
GSVS-1

Getting Started
with IAR visualSTATE®

GSVS-1

COPYRIGHT NOTICE
© Copyright 2009 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of
IAR Systems AB. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a
license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information
contained herein is assumed to be accurate, IAR Systems assumes no
responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses,
costs, charges, claims, demands, claim for lost profits, fees, or expenses of any
nature or kind.

TRADEMARKS
visualSTATE, IAR Systems, IAR Embedded Workbench, and the IAR Systems
logotype are trademarks or registered trademarks owned by IAR Systems AB.

Unified Modeling Language and UML are registered trademarks or trademarks of
the Object Management Group, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their
respective owners.

EDITION NOTICE
First edition: October 2009

Part number: GSVS-1

This guide applies to version 6.3 and later of IAR visualSTATE®.

Internal reference: IJOA

Contents
Preface ... 7

Who should read this guide ...7

Other documentation ..7

Online help ..7

Recommended web sites ...8

Document conventions ...8

Typographic conventions ..8

Naming conventions ..8

Introduction .. 11

The toolset ..11

Important features and advantages11

High-level design ..11

Automatic code generation from a design model12

Simulation/validation on a design model12

Formal model checking on a design model12

Model debugging on target hardware ..13

UML (Unified Modeling Language) ...13

Natural interrupt handling ...14

Easy integration with an RTOS ...14

Prototyping a design before having the hardware14

Asynchronous event handling ...14

Basics and concepts .. 15

Control logic vs. data manipulation and device drivers 15

Code required for an application ..16

The state machine model ...17

States ...17

Events ..18

Transitions ...18

Actions ...19
GSVS-1

Contents 3

Supported expression syntax ...19

Primitives to express guard conditions on transitions19

State machine hierarchy ..20

Terminology ...20

Getting started .. 23

The development cycle ...23

Hierarchy ..23

Project examples ...25

Creating a workspace ..25

Setting options ..26

Specifying the output directory for generated code27

Reloading files in the Navigator ...27

Designing your model ... 29

Start using the Designer ...29

Create your first statechart ..30

Create a state ...30

Create a transition ..30

Create an initial state ...32

Create an action function to use with a transition32

Composite states ...34

Create a composite state consisting of concurrent regions34

Create a composite state consisting of mutually exclusive sub-

states ..34

Some statechart diagram examples35

Transition triggered by external events35

Transition guarded by a Boolean condition35

Entry and exit reactions ...36

Testing your model ... 37

Validating your model ..37

Graphical simulation ...37

Testing your model in the target application37

Verification ...38
GSVS-1

4 Getting Started
with IAR visualSTATE

Verifying your model ..38

Tracing your project ...39

C code needed for your model ... 41

Generating code from statecharts ...41

Completing your application ..41

Coder-generated code ..41

User-written code ..42

Integrating the C files ..42

Example of code for event handling ..43

Example of visualSTATE API code ...44

Execution ...45

Understanding the visualSTATE control logic code46

Table-based code generation ...46

Readable code generation ..48

Additional features .. 51

Documenting your project ..51

Prototyping ...52
5

GSVS-1

Contents

GSVS-1

6 Getting Started
with IAR visualSTATE

Preface
WHO SHOULD READ THIS GUIDE
You should read this guide if you want to get started using visualSTATE® without
first having to read all the reference information, included in PDF format. You
should have working knowledge of:

● The C programming language

● Basic principles of state/event modeling

● Application development for embedded systems

● The operating system of your host computer.

Refer to the visualSTATE Reference Guide, the IAR visualSTATE, and the
visualSTATE Concept Guide for detailed information about the development tools
incorporated in visualSTATE.

OTHER DOCUMENTATION
The visualSTATE development tools are described in a series of guides. For
information about:

● Installing the visualSTATE suite, refer to the visualSTATE Installation Guide
● The basic concepts and philosophy behind visualSTATE, refer to the

visualSTATE Concept Guide
● Hands-on tutorials of using visualSTATE, refer to the visualSTATE Quick

Start Tutorial
● Information about the menus, dialog boxes and windows available in the

visualSTATE graphical user interface, refer to the visualSTATE User Guide
● Detailed reference information about the constructs, elements, and principles

of state machine modeling, refer to the visualSTATE Reference Guide
● Using the visualSTATE APIs, refer to the visualSTATE API Guide.

All of these guides are delivered in hypertext PDF format on the installation
media. Note that additional documentation might be available from the Help menu
depending on your product installation.

Online help

The visualSTATE Navigator, Designer, and Validator applications offer online
help. Open the Help menu or press the F1 key to access the online help.
GSVS-1

Preface 7

To display online help for options in the Navigator Settings dialog box and
Navigator Project>Options dialog boxes, select the option and right-click, or
press Shift+F1.

Recommended web sites
● The IAR Systems web site, www.iar.com, holds application notes and other

product information.

● The web site of the Object Management Group, www.uml.org, contains UML
specifications, articles about UML, and other resources.

DOCUMENT CONVENTIONS
When referring to a directory in your product installation, for example
visualSTATE 6.n\Doc, the full path to the location is assumed, for example
c:\Program Files\IAR Systems\visualSTATE 6.n\Doc.

Typographic conventions

This guide uses the following typographic conventions:

Naming conventions

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Style Used for

computer • Source code examples and file paths.
• Binary, hexadecimal, and octal numbers.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

<filename>.<ext> A file generated by visualSTATE Coder.

Helpful tips and programming hints.

Warnings.

Brand name Generic term

IAR visualSTATE visualSTATE

IAR visualSTATE Navigator Navigator

IAR visualSTATE Designer Designer
GSVS-1

8 Getting Started
with IAR visualSTATE

IAR visualSTATE Verificator Verificator

IAR visualSTATE Validator Validator

IAR visualSTATE Coder Coder

IAR visualSTATE Documenter Documenter

IAR visualSTATE Basic API Basic API

IAR visualSTATE Expert API Expert API

IAR visualSTATE Expert DLL Expert DLL

IAR visualSTATE project project

IAR visualSTATE system system

Brand name Generic term
9

GSVS-1

Preface

GSVS-1

10 Getting Started
with IAR visualSTATE

Introduction
THE TOOLSET
visualSTATE® is a toolset for design, test, formal verification (model checking),
code generation, and high-level hardware debugging of state/event systems in
general and state machines in particular. visualSTATE is based on the state
machine subset of UML (Unified Modeling Language), which combines the
Mealy and Moore notations with the concept of hierarchy and concurrency.

visualSTATE consists of these fully integrated tools:

Navigator: A project management tool for the overall handling of visualSTATE
projects, from model design over test and simulation to code generation and
documentation of projects. With the Navigator you access and activate the other
modules of the visualSTATE software, and set options for the Verificator, Coder
and Documenter.

Designer: An application for designing statechart diagrams using the UML
notation.

Verificator: A test tool for dynamic formal verification of models created with the
Designer.

Validator: An application for simulating, analyzing, and debugging models
created with the Designer. With the Validator you can test the functionality of your
design. Using te RealLink facility, you can test visualSTATE models in a target
application, and using the C-SPYLink plug-in, you can perform high-level state
machine debugging of visualSTATE applications in the IAR Embedded
Workbench® C-SPY Debugger.

Coder: The Coder can automatically generate code on the basis of models created
with the Designer. The automatically generated code must be combined with a
visualSTATE application programming interface (API) and manually written
code.

Documenter: A tool for creating an up-to-date documentation report on your
project, including design, tests, and code generation.

IMPORTANT FEATURES AND ADVANTAGES

High-level design

Graphical design tools can be cumbersome to work with as they force you to
specify even very simple things, but the UML state machine subset lets you design
state machines at the right abstraction level. Because the UML state machine
GSVS-1

Introduction 11

subset incorporates hierarchy and concurrency, you can model concurrent
behavior without necessarily having to involve more than one task or process if an
operating system is used. It might even eliminate the need for an operating system
in some situations.

The high level of design also makes it easier to discuss the control logic on the
design model level with non-programmers, such as product managers.

Automatic code generation from a design model

By automatically generating the code for your state machine logic, you avoid the
hand coding of complicated switch and if statements, or the restrictions
imposed by a function pointer table approach.

The generated code makes no assumptions about any compiler-specific features
except ISO/ANSI conformance, and uses no construct that is not fully
ISO/ANSI-conformant.

You can configure the visualSTATE Coder to use compiler-specific keywords to
place state machine code and data in memory areas of your choice. Size-of-data
entities can be forced to 16 or 32 bits to match your target architecture for speed
purposes, even if the model only requires 8-bit representation. You can configure
the Coder in many different ways to balance the needs of the MCU target, the
compiler, and coding standards.

The code generated by visualSTATE focuses on the control logic of a state
machine system. This part of the code should not be modified by hand, for several
reasons of which the most important is that the design is always the only explicit
representation of the control logic. In that way, the model and the executing code
always stay synchronized.

Modifying state machine code by hand always carries the risk of introducing
hard-to-find errors in the internal bookkeeping of states and conditions.

Simulation/validation on a design model

With design level simulation, you can start testing your solution as soon as you
have saved the very first version of it. In this way you can find possible errors and
omissions early in the development project, even before you have any hardware
available.

Formal model checking on a design model

Formal verification helps you to identify possible problems in your code that are
very hard to test for. A state might, for example, be impossible to exit after entering
and exiting it a specific number of times, because of some blocking transition
GSVS-1

12 Getting Started
with IAR visualSTATE

condition. If this was unintentional, it can be very difficult to find the problem
using traditional test methods.

Model debugging on target hardware

Debugging state machine code on C level is often difficult, because too many
implementation details can obscure the design. With IAR visualSTATE you can
debug on target hardware with feedback directly in the design diagrams—to see
exactly which state configuration is active and which transition was taken to enter
the state configuration.

If you also use IAR Embedded Workbench you can choose to use the C-SPYLink
facility to get high-level design model feedback directly in the IAR C-SPY
Debugger. C-SPYLink includes graphical animation in the state diagram when it
executes, the possibility to set breakpoints at state machine level instead of C level,
and trace and log functionality.

If you use a different build chain or cannot use a hardware debug solution with
C-SPY, you can use the RealLink facility to communicate state machine data over
a separate communication channel, for example, an RS232 port.

Support for high-integrity systems

visualSTATE is suited for many design tasks involving functional safety. For
example, the IEC-61508 standard on functional safety explicitly recommends
state machines as a design method to meet higher safety integrity levels.

By designing a system of state machines using visualSTATE, you can take
advantage of the formal verification to find issues in your design that are virtually
impossible to fully cover with test suites. For example, you can find dead-end
situations, unreachable parts of the design, never consumed input, etc. See
Verification, page 38.

UML (Unified Modeling Language)

The UML notation for state machines is used in visualSTATE. This notation is
based on hierarchical state machines, and concurrency can be used at any level in
the state hierarchy. Variables are introduced and can be used as conditions, or be
modified within the design. Actions can be used on transitions, and as entry and
exit reactions. Some memory can be applied to the state machines.

You can read more about the UML concepts in the OMG Unified Modeling
Language Specification, version 2.3, February 2009, available from
www.omg.org.
13

GSVS-1

Introduction

Natural interrupt handling

The visualSTATE runtime execution engine deals with events—abstractions of
occurrences in the environment. This makes it natural to map an interrupt to a
visualSTATE event, if the interrupt should have influence on the state machine.

A typical visualSTATE application runs the state machine engine as part of the
main loop, if there is an event to process.

Exactly how the interrupt routine communicates with the state machine engine is
up to you. But implementation methods range from letting the interrupt routine set
a flag that the main loop can detect, to using a fully featured RTOS queue or
semaphore.

The structure of your application is the same as usual. If an interrupt service
routine generates input to the system of state machines, the routine simply puts the
appropriate event into the state machine event queue and returns.

Easy integration with an RTOS

Use visualSTATE to design the control logic of a task, or part of a task. Integrate
your tasks with their respective priorities into the system with the RTOS just as if
you were coding the application by hand.

To split visualSTATE code to run in different tasks, split the state machines into
different systems. A visualSTATE system is a collection of state machines that are
designed as a unit, to run as a unit—possibly rather tightly coupled to each other.
An RTOS application can contain any number of systems, and systems can
communicate on task level using the available RTOS primitives.

Systems can be assigned arbitrarily to RTOS tasks, so that a task can actually
house more than one system at a time.

Prototyping a design before having the hardware

You can easily integrate code generated by visualSTATE with an application
developed using a RAD tool like Altia Design, Microsoft® Visual Basic®,
Microsoft® Visual C++®, Borland® Delphi™, or any other GUI toolkit of your
choice.

Asynchronous event handling

Asynchronous events are handled if they are forwarded to the visualSTATE
engine. This is usually done by putting them into the event queue. As long as an
event is in the event queue, it will eventually be processed by the visualSTATE
control logic.
GSVS-1

14 Getting Started
with IAR visualSTATE

Basics and concepts
CONTROL LOGIC VS. DATA MANIPULATION AND
DEVICE DRIVERS
An embedded application is typically a combination of control logic, data
manipulation, and device driver code.

Typically, device drivers for a specific target processor are written only once. They
might then become part of a library which remains more or less constant from
project to project. However, the control logic part that implements the features and
specification of a given product might change dramatically from project to project.

Using visualSTATE®, you can develop control logic for event-driven systems
based on state machines, where events input from external devices are processed
by the control logic. Processing the events ultimately leads to actions on the
environment. These actions will often interact with the device drivers for the
hardware.

1 The externally generated input is processed by the device driver, by way of
interrupts or polling.

2 The driver informs the visualSTATE runtime execution engine, which acts
according to the state machine model (changes states, executes actions etc).

3 As a result of the state machine processing, actions that use device drivers for
output can be called.
GSVS-1

Basics and concepts 15

This figure summarizes the parts that visualSTATE handles in an embedded
application:

CODE REQUIRED FOR AN APPLICATION
Piecing your application together with visualSTATE® as your main control logic
engine is easy. Basically, you still have full control over the structure of your
application code. You integrate the code created by visualSTATE into the
application by calling the appropriate visualSTATE API functions.

In a visualSTATE embedded application, these categories of code are required:

● visualSTATE Coder-generated code

● visualSTATE API code

● Code written by you for event preprocessing, event queues, device drivers,
action functions, and code for calling the functions in the visualSTATE API.

Coder-generated code is code that is generated automatically by the visualSTATE
Coder on the basis of statechart designs created in visualSTATE Designer. Before
the Coder-generated code is used in target, it must be integrated with the
user-written code by means of the visualSTATE API.

 Two types of Coder-generated code exist:

● Table-based code, which is extremely compact

● Human-readable C code.

Which representation you choose depends on your specific application
requirements regarding speed and size, and how important it is that you can
examine the generated code manually.

Action sequences are handled entirely by visualSTATE. However, you must write
the code for each of the action functions.
GSVS-1

16 Getting Started
with IAR visualSTATE

In other words, to create a final embedded application using
visualSTATE-generated code, you must:

● Manually write code for event preprocessing (device drivers), event queues (if
needed), and action functions

● Integrate the code written by you with the Coder-generated code by means of
the visualSTATE API, a set of files that provide an interface between the two
types of code.

For a detailed description of the APIs, refer to the visualSTATE API Guide.

THE STATE MACHINE MODEL
A state machine is an abstraction of an application, created by drawing statechart
diagrams. A state machine has several important design advantages, being a visual
representation which is easy to create, understand, communicate, and change.

Using statecharts allows you to develop the specification and application
hand-in-hand in a natural, iterative fashion.

The state machine model is widely used to describe discrete systems, where the
current behavior is a result of previously occurring events. At any given point in
time, the system is in one of several possible states. The system can change states
depending on input from the environment. As a state change occurs, actions can
be performed on the environment.

A state machine is generally defined by a finite set of:

● States

● Events

● Transitions

● Actions

● Primitives to express guard conditions on transitions.

States

A state represents the current situation in the system. A state in a state machine is
an abstract mapping of one or more states. An electronic device subsystem can, for
example, be On or Off, a door can be Open, or it can be ClosedAndUnlocked, etc.
A state machine does not have to map all the possible physical states of the
underlying hardware, only the states that are important to the model. In a state
machine diagram, a state is usually drawn as a rectangular shape, or a circle. In
visualSTATE an ordinary state is drawn as a rectangle or a square. There is also a
set of states with a special meaning that are drawn as circles.
17

GSVS-1

Basics and concepts

Events

An event is an input message to the state machine. An event is typically something
that happens in the outside environment that the state machine logic must know.
An event can cause the state machine to change states and to perform an action of
some sort, but only if the state machine is in a state where the event has meaning.
For example, an event called TurnOn is probably not meaningful if a device is
already in the On state, but has meaning if the state machine is in the Standby state.
Thus, a state machine event is an abstraction of one or more real-world events or
messages.

Transitions

A transition is a change from one state to another, usually triggered by an event.
Transitions are drawn as directed arcs, labeled with an event. If the state machine
is in the start state of a transition and the event that is labeled on the transition
occurs, the state machine will change states to the destination state.

In visualSTATE, a transition must always have a trigger, implicitly or explicitly.

The description of a visualSTATE transition is divided into a condition side and an
action side. The condition side of a transition describes which conditions must be
satisfied for the action side to be executed. The action side of a transition describes
all the actions that will be executed if the conditions on the condition side are
satisfied.

The condition and action sides are separated by a slash (/), for example:

E1() [(x==0)] A !B / [x=A1()] A2() D^S1
GSVS-1

18 Getting Started
with IAR visualSTATE

The condition side is to the left of the slash and action side of the transition is to
the right of the slash.

Actions

An action is an activity to be performed by the state machine at a given point in
time. An action is something that the state machine must perform on the
environment. It can be a simple expression or a complete function. Actions are
often used for manipulating hardware. Actions are associated with transitions or
with entering or exiting a specific state.

Supported expression syntax

A visualSTATE expression can be any valid C expression of the C operators,
identifiers, floating-point and integer constants, with these limitations:

These operators are not supported:

. (member)

-> (member by pointer)

* (indirection (dereference))

(type) (cast)

sizeof

?: (ternary)

, (comma)

These elements of the C syntax are not supported either:

● long, double, and float constants

● suffixes for integer constants

● octal integer constants

● multiple assignments or increments/decrements in the same expression.

These limitations also apply:

● An assignment and increment/decrement operator must be placed first in the
expression, not in the middle.

● Event arguments of void* type can only be passed to action function
arguments.

Primitives to express guard conditions on transitions

A guard condition is a Boolean expression that must be true for the transition to be
taken. The fact that Boolean expressions can be used on transitions implies that
you can somehow manipulate data in the state machine as well, and in a
19

GSVS-1

Basics and concepts

visualSTATE design you can create and manipulate variables of integer types and
floating-point types to extend the expressiveness of the state machine.

State machine hierarchy

visualSTATE is used for modeling hierarchical state machines as described in the
UML standard. Thus, a state machine can contain other state machines. A state
that in itself contains one or more state machines is called a superstate.

If a superstate is composed of mutually exclusive substates, it corresponds to one
state machine. If the superstate is composed of concurrent regions, each region
corresponds to a state machine. Each of these state machines can contain other
state machines.

TERMINOLOGY
You should be familiar with some of the most commonly used terms in
visualSTATE. These terms are listed in the table below. You can read more about
the individual concepts in the visualSTATE Reference Guide.

The Navigator workspace is a graphical environment for handling a collection of
projects, systems, and statechart files. The workspace contains session-specific
information.

A project is a collection of systems. Each project is capable of containing several
statecharts. The project also contains global elements. The project data is stored in
a project file which has the filename extension vsp.
GSVS-1

20 Getting Started
with IAR visualSTATE

A system is a collection of one or more statechart files. If state/event models are
grouped in the same system, they can be synchronized to each other via state
conditions. Thus, their behavior can be affected by the behavior of the other
state/event models within the same system.

Statechart files contain the logic information about the designed model, for
example states and transitions. The statechart file represents a way of
modularizing a visualSTATE system. When a system is split into more than one
statechart file, it is possible to gain the benefits of team development on the same
system. The filename extension is vsr.

Superstates are states that in themselves contain one or more state machines.

A topstate is the topmost state in a state hierarchy.

Composite states consist of concurrent regions, or mutually exclusive substates.

Regions define concurrent subsystems and represent hierarchical state machines.

A topstate region is a region within the topmost concurrent state.

A device driver controls a device and acts like a translator between the device and
programs that use the device. Each device has its own set of specialized commands
that only its driver knows. In contrast, most programs access devices by using
generic commands. The driver, therefore, accepts generic commands from a
program and then translates them into specialized commands for the specific
device, and vice versa. A device driver can control anything from a LED or a
hardware timer to a mass storage device or a wireless communications device, etc.

API calls are function calls to routines contained in the API (application
programming interface) provided with visualSTATE.

Local elements are events, actions, variables, signals etc. that are defined at
topstate level. They normally have the scope of the topstate itself.

Global elements are events, actions, variables, signals etc. that are defined at
project level. Thus, they have the scope of the visualSTATE project, including all
systems contained in it.
21

GSVS-1

Basics and concepts

GSVS-1

22 Getting Started
with IAR visualSTATE

Getting started
When you have installed visualSTATE®, you are ready to get started. For
installation, refer to the visualSTATE Installation Guide.

THE DEVELOPMENT CYCLE
The typical development cycle looks like this:

1 Draw up the overall structure of your application

2 Design models of state machines in the Designer

3 Test your model:

● Simulate, analyze, and debug the model using the Validator

● Verify the logic of the model using the Verificator.

4 Document your project. This means that you create a report using the
Documenter.

5 Use the IDE of the C compiler you are using—for example, the IAR Embedded
Workbench IDE—to create a project that includes all the necessary C files

6 Generate the C code for your model. On the target, the code will behave exactly
as the model you designed.

7 Compile and link your C files using the IDE of your C compiler, and debug the
application.

You can also monitor and control the runtime behavior of a visualSTATE model in
a target application, using either the Validator RealLink utility or in IAR
Embedded Workbench using C-SPYLink.

HIERARCHY
visualSTATE application development uses multiple levels of hierarchical
representation to better structure and manage the overall design.

● Navigator workspace (.vnw): Can contain any number of projects

● Project (.vsp): Can contain any number of systems

● System (no file): Can contain any number of topstates

● Statechart file (.vsr): Can contain any number of states
GSVS-1

Getting started 23

The visualSTATE hierarchy can be visualized as shown in this figure:

● Each project has one Global Elements section

● Each topstate has one Local Elements section.

Element sections contain the names of events, actions, variables, etc.

Workspace
Project

System
GSVS-1

24 Getting Started
with IAR visualSTATE

PROJECT EXAMPLES
The visualSTATE software package includes examples of application designs
created with visualSTATE.

To open the examples, choose
Start>IAR Systems>visualSTATE 6.n>Examples, or open them from within
the Navigator—browse for the \IAR Systems\visualSTATE 6.n\Examples
directory.

CREATING A WORKSPACE
1 Launch visualSTATE Navigator from the Windows Start menu.

2 Click Create a New Workspace and OK to open the New dialog box.

3 Select Workspace Wizard and type a filename for your Navigator workspace.
Specify a directory to save it to and click OK.
25

GSVS-1

Getting started

4 In the System(s) dialog box that is displayed, select the system, type a name for
it, and click Finish:

A status window shows which files will be created. Click OK. The Designer is
launched.

You have now created a Navigator workspace with a project that contains one
system with the topstate Topstate1.

SETTING OPTIONS
1 Choose Project>Options and the tool that you want to set options for.

An options dialog box is displayed:

Project
browser
GSVS-1

26 Getting Started
with IAR visualSTATE

Here the use of the Coder Options dialog box will be explained. The Verificator
and Documenter options dialog boxes are used in the same way.

2 In the Project browser, select the project or system that you want to set options
for.

3 Click the tab containing the category of options you want to set. To view all
options available, click the All tab.

● Some options have a drop-down list box. Click in the list box and select the
appropriate value.

● Some options have check boxes. Click the option check box to select or
deselect the option.

● Some options have a text box where you can type the value for the option.

● Some options have buttons that are displayed when you select the option:

Click this button to browse for files to use

Click this button to display a pop-up menu.

The selected values are shown as command line options in the display area below
the options list.

If you right-click on any option name, a description of the option will be displayed.

Some options cannot be changed, because not all combinations of options are
possible. To restore the options to their default values, click the Default button.

Specifying the output directory for generated code

1 In the Navigator Workspace window, right-click on your project and choose
Options>Code generation to open the Coder Options dialog box.

2 On the File Output page, specify an output directory (Output path) for the
generated C code. The default location is the coder directory in the directory that
contains the project file (.vsp).

3 On the Code page you can select the Generate digital signature option, to
secure the integrity of the model and guard against accidentally mixing different
versions of user code and model code.

Click OK.

RELOADING FILES IN THE NAVIGATOR
By default, you will receive a reload message in the Navigator when the project
files or statechart files (*.vsp and *.vsr files) in the current workspace have
been modified outside the Navigator.
27

GSVS-1

Getting started

If you click Reload, the information
about all modified projects and sys-
tems in the workspace browser will
be updated. Note that only the graph-
ical information is reloaded, not the
information in the workspace file
about links to the modified projects
and systems.

To change the way the reload mes-
sage is displayed, choose Tools>
Settings and change the setting for
the option Automatic file reload.
GSVS-1

28 Getting Started
with IAR visualSTATE

Designing your model
This chapter gives examples of how to design the program logic using
statecharts.

START USING THE DESIGNER
1 In the Navigator Workspace window, select your project and choose

Project>Designer to launch the Designer application.

2 In the Designer Project Browser, double-click the topstate to open the System
View window.

3 Your project has several levels of hierarchy. Double-click the topstate rectangle in
the System View to open the Statechart Diagram window.

A topstate is the “root state” for a statechart diagram. A statechart diagram can in
turn contain any number of hierarchic and parallel states.
GSVS-1

Designing your model 29

Almost all of the tools on the Diagram toolbar should now be available. If you hold
your mouse pointer over a tool icon, a description is displayed in the status bar at
the bottom of the window.

To activate a tool, click on it. To deactivate a tool, right-click in the window.

CREATE YOUR FIRST STATECHART
This section describes the basic procedures involved when you create a statechart.

Create a state

1 Click the Simple State button on the Diagram toolbar and click in the Statechart
Diagram window to create a state. Right-click in the window to deactivate the
tool. You can resize and move the state you have drawn as necessary.

2 To give a state a name, click on the default state name and type the new name of
the state. Create three simple states and call them, for example, Select_LED,
Red_LED, and Blue_LED:

Create a transition

Click the Transition button on the Diagram toolbar. In the Statechart Diagram
window, click on the desired source state, move the pointer to the destination state
and click to complete the transition. Right-click in the window to deactivate the
tool.

The three different Add Transition tools allow you to draw straight, curved, and
orthogonal lines.

To move a transition:
1 Select the transition and move the cursor to one of its end points.

2 Drag the point to the right position, release the mouse button, and click again.
GSVS-1

30 Getting Started
with IAR visualSTATE

To add a route point to a transition:
1 Select the transition and move the pointer to an existing route point or end point

and Ctrl-click.

2 Drag the pointer to the desired location where you release the mouse button and
the Ctrl key.

A route point is an anchor that you drag to change the look of the transition.

To add an event to a transition:
1 Choose View>Element Browser and select the topstate in the Element Browser.

2 Click the Event tab and click the New button in the Element Browser:

In the pane to the right, give the event a name and optionally a description in the
Explanation field. Give the event the name eButton1.

Return to the Statechart Diagram window. Double-click on the text box of the
transition you wish to compose. This displays the Compose Transition dialog
box. Click on Trigger in the Rule list. Then double-click the event in the Element
list that you want to add to the trigger and click OK.
31

GSVS-1

Designing your model

For the purposes of our example, create three more transitions and two more
events (eButton2 and eButton3). Add route points to two of the transitions, so
that your statechart diagram looks like this:

Create an initial state

Click the Initial State button on the Diagram toolbar.

Add an initial state to the state chart. Also add an empty transition
from the initial state to one of the simple states (for example, the
state Select_LED).

Create an action function to use with a transition

Choose View>Element Browser and click the Action Function tab. Then click
the New button.

In the pane to the right, give the action function a name and optionally a
description in the Explanation field. Call it, for example, Red_LED_ON.
GSVS-1

32 Getting Started
with IAR visualSTATE

Return to the Statechart Diagram window. Double-click on the text box that
belongs to the transition between the Select_LED state and the Red_LED state. In
the Compose Transition dialog box, click on Action Expression in the Rule list.
Then double-click the action function in the Element list that you want to add to
the transition and click OK.

Create action functions called Blue_LED_ON and LEDs_OFF for the other
transitions, so that your statechart diagram looks like this:

When you have designed your
statechart, save the project and
exit the Designer.

Click Yes when prompted to
reload files in the Navigator.
33

GSVS-1

Designing your model

COMPOSITE STATES
A composite state consists of several concurrent regions, or mutually exclusive
substates. A region is an area that holds states. Regions are used in states and
topstates to define concurrent subsystems and represent hierarchical state
machines.

Create a composite state consisting of concurrent regions

1 Click the Composite State button on the Diagram toolbar.

2 Click in the Statechart Diagram window to create a state with one region and then
right-click in the window to deactivate the tool.

3 To add a region, right-click in the region and choose Insert Region from the
context menu.

The composite state can be resized and moved as necessary. You can change the
sizes of the individual regions by dragging the dashed separator line between the
regions.

To insert existing states in a concurrent region, use the selection tool (the arrow
tool) to select the states you want to move. Then drag the states into the region.

Create a composite state consisting of mutually exclusive
substates

1 Select the states that you want to turn into substates.

2 Drag the states onto the state intended to be the composite state. A region is
automatically inserted, indicated by a horizontal line below the state name.

A composite state composed of mutually exclusive substates can be changed to a
composite state with concurrent regions just by adding a region. This will
GSVS-1

34 Getting Started
with IAR visualSTATE

automatically create two regions and move the original substates into one of the
regions.

SOME STATECHART DIAGRAM EXAMPLES

Transition triggered by external events

When the LEFT button is
pressed, the transition from
state LED3TurnedOff to
LED3TurnedOn is triggered
and accompanied by the
action LED3_On. Then, if the
LEFT button is pressed
again, the transition from
LED3TurnedOn to
LED3TurnedOff is triggered
and LED3 is turned off.

Transition guarded by a Boolean condition

When the RED button is
pressed, the transition from
state T1 to T2 is triggered
and accompanied by two
actions. LED0 is turned on,
and the variable a is
incremented. This
transition is also guarded
by the condition a<3. That
expression must evaluate to
TRUE for the transition to
occur. In this case, LED0
will only be turned on three
times. After that, the condition a<3 evaluates to FALSE and the transition will not
fire when the RED button is pressed.
35

GSVS-1

Designing your model

Entry and exit reactions

Pressing the middle button (BTN_MID_DOWN) causes a transition from state R1 to
R2. This transition causes two entry reactions to be executed. When entering
superstate R2, the timer action function TMR1_set is initialized to count down 50
system ticks. As this occurs, the default substate b1 is activated and its entry
reaction LED1_ON is executed.

After 50 ticks, TMR1_set times out and the event T_BLINK is sent. This causes
two transitions to fire. First the internal reaction of R2 is triggered, resulting in
TMR1_set beginning another 50-tick countdown. Second, T_BLINK triggers the
transition from b1 to b2 and the exit reaction, LED1_OFF, is executed. After the
next 50 ticks, T_BLINK again causes a transition from b2 to b1, and the entry
reaction LED1_ON is executed. Thus, LED1 blinks with an interval of 50 system
tick units.

Internal reaction

Entry reactions

Exit reaction
GSVS-1

36 Getting Started
with IAR visualSTATE

Testing your model
This chapter describes how to test and debug the visualSTATE® model
you created in the Designer.

VALIDATING YOUR MODEL
1 In the Navigator, choose Project>Validator.

2 To start the debug process, double-click on SE_RESET in the Event window to
place your system in its initial state. (When the Validator is started, the only event
that you can select is the SE_RESET event, to ensure that the system is properly
initialized.) You can issue the SE_RESET event at any time to force the system
back to the initial state.

Double-click events in the Event window to step through your system. In the
System window you can see the resulting state combination. In the Action window
you can see which actions were generated by the event.

3 Choose Debug>Initialize System to reset your simulation session.

Graphical simulation

1 To view simulation behavior directly in your model, choose Debug>Graphical
Animation to open the Designer in simulation mode.

2 Double-click events in the Event window, to display the resulting state
combination with red borders in your statechart. Blue borders are used for the
states that were last active.

3 When you have debugged your state machine design, exit the Validator and return
to the Navigator.

TESTING YOUR MODEL IN THE TARGET APPLICATION
Using either RealLink or the C-SPYLink debug integration with IAR Embedded
Workbench feature, you can monitor and control the runtime behavior of your
visualSTATE model in the target application.

For detailed information on how to use RealLink, refer to the visualSTATE User
Guide.

For detailed information on how to use C-SPYLink, see the visualSTATE
C-SPYLink User Guide.
GSVS-1

Testing your model 37

The Validator can also record the events you trigger and the responses from the
state machine system, to so called test sequence files. Such files can be replayed
for regression testing and analyzed for static and dynamic model coverage.

VERIFICATION
The Verificator can verify the following properties of a system of interacting state
machines:

● Dead-end conditions: when a state can be entered but never exited, because
of some blocking guard condition. This situation can be extremely difficult to
test for in a complex state machine.

● Conflicting transitions: two or more transitions out from a state that all
trigger on the same event and do not have mutually exclusive guard
conditions. This is not permitted and will result in a runtime error in the
generated code.

● Unreachable states: states that cannot be entered by any sequence of events
from the environment. A state or set of states that is not reachable is probably
an indication that some assumption(s) in the model is wrong.

● Unused events or signals: stimuli to the system that are never acted upon

● Unused transitions: transitions that will never be taken, regardless of the
event sequence fed into the system

● Unused actions or assignments
● Unused variables, parameters, and constants.

Some of these properties can be partly checked by a simple syntactic check of the
original state machine model, for example unused events. It is easy to check
whether a certain event is mentioned in the model. However, this check is not
enough. An event can be unused in a model even if it is mentioned, if the set of
states that acts upon the event is unreachable. To completely answer the question,
some form of formal verification must be used.

VERIFYING YOUR MODEL
1 Choose Project>Verify System in the Navigator to activate the Verificator.

2 If the Verify Warning dialog box is displayed, select the option Code generate
and verify.
GSVS-1

38 Getting Started
with IAR visualSTATE

3 View the results of the verification in the Verificator window:

All bold checks are checked, indicating that no errors were found.

4 If the verification message contained any errors or warnings, choose
Project>Designer in the Navigator to return to the Designer and make the
necessary changes.

TRACING YOUR PROJECT
A trace is a sequence of events that will get the system into a desired state
configuration. The trace will be saved in a test sequence file. You can only perform
a trace in the Navigator if you have just run a verification.
39

GSVS-1

Testing your model

1 Select the dead end or conflict you want to trace to.

2 Click the Find Trace button.

3 Select or specify the filename for the trace output file and click Save.

4 The Navigator will find a trace to the error or warning and save the resulting
trace. After the file has been saved, the Validator will be opened with the test
sequence file loaded.

For detailed information about the Verificator, refer to the visualSTATE Concept
Guide and the visualSTATE User Guide.
GSVS-1

40 Getting Started
with IAR visualSTATE

C code needed for your
model
This chapter describes how you create the different pieces of C code
needed to build your application.

GENERATING CODE FROM STATECHARTS
1 In the Navigator, open your project. In the Workspace window, select the project

and choose Project>Code Generate to activate the Coder.

2 The Navigator will display a coder report file where you can see the names of the
generated files and their location. This file also contains statistics on the various
elements contained in the generated code.

COMPLETING YOUR APPLICATION
To complete your application you need:

● an ANSI C compiler (for your target processor)

● visualSTATE generated code

● user-written code.

1 Create a directory structure to collect all the source files needed. For example,
create a directory called Source with two subdirectories called
Coder-generated and User-written.

2 Use the IDE of your C compiler to create a project that includes all the necessary
C files, for example, the IAR Embedded Workbench IDE.

3 Finally, compile and link your files in the IDE.

Coder-generated code

Place the files created by the visualSTATE Coder in the Coder-generated
directory.

To direct the Coder to place the generated files in this directory:

1 Choose Project>Options>Code generation in the Navigator and select your
project.

2 On the File Output page, select the Output path field and specify the
Source\Coder-generated directory.
GSVS-1

C code needed for your model 41

Note: Never modify the Coder-generated files. If you want to make changes,
modify the statechart diagram in the Designer and code-generate the project again.

In this case, these Coder-generated files are located in the directory:

● MY_System.c

● MY_System.h

● MY_SystemAction.h

● MY_SystemData.c

● MY_SystemData.h

● SEMLibB.c/h or MY_SystemSEMLibB.c/h, depending on the setting of the
Coder option Use prefix for API

● SEMBDef.h

● SEMTypes.h

User-written code

Place the target-specific code that you create in the User-written directory.

You must supply the target-specific code (also known as device drivers) that
handles the translation of hardware input to visualSTATE events, and of
visualSTATE actions to hardware output. You must also supply a main loop
routine that processes the events that occur in the system.

User-written code can be arranged in, for example, these files:

● Actions_to_Output.c

● Input_to_Events.c

● main.c

● simpleEventHandler.c

● eventHandler.h

● LEDsys_Drivers.h

● simpleEventHandler.h

INTEGRATING THE C FILES
To put a complete application together, you must, for example, create:

● A main.c file

● Code to initialize your processor

● Code to process inputs

● Code to handle your I/O devices

● Code that you normally need to write, that is not related to the logic of
handling a certain event.
GSVS-1

42 Getting Started
with IAR visualSTATE

You still must create all the “write-once” code. By doing so, you keep full control
over the structure of your application and need not adopt a new rigid code
structure.

For handling input/events, you must call visualSTATE API functions and pass
your event to the visualSTATE system.

You should also create a FIFO queue handler to process events sequentially. A
queue handler can be just an array that can store the event or it can be a complex
priority queue to ensure that high priority events are processed as soon as possible.

Ready-made FIFO Queue Handling C code routines are included with the
visualSTATE software, in the Examples\SampleCode\ directory.

An event could be handled this way:

● Your main application periodically checks the event queue for newly arrived
events. When there is an event to be processed, the proper visualSTATE API
functions are called. The traditional way of doing this is to create an infinite
loop in your main function that checks for events and calls the API. In this
way it is, for example, easy to put the MCU in a low-power mode when there
are no new events to process.

● Once the application receives input (which could be the result of an interrupt
or manual polling/checking), it is added as an event to the event queue. If the
main loop is doing power management, a hardware interrupt or the interrupt
routine can wake up the CPU to the appropriate level.

The following two code piece examples are all that must be inserted into your
application to process your events.

Example of code for event handling
void scanInputs (void)
{
 switch (PIND)
 {
 case BTN1: SEQ_AddEvent(eButton1); /* Add EVENT: */
 /* eButton1 to the queue */
 break;
 case BTN2: SEQ_AddEvent(eButton2); /* Add EVENT: */
 /* eButton2 to the queue */
 break;
 default: break;
 }
}

43

GSVS-1

C code needed for your model

Example of visualSTATE API code
/* Defines an action expression variable */

 SEM_ACTION_EXPRESSION_TYPE actionExpressNo;

 /* Defines and initializes. In this case the reset */
 /* event is SE_RESET */
 SEM_EVENT_TYPE eventNo = SE_RESET;

 /* Initializes the VS system. */
 SEM_Init();

 /* Initializes external variables if used */
 /*SEM_InitExternalVariables();*/

 /* Initializes internal variables if used */
 /*SEM_InitInternalVariables();*/

 /* Initializes signal queue if signals are used */
 SEM_InitSignalQueue();

 if ((cc = DEQ_Initialize()) != UCC_OK)
 HandleError(cc);

 /* Do forever */
 for(;;)
 {
 /* Deducts the event. */
 if ((cc = SEM_Deduct(eventNo)) != SES_OKAY)
 HandleError(cc);

 /* Get resulting action expressions and execute them */
 while ((cc = SEM_GetOutput(&actionExpressNo)) ==
 SES_FOUND)
 SEM_Action(actionExpressNo);
 if (cc != SES_OKAY)
 HandleError(cc);

 /* Changes the next state vector. */
 if ((cc = SEM_NextState()) != SES_OKAY)
 HandleError(cc);

 /* Gets next event from queue */
 while (DEQ_RetrieveEvent(&eventNo) == UCC_QUEUE_EMPTY)
 OS_Wait (OS_VS_EVENT_PENDING, INFINITE);
 }
GSVS-1

44 Getting Started
with IAR visualSTATE

Execution

1 The next time your while loop checks your queue, it will find an event if there is
one.

2 Upon detecting an event in your queue, you make sure that the visualSTATE
system is activated (using the SEM_Deduct API function) and let visualSTATE
get back with a list of actions to take (using SEM_GetOuput). Use function
pointer tables, for example.

3 These action functions will be called one at a time.

4 Then the API function SEM_NextState is called, to change states.

5 When the state combination has been updated, the execution goes back to the
while loop to check your queue for other events to be processed, or perform any
other steps required.

Note: When initializing a loop, always supply the reset event as the first event
into the queue. The reset event changes the system to the reset state. The default
name of the visualSTATE reset event is SE_RESET.

The API functions used above are from the Table-based API that uses compact
binary tables to represent your model plus the API functions mentioned above.
You can also generate code based on a traditional switch/if structure. The
Readable code generation is a project-level option on the
Project>Options>Code generation Configuration page. This format has a
slightly different API and it is in most cases enough to call the function VSDeduct
in the event processing loop.

You can find the API code example in the Examples\SampleCode directory.
Note that the API functions names in the Basic API can also be prefixed with the
system name to make it possible to distinguish between different systems during
processing. Use prefix for API is a system-level option on the
Project>Options>Code generation API Functions page.
45

GSVS-1

C code needed for your model

Placing your events in a queue and retrieving them one by one from the queue for
handling, offers many advantages to the user and helps create a well-structured,
more organized application:

You can also generate C++ code. This can be an advantage if several instances of
a system are needed and you are not using RealLink debugging. See the
application note Using_visualSTATE_generated_code_with
_Cplusplus.pdf in the Examples\SampleCode\CplusplusModel\
directory.

UNDERSTANDING THE VISUALSTATE CONTROL LOGIC
CODE
visualSTATE can generate either table-based C code for the state machine logic or
a traditionally structured state machine implementation based on if..else and
switch/case statements.

Table-based code generation

In table-based mode, visualSTATE translates your state machine model into
table-based C code. This table is then used by the visualSTATE API to process all
events, guard expressions, variables, signals, and actions.
GSVS-1

46 Getting Started
with IAR visualSTATE

This translation is based on the fact that state machines can be expressed in
Boolean equations using established mathematical notations, as in this example:

If we are in state S1 and event E1 occurs, action A1 is executed and the system
moves to state S2. In other words: IF (E1 & S1) THEN (S2 & A1).

Even more complex transitions can be expressed. For instance, if we are in state
S2 and event E2 occurs, and state S4 is not active, actions A2 and A3 are executed
and the system moves to S3. In other words: IF (E2 & S2 & !S4) THEN (S3
& A2 & A3). This ability to translate state machines from a visual description to
logical rules allows us to establish the visualSTATE transition syntax.

This figure shows the transition syntax:

This syntax is used by visualSTATE to generate table-based code using
hexadecimal numbers to represent your state machine. Embedded in each

E1 AND S1 -> S2 AND A1
E2 AND S2 AND NOT S4 -> S3 AND A2 AND A3
E3 AND S3 -> S1 AND A4 AND A5
E4 AND S4 -> S5
E5 AND S5 -> S4
47

GSVS-1

C code needed for your model

hexadecimal number are the four components of the model logic: the event, the
current state vector, the next state vector, and the action vector.

The final result of applying the transition syntax is an ANSI C structure of
hexadecimal arrays:

The contents of the constant data table are interpreted by the visualSTATE API and
turned into executable C code.

The table represents the entire control logic and allows very tight code generation.
The API functions operating on the state machine tables can be regarded as a state
machine interpreter. This means that the total code size for a state machine is the
sum of the table size plus the size of the used API functions.

Readable code generation

The main purpose of the readable code format is to make it easy to map the code
back to the design model and make the code easy to understand for a human. The

Table of
constant data
representing
the logic of the
visualSTATE
model
GSVS-1

48 Getting Started
with IAR visualSTATE

code generation is based on the same principles as the table generation, which
means that the transitions are the basic code generation unit. Consider the example
given for table-based code generation above: The transition E1 AND S1 -> S2 AND
A1 can be translated directly to an if statement in C. But to make the code easier
to read, all transitions triggering on the same event are grouped together in a
separate case statement inside a switch statement.

We can take a look at the previously introduced LED state machine model:

We see in the picture that two transitions trigger on the event eButton1. The code
for these transitions looks like this:

 case eButton1:
 {
 if ((CSV[0] == MY_Topstate_Select_LED))
 {
 Red_LED_ON();
 WSV[0] = MY_Topstate_Red_LED;
 }
 if ((CSV[0] == MY_Topstate_Blue_LED))
 {
 Red_LED_ON();
 WSV[0] = MY_Topstate_Red_LED;
 }
 }
 break;
49

GSVS-1

C code needed for your model

As you see, each transition corresponds to one if statement. WSV and CSV keep
track of the current state and the next state. Action function calls, assignments, and
guard conditions are generated inline as part of the if statement.
GSVS-1

50 Getting Started
with IAR visualSTATE

Additional features
DOCUMENTING YOUR PROJECT
You can create an up-to-date documentation report of your entire visualSTATE®
project using the Documenter.

1 In the Navigator, choose Project>Options >Documentation to display the
Documenter Options dialog box.

2 On the Configuration page, select the section(s) you want to include in your
documentation report and the level of detail. Other Documenter options are
available on the rest of the pages.

When you are done, click OK.

3 Choose Project>Document to generate the documentation report. When it is
finished, a completion message will be written to the Output window.

4 The generated documentation report (RTF or HTML) is, by default, located in the
Doc subdirectory of your project directory. By default, Navigator will try to
launch the application associated with the generated file(s), for example
Microsoft Word for RTF output.
GSVS-1

Additional features 51

PROTOTYPING
Because the visualSTATE generated code is target- and CPU-neutral, it is easy to
create PC-based GUI prototypes for your application. If you are using C or C++
as your prototyping language, all you need to do is to create a mapping from the
GUI framework's event management to visualSTATE events. Action function
ports for the GUI-related functionality must also be created.

An example of a prototype for an air conditioner is shown below. In the real
hardware version of the air conditioning system, the buttons on the front panel
probably either generate interrupts or are polled. The interrupt routines or polling
routines can then send the appropriate event to the visualSTATE event queue. But
in a prototype, the event handlers for the windowing framework can send events
to the visualSTATE model.

If you are familiar with GUI creation in, for example, Visual Basic or Delphi, you
can use two different methods:

● Create a DLL from the visualSTATE generated code and interact with that as
you would with any other DLL

● Use the prebuilt visualSTATE Expert DLL, a library that you can use with a
different visualSTATE model without recompiling it, and that does not require
you to compile the visualSTATE generated files. However, to make the DLL
work with a model, there are restrictions on the modeling features that can be
used.

visualSTATE also offers integration with Altia Design for creating virtual GUI
prototypes. With this integration, you can prototype a state machine model and a
GUI without writing any code. Altia Design has the added capabilities of
automatically generating GUI code for embedded devices. See www.altia.com for
more information.
GSVS-1

52 Getting Started
with IAR visualSTATE

	Contents
	Preface
	Who should read this guide
	Other documentation
	Online help
	Recommended web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Introduction
	The toolset
	Important features and advantages
	High-level design
	Automatic code generation from a design model
	Simulation/validation on a design model
	Formal model checking on a design model
	Model debugging on target hardware
	UML (Unified Modeling Language)
	Natural interrupt handling
	Easy integration with an RTOS
	Prototyping a design before having the hardware
	Asynchronous event handling

	Basics and concepts
	Control logic vs. data manipulation and device drivers
	Code required for an application
	The state machine model
	States
	Events
	Transitions
	Actions
	Supported expression syntax
	Primitives to express guard conditions on transitions
	State machine hierarchy

	Terminology

	Getting started
	The development cycle
	Hierarchy
	Project examples
	Creating a workspace
	Setting options
	Specifying the output directory for generated code

	Reloading files in the Navigator

	Designing your model
	Start using the Designer
	Create your first statechart
	Create a state
	Create a transition
	Create an initial state
	Create an action function to use with a transition

	Composite states
	Create a composite state consisting of concurrent regions
	Create a composite state consisting of mutually exclusive substates

	Some statechart diagram examples
	Transition triggered by external events
	Transition guarded by a Boolean condition
	Entry and exit reactions

	Testing your model
	Validating your model
	Graphical simulation

	Testing your model in the target application
	Verification
	Verifying your model
	Tracing your project

	C code needed for your model
	Generating code from statecharts
	Completing your application
	Coder-generated code
	User-written code

	Integrating the C files
	Example of code for event handling
	Example of visualSTATE API code
	Execution

	Understanding the visualSTATE control logic code
	Table-based code generation
	Readable code generation

	Additional features
	Documenting your project
	Prototyping

