
UVSCL-3

visualSTATE®

C-SPY®Link User Guide

UVSCL-3

UVSCL-3

COPYRIGHT NOTICE
Copyright © 2007–2011 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Third edition: February 2011

Part number: UVSCL-3

This guide applies to version 4.1 and later of IAR Embedded Workbench® and version
6.1 and later of visualSTATE®.

Internal reference: IJOA.

Contents
Figures .. 5

Preface .. 7

Who should read this guide ... 7

How to use this guide ... 7

Other documentation ... 8

Document conventions .. 8

Debugging visualSTATE applications in C-SPY® 11

Product introduction .. 11

Features .. 11

Requirements .. 11

Installation .. 12

Operating overview .. 13

C-SPYLink execution modes .. 13

None ... 14

Full Instrumentation .. 14

Sampling Buffer .. 15

State machine breakpoints ... 16

Full instrumentation breakpoints .. 16

On-target breakpoints .. 16

Pre- and post-deduct conditions ... 17

Shared DLIB breakpoints .. 18

Execution sequences .. 18

Recording buffer .. 18

Sampling buffer .. 19

Full instrumentation ... 19

Configuration ... 20

The visualSTATE menu .. 23

visualSTATE-specific windows in C-SPY 25

Actions window ... 25

Breakpoints window .. 26
UVSCL-3

3

4

Graphical Animation window .. 27

Sequences window ... 28

Signal Queues window ... 29

States window .. 30

Triggers window .. 31

Examples of using C-SPYLink ... 31

Execution ... 31

Working with state machine breakpoints ... 32

Troubleshooting ... 34

Index ... 35
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Figures
1: C-SPYLink overview .. 13

2: Breakpoint example .. 17

3: Configuring visualSTATE coder options .. 20

4: Configuring C-SPYLink options in visualSTATE ... 21

5: Enabling C-SPYLink in IAR Embedded Workbench ... 23

6: visualSTATE menu in C-SPY .. 23

7: Actions window .. 26

8: Breakpoints window .. 26

9: Graphical Animation windows ... 27

10: Sequences window .. 28

11: Signal Queues window .. 29

12: States window ... 30

13: Triggers window ... 31

14: Setting a new breakpoint ... 32

15: Adding conditional triggers to breakpoint .. 33

16: Creating a post-deduct state condition .. 33
UVSCL-3

5

6

UVSCL-3

visualSTATE C-SPY®Link
User Guide

Preface
Welcome to the visualSTATE C-SPY®Link User Guide. The purpose of this
guide is to provide you with detailed reference information that can help you
debug your visualSTATE application in the IAR C-SPY Debugger.

Who should read this guide
You should read this guide if you want to get the most out of the features in the
C-SPYLink interconnection system for debugging visualSTATE applications at state
machine level. You need a working knowledge of:

● visualSTATE®

● The IAR C-SPY® Debugger

● The C programming language

● Application development for embedded systems

● The architecture of your microcontroller (refer to the chip manufacturer's
documentation)

● The operating system of your host machine.

For a quick introduction to the IAR C-SPY Debugger, see the tutorials available in either
the IAR Embedded Workbench® Information Center or in the IAR Embedded
Workbench IDE online help system.

How to use this guide
This guide describes how to debug visualSTATE applications at state machine level
using the IAR C-SPY Debugger; this guide does not describe the general features
available in C-SPY, visualSTATE, or the hardware target system. To take full
advantage of the debugger solution, you must read this guide in combination with:

● Either the IAR Embedded Workbench IDE User Guide or the C-SPY® Debugging
Guide, which describe the general features available in the C-SPY debugger

● The visualSTATE User Guide and the visualSTATE Reference Guide, which
describe the features of visualSTATE

● The documentation supplied with the target board you are using.
UVSCL-3

7

8

Other documentation
Note that additional features may have been added to the software after the visualSTATE
C-SPY®Link User Guide was created. The release notes supplied with the product
contain the latest information.

Other documentation
The complete set of IAR development tools is described in a series of guides. For
information about:

● Using visualSTATE, refer to the visualSTATE® User Guide and the visualSTATE®
Reference Guide

● Using the IAR Embedded Workbench IDE and the IAR C-SPY Debugger, refer to
either the IAR Embedded Workbench IDE User Guide or the IAR Embedded
Workbench IDE Project Management and Building Guide and the C-SPY®
Debugging Guide, respectively, depending on which IAR Embedded Workbench
product you are using

● Programming for IAR compilers, refer to the IAR C/C++ Compiler Reference
Guide or the IAR C/C++ Development Guide, depending on which IAR Embedded
Workbench product you are using

● Programming for IAR assemblers, refer to the IAR Assembler Reference Guide
● Using the IAR XLINK Linker and library tools, refer to the IAR Linker and Library

Tools Reference Guide
● Using the IAR ILINK Linker and related tools, refer to the IAR C/C++

Development Guide
● Using the IAR DLIB and CLIB libraries, refer to the IAR Embedded Workbench

IDE online help system.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media.

The IAR Systems web site, www.iar.com, holds application notes and other product
information.

Document conventions
This book uses the following typographic conventions:

Style Used for

computer Text that you type or that appears on the screen.

Table 1: Typographic conventions used in this guide
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Preface
parameter A label representing the actual value you should type as part of a
command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

reference A cross-reference within this guide or to another guide.

Identifies instructions specific to the IAR Embedded Workbench IDE
interface.

Identifies instructions specific to the visualSTATE interface.

Identifies helpful tips and programming hints.

Style Used for

Table 1: Typographic conventions used in this guide (Continued)
UVSCL-3

9

10

Document conventions
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE
applications in C-SPY®
This chapter introduces you to state machine debugging using C-SPYLink, a
plug-in solution that makes true high-level state machine debugging of
visualSTATE® applications possible in the IAR C-SPY Debugger.

Product introduction
C-SPYLink bridges visualSTATE and IAR Embedded Workbench® to make true
high-level state machine debugging possible directly in C-SPY, in addition to the
normal C level symbolic debugging.

C-SPYLink consists of two parts:

● Extra code and information generation features in visualSTATE

● A plug-in file for C-SPY and the IAR Embedded Workbench IDE.

FEATURES

C-SPYLink offers the following main features:

● The complete global state of the state machine system can be monitored live

● State machine level breakpoints. Breakpoints can also be set on specific events or
signals

● A choice between execution at nearly full speed with periodic updating of the IAR
Embedded Workbench IDE windows or at maximum speed without window
updates

● No extra user-written support code for communication, configuration of port
protocols, etc., is needed.

REQUIREMENTS

To take full advantage of C-SPYLink, you will need a PC with multi-threading
performance. You will also need:

● A copy of IAR Embedded Workbench with an IDE of version 4.1 or later. You will
find the version number by choosing Help>About>Product Info in the IDE
UVSCL-3

11

12

Installation
● For hardware debugging, you need hardware debug support. Examples include
J-Link® or a general JTAG probe, NEXUS® or hardware emulator support and the
corresponding C-SPY driver for the debug system.

Installation
Support for C-SPY debugging is automatically provided when you install visualSTATE.
The support is implemented as an IAR Embedded Workbench plug-in module,
vs.ewplugin—an XML file that points to a ValidatorCSpy.dll file in the
visualSTATE installation directory. This file exists in three different versions located in
three different subdirectories, to support the different versions of the IAR Embedded
Workbench IDE:

● \visualSTATE 6.n\Bin\ValidatorCSpy.dll (IAR Embedded Workbench
IDE 6.0 and later)

● \visualSTATE 6.n\Bin\EW5\ValidatorCSpy.dll (IAR Embedded
Workbench IDE 5.x)

● \visualSTATE 6.n\Bin\EW4\ValidatorCSpy.dll (IAR Embedded
Workbench IDE 4.x).

This DLL file can interact with the debugger to read and write data on the target
controller or in the C-SPY Simulator. It can also control the execution of the application
on the target hardware or in the simulator.

When visualSTATE is installed it searches for all IAR Embedded Workbench products
that are capable of supporting C-SPYLink and installs the plug-in module in the
cpu_name\common\plugins directory for each product version. In addition, a copy of
the vs.ewplugin file will be placed in the Plugin\ directory of the visualSTATE
installation itself. You can copy this file to other locations if needed.

If you install another IAR Embedded Workbench product version after you have
installed visualSTATE, you must copy this vs.ewplugin file to the IAR Embedded
Workbench cpu_name\common\plugins directory of the new product. Make sure that
the file path between the <dllFile> and </dllFile> tags in the vs.ewplugin file
matches your installation location for visualSTATE. Also make sure that the name of the
ValidatorCSpy file in the vs.ewplugin file reflects your Embedded Workbench
version (see above).

If the visualSTATE installation identifies a IAR Embedded Workbench installation with
a compatible IDE version, it will also install a build integration plugin file
(swtdvs.dll) in the cpu_name\bin directory of the Embedded Workbench
installation. In addition, a copy of the swtdvs.dll file is also available in the Plugin\
directory of the visualSTATE installation. You can copy this file if you have to install it
manually.
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE applications in C-SPY®
C-SpyLink.c

C-SPYLink needs a small amount of C-SPY-specific code to be included in the IAR
Embedded Workbench project.

This support code is collected in a separate source file called CSpyLink.c. It is
automatically generated in the Output directory for the visualSTATE project if
Generate for C-SPYLink is selected on the Coder Options Configuration page in
visualSTATE.

CSpyLink.c can be present in your IAR Embedded Workbench project at all times,
even if the functionality is not used.

Operating overview
The following figure shows the operating principle behind the C-SPYLink plug-in
solution:

Figure 1: C-SPYLink overview

Using C-SPYLink in your development project is very straightforward. Configure
visualSTATE as described in Configuration, page 20, and use the C source files that
visualSTATE generates together with the file CSpyLink.c in your IAR Embedded
Workbench project.

C-SPYLink execution modes
C-SPYLink can operate in distinct execution modes, with different behavior and impact
on real-time performance. You set the execution mode by choosing an instrumentation
UVSCL-3

13

14

C-SPYLink execution modes
level on the visualSTATE>Instrumentation Level submenu (see The visualSTATE
menu, page 23). The available instrumentation levels are:

● None

● Full instrumentation

● Sampling buffer.

C-SPYLink will set one breakpoint in the target hardware system. The breakpoint serves
as a synchronization point for the plug-in module to read data from target memory. This
breakpoint will be overloaded with one or more logical breakpoints, which means that
execution can stop more than once on the breakpoint for each event processing.

NONE

If you choose visualSTATE>Instrumentation Level>None, your application will
execute at full speed, without stops initiated by the plug-in module; the C-SPY windows
are not updated until the execution is stopped. Using the None level, only on-target
breakpoints can be set and recording an execution sequence can only be performed
using the recording buffer. (See On-target breakpoints, page 16 and Execution
sequences, page 18.)

If you use the None instrumentation level, execution will be a little slower and the code
size will increase. The increase in code size can potentially be significant. The number
of allocated breakpoints also affects the execution speed.

Note: Full speed can also be achieved by using the Live capture sampling buffer mode,
see Sampling Buffer, page 15.

FULL INSTRUMENTATION

In Full instrumentation mode, the IDE windows are continuously updated with detailed
information. For each event, you will see which action functions are called and their
argument list. This ensures very fine-grained control over what is happening on the
target controller at any given point in time.

In this execution mode, the synchronization hardware breakpoint is overloaded with
several logical breakpoints. Each time a software breakpoint is hit, data about the system
state is read. The logical breakpoints are located so that information in the IDE windows
about the system is continuously up to date. The continuous stopping and restarting of
execution has a negative impact on runtime performance. This might be a problem in
some cases.

The only extra cost in terms of memory, both ROM and RAM, for this mode is the calls
to the breakpoint function, which are very inexpensive. The actual overhead depends on
the target CPU.
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE applications in C-SPY®
SAMPLING BUFFER

To enable debugging at close to real-time speeds, you can choose to use the Sampling
buffer mode instead.

In Sampling buffer mode, visualSTATE utilizes a buffer on the target hardware to save
information about the last complete event processing and the currently ongoing event
processing. When execution is stopped, the IDE windows are updated to display the
latest information. This information can be accessed during the execution by the
C-SPYLink plug-in module if you use either live capture or periodic capture.

● Live capture

Using the live capture feature, the plug-in module will read the sampling buffer
without stopping the target. Whether this is possible or not depends on the C-SPY
debugger driver and it might include adding a small amount of code (see the
documentation for your Embedded Workbench product).

If the debugger driver does not support the feature, warnings are displayed in the
Debug Log window, and eventually the feature is disabled.

Normally there are two sampling buffers, but with live capture the generated code
will create a third sampling buffer. This requires some extra RAM.

● Periodic capture

Using the periodic capture feature, the plug-in module will stop at pre-configured
intervals. At each stop, the current completed part of the sampling buffer is read.

The Sampling buffer mode is enabled in the visualSTATE Navigator on a per-system
basis. If your visualSTATE project has more than one system that will run in the same
application, you can decide per system if you want to have the sampling buffer
generated.

The C-SPY commands you choose from the visualSTATE>Sampling Buffer submenu
in the IAR Embedded Workbench IDE, however, apply to all systems that were
generated for using a sampling buffer, if there are more than one.

Note: If you use the Sample buffer instrumentation level, execution will be a little
slower and the code size will increase. The increase in code size can potentially be
significant.

Full speed with C level breakpoint support

If normal C level breakpoints have been be set in C-SPY, execution will stop whenever
a breakpoint is hit. When this happens, the visualSTATE plug-in module will update the
affected windows with current system state.

Full speed with C level breakpoint support can be combined with the Sampling buffer
mode, to execute at full speed without periodic capture until the breakpoint is hit. When
UVSCL-3

15

16

State machine breakpoints
the breakpoint is hit you can then enable periodic capture or the Full instrumentation
mode if you wish.

Note: Because C-SPYLink always utilizes one breakpoint for synchronization, the
number of available breakpoints for C level breakpoints can be an issue if your
application executes from ROM or flash memory.

State machine breakpoints
Using C-SPYLink, you can create a sophisticated data breakpoint called state machine
breakpoint by specifying a set of goal states from different parallel regions of your state
machine system. Execution will then stop when the breakpoint states are all active at the
same time. You can also specify an event or a signal as a breakpoint condition.

When a breakpoint is hit, there are three visual clues that indicate that it was a state
machine breakpoint:

● The source window displays a green arrow on the _VS_breakpoint function. This
is a function used by C-SPYLink as a placeholder for the real C-SPY breakpoint
used by visualSTATE to synchronize data, see C-SPYLink execution modes, page
13. (This visual clue is not displayed if the breakpoint is a shared DLIB breakpoint
or ARM EABI semi-hosting breakpoint, see Shared DLIB breakpoints, page 18.)

● The breakpoint number in the Breakpoints window is blinking

● A message that a state machine breakpoint has been hit is displayed in the Debug
Log window.

There are two types of state machine breakpoints: full instrumentation breakpoints and
on-target breakpoints. They have the same features, but different performance. A
breakpoint can hold information about a trigger (event or signal) and state vector before
and after a step.

FULL INSTRUMENTATION BREAKPOINTS

In Full instrumentation mode, all breakpoints will be treated as full instrumentation
breakpoints. They do not take up any extra memory, because the plug-in module handles
all checking of breakpoint conditions. There is no limit to the number of full
instrumentation breakpoints.

ON-TARGET BREAKPOINTS

On-target breakpoints are in a way similar to the sampling buffer. A breakpoint buffer
is created in target memory and a small amount of code is generated to check the
breakpoint conditions.
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE applications in C-SPY®
To allocate the necessary space in target memory, use the Number of breakpoints for
C-SPYLink option on the visualSTATE Coder Options page; see Configuration, page
20. When Full instrumentation mode is disabled, all breakpoints will be regarded as
on-target breakpoints if there is space allocated for the breakpoint buffer.

On-target breakpoints can be used with or without the sampling buffer. Without the
sampling buffer, the C-SPY windows will not be updated when execution stops.

On-target breakpoints can have a status message next to them in the Breakpoints
window.

PRE- AND POST-DEDUCT CONDITIONS

A breakpoint can be set to trigger at two different occasions: before and after an event
or signal has been processed.

● A pre-deduct condition will stop execution before processing (deduction of) a new
event, but after the complete processing of the preceding event. In effect, this means
that it is the result of the previous event processing that will be used as the stop
criteria.

● A post-deduct condition will stop execution after the event processing (deduction)
is complete.

A minor difference between these is that a pre-deduct condition is taken when the trigger
is injected. The important difference is seen when a pre-deduct condition is used in
combination with other conditions, such as a trigger or a second state condition at the
post-deduct node.

If you want the breakpoint to trigger when the execution passes from one specified state
configuration to another specified configuration, you can add the precondition states as
a pre-deduct condition and the postcondition states as a post-deduct condition.

Figure 2: Breakpoint example

The breakpoint in Figure 2, Breakpoint example is triggered when the BackLightOn
state is active. The event ev_BUTTON2 is processed and the resulting state is
BackLightOff.
UVSCL-3

17

18

Execution sequences
See Breakpoints window, page 26, for details about how to set and delete breakpoints.

SHARED DLIB BREAKPOINTS

C-SPYLink normally allocates a breakpoint that is shared by all visualSTATE
debugging features.

If you are using the IAR DLIB runtime environment, you can instead use a shared DLIB
breakpoint, to make visualSTATE share the same breakpoint as the C library code for
debugging.

To use a shared DLIB breakpoint, follow these steps:

1 Open the visualSTATE Navigator.

2 Choose Project>Options>Code Generation.

3 Select the Project in the left-hand pane and open the C-SPYLink page.

4 Select Enable using shared DLIB breakpoint.

For IAR Embedded Workbench for ARM 5.1 and later, there is another shared
breakpoint that can be enabled in a similar manner. Follow the steps above and select
Enable using ARM EABI shared semi-hosting breakpoint.

This allows you to save a breakpoint by overloading a visualSTATE breakpoint on a
shared debug breakpoint.

Execution sequences
To help you to debug state machines, you can record an execution sequence of signals,
events, actions, changes to variables, and more and save the sequence to an XML file.
This XML file can be loaded in the visualSTATE Validator.

Sequences are recorded with one of the following methods:

● Recording buffer

● Sampling buffer

● Full instrumentation.

RECORDING BUFFER

When you record a sequence using a recording buffer, the execution runs at almost full
speed on the target hardware. The target hardware must have enough RAM to record the
sequence.
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE applications in C-SPY®
Allocate a buffer in the visualSTATE Navigator by choosing Project>Options>Code
Generation and set a Recording buffer size on the C-SPYLink page of the dialog box.
See Configuration, page 20.

SAMPLING BUFFER

When you record a sequence using a sampling buffer, the recording is performed by
stopping the execution after each macrostep to read out the sampling buffer. This slows
execution down considerably more than using the recording buffer, but it requires no
extra on-target memory.

FULL INSTRUMENTATION

When you record a sequence using full instrumentation, the execution stops frequently.
This allows reading out sequences with no extra on-target memory required, but
execution is much slower.

To enable recording execution sequences, see Sequences window, page 28.
UVSCL-3

19

20

Configuration
Configuration
Before you can debug your visualSTATE application in C-SPY, you must enable
C-SPYLink in both IAR Embedded Workbench and visualSTATE.

1 In visualSTATE, select the Project in the left-hand pane and choose
Project>Options>Code Generation to open the Coder Options Configuration page.

Figure 3: Configuring visualSTATE coder options

Select the option Generate for C-SPYLink.
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE applications in C-SPY®
2 Select the System you want to debug in the left-hand pane and open the C-SPYLink
page to set C-SPYLink-specific options.

Figure 4: Configuring C-SPYLink options in visualSTATE

The options must be set to the desired values:

Option Description

Enable full instrumentation See Full Instrumentation, page 14. Selected by default.

Enable sampling buffer See Sampling Buffer, page 15. Selected by default.

Enable sampling buffer live readout Enables live capture of trace data. See Sampling Buffer, page
15. Selected by default.

Sampling buffer size The number of elements (events, signals, states, actions,
and transitions) that can be extracted from the sampling
buffer. If your design does not use signals, 32 might be
enough. If your design uses signals and you want full
information from the execution, set this to a higher value.
If the value is too small, there will be a message in the
Debug log window. By default, this option is set to 32.

Table 2: Description of C-SPYLink coder options
UVSCL-3

21

22

Configuration
Click OK to close the dialog box.

3 After you have generated code in visualSTATE, open your IAR Embedded Workbench
project and include the file CSpyLink.c in the project, see C-SpyLink.c, page 13.

Number of visualSTATE breakpoints The desired number of breakpoints. When setting it, mind
possible hardware and CPU restrictions. The value can be
0, but if your application is highly dependent on timing or if
Full instrumentation mode is very slow, reserving space for
breakpoints in the code is better than having C-SPY stop,
read, process, and restart to see if any breakpoints were
hit.
To make breakpoints available also in Sampling buffer
mode, the number must exceed 0. By default, this option is
set to 2.

Enable recording buffer Enables a buffer for recording sequences. See Execution
sequences, page 18. By default, this option is deselected.

Recording buffer size Sets the size (in elements—events, signals, states, actions,
and transitions) of the recording buffer. See Recording
buffer, page 18. By default, this option is set to 1024.

Option Description

Table 2: Description of C-SPYLink coder options (Continued)
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE applications in C-SPY®
4 In the IAR Embedded Workbench IDE, choose Project>Options and enable
C-SPYLink by selecting visualSTATE on the Plugins page in the Debugger category:

Figure 5: Enabling C-SPYLink in IAR Embedded Workbench

The visualSTATE menu
When the IAR Embedded Workbench is connected to a visualSTATE project via
C-SPYLink, an additional, visualSTATE-specific menu becomes available in C-SPY.

Figure 6: visualSTATE menu in C-SPY

The visualSTATE menu contains the following commands:

Menu command Description

View>Actions Displays the Actions window, where you can view the action functions
that are executed as a result of event processing; see Actions window, page
25.

Table 3: Description of visualSTATE menu commands
UVSCL-3

23

24

The visualSTATE menu
View>Breakpoints Displays the Breakpoints window, where you configure state machine
breakpoints; see Breakpoints window, page 26.

View>Graphical
Animation

Displays the Graphical Animation window, with an animation of the
execution of the state machine; see Graphical Animation window, page 27.

View>Sequences Displays the Sequences window, where you set up the recording of
sequences of events, actions, etc; see Sequences window, page 28.

View>Signal Queues Displays the signal queues of the application; see Signal Queues window,
page 29.

View>States Displays the States window which shows the complete system state
configuration; see States window, page 30.

View>Triggers Displays the Triggers window with all event and signal triggers in the
project; see Triggers window, page 31.

Instrumentation Level None
Disables all debugging features except on-target breakpoints and the
recording buffer.
Sampling Buffer
Generates data to the sampling buffer; see Sampling Buffer, page 15.
Full
Enables Full instrumentation mode, which updates the States window
continuously; see Full Instrumentation, page 14.

Resolution Specifies what is stored in the sampling and recording buffers in target
memory and—if you are using Full instrumentation—what variables that
will be read out. If the amount of memory available is too small or if the
Full instrumentation execution slows down too much, deselect one or
more of the information types.

Sampling Buffer Live Capture
Enables live capture, which reads the sampling buffer without stopping
the target. With live capture, the generated code will create a third
sampling buffer. This requires some extra RAM. It is not supported by all
C-SPY drivers. See Sampling Buffer, page 15.
Periodic Capture
Enables periodic capture, which stops execution at a configurable
interval, displays the content of the sampling buffer and then restarts
execution again. See Sampling Buffer, page 15.
Capture Delay
Sets the minimum interval between each time the debugger stops and
reads data from the hardware sampling buffer when periodic capture is
used. The default interval is 3 seconds.

Menu command Description

Table 3: Description of visualSTATE menu commands (Continued)
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE applications in C-SPY®
visualSTATE-specific windows in C-SPY
When the IAR Embedded Workbench is connected to a visualSTATE project via the
C-SPYLink plug-in solution, a visualSTATE-specific set of windows becomes available
from the visualSTATE menu in the IAR Embedded Workbench IDE. These are:

● the Actions window
● the Breakpoints window
● the Graphical Animation window
● the Sequences window
● the Signal Queues window
● the States window
● the Triggers window.

ACTIONS WINDOW

The Actions window—available from the visualSTATE>View menu—displays:

● the action functions that are executed as a result of event processing (with
parameters but not with variable arguments) and the event or signal that caused the
processing

● transitions

● assignments (internally generated action functions).

Sequence The commands on this submenu operate on the Sequences window, see
Sequences window, page 28.
Recording Buffer
Enables a sequence buffer in target memory. Select this option to be able
to record sequences without stopping execution when you are not using
Full instrumentation.
Record All Systems
Creates a new recording sequence in the Sequences window and starts
the recording for all systems.
End All Recording
Ends all ongoing recordings of execution sequences in the Sequence
window.
Delete All
Deletes all execution sequences in the Sequence window.

Menu command Description

Table 3: Description of visualSTATE menu commands (Continued)
UVSCL-3

25

26

visualSTATE-specific windows in C-SPY
By right-clicking on a node in the window, you can chose to expand the complete
hierarchy.

Figure 7: Actions window

When single stepping through the visualSTATE event processing loop in Full
instrumentation mode, the window is updated for each completed microstep—that is,
every time “something happens”, for example when a transition occurs, an action is
performed etc. For information about visualSTATE macrosteps and microsteps, see the
visualSTATE® User Guide.

BREAKPOINTS WINDOW

The Breakpoints window—available from the visualSTATE>View menu—is used for
configuring state machine breakpoints.

Figure 8: Breakpoints window

To create a state machine breakpoint, right-click on a system and choose
New Breakpoint from the context menu. States, events, and signals can be dragged
from open windows as conditional triggers to the pre-deduct and post-deduct nodes for
the breakpoint, see Pre- and post-deduct conditions, page 17.

The breakpoint can be enabled and disabled using the check box. Breakpoints can be
deleted by right-clicking on the breakpoint node. When the debug session is closed, the
breakpoint configuration will be remembered until the next session.
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE applications in C-SPY®
GRAPHICAL ANIMATION WINDOW

The Graphical Animation window—available from the visualSTATE>View
menu—shows an animation of the execution of the state machine directly in the original
design diagram, as it looks in the visualSTATE Designer. This feature can be active for
the specific system or systems you choose.

Figure 9: Graphical Animation windows

Red states indicate newly entered states. Blue states indicate states that were left as the
result of the last event processing.
UVSCL-3

27

28

visualSTATE-specific windows in C-SPY
SEQUENCES WINDOW

The Sequences window—available from the visualSTATE>View menu—shows the
execution sequences set up for recording, see Execution sequences, page 18. To create
a new sequence, right-click a system and choose New Sequence on the context menu.

Figure 10: Sequences window

To start recording, right-click a sequence and choose Start Recording on the context
menu. If you are recording using the recording buffer, no data is updated until the buffer
in target memory is full or until you stop the recording by right-clicking a sequence and
choosing End Recording on the context menu. If you are recording using the sampling
buffer or using full instrumentation, the sequence data is continuously updated.

If your recording is very long, a node consisting of three periods (...) will appear in
the middle of a sequence. Right-click it and choose Expand All on the context menu to
see all nodes. Nodes corresponding to up to 1,000 underlying steps are displayed with
the ... node in the middle—500 steps on each side. Nodes corresponding to a
maximum of 100,000 underlying steps can be recorded.

To save a recorded sequence, right-click the sequence and choose Save on the context
menu. For information about the commands on the visualSTATE>Sequence submenu,
see The visualSTATE menu, page 23.
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE applications in C-SPY®
SIGNAL QUEUES WINDOW

The Signal Queues window—available from the visualSTATE>View menu—shows
the status of the signal queue if you are single stepping through the visualSTATE event
processing loop.

Figure 11: Signal Queues window

Normally information about system state is collected after each macrostep, which
means that the signal queue is empty by definition. For information about visualSTATE
macrosteps and microsteps, see the visualSTATE® User Guide.
UVSCL-3

29

30

visualSTATE-specific windows in C-SPY
STATES WINDOW

The States window—available from the visualSTATE>View menu—gives a snapshot
of the complete system state configuration. Right-click on a node in the window to
expand the complete hierarchy.

Figure 12: States window

Red arrows indicate the states that have become active since the last window update. In
Full instrumentation mode this is the same as the states that are the result of the last
complete event processing step.

Blue arrows indicate the states that were left as the result of the last complete event
processing (macrostep). A blue arrow leaving a state and a red arrow entering the same
state indicates either:

● The state has an internal transition or self-transition that triggered in the event
processing

● The state is already active and was not deactivated by the last event processing. If
Full instrumentation mode is enabled and you are single-stepping through the
visualSTATE event processing loop, the States window is updated for each
completed microstep.

The difference here between Sampling buffer mode and Full instrumentation mode is
that the sampling buffer is only updated occasionally, but when it is updated, the update
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE applications in C-SPY®
is complete. In Full instrumentation mode, the window is updated continuously. See Full
Instrumentation, page 14.

Note: The States window is a simplified representation of your state machine design.
To see the activity directly in the design model as it looks in the visualSTATE Designer,
choose visualSTATE>View>Graphical Animation.

TRIGGERS WINDOW

The Triggers window—available from the visualSTATE>View menu—shows all
events and signal triggers for the systems that have C-SPYLink enabled.

Figure 13: Triggers window

Events and signal triggers can be dragged and dropped as event conditions on
breakpoints.

Examples of using C-SPYLink
This section contains examples to help you getting started with C-SPYLink.

EXECUTION

If your target hardware still has RAM available for a sampling buffer when your
application has been compiled with C-SPYLink support, choose
visualSTATE>Instrumentation Level>Sampling Buffer but deselect
visualSTATE>Sampling Buffer>Periodic Capture, for an easy-to-follow example of
how C-SPYLink works. Then:

● Run your application as usual and try stopping it from time to time or set a
breakpoint, to see the current system status as updated in the States window.
Running in Sampling buffer mode but without periodic capture results in the
smallest impact on real-time performance.

● When the execution is stopped, choose visualSTATE>Sampling Buffer>Periodic
Capture. Choose visualSTATE>Sampling Buffer>Capture Delay to fit your
UVSCL-3

31

32

Examples of using C-SPYLink
application’s behavior. The default delay is 3 seconds. The restart the execution to
see the result.

● Select visualSTATE>Instrumentation Level>Full. You will now get continuous
updating in the States window. The performance will be slower in this mode.

If your application works by periodically inserting events into the visualSTATE event
queue at intervals faster than approximately once per second or once per 0.5 seconds,
you might experience a slowdown in your application’s response. To change this you
can, for example, statically or dynamically lower the frequency of event generation.

WORKING WITH STATE MACHINE BREAKPOINTS

For an example of how state machine breakpoints work, follow these steps:

1 Enable support for both Full instrumentation mode and Sampling buffer mode on the
visualSTATE Coder Options page, as described in Configuration, page 20.
Breakpoints are available in Sampling buffer mode if you set the number of
breakpoints to more than 0.

2 Select Full or Sampling Buffer from the visualSTATE>Instrumentation Level
submenu.

3 Choose visualSTATE>View>Breakpoints to open the Breakpoints window and make
sure you have windows open that display the kinds of breakpoint triggers you want to
use. In this example the States window will be used.

4 Create a new breakpoint by right-clicking on the system name node in the Breakpoints
window:

Figure 14: Setting a new breakpoint
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Debugging visualSTATE applications in C-SPY®
The new breakpoint will look like this:

Figure 15: Adding conditional triggers to breakpoint

The breakpoint can be enabled and disabled using the check box. It can be set to trigger
at two different occasions: before and after an event or signal has been processed. See
Pre- and post-deduct conditions, page 17.

5 Add conditional triggers to it by dragging elements from the other windows. For
instance, create a post-deduct state condition by dragging one or more states from the
States window to the post-deduct node of the breakpoint:

Figure 16: Creating a post-deduct state condition
UVSCL-3

33

34

Troubleshooting
6 Choose Debug>Go to start the execution and watch what happens when the breakpoint
is hit.

When you have examined the state of the system, you can restart execution as usual.

Troubleshooting
This is a short list of issues that might arise:

● If code is running from flash memory and the hardware or the low-level debug
driver does not support code breakpoints in flash memory, Full instrumentation
mode and other breakpoint-dependent features will not work. Instead, build your
application to execute in RAM if you need to use breakpoints.

● If the available breakpoints are already used by other C-SPY functionality, the
plug-in module will not function properly.

Here are some examples of breakpoint usage that are not obvious:

● I/O emulation in C-SPY needs one breakpoint to function properly. If you are
using the DLIB runtime environment, you can make an extra breakpoint
available by enabling the shared DLIB breakpoint or ARM EABI semi-hosting
breakpoint, see Shared DLIB breakpoints, page 18. If there is no breakpoint
available, a workaround is to turn the I/O emulation off on the Linker options
page and link your own low-level implementation of the functions putchar and
getchar if there are calls to any standard C library I/O in your application.

● The Run to main option on the debugger options Setup page requires a
breakpoint. Deselect this option.

● Some other C-SPY plug-in modules also need to set a breakpoint. Disable all
other plug-in modules and try again.
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Index

Index
A
Actions window . 25
ARM EABI shared semi-hosting breakpoints 18
assumptions, programming experience 7

B
breakpoints

ARM EABI shared semi-hosting 18
deleting . 26
enabling . 26
full instrumentation . 16
hardware . 14
on-target. 16
plug-in synchronization . 14
restrictions on number . 16
shared DLIB . 18
state machine . 16

Breakpoints window . 26

C
C level breakpoint support, at full speed 15
capture delay. 24
Coder Options (visualSTATE) . 20
component overview. 11
conventions, typographic . 8
copyright notice . 2
CSpyLink.c (IAR Embedded Workbench support code). . . 13
C-SPY windows

Actions. 25
Breakpoints . 26
Graphical Animation . 27
Sequences . 28
Signal Queues . 29
States . 30
Triggers . 31

C-SPYLink
component overview . 11
configuring in visualSTATE. 21
enabling in Embedded Workbench. 23
enabling in visualSTATE . 20
installation . 12
operating overview. 13
requirements for using . 11

D
debugging at real-time speed . 14–15
disclaimer . 2
DLIB breakpoints . 18
document conventions. 8
documentation

other documentation . 8
this guide . 7

E
edition, of this guide . 2
Enable full instrumentation (visualSTATE option) 21
Enable recording buffer (visualSTATE option) 22
Enable sampling buffer live readout (visualSTATE option) 21
Enable sampling buffer (visualSTATE option) 21
event processing, complete information about 15
examples . 31
execution

stopping after event processing 17
stopping before event processing 17

execution modes . 13
execution sequences . 18

F
Full instrumentation (execution mode) 14

breakpoints . 16
enabling . 21
UVSCL-3

35

36
recording a sequence using . 19
troubleshooting . 34

full speed with C level breakpoint support 15

G
Generate for C-SPYLink (visualSTATE option) 20
getting started . 31
Graphical Animation window . 27

H
hardware breakpoints . 14

I
IDE windows, continuous updating of 14
installation . 12
instrumentation levels . 13–15

L
live capture of sampling buffer data 15

M
memory space for state machine breakpoints 17, 22
microsteps, monitoring . 26

N
None (instrumentation level). 14
Number of visualSTATE
breakpoints (visualSTATE option) 22

O
on-target breakpoints . 16

operating overview . 13
overview of C-SPYLink

components . 11
operation . 13

P
part number, of this guide . 2
performance, maximizing . 31–32
periodic capture of sampling buffer data 15
plug-in files

swtdvs.dll. 12
ValidatorCSpy.dll . 12
vs.ewplugin . 12

post-deduct conditions . 17
prerequisites, programming experience. 7
pre-deduct conditions . 17
programming experience. 7
publication date, of this guide . 2

R
recording buffer . 18

enabling . 22
Recording buffer size (visualSTATE option). 22
Recording Buffer (Sequence window) 25
registered trademarks . 2
requirements for using C-SPYLink. 11
runtime performance, slow . 14

S
Sampling buffer . 15
sampling buffer data

live capture of . 15
periodic capture of . 15

Sampling buffer live readout (instrumentation level)
enabling . 21

Sampling buffer size (visualSTATE option) 21
UVSCL-3

visualSTATE C-SPY®Link
User Guide

Index
Sampling buffer (execution mode) 15
enabling . 21
recording a sequence using . 19

Sequences window . 28
sequences, recording. 18
shared DLIB breakpoints . 18
Signal Queues window . 29
signal triggers, displaying . 31
state machine breakpoints . 16

allocating space for . 17, 22
configuring. 26
examples . 32

States window. 30
swtdvs.dll (Embedded Workbench plug-in file) 12
system state configuration. 30

T
trademarks . 2
Triggers window . 31
troubleshooting . 34
typographic conventions . 8

U
updating windows continuously . 14

V
ValidatorCSpy.dll (visualSTATE plug-in file) 12
version number, of this guide . 2
visualSTATE Coder Options . 20
visualSTATE menu . 23
_VS_breakpoint function . 16
vs.ewplugin (Embedded Workbench plug-in file) 12

W
windows, continuous updating of . 14

Symbols
_VS_breakpoint function . 16
UVSCL-3

37

	Contents
	Figures
	Preface
	Who should read this guide
	How to use this guide
	Other documentation
	Document conventions

	Debugging visualSTATE applications in C-SPY®
	Product introduction
	Features
	Requirements

	Installation
	C-SpyLink.c

	Operating overview
	C-SPYLink execution modes
	None
	Full Instrumentation
	Sampling Buffer
	Full speed with C level breakpoint support

	State machine breakpoints
	Full instrumentation breakpoints
	On-target breakpoints
	Pre- and post-deduct conditions
	Shared DLIB breakpoints

	Execution sequences
	Recording buffer
	Sampling buffer
	Full instrumentation

	Configuration
	The visualSTATE menu
	visualSTATE-specific windows in C-SPY
	Actions window
	Breakpoints window
	Graphical Animation window
	Sequences window
	Signal Queues window
	States window
	Triggers window

	Examples of using C-SPYLink
	Execution
	Working with state machine breakpoints

	Troubleshooting

	Index

