, for example --strict_ansi
and --module_name=test.

e Short option names consisting of a single letter prefixed with a single dash, and
sometimes followed by a modifier, for example -r.

Some options appear in one style only, while other options appear as synonyms in both
styles. A number of new command line options have been added. For a complete list of
the available command line options, see the chapter Assembler options.

Migrating project options
Because the available assembler options differ between version 3.20 and version 3.10,

you should verify your option settings after you have converted an old project.

If you are using the command line interface, you can simply compare your makefile with
the options listed in this chapter and modify the makefile accordingly.

If you are using the IAR Embedded Workbench IDE, many option settings are
automatically converted during the project conversion. This means that you must verify
the options manually.

101

The migration process

IAR Assembler

For details about changes related to options, see Table 31, Version 3.10 compiler options
not available in version 3.20 and Table 32, Renamed or modified options.

Removed options

The following table lists the command line options that have been removed:

Old option Description

-B Macro execution information

-b Makes a library module

-h Enables the use of space (‘ ‘) as the character for starting a comment
-N Omits header from assembler listing

-Oprefix Sets object filename prefix

-plines Lines per page

-tn Tab spacing

-Usymbol Undefines a symbol

-u Use A6801 operators

Table 31: Version 3.10 compiler options not available in version 3.20

Renamed or modified options

The following version 2.x command line options have been renamed and/or modified:

Old option New option Description

-c {DSMEAOC} -1 Conditional listing; some variants are gone

-Enumber —--error_limit Specifies the maximum of errors before the
assembler stops

-G - Input from stdin”

-Llprefix],-1 filename -lla|d|e|m|o]|x][N]

{filename|directory}

-n --enable_multibytes
-r[r]le] -r, --debug

-S --silent

—s{+|—} —--case_insensitive

-w [string][s] --no_warnings,

--diag_suppress

Generates list file; the modifiers specify the type
of list file to create

Enables support for multibyte characters

Generates debug information; the modifiers have
been removed

Sets silent operation
Case sensitive user symbols off

Disables warnings

Table 32: Renamed or modified options

* Specifying the character — (dash) on the command line using version 3.20 indicates input is tak-
en from stdin, see Specifying parameters, page 14.

102 Reference Guide for HCS12

Migrating assembler code ___¢

ASSEMBLER OPERATORS

All assembler operators that are available in version 3.10 are also available in version
3.20. However, the following differences apply:

e The operator precedence differs between version 3.20 and version 3.10
e The following operators have new names formed by removing the dots around the
old name, so that for example . OPERATOR. becomes just OPERATOR:

.NOT., .LOW., .HIGH., .LWRD., .HWRD., .DATE., .SFB., .SFE., .SIZEOF.,
.BINNOT., .MOD., .SHR., .SHL., .AND., .BINAND., .OR., .BINOR., .XOR.,
.BINXOR., .EQ., .NE., .GT., .LT., .UGT., .ULT., .GE., .LE.

o The operators .ByT2. and .BYT3 . have become BYTE2 and BYTE3, respectively

The old operators are still recognized by the assembler but they are obsolete, and it is
recommended to change them to the new syntax.

For detailed information about operators in version 3.20, see the chapter Assembler
operators, page 29.
ASSEMBLER DIRECTIVES

There are some changes in version 3.20 related to available assembler directives in
version 3.10.

Removed assembler directives
The following directives have been removed:

CYCMAX, CYCMEAN, CYCMIN, CYCLES

All assembler directives related to structured assembly
sfrb, sfrtype, sfrw

DCB.

Renamed or modified assembler directives

The following version 3.10 assembler directives have been renamed and/or modified:

In version 3.10 In version 3.20

S, INCLUDE #include

#message #pragma message

IFNC IF s ==

IFxx IF a <relop> b

STACK RSEG, and use # in the linker command file to allocate from the top

Table 33: Renamed or modified assembler directives

103

The migration process

Obsolete assembler directives

The following version 3.10 assembler directives are still recognized by the assembler,
but they are obsolete. It is recommended to change them to their new equivalents:

In version 3.10 In version 3.20
ALIAS =, EQU
DC.B, FCB, DC, FCC DC8
DC.W FDB DC16
DC.L, FOB DC32
DS. B, RMB, DS DS8
DS.W DS16
DS.L DS32
ELSEC ELSE
ENDMAC ENDM
ENDS ENDIF
EXPORT PUBLIC
IMPORT EXTERN

Table 34: Obsolete assembler directives

IAR Assembler
104 Reference Guide for HCS12

Index °

A DC8 . . 77
DC16 77

absolute eXPressions .« .v v v vt v e 8 DC24. .o 77
absolute Segmentsvti i 55 DC32. i 77
ADD (CFI Operator) 92 DC64 77
address field, in assembler listfile 10 DEFINE. ... 58
AHCS12_INC (environment variable) 15 DEF32 oo 71
ALIGN (assembler directive) 53 DF64 ..o 71
alignment, of segments, 56 DS8 ..o 77
ALIGNRAM (assembler directive). 53 DSI6 ..o 71
AND (assembler operator)ooeuenenn.. 34 DS24 oo 71
AND (CFI Operator) 92 DS32 77
architecture, HCS12 xi DS64 ..o 71
ARGFRAME (assembler directive) 82 BLSE ... 61
_args (predefined macro symbol) 65 ELSEIF e 61
ASCII character constants.couenennen... 4 END. ..o 48
ASEG (assembler directive) 53 ENDIF. ..o 61
ASEGN (assembler directive). 53 ENDM......oooiiii 63
asm (filename extension)o.uuon... 3 ENDMOD ... 48
ASMHCS 12 (environment variable). 15 ENDR ... 63
assembler control directives 80 EQU....oii 58
assembler diagnostics i 99 EVEN .o 53
assembler directives EXITM ... e 63
ALIGN. 53 EXTERN. ... 51
ALIGNRAM . o o o oo oo 53 FUNCALL. e 82
ARGERAME .+« o oo oo 82 FUNCTION. e 82
ASEG. . o o o 53 function 81
ASEGN 5 3 IF .. 6 1
assemblercontrol. 80 LIBRARY ... 48
ASSIGN 58 LIMIT 58
call frame informationo oo oo 83 listfilecontrol 69
CASEOFF 80 LOCAL 63
CASEON\ 80 LOCFRAME ... 82
CFLdIirectives. oov ot e e et 83 LSTCND ..o 69
COMMON.. .« o oo 53 LSTCOD e 69
conditional assembly 61 LSTEXP ..oovniiii 69
See alSO C‘Sty]e preprocessor dll‘eCthCS LSTMAC 69
Cstyle PIEproCessor . .+ vv v 73 LSTOUT . oot 69
data definition or allocation 77 LSTREP. ... 69

105

106

LSTXRF 69
MACRO. 63
MACTO PrOCESSING . « .« v\ vttt ens 63
MODULE i 48
modulecontrol. L L i 48
NAME 48
ODD ... 53
ORG ... 53
PROGRAM 48
PUBLIC. 51
PUBWEAK 51
RADIX ... 80
REPT. 63
REPTC. 63
REPTI 63
REQUIRE 51
RSEG. 53
RTMODEL i, 48
segmentcontrol i 53
SET .. 58
SUMMATY « o v vt vttt e et e e e e e e eee s 45
symbolcontrol 51
value assignmentt 58
VAR. .o 58
T P 80
I 80
#define......... .. 73
#elifo 73
Helse. .o 73
#endif. 73
HOITOT . o vttt e e 73
HE 73
#ifdef 73
#iftndef 73
#include. i 73
HNe. . ..o 73
HPragma.t 73,97
#undef 73
TSN 58
IAR Assembler

Reference Guide for HCS12

assembler environment variables 14

assembler error returncodes. L. 15
assembler instructions. 3
assemblerlabels o L. 5
formatof L 2
assembler list files
addressfield. il 10
COMMENTS. . ..ottt ettt et e e e 80
conditional code and strings. 70
cross-references, generating. 23,71
datafield L LiiiLL 10
disabling 70
enabling.......... ... 70
filename, specifying. 23
generated lines, controlling 70
macro-generated lines, controlling. 70
symbol and cross-reference table. 10
assembler macros
arguments, Passing to.o v v vt 65
defining i 64
generated lines, controlling in listfile 70
in-line routines.covninin i 67
predefined symbol L L 65
PrOCESSING . o v v v vttt et et e 66
quote characters, specifying. 24
special characters, using. 65
assembler Operatorsiiiiian... 29
AND .o 34
BINAND . ..ottt e 34
BINNOT . ..ot e 34
BINOR. . ..ot e 35
BINXOR ..ot 35
BYTEL. ..o 35
BYTE2. ..o 35
BYTES. ..o 36
BYTE4. ..o 36
DATE. . ..ottt 36
EQ i 36
GE .ot 37

Index °

GT ot 37 et 36
HIGH. e 37 D PP 37
HWRD. ... 37 D 37
1N EXPIESSIONS. . o . vt et ettt et 3 > e 41
LE o 38 PP 35
LOW 38 PP 39
LT e 38 S PP 34
LWRD ... 38 assembler options

MOD ... 39 specifying parametersonen.. 14
NE .o 39 SUMMATY « . v vttt ettt e e eeeaene 15
NOT . .o e 39 typographic convention xiii
OR .t 39 D 17
precedence. 29 S 22
SEB . it 40 P 22
SFE .o 40 P 23
SHL . . oo 41 M 24
SHR. ..o 41 L P 25
SIZEOFo e 41 s P 27
UGT. ... 42 --case_insensitive. 17
ULT ..o 42 SCOT . o e et et e e e 17
UPPER. 42 —debug. .. 18
XOR e 43 --dependencies. 18
A 35 --diagnostics_tables oL 20
PP 33 ——diag eITOr 19
e 39 --diag remark L L il 20
L 39 --diag SUPPIesst 20
PN 34 --diag Warning. 20
O e 32 —dir first 21
e e e 32 --enable_multibytes o ... 21
Lo e 33 --header_context 22
- 34 —mnem_first 24
. 34 --no_path_in_file_macros 25
2 39 SSNO_WAIMINES oo vttt e 25
P 32-33 —only_stdout 26
LSO 38 SPTEPIOCESS « v v v et et e e e e e 26
e e e 41 —remarks ... 27
o e e e 38 Ssilent ... 27
> i e 39 --warnings_affect_exit_code 15,28
N 36 --WarNiNgS_are_EITOTS v v v v v e enene e, 28

107

108

assembler output, including debug information 18,27

assembler source files, including 75
assembler source format................ 2
assembler subversionnumber........................ 7
assembler symbols oL 5
EXPOTTING & o ot ottt ettt e 52
IMPOTtING .« o vttt e 52
in relocatable expressionsc.c. ... 8
local. 60
predefined 7
redefining. i 59
ASSIGN (assembler directive) 58
assumptions (programming experience) xi
backtrace information, defining 83
BINAND (assembler operator) 34
BINNOT (assembler operator)coou.... 34
BINOR (assembler operator)oou.n.. 35
BINXOR (assembler operator)covuu... 35
_ _BUILD_NUMBER_ _ (predefined symbol). 7
BYTEI (assembler operator)c....... 35
BYTE2 (assembler operator)c....... 35
BYTES3 (assembler operator) 36
BYTEA4 (assembler operator)o..o... 36
call frame information directives 83
case sensitivity, controlling. 17, 80
CASEOFF (assembler directive). 80
CASEON (assembler directive) 80
--case_insensitive (assembler option) 17
CFLdirectivesovi i 83
CFLexpressionsc.oeeeuiueneununenenenenn. 92
CFLOPeratorsvuueueninininninnenan.. 92
character constants, ASCII 4
command line, extending 22
IAR Assembler

Reference Guide for HCS12

COMMENES .« .+ ¢ v v et e e et et e e eeeaene 76
inassembler listfile........... 80
in assembler soucecode. L. 2
multi-line, using with assembler directives 81
COMMON SEZMENTS . . . e\ v et ee et e eeeenenenen 55
COMMON (assembler directive) 53
compiler object file, specifying filename 25
compiler options
migrating from old compiler version 101
——error_limit. 22
--no_wrap_diagnostics. 25
—preinclude 26
COMPLEMENT (CFl operator).c.c.ouvuu.. 92
computer style, typographic convention xiii
conditional assembly directives 61
See also C-style preprocessor directives
conditional code and strings, listing 70
constants, defaultbaseof 80
CONSLANtS, INTEZET . . .ottt et ittt e een 4
conventions, typographic xiii
copyright noticet ii
_ _CORE_ _ (predefined symbol). 7
--core (assembleroption), 17
CRC, in assembler listfile 10
cross-references, in assembler listfile.............. 23,71
C-style preprocessor directives, 73
-D (assembleroption)ol 17
data allocation directives.coviuvnen... 77
data definition directives., 77
data field, in assembler listfile 10
_ _DATE_ _ (predefined symbol) 7
DATE (assembler operator).o.vuvunenennn.. 36
DCS8 (assembler directive).coviiiian.. 77
DCI16 (assembler directive).o, 77
DC24 (assembler directive).oviiiiin.. 77
DC32 (assembler directive).o, 77

DC64 (assembler directive).o.. ... 77
--debug (assembler option)l 18
debug information, including in assembler output18, 27
default base, forconstants. 80
#define (assembler directive) 73
DEFINE (assembler directive) 58
--dependencies (assembler option) 18
DF32 (assembler directive). 77
DF64 (assembler directive). 77
diagnostic MEeSSAZES . . o . v v i 99
classifying as errorsot i 19
classifyingasremarks 20
classifying as warnings 20
disabling warnings. il 25
disabling wrappingof 25
enablingremarks L L i 27
listingall o i 20
SUPPIESSING &« o v v v ettt e et 20
--diagnostics_tables (assembler option) 20
diag_default (#pragma directive) 97
--diag_error (assembler option). 19
diag_error (#pragma directive) 98
--diag_remark (assembler option). 20
diag_remark (#pragma directive) 98
--diag_suppress (assembler option). 20
diag_suppress (#pragma directive) 98
--diag_warning (assembler option) 20
diag_warning (#pragma directive) 98
directives. See assembler directives
--dir_first (assembler option) 21
disclaimer. e ii
DIV (CFLoperator).cvvne e eaen e 92
document CONVeNtions.ovuvnvnennenenenen .. xiii
DSB8 (assembler directive)., 77
DS16 (assembler directive)., 77
DS24 (assembler directive). 77
DS32 (assembler directive). 77
DS64 (assembler directive). 77

Index °

E

edition, of thisguide i ii
efficient coding techniques 11
#elif (assembler directive). 73
#else (assembler directive) 73
ELSE (assembler directive). 61
ELSEIF (assembler directive).oovn... 61
--enable_multibytes (assembler option) 21
END (assembler directive) 48
#endif (assembler directive) 73
ENDIF (assembler directive) 61
ENDM (assembler directive) 63
ENDMOD (assembler directive). 48
ENDR (assembler directive) 63
environment variables. 14
AHCSI2_INCo e 15
ASMHCSI12. ... e 15
EQ (assembler operator).o, 36
EQ (CFLOperator).vvvuve e ieeneeennn 93
EQU (assembler directive) 58
#error (assembler directive) 73
CITOT MESSAZES « . ¢ vt et et et e et aeene 99
classifying 19
#error, using todisplay. L Ll 76
error return Codeso vt it 15
EVEN (assembler directive) 53
EXITM (assembler directive) 63
experience, programmingeueneeenen.. Xi
EXPIESSIONS .« o v v ettt et e e e 3
expressions. See assembler expressions
extended command line file (extend.xcl). 22
EXTERN (assembler directive) 51
-f (assembler option). il 22
false value, in assembler expressions 5
fatal error messages 100

109

110

_ _FILE_ _ (predefined symbol). 7
file dependencies, tracking 18
file extensions. See filename extensions
file types
assembler SOurcet 3
extended command line......................... 22
#include, specifyingpath. 22
filename extensions
T 0 0 3
10T 3
Sl 3
XCl e 22
filenames, specifying for assembler output. 25
filename, of objectfile 25
formats, assembler sourcecode. 2
FRAME (CFLoperator).vovveeninnean.. 93
FUNCALL (assembler directive) 82
function directives. i 81
FUNCTION (assembler directive) 82
GE (assembler operator) 37
GE (CFLoperator).ovuite e ieiieieeneaannn 93
global value, defining 59
GlOSSaIY. oot xi
GT (assembler operator), 37
GT (CFLOperator).vvvee et eeeeeaannn 93
HCS12 architecture and instruction set. Xi
header files, SFR. 11
--header_context (assembler option). 22
HIGH (assembler operator). 37
hints for migration 101
HWRD (assembler operator) 37
IAR Assembler

Reference Guide for HCS12

-I (assembler option).iii i 22
IAR Technical Support.......... ..., 100
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol) 7
#if (assembler directive) 73
IF (assembler directive)coitininnn. 61
IF (CFLoperator).ovvee et ieeeene 93
#ifdef (assembler directive). 73
#ifndef (assembler directive). 73
#include files, specifying 22
#include (assembler directive) 73
include paths, specifying. 22
instructionset, HCS12 xi
INEEEEr CONSLANTS .« . o\ vttt ettt e e e e eee s 4
internal error. 100
in-line coding, using macros. 67
-1 (assembleroption). i 23
labels. See assembler labels
LE (assembler operator)c.vuiniiiineaen.. 38
LE (CFLOperator) «.vvu ittt eieiaeaene 93
library modules. i 49
LIBRARY (assembler directive). 48
LIMIT (assembler directive). 58
_ _LINE_ _ (predefined symbol) 7
#line (assembler directive) 73
listfileformat.............., 10
body. ..o 10
CRC. . 10
header 10
symbol and cross reference 10
listing control directives 69
LITERAL (CFLoperator)c.c.ovuvrennunenen.. 92
LOAD (CFloperator)covuvninenennnnenen.. 94
local value, defining, 59
LOCAL (assembler directive). 63

location counter. See program location counter

LOCFRAME (assembler directive). 82
LOW (assembler operator)cocueuennn.. 38
LSHIFT (CFLoperator).vovvveeieneeeaeaen.n 93
LSTCND (assembler directive). 69
LSTCOD (assembler directive). 69
LSTEXP (assembler directives) 69
LSTMAC (assembler directive) 69
LSTOUT (assembler directive). 69
LSTREP (assembler directive) 69
LSTXREF (assembler directive) 69
LT (assembler operator)ueueuenenn.. 38
LT (CFLOPErator) . . .« oo ee et et e e e e eeee s 93
LWRD (assembler operator)c.covun.. 38
-M (assembler option). it 24
macro processing directives 63
macro quote characterso, 65

SPeCifyingt 24
MACRO (assembler directive) 63
macros. See assembler macros
memory space, reserving and initializing 78
MEMOTY, reServing SPace if.« v v vv v vne e e, 77
message (#pragma directive)., 98
messages, excluding from standard output stream 27
--mnem_first (assembler option). 24
MOD (assembler operator)vuvrnenenenan.. 39
MOD (CFLOPerator). . ..« cvvveeee e eeeieeeeeeaannn 92
module consistency.ovvviii 50
module control directives 48
MODULE (assembler directive) 48
modules

assembling multi-modules files 50

termMINAting. . . .ottt et e 49
msa (filename extension)cc.uuon... 3
MUL (CFLOperator) vvvee e eeieieeeeneaannn 92
multibyte character support. 21

Index °

N

NAME (assembler directive). 48
NE (assembler operator).c.ouvuernunenan.. 39
NE (CFLOperator).vvune e eieeneennn 93
NOT (assembler operator).covvernenenen.. 39
NOT (CFIOperator)veuveueuenenennnnenen.. 92
--no_path_in_file_macros (assembler option). 25
--no_warnings (assembler option). 25
--no_wrap_diagnostics (compiler option) 25
-0 (assembler option) i 25
ODD (assembler directive)o.ou... 53
--only_stdout (assembler option) 26
operands

formatof L 2

in assembler eXpressions 3
operations, formatof. L ... 2
operation, silent il 27
operators. See assembler operators
OPLON SUMMATY . .t vt vttt et e e eeen 15
OR (assembler operator).c.covuenenennn. 39
OR (CFLOperator). . .« . vovo vttt eeeens 92
ORG (assembler directive) 53
parameters

Specifying 14

typographic convention xiii
part number, of thisguide ii
PLC. See program location counter
porting, of code. 101
#pragma (assembler directive) 73,97
precedence, of assembler operators. 29
predefined register symbols 6

112

predefined symbols.
in assembler macros.,
__BUILD_NUMBER_ _
__CORE_ .. i

__FILE_ ...
__IAR_SYSTEMS_ASM_ _

_LINE

__SUBVERSION_ _
__TID_ o

VER ...
--preinclude (compiler option)
--preprocess (assembler option)

preprocessor symbols

defining and undefining
defining on command line
prerequisites (programming experience).

program counter. See program location counter

program location counter (PLC)

SELHNG . oot
program modules, beginning.
PROGRAM (assembler directive).
programming experience, required
programming hints
PUBLIC (assembler directive)
publication date, of this guide.
PUBWEAK (assembler directive).

R

-r (assembleroption).
RADIX (assembler directive)
reference information, typographic convention.
registered trademarks
TEZISIETS v v vt ettt e e
relocatable expressions
relocatable segments, beginning

IAR Assembler
Reference Guide for HCS12

remark (diagnostic message). 99
classifying i 20
enabling......... 27

--remarks (assembler option) 27

repeating Statementsot 67

REPT (assembler directive) 63

REPTC (assembler directive) 63

REPTI (assembler directive). 63

REQUIRE (assembler directive). 51

RSEG (assembler directive) 53

RSHIFTA (CFLoperator)c.ovuvuvunenenen.. 93

RSHIFTL (CFloperator)c.oouvuiunenenen.. 93

RTMODEL (assembler directive) 48

rules, in CFI directives, 90

runtime model attributes, declaring. 50

segment control directives., 53

segments
absolute 55
aligningt 56
common, beginningouitiininin. . 55
relocatable 55

SET (assembler directive).oon... 58

severity level, of diagnostic messages. 99
Specifying 100

SFB (assembler operator)oveuenenennn.. 40

SFE (assembler operator)couueuvnennn.. 40

SFR. See special function registers

SHL (assembler operator).couueuenennn.. 41

SHR (assembler operator).covuenvnennn.. 41

--silent (assembler option), 27

silent operation, specifying................ 27

simple rules, in CFI directives. 90

SIZEOF (assembler operator)oouvunn.. 41

source files
including 75
listallreferred i, 22

source format, assembler 2
special function registers. 11
standard error 26
standard output stream, disabling messagesto 27
standard output, specifying. 26
statements, repeating.ottt 67
SEAEIT. . oot e 26
SEAOUL .« ..t 26
SUB (CFLoperator)c.cueuenenenannenens 92
_ _SUBVERSION_ _ (predefined symbol). 7
Support, Technical 100
symbol and cross-reference table, in assembler list file. . . . 10

See also Include cross-reference 10
symbol control directives, 51
symbol values, checking. 59
symbols

See also assembler symbols

exporting to other modules. 52

predefined, in assembler 7

predefined, in assembler macro 65

user-defined, case sensitive 17
SYNLAX CONVENTIONS .« .« vttt et e e e e xiii
s12 (filename extension), .. 3
Technical Support, IAR 100
temporary values, defining 59
terminology.ot xi
_ _TID_ _ (predefined symbol). 7
_ _TIME_ _ (predefined symbol) 7
time-criticalcode L., 67
trademarks ii
true value, in assembler expressions 5
typographic CONVeNtionsSovvvvenenennenn. xiii
UGT (assembler operator)c.ouvuuenen. 42

Index °

ULT (assembler operator)c.ouvuennenenen.. 42
UMINUS (CFLoperator).c.vuovuvnennnnenenen.. 92
#undef (assembler directive). 73
UPPER (assembler operator) 42
user symbols, case sensitive L. 17
value assignment directives. 58
values, defining. i 77
VAR (assembler directive)ccou.... 58
_ _VER_ _ (predefined symbol)...................... 7
version, IAR Embedded Workbench. ii
version, of assembler 7
WATTINEZS « ¢ . e ettt et et e e e e e 99

classifying 20

disabling i 25

eXItCode. . .ot 28

treating as €ITOTS . .« v v v v vt ittt e e 28
--warnings_affect_exit_code (assembler option). 15, 28
--warnings_are_errors (assembler option). 28
xcl (filename extension)uutiinenn. 22
XOR (assembler operator)iiiiaan.. 43
XOR (CFLOperator)oovvuenn e, 93

Symbols

A (assembler Operator).ov. vt 35
_ _BUILD_NUMBER_ _ (predefined symbol). 7
_ _CORE_ _ (predefined symbol). 7
_ _DATE_ _ (predefined symbol) 7
_ _FILE_ _ (predefined symbol)...................... 7
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol) 7

113

114

_ _LINE_ _ (predefined symbol) 7

_ _SUBVERSION_ _ (predefined symbol). 7
_ _TID_ _ (predefined symbol). 7
_ _TIME_ _ (predefined symbol) 7
_ _VER_ _ (predefined symbol) 7

_args (predefined macro symbol) 65
- (assembler operator). 33
-D (assembleroption) i 17
-f (assembler option). i 22
-I (assembler option).t 22
-1 (assembleroption).c. i 23
-M (assembler Option).ttt 24
-0 (assembler option)i i 25
-1 (assembler option). 27
--case_insensitive (assembler option) 17
--core (assembleroption) 17
--debug (assembler option) 18
--dependencies (assembler option) 18
--diagnostics_tables (assembler option) 20
--diag_error (assembler option). 19
--diag_remark (assembler option). 20
--diag_suppress (assembler option). 20
--diag_warning (assembler option) 20
--dir_first (assembler option) 21
--enable_multibytes (assembler option) 21
--error_limit (compiler option) 22
--header_context (assembler option). 22
--mnem_first (assembler option). 24
--no_path_in_file_macros (assembler option). 25
--no_warnings (assembler option). 25
--no_wrap_diagnostics (compiler option) 25
--only_stdout (assembler option) 26
--preinclude (compiler option) 26
--preprocess (assembler option) 26
--remarks (assembler option) 27
--silent (assembleroption) 27
--warnings_affect_exit_code (assembler option). 15,28
--warnings_are_errors (assembler option). 28
! (assembler operator).t 39
IAR Assembler

Reference Guide for HCS12

I=(assembler operator)., 39
?7: (assembler Operator) i 34
() (assembler Operator)coeuenenenannnnen. 32
* (assembler Operator) 32
/ (assembler operator) 33
/*...%/ (assembler directive). 80
// (assembler directive) 80
& (assembler Operator)v vt 34
&& (assembler operator)l 34
#define (assembler directive) 73
#elif (assembler directive). 73
#else (assembler directive) 73
#endif (assembler directive) 73
#error (assembler directive), 73
#if (assembler directive) 73
#ifdef (assembler directive). 73
#ifndef (assembler directive). 73
#include files, specifying 22
#include (assembler directive) 73
#line (assembler directive) 73
#pragma (assembler directive) 73,97
#undef (assembler directive). 73
%o (assembler Operator)c.cueiin 39
+ (assembler operator)iiiinen... 32-33
< (assembler Operator)c...iiiiniann 38
<< (assembler operator)c..uenininaan. 41
<= (assembler operator)ienininaan 38
<> (assembler Operator) 39
= (assembler directive) 58
= (assembler Operator)iuiniiiann 36
== (assembler operator)euiiiiaan. 36
> (assembler Operator) 37
>= (assembler operator) 37
>> (assembler Operator) 41
| (assembler operator) 35
[l (assembler operator).t 39
~ (assembler operator) 34
$ (program location counter). 6

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Document conventions

	Introduction to the IAR Assembler for HCS12
	Introduction to assembler programming
	Getting started

	Modular programming
	Source format
	Assembler instructions
	Expressions, operands, and operators
	Integer constants
	ASCII character constants
	TRUE and FALSE
	Symbols
	Labels
	Program location counter (PLC)

	Register symbols
	Program counter-relative addressing symbol—PCR
	Predefined symbols
	Including symbol values in code
	Testing symbols for conditional assembly

	Absolute and relocatable expressions
	Expression restrictions
	No forward
	No external
	Absolute
	Fixed

	List file format
	Header
	Body
	Summary
	Symbol and cross-reference table

	Programming hints
	Accessing special function registers
	Using C-style preprocessor directives

	Assembler options
	Setting assembler options
	Specifying parameters
	Environment variables
	Error return codes

	Summary of assembler options
	Description of assembler options
	--case_insensitive
	--core
	-D
	--debug, -r
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--dir_first
	--enable_multibytes
	--error_limit
	-f
	--header_context
	-I
	-l
	-M
	--mnem_first
	--no_path_in_file_macros
	--no_warnings
	--no_wrap_diagnostics
	-o
	--only_stdout
	--preinclude
	--preprocess
	-r, --debug
	--remarks
	--silent
	--warnings_affect_exit_code
	--warnings_are_errors

	Assembler operators
	Precedence of operators
	Summary of assembler operators
	Parenthesis operator – 1
	Function operators – 2
	Unary operators – 3
	Multiplicative arithmetic operators – 4
	Additive arithmetic operators – 5
	Shift operators – 6
	Comparison operators – 7
	Equivalence operators – 8
	Logical operators – 9-14
	Conditional operator – 15

	Description of assembler operators
	()
	*
	+
	+
	-
	-
	/
	?:
	Syntax

	AND [&&]
	BINAND [&]
	BINNOT [~]
	BINOR [|]
	BINXOR [^]
	BYTE1
	BYTE2
	BYTE3
	BYTE4
	DATE
	EQ [=] [==]
	GE [>=]
	GT [>]
	HIGH
	HWRD
	LE [<=]
	LOW
	LT [<]
	LWRD
	MOD [%]
	NE [<>] [!=]
	NOT [!]
	OR [||]
	SFB
	Syntax
	Parameters

	SFE
	Syntax
	Parameters

	SHL [<<]
	SHR [>>]
	SIZEOF
	Syntax
	Parameters

	UGT
	ULT
	UPPER
	XOR

	Assembler directives
	Summary of assembler directives
	Module control directives
	Syntax
	Parameters
	Descriptions
	Beginning a program module
	Beginning a library module
	Terminating a module
	Terminating the source file
	Assembling multi-module files
	Declaring runtime model attributes

	Symbol control directives
	Syntax
	Parameters
	Descriptions
	Exporting symbols to other modules
	Exporting symbols with multiple definitions to other modules
	Importing symbols

	Examples

	Segment control directives
	Syntax
	Parameters
	Descriptions
	Beginning an absolute segment
	Beginning a named absolute segment
	Beginning a relocatable segment
	Beginning a common segment
	Setting the program location counter (PLC)
	Aligning a segment

	Examples
	Beginning an absolute segment
	Beginning a relocatable segment
	Beginning a common segment
	Aligning a segment

	Value assignment directives
	Syntax
	Parameters
	Descriptions
	Defining a temporary value
	Defining a permanent local value
	Defining a permanent global value
	Checking symbol values

	Examples
	Redefining a symbol
	Using local and global symbols
	Using the LIMIT directive

	Conditional assembly directives
	Syntax
	Parameters
	Descriptions
	Examples

	Macro processing directives
	Syntax
	Parameters
	Descriptions
	Defining a macro
	Passing special characters
	Predefined macro symbols
	How macros are processed
	Repeating statements

	Examples
	Coding inline for efficiency
	Using REPTC and REPTI

	Listing control directives
	Syntax
	Descriptions
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Controlling the listing of generated lines
	Generating a cross-reference table

	Examples
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros

	C-style preprocessor directives
	Syntax
	Parameters
	Descriptions
	Defining and undefining preprocessor symbols
	Conditional preprocessor directives
	Including source files
	Displaying errors
	Defining comments

	Examples
	Using conditional preprocessor directives
	Including a source file

	Data definition or allocation directives
	Syntax
	Parameters
	Descriptions
	Examples
	Generating a lookup table
	Defining strings
	Reserving space

	Assembler control directives
	Syntax
	Parameters
	Descriptions
	Controlling case sensitivity

	Examples
	Defining comments
	Changing the base
	Controlling case sensitivity

	Function directives
	Syntax
	Parameters
	Descriptions

	Call frame information directives
	Syntax
	Names block directives
	Extended names block directives
	Common block directives
	Extended common block directives
	Data block directives

	Parameters
	Descriptions
	Backtrace rows and columns
	Defining a names block
	Extending a names block
	Defining a common block
	Extending a common block
	Defining a data block

	Simple rules
	Simple rules for resources
	Simple rules for CFAs

	CFI expressions
	Unary operators
	Binary operators
	Ternary operators

	Example
	Defining the names block
	Defining the common block
	Defining the data block

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	#pragma diag_default
	#pragma diag_error
	#pragma diag_remark
	#pragma diag_suppress
	#pragma diag_warning
	#pragma message

	Diagnostics
	Message format
	Severity levels
	Remark
	Warning
	Error
	Fatal error
	Setting the severity level
	Internal error

	Migrating assembler code
	The migration process
	Assembler options
	Migrating project options
	Removed options
	Renamed or modified options

	Assembler operators
	Assembler directives
	Removed assembler directives
	Renamed or modified assembler directives
	Obsolete assembler directives

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Symbols

