
UVS-4

IAR visualSTATE®

User Guide

UVS-4

ii
visualSTATE®

User Guide

COPYRIGHT NOTICE

© Copyright 2002–2008 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Unified Modeling Language and UML are registered trademarks or trademarks of the
Object Management Group, Inc.

Borland is a registered trademark, and Delphi is a trademark of Borland Software
Corporation.

Altia is a registered trademark of Altia, Inc.

All other trademarks and registered trademarks are the property of their respective
owners.

EDITION NOTICE

Fourth edition: November 2008.

This document applies to version 6.2 of the IAR visualSTATE software.

Part number: UVS-4.

Contents
Figures ... xiii

Tables ... xxi

Preface ... xxiii

Structure of this guide ...xxiii

Assumptions and conventions ..xxvi

Part 1: Introduction .. 1

What is visualSTATE? ... 3

visualSTATE modules ... 3

visualSTATE Project examples .. 4

Sample code .. 5

visualSTATE user documentation .. 5

Application development with visualSTATE .. 7

General .. 7

visualSTATE APIs .. 8

Code required for a visualSTATE application 9

Getting started .. 11

How you start visualSTATE .. 11

Setting up a visualSTATE Project ... 12

Part 2: Project management ... 15

Graphical environment .. 17

General .. 17

Navigator windows .. 18

Navigator toolbars ... 19

Customizing the Navigator .. 20
UVS-4

iii

iv

Contents
Handling visualSTATE Projects, Systems and files 21

The workspace ... 21

Creating and saving a workspace .. 22

Opening a workspace .. 25

Creating a new Project in a workspace .. 25

Adding an existing Project to a workspace 27

Removing a Project from a workspace ... 28

Setting a Project or System as active .. 28

Setting Verificator, Coder and Documenter options 29

Reloading files in the Navigator ... 32

Digital signature .. 33

Handling Projects from previous visualSTATE versions 35

Closing the Navigator ... 35

Source code control ... 37

Supported visualSTATE file types .. 37

Using source code control .. 37

User name for source code control system 39

Custom commands ... 41

What is a custom command? .. 41

Creating custom commands ... 41

Activating custom commands .. 44

Editing, renaming, and deleting custom commands 44

Renumbering of custom command macros 45

Part 3: Modeling .. 47

Graphical environment .. 49

General .. 49

Designer windows ... 50

Designer toolbars ... 53

Getting started .. 57

Designing statechart diagrams ... 57
UVS-4

visualSTATE®

User Guide

Contents
Navigating in statechart diagrams .. 60

Resizing and positioning objects in statechart diagrams 63

Printing statechart diagrams ... 63

Safe mode .. 64

Customizing the Designer .. 64

States ... 67

Composing states ... 67

Composite states .. 72

Regions .. 75

Connector states .. 77

Pseudostates ... 77

Excluding states and regions .. 80

Transitions .. 83

Composing transitions ... 83

Completion transitions .. 86

Elements .. 89

Creating and editing elements ... 89

Searching for an element .. 95

Handling Projects, Systems, and files for modeling 97

Creating and saving Projects, Systems, and files in the
Designer .. 97

Opening a Project in the Designer .. 101

Importing files into the Designer ... 101

Specifying number of System instances 101

Using Designer backup files ... 102

Using function declarations and constants in existing files 104

Closing the Designer ... 106
UVS-4

 v

vi

Contents
Part 4: Formal testing .. 107

Introduction .. 109

Conventions used in this part .. 109

Verification with visualSTATE Verificator 110

Overview .. 110

Approach .. 112

Aspects of formal verification ... 113

Checks performed by visualSTATE Verificator 123

Check for unused elements .. 123

Check for activation of elements ... 125

Check for conflicting transitions .. 128

Check for state dead ends .. 129

Check for local dead ends ... 130

Check for System dead ends ... 131

Check for dynamic ambiguous assignments 131

Check for static ambiguous assignments 133

Check for signal queue size .. 133

Overview of checks, modes, and errors 135

Verifying your visualSTATE Project ... 137

Starting verification ... 137

Tracing your visualSTATE Project .. 141

Performing a trace ... 141

Designing for verification .. 143

Using time/memory options to help verification 143

Keeping down the complexity of verifying Systems 144

Verification and visualSTATE generated code 146
UVS-4

visualSTATE®

User Guide

Contents
Part 5: Functional testing ... 147

Introduction .. 149

Simulation with visualSTATE Validator 149

Graphical environment .. 150

Simulation ... 161

Starting simulation .. 161

Sending events ... 162

Viewing elements during simulation .. 164

Specifying event parameters ... 167

Signal queue handling ... 167

Breakpoints ... 169

Changing variable values ... 176

Setting action function return values .. 177

Forcing states ... 177

System setup .. 178

Graphical animation .. 179

Toggling between Validator mode and target mode 180

Tracing visualSTATE models .. 183

Tracing .. 183

Recording and playing test sequences ... 187

Recording a test sequence .. 187

Playing recorded test sequences .. 191

Analyzing visualSTATE models ... 195

Static analysis ... 195

Dynamic analysis ... 197

Part 6: Testing in target applications 201

Introduction .. 203

What is RealLink? ... 204
UVS-4

 vii

viii

Contents
RealLink connection to target .. 204

visualSTATE elements supported by RealLink 205

Target requirements ... 206

Testing visualSTATE models using RealLink 207

Setting up RealLink .. 207

Monitoring your target application .. 220

Controlling your application in target ... 224

Recording and playing sequences of target tests 227

Troubleshooting .. 228

Part 7: Code generation .. 231

Introduction .. 233

Code generation and visualSTATE APIs 233

Description of generated code ... 234

Real-time operating system (RTOS) ... 235

Generating code ... 237

Starting code generation ... 237

Generating C++ code .. 237

Basic API code generation ... 239

Description of generated code ... 239

Default table-based code configuration 243

Expert API code generation ... 245

Description of generated code ... 245

Default configuration .. 247

Size of generated code .. 249

Data width ... 249

Rule data formats ... 250

Coder options ... 251

Code size using visualSTATE .. 251

The size of human-readable code .. 253
UVS-4

visualSTATE®

User Guide

Contents
Part 8: Documenting visualSTATE Projects 255

Introduction .. 257

Project report .. 257

Creating a Project report ... 258

Viewing the Project report .. 259

Setting up a visualSTATE Project report .. 261

General .. 261

Specifying report contents ... 262

Specifying report output format .. 266

Setting up standard report layout ... 268

Customizing report layout ... 271

Part 9: Prototyping .. 275

Introduction .. 277

Prototyping with Altia .. 279

Basic concepts .. 279

Interfacing a visualSTATE model to an Altia design 281

Simulation with Altia .. 285

Closing the Altia connection ... 286

Using parameters ... 286

Configuring the Altia connection .. 288

Prototype based on visualSTATE generated code 291

General .. 291

Example: Implementing visualSTATE code in C++ code ... 292

Prototyping with the visualSTATE Expert DLL 299

What is visualSTATE Expert DLL? ... 299

Interaction ... 300

Generating code for the visualSTATE Expert DLL 301

Interfacing to the Expert DLL using Visual Basic 302
UVS-4

 ix

x

Contents
Part 10: Working in an OSEK environment 311

Using the visualSTATE OSEK Kit ... 313

Generating visualSTATE files for use in an OSEK
environment ... 313

Enabling OSEK support ... 313

Assigning visualSTATE Systems to OSEK tasks 315

Building a runtime application .. 321

Requirements for building a runtime application 321

Exported visualSTATE OSEK API functions 323

Supplying events ... 323

API examples .. 324

Runtime considerations .. 329

Stack usage .. 329

RAM/ROM usage ... 333

Part 11: General reference .. 335

Navigator menu commands .. 337

File menu .. 337

Edit menu ... 339

View menu ... 339

Project menu .. 339

Tools menu .. 340

Window menu ... 340

Help menu ... 340

Designer shortcuts .. 341

General .. 341

Diagram tools ... 341

Project, System and statechart diagram views 342

Element browser .. 344
UVS-4

visualSTATE®

User Guide

Contents
Designer menu commands .. 345

File menu .. 345

Edit menu ... 346

View menu ... 347

Insert menu ... 349

Format menu ... 350

Tools menu .. 352

Window menu ... 353

Help menu ... 353

Validator shortcut keys ... 355

General .. 355

Windows ... 355

Editing .. 355

Debugging .. 356

Navigation in test sequence files .. 356

Validator menu commands .. 357

File menu .. 358

Edit menu ... 360

View menu ... 362

Debug menu .. 363

RealLink menu ... 366

Altia menu ... 367

Window menu ... 368

Help menu ... 369

Verificator command line options .. 371

General .. 371

Command line syntax ... 371

List of Verificator command line options 372

Coder options .. 375

Command line syntax ... 375

Lists of Coder options ... 376
UVS-4

 xi

xii

Contents
Documenter options .. 393

Command line syntax ... 393

Lists of Documenter options ... 393

Appendix A: visualSTATE file name extensions 407

Appendix B: RealLink memory consumption 409

visualSTATE model dependent memory usage 409

RealLink API dependent memory usage 410

Appendix C: Source code example .. 411

Mobile phone.frm ... 411

Main.bas .. 423

Utility.bas ... 429

Appendix D: Handling visualSTATE files
from previous versions .. 435

Manual conversion from format 1 to 6 format 435

Index .. 437
UVS-4

visualSTATE®

User Guide

Figures
1: Example of a Navigator workspace with a visualSTATE Project 7

2: Use of visualSTATE API in a visualSTATE embedded application 8

3: Navigator Project menu ... 11

4: Navigator opening dialog box ... 12

5: Navigator New dialog box .. 12

6: Designer application with newly created Project .. 13

7: Navigator reload message ... 14

8: Workspace created in the Navigator ... 14

9: Navigator, with workspace loaded .. 17

10: Navigator Properties window .. 19

11: Navigator Standard toolbar ... 19

12: Navigator Internet browser toolbar ... 20

13: Navigator Settings dialog box ... 20

14: System(s) dialog box, Navigator ... 23

15: Topstate(s) dialog box, Navigator ... 23

16: Topstate Region(s) dialog box, Navigator .. 24

17: New dialog box, Project tab (Navigator) .. 26

18: Workspace browser with Project .. 27

19: Insert visualSTATE Project dialog box .. 28

20: Setting a visualSTATE Project as active .. 29

21: Coder Project Options dialog box, Configuration tab .. 30

22: Display of online help ... 31

23: Navigator reload message ... 32

24: Navigator Settings dialog box ... 32

25: Verificator notification .. 34

26: Conversion of Project from previous visualSTATE version 35

27: Navigator Settings dialog box ... 39

28: Custom commands dialog box (Navigator) .. 42

29: Custom commands, arguments pop-up menu (Navigator) 43

30: Custom commands, Select Project dialog box (Navigator) 43

31: Navigator workspace with custom command ... 44
UVS-4

xiii

xiv
32: Designer environment with visualSTATE Project .. 49

33: State pop-up menu ... 50

34: Designer diagram window .. 51

35: Designer element browser window ... 52

36: Designer property window .. 52

37: Designer output window ... 53

38: Designer Standard toolbar ... 53

39: Designer Diagram toolbar ... 54

40: Designer Size toolbar .. 54

41: Designer Source Control toolbar ... 54

42: Designer Zoom toolbar ... 55

43: Designer with Project loaded .. 57

44: Newly drawn states ... 58

45: Examples of transitions ... 59

46: Designer zoom view, focus on upper left part of statechart diagram 61

47: Designer zoom view, focus on lower right part of statechart diagram 62

48: Objects selected ... 62

49: Designer Page Setup dialog box ... 64

50: Designer Customize dialog box, transition category selected 65

51: Compose State dialog box ... 68

52: Compose State dialog box, Event1 added ... 69

53: List of elements (Designer) ... 70

54: New Event dialog box (Designer) ... 71

55: Compose State dialog box, event created and used as trigger 72

56: Composite state with one region ... 73

57: Composite state with two concurrent regions ... 73

58: Selection of states to be moved (Designer) ... 74

59: Composite state consisting of mutually exclusive substates 74

60: Example of state with one region .. 75

61: Off-page state region ... 76

62: System view pop-up menu (Designer) .. 76

63: Example of a pair of connector states ... 77

64: Connector state pop-up menu .. 77

65: Example of a state with an initial state .. 78
UVS-4

visualSTATE®

User Guide

Figures
66: Example of fork and join states ... 79

67: StatePopup ... 80

68: StateExclusion ... 80

69: Compose Transition dialog box .. 84

70: New Event dialog box (Designer) ... 85

71: Compose Transition dialog box, event created and used as trigger 86

72: Completion transition selected .. 87

73: Designer element browser, with event created (local element) 90

74: Defining action function ... 91

75: Compose Transition dialog box, action function .. 92

76: Define Action Function Parameters dialog box .. 92

77: External C file specified for action function ... 93

78: Compose Transition dialog box, guard expression value 94

79: New dialog box ... 98

80: Designer with blank Project .. 99

81: Diagram window, with empty statechart diagram .. 100

82: Compose System dialog box ... 102

83: Settings dialog box, file backup options (Designer) ... 103

84: Import Elements dialog box (Designer) .. 105

85: visualSTATE System consisting of two state machines, R0 and R1 111

86: Example of a System with a large state space. .. 113

87: Model, interface, and environment. .. 114

88: Full verification mode, assumptions. .. 115

89: Guard verification mode, arbitrary values of variables between microsteps 116

90: Guard verification mode, fixed values of variables .. 116

91: Guard verification mode, assumptions. ... 117

92: Basic verification mode, assumptions. .. 118

93: System with ambiguous behavior because of assignments. 119

94: System with ambiguous behavior because of assignments. 120

95: Three Systems of which a and b have ambiguous behavior

because of assignments. ... 121

96: Systems with conflicting transitions. .. 122

97: System with unused elements ... 124

98: System with never activated elements .. 127
UVS-4

xv

xvi
99: System with conflicting transitions ... 128

100: System containing a state dead end. .. 129

101: System containing a local dead end. ... 130

102: System containing a System dead end. ... 131

103: System containing dynamic ambiguous assignments. 132

104: System with two transitions having ambiguous assignments. 133

105: System for which the size of the signal queue must be at least one. 134

106: System which cannot be fully verified. ... 135

107: Verificator Options dialog box, General tab ... 137

108: Verificator dialog box ... 138

109: Verificator notification .. 139

110: Verification progress window, Navigator ... 139

111: Verificator Results, Ready to Find Trace .. 141

112: Specifying trace output file name ... 142

113: System with deep state space. ... 145

114: System with shallow state space. .. 145

115: Validator environment with workspace loaded ... 150

116: Validator workspace, customized window setup .. 151

117: New Validator workspace dialog box ... 152

118: System window (Validator), with pop-up menu ... 153

119: Event window (Validator), with pop-up menu ... 153

120: Action window (Validator) ... 154

121: Variable window (Validator), with pop-up menu ... 155

122: Guard Expression window (Validator) ... 155

123: Signal Queue window (Validator), with pop-up menu 156

124: Field Chooser window for Variable window (Validator) 156

125: Validator output window ... 157

126: Validator Watch window with elements added .. 157

127: Validator Timers window, with pop-up menu .. 158

128: Validator Breakpoints window ... 158

129: Validator Standard toolbar .. 159

130: Validator Debug toolbar .. 159

131: Validator RealLink toolbar ... 159

132: Validator Analysis toolbar .. 159
UVS-4

visualSTATE®

User Guide

Figures
133: Initialize Systems dialog box (Validator) ... 162

134: Validator environment with workspace loaded ... 163

135: Guard Expression window (Validator) ... 166

136: Set Event Parameter Value dialog box (Validator) ... 167

137: Breakpoints Setup dialog box, General tab (Validator) 170

138: Breakpoints Setup dialog box, Events / Signals tab (Validator) 171

139: Breakpoints Setup dialog box, Variables tab (Validator) 172

140: Breakpoints Setup dialog box, Current States tab (Validator) 173

141: Breakpoints Setup dialog box, Action Functions tab (Validator) 174

142: Breakpoint Reached dialog box, Pre-deduct (Validator) 175

143: Breakpoint Reached dialog box, Post-deduct (Validator) 175

144: Variable window (Validator), with pop-up menu ... 176

145: System window (Validator), with pop-up menu ... 177

146: System Setup window (Validator) .. 178

147: Example of graphical animation ... 179

148: Target command in Validator window ... 181

149: Trace Setup, Trace To options .. 183

150: Trace Setup, Trace To Setup ... 184

151: Trace Point Setup .. 185

152: Validator Test Sequence File window .. 187

153: Validator Test Sequence File window, output of selected command 189

154: Pop-up menu of Validator Test Sequence File window 190

155: Test Sequence File dialog box (Validator) .. 190

156: Log Mismatch Detected dialog box (Validator) ... 193

157: Validator Analysis toolbar, static analysis .. 195

158: Validator Static Analysis window, selection of elements to analyze 196

159: Static analysis results (Validator) .. 197

160: Validator Analysis toolbar (dynamic analysis) ... 198

161: Validator Dynamic Analysis window, with pop-up menu 199

162: Example of visualSTATE RealLink setup .. 204

163: RealLink connection between the Validator and target 205

164: Navigator, Coder Options dialog box, Configuration tab 208

165: Navigator, Coder Options dialog box, RealLink tab 209

166: RealLink Properties dialog box ... 216
UVS-4

xvii

xvi
167: RS232 Setup dialog box .. 217

168: TCP/IP Communication Setup dialog box .. 218

169: Connecting to RealLink .. 219

170: Validator output window ... 220

171: Validator Event window in target mode ... 221

172: Validator Watch window containing visualSTATE elements 222

173: Editing a variable in the Watch window ... 223

174: Microstep and macrostep in visualSTATE ... 225

175: Validator RealLink menu commands .. 226

176: RealLink communication error message ... 228

177: visualSTATE layers .. 234

178: Navigator, Coder Options dialog box, Configuration tab 238

179: Enabling human-readable code generation ... 241

180: Basic API, default configuration ... 243

181: Expert API, default configuration ... 247

182: Files that can be included in a visualSTATE Project report 258

183: Documenter Options dialog box, Configuration tab 262

184: Documenter Options dialog box, File Input tab .. 263

185: Documenter Options dialog box, file inclusion criteria 264

186: Selecting visualSTATE generated files .. 265

187: Select Files dialog box .. 265

188: Documenter Options dialog box, File Output tab ... 266

189: Documenter Options dialog box, Front Page tab .. 268

190: Documenter Options dialog box, Page Layout tab ... 269

191: Documenter Options dialog box, Header/Footer tab 270

192: Documenter Options dialog box, Fonts tab ... 270

193: Documenter Options dialog box, RTF Styles tab ... 271

194: Documenter Options dialog box, HTML Styles tab 272

195: Altia application loaded with the AVSystem design 280

196: Validator Altia Connect commands .. 282

197: Open Altia Design dialog box (Validator) .. 282

198: Validator output window, Altia tab ... 283

199: Binding Altia objects to visualSTATE elements .. 284

200: Define Altia Parameters dialog box, Event tab (Validator) 288
UVS-4

ii
visualSTATE®

User Guide

Figures
201: Define Altia Properties dialog box (Validator) ... 289

202: Prototype implementation ... 292

203: visualSTATE statechart .. 293

204: Visual C++ dialog box .. 293

205: Prototype implementation, visualSTATE Expert DLL 299

206: Main flow of information, Expert DLL .. 301

207: Coder Project Options dialog box, Configuration tab 301

208: Mobile phone example .. 302

209: Navigator Settings dialog box, OSEK page .. 314

210: OSEK support enabled .. 314

211: OSEK wizard, first page ... 315

212: OSEK wizard, Select Systems .. 316

213: visualSTATE System assigned to an OSEK task ... 317

214: OSEK wizard, Select runtime options .. 318

215: OSEK wizard, Summary ... 319

216: Components required for a runtime application .. 322

217: Designer Edit menu ... 346

218: Designer View menu ... 348

219: Designer Insert menu .. 350

220: Designer Format menu .. 350

221: Alignment menu commands, Designer Format menu 350

222: Size menu commands, Designer Format menu ... 351

223: Space menu commands, Designer Format menu .. 351

224: Designer Tools menu .. 352

225: Safe Mode menu commands, Designer Tools menu 352

226: Designer Window menu .. 353

227: Designer Help menu .. 353

228: Validator File menu ... 358

229: Validator Edit menu .. 360

230: Validator View menu .. 362

231: Validator Debug menu .. 364

232: Validator RealLink menu .. 366

233: Validator Altia menu ... 367

234: Validator Window menu ... 368
UVS-4

xix

xx
235: Validator Help menu ... 369
UVS-4

visualSTATE®

User Guide

Tables
1: Typographical conventions used in this guide ... xxvi

2: Short forms used in this guide ... xxvii

3: Conventions used for constructs ... 109

4: Verificator checks, modes and errors .. 136

5: Commands that can be recorded to a Validator test sequence file 188

6: Coder-generated SEM type definitions ... 249

7: Rule data formats .. 250

8: Project report sections ... 262

9: Exported OSEK API functions ... 323

10: Stack usage by Basic API ... 329

11: Stack usage by Expert API .. 329

12: Type sizes determined by runtime application size .. 330

13: Type sizes determined by compiler, linker and target hardware 330

14: Assumptions for stack size calculation ... 331

15: Typical stack sizes, Basic API .. 331

16: Typical stack sizes, Expert API .. 332

17: Navigator File menu commands ... 337

18: Navigator View menu commands ... 339

19: Navigator Project menu commands .. 339

20: Navigator Tools menu commands .. 340

21: Designer File menu commands ... 345

22: Designer Edit menu commands .. 347

23: Designer View menu commands .. 348

24: Designer Format menu commands .. 351

25: Designer Tools menu commands .. 352

26: Validator File menu commands .. 358

27: Validator Edit menu commands .. 361

28: Validator View menu commands .. 362

29: Validator Debug menu commands .. 364

30: Validator RealLink menu commands .. 366

31: Validator Altia menu commands .. 367
UVS-4

xxi

xxi
32: Validator Window menu commands ... 368

33: Verificator command line options ... 372

34: Configuration project options ... 377

35: File output project options .. 378

36: Code project options ... 379

37: Style project options .. 382

38: Extended keyword project options .. 382

39: RealLink project options ... 383

40: C-SPYLink project options ... 384

41: API functions project options .. 384

42: Basic system options ... 386

43: File output system options .. 386

44: Code system options ... 387

45: Readable code system options .. 389

46: Style system options .. 389

47: Extended keywords system options .. 389

48: Names system options ... 390

49: API functions system options .. 392

50: RealLink memory consumption, IAR SH7740 32-bit compiler 410
UVS-4

i
visualSTATE®

User Guide

Preface
Welcome to the visualSTATE User Guide.

This guide describes how to use the visualSTATE software for developing and
testing embedded applications based on statechart diagrams.

For installation information, see IAR visualSTATE Installation Guide.

Structure of this guide
This guide consists of the following parts:

 Part 1: Introduction
● What is visualSTATE?, page 3, gives a general description of the visualSTATE

software and its modules. The chapter also lists the visualSTATE user
documentation.

● Application development with visualSTATE, page 7, describes the steps involved
in a typical visualSTATE development project. It also describes how to use the
visualSTATE APIs, and the code required for a visualSTATE application.

● Getting started, page 11, describes how to set up a visualSTATE Project and start
designing statechart diagrams.

 Part 2: Project management
● Graphical environment, page 17, describes the graphical environment of the

visualSTATE Navigator, which you use for handling visualSTATE files.
● Handling visualSTATE Projects, Systems and files, page 21, describes how to

handle visualSTATE Projects and files in the visualSTATE Navigator workspace.
● Source code control, page 37, describes how to use source code control for your

visualSTATE files.
● Custom commands, page 41, describes how to set up user-specified commands in

a Navigator workspace.

 Part 3: Modeling
● Graphical environment, page 49, describes the graphical environment of the

visualSTATE Designer.
● Getting started, page 57, describes how to get started designing statechart

diagrams in visualSTATE Designer.
● The chapters States, page 67, and Transitions, page 83, describe how to create

and edit states and transitions in the visualSTATE Designer.
UVS-4

xxiii

xxi

Structure of this guide
● Elements, page 89, describes how to define, create, rename, and delete elements
for state reactions and transitions in the Designer.

● Handling Projects, Systems, and files for modeling, page 97, describes how
create and save new visualSTATE Projects in the Designer, import visualSTATE
Systems to a Project, and use Designer backup files.

 Part 4: Formal testing
● Introduction, page 109, explains what is understood by verification in

visualSTATE, and why you are recommended to use it in your development
process. It describes the most important concepts related to formal verification,
and gives examples of the checks that can be performed by the visualSTATE
Verificator.

● Checks performed by visualSTATE Verificator, page 123, gives a detailed
description of the Verificator checks.

● Verifying your visualSTATE Project, page 137, describes how to start
verification.

● Designing for verification, page 143, gives guidelines on how to design
visualSTATE Systems that are to be verified.

 Part 5: Functional testing
● Introduction, page 149, gives an introduction to simulation with visualSTATE

Validator.
● The chapters Simulation, page 161, Recording and playing test sequences, page

187, and Analyzing visualSTATE models, page 195, describe how to use the
simulation, debug, and analysis tools of the visualSTATE Validator.

 Part 6: Testing in target applications
● Introduction, page 203, gives an introduction to visualSTATE RealLink. The

chapter describes the RealLink connection to target, visualSTATE elements
supported by RealLink, and target requirements

● Testing visualSTATE models using RealLink, page 207 describes how to use the
Validator RealLink for monitoring and controlling the runtime behavior of a
visualSTATE model in a target application.

 Part 7: Code generation
● Introduction, page 233, gives an introduction to code generation with

visualSTATE.
● Generating code, page 237, describes how to automatically generate code for

visualSTATE models created in the visualSTATE Designer.
● Basic API code generation, page 239, describes code generation with the

visualSTATE Basic API.
● Expert API code generation, page 245, describes code generation with the

visualSTATE Expert API.
UVS-4

v
visualSTATE®

User Guide

Preface
● Size of generated code, page 249, describes how data width and rule data formats
influence the size of thevisualSTATE generated code.

 Part 8: Documenting visualSTATE Projects
● Introduction, page 257, describes how to automatically create a visualSTATE

Project report.
● Setting up a visualSTATE Project report, page 261, describes how to customize a

visualSTATE Project report.

 Part 9: Prototyping
● Introduction, page 277, gives an introduction to prototyping with visualSTATE.
● Prototyping with Altia, page 279, describes how you can use the visualSTATE

Validator and Altia FacePlace for simulating visualSTATE models.
● Prototype based on visualSTATE generated code, page 291, describes how to

implement a prototype based on visualSTATE generated code.
● Prototyping with the visualSTATE Expert DLL, page 299, describes how to

create a visualSTATE prototype using the visualSTATE Expert DLL with
Microsoft Visual Basic or C++.

 Part 10: Working in an OSEK environment

● Using the visualSTATE OSEK Kit, page 313, describes how to enable OSEK
support in visualSTATE, and assign visualSTATE Systems to OSEK tasks.

● Building a runtime application, page 321 describes how to build a runtime
application with ANSI C files generated with the visualSTATE OSEK Kit.

● Runtime considerations, page 329 contains information about stack usage and
RAM/ROM usage when the OSEK API is used together with the visualSTATE
standard APIs.

 Part 11: General reference

This part contains an overview of menu commands and shortcut keys in the
visualSTATE Navigator, Designer, and Validator. The part also lists options and
command line syntax for the visualSTATE Coder, Verificator, and Documenter.

 Appendix A: visualSTATE file name extensions

Lists the visualSTATE file name extensions.

 Appendix B: RealLink memory consumption

Describes how to how to calculate the additional memory consumption when
visualSTATE generated code is used with RealLink.
UVS-4

xxv

xxv

Assumptions and conventions
 Appendix C: Source code example

Contains a source code example in Visual Basic.

 Appendix D: Handling visualSTATE files from previous versions

Describes how to convert visualSTATE models in visualSTATE version 5 that were
created with visualSTATE version 4.x.

Assumptions and conventions
ASSUMPTIONS

This guide assumes that you are familiar with

● The use of Windows-based applications
● Basic principles of state/event modeling
● Programming in C.

 Part 10: Working in an OSEK environment assumes that your are familiar with the
OSEK standard.

CONVENTIONS

This guide uses the following typographical conventions:

Style Used for

Italic Used for emphasis of particular words.

Bold Refers to window buttons, for example OK.

Xxx>Yyy Refers to menu commands, for example File>Save As.

CAPITALS Refers to keys, for example ENTER.

Courier Used for examples.

TIP Used for highlighting, for example shortcuts.

Note: Used for drawing attention to special issues.

<Xxx>.<ext> This syntax is used for referring to files generated by visualSTATE
Coder.

Table 1: Typographical conventions used in this guide
UVS-4

i
visualSTATE®

User Guide

Preface
SHORT FORMS

In this guide the following short forms apply:

 Short form Refers to

Navigator visualSTATE Navigator

Designer visualSTATE Designer

Verificator visualSTATE Verificator

Validator visualSTATE Validator

Coder visualSTATE Coder

Documenter visualSTATE Documenter

OSEK Kit visualSTATE OSEK Kit

Basic API visualSTATE Basic API

Expert API visualSTATE Expert API

Expert DLL visualSTATE Expert DLL

VS Project visualSTATE Project

VS System visualSTATE System

Project visualSTATE Project

System visualSTATE System

Table 2: Short forms used in this guide
UVS-4

xxvii

xxv

Assumptions and conventions
UVS-4

iii
visualSTATE®

User Guide

Part 1: Introduction
This part of the visualSTATE® User Guide includes the following chapters:

● What is visualSTATE?

● Application development with visualSTATE

● Getting started.
UVS-4

1

2

UVS-4

What is visualSTATE?
visualSTATE is a Windows-based software package of integrated tools for
developing, testing, and implementing embedded applications based on
statechart diagrams. It includes a graphical design environment, test tools, a
code generator, and a documentation facility.

visualSTATE has been developed in accordance with the Unified Modeling
Language notation (UML).

This chapter describes:

● The visualSTATE modules

● visualSTATE Project examples, and how to access them

● Sample code

● visualSTATE user documentation.

visualSTATE modules
The visualSTATE software comprises the following fully integrated modules that allow
you to develop and test real-time applications based on statechart diagrams:

● Navigator
● Designer
● Verificator
● Validator, with RealLink
● Coder
● Documenter.

NAVIGATOR

visualSTATE Navigator is a graphics-based project management tool for the overall
handling of visualSTATE Projects, from model design over test and simulation to code
generation and documentation of visualSTATE Projects. With the Navigator you access
and activate the other modules of the visualSTATE software, and set options for the
Verificator, Coder and Documenter. For a description of how to use the Navigator, see
Part 2: Project management, page 15.
UVS-4

3

4

visualSTATE Project examples
DESIGNER

visualSTATE Designer is a graphics-based application for designing statechart diagrams
using the UML notation. For a detailed description of how to use the Designer, see Part
3: Modeling, page 47.

VERIFICATOR

visualSTATE Verificator is a powerful test tool for dynamic formal verification of
models created with the Designer. For a detailed description of verification and how to
use the Verificator, see Part 4: Formal testing, page 107.

VALIDATOR

visualSTATE Validator is a graphics-based application for simulating, analyzing, and
debugging models created with the Designer. With the Validator you can test the
functionality of your design. For a detailed description of how to use the Validator, see
Part 5: Functional testing, page 147.

REALLINK

With the Validator RealLink facility, you can test your visualSTATE model in a target
application. See Part 6: Testing in target applications, page 201.

CODER

The Coder can automatically generate code on the basis of models created with the
Designer. The automatically generated code must be combined with a visualSTATE
application programming interface (API) and manually written code (see visualSTATE
APIs, page 8). For a detailed description of how to use the Coder, see Part 7: Code
generation, page 231.

DOCUMENTER

With the Documenter you can create an up-to-date documentation report on your
visualSTATE Project, including design, tests, and code generation. For a detailed
description of how to use the Documenter, see Part 8: Documenting visualSTATE
Projects, page 255.

visualSTATE Project examples
The visualSTATE software package includes examples of application designs created
with visualSTATE. The examples can be used to help fuel your own design as well as
provide a reference for design techniques.
UVS-4

visualSTATE®

User Guide

What is visualSTATE?
The examples can be opened via the Windows Start menu, or the Navigator File menu.

Sample code
The visualSTATE software package includes sample code that you can use as a source
of reference in your development projects. The sample code files can be opened via the
Examples directory of the visualSTATE software.

visualSTATE user documentation
Installation information is found in IAR visualSTATE Installation Guide and
visualSTATE installation notes.

You can read more about the visualSTATE software and how to use it in the following
user documentation:

● visualSTATE Quick Start Tutorial describes how you get started using the
visualSTATE software.

● visualSTATE Concept Guide describes the basic principles and ideas of the
visualSTATE software, and gives a general introduction to the visualSTATE
approach and the concept of state machines.

● IAR visualSTATE Reference Guide describes the constructs, elements and principles
of state machine modeling that are available in visualSTATE. For example it
explains constructs such as states, transitions, state reactions, etc.

● visualSTATE API Guide describes the visualSTATE APIs and how to use them.

Online versions of the user documentation are included in the visualSTATE software
package as PDF files which can be accessed from the visualSTATE Navigator, or the
Windows Start menu.

Note: To be able to view the PDF files, you must have Adobe Acrobat Reader installed.

Online help

The visualSTATE Navigator, Designer, and Validator applications offer online help.
You activate the online help via the Help menu, or by pressing the F1 key.

To display online help for options in the Navigator settings dialog box and Navigator
Project options dialog box, select the option and right-click, or press SHIFT+F1. See
example in Figure 22, page 31.

The IAR Systems website

If you want to know more about visualSTATE, visit www.iar.com where your will find
technical support information, product news, application notes, etc.
UVS-4

5

6

visualSTATE user documentation
UVS-4

visualSTATE®

User Guide

Application development
with visualSTATE
This chapter describes the steps involved in a typical visualSTATE development
project. The chapter also describes how to use the visualSTATE APIs, and the
code required for a visualSTATE application.

General
You start a visualSTATE development project by launching the Navigator. In the
Navigator you set up your visualSTATE Project in a workspace, including options for
verification, code generation, and documentation. See Part 2: Project management,
page 15.

Figure 1: Example of a Navigator workspace with a visualSTATE Project
UVS-4

7

8

visualSTATE APIs
When you have created the overall structure of your visualSTATE Project, you can start
designing visualSTATE models of state machines which is done in the Designer. Part
3: Modeling, page 47.

When you have designed your visualSTATE model, you can start testing it. For
verification of your visualSTATE model, you use the visualSTATE Verificator. See Part
4: Formal testing, page 107.

For interactively simulating, analyzing and debugging the model, you use the
visualSTATE Validator. See Part 5: Functional testing, page 147.

It is also possible to monitor and control the runtime behavior of visualSTATE models
in a target application by means of the Validator RealLink facility. See Part 6: Testing
in target applications, page 201.

When you have tested your model and corrected it as necessary in the Designer, you can
automatically generate the code for it. In target, the code will behave exactly as the
model you designed. See Part 7: Code generation, page 231.

For documentation of your visualSTATE Project, you can create a documentation report
with visualSTATE Documenter. See Part 8: Documenting visualSTATE Projects, page
255.

visualSTATE APIs
A visualSTATE API (application programming interface) is a set of files supplied with
the visualSTATE software. The visualSTATE API files provide an interface between the
visualSTATE Coder-generated code and the user-written code. User-written code is
code written by the application developer for communication with the runtime
environment.

The use of the visualSTATE API is illustrated in Figure 2, page 8.

Figure 2: Use of visualSTATE API in a visualSTATE embedded application

visualSTATE Coder-
generated code

Event
preprocessing visualSTATE

API

Device drivers
(action
processing)

Action
sequenceEvent queue
UVS-4

visualSTATE®

User Guide

Application development with visualSTATE
Note: In visualState version 5.3 and later, there are two distinct APIs. Figure 2, Use of
visualSTATE API in a visualSTATE embedded application, describes the Expert API.
The Basic API is fully generated by the Coder.

For a detailed description of the visualSTATE standard APIs and how to use them, see
visualSTATE API Guide.

Code required for a visualSTATE application
In a visualSTATE embedded application, the following categories of code are required:

● visualSTATE Coder-generated code
● visualSTATE API
● User-written code: Manually written code for event preprocessing, event queues,

device drivers, action functions, and code for calling the functions in the
visualSTATE API.

visualSTATE Coder-generated code is code that is generated automatically by the
visualSTATE Coder on the basis of statechart designs created in visualSTATE Designer.
Before the Coder-generated code is used in target, it must be integrated with the
user-written code by means of the visualSTATE API.

Action sequences are handled entirely by visualSTATE. However, the user must write
the code for each of the action functions.

This means that the application developer must do the following in order to create a final
embedded application using visualSTATE generated code:

● Manually write code for event preprocessing, event queues (if needed), action
functions, and device drivers.

● Integrate the user-written code with the Coder-generated code by means of the
visualSTATE API.

See Figure 2, page 8. See also the sample code included with the
visualSTATE software.

For a detailed description of the visualSTATE APIs, refer to visualSTATE API Guide.
UVS-4

9

10

Code required for a visualSTATE application
UVS-4

visualSTATE®

User Guide

Getting started
This chapter describes

● How to start visualSTATE and activate the individual visualSTATE
programs.

● How you set up a visualSTATE Project in the Navigator.

Installation of visualSTATE is described in IAR visualSTATE Installation Guide, and
visualSTATE installation notes.

How you start visualSTATE
You start visualSTATE by launching the Navigator via the Windows Start menu (choose
Start menu>Programs>IAR Systems>visualSTATE). From the visualSTATE Navigator
you can activate all the other visualSTATE programs.

When you have created a workspace in the Navigator (see Setting up a visualSTATE
Project, page 12), you can launch the other visualSTATE programs and IAR Embedded
Workbench® by using the buttons on the Navigator Standard toolbar (see Figure 11,
page 19), the Navigator Project menu (see Figure 3, page 11), or pop-up menu
commands.

Figure 3: Navigator Project menu
UVS-4

11

12

Setting up a visualSTATE Project
Setting up a visualSTATE Project
You set up your visualSTATE Project in a Navigator workspace (see The workspace,
page 21), as follows:

1 Launch the Navigator via the Windows Start menu. A Navigator opening dialog box is
displayed. See Figure 4, page 12.

Figure 4: Navigator opening dialog box

2 Click Create a New Workspace and click OK. A dialog box is displayed. See Figure 5,
page 12.

Figure 5: Navigator New dialog box

3 Under the Workspace tab, select Simple Workspace.

In the File name field and Location field you can specify file name and directory of the
workspace file.
UVS-4

visualSTATE®

User Guide

Getting started
4 Click OK. The visualSTATE Designer application will be launched with a
visualSTATE Project, System and topstate. See Figure 6, page 13.

Figure 6: Designer application with newly created Project

Now you can start drawing statecharts for your visualSTATE model in the statechart
diagram window of the Designer. See Designing statechart diagrams, page 57. When
you have completed your statechart diagrams, save the Project in the Designer (choose
File>Save Project).
UVS-4

13

14

Setting up a visualSTATE Project
5 Return to the Navigator. A reload message may be displayed. See Figure 7, page 14.

Figure 7: Navigator reload message

Click Reload to update the Project in the Navigator workspace. For information about
reload of files in the Navigator, see Reloading files in the Navigator, page 32.

6 The workspace has now been set up with one Project, one System and one topstate, and
default options for code generation, verification, and documentation of the
visualSTATE Project. You can change these options by choosing Project>Options on
the menu. See Setting Verificator, Coder and Documenter options, page 29.

Figure 8: Workspace created in the Navigator

The workspace also contains a folder for Validator workspaces which are used for
testing. See Part 5: Functional testing, page 147.

For creating a workspace with more than one System and Project, see Creating and
saving a workspace, page 22.

7 On the Navigator menu, choose File>Save Workspace.
UVS-4

visualSTATE®

User Guide

Part 2: Project
management
This part of the visualSTATE® User Guide includes the following chapters:

● Graphical environment

● Handling visualSTATE Projects, Systems and files

● Source code control

● Custom commands.
UVS-4

15

16
UVS-4

Graphical environment
For managing your visualSTATE Projects, you use the visualSTATE Navigator.
This chapter describes the graphical environment of the Navigator, including
toolbars. It also describes how you can customize the Navigator.

General
The graphical environment of the Navigator consists of a number of windows with
context-sensitive pop-up menus, an integrated browser (similar to Microsoft Internet
Explorer), menus and toolbars. Figure 9, page 17 shows the Navigator environment with
a workspace loaded.

Figure 9: Navigator, with workspace loaded
UVS-4

17

18

Navigator windows
Navigator windows
The Navigator has the following windows (see Figure 9, page 17):

● Workspace browser (opened via the View menu).
● Output window (opened via the View menu).
● HTML viewer.
● Properties window (opened via the View menu). See Figure 10, page 19.

WORKSPACE BROWSER

The left window of the Navigator shown in Figure 9, page 17 contains a workspace
browser where you can see the structure of the loaded visualSTATE workspace. The
browser has the following views:

● A file view which shows the file structure of the workspace file, with visualSTATE
Project files, Statechart files and System folders.

● A workspace view which shows the model structure of the visualSTATE Projects in
the workspace. This view also shows Project-related objects such as Validator
workspaces and custom commands.

For a detailed description of the Navigator workspace, see The workspace, page 21.

OUTPUT WINDOW

This window displays information about the workspace loaded. The tabbed pages
contain general information from the Verificator, Coder and Documenter when these
tools have been activated.

HTML VIEWER

The Navigator HTML viewer is a window with an integrated Internet browser (the
window in the right part of Figure 9, page 17).

On start-up of the Navigator, Navigator start page is displayed in an HTML viewer
where you can activate the other visualSTATE modules.

Verification results and generated visualSTATE Project reports are also displayed in
HTML viewers.

You can browse for other HTML pages by means of the Internet browser toolbar (see
Internet browser toolbar, page 20). For each new HTML page, a new HTML viewer is
opened.

To change between HTML viewers, use the commands on the Window menu.
UVS-4

visualSTATE®

User Guide

Graphical environment
PROPERTIES WINDOW

This window shows information about the currently active item in the workspace. See
Figure 10, page 19.

Figure 10: Navigator Properties window

To make the window remain on the screen, click .

Navigator toolbars
The most frequently used menu commands are available as toolbar buttons with tooltips.
The following toolbars are available:

● Standard toolbar
● Internet browser toolbar.

If the toolbars are not visible, you can display them via the View menu.

A detailed description of the Navigator menu commands is found in Navigator menu
commands, page 337).

STANDARD TOOLBAR

Figure 11, page 19 shows the Navigator Standard toolbar. The buttons on this toolbar
correspond to the commands on the File, Edit, Project and Help menus.

Figure 11: Navigator Standard toolbar
UVS-4

19

20

Customizing the Navigator
INTERNET BROWSER TOOLBAR

Figure 12, page 20 shows the Navigator Internet browser toolbar. The buttons on this
toolbar are used for searching on the Web, and correspond to the browse commands
found on the View menu.

Figure 12: Navigator Internet browser toolbar

Customizing the Navigator
The Navigator can be configured to match your preferences with regard to HTML page
shown at start up, location of user documentation files, display of warnings etc.

1 Launch the Navigator, and choose Tools>Settings. A dialog box is displayed. See
Figure 13, page 20.

Figure 13: Navigator Settings dialog box

2 Click an option and type the appropriate values, or click the buttons that are shown
when you click an option, and select values.

For a detailed description of the options, activate the online help by right-clicking an
option, or pressing SHIFT+F1.
UVS-4

visualSTATE®

User Guide

Handling visualSTATE
Projects, Systems and files
This chapter describes the handling of visualSTATE Projects, Systems and Files
by means of the Navigator workspace. It describes

● The workspace

● Creating and saving a workspace

● Opening a workspace

● Creating a new Project in a workspace

● Adding an existing Project to a workspace

● Removing a Project from a workspace

● Setting a Project or System as active

● Setting Verificator, Coder and Documenter options

● Reloading files in the Navigator

● Digital signature

● Handling Projects from previous visualSTATE versions

● Closing the Navigator.

The workspace
You set up your visualSTATE Project in a workspace using the Navigator. The
workspace is a file for organizing and handling a collection of visualSTATE Projects,
Systems and Statechart files that are grouped together logically. The workspace
(extension vnw) contains links to visualSTATE Projects, Systems and various types of
files.
UVS-4

21

22

Creating and saving a workspace
When you have created a workspace (see Creating and saving a workspace, page 22),
you can start working on your visualSTATE Projects by means of the other visualSTATE
applications which you launch via the Navigator Project menu.

In the Navigator workspace you can set options for verification, code generation, and
visualSTATE Project reports (see Setting Verificator, Coder and Documenter options,
page 29). The workspace can also be used for setting up user-defined commands (see
Custom commands, page 41).

The Navigator workspace should not be confused with the Validator workspace which
is a workspace used for testing (see The Validator workspace, page 150).

PROJECTS IN WORKSPACE

You can have several visualSTATE Projects in the same workspace and different
workspaces can contain the same Projects. A workspace file only contains one
workspace.

A visualSTATE Project contains one or more visualSTATE Systems containing one or
more visualSTATE Statechart files (extension vsr). In the Navigator workspace
browser, Systems are shown as folders containing vsr files.

For a detailed description of visualSTATE Projects, Systems and Statechart files, refer
to IAR visualSTATE Reference Guide.

Creating and saving a workspace
For creating a simple workspace, you can use the wizard described in Setting up a
visualSTATE Project, page 12. If you want to be able to customize your workspace with
regard to number of Projects and Systems, you can use the following methods:

● Creating a workspace using workspace wizard. This will launch the Designer.
● Creating a blank workspace. This is for example suitable when you want to create a

new collection of Projects in a workspace.

CREATING A WORKSPACE USING WORKSPACE WIZARD

1 On the Navigator menu, choose File>New. A New dialog box is displayed. See Figure
5, page 12.

2 Under the Workspace tab, select Workspace Wizard.

In the File name field and Location field you can specify file name and directory of your
workspace file.
UVS-4

visualSTATE®

User Guide

Handling visualSTATE Projects, Systems and files
3 A System(s) dialog box is displayed. See Figure 14, page 23.

Figure 14: System(s) dialog box, Navigator

4 In the tree browser, select Project, and select number of visualSTATE Systems in the
Number of Systems field.

You can change the name of a System by selecting it in the tree browser and typing a
System name in the Name field.

5 Click Next. A Topstate(s) dialog box is displayed. See Figure 15, page 23.

Figure 15: Topstate(s) dialog box, Navigator

6 In the tree browser, select a System. In the Number of Topstates field, select the
number of topstates to be contained in the System.
UVS-4

23

24

Creating and saving a workspace
You can change the topstate name, and name (extension vsr) and location of the topstate
file.

7 Click Next. A Topstate Region(s) dialog box is displayed. See Figure 16, page 24.

Figure 16: Topstate Region(s) dialog box, Navigator

8 In the tree browser, select a topstate. In the Number of columns field and Number of
rows field, specify the number of regions to be contained in the topstate (horizontal and
vertical distribution in Designer statechart diagram).

If a topstate has more than one region, each of its regions can be named using the Name
field

9 Click Finish. A summary page is displayed informing you of the choices you have
made.

10 Click OK. The visualSTATE Designer application will be launched with a Project
containing the Systems and topstates you have specified in the wizard.

Now you can design your visualSTATE model in the statechart diagram window of the
Designer. See Designing statechart diagrams, page 57. When you have completed your
statechart diagrams, save the Project in the Designer (choose File>Save Project).

11 Return to the Navigator. Click Reload if the Reload message is displayed, to update the
Project in the workspace (see Figure 7, page 14).

12 On the Navigator menu, choose File>Save Workspace.

The workspace will be saved. See example of workspace in Figure 18, page 27.

CREATING A BLANK WORKSPACE

1 On the Navigator menu, choose File>New.
UVS-4

visualSTATE®

User Guide

Handling visualSTATE Projects, Systems and files
2 Under the Workspace tab, select Blank Workspace.

In the File name field and Location field you can specify file name and directory of your
workspace file.

3 Click OK. A blank workspace is created.

Now you can import existing Projects into the workspace (see Adding an existing
Project to a workspace, page 27), or create a new Project with Systems in it, as described
in Creating a new Project in a workspace, page 25.

Opening a workspace
You open a workspace as follows:

1 On the Navigator menu, choose File>Open Workspace.... An Open dialog box is
displayed.

2 Specify file name, and/or browse for the directory where the file is located. Click
Open.

The workspace file will be opened in the Navigator.

You can also open a workspace from the list of most recently used files by choosing
File>number.

Creating a new Project in a workspace
To create a new Project in a workspace:

1 In the Navigator, open your workspace.

2 On the Navigator menu, choose File>New.
UVS-4

25

26

Creating a new Project in a workspace
3 In the New dialog box displayed, click the Project tab. See Figure 17, page 26.

Figure 17: New dialog box, Project tab (Navigator)

4 Select one of the following:

To create a Project without Systems, select Blank Project. See Creating a blank Project
in a workspace, page 26.

To create a simple Project with one System and one topstate, select Simple Project. See
Creating a simple Project in a workspace, page 27.

To create a customized Project, select Project Wizard. See Creating a Project using
Project wizard, page 27.

CREATING A BLANK PROJECT IN A WORKSPACE

1 When you have selected Blank Project under the Project tab of the New dialog box
(see Figure 17, page 26), specify Project name, Project file name (extension vsp), and
location of Project file.

2 Select Add to current workspace, and click OK. The Designer will be launched with a
blank Project where you can create Systems and topstates (see Creating Systems and
Statechart files in a blank Project, page 99).

Note: Selecting Create new workspace here will generate a workspace file with a file
name composed of the Project name and the extension vnw. The workspace file will be
located in the same directory as the vsp file. The Project will be inserted in the newly
created workspace and the Designer will be launched with the Project.
UVS-4

visualSTATE®

User Guide

Handling visualSTATE Projects, Systems and files
3 Return to the Navigator. Click Reload if the Reload message is displayed, to update the
Project in the workspace (see Figure 7, page 14). The new Project is inserted in the
workspace.

Figure 18: Workspace browser with Project

CREATING A SIMPLE PROJECT IN A WORKSPACE

1 When you have selected Simple Project under the Project tab of the New dialog box
(see Figure 17, page 26), specify Project name, Project file name (extension vsp), and
location of Project file.

2 Select Add to current workspace, and click OK. The Designer will be launched with a
Project containing one System and one topstate.

3 Return to the Navigator. Click Reload if the Reload message is displayed, to update the
Project in the workspace. The new Project is created in the workspace. See example in
Figure 18, page 27.

4 On the Navigator menu, choose File>Save Workspace.

CREATING A PROJECT USING PROJECT WIZARD

1 When you have selected Project Wizard under the Project tab of the New dialog box
(see Figure 17, page 26), specify Project name, Project file name (extension vsp), and
location of Project file.

2 Select Add to current workspace, and click OK. The first page of the wizard is
displayed. See Figure 14, page 23.

3 Perform Step 4, page 23, to Step 12, page 24.

Adding an existing Project to a workspace
visualSTATE Projects created during another session, or with the Designer, can be
imported into a Navigator workspace as follows:

1 In the Navigator, open the workspace into which you want to import a Project.
UVS-4

27

28

Removing a Project from a workspace
2 On the menu, choose File>Insert Project. A dialog box is displayed, see Figure 19,
page 28.

Figure 19: Insert visualSTATE Project dialog box

For information on how to create Systems and Statechart files in a Project, see Creating
and saving Projects, Systems, and files in the Designer, page 97.

Removing a Project from a workspace
To remove a Project from a workspace:

1 In the Navigator, open the workspace from which you want to remove a Project.

2 In the workspace browser, click the File view tab, and select the Project to remove.

3 Open the pop-up menu and choose Remove.

Setting a Project or System as active
You can set a Project or System as active. This means that all operations that you
perform via the main menu will apply only to that Project or System. For example
Project>Verify System will start verification of the active System in the active Project.

To set a Project or System as active:

1 Open your workspace in the Navigator.
UVS-4

visualSTATE®

User Guide

Handling visualSTATE Projects, Systems and files
2 In workspace browser, select the System or Project to set as active. Open the pop-up
menu and choose Set as Active.... See Figure 20, page 29 where a Project has been
selected.

Figure 20: Setting a visualSTATE Project as active

The item that has been set as active is shown in bold in the workspace browser.

If you want to apply operations to Projects or Systems not set as active, you can select
the item in the Workspace view of the browser and use the commands on the pop-up.

Setting Verificator, Coder and Documenter options
For verification, code generation, and documentation of visualSTATE Projects you can
specify a variety of options, as follows:

1 Launch the Navigator, and open your workspace file.

2 To set Verificator options, choose Project>Options>Verification....
(Verificator options are described in Part 4: Formal testing, page 107).

To set Coder options, choose Project>Options>Code Generation....
(Coder options are described in Part 7: Code generation, page 231).

To set Documenter options, choose Project>Options>Documentation....
(Documenter options are described in Part 8: Documenting visualSTATE Projects, page
255).
UVS-4

29

30

Setting Verificator, Coder and Documenter options
An Options dialog box is displayed. See Figure 21, page 30.

Figure 21: Coder Project Options dialog box, Configuration tab

Here the use of the Coder Options dialog box will be explained. The Verificator and
Documenter options dialog boxes are used in the same way.

For a detailed description of the options, see Verificator command line options, page
371, Coder options, page 375, and Setting up a visualSTATE Project report, page 261.

3 In the Project browser to the left, select the visualSTATE Project or System for which
to apply options.

4 Click the tab containing the category of options you want to set. To view all options
available, click the All tab.

5 Click an option. There are several methods of setting values for options, depending on
the option selected:

● For some options there is a drop-down list box to the right of the option. Click in the
list box and select the appropriate value. See Figure 21, page 30.

● Other options have check boxes. Click the option check box to select or deselect the
option. See Figure 21, page 30.

● For some options, you can type the value in the field to the right of the option.
● Some options have buttons that are displayed when you click the option:

By clicking this button you can browse for files to use.

Clicking this button will display a pop-up menu.

The selected values are shown as command line options in the pane below the option
list. See example in Figure 21, page 30.
UVS-4

visualSTATE®

User Guide

Handling visualSTATE Projects, Systems and files
Dimmed options cannot be changed. The reason is that not all combinations of options
are possible. Thus the values selected for one option may exclude choices for other
options. This is described in the online help for the option (see Online help, page 31).

6 You can restore the options to their default values by clicking the Default button.

ONLINE HELP

You activate the online help for Verificator, Coder, and Documenter options by
right-clicking the option, or pressing SHIFT+F1. See Figure 22, page 31.

Figure 22: Display of online help
UVS-4

31

32

Reloading files in the Navigator
Reloading files in the Navigator
By default, you will receive a reload message in the Navigator when the Project files or
Statechart files (vsp and vsr files) contained in the current workspace have been
modified outside the Navigator. See Figure 23, page 32.

Figure 23: Navigator reload message

If you click Reload, the information about all modified Projects and Systems in the
workspace browser will be updated. Note that only the graphical information is
reloaded, not the information in the workspace file about links to the modified Projects
and Systems.

To change the way the reload message is displayed, do this:

1 In the Navigator, choose Tools>Settings. A dialog box is displayed. See Figure 24,
page 32.

Figure 24: Navigator Settings dialog box
UVS-4

visualSTATE®

User Guide

Handling visualSTATE Projects, Systems and files
2 Select Automatic file reload, and click the arrow button displayed to the right of the
option. Select one of the following:

Ask This is the default setting. If one or more files are changed, the
reload message shown in Figure 23, page 32 will be displayed,
and you can choose to refresh the view of the files in the
workspace by selecting Reload. If you choose not to reload, no
graphical update will be made in the workspace (corresponds
to the setting Never, see below).

Always All relevant vsp and vsr files are reloaded automatically when
they have been changed outside the Navigator. The graphical
information about Projects and Systems in the workspace is
updated, just as reload information is written to the output
window (General tab).

Never Changes in vsp and vsr files are ignored in the graphical
representation of Projects and Systems in the Navigator
workspace browser. The only way to update the graphical
information is to close and reopen the workspace.
This setting is not recommended.

Digital signature
A digital signature is associated with each visualSTATE Project. The purpose of the
digital signature is to track consistency between the files generated by the various
visualSTATE programs, and to track changes from version to version of a visualSTATE
Project.

The digital signature is a string value based on a visualSTATE Project file and its
associated Statechart files. The digital signature value does not depend on all parts of a
visualSTATE Project; it only depends on the logical parts of the visualSTATE Project.
Other parts of a visualSTATE Project, for example explanations to various visualSTATE
elements, do not have any influence on the digital signature. Whenever a visualSTATE
Project part is changed on which the digital signature depends, for example the
renaming of an event, the digital signature is changed.

The digital signature is used in the following cases:

● visualSTATE Project code-generated via the Navigator
● Generated files included in Documenter report.
● Runtime application.
UVS-4

33

34

Digital signature
VISUALSTATE PROJECT CODE-GENERATED VIA THE
NAVIGATOR

When a visualSTATE Project is code-generated via the Navigator, its digital signature is
saved for later use. When you later choose to start verification of the Project via the
Navigator, the Navigator will issue a notification if the saved digital signature from the
last code generation differs from the current digital signature, and you have chosen to
be notified of model changes. Thus a notification will be issued in the following cases:

● when an attempt is made to verify a visualSTATE Project or visualSTATE System
for which you have not generated code.

● the Coder-generated files are not consistent with the model due to changes in the
model.

See Figure 25, page 34.

Figure 25: Verificator notification

To set up notification on model change, do the following:

1 In the Navigator, choose Tools>Settings. The Navigator Settings dialog box is
displayed. See Figure 13, page 20.

2 Select Show notification if model has changed.

GENERATED FILES INCLUDED IN DOCUMENTER REPORT

A digital signature is included in all files generated by the Validator, Coder and
Verificator that can be included in a Documenter-generated report. By default
Documenter will only include files with a correct digital signature. The default behavior
can be changed via Documenter options. See Specifying visualSTATE files to be used as
input for Project report, page 263.

For information about creating a Documenter report, see Part 8: Documenting
visualSTATE Projects, page 255.
UVS-4

visualSTATE®

User Guide

Handling visualSTATE Projects, Systems and files
RUNTIME APPLICATION

The Coder stores the digital signature in one of the Coder-generated files. At runtime,
the digital signature can be retrieved from the embedded environment. By searching
through a file system it is possible to find the visualSTATE Project associated with this
digital signature. The digital signature is stored in the vsp file whenever the
visualSTATE Project is saved.

Handling Projects from previous visualSTATE versions
When you open a visualSTATE Project of a previous visualSTATE version in version 5,
you must convert the Project to version 5. See Figure 26, page 35.

Figure 26: Conversion of Project from previous visualSTATE version

If you select OK, the Project will be converted and you can edit it in the Designer.
Converted files are located in the original Project directory. A copy of the original files
are located in an automatically created directory named Backup below the Project
directory.

If you select Cancel in the dialog box shown in Figure 26, page 35, the Project will not
be converted and the load will be terminated.

For additional information about conversion of visualSTATE Projects, see Appendix D:
Handling visualSTATE files from previous versions, page 435.

Closing the Navigator
You close the Navigator by choosing File>Exit.

When the Navigator is closed, all running instances of the Designer, Validator, and IAR
Embedded Workbench® that were opened by the Navigator will be closed too.
UVS-4

35

36

Closing the Navigator
UVS-4

visualSTATE®

User Guide

Source code control
The files created in the visualSTATE Navigator and Designer can be added to
a source code control system. You can either use the built-in visualSTATE
MultiUser Management for source code control, or you can use any system
that supports Microsoft Common Source Code Control (Microsoft SCC API),
for example Microsoft Visual SourceSafe.

This chapter describes how to you can use the Navigator and Designer for
source code control for your visualSTATE files.

Supported visualSTATE file types
The following visualSTATE file types can be added to a source code control system:

Navigator-created files: vnw, vtg

Designer-created files: vsp, vsr

Validator-created files:vws

Files created by third-party product:oil

Using source code control
You add files to source code control using the Navigator or the Designer:

● To add vsp and vsr files, you use the Designer.
● To add vnw, vtg, vws, and oil files, you use the Navigator.

The following procedure describes how to add Designer-created files to source code
control. The same procedure applies to files that are handled by the Navigator.

To add Designer-created file to source code control:

1 Launch the Designer and open you visualSTATE Project.

2 In the Project browser, select the file to add to source code control. Open the pop-up
menu and choose Add to Source Control.

3 In the dialog box displayed, select the source code control system to apply.
UVS-4

37

38

Using source code control
The file will be added to the source code control system and shown with gray icons in
the browser.

ACCESSING FILES UNDER SOURCE CODE CONTROL

To edit a supported visualSTATE file that has been added to a source code control
system, it must be checked out to the user who wants to edit it. Only one user at a time
can edit a file.

You check out visualSTATE files using the Navigator or Designer, or a third-party
source code control system. The following procedure describes how to check out
Designer created files. The same procedure applies to files that are handled by the
Navigator (see Using source code control, page 37).

You check out a file using the Designer as follows:

1 Open your Project file. In the Project browser, select the files to check out. Open the
pop-up menu and choose Source Control>Check Out.

The checked-out files will be shown with a red check mark in the browser.

You can also use a third-party source code control system to check out the files. Again,
they will be marked with red check marks in the Designer and Navigator browsers.

2 When you have completed editing your files, you check them in by selecting Source
Control>Check In....

Retrieving latest copy of file

To retrieve the latest copy of a file under source code control, choose File>Source
Control>Get Latest Version.... Note that this operation will typically not check out the
file and make it editable (depends on source code control system).

SOURCE CODE CONTROL STATUS OF FILES

The source code control status of files are shown in the Navigator and Designer browsers
by icons. If a file is checked in, it is shown with gray icons in the browser. If a file is
checked out and can be edited by the current user, it is shown with red check marks.

To update the source code control status of the files, choose File>Source
Control>Refresh Status on the menu.

Update frequency of source code control status

You can set up how often the source code control status in the Navigator workspace
browser should be updated, as follows:

1 On the Navigator menu, choose Tools>Settings.
UVS-4

visualSTATE®

User Guide

Source code control
2 Click the Source control status refresh interval option and type number of seconds in
the field to the right. See Figure 27, page 39.

Note: If you enter the value zero in this field, regular update of the source code control
status will be disabled.

User name for source code control system
Some source code control systems require a user name for login which you specify in
the Navigator as follows:

1 On the menu, choose Tools>Settings.

2 Click the Source control user name option and type user name in the field to the right.
See Figure 27, page 39.

Figure 27: Navigator Settings dialog box

Note: If you leave Source control user name blank, the Windows user name will be
used for source code control login.
UVS-4

39

40

User name for source code control system
UVS-4

visualSTATE®

User Guide

Custom commands
This chapter explains the following:

● What is a custom command?

● Creating custom commands

● Activating custom commands

● Editing, renaming, and deleting custom commands

● Renumbering of custom command macros.

What is a custom command?
A custom command is a user-specified command for performing a specific task, for
example compilation of an entire visualSTATE Project.

You can set up one or several custom commands for each Project in a Navigator
workspace, and for the workspace itself.

Note: Custom commands are workspace-specific, that is, they apply only to the
workspace where they have been created and its Projects.

Creating custom commands
You set up a custom command as follows:

1 Launch the Navigator, and open your workspace file.
UVS-4

41

42

Creating custom commands
2 On the menu, choose Tools>Custom Commands. A Custom Commands dialog box is
displayed. See Figure 28, page 42.

Figure 28: Custom commands dialog box (Navigator)

Here you specify which command to execute.

3 The Project(s) tree in the left pane shows the loaded visualSTATE Projects. The root
item is the visualSTATE workspace name. Each node in the tree represents a
visualSTATE Project.

To create a workspace-specific custom command, select the visualSTATE workspace.

To create a Project-specific custom command, select the visualSTATE Project.

Note: Workspace-specific custom commands have access to the workspace and all
Projects and Systems contained in it. Project-specific custom commands only have
access to the Project where they are defined and the Systems contained in it.

4 The Command(s) section shows the custom commands created for the workspace or
selected Project.

On the Command(s) toolbar, click the button to create a new command.

5 In the Command field, click the button to browse for path and name of the
program to be executed.
UVS-4

visualSTATE®

User Guide

Custom commands
6 In the Arguments field, you specify the arguments to be used by the custom command.
Either type the arguments, or click the button to display a pop-up menu of
arguments. See Figure 29, page 43.

Figure 29: Custom commands, arguments pop-up menu (Navigator)

If you choose Select Project..., or Select System File..., a Select dialog box is displayed.
See Figure 30, page 43.

Figure 30: Custom commands, Select Project dialog box (Navigator)

Select the appropriate item to use as argument.

Example

Selecting Project File for the first Project in the workspace will insert the macro
$(P0_FILE) in the Arguments field of the Custom Commands dialog box (see Figure
28, page 42). When the custom command is activated, $(P0_FILE) is expanded to the
name of the first Project file in the workspace, for example Project.vsp.

See also Renumbering of custom command macros, page 45.

7 In the Initial directory field of the Custom Command dialog box, click the right arrow
button to select the directory to change to during execution of the custom command.
UVS-4

43

44

Activating custom commands
8 Select Silent mode if you do not want any windows to be displayed during execution of
the custom command.

Note: Use this function with caution. Any windows requesting user interaction during
the execution of the command will not be shown.

9 Select Prompt for arguments to be prompted for arguments during execution of the
custom command.

10 Select Use Output window to have any console output displayed on the Custom
Command tab page of the Navigator output window (such as the echo DOS command
and output from most compilers called from the command line).

11 To change the order in which custom commands appear in the workspace browser,
click the up and down arrows on the Commands toolbar of the Custom Commands
dialog box.

12 When you have created a custom command, it is added to the Project Custom
Commands folder in the workspace browser. Figure 31, page 44 shows a Navigator
workspace with a custom command named Compile project.

Figure 31: Navigator workspace with custom command

13 Save the workspace.

Activating custom commands
You activate a custom command by double-clicking it in the Navigator workspace
browser. See Figure 31, page 44.

Editing, renaming, and deleting custom commands
You edit, rename, and delete custom commands as follows:

1 On the menu, choose Tools>Custom Commands. The Custom Commands dialog box
is displayed. See Figure 28, page 42.
UVS-4

visualSTATE®

User Guide

Custom commands
2 In the Project(s) tree, select a command and edit, rename, or delete it using the and
 buttons on the toolbar.

Renumbering of custom command macros
You can set up whether the numbering of custom command macros for arguments and
initial directory should be changed when a Project or System is created or deleted in a
Navigator workspace.

To set custom commands renumbering:

1 On the Navigator menu, choose Tools>Settings.

2 On the General tab, select Renumbering of custom commands and click the
drop-down list. Select the appropriate option: Never, Ask, Always.
UVS-4

45

46

Renumbering of custom command macros
UVS-4

visualSTATE®

User Guide

Part 3: Modeling
This part of the visualSTATE® User Guide includes the following chapters:

● Graphical environment

● Getting started

● States

● Transitions

● Elements

● Handling Projects, Systems, and files for modeling.
UVS-4

47

48
UVS-4

Graphical environment
For designing your visualSTATE models, you use the visualSTATE Designer.
This chapter describes the graphical environment of the Designer, including
toolbars.

General
The Designer environment consists of a Project browser, menus, toolbars, and a number
of windows with pop-up menus. Figure 32, page 49 shows the Designer environment
with a Project loaded.

Figure 32: Designer environment with visualSTATE Project
UVS-4

49

50

Designer windows
Most windows and objects have pop-up menus which you activate by right-clicking the
object. See example in Figure 33, page 50.

Figure 33: State pop-up menu

Designer windows
The Designer windows are opened via the View menu and are the following:

● Project browser window
● Diagram window
● Element browser window
● Property window
● Output window
● Zoom view.

PROJECT BROWSER WINDOW

This is the left-most pane of the Designer windows (see Figure 32, page 49). It shows
the structure of the visualSTATE Project and is used for navigating through the Systems,
topstates, regions, and states of a visualSTATE Project. For example, you can display
the individual states in the statechart diagrams by double-clicking their names in the
Project browser.

The Project browser has two views which show the structure of the Project on file level
and statechart level respectively. Click the tabs to change between the two views.
UVS-4

visualSTATE®

User Guide

Graphical environment
DIAGRAM WINDOW

This window is used for designing the logic of the visualSTATE System by means of
statechart diagrams. The diagram window has the following views:

● Project view
● System view
● Statechart diagram view.

See Figure 34, page 51.

Figure 34: Designer diagram window

To change between the views, click the appropriate item in the Project Browser window.
For example, to display the Project view of the diagram window, click the Project icon
in the browser.

To view the details of a specific area or object in a diagram, click the item, and click the
Zoom In toolbar button.
UVS-4

51

52

Designer windows
ELEMENT BROWSER WINDOW

This window is used for creating and browsing for the elements created for states and
transitions, as described in Elements, page 89.

Figure 35: Designer element browser window

PROPERTY WINDOW

In this window you can specify the properties of objects in diagrams, for example font
types for state names, colors of transitions etc. See Figure 36, page 52.

Figure 36: Designer property window
UVS-4

visualSTATE®

User Guide

Graphical environment
OUTPUT WINDOW

The output window is placed at the bottom of the screen and contains information about
the loaded Project, result messages on element searches, and source code control
information (see Searching for an element, page 95, and Source code control, page 37).

Figure 37: Designer output window

To change between the views, click the tabs, or press CTRL+TAB.

ZOOM VIEW

In this window you can see your entire drawing area and the position of your current
diagram in the drawing area (see Navigating in statechart diagrams, page 60).

Designer toolbars
The most frequently used menu commands are available as toolbar buttons with
tooltips. A detailed description of the Designer menu commands is found in Designer
menu commands, page 345.

The following toolbars are available:

● Standard toolbar
● Diagram toolbar
● Size toolbar
● Source Control toolbar
● Zoom toolbar.
If the toolbars are not visible, you can display them via the View menu.

STANDARD TOOLBAR

Figure 38, page 53 shows the Designer Standard toolbar.

Figure 38: Designer Standard toolbar
UVS-4

53

54

Designer toolbars
The buttons on this toolbar correspond to the commands on the File, Edit, Tools and
Window menus.

DIAGRAM TOOLBAR

Figure 39, page 54 shows the Diagram toolbar.

Figure 39: Designer Diagram toolbar

The buttons on this toolbar correspond to the commands on the Insert menu.

SIZE TOOLBAR

Figure 40, page 54 shows the Size toolbar.

Figure 40: Designer Size toolbar

The buttons on this toolbar correspond to the commands on the Format menu.

Note: Objects must be selected for the buttons to be available.

SOURCE CONTROL TOOLBAR

Figure 41, page 54 shows the Source Control toolbar.

Figure 41: Designer Source Control toolbar

The buttons on this toolbar correspond to the commands on the File>Source Control
menu.

Note: File must have been added to source control system for the buttons to be
available.

See also Source code control, page 37.
UVS-4

visualSTATE®

User Guide

Graphical environment
ZOOM TOOLBAR

Figure 42, page 55 shows the Zoom toolbar.

Figure 42: Designer Zoom toolbar

The buttons on this toolbar correspond to the zoom commands on the View menu.
UVS-4

55

56

Designer toolbars
UVS-4

visualSTATE®

User Guide

Getting started
This chapter describes how to get started designing statechart diagrams in
visualSTATE Designer, and gives a general introduction on how to use the
Designer.

Before you can start designing statechart diagrams, a Project with a System
and Statechart file must be created in a Navigator workspace (see Setting up a
visualSTATE Project, page 12) or in the Designer (see Handling Projects, Systems,
and files for modeling, page 97).

Shortcuts are listed in Designer shortcuts, page 341.

Designing statechart diagrams
To start designing a statechart diagram, you first create a workspace in the Navigator as
described in Setting up a visualSTATE Project, page 12. The Designer will be launched
with the visualSTATE Project loaded in the Navigator workspace (see Figure 43, page
57).

Figure 43: Designer with Project loaded
UVS-4

57

58

Designing statechart diagrams
Now you can begin designing the actual statechart diagram which is drawn in the
statechart diagram view.

DRAWING A SIMPLE STATE

To draw a simple state:

1 On the Diagram toolbar, click the Simple State button (), go to the statechart
diagram view, and click on it. A default state will be created in the diagram.

To create a state with another size, click the Simple State button. Then go to the
statechart diagram, press and hold the left mouse button while dragging a rectangle.
Release the mouse button.

2 Deactivate the Simple State tool by right-clicking the mouse. The state you have drawn
can be resized and moved as necessary by dragging it.

Figure 44: Newly drawn states

3 By default a state is given a name State#. To change the name, click on the default
state name, and type a new name.

You can compose states with elements as described in Composing states, page 67. You
can change color, frame width etc. using the property window (opened via
View>Property).

When you have drawn a number of states, you can draw transitions between them.
UVS-4

visualSTATE®

User Guide

Getting started
DRAWING A TRANSITION BETWEEN TWO STATES

To draw a transition:

1 On the Diagram toolbar, click the Add Transition button ().

2 Move the cursor onto the source state in the statechart diagram view, and click the left
mouse button. The frame of the source state is highlighted, and a hook point is
displayed.

3 To start drawing the transition, release the left mouse button and move the cursor to the
frame of destination state. The frame of the destination state is highlighted. Click the
frame of the destination state. The transition line is drawn between the states.

4 Deactivate the transition tool by right-clicking the mouse.

Figure 45: Examples of transitions

Transition description

The "? /" on the transition is the transition description. The "?" illustrates that the
transition does not have a trigger. The "/" is a separator which divides the transition into
a condition side and an action side. Composing a transition with a condition side and an
action side is described in Composing transitions, page 83.

The transition description is locked to an anchor so that the description moves with the
transition. You can set up location of the description on the transition (start, center, end),
as follows:

1 Choose Tools>Customize... on the menu. A Customize dialog box is displayed.

2 In the tree in the left-hand pane of the dialog box, double-click on Transition, select
transition, and specify anchor position in the right-hand pane.

Route points

Transitions have route points. You can choose to turn off route points by choosing
Tools>Settings... on the menu. In the Settings dialog box displayed, click the Transition
tab and deselect Show route points.
UVS-4

59

60

Navigating in statechart diagrams
EDITING OBJECTS IN STATECHART DIAGRAMS

In the Designer you can rename Projects, Systems, topstates, regions, states, composite
states, and substates, and change alias names and explanation notes, as follows:

1 In the diagram window, click the item to edit.

2 To rename an object, type a new name and press ENTER, or select the item in the
Project browser, open the pop-up menu, select Rename, and type a new name.

3 To enter or change alias names and explanation notes, open the pop-up menu, and
choose Compose.... A Compose dialog box is displayed where you can enter and edit
alias and explanation.

For renaming of elements, see Creating and editing elements, page 89.

STATECHART NOTES

You can insert notes anywhere in a statechart diagram as follows:

1 On the Designer Diagram toolbar, click the Note button ().

2 Click in the statechart diagram where you want to place the note. A rectangle is
inserted.

3 Right-click to deactivate the Notes tool.

4 To write text in the note, click the frame of the note. It will be marked with black
squares. Start typing. To insert a line break, press CTRL+ENTER.

5 Press ENTER to finish typing.

DELETING OBJECTS IN STATECHART DIAGRAMS

You can delete Systems, topstates, regions, states, composites states, substates, and
transitions in the Designer as follows:

1 Open your visualSTATE Project.

2 Go to the appropriate view in the diagram window, select the object to delete, and press
the DELETE button, or choose Delete from the pop-up menu.

Items displayed in the Project browser can be deleted as follows: Select the item in the
Project browser, and choose Delete from the pop-up menu.

Navigating in statechart diagrams
To find out where in a statechart diagram objects are located, you use the zoom view.
You can move to another area of the statechart diagram, by dragging the white square in
UVS-4

visualSTATE®

User Guide

Getting started
the zoom view where the gray area represents the entire statechart diagram area. See
Figure 46, page 61 and Figure 47, page 62.

When you use the scroll bars of the statechart diagram view, it is reflected in the position
of the white square in the zoom view.

Figure 46: Designer zoom view, focus on upper left part of statechart diagram
UVS-4

61

62

Navigating in statechart diagrams
Figure 47: Designer zoom view, focus on lower right part of statechart diagram

To get detailed information about an object in the diagram window, move the cursor onto
it to have tooltips displayed.

SELECTING A COLLECTION OF OBJECTS

You can select a collection of objects in the statechart diagram window as follows:

1 In the diagram, not on the objects to be selected, click the left mouse button, hold it
down and draw a box (dotted line) around the objects. See Figure 48, page 62.

Figure 48: Objects selected

Or click the individual objects while holding down the SHIFT key.
UVS-4

visualSTATE®

User Guide

Getting started
2 Release the mouse button. The objects will be marked with square selection marks.

Now the objects can be changed. For example you can change the color of selected states
using the property window, or align them using the Alignment toolbar (see Resizing and
positioning objects in statechart diagrams, page 63).

Resizing and positioning objects in statechart diagrams
To align and resize selected objects, you use the buttons on the Size toolbar, or choose
Format>Size on the menu. The objects will be resized and aligned according to the
object last selected (marked with black squares).

MOVING A COLLECTION OF OBJECTS

You can move a collection of objects in a statechart diagram as follows:

1 Select the objects to be moved (see Selecting a collection of objects, page 62).

2 When the objects are marked with squares, place the cursor on one of the objects so the
cursor changes shape to a Move cursor ().

3 Press and hold down the left mouse button. Drag the objects to where you want to place
them and release the mouse button.

Printing statechart diagrams
You can print statechart diagrams from the Designer as follows:

1 Open your visualSTATE Project.
UVS-4

63

64

Safe mode
2 On the menu, choose File>Page Setup. A dialog box will be displayed. See Figure 49,
page 64.

Figure 49: Designer Page Setup dialog box

Click the appropriate tabs to set up page layout.

Under the Header and Footer tabs, click the button to insert the appropriate text.

Click OK.

3 To print a single diagram, open the diagram. On the menu choose File>Print.

4 To print all diagrams in the Project, choose File>Print All on the menu.

To print the full documentation for a visualSTATE Project, see Part 8: Documenting
visualSTATE Projects, page 255.

Safe mode
If during model design you want to receive a warning when you create or use a
non-verifiable element, you can use safe mode. Safe mode is set by clicking the Safe
Mode button on the Standard toolbar, or choosing Tools>Safe Mode.

For information about non-verifiable elements, see Non-verifiable elements, page 119,
and Designing for verification, page 143.

Customizing the Designer
The Designer can be customized with regard to handling of files, elements, message
display, etc., as follows:

1 On the Designer menu, choose Tools>Settings. A Settings dialog box is displayed.
UVS-4

visualSTATE®

User Guide

Getting started
2 Click the appropriate tabs to set options.

The settings are stored in the registry.

CHANGING GRAPHICAL SETTINGS

You can change the graphical settings in the Designer as follows:

1 On the Designer menu, choose Tools>Customize. A dialog box is displayed. In the
tree, click the node of a category to expand it. Select the item to be customized. See
example in Figure 50, page 65.

Figure 50: Designer Customize dialog box, transition category selected

2 In the right pane, select the values to apply.

Click the Default button to restore the original settings.

The settings are stored in the registry.

3 You can change the appearance of an individual object by selecting it in the statechart
diagram and using the property window (see Property window, page 52).
UVS-4

65

66

Customizing the Designer
UVS-4

visualSTATE®

User Guide

States
This chapter describes how to compose and edit states using the Designer,
including:

● Composite states

● Regions

● Connector states

● Pseudostates.

The types of states are described in detail in visualSTATE Reference Guide.

For a description of how to create and define state reactions, see Elements,
page 89.

Composing states
When you have drawn a state, you can compose it with state reactions. You are
recommended to use the element browser for creating elements (see Creating and
editing elements, page 89).

To compose a state:

1 Launch the Designer, and open your visualSTATE Project.
UVS-4

67

68

Composing states
2 In the statechart diagram view, double-click the state to compose. Or click the state,
open the pop-up menu, and choose Compose State.... A Compose State dialog box is
displayed. See Figure 51, page 68.

Figure 51: Compose State dialog box

Here you can change state name, and enter alias name and explanation for the state.

3 Go to the Reaction section. The section has tabs that represent the various categories of
state reactions: Internal reaction, entry reaction, exit reaction, and do reaction.

The toolbar is used for creating, deleting, defining, and moving state reactions up or
down in the list.

4 Click the tab containing the type of state reaction you want to use, for example internal
reaction.

5 Then click the New button () on the toolbar. A list of state reactions is displayed in
the Reaction section.

6 In the Reaction section, click the element type to use. For example click Trigger in the
list. If state reactions have been defined, a list of the defined triggers is displayed in the
Element section. See Figure 52, page 69 where three events have been defined.
UVS-4

visualSTATE®

User Guide

States
7 In the Element section, double-click the element to use. The element will be moved to
the Reaction section and applied to the state reaction. See Figure 52, page 69.

Figure 52: Compose State dialog box, Event1 added

You can add as many reactions as you want to, and change their order in the Reaction
list by clicking the Up Arrow and Down Arrow buttons on the Reaction toolbar.

To edit elements in state reactions, use the element browser as described in Creating and
editing elements, page 89.

To delete a state reaction from a state, select the reaction to delete in the Reaction section
of the Compose State dialog box, and click the Delete button on the toolbar (see Figure
52, page 69).

For information on how to add assignments and guard expressions to state reactions, see
Adding assignments and guard expressions, page 94.

CREATING ELEMENTS WHILE COMPOSING STATES

If no elements have been created in the element browser, you can use the Compose State
dialog box, as follows:

1 In the statechart diagram, select the state, and open the Compose State dialog box.

2 Go to the Reaction section. and click the tab containing the type of state reaction you
want to add, for example Internal Reaction.
UVS-4

69

70

Composing states
3 Then click the New button on the toolbar to insert a new state reaction. See Figure 53,
page 70.

Figure 53: List of elements (Designer)

4 Click an element type to add. For example click Trigger in the list. A list of available
triggers will be displayed in the Element section to the right.
UVS-4

visualSTATE®

User Guide

States
5 In the Element section, click element type to create, for example Event, and click the
New button in the Element section. A New Event dialog box is displayed. See Figure
54, page 71.

Figure 54: New Event dialog box (Designer)

Here you can type a new name for the event, enter an explanation, and specify whether
the event is a definition or declaration. In the Parameters section, you can specify
parameters. See Creating parameters, page 90.

6 When you have defined the event, click OK. The event is added to the list of elements.
UVS-4

71

72

Composite states
7 Double-click the event in the Element section to move it to the Reaction section and
apply it to the state reaction. See Figure 55, page 72.

Figure 55: Compose State dialog box, event created and used as trigger

Composite states
Composite states consist of concurrent regions, or mutually exclusive substates.

CREATING A COMPOSITE STATE CONSISTING OF
CONCURRENT REGIONS

To create a composite state consisting of concurrent regions:

1 Launch the Designer, and open your visualSTATE Project.

2 On the Designer Diagram toolbar, click the Composite State button ().
UVS-4

visualSTATE®

User Guide

States
3 Go to the statechart diagram and click on it. A state with one region is created. See
Figure 56, page 73.

Figure 56: Composite state with one region

Note: In a state with only one region, the region has no name.

4 Deactivate the Composite State tool by right-clicking the mouse.

5 To add a region to the state, right-click anywhere in the region to open the pop-up
menu. Select Insert Region, and select Above, Below, etc., whichever is appropriate
(see Figure 62, page 76). The region will be inserted. See example in Figure 57, page
73.

Figure 57: Composite state with two concurrent regions

The composite state can be resized and moved as necessary. You can change the sizes of
the individual regions by dragging the dashed separator line between the regions.

6 To compose the state, click in the upper area of it (not in one of the regions), open the
pop-up menu and choose Compose State.... See Composing states, page 67.

Inserting already created states in a concurrent region

1 In the diagram, not on the states to be moved, click the left mouse button, hold it down
and drag a box (dotted line) around the states.
UVS-4

73

74

Composite states
2 Release the mouse button. The states will be marked with squares. See Figure 58, page
74.

Figure 58: Selection of states to be moved (Designer)

3 Place the cursor on one of the selected objects. A Move cursor appears. Press and hold
down the left mouse button, and drag the states into the region.

4 Release the mouse button to place the states in the region.

CREATING A COMPOSITE STATE CONSISTING OF
MUTUALLY EXCLUSIVE SUBSTATES

To create this type of composite state, do the following:

1 In the diagram, select the states that are to be substates, and release the mouse button
(see Selecting a collection of objects, page 62).

2 Drag the states onto the state to be the composite state. A region is automatically
inserted, indicated by a horizontal line below the state name. An example of a
composite state is shown in Figure 59, page 74.

Figure 59: Composite state consisting of mutually exclusive substates

You compose the composite state as described in Composing states, page 67.

A composite state composed of mutually exclusive substates can be changed to a
composite state with concurrent regions just by adding a region (see Creating a
UVS-4

visualSTATE®

User Guide

States
composite state consisting of concurrent regions, page 72). This will automatically
create two regions and move the original substates into one of the regions.

Regions
Regions are used in states and topstates to define concurrent subsystems and represent
hierarchical state machines. For a detailed description of topstates and regions, see
visualSTATE Reference Guide.

VIEWING CONTENTS OF REGIONS

You can choose whether you want to view the contents of a region or not. Hiding the
contents of a region can give you a better overview of the overall structure of your model
if the region contains a very complex model.

You hide the statechart contained in a region by opening its pop-up menu and selecting
Off-page. Figure 60, page 75 shows an example of a state region containing a state
machine model.

Figure 60: Example of state with one region
UVS-4

75

76

Regions
When the same region is off-page, it looks as follows:

Figure 61: Off-page state region

To go to the statechart contained in a state region or topstate region, you click the
statechart icon in the lower right corner (see Figure 61, page 76). To return from the
contained statechart to the region, press the BACKSPACE key.

REGIONS IN TOPSTATES

You create regions in topstates as follows:

1 In the Designer Project browser, double-click a topstate.

2 Go to the System view and click the topstate. Open the pop-up menu and choose Insert
Region>.... See Figure 62, page 76.

Figure 62: System view pop-up menu (Designer)
UVS-4

visualSTATE®

User Guide

States
Connector states
Connector states are pairs of graphical symbols for splitting a transition into multiple
transition fragments. The transition can originate from and enter a connector state.

To draw a connector state:

1 Open your visualSTATE Project in the Designer.

2 On the Diagram toolbar, click the Connector State button, go to the statechart diagram,
and click where you want to insert the connector states.

3 Draw a transition from the connector states to ordinary states. An example is shown in
Figure 63, page 77.

Figure 63: Example of a pair of connector states

Note: You must rename the states in a connector pair to the same name in order to have
them connected. You rename a connector state by clicking it and typing a new name;
press ENTER to finish.

To find the other connector state in a pair, click on the connector state, open the pop-up
menu, and choose Go to Buddy.

Figure 64: Connector state pop-up menu

To connect the selected state connector with another, choose Select Buddy from the
pop-up menu.

Pseudostates
This section describes how to create pseudostates in a statechart diagram. The following
pseudo states can be created:

● Initial, shallow history, and deep history states.
UVS-4

77

78

Pseudostates
● Fork and join states
● Junction states.

INITIAL, SHALLOW HISTORY, AND DEEP HISTORY STATES

You draw initial, shallow history, and deep history states as follows:

1 Open your visualSTATE Project in the Designer.

2 On the Diagram toolbar, click the Initial State, Shallow History State, or Deep History
State button, go to the statechart diagram, and click where you want to insert the
pseudo state.

3 Draw a transition from the inserted pseudo state to the state that is to be the default
state, in the same way as you draw transitions between states. See Figure 66, page 79.

Figure 65: Example of a state with an initial state

FORK AND JOIN STATES

Fork and join states are used to go to/from multiple state machines to/from a single state
machine. Fork and join states can be used across several state levels.

To draw fork and join states:

1 Open your visualSTATE Project in the Designer.

2 On the Diagram toolbar, click the Fork or Join button, go to the statechart diagram, and
click where you want to insert the pseudo state.
UVS-4

visualSTATE®

User Guide

States
3 Now you can draw transitions from states to the fork state, and from the join state to
states. See example in Figure 66, page 79.

Figure 66: Example of fork and join states

The numbers automatically inserted on the bottom-right side of the pseudo states serve
as indexes that are used by the visualSTATE documentation and verification tools (see
Part 4: Formal testing, page 107, and Part 8: Documenting visualSTATE Projects, page
255).

You can choose to hide these numbers in the Designer diagram as follows:

1 Choose Tools>Settings.

2 In the dialog box displayed, click the Pseudo State tab. Deselect Show index.

JUNCTION STATES

Junction states are used to chain together and split transitions.

To draw a junction state:

1 Open your visualSTATE Project in the Designer.

2 On the Diagram toolbar, click the Junction State button, go to the statechart diagram,
and click where you want to insert the junction state.

3 Draw transitions to and from the junction state from and to the other states in the
statechart.
UVS-4

79

80

Excluding states and regions
Excluding states and regions
States and regions can be excluded from further processing. Any number of states or
regions, on any hierarchy level, can be marked for exclusion.

MARKING STATES OR REGIONS FOR EXCLUSION

To mark a state or region for exclusion, right-click in it and choose Exclude from the
context menu:

Figure 67: StatePopup

Excluded states and regions have (excluded) after their name in the diagram and in
the Project Browser window.

Figure 68: StateExclusion

Exclusion is inherited; all states or regions that are contained inside an excluded state or
region are also excluded. (Note that an explicitly excluded state below a state/region that
is marked for exclusion will still be excluded even if the state above is once again
included.)
UVS-4

visualSTATE®

User Guide

States
TRANSITIONS

A transition is ignored if it is has:

● A source state or region that is excluded
● A target state or region that is excluded
● A positive state condition that depends on an excluded state
● Both a main target and a main source that is below the top-level exclusion.

Transitions that have a negative state condition that depends on an excluded state will
simply have that negative state condition removed. All other transitions are handled as
if the state or region is not part of the model.

OVERRIDING EXCLUSION MARKS

At the time of code generation, validation, or verification, you can choose to include
states and regions that are marked for exclusion, despite the exclusion mark. This is
useful for:

● Configuring your application.

For example, you can include or exclude parts of your design to enable or disable a
certain function in your application.

● Adding debug regions to your design to keep track of or detect, for example, error
conditions.

Just add a separate region where you put your debug state machines and then decide
if you want the functionality included in simulation, in the generated code, or for
verification. The verification, in particular, can greatly benefit from this way of
working, letting you, for example, create regions that should enter a dead-end state
on certain conditions. (For an explanation of verification concepts, see Part 4:
Formal testing.)
UVS-4

81

82

Excluding states and regions
UVS-4

visualSTATE®

User Guide

Transitions
This chapter describes how to compose and edit transitions using the
Designer.

For a description of how to create and define transition elements, see
Elements, page 89.

For a detailed description of the visualSTATE transition elements, refer to IAR
visualSTATE Reference Guide.

Composing transitions
A transition is composed of a condition side and an action side. When all conditions are
fulfilled, the transition will be triggered, and all actions defined on the action side will
be executed. Action side and condition side of transition are described in visualSTATE
Reference Guide.

When you have drawn a transition, you can compose it with elements. It is
recommended that you use the Designer element browser for creating transition
elements (see Creating and editing elements, page 89).

To compose a transition:

1 Launch the Designer, and open your visualSTATE Project.
UVS-4

83

84

Composing transitions
2 Click the transition, open the pop-up menu, and choose Compose Transition. A
Compose Transition dialog box will be shown. See Figure 69, page 84.

Figure 69: Compose Transition dialog box

Here you can type an alias name and explanation for the transition.

The Element section shows a list of the element types available for composing a
transition:

● Triggers, guard expressions, positive state conditions, and negative state
conditions belong on the condition side of the transition.

● Action expressions, force state actions, and signals belong on the action side of
the transition.

3 Click an item in the Rule section to display a list of the defined elements in the Element
section. In the Element section, double-click the element to add (or select it and click
the Left Arrow button). The selected element will be added to the transition description
in the Rule section.

You can add as many elements as you want to, and change their order in the Rule list by
clicking the Up Arrow and Down Arrow buttons on the toolbar.

To delete an element from a transition, select the element to delete in the Rule section
of the Compose Transition dialog box, and click the Delete button on the toolbar (see
Figure 71, page 86).

To edit elements, use the element browser as described in Creating and editing elements,
page 89.
UVS-4

visualSTATE®

User Guide

Transitions
For information on how to add assignments and guard expressions to a transition, see
Adding assignments and guard expressions, page 94.

CREATING A TRANSITION ELEMENT

If no transition elements have been created in the element browser, you can use the
Compose Transition dialog box, as follows:

1 In the statechart diagram, select the transition, and open the Compose Transition dialog
box.

2 Go to the Rule section and select the type of element you want to add, for example
Trigger.

3 In the Element section, click the element type to create, for example Event, and click
the New button. A New Event dialog box is displayed. See Figure 70, page 85.

Figure 70: New Event dialog box (Designer)

Here you can type a new name for the event, and enter an explanation. Specify whether
the event is a definition or declaration. In the Parameters section, you can specify
parameters. See Creating parameters, page 90.

4 When you have defined the event, click OK. The event is added to the list of elements.
UVS-4

85

86

Completion transitions
5 Double-click the event in the Element section to apply it to the transition. See Figure
71, page 86.

Figure 71: Compose Transition dialog box, event created and used as trigger

Completion transitions
A completion transition is a transition that is triggered implicitly when the last of the
regions and do reactions of a composite state enters its final state.

To create a completion transition in the Designer:

1 Go to the statechart diagram view, and select the transition to compose.

2 Open the pop-up menu and choose Compose Transition....
UVS-4

visualSTATE®

User Guide

Transitions
3 In the Compose Transition dialog box displayed, select Completion. See Figure 72,
page 87.

Figure 72: Completion transition selected
UVS-4

87

88

Completion transitions
UVS-4

visualSTATE®

User Guide

Elements
This chapter describes how to create, define, edit, rename, and delete
elements for state reactions and transitions in the Designer. It also describes
how to search for specific elements.

For a detailed description of the visualSTATE elements, see visualSTATE
Reference Guide.

Creating and editing elements
Elements are handled via the Designer element browser where you create, define, edit,
rename, and delete elements. It also gives a complete overview of the elements created
for the Project. You open the element browser by selecting View>Element Browser.

When you have created a collection of elements in the element browser, you can apply
them to state reactions and transitions (see Composing states, page 67, and Composing
transitions, page 83).

visualSTATE elements can be local or global. Global elements are events, event groups,
action functions, timer action functions, external variables, and constants. Local
elements are events, event groups, action functions, timer action functions, signals,
internal variables, external variables, and constants.

To create an element:

1 Launch the Designer, and open your visualSTATE Project.

2 Open the element browser window.

3 Go to the Project pane and select Project in the tree if you want to create a global
element. To create a local element, select the topstate in the tree where you want to
create the element.

4 Go to the Commands section of the element browser. The tabs represent the
visualSTATE elements you can create. Click a tab, for example Event.
UVS-4

89

90

Creating and editing elements
5 On the Commands toolbar, click the New button () A new event with a default
name is created in the list, and a corresponding edit window is displayed to the right.
See example in Figure 73, page 90.

Figure 73: Designer element browser, with event created (local element)

6 In the edit window, you can type event name and explanation for the event, and specify
whether it is a definition or declaration.

Already created elements can be dragged from the Commands section to the Project or
topstates in the tree in the Project section. Thus local elements can become global
elements by dragging them the Project in the tree.

You delete elements by clicking the Delete button () on the Commands toolbar.

CREATING PARAMETERS

To create a parameter for an event or action function

1 Open the element browser, click the Event or Action Function tab, and select the event
or action function (see Figure 73, page 90).

2 Go to the edit window and click the New button in the Parameters section. A parameter
is created. Click the parameter list box to select parameter type.

To delete parameters for events and action functions, click the Delete button on the
Commands toolbar.
UVS-4

visualSTATE®

User Guide

Elements
ACTION FUNCTIONS

Action functions are created and defined with return types and parameters in the
Designer element browser window (see Creating and editing elements, page 89).

Figure 74: Defining action function

To specify return types, click the Type list box, and select the type to use (see Figure 74,
page 91).

To create a parameter for the action function, click the New button in the Parameters
section. A parameter is created. Click the parameter list box to select parameter type.

Specifying arguments for action function parameters

When an action function has been defined with parameters, you can specify the actual
arguments in the individual transitions and/or state reactions where the action function
is used, as follows.
UVS-4

91

92

Creating and editing elements
1 Double-click the state or description of the transition to edit. The Compose State or
Compose Transition dialog box respectively is displayed. Here the use of the latter will
be shown, but the same procedure applies to the Compose State dialog box.

Figure 75: Compose Transition dialog box, action function

2 In the Rule section, select Action Expression to display the elements created in the
right section. See Figure 75, page 92.

3 In the Element section, select the element to add, for example action function, and
double-click it (or click the Left Arrow button). The element will be added to the Rule
section.

4 Double-click the action function just added. A Define Action Function Parameter(s)
dialog box is displayed. See Figure 76, page 92.

Figure 76: Define Action Function Parameters dialog box
UVS-4

visualSTATE®

User Guide

Elements
5 You can now specify the parameter. Double-click Constant, External Variable or
Internal Variable in the Element section to expand the tree. Select the item to use as
argument for the parameter and double-click it.

Declaring action functions in external C files

Action functions are declared and implemented in an external C file, as follows:

1 Open the element browser, click the Action Function tab, and select the action function
for which a C file declaration is to be used.

2 Go to the bottom of the edit window and click the Browse button. An Open file dialog
box is displayed. Specify the C file to use. The C file name is displayed. See Figure 77,
page 93.

Figure 77: External C file specified for action function

3 Click the Edit button to open the C file for editing. You can set up default editor to use.
See Setting up external editor for action functions, page 93.

Setting up external editor for action functions

It is possible to edit action functions with an external editor from within the Designer.
Default editor is IAR Systems IAR Edit.

You can set up editor as follows:

1 On the menu, choose Tools>Settings. A Settings dialog box is displayed.
UVS-4

93

94

Creating and editing elements
2 Click the External Editor tab.

3 Specify external source code editor.

ADDING ASSIGNMENTS AND GUARD EXPRESSIONS

Assignments and guard expressions are added to state reactions and transitions using the
Compose State and Compose Transition dialog boxes. This section describes how to add
guard expressions and assignments to a state reaction, but the same procedure applies to
transitions.

To add an assignment or guard expression to a state reaction:

1 In the statechart diagram, select the state and open the Compose State dialog box.

2 Click the appropriate tab and select Guard Expression or Action Expression, whichever
you want to apply. The defined elements are listed. If you need a new assignment or
guard expression click the New button () on the Commands toolbar.

3 Go to the Element section and double-click the item to apply, for example internal
variable for a guard expression. The item will be moved to a section below the
Reaction section. See Figure 78, page 94.

Figure 78: Compose Transition dialog box, guard expression value
UVS-4

visualSTATE®

User Guide

Elements
4 Go to the edit field of the Reaction section, and enter a value for the assignment or
guard expression selected, according to the syntax for assignments and guard
expressions (described in IAR visualSTATE Reference Guide).

5 Press the ENTER key, or click another item to accept the assignment or guard
expression changes.

SPECIFYING SIGNAL QUEUE BEHAVIOR

Because the type of signal queue influences verification and code generation, it is
possible to specify signal queue behavior, as follows.

1 Launch the Designer, and open your visualSTATE Project.

2 In the Project browser, click the System view tab, and select Project. Open the pop-up
menu and choose Compose.

3 In the Compose Project dialog box displayed you can specify signal queue behavior,
either Drop if full, or Error if full.

SPECIFYING SIGNAL QUEUE SIZE

You specify signal queue size as follows:

1 Launch the Designer, and open your visualSTATE Project.

2 In the Project browser, select the appropriate System. Open the pop-up menu and
choose Compose....

3 In the Compose System dialog box displayed, specify signal queue length. See Figure
82, page 102.

Searching for an element
It is possible to search for a specific element to find out in which transitions and state
reactions of the model it is used, as follows:

1 Launch the Designer, and open your visualSTATE Project.

2 Click the Find button on the Standard toolbar, or choose Edit>Find... on the menu. A
Find dialog box is displayed.

3 In the Find what field, type the name of the element to find, and select the appropriate
Include options.

4 Click Find to start the search.

The result of the search is shown in the output window (Find tab). An icon shows where
the element was found, and a description is given.
UVS-4

95

96

Searching for an element
UVS-4

visualSTATE®

User Guide

Handling Projects,
Systems, and files for
modeling
This chapter describes how to handle Projects, Systems and files in the
Designer. It also describes the following:

● Specifying number of System instances.

● Using Designer backup files.

● Using function declarations and constants in existing files.

Creating and saving Projects, Systems, and files in the Designer
You can create visualSTATE Projects in the Designer with statechart files and Systems.
The Project created in the Designer can later be imported into a Navigator workspace.
For information about import of Projects into the Navigator, see Adding an existing
Project to a workspace, page 27.

Files created in the Designer can be added to a source code control system using the
File>Source Control commands on the main menu, or the Source Control toolbar (see
Source Control toolbar, page 54). For a description of using source code control, see
Source code control, page 37.
UVS-4

97

98

Creating and saving Projects, Systems, and files in the Designer
To create and save a Project with Systems and Statechart files:

1 Choose File>New on the menu, or click the New button. See Figure 79, page 98.

Figure 79: New dialog box

2 Select one of the following:

To create a Project without Systems, select Blank Project. Go to Creating Systems and
Statechart files in a blank Project, page 99.

To create a simple Project with one System and one topstate, select Simple Project.
Specify Project name, Project file name (extension vsp), and location of Project file.

To create a customized Project, select Project Wizard. The use of this wizard is
described in Creating a Project using Project wizard, page 27).

3 When you have created the Project, choose File>Save Project.
UVS-4

visualSTATE®

User Guide

Handling Projects, Systems, and files for modeling
CREATING SYSTEMS AND STATECHART FILES IN A BLANK
PROJECT

When you have selected Blank Project in the New dialog box (see Figure 79, page 98),
the Project will be created in the Designer, as shown in Figure 80, page 99.

Figure 80: Designer with blank Project

In order to be able to create statechart diagrams in the Project, you must create a System
and Statechart file, as follows:

1 To create a System, click the System button on the Diagram toolbar (). The tool
becomes active.

2 Move the cursor to the Project view, and click in the window. A square will be inserted
representing the new System, and the Project browser will be updated with the System.
Right-click to deactivate the tool.

3 In the System drawn, not on the System name, double-click. The System view is
opened.
UVS-4

99

100

Creating and saving Projects, Systems, and files in the Designer
4 Click the Composite State button () on the Diagram toolbar. The tool becomes
active.

5 Move the cursor to the System view, and click in the view. A topstate will be inserted
representing a new statechart file which will contain the statechart diagram. The
Project browser will be updated. Right-click to deactivate the tool.

6 In the topstate drawn, not on the topstate name, double-click. The statechart diagram
view is opened. See Figure 81, page 100

Figure 81: Diagram window, with empty statechart diagram

You can now start designing the statechart diagram with states and transitions. See
Designing statechart diagrams, page 57.

7 On the Designer menu, choose File>Save Project.

CREATING A COPY OF A STATECHART FILE

You can create a copy of a Statechart file (vsr file) in the Designer, as follows:

1 Open your visualSTATE Project.

2 Go to the Project browser, and open the file view. Select the vsr file to copy.
UVS-4

visualSTATE®

User Guide

Handling Projects, Systems, and files for modeling
3 On the menu, choose Save As.... In the Save As dialog box displayed, specify name
and directory of the new Statechart file.

Note: It is not possible to create a copy of a Project file using the Save As command.

The Statechart file can be imported to a Project as described in Importing files into the
Designer, page 101.

Opening a Project in the Designer
You open a visualSTATE Project in the Designer by clicking the Open button on the
toolbar, or choosing File>Open.

One Project at a time can be open in the Designer.

Importing files into the Designer
You can import C header files into a visualSTATE Project or topstate as follows:

1 Launch the Designer and open your visualSTATE Project.

2 Go to the File view of the Project browser and select the Project or topstate to import
to.

3 Open the pop-up menu, and choose Import....

4 In the Import dialog box displayed, specify the file to import.

Specifying number of System instances
It is possible to create multiple instances of the same visualSTATE System. Instances
are useful in the case of a System containing more than one identical state/event section,
for example as when controlling ten identical devices.

To specify number of System instances:

1 Launch the Designer, and open your visualSTATE Project.
UVS-4

101

102

Using Designer backup files
2 In the Project browser, select the System for which to specify instances. Open the
pop-up menu, and choose Compose. A Compose System dialog box is displayed.

Figure 82: Compose System dialog box

3 Specify number of System instances.

Using Designer backup files
By default, the Designer will create backup files of the vsp and vsr files on every save
of the visualSTATE Project in the Designer. You may also choose to have backup files
created at regular intervals (see Setting backup options, page 103).

The vsr and vsp backup files are created in the directory where the visualSTATE
Project is located. The backup files have the extensions vsr.bk# and vsp.bk#
respectively where # is a number from 1 to 9.

It is possible to have up to nine backup files of each type created, depending on the
number specified (see Setting backup options, page 103).

When a new backup file is created, it is given the extension bk1. The previous bk1
backup file is automatically renamed to bk2, the bk2 file is renamed to bk3, etc. Thus
the latest backup file created always has the extension bk1.

To use a backup file for a visualSTATE Project:

1 Open a file browser or file management tool.

2 Find the vsp.bk# and vsr.bk# files you want to use, for example
AvSystem.vsp.bk1 and CDPlayer.vsr.bk1.
UVS-4

visualSTATE®

User Guide

Handling Projects, Systems, and files for modeling
Note: The vsr and vsp files must have the same bk extension number, for example
vsp.bk1 and vsr.bk1.

3 In the file browser, remove the bk# extensions of the vsp and vsr files. In this
example the files would be renamed to AvSystem.vsp and CDPlayer.vsr.

4 Go to the Designer, and open the vsp file you have renamed.

The visualSTATE Project will be loaded with the backed up vsp and vsr files.

SETTING BACKUP OPTIONS

By default, the Designer will create backup files of the vsp and vsr files on every save
of the Project. If you want backup files to be created at regular intervals, you can choose
to set up interval backup, as follows:

1 On the menu, choose Tools>Settings. A dialog box will be displayed. See Figure 83,
page 103.

Figure 83: Settings dialog box, file backup options (Designer)

2 Click the Backup tab.

3 Select the Interval Backup check box.

4 Specify interval in minutes.

5 To specify number of backup copies on save, select the Backup on Save check box. It is
possible to have up to nine copies of backup files created on save.
UVS-4

103

104

Using function declarations and constants in existing files
Using function declarations and constants in existing files
You can reuse an existing C header file containing function declarations and constants
for your visualSTATE Project. This is done by importing the C header file into the
Project loaded in the Designer.

Note: It is only constants contained in macros that can be imported.

The function declarations and constants must have a special syntax in order for the
Designer to recognize them. This is described in Syntax of C header files, page 105.

The function declarations in the imported header file map to action functions in the
visualSTATE model. The constants in the header file map to constants in the
visualSTATE model.

Note: With IAR MakeApp, special visualSTATE MakeApp files with correct syntax
for the C header files can be generated, thereby providing mapping from the IAR
MakeApp device drivers to the visualSTATE logic. For detailed information about the
generation of such files, refer to the IAR MakeApp user documentation.

To import a C header file:

1 Launch the Designer, and open your visualSTATE Project.

2 In the Project browser, select the Project or topstate into which to import the C header
file. Open the pop-up menu, and choose Import. An Import dialog box will be
displayed. Select the C header file(s) to import, and click OK.
UVS-4

visualSTATE®

User Guide

Handling Projects, Systems, and files for modeling
3 The header file will be loaded and analyzed for function declarations and constants,
and an Import Elements dialog box is displayed. See Figure 84, page 105.

Figure 84: Import Elements dialog box (Designer)

4 Select the items to import and click OK. The selected items will be imported and
displayed in the element browser.

Note: If the external C header file contains constants and action functions have the
same names as those already defined for the Project or topstate, the items in question
will not be imported from the external file.

SYNTAX OF C HEADER FILES

A special syntax is required for C header files containing function declarations and
constants that are to be imported into a visualSTATE Project.

Syntax for import of function declarations

Import of function declarations (map to action functions in visualSTATE) can be done
either by single import statement or multiple import statement:

Single import statement

#pragma VS_ACTION <function declaration>

where <function declaration> is a standard ISO/ANSI C function declaration.
UVS-4

105

106

Closing the Designer
Multiple import statement

#pragma VS_ACTION_BEGIN
<function declaration 1>
...
<function declaration N>

#pragma VS_END

where <function declaration 1 ... N> is a standard ISO/ANSI C function
declaration.

See example in Example of import syntax, page 106.

Syntax for import of constants

Import of constants (map to constants in visualSTATE) is done by multiple import
statement as follows:

#pragma VS_CONSTANT_BEGIN
<macro statement 1>
...
<macro statement N>

#pragma VS_END

where <macro statement 1 ... N> is a standard ISO/ANSI C macro statement.

See example Example of import syntax, page 106.

Example of import syntax

// functions to import
#pragma VS_ACTION void OnClearDisplay(void);
#pragma VS_ACTION_BEGIN

int OnGetDisplayValue(void);
void OnSetDisplayValue(int nValue);
int OnStepTrackUpdateDisplay(int nStep, int nValue);

#pragma VS_END

// constants to import
#pragma VS_CONSTANT_BEGIN

#define DISPLAY_FULL 0x01
#define DISPLAY_STEPPED 0x02

#pragma VS_END

Closing the Designer
To close the Designer application, choose File>Exit.

Note: All Designer instances launched from the Navigator will be closed when the
Navigator is closed.
UVS-4

visualSTATE®

User Guide

Part 4: Formal testing
This part of the visualSTATE® User Guide includes the following chapters:

● Introduction

● Checks performed by visualSTATE Verificator

● Verifying your visualSTATE Project

● Designing for verification.
UVS-4

107

108
UVS-4

Introduction
This chapter explains what is understood by verification in visualSTATE, and
why you are recommended to use it in your development process. It describes
the most important concepts related to formal verification, and gives examples
of the checks that can be performed by the visualSTATE Verificator.

Conventions used in this part
In this part, the following conventions apply:

Parallel state machines contained in Systems are separated by a dashed vertical line. See
example in Figure 85, page 111.

The state space of a System is the set of possible System configurations.

The following conventions apply to constructs:

Construct Notation Example

Source states A letter followed by a
colon.

B:
E2() /

-> A
(where B is the source state).

Destination states -> followed by a letter. B:
E2() /

-> A
(where A is the destination state).

Transitions Action side / Condition side.
For a detailed description of
transition syntax, see IAR
visualSTATE Reference Guide.

Internal variables Are named i, j, k,
unless otherwise stated.

External variables Are named x, y, z,
unless otherwise stated.

State configurations A state configuration for a
System is written as a tuple
with one state from each
machine.

(A, B, C) is the state configuration for
a System with three states where A is a
state in the first machine, B is a state in
the second machine, and C is a state in
the third machine.

Table 3: Conventions used for constructs
UVS-4

109

110

Verification with visualSTATE Verificator
Verification with visualSTATE Verificator
Verification with visualSTATE Verificator is characterized by the following, in contrast
to simulation with visualSTATE Validator:

● Formal test: the logical consistency of a visualSTATE Project is checked. The
Verificator does not test functionality, in contrast to visualSTATE Validator.

● Check of complex properties such as state dead ends.
● Complete examination of models with large state spaces.

Overview
When the visualSTATE Verificator performs an analysis of a visualSTATE System, it
uses formal verification. Formal verification is performed by creating a formal
description of a visualSTATE System and establishing properties of the System using
rules of inference. This approach proves the properties of a System in the same way as
theorems are proven in mathematics.

Example

In this section, the visualSTATE System shown in Figure 85, page 111 is used for
illustrating some of the checks performed by the Verificator. A detailed description of

Set of state
configurations

A set of state configurations is
written as a number of
cross-products.

The state configurations (A, B, C),
(D, B, C), and (E, F, G) will be
written as

{A, D}×{B}×{C}

{E}×{F}×{G}

System
configuration

Is written as a state
configuration extended with
the values of variables and the
signal queue if signal queue is
not empty.

(B, D, i = 1, S1 S2)is a System
configuration where the first machine is in
B, the second machine is in D, the variable
i has the value 1, and the signal queue
contains the signals S1 and S2.

Construct Notation Example

Table 3: Conventions used for constructs (Continued)
UVS-4

visualSTATE®

User Guide

Introduction
the Verificator checks is given in Checks performed by visualSTATE Verificator, page
123.

Figure 85: visualSTATE System consisting of two state machines, R0 and R1

If you run the Verificator on this System, it will report a number of results, including the
following:

● Never activated elements.
The following elements will never be activated:

The state G
The transition
B:

E1() E /

-> C

● Conflicting transitions.
Two transitions with common trigger and source state, but different destination
states are said to be conflicting if they both can be triggered at the same time. The
System shown in Figure 85, page 111, has the following conflicting transitions for
event E2:

B:
E2() /

-> C

B:
E2() /

-> A

A

B

C

 /

E1 !F /

E2 /

E2 /

E1 E /

D

E

F

G

 /

E2 /

E1 /

E3 !A /
UVS-4

111

112

Approach
● State dead ends.
State dead ends are states in a state machine that once entered cannot be left. The
System shown in Figure 85, page 111, has the following state dead end:

C

● Local dead ends.
Local dead ends are sets of states from different state machines that prevent a state
machine from changing state. The System shown in Figure 85, page 111, has the
following local dead ends:
Local dead end for the machine: R0

{topState.A, topState.C} x {topState.F}

{topState.C} x {topState.D, topState.E}

Local dead end for the machine: R1

{topState.A} x {topState.F}

● System dead ends.
System dead ends are state configurations that prevent all the state machines in the
System from changing state. The System shown in Figure 85, page 111, has the
following System dead end:

(A, F)

WARNINGS AND ERRORS

Warnings about never activated elements and dead ends might indicate errors in the
model. For example because the transition in Figure 85, page 111

B:
E1() E /

-> C

is never triggered, it can be removed without changing the behavior of the model.

Whereas never activated elements and dead ends might indicate errors, conflicting
transitions in a System are always an error and are reported as an error. It is not possible
to generate correct code for a System containing conflicting transitions.

For a list of the warnings and error messages given by the Verificator, see Table 4, page
136.

Approach
The verification results described in Overview, page 110 are found by the Verificator
after examining the complete state space of a visualSTATE System.
UVS-4

visualSTATE®

User Guide

Introduction
The Verificator derives its power from representing Systems symbolically. Instead of
working on single System configurations, the Verificator works on sets of state
configurations.

Treating state configurations symbolically can make verification of Systems with large
state spaces possible, illustrated by the System in Figure 86, page 113.

Figure 86: Example of a System with a large state space.

The System consists of ten state machines. Any of the state configurations can be reached in 10 steps making it
possible to completely explore the large state space in just 10 steps.

This System has a state space consisting of 1110 state configurations. Using a simulation
tool for checking this System is clearly not possible because of the large state
space—stepping through all the state configurations would take extremely long time.
Exploring the state space symbolically can be done in no more than ten steps. When the
Verificator explores the state space of a System, it starts out with the initial state
configuration and at each step explores all possible transitions. Therefore the entire
exploration of the state space can be performed in a number steps equal to the length of
the longest possible sequence of events leading to different state configurations.

Aspects of formal verification
LOGICAL CONSISTENCY

The Verificator performs a dynamic analysis of the behavior of a System to check its
logical consistency.

When performing a dynamic analysis, the model is placed in an environment where any
sequence of events is possible. If the model is consistent in this most extreme
environment, it is also consistent in real-world environments.

In visualSTATE, logical consistency comprises the following aspects:

● Are all elements used?
● Are all elements activated?
● Are there any ambiguities?

...
A1B1

C1

D1

E1 F1 G1 H1

I1

J1

K1

 /

E1 /
E2 /
E3 /
E4 / E5 / E6 / E7 /

E8 /
E9 /

E10 / A2B2

C2

D2

E2 F2 G2 H2

I2

J2

K2

 /

E11 /
E12 /
E13 /
E14 / E15 /E16 / E17 /

E18 /
E19 /
E20 / A10B10

C10

D10

E10 F10 G10 H10

I10

J10

K10

 /

E91 /
E92 /
E93 /
E94 /E95 / E96 / E97 /

E98 /
E99 /

E100 /
UVS-4

113

114

Aspects of formal verification
● Does the signal queue have the right size?
● Does the System contain any dead ends?
● Does the System contain any conflicting transitions?

VERIFICATION MODES

When verifying a System, it is possible to vary the level of detail by applying one of the
following verification modes:

Full mode: Comprises verification of the entire control logic and data (see
Full mode, page 115).

Guard mode: Comprises verification of the entire control logic (see Guard
mode, page 115).

Basic mode: Comprises verification of the basic parts of the control logic
(see Basic mode, page 118).

Compositional mode: Basic mode verification optimized for compositional Systems
(see Compositional mode, page 118).

Some models are too complex to be verifiable in full verification mode but can be
partially checked in guard mode or basic mode.

These verification modes differ in what is considered the model, the interface, and the
environment. When verifying a System, a model is created which is placed in an
environment which differs according to the verification mode. See Figure 87, page 114.
These environments exhibit any possible behavior to make sure any possible state
configuration can be reached. For example, in basic mode the model uses events for
interfacing to the environment which consists of any possible sequence of events.

Figure 87: Model, interface, and environment.

The Verificator creates a model from a System which is then tested by placing it in an environment which exhibits
all possible behaviors. What becomes the model, the interface, and the environment depends on the verification
mode.

Model
Environment

Interface
Model created
from a System

Environment which exhibits
all possible behaviors
UVS-4

visualSTATE®

User Guide

Introduction
Full mode

In full mode both guard expressions and assignments are included in the verification
which means that the data part of the model is also verified. Internal variables are
considered part of the model, whereas events, external variables, event parameters, and
action functions are considered the interface to the environment. The values of internal
variables are remembered between transitions. See Figure 88, page 115.

a

b

Figure 88: Full verification mode, assumptions.

In full mode, all variables, except internal, are considered part of the environment as shown in a. The values of
internal variables are remembered between transitions. State C is not reachable in the System in b.

Note: If you apply full mode verification to a design with multiple assignments to the
same variable, or reading and writing the same variable, an error will occur (see Systems
with ambiguous behavior, page 119).

Note: The following element types are not verified in guard verification mode or full
verification mode: VS_FLOAT, VS_DOUBLE, and VS_VOIDPTR.

Guard mode

In this mode, guard expressions are included in the verification in addition to the basic
control logic, whereas assignments are not included. When evaluating guard expressions
we need to make some assumptions about the values of variables (including event

Model
Environment

Interface
System including
guard expressions
and assignments

Events and external variables
All possible sequences

 of events where external
variables take on all possible
values between micro steps

A

C

B

 /

E1 / i = 1

E1 (i == 2) /
UVS-4

115

116

Aspects of formal verification
parameters and action functions). The variable assumptions made for guard mode are
the following:

● Between microsteps, the values of all variables can change arbitrarily.
● During each microstep, the values of variables are fixed.

Microsteps and macrosteps are described in IAR visualSTATE Reference Guide.

The first assumption is illustrated in the visualSTATE System shown in Figure 89, page
116. At A, before the first transition, the value of i is arbitrary. During the transition A
-> B, it is assumed to be 1. At B, the value of i is again arbitrary. During the next
transition it is 2, and at C it is again arbitrary.

Figure 89: Guard verification mode, arbitrary values of variables between microsteps

The second assumption is illustrated in Figure 90, page 116. The values of variables are
assumed to have some arbitrary but fixed value during each microstep. Consequently,
the two transitions A -> B and D -> E can never fire during the same microstep making
the state H unreachable.

Figure 90: Guard verification mode, fixed values of variables.The System consists of three state machines.
During each microstep the values of variables are fixed making the state H unreachable.

A

B

C

 /

E1 (i == 1) /

E1 (i == 2) /

A

B

C

E1 (i == 1) /

E1 /

 /

D

E

F

E1 (i == 2) /

E1 /

 /

G

H

E2 B E /

 /
UVS-4

visualSTATE®

User Guide

Introduction
The idea is to view all variables as part of the environment. By letting the values of the
variables change arbitrarily, the model is examined in any possible environment. See
Figure 91, page 117.

a

b

Figure 91: Guard verification mode, assumptions.

Variables are considered part of the environment in guard mode. State C in System b is reachable because the
value of the variable i is not fixed between microsteps.

Note: The following element types are not verified in guard verification mode or full
verification mode: VS_FLOAT, VS_DOUBLE, VS_VOIDPTR.

Note: Action functions without parameters are assumed to return the same value each
time they are called during the same microstep.

Model
Environment

Interface
System including

guard expressions,
excluding assignments

Events and variables
All possible sequences

 of events where variables take
on all possible values between

micro steps

A

C

B

 /

E1 / i = 1

E1 (i == 2) /
UVS-4

117

118

Aspects of formal verification
Basic mode

In this mode, guard expressions are assumed to be true, and assignments are ignored See
Figure 92, page 118.

a

b

Figure 92: Basic verification mode, assumptions.

Model in an environment where any sequence of events is possible. In this mode the state B in System b will not
be reported as never activated because assignments and guards are ignored.

Note: This mode should only be used if your design cannot be verified in guard mode
or full mode.

Compositional mode

Using this mode can speed up verification of compositional Systems, that is, Systems
consisting of many independent state machines, with few state conditions and few
signals.

In compositional mode, guard expressions are assumed to be true, and assignments are
ignored as in basic mode. See Figure 92, page 118. Verification of the System starts with
a possible destination state configuration and checks whether it is possible to reach the
initial state configuration.

Note: This mode should only be used for compositional Systems. State dead ends and
System dead ends cannot be checked in this mode (see Table 4, page 136).

Model
Environment

Interface
System excluding
guard expressions
and assignments

Events All possible sequences
 of events

A

B

 /

E1 (x != x) /
UVS-4

visualSTATE®

User Guide

Introduction
NON-VERIFIABLE ELEMENTS

visualSTATE expressions that use arrays, VS_FLOATs, and VS_DOUBLEs are
non-verifiable. In the visualSTATE Designer, you can set a safe mode option by which
you will be given a warning when you create or use non-verifiable elements during
model design (see Safe mode, page 64).

SYSTEMS WITH AMBIGUOUS BEHAVIOR

The UML does not specify the sequence in which transitions are triggered, and the
Verificator does not assume any specific sequence in which assignments on transitions
are executed. This means that some visualSTATE Systems are ambiguous, and in such
cases the Verificator will give an error message.

An exception to this rule is shown in Figure 95, page 121, System c. Both reading and
writing a variable in one assignment is unambiguous.

The System shown in Figure 93, page 119 is ambiguous because the sequence in which
the transitions will be triggered is not specified. Which System configuration should be
entered after the event E1?: (B, D, i = 1), (B, D, i = 2), or maybe (B, D, i
= 3)?

Figure 93: System with ambiguous behavior because of assignments.

The System consists of two state machines. The assignments to i are ambiguous.

In the System shown in Figure 93, page 119, the assignments to i are ambiguous which
means that the design cannot be verified in full mode.

A

B

E1 / i = 1

 /

C

D

E1 / i = 2

 /
UVS-4

119

120

Aspects of formal verification
Another example of a design that cannot be verified in full mode is shown in Figure 94,
page 120.

Figure 94: System with ambiguous behavior because of assignments.

The System consists of two state machines, the variable i is initialized to 0. The System is ambiguous because
the sequence in which the assignments on the two transitions A -> B and C -> D are executed is not
specified. Should the value j be equal to 1 or equal to 0 after the event E1?

Figure 95, page 121 shows three Systems of which only the System c has unambiguous
behavior.

a

b

A

B

E1 / i = 1

 /

C

D

E1 / j = i

 /

A

B

E1 / i = 1 i = 2

 /

A

B

E1 / i = 1 j = i

 /
UVS-4

visualSTATE®

User Guide

Introduction
c

Figure 95: Three Systems of which a and b have ambiguous behavior because of assignments.

Three Systems. Multiple assignments to the same variable, or reading and writing the same variable should be
avoided in full verification mode. In System a, the variable i is assigned several times. In System b, i is assigned
(i=1) and i is read (j=i). System c has unambiguous behavior because i is both read and written in the
same assignment.

VARIABLES, DOMAINS, AND ARITHMETICS

Non-floating-point domains in expressions and assignments can be freely mixed. Mixed
domains are handled using promotion and automatic conversion the same way as in
C/C++. Any cases left open as undefined or implementation-defined by the C/C++
standard are handled in the same way as by an IAR Systems compiler.

The Verificator can optionally check that type domain ranges are observed in
assignments, to find cases of unintentional wrap-around. To keep the arithmetics
semantics of a 16-bit target system, the size of VS_(U)INT can be specified as 16 bits
instead of the 32-bit default. In rare cases it can be beneficial to force all variables and
expressions in a system to have one fixed bit width. You can specify this with the option
Specify bits for encoding variables (-B).

See also Non-verifiable elements, page 119.

CONFLICTING TRANSITIONS

The Verificator will warn about conflicting transitions.

However, depending on the verification mode you are using, various assumptions are
made about the surrounding external environment. For example, as we have seen, the
Basic verification mode discards assignments and assumes that every guard condition is
true. This means that two transitions out of the same state, that trigger on the same event,
will be reported as conflicting even if their guard conditions are mutually exclusive.

The Full verification mode might also report conflicting transitions that actually do not
conflict, because it makes reasonable assumptions about, for example, function return
values.

Thus you need to check conflicting transitions manually.

A

B

E1 / i = i + 1

 /
UVS-4

121

122

Aspects of formal verification
Figure 96, page 122 shows three Systems. In Systems a and b there are no conflicting
transitions. System c might contain conflicting transitions but it depends on the action
functions f() and g(). These action functions might never return 1 and 2 at the same
time, but this information is not available to the Verificator.

When verifying in basic mode, all guard expressions are assumed to be true, and the
Verificator will report conflicting transitions in all three Systems. When verifying in
guard mode, the Verificator will report conflicting transitions in Systems b and c. When
verifying in full mode, the Verificator will only report conflicting transitions for the
System c.

a

b

c

Figure 96: Systems with conflicting transitions.

All three Systems have conflicts that must be resolved manually when verifying in basic mode. When verifying in
guard mode no conflicting transitions are reported for the System a. When verifying in full mode, only System c
has conflicting transitions that must be resolved manually.

A

B C

E1 (x == 1) / E1 (x != 1) /

 /

A
Entry / i = 1

B C

E1 ((i == 1) || (i == 2)) / E1 ((i == 2) || (i == 3)) /

 /

A

B C

E1 ((x == 1) && (x == f ())) / E1 ((y == 2) && (y ==
g())) /

 /
UVS-4

visualSTATE®

User Guide

Checks performed by
visualSTATE Verificator
This chapter gives a detailed description of the checks that the Verificator can
perform, illustrated with examples. The chapter also lists the modes in which
the various Verificator checks can be performed, and describes how to
interpret verification warnings and error messages.

For information on how to activate the various Verificator checks, see Verifying
your visualSTATE Project, page 137, or Verificator command line options, page 371.

Check for unused elements
The Verificator performs a static analysis of a visualSTATE System to check if all
declared elements are used. The following elements are checked:

● States
● Variables, event parameters, and constants
● Action functions
● Events, event groups, and signals.

STATES

A state is reported as unused if it is neither the source state or destination state of any
transition, nor the default state of an initial state, shallow history state, or deep history
state.

VARIABLES, EVENT PARAMETERS, AND CONSTANTS

Variables are said to be read if they are used in guard expressions, or the right-hand side
of an assignment, or as parameters to action functions. They are said to be written if used
on the left-hand side of an assignment.

External variables are reported as unused if they are neither read nor written on any
transitions or state reactions.

Internal variables are reported as statically unread if they are not read on any transitions
or state reactions.

Internal variables are reported as statically unwritten if they are not written on any
assignments or state reactions.
UVS-4

123

124

Check for unused elements
Event parameters and constants are reported as unused if they are not read on any
transitions or state reactions.

ACTION FUNCTIONS

Action functions that are not used on any transitions or state reactions are reported as
unused.

EVENTS, EVENT GROUPS, AND SIGNALS

Events and event groups that are not used as triggers for any transitions or state reactions
are reported as unused.

Signals on transitions or state reactions that are never sent are reported as never sent.

Signals that are not used as triggers for any transitions or state reactions are reported as
never used as triggers.

Example

The System in Figure 97, page 124, has the following elements defined:

Events: E1(VS_INT par0), E2

Internal variable: i

External variable: x

Signal: S1

Figure 97: System with unused elements

Performing a Verificator check on the System shown in Figure 97, page 124, gives the
following result for unused elements:

Unused states:

C

Never read internal variables (static check):

i

A

B

C

E1(par0) / i = 1

 /
UVS-4

visualSTATE®

User Guide

Checks performed by visualSTATE Verificator
Unused external variables:

x

Unused event parameters:

E1.par0

Unused events:

E2

Signals never used as triggers (static check):

S1

Never sent signals (static check):

S1

Check for activation of elements
The check for activation of elements is similar to the check for unused elements (see
Check for unused elements, page 123) but it is based on the dynamic behavior of the
System. The static verification check is similar to the syntax check of a compiler,
whereas the dynamic check analyzes the behavior of the running visualSTATE System.

In the following, a transition is said to be reachable if a sequence of events can lead to
the transition being triggered.

The following elements are checked for activation:

● States
● Variables, event parameters, and constants
● Action functions
● Events, event groups, and signals
● Transitions.

STATES

A state is reported as never activated if it is not part of a reachable state configuration.

VARIABLES, EVENT PARAMETERS, AND CONSTANTS

A transition's guard expressions are considered activated if the source state of the
transition is reachable.
UVS-4

125

126

Check for activation of elements
A transition's assignments and action functions are considered activated if the source
state of the transition can be reached and the transition can be triggered.

External variables are reported as never activated if they are neither read nor written in
any activated guard expression or assignment, or used as parameter for any activated
action function.

Internal variables are reported as dynamically unread if they are not read in any activated
guard expression or assignment, or used as parameter for any activated action function.

Internal variables are reported as dynamically unwritten if they are not written in any
activated assignment.

Event parameters and constants are reported as never activated if they are not read in any
activated guard expression or assignment, or used as parameter for any activated action
function.

ACTION FUNCTIONS

When action functions returning values (non-void functions) are used in guard
expressions and assignments, they are treated as event parameters and constants.

When action functions are used outside guard expressions or assignments, they are
considered activated if the transitions on which they are used are reachable.

EVENTS, EVENT GROUPS, AND SIGNALS

Events and event groups that are not used as triggers for any reachable transition are
reported as never activated.

Signals that are not used on the transition action side of any reachable transition are
reported as never sent.

Signals that are not used as triggers for any reachable transitions are reported as never
used as triggers.

TRANSITIONS

Transitions that can never be triggered are reported as never activated.

Example

The System in Figure 98, page 127 has the following elements defined:

Events: E1(VS_INT par0), E2, E3

Internal variable: i

External variable: x
UVS-4

visualSTATE®

User Guide

Checks performed by visualSTATE Verificator
Signals: S1

Figure 98: System with never activated elements

Performing a Verificator check on the System shown in Figure 98, page 127 gives the
following result for never activated elements:

Unactivated states:

C, D

Never read internal variables (dynamic check):

i

Unactivated external variables:

x

Unactivated event parameters:

E1.par0

Unactivated events:

E1, E3

Signals that never act as triggers:

S1

Never sent signals (dynamic check):

S1

Unactivated transitions:

C:

 E1(par0) / [i = par0]

-> D

A:

 E3() !A /

A

B

C

D

E2 / i = 1

E3 !A /

E1(par0) /
i = par0

 /
UVS-4

127

128

Check for conflicting transitions
-> C

Check for conflicting transitions
Two transitions with common trigger and source state, but different destination states
are said to be conflicting if they both can be triggered at the same time. It is an error if
a System has conflicting transitions.

Example

Figure 99: System with conflicting transitions

Performing a Verificator check on the System shown in Figure 99, page 128 reports the
following results for conflicting transitions:

The following transitions conflict:

A:

 E1() /

-> B

A:

 E1() /

-> C

A

B C

E1 / E1 /

 /
UVS-4

visualSTATE®

User Guide

Checks performed by visualSTATE Verificator
Check for state dead ends
A state dead end is a state in a state machine that once entered cannot be left.

Example

Figure 100: System containing a state dead end.
The System consists of two state machines. State B in the left-hand state machine is not a state dead end, although
it cannot be left after it has been entered for the second time. State D in the right-hand state machine is a state
dead end because the state machine cannot change state after state D has been entered for the first time.

Performing a Verificator check on the System shown in Figure 100, page 129, reports
the following state dead end result:

State dead ends

D

Here, no sequence of events can make the second state machine leave state D after it has
been entered for the first time.

Note: This check is not performed in compositional mode.

A

B

E1 /E2 !D /

 /

C

D

E2 !A /E1 /

 /
UVS-4

129

130

Check for local dead ends
Check for local dead ends
A local dead end in a state machine M is a set of states that makes M unable to change
state.

Example

Figure 101: System containing a local dead end.
The System consists of three state machines. The first machine deadlocks when the System enters the state
configurations (B, F) and (B, E).

Performing a Verificator check on the System shown in Figure 101, page 130, gives the
following local dead end result:

Local dead end for the machine: R0

{B} × {E, F} × {*}

The local dead end above can be reached by the event sequence E1, E2.

R0 R1 R2

A

BC

E1 /

E1 D /

E3 /

 /

D

EF

E2 /

E2 /

E2 /

 /

G

HI

E3 /

E3 /

E3 /

 /
UVS-4

visualSTATE®

User Guide

Checks performed by visualSTATE Verificator
Check for System dead ends
A System dead end is a state configuration that renders all state machines in the System
deadlocked.

Example

Figure 102: System containing a System dead end.
The System consists of three state machines. The System can reach the state configuration (A, E, I) which
is a System dead end.

Performing a Verificator check on the System shown in Figure 102, page 131 gives the
following result for System dead ends:

System dead ends

{A} × {E} × {I}

The System dead end above can be reached by the event sequence E2, E3, E1, E2,
E3.

Note: This check is not performed in compositional mode.

Check for dynamic ambiguous assignments
Systems should not execute multiple simultaneous assignments or simultaneously
assign and read the same variable. The reason is that multiple triggered transitions
should be considered as either being triggered at the same time, or being triggered in an
unspecified sequence.

A

BC

E1 !E /

E2 /

E3 /

 /

D

EF

E1 /

E3 !I /

E2 /

 /

G

HI

E2 /

E3 /

E1 !A /

 /
UVS-4

131

132

Check for dynamic ambiguous assignments
Example

Figure 103: System containing dynamic ambiguous assignments.
The System consists of two state machines. The event E1 will trigger the two transitions which both assign i
making the value of i ambiguous. The event E2 will trigger two transitions, one reading m (A -> C) and
one assigning m (F -> H) making the value of k ambiguous.

Performing a Verificator check on the System shown in Figure 103, page 132, gives the
following ambiguity results:

The variable i is assigned several times on the transitions

A:

 E1() / [i = 1]

-> B

 and

F:

 E1() / [i = 2]

-> G

The variable m is both assigned and read on the transitions

A:

 E2() / [k = m]

-> C

 and

F:

 E2() / [m = 1]

-> H

Note: This check is only performed in full mode.

A

B C

E1 / i = 1 E2 / k = m

 /

F

G H

E1 / i = 2 E2 / m = 1

 /
UVS-4

visualSTATE®

User Guide

Checks performed by visualSTATE Verificator
Check for static ambiguous assignments
When there are multiple assignments on a single transition, they are executed in some
fixed sequence in the code generated by the visualSTATE Coder. However, such
assignments cannot be handled in a full mode verification if they involve the same
variable in more than one assignment expression. Likewise, multiple ambiguous
assignments on a single transition should be avoided if you want to verify your System
in full mode.

Example

Figure 104: System with two transitions having ambiguous assignments.
The transition A -> B assigns i twice. The transition A -> C both reads and writes m.

Performing a Verificator check on the System shown in Figure 104, page 133 gives the
following static ambiguity results:

The variable i is assigned several times on the transition

A:

 E1() / [i = 1] [i = 2]

-> B

The variable m is both assigned and read on the transition

A:

 E2() / [m = 1] [k = m]

-> C

Note: This check is only performed in full mode.

Check for signal queue size
When signals are used, a signal queue size must be specified. Do not specify a larger
signal queue than necessary, because the complexity of verifying the model greatly
increases with increased size of the signal queue. If the queue is too large, a minimum
required size is reported. If the queue is too small, the Verificator will report queue

A

B C

E1 / i = 1 i = 2 E2 / m = 1 k = m

 /
UVS-4

133

134

Check for signal queue size
overflow, unless the drop-if-full signal queue option is selected in the Designer (see
Specifying signal queue behavior, page 95). Signal queue overflow is an error which
means that the remaining part of the verification will be based on false assumptions.

For an example of a System requiring a signal queue size and type, see Figure 105, page
134. For additional information about signals and signal queues, see IAR visualSTATE
Reference Guide.

Example

Figure 105: System for which the size of the signal queue must be at least one.
The System consists of two state machines.

Performing a Verificator check on the System shown in Figure 105, page 134 gives the
following signal queue results:

● If a signal queue of length 0 is specified:
The signal queue is too small.

● If a signal queue of length 1 is specified:
The signal queue has the right size.

● If a signal queue of length 2 is specified:
The signal queue is too large. Only 1 element is needed in the

queue

A

B

E1 / S1

 /

C

D

S1 /

 /
UVS-4

visualSTATE®

User Guide

Checks performed by visualSTATE Verificator
Note: Systems that need an unbounded signal queue cannot be fully verified. Figure
106, page 135 shows an example of such a System.

Figure 106: System which cannot be fully verified.
The System will continue adding signals to the signal queue until the queue overflows, resulting in incorrect
verification.

Overview of checks, modes, and errors
Table 4, page 136 lists the Verificator checks performed in the various modes, and
whether the errors given in Verificator check reports should be considered critical errors.
If a critical error occurs, the System contains logical errors and it may not be possible to
verify it. You are recommended not to code-generate Systems containing critical errors.

A

B

E1 / S1 S1 / S1 S1

 /
UVS-4

135

136

Overview of checks, modes, and errors
Check

Check performed in

Critical

error
Basic

mode

Guard

mode
Full mode

Comp.

mode

Unused elements

States Yes Yes Yes Yes No

Variables, event parameters, and
constants

Yes Yes Yes Yes No

Action functions Yes Yes Yes Yes No

Events, event groups, and signals Yes Yes Yes Yes No

Activation of elements

States Yes Yes Yes Yes No

Variables, event parameters, and
constants

Yes Yes Yes Yes No

Action functions Yes Yes Yes Yes No

Events, event groups, and signals Yes Yes Yes Yes No

Transitions Yes Yes Yes Yes No

Conflicting transitions Yes Yes Yes Yes Yes

State dead ends Yes Yes Yes No No

Local dead ends Yes Yes Yes Yes No

System dead ends Yes Yes Yes No No

Dynamic ambiguous assignments No No Yes No Yes

Static ambiguous assignments No No Yes No Yes

Signal queue Yes Yes Yes Yes Yes a

a. Unless a drop-if-full signal queue is specified in the design.

Table 4: Verificator checks, modes and errors
UVS-4

visualSTATE®

User Guide

Verifying your visualSTATE
Project
This chapter describes how to start verification from the Navigator.

The verification process can also be started from the command line. For a
description of using the command line method, see Verificator command line
options, page 371.

For a general description of formal verification and Verificator checks, see
Introduction, page 109, and Checks performed by visualSTATE Verificator, page 123.

Starting verification
1 Open the workspace file that contains the visualSTATE System you want to verify.

2 Ensure that the appropriate Verificator options have been set for the active System.
Choose Project>Options>Verification... to open the Verificator Options dialog box. See
Figure 107, page 137.

Figure 107: Verificator Options dialog box, General tab

Click the General tab to set the appropriate general Verificator options.

Click the Check tab to select the checks to be performed.
UVS-4

137

138

Starting verification
In the tree browser to the left, select other Systems for which to set options.

Note: Not all combinations of options are possible because the values selected for one
option may limit the choices for other options. This is described in the online help for
the option (see Online help, page 31).

For a general description of how to set options, see Setting Verificator, Coder and
Documenter options, page 29.

3 On the Project menu, choose Verify System or Verify All Systems, whichever is
relevant.

If there is more than one System in the Project, and you choose Verify All Systems, a
dialog box will be displayed where you can select the System(s) to verify. See Figure
108, page 138.

Figure 108: Verificator dialog box

Select the appropriate System(s), and click the Verify button.

4 If your model has been changed, the message shown in Figure 109, page 139 will be
displayed, unless you have turned off the option Show notification if model has
UVS-4

visualSTATE®

User Guide

Verifying your visualSTATE Project
changed (see visualSTATE Project code-generated via the Navigator, page 34). If this
option is deselected, no warning is given, and code generation is not performed.

Figure 109: Verificator notification

5 A verification progress window will be opened, and the selected item(s) will be
verified. The items are listed by groups of checks. See Figure 110, page 139.

Figure 110: Verification progress window, Navigator
UVS-4

139

140

Starting verification
The verification progress window gives you an immediate view of the results of the
verification. Items selected for verification are shown in bold (in the upper part of the
progress window). Items that have been verified but have caused errors or warnings are
expanded and marked.

To see the cause of a warning or an error, select the item in the upper part of the
verification progress window and see the description displayed in the lower part (Results
tab). To view the results for an entire System, select the System in the upper part of the
window.

In some cases you can get a trace to the error or warning. Refer to Tracing your
visualSTATE Project, page 141 for more information on that.

To change Verificator options for a System, select the System in the tree browser in the
upper part of the window, and click the Options button to open the Verificator Options
dialog box. To perform another verification, click the Verify button.

If you selected Yes for Write Verificator report in the Verificator options dialog box (see
Figure 107, page 137), you can view a summary of the completed verification by
clicking the Report tab in the verification progress window (see Figure 110, page 139).
UVS-4

visualSTATE®

User Guide

Tracing your visualSTATE
Project
This chapter describes how to trace by means of the Verificator from the
Navigator.

A trace is a sequence of events that will get the System into a desired state configuration.
The trace will be saved in a test sequence file. To read more on test sequence files refer
to Playing recorded test sequences, page 191.

The tracing process can also be started from the command line. For a
description of using the command line method, see Verificator command line
options, page 371.

For a general description of formal verification and Verificator checks, see
Introduction, page 109, and Checks performed by visualSTATE Verificator, page 123.

Performing a trace
1 You can only perform a trace in the Navigator if you have just run a verification. If you

have not just done that refer to Starting verification, page 137.

2 Mark the dead end or conflict you want to trace to. When you have marked one the
Find Trace button will be enabled. Refer to Figure 111, page 141.

Figure 111: Verificator Results, Ready to Find Trace

3 Click the Find Trace button.
UVS-4

141

142

Performing a trace
4 Select or specify the file name for the trace output file and click Save. See Figure 112,
page 142.

Figure 112: Specifying trace output file name

5 After that the Navigator will find a trace to the error or warning and save the resulting
trace. After the file has been saved the Validator will be opened with the test sequence
file loaded. Refer to Recording and playing test sequences, page 187.
UVS-4

visualSTATE®

User Guide

Designing for verification
This chapter describes time/memory managing options, gives
recommendations on modeling, and lists the constructs that should preferably
be avoided if you want to be able to verify your visualSTATE Systems.

Some constructs might make a visualSTATE System too complex to verify in a
reasonable amount of time or memory, whereas other constructs should be
avoided to ensure that the behavior of the generated code will exactly match
the verification result.

Using time/memory options to help verification
Generally the use of time and memory by the Verificator grow with the number of states,
transitions and signal queue size of the visualSTATE System. A computer always have
limited memory, so at one point the memory requirement will be the deciding factor. To
some extent it is possible to trade time for memory by using advanced techniques.

SMALL/LARGE OPTIONS

As a default the Verificator tries to decide whether a visualSTATE System would benefit
from minimizing the time usage or the memory usage. A small System does not demand
large amounts of memory, and the Verificator focuses on minimizing the time usage.
Large Systems use large amounts of memory, which can lead to bottleneck problems
such as disk swapping, so it will be beneficial to minimize the memory usage. In some
cases this will even be quicker than having the time minimizing option set, or the only
possibility for achieving a successful verification.

The user can control the two techniques with these two options:

● -Small or -small option for minimizing time usage.
● -Large or -large option for minimizing memory usage.

NODE SPACE SIZE OPTION

Node space is the memory area used for the data structures build during a verification.
It is impossible beforehand to find the necessary size of the node space, so the right size
must be found by trial and error. If the node space is too large the Verificator is tying up
valuable resources. If the node space is too small the node space is automatically
expanded in an exponential fashion, which can lead to memory fragmentation. Normally
the Verificator can handle the node space requirement itself, but for large visualSTATE
UVS-4

143

144

Keeping down the complexity of verifying Systems
Systems it can be beneficial to set the initial size of the node space by hand. This is done
with the S option:

● -S<n>, where n is the initial size of the node space.

The size of the node space is measured in nodes. Each nodes occupies 20 bytes, but some
overhead and caching makes the real memory requirement per node approximately
30-35 bytes.

Keeping down the complexity of verifying Systems
It is possible to design visualSTATE Systems that are so complex that they cannot be
verified in a reasonable amount of time or memory. Therefore, you are recommended to
consider the following to keep down the complexity of verifying your Systems, and
thereby reduce time consumption:

● Verification mode
● Signals and signal queue
● Operators
● Depth of state space.

VERIFICATION MODE

Full mode verification is more complex than guard mode verification which again is
more complex than basic mode verification.

Compositional mode verification can often handle very large Systems, but is most
suitable for Systems consisting of many independent state machines. State machines are
independent if they do not use signals and only use state conditions sparingly.

For detailed information about verification modes, see Verification modes, page 114.

SIGNALS AND SIGNAL QUEUE

In all verification modes, the use of signals and the size of the signal queue influence the
complexity of verification. The signal queue should be kept as small as possible, and it
should not overflow. For additional information, see Check for signal queue size, page
133.

For detailed information about signal queue, see Check for signal queue size, page 133.
UVS-4

visualSTATE®

User Guide

Designing for verification
OPERATORS

The following guidelines apply to the use of operators:

● Do not use the following operators with variables larger than 8 bits:
*, /, %, <<, >>.

● In full mode and guard mode, the bit size of variables that is actually used should be
as small as possible. For example, avoid representing a number of binary flag values
in a 32-bit variable—use separate VS_BOOL variables instead.

● Do not use a VS_UINT32 if a VS_BOOL is sufficient.
● Use simple expressions with few arithmetics operators.
● If the native integer size of your target MCU is 16 bits, indicate the integer size to

the Verificator by specifying the 16-bit int option.
● Specifying that all variables should be encoded using some small number of bits

might make it possible to verify an otherwise too complex System. Use this method
with care, because it often changes the semantic meaning of the model radically.

For detailed information, see Variables, domains, and arithmetics, page 121.

DEPTH OF SYSTEM STATE SPACE

Avoid Systems with System configurations which can only be reached after very long
event sequences. The Systems in Figure 113, page 145 and Figure 114, page 145 have
the same state space, but the number of events needed to reach any System configuration
is much larger in the first System than in the second System.

Figure 113: System with deep state space.
i is an internal variable of type VS_UINT32 initialized to 0. Verifying this System in full mode will take some
time because the only event sequence leading to the System configuration (A, i = 232-1) is the sequence
consisting of 232-2 times the event E1.

Figure 114: System with shallow state space.
i is an internal variable of type VS_UINT32 initialized to 0. This System has the same state space as the System
in Figure 113, page 145, but any of the System configurations can be reached in 65 steps or less.

A

E1 / i = i + 1 /

A

E1 / i = i + 1

E2 / i = i + i

 /
UVS-4

145

146

Verification and visualSTATE generated code
Verification and visualSTATE generated code
The following factors influence the verification in relation to visualSTATE generated
code:

● Expressions
● Environment
● Non-verifiable elements.

EXPRESSIONS

The Verificator evaluates expressions in the domain of the variables in the expression. If
for example the type of the variables in the expression is VS_UINT8, the arithmetic is
performed using eight bits. This is done to keep down the complexity of the verification
but a few precautions should be taken. C evaluates expressions using int or long int
arithmetic. This might make a difference when an expression or subexpression wraps
around.

For detailed information, see Variables, domains, and arithmetics, page 121.

ENVIRONMENT

When verifying in full mode the model is placed in an environment where any sequence
of events is possible and all external variables can take on any value. The actual
environment in which the final product is used is a proper subset of the Verificator
environment. This ensures that any potential inconsistencies are detected, as well as
inconsistencies that might not show up in the final product.

NON-VERIFIABLE ELEMENTS

For a list of non-verifiable elements, see Non-verifiable elements, page 119.
UVS-4

visualSTATE®

User Guide

Part 5: Functional testing
This part of the visualSTATE® User Guide includes the following chapters:

● Introduction

● Simulation

● Tracing

● Recording and playing test sequences

● Analyzing visualSTATE models.
UVS-4

147

148
UVS-4

Introduction
Functional testing in visualSTATE is performed by means of the Validator which
has tools for simulating, analyzing, tracing, and debugging visualSTATE models
created with the Designer.

This chapter gives an introduction to simulation with visualSTATE Validator
and describes the graphical environment of the Validator, including toolbars.

Simulation with visualSTATE Validator
Simulation with visualSTATE Validator is characterized by the following, in contrast to
verification with visualSTATE Verificator (see Verification with visualSTATE
Verificator, page 110):

● Functionality test. Checks that the application is in accordance with your
requirements specification.

● Gives you insight in the behavior of the model at specific points of execution.
● Test your visualSTATE model in a target application by means of RealLink (see

Part 6: Testing in target applications, page 201).
● Test is based on user interaction.

VALIDATOR TOOLS

The Validator has tools for:

● Interactive simulation, including graphical animation and use of conditional
breakpoints (see Simulation, page 161).

● Tracing - i.e. to get a sequence of events that will get the System into a desired
configuration (see Tracing visualSTATE models, page 183).

● Automatic simulation, by recording and playing test sequences by means of test
sequence files (see Recording and playing test sequences, page 187).

● Listing the visualSTATE elements used, and test coverage (see Analyzing
visualSTATE models, page 195).

SIMULATION MODES

The Validator has two simulation modes:

Validator mode In this mode, you simulate your visualSTATE model.
UVS-4

149

150

Graphical environment
Target mode In this mode, you can monitor and control your visualSTATE
model in a target application by means of the Validator
RealLink facility.

For information on how to change between the modes, see Toggling between Validator
mode and target mode, page 180.

Graphical environment
The Validator environment consists of a number of windows with pop-up menus, menus,
and toolbars. See example in Figure 115, page 150.

Figure 115: Validator environment with workspace loaded

THE VALIDATOR WORKSPACE

The Validator workspace is a file containing information on your validation session (file
name extension is vws).
UVS-4

visualSTATE®

User Guide

Introduction
The workspace file saves information about which Project is loaded, the setup of the
current test session, including breakpoints, and window setup. You are recommended
always to save the setup of your test session in a workspace.

Note: It is only possible to have one visualSTATE Project in a workspace.

Figure 116: Validator workspace, customized window setup

It is possible to have more than one Validator workspace, each loading the same
visualSTATE Project, and each having its own particular setup. This is useful when
testing different aspects of a visualSTATE Project.

When you launch the Validator from the Navigator you will automatically get an
appropriate workspace for the Project in the Validator.
UVS-4

151

152

Graphical environment
Creating a new Validator workspace

1 On the Validator menu, choose File>New Workspace. A dialog box will be opened.
See Figure 117, page 152.

Figure 117: New Validator workspace dialog box

2 Click Yes. An Open Project dialog box will be opened.

3 In the dialog box, specify the visualSTATE Project to load. The selected Project will be
opened in the workspace.

4 Choose File>Save, and save the workspace using the Save As dialog box displayed.

Note: Do not change the vws extension of the Validator workspace file.

The Project will be loaded into the workspace. See example in Figure 115, page 150.

Opening and closing a workspace

To open an existing workspace, choose File>Open. In the Open Validator Workspace
dialog box displayed, select the workspace file to open.

To close a workspace, choose File>Close Workspace.

VALIDATOR WINDOWS

The Validator has a number of windows that provide information on the various aspects
of a visualSTATE Project. All windows have pop-up menus by which you can activate
various commands. The Validator windows are opened via the Windows menu and the
View menu. For the latter type of window, you can use the shortcuts ALT + number to
set focus to windows that are already open.

System window

To open this window, choose Windows>New Window on the menu.
UVS-4

visualSTATE®

User Guide

Introduction
This window gives a hierarchical view of the Systems designed in the Project.

Figure 118: System window (Validator), with pop-up menu

The default setup of the System window shows each System and each of their instances
in a separate branch in the tree.

Event window

To open this window, choose Windows>New Window on the menu.

The Event window provides a view of all events defined in the loaded Project, and is
used for sending events into the System(s). See Figure 119, page 153.

Figure 119: Event window (Validator), with pop-up menu

The window provides information about the following:

● Event name.
UVS-4

153

154

Graphical environment
● Which events are active (an active event is an event, which, if sent, will trigger one
or more transitions).

● Explanation for events.
● Location of event definition.

Action window

To open this window, choose Windows>New Window on the menu. See example in
Figure 120, page 154.

The window shows what happened during the last deduction, and provides information
about the following:

● Which variables were assigned a value.
● The value assigned to the variables.
● Which actions were executed, and the arguments with which they were called.

Figure 120: Action window (Validator)

Variable window

To open this window, choose Windows>New Window on the menu.
UVS-4

visualSTATE®

User Guide

Introduction
The Variable window shows all variables, all action functions and all constants declared
in all Systems. See Figure 121, page 155.

Figure 121: Variable window (Validator), with pop-up menu

Guard Expression window

To open this window, choose Windows>New Window on the menu.

The Guard Expression window gives an overview of all guard expressions defined in all
Systems (see Figure 122, page 155).

Figure 122: Guard Expression window (Validator)

Signal Queue window

To open this window, choose Windows>New Window on the menu.
UVS-4

155

156

Graphical environment
The Signal Queue window is used for signal queue handling, and provides a view of the
signal queues in all Systems and instances (see Figure 123, page 156).

Figure 123: Signal Queue window (Validator), with pop-up menu

Field Chooser window

This window is used for displaying or hiding columns in the Event window, Action
window, Variable window, and Guard Expression window. The Field Chooser window
displays the columns in the currently active window. See example in Figure 124, page
156.

Figure 124: Field Chooser window for Variable window (Validator)

In this example, clicking the Explanation check box will display the Explanation
column in the Variable window. Clicking the Value check box will hide the Value
column in the Variable window.

System Setup window

This window is used for setting up the order in which visualSTATE Systems should be
simulated. See System setup, page 178.
UVS-4

visualSTATE®

User Guide

Introduction
Output window

This window provides various save and load information and has the following views
(click the tabs to change view):

General Shows information during load.

RealLink Shows messages related to the latest RealLink connection.

Altia Shows messages related to the latest Altia connection.

See Figure 125, page 157.

Figure 125: Validator output window

Watch window

In the Watch window you can add any type of element contained in the visualSTATE
model. Thus in the Watch window you can have a collection of the elements that you
find most interesting. The elements are added to the Watch window from the System,
Event, Variable, and Signal Queue windows.

To add an element to the Watch window:

1 Open the window containing the element to add, for example the Event window.

2 Open the pop-up menu, and choose Add to Watch (see example in Figure 119, page
153), or press SHIFT+F9. The element will be added to the Watch window. See Figure
126, page 157.

Figure 126: Validator Watch window with elements added
UVS-4

157

158

Graphical environment
Timers window

This window displays the values of all running timers.

You can stop timers via the pop-up menu of the window (see Figure 127, page 158), or
by pressing DELETE.

Figure 127: Validator Timers window, with pop-up menu

Breakpoints window

This window shows all defined breakpoints. Furthermore it is possible to disable a
breakpoint in this window. See Breakpoints, page 169.

Figure 128: Validator Breakpoints window

VALIDATOR TOOLBARS

The most frequently used menu commands are available as toolbar buttons with
tooltips. A detailed description of the Validator menu commands is found in Validator
menu commands, page 357).

The following toolbars are available:

● Standard toolbar, see Figure 129, page 159.
● Debug toolbar, see Figure 130, page 159.
● RealLink toolbar, see Figure 131, page 159.
● Analysis toolbar, see Figure 132, page 159.
UVS-4

visualSTATE®

User Guide

Introduction
If the toolbars are not visible, you can display them via the View menu.

Figure 129: Validator Standard toolbar

Figure 130: Validator Debug toolbar

Figure 131: Validator RealLink toolbar

Figure 132: Validator Analysis toolbar
UVS-4

159

160

Graphical environment
UVS-4

visualSTATE®

User Guide

Simulation
This chapter describes how to use the visualSTATE Validator for interactive
simulation of visualSTATE models created with the Designer, and how you can
view your interactive simulation graphically in the visualSTATE Designer.

By interactive simulation you manually send events into one or more
visualSTATE Systems and view the System's reaction to this, including variables
assigned a new value, generated signals, actions, and state changes in the
System(s) simulated.

You can also simulate your visualSTATE model automatically by applying
commands that have been recorded to a file. This is described in Recording and
playing test sequences, page 187.

Starting simulation
Before you start simulation and send events into the System, you must:

● Initialize the loaded Systems
● Send the reset event
● Set event parameters.

This is done as follows:

1 Launch the Validator from the Navigator, to open the Validator workspace containing
the Project that you want to simulate.

2 On the menu, choose Window>Classic Simulation.

3 On the Debug toolbar, click the Initialize button to initialize the System(s).
UVS-4

161

162

Sending events
If the Project contains more than one System/instance, the command will display a
dialog box for selecting the Systems to initialize. See Figure 133, page 162.

Figure 133: Initialize Systems dialog box (Validator)

4 In the Event window, double-click SE_RESET to send the visualSTATE reset event into
the System(s). Active events are marked by a red arrowhead. See Active events, page
164.

Note: The reset event name is always SE_RESET and cannot be changed.

You are now ready to start simulation by sending events into the loaded System(s).

See Sending events, page 162.

Sending events
When you have completed the steps described in Starting simulation, page 161, you can
send events into the loaded System(s), as follows:

In the Event window, double-click on the event that is to be sent.

Note: If the event has any parameters, they should all be assigned a value before the
event is sent (see Specifying event parameters, page 167). If not, it is not allowed to send
the event. The reason is that the event parameters may be used in a guard expression or
an assignment, and it is not possible to resolve these without having the value of the
event parameters. In contrast, it is allowed to send an inactive event but it will produce
a warning, and it will not cause any reaction from the System.

Global events will be sent to all enabled visualSTATE Systems. Local events will be sent
to the System in which they are defined. For enabling and disabling of Systems, see
System setup, page 178.

When you have sent the event, new events may become active, shown by a red
arrowhead. See example in Figure 134, page 163.
UVS-4

visualSTATE®

User Guide

Simulation
For sending events you can also use the Watch window. See Using the Watch window
for sending events, page 164.

Figure 134: Validator environment with workspace loaded

You can filter the information in the Event window as follows:

To hide event(s) from the Event window, select one or more events, and choose Hide on
the pop-up menu. It is possible to hide events declared in a particular System. All
Systems are listed at the bottom of the pop-up menu.

To display all hidden events, choose Show All on the Event window pop-up menu.

Events can also be viewed in the Watch window. See Watch window, page 157.

To have guard expressions resolved during the inquiry on active events, choose Include
Guard Expressions on the Event window pop-up menu.

When guard expressions are included, only guard expressions evaluated as FALSE will
make an event inactive. Guard expressions evaluated as TRUE, and expressions that
cannot be evaluated (marked "N/A" in the Guard Expression window) will not cause an
event to be inactive.
UVS-4

163

164

Viewing elements during simulation
Note: The Include Guard Expressions option is only available in Validator mode (not
RealLink) because the inquiry on active events by the visualSTATE API can only check
state conditions. See also Guard expressions, page 166.

In the various Validator windows you can see what has happened to actions, states,
events, variables, etc., as a consequence of the sending of the event. See Viewing
elements during simulation, page 164.

ACTIVE EVENTS

An active event is an event, which, if sent, will trigger one or more transitions.

Active events are shown in the Event window with red arrowheads (see Figure 134, page
163). To view only the active events, choose Only Active Events on the Event window
pop-up menu.

If the Project contains more than one System, and a global event is active in more than
one System, the arrowhead is double. See Event window, page 153.

USING THE WATCH WINDOW FOR SENDING EVENTS

1 In the Event window, select the event to be added to the Watch window, open the
pop-up menu, and choose Add to Watch.

2 In the Validator or Target view of the Watch window, select the event to send and press
ENTER.

Viewing elements during simulation
When an event has been sent, a number of visualSTATE elements will be affected. Via
the Validator windows, you can see changes in the following elements:

● States
● Actions
● Assignments
● Signals
● Guard expressions
● Declared elements.

STATES

The states that became current upon sending an event, and the states that were current
before the event was sent can be viewed in the System window (for example, use the
Only Current and Show Previous commands of the System window pop-up menu. See
System window, page 152).
UVS-4

visualSTATE®

User Guide

Simulation
States that became current upon sending the event are shown with a red arrow.

It is possible to filter the information in the System window using the pop-up menu as
follows:

● To hide all states that are not current, choose Only Current.
● To see if a state was current before the last deduction was performed, choose Show

Previous.

Note: The Show Previous command is not available when the window is shown in
target mode.

● To view a branch, select any state, open the pop-up menu, and choose New Branch.
In this way, it is possible to watch only the part of the System that is interesting at
the moment.

Or choose Add from the pop-up menu to add an entire System/instance as a new
branch.

● To hide a branch, select a branch topstate, open the pop-up menu and choose Hide
Branch.

Or select the branch topstate, and press the DELETE key.

States can also be viewed in the Watch window (see Watch window, page 157).

ACTIONS

Actions, or outputs, produced by the sent event are listed in the in the Action window
which also lists the arguments with which the actions were called.

The order in which the outputs are listed is runtime specific, meaning that the top-most
output was the first output given. This applies to Systems too if the Project contains
more than one System. What actually happens is that every time a deduction (microstep)
is started for a specific System/instance, the Action window is cleared for outputs
coming from that System/instance, and every time an output is given during deduction
(microstep), the output is added to the end of the list. For information on microsteps, see
Microsteps and macrosteps, page 224.

ASSIGNMENTS

Assignments performed due to the sending of an event are shown in the Action window.

SIGNALS

If the System is using signals, the Signal Queue window will show the new signal queue
for the System. See also Signal queue handling, page 167
UVS-4

165

166

Viewing elements during simulation
GUARD EXPRESSIONS

To view guard expressions, open the Guard Expressions window.

Note: The Guard Expression window cannot be changed to target mode.

Figure 135: Guard Expression window (Validator)

In the target application, a guard expression is evaluated during deduction.
Consequently it can only have the value TRUE or FALSE.

However, the Guard Expression window of the Validator provides a view of the guard
expression values between deductions. This means that a guard expression can also have
the value N/A (not available). It will have this value if any unresolved variables, action
functions or event parameters are included in the guard expression. If an unresolved
guard expression is met during a deduction in the Validator, a dialog box will be
displayed where you can specify the value of the unresolved variable.

DECLARED ELEMENTS

To view all variables, all action functions, and all constants declared in all Systems, you
use the Variable window. Via the pop-up menu of the window, you can:

● Show or hide a specific group of elements (internal and external variables, actions
or constants).

● Show or hide all variables shown in the window, according to location of their
declaration (System or Project).

● Hide a range of selected variables. Choose Hide.
● Make all hidden variables visible again. Choose Show All.
● If a variable is declared as an array, you can display all indexes in the array by

choosing Expand.

See Figure 144, page 176.

You can hide all other columns than the name column in the Variable window by
clicking the appropriate item in the Field Chooser window (see Field Chooser window,
page 156).
UVS-4

visualSTATE®

User Guide

Simulation
Specifying event parameters
For specifying event parameters, you use the Event window.

1 In the Event window activate the pop-up menu and choose Set Parameter Values.... A
dialog box will be displayed. See Figure 136, page 167.

Figure 136: Set Event Parameter Value dialog box (Validator)

2 Specify the event parameters, either in the value field of the dialog box, or by editing
the parameter label directly.

Note: Event parameters for a target event (target mode) can only be modified from
within the Watch window (see Watch window, page 157).

Signal queue handling
Every time a signal is sent during a deduction, the signal is added to the end of the
appropriate signal queue. Thus the first signal listed in the queue is the one to be sent
next. The last signal listed in the queue is the signal added last to the queue (FIFO, first
in, first out).

Note: If the signal queue for a specific System/instance is not empty, it is not possible
to send an event to that System/instance.

AUTOMATIC VS. MANUAL SIGNAL QUEUE HANDLING

Handling of signal queue can be automatic or manual. See Activating automatic signal
queue handling, page 168, and Using manual emptying of signal queue, page 168.
UVS-4

167

168

Signal queue handling
Note (applies to the model when in Validator mode): If the Project contains more than
one System, there is a significant difference between the two approaches to emptying
the queue:

● When using automatic signal queue handling, the queue of a specific System will
be emptied just after the deduction of a Send Event action has been made, and
actually before the event is sent to any other enabled Systems.

● When using manual emptying of signal queue, the queue is not emptied until event
deduction has been performed for all enabled Systems.

If assignments are used, choice of approach may give quite different results.

Activating automatic signal queue handling

You activate automatic signal queue handling as follows:

1 Open the Signal Queue window.

2 Open the pop-up menu and choose Debug>Auto Empty Signal Queues.

After a deduction the Validator will send the first signal in the queue. As long as there
are signals in the queue for the particular System, deduction will continue, and new
signals may then be added to the signal queue. If the System is designed with many
signals, this process may take a while.

When automatic signal queue handling is applied, microsteps are not available in target
mode.

Note: The System may be in a livelock meaning that the signal queue will never be
emptied. If a livelock occurs, press ESCAPE to stop sending signals. In target mode, a
livelock cannot be stopped.

Using manual emptying of signal queue

You can manually empty signal queues as follows:

● Continue to send the top signal in the queue until the queue is empty. This is done
by double-clicking the signal in the Signal Queue window.

Or

● Single-step the queue by choosing Send Signal on the Signal Queue Window
pop-up menu. This will send the top signal in the first queue containing signals. The
order in which the queues are emptied is defined via the System setup (see System
setup, page 178).
UVS-4

visualSTATE®

User Guide

Simulation
HANDLING SIGNAL QUEUES FOR A SINGLE SYSTEM

You can handle signal queues for a single System as follows:

1 Open the Signal Queue window.

2 Empty the signal queue:

To empty the signal queue for a specific System, select the System, open the pop-up
menu and choose Empty System Signal Queue.

To step the signal queue for a specific System, select the System, open the pop-up menu
and choose Send System Signal.

Breakpoints
It is possible to set up breakpoint conditions for one or more of the following:

● The sent event or signal.
● An expression. It is possible to specify an expression to be evaluated before a

deduction, and/or an expression to be evaluated after a deduction.
● The current state (the state before the deduction).
● The next state (the state after the deduction).
● The actions executed during a deduction.

Note: Breakpoints are not available in target mode.
UVS-4

169

170

Breakpoints
DEFINING BREAKPOINTS

1 On the Validator menu, choose Edit>Breakpoints. A Breakpoints Setup dialog box will
be displayed. See Figure 137, page 170.

Figure 137: Breakpoints Setup dialog box, General tab (Validator)

2 Click the General tab and select the System and instance on which the break should be
performed (in the Validator, a breakpoint works on a System).

3 Enter an explanation for the breakpoint (not mandatory).

The bottom section of the Breakpoints Setup dialog box contains an overview of all
defined breakpoints. You enable and disable the breakpoints by clicking the check box
to the left of the System name.

TIP: Enabling and disabling of breakpoints can also be done in the Breakpoints window
(opened via View>Breakpoints). The Breakpoints window also contains an overview of
the defined breakpoints.

4 Create a breakpoint by clicking the New button. A new breakpoint is added to the list.

A break can be made on one or several conditions. If more than one condition is defined
for a breakpoint, they all have to be fulfilled before a break is performed.

5 Set up breakpoint conditions by clicking the appropriate condition type (events/signals,
variables, etc.), and subsequently clicking the item to apply as condition. For detailed
information, see

● Assigning a signal or an event as a condition to a breakpoint, page 171
● Assigning an expression to a breakpoint, page 172
UVS-4

visualSTATE®

User Guide

Simulation
● Setting up breakpoints for specific states, page 173
● Setting up breakpoints for executed actions, page 174.

6 To remove breakpoints, click the Remove button or Remove All button.

Assigning a signal or an event as a condition to a breakpoint

You assign a signal or an event as a condition to a breakpoint as follows:

1 Choose Edit>Breakpoints. In the Breakpoints Setup dialog box, click the
Events/Signals tab. See example in Figure 138, page 171.

Figure 138: Breakpoints Setup dialog box, Events / Signals tab (Validator)

2 Select the appropriate View options (Events, Signals, or Both).

3 In the list, double-click the event or signal to assign, or click the Arrow button. The
item will be moved to the selected field.
UVS-4

171

172

Breakpoints
Assigning an expression to a breakpoint

You assign an expression to a breakpoint as follows:

1 Choose Edit>Breakpoints. In the Breakpoints Setup dialog box, click the Variables tab.
See Figure 139, page 172.

Figure 139: Breakpoints Setup dialog box, Variables tab (Validator)

2 Enter a guard expression and click the check mark button. The expression entered must
follow the same syntax as that of guard expressions defined in the Designer. It is
possible to have an expression evaluated both before and after a deduction is
performed. Both expressions are defined within this tab.

Note: It is not possible to use action functions or constants in a breakpoint expression
for variables.
UVS-4

visualSTATE®

User Guide

Simulation
Setting up breakpoints for specific states

You set up breakpoints for specific states as follows:

1 Choose Edit>Breakpoints. In the Breakpoints Setup dialog box, click the Current
States or Next States tabs. See Figure 140, page 173.

Figure 140: Breakpoints Setup dialog box, Current States tab (Validator)

2 Double-click the states for which breakpoint conditions should be applied.

Note: The states defined in the Current State tab will be evaluated before a deduction
is performed, and the states defined in the Next State tab will be evaluated after the
deduction.
UVS-4

173

174

Breakpoints
Setting up breakpoints for executed actions

You set up breakpoints for executed actions as follows:

1 Choose Edit>Breakpoints. In the Breakpoints Setup dialog box, click the Action
Functions tab. See Figure 141, page 174.

Figure 141: Breakpoints Setup dialog box, Action Functions tab (Validator)

2 In the Available Action Functions list, double-click the action functions for which to
set up breakpoints.

The order in the lists of selected action functions and the action functions actually
executed may differ, but this has no influence on the evaluation of the breakpoint.

USING BREAKPOINTS

The breakpoint pre-deduct conditions are evaluated just before deduction starts. If all
conditions are fulfilled, and the breakpoint does not contain any post-deduct conditions,
the Breakpoint Reached dialog box will be displayed where you can select one of the
following options (see Figure 142, page 175):

● Click Step Over to step over the breakpoint and thereby perform the deduction.
UVS-4

visualSTATE®

User Guide

Simulation
● Click Stop.

Figure 142: Breakpoint Reached dialog box, Pre-deduct (Validator)

After deduction, all post-deduct conditions are evaluated. If all post-deduct conditions
in a breakpoint are fulfilled (and of course all pre-deduct conditions too, but they have
been evaluated), a break is performed. Again the Breakpoint Reached dialog box pops
up informing you that a breakpoint is reached. See Figure 143, page 175.

Figure 143: Breakpoint Reached dialog box, Post-deduct (Validator)

For post-deduct conditions, you cannot stop or step over the breakpoint. Click OK to exit
the dialog box.
UVS-4

175

176

Changing variable values
Note: If the Project contains more than one System/instance, and you choose to stop on
a breakpoint, all further processing is disabled, but nothing is undone.

This means that if

● the Project contains two Systems, and
● a deduction has been performed on the first System, and
● a pre-deduct breakpoint is reached on the second System, and
● you choose to stop

the deduction on the first System will remain.

Changing variable values
You change variable values as follows:

1 Open the Variable window.

Figure 144: Variable window (Validator), with pop-up menu

2 Click the variable for which to change value.

3 Open the pop-up menu and choose Set Value. Type the new value.

Note: At load time the variables are assigned their initialization values.

Note: Arrays must be expanded before it is possible to set the value of the different
indexes.
UVS-4

visualSTATE®

User Guide

Simulation
Setting action function return values
An action function can have a return value. In order to be able to simulate the System,
the action function return value may be necessary if the action function return value is
used in a guard expression or an assignment expression.

To set the value action function return value:

1 Open the Variable window. See Figure 144, page 176.

2 In the Value column, select the action function return value, and type the value.

Each time an action function is used you can be prompted to specify return value. This
is done by choosing Debug>Action Function Return Value Prompt. By default the value
is undefined.

Note: In target mode, it is not possible to view the action function return values.

Forcing states
It is possible to force the System into a specific state. All states except regions can be
forced. You force a state as follows:

1 Open the System window.

Figure 145: System window (Validator), with pop-up menu

2 Click the state to force. Open the pop-up menu, and choose Force State.

The state will become active in the System.
UVS-4

177

178

System setup
System setup
Because the Validator is able to handle simulation of more than one System and even of
Systems that contain multiple instances, it is possible to set up the order of Systems, as
follows:

1 Open the System Setup window. See Figure 146, page 178.

Figure 146: System Setup window (Validator)

2 Click the Validator or Target tab to change between Validator and RealLink setup.

3 Change System order by clicking the Up Arrow or Down Arrow buttons on the toolbar.

Changing the order of the System setup changes the order of how events are sent to the
different Systems. Thus it is possible to match the handling of events by the target
application as closely as possible. Furthermore changing the System order affects the
handling of signal queues. If manual signal queue handling is used (see Using manual
emptying of signal queue, page 168), System setup determines which queue should be
emptied first.

Note: The System order only applies to interactive simulation (simulation not using test
sequence files). When a recorded test sequence is played, all inputs to the Systems are
performed on a System/instance basis, and it makes no sense to manually empty a signal
queue. See Recording and playing test sequences, page 187.

4 Enable or disable Systems by clicking the check boxes to the left of the System name.
Disabled Systems will not receive events.

To activate an instance (only possible in Validator mode):

1 In the System Setup window, select the instance to be activated.

2 Open the pop-up menu, and choose Activate Instance.

See Figure 146, page 178.

Note: It is not possible to change instances in target from within the Validator.
UVS-4

visualSTATE®

User Guide

Simulation
Graphical animation
It is possible to view a Validator simulation graphically in the Designer. When the
Designer is used in this way, it is said to be in simulation mode, and the System design
cannot be changed.

To view a simulation graphically:

1 On the Validator menu, choose Debug>Graphical Animation, or click the Graphical
Animation button on the Debug toolbar. This launches the Designer in simulation
mode. See Figure 147, page 179.

Figure 147: Example of graphical animation

2 In the Designer, open the diagram to view.

When a transition fires in the Validator, the affected states and transitions can be viewed
in the Designer. All opened diagrams are updated each time a microstep is completed.
For information about microsteps, see Microsteps and macrosteps, page 224.
UVS-4

179

180

Toggling between Validator mode and target mode
SETTING BREAKPOINTS FOR GRAPHICAL ANIMATION

You can set breakpoints for graphical animation as follows:

1 From the Validator, open the Designer in simulation mode (see Graphical animation,
page 179).

2 Select the state for which to apply breakpoints, and open the pop-up menu.

3 Select Insert/remove current state breakpoint, or Insert/remove next state
breakpoint, whichever is appropriate.

To delete all breakpoints, select Remove all breakpoints.

SETTING GRAPHICAL ANIMATION OPTIONS

You can customize the graphical settings for the elements displayed in the Designer
simulation diagrams as follows:

1 Open your Validator workspace. On the Validator menu, choose Debug>Graphical
Animation. The Designer will be launched in simulation mode.

2 On the Designer menu, choose Tools>Configure….

3 A Configure Simulation dialog box will be displayed. Set shape and color of bounding
frames, and specify whether previous current states should be shown in the simulation
diagram.

Toggling between Validator mode and target mode
When the Validator is connected to a target by means of RealLink (target mode), you
can change the mode of the windows so as to view the representation of the Validator
model or the runtime model. All windows have this option, except the Guard Expression
window. For a detailed description of RealLink, see Testing visualSTATE models using
RealLink, page 207.

To change a Validator window so as to view the runtime model (RealLink):

1 Open a window, for example the Event window.
UVS-4

visualSTATE®

User Guide

Simulation
2 Click in the window and choose Target from the pop-up menu (see Figure 148, page
181), or press ALT+F8.

Figure 148: Target command in Validator window
UVS-4

181

182

Toggling between Validator mode and target mode
UVS-4

visualSTATE®

User Guide

Tracing visualSTATE
models
This chapter shows how to trace visualSTATE models in the Validator.

Tracing
A trace is a sequence of steps that leads to a desired configuration. Tracing can be used
for answering the question “How do I get from the initial state to a user defined
configuration?”.

The Validator can be used for setting up the configuration you want to reach, and you
can see the resulting trace by using the Validators capability for handling test sequence
files. Refer to “Playing recorded test sequences” on page 191 for how to use the
resulting test sequence.

The Verificator will be used for finding the actual trace. In a trace the Verificator will
find a suitable sequence of events and external variable values that make it possible to
reach the desired configuration.

SETTING UP A TRACE

1 Launch the Validator and open your Validator workspace.

2 On the menu, choose Debug>Trace to open the Trace Setup window.

3 There are 3 options for setting the desired configuration to reach. See Figure 149, page
183.

Figure 149: Trace Setup, Trace To options

You may set the Trace To to:

● Initial - this will make a trace to the initial state in the System.
● Current - this will make a trace to the current state in the System.
UVS-4

183

184

Tracing
● Specify file - this is used if you want to specify a customized setup

Selecting ‘Initial’ or ‘Current’ completes step 3, but if you select ‘Specify file’ you need
to setup the desired configuration of states. Simply click Setup like shown in Figure
150. Then refer to “Setting up the Trace Point” on page 184 for how to handle Trace
Point Setups.

Figure 150: Trace Setup, Trace To Setup

4 After completing the ‘Trace To’ part you need to select which file the resulting test
sequence file should be saved to. Write the desired output file name in the ‘Trace
output’ field or browse for the file using ... to the right of the field.

5 After completing the previous steps select Find Trace. The Validator will by means of
the Verificator find a trace to the specified state configuration and the resulting test
sequence file will be saved, if a trace can be found.

SETTING UP THE TRACE POINT

A trace point is the state configuration you want to reach. You can open an existing Trace
Point Setup, save one and configure one. This is done in the ‘Trace Point Setup’ window
which is opened as shown in “Setting up a trace” on page 183.

The trace point setup window looks like Figure 151, page 185.

The window has 3 buttons for quick handling of the configuration:

● Initial - sets the state configuration to the initial state(s) in the System.

● Current - sets the state configuration to the current state(s) in the
System.

● Clear - clears the state configuration.

The Load, Save and Save As are used in the normal way in Windows for loading,
saving, and saving under another or a new name for the trace point setup files.

If your Project contains more than one System you will also be able to select which
System you want to trace by means of the ‘Select System’ drop-down list.
UVS-4

visualSTATE®

User Guide

Tracing visualSTATE models
Select your desired trace point by selecting states in the window. When done save the
trace point you have set up and click OK.

The saved trace point file will be saved with information on the System as well, so you
can use this information when you want to retry a trace later on. If you change the
System you will not be able to reuse the trace point since the signature of the System
will be checked. Likewise you will not be able to use a trace point file made for another
System for the current System in the Validator.

Figure 151: Trace Point Setup
UVS-4

185

186

Tracing
UVS-4

visualSTATE®

User Guide

Recording and playing test
sequences
This chapter describes how you can record test sequences to test sequence
files by means of the Validator, and how you can play and change the recorded
test sequences.

Recording a test sequence
It is possible to record one or more test sequences to a test sequence file. The test
sequence file can be used as a source of reference in future simulation sessions, for
example after a change in model design.

A test sequence consists of a number of steps. Each step describes the command given,
to where it is given (if applicable), and the output produced by the command.

To record a test sequence to a test sequence file:

1 Launch the Validator and open your Validator workspace.

2 Choose File>Test Sequence File>New. A Test Sequence File window is displayed.

Figure 152: Validator Test Sequence File window

3 Click the Record button on the Debug toolbar, or choose Debug>Record on the menu.

4 Initialize the loaded Systems, and send the visualSTATE reset event SE_RESET. This
will ensure that the starting point is always the same when test sequences are played. If
you do not start by initializing the visualSTATE Systems, you will get an error.
UVS-4

187

188

Recording a test sequence
5 Apply commands to the System. The commands that can be given to a System and
recorded in a test sequence file are listed in Table 5, page 188.

The commands applied to the visualSTATE model will be recorded and appended to the
selected sequence (for selection of test sequence see Playing recorded test sequences,
page 191).

If manual (interactive) simulation is performed on multiple Systems, global events are
sent to all Systems and will be recorded once for each System receiving the event. This
way of recording ensures that it is possible to repeat the test sequence by playing it (see
Playing recorded test sequences, page 191).

Note: If you are recording a test sequence, all commands applied to the model will
recorded, both manually applied commands and commands applied automatically by
means of a recorded test sequence file.

6 Stop recording by clicking the Record button on the toolbar.

VIEWING OUTPUTS OF STEPS

The outputs of steps (commands) recorded to a test sequence file during a simulation
session can be viewed by selecting the appropriate command (step) in the Test Sequence
File window. The recorded (expected) output of the selected command will be displayed
in the lower part (output section) of the window. See Figure 153, page 189.

Command Do the following

Initialize a System Click the Initialize button on the Debug toolbar (not
available in target mode).

Send an event into the System. Double-click an event in the Event window.

Set the values of internal and
external variables, and action return
values.

Open the Variable window pop-up menu and choose
Set Value (values of action return values are not
available in target mode). See also Changing variable
values, page 176.

Force the System into a specific state. Open the System window pop-up menu and choose
Force State (not available in target mode).

Send a signal into the System. In the Signal Queue window, double-click a signal.

Table 5: Commands that can be recorded to a Validator test sequence file
UVS-4

visualSTATE®

User Guide

Recording and playing test sequences
If the output section of the Test Sequence File window is not visible, open the pop-up
menu of the window and choose Step results. Click the tabs to change between the
output types (see Output types, page 189).

Figure 153: Validator Test Sequence File window, output of selected command

The upper part of the window shows the commands (steps) recorded and the System to
which they were applied. The test sequence pointer (arrow in left-most column) shows
the step reached in the sequence being played.

Output types

Outputs are divided into the following types (see Figure 153, page 189):

States The entire state configuration for the System to which the
command was given.

Action functions The action functions executed during a Send Signal or a Send
Event command.

Signals The entire queue after a Send Signal or a Send Event
command.

Variables The variables that have been assigned a new value during a
Send Signal or a Send Event command (not necessarily
another value, but an assignment has been performed to the
variable).

Note: Not all commands produce all four output types.

See also Comparing played test sequences with recorded output, page 193.
UVS-4

189

190

Recording a test sequence
COLLECTING TEST SEQUENCES IN THE SAME FILE

It is possible to collect different test sequences in the same test sequence file, and give
each sequence a specific name. For handling test sequences, you use the pop-up menu
of the Test Sequence File window (see Figure 154, page 190).

Figure 154: Pop-up menu of Validator Test Sequence File window

Creating and deleting test sequences in a file

To create a new sequence, choose Sequence>New Sequence. Click the Record button
and apply commands to the System. Click the Record button to stop recording. The
existing sequence is saved automatically.

To delete all steps in the current sequence, choose Sequence>Reset Sequence.

To enter a name and explanation for the test sequence, choose Sequence>Select
Sequence. Type name and explanation in the dialog box displayed. See Figure 155, page
190.

Figure 155: Test Sequence File dialog box (Validator)
UVS-4

visualSTATE®

User Guide

Recording and playing test sequences
To record a test sequence from the target, select Target. Click the Record button and
apply commands to the System. Click the Record button to stop recording.

To delete the current sequence, choose Sequence>Delete Sequence.
Note: At least one sequence must exist in the file so it is not possible to delete all
sequences in the file.

Opening test sequences

To open the next or previous sequence, choose Sequence>Next Sequence or
Sequence>Previous Sequence.

To open a sequence that is not previous or next, choose Sequence>Select Sequence.
This will open a dialog box where you can select the sequence by clicking in the list box.
See Figure 155, page 190.

Playing recorded test sequences
It is possible to play recorded test sequences from test sequence files in the Validator.
This allows you to check if two different simulation sessions give the same result, for
example after a design change. Once an appropriate set of test sequences has been
created, they can be used repeatedly to check that design changes result in expected
behavior of the model. The test can also be repeated for the target model using RealLink.

To play a recorded test sequence:

1 Open your Validator workspace.

2 Choose File>Test Sequence File> Open, and specify the file to use. The test sequence
file window is displayed. Select the test sequence to apply. See Figure 155, page 190.
On the pop-up menu, choose Step results to open the output section of the window, if it
is not already open.

3 Set the starting step in the sequence: Select the step in the upper part of the Test
Sequence File window, and choose Set as Next Step from the pop-up menu. Or click
the Stop button on the Debug toolbar.

4 To play the recorded test sequence automatically, click the Play button on the Debug
toolbar.

To execute the steps in the test sequence one by one, click the Step button on the Debug
toolbar.
UVS-4

191

192

Playing recorded test sequences
SPEED

If a test sequence is executed automatically, speed can be set. Default speed is Free Run
which is the highest possible speed of the PC.

To set a different speed, choose Edit>Speed, or use the pop-up menu of the Test
Sequence File window.

BREAKING EXECUTION OF A TEST SEQUENCE

It is possible to break the execution of a test sequence in a test sequence file, as follows:

1 Open the test sequence file and select the sequence.

2 If you know exactly on which step to break execution, either select the step and
subsequently choose Play to Cursor from the Test Sequence File pop-up menu. Or set
a stop point on the specific step by double-clicking it.

To search for some specific conditions to be fulfilled, use breakpoints (see Breakpoints,
page 169). Breakpoints also work for commands sent from a recorded test sequence.

To pause execution, click the Pause button on the Debug toolbar.

To stop execution and return the cursor to the first step in the sequence, click the
Stop/Reset button on the Debug toolbar.

JUMPING TO A SPECIFIC STEP IN A RECORDED TEST
SEQUENCE

It is possible to jump around in a recorded test sequence via the Set as Next Step
command on the pop-up menu of the Test Sequence File window (see Figure 154, page
190).

This is particularly useful if the signal queue in a recorded test sequence does not
correspond to the one generated at runtime. Execution of the recorded test sequence will
stop if the sequence tries to send a signal different from the first signal in the queue. To
continue execution in such a situation, do the following:

1 Open the test sequence file and select the sequence.

2 As the next command to be executed, select the first command not being a signal in the
Test Sequence File window

3 Manually empty the existing queue by clicking the Empty Signal Queues button on the
Debug toolbar (or use the Empty Signal Queue command on the Test Sequence File
window pop-up menu).

It will now be possible to continue playing the test sequence file.
UVS-4

visualSTATE®

User Guide

Recording and playing test sequences
COMPARING PLAYED TEST SEQUENCES WITH RECORDED
OUTPUT

It is possible to have the output (states, action functions, signals, and variables) of a
played test sequence compared with the recorded output, as follows:

1 Open the Test Sequence File window, and choose Check from the pop-up menu. Select
the items for which to check. By default all four output types are selected (for a
description of the output types, see Output types, page 189).

2 Play the sequence, as described in Playing recorded test sequences, page 191.

If a design change has been made that results in mismatches, and you play the recorded
test sequence, execution will stop, and the Validator will report the mismatches caused
by the change. See Figure 156, page 193.

Figure 156: Log Mismatch Detected dialog box (Validator)
UVS-4

193

194

Playing recorded test sequences
UVS-4

visualSTATE®

User Guide

Analyzing visualSTATE
models
This chapter how to analyze visualSTATE models with regard to elements used
and test coverage. The types of analysis are termed static analysis and dynamic
analysis respectively.

Static analysis
A static analysis gives an overview of the elements used in the transitions of a specific
state machine model. For example an answer to the question “Which transitions will fire
the action a?” or “Which transitions involve the variable v?”.

The static analysis information can be obtained without executing or simulating the state
machine model.

The elements for which transitions can be statically analyzed are:

● Events
● Actions
● Signals
● Internal Variables
● External Variables.

PERFORMING A STATIC ANALYSIS

1 Launch the Validator and open your Validator workspace.

2 On the menu, choose File>Analysis>New Static to open a Static Analysis window.

3 On the Analysis toolbar, select the System on which to perform the analysis. See
Figure 157, page 195 where the selected System is CD_Deck.

Figure 157: Validator Analysis toolbar, static analysis
UVS-4

195

196

Static analysis
4 In the left pane of the Static Analysis window, select the elements for which to analyze
transitions (hold the CTRL button down while clicking the left mouse button on the
elements).

Figure 158: Validator Static Analysis window, selection of elements to analyze

5 On the Analysis toolbar, click the Analyze button, or choose Debug>Analyze.
UVS-4

visualSTATE®

User Guide

Analyzing visualSTATE models
Analysis will be performed and analysis results shown in the right pane of the Static
Analysis window.

Figure 159: Static analysis results (Validator)

6 Save the static analysis file by choosing File>Analysis>Save. Specify file name and
directory in the Save Static Analysis dialog box displayed.

OPENING AN EXISTING STATIC ANALYSIS FILE

You can open an existing static analysis file by choosing File>Analysis>Open. In Open
Analysis File dialog box displayed, specify file name (extension vsa) and directory.

Dynamic analysis
A dynamic analysis calculates the test coverage of a specific System and includes
events, actions, signals, conditional states, next states and transitions. The test coverage
analysis gives detailed information on the dynamic aspects of the model when specific
scenarios or parts of the model are simulated.
UVS-4

197

198

Dynamic analysis
For example a dynamic analysis will describe which parts of the model have the highest
activity level, and which parts are never entered. This information is useful when
analyzing how the dynamics of the application will perform at runtime.

PERFORMING A DYNAMIC ANALYSIS

1 Launch the Validator, open your Project in a Validator workspace, initialize the
System, and send events into the System by double-clicking them (see Simulation,
page 161).

2 On the Validator menu, choose File>Analysis>New Dynamic. An empty Dynamic
Analysis window is displayed.

3 On the Analysis toolbar, select the System on which to perform the analysis. See
Figure 160, page 198 where the selected System is CD_Deck.

Figure 160: Validator Analysis toolbar (dynamic analysis)

4 On the Analysis toolbar, select the sequence for which to perform the analysis. This
can be a sequence in a test sequence file, or it can be performed on the data collected
since the last time the dynamic analysis data was reset. This set of data is named
Current Test Session (see Figure 159, page 197). Using collected data allows an
on-the-fly calculation of the test coverage.

5 On the Analysis toolbar, click the Analyze button.
UVS-4

visualSTATE®

User Guide

Analyzing visualSTATE models
Analysis will be performed and analysis results shown in the Dynamic Analysis
window. See Figure 161, page 199.

Figure 161: Validator Dynamic Analysis window, with pop-up menu

The dynamic analysis consists of a summary section and a details section. The summary
section shows the calculated coverage percentage and the most frequently activated
elements of those covered by the analysis. In the details section it can be seen how many
times a specific element has been activated. Furthermore the dynamic analysis
calculates frequency as a percentage of the entire activation of this group of identifiers.
UVS-4

199

200

Dynamic analysis
The result of the dynamic analysis can be in either text format or comma separated
values format (CSV). Format is selected via the pop-up menu of the Dynamic Analysis
window.

Note: The dynamic analysis data is reset each time a dynamic analysis is performed,
and each time Edit>Undo is applied to a Send Event or Send Signal command.

6 Save the dynamic analysis file by choosing File>Analysis>Save. Specify file name and
directory in the dialog box displayed.

OPENING AN EXISTING DYNAMIC ANALYSIS FILE

You can open an existing dynamic analysis file by choosing File>Analysis>Open. In the
dialog box displayed, browse for directory and specify file name (extension vda).
UVS-4

visualSTATE®

User Guide

Part 6: Testing in target
applications
This part of the visualSTATE® User Guide includes the following chapters:

● Introduction

● Testing visualSTATE models using RealLink.
UVS-4

201

202
UVS-4

Introduction
With the RealLink facility of the Validator it is possible to monitor and control
the runtime behavior of your visualSTATE model in the target application.

This chapter gives an introduction to visualSTATE RealLink, and describes

● RealLink connection to target

● visualSTATE elements supported by RealLink

● Target requirements.

For a description of how to use RealLink, see Testing visualSTATE models using
RealLink, page 207.
UVS-4

203

204

What is RealLink?
What is RealLink?
visualSTATE RealLink comprises the software running on the PC, the target and a
communication link between the two. See Figure 162, page 204.

Figure 162: Example of visualSTATE RealLink setup

RealLink connection to target
The connection between the Validator and target is established by means of a
communication module as shown in Figure 163, page 205. RealLink supports multiple
communication modules that each provides an interface to a specific link to the target,
such as a serial connection (RS232), Bluetooth™ connection, TCP/IP connection or any
other type of communication link.

Each communication module automatically integrates itself into the Validator via a
communication plugin (DLL). visualSTATE includes the following communication
plugins for RealLink:

● RealLink RS232 communication plugin (see Setting up RealLink RS232
communication plugin, page 217).
UVS-4

visualSTATE®

User Guide

Introduction
● RealLink TCP/IP communication plugin (see Setting up RealLink TCP/IP
communication, page 218).

Figure 163: RealLink connection between the Validator and target

An example of a visualSTATE RealLink setup is shown in Figure 162, page 204.

Once the RealLink connection is established, you have full control of the visualSTATE
model running in the target. From within the Validator, events can be sent to the target,
test sequence files can be recorded and played, and variables can be changed, all in
real-world hardware.

visualSTATE elements supported by RealLink
With RealLink it is possible to monitor and control the behavior of all logical
visualSTATE elements, except the following:

● Parameters to action functions: Their values are shown as "…" in the Validator
Action window.

● Guard expressions of active events: The Validator Event window shows the active
events but no guard expressions are considered. Therefore the Validator may show
an event as being active when in fact a guard expression is not satisfied.

● Instances: It is not possible to change instances from within the Validator.

For a detailed description of visualSTATE elements, see visualSTATE Reference Guide.

visualSTATE
Validator

RS232

Target

Exchangeable
communication
module
UVS-4

205

206

Target requirements
Target requirements
Target processors to be used with Validator RealLink must comply with the following
requirements:

Variable sizes

Must be a multiple of 8 bit, however max. 32 bit.

Memory

Memory used by RealLink must be accessible through byte pointers. Some memory
areas in specific microprocessors have only 16 bit access. These memory areas cannot
be accessed by visualSTATE.

RealLink requires additional memory in CODE, CONST DATA and DATA. See
Appendix B: RealLink memory consumption, page 409.

Communication

The receive function must be interrupt-driven (polled communication is not supported),
and RealLink must have exclusive access to the communication resource. The settings
of the communication resource must match the settings of the communication module
installed on the PC (see Setting up RealLink, page 207).

Note: To connect to a target with Harvard architecture, your compiler must be capable
of using generic pointers, or you must use extended keywords on RealLink symbol
tables. See Targets with Harvard architecture, page 208.

visualSTATE Expert API requirements

If more than one VS System is loaded in a given task (or in the main loop if no RTOS is
used), the following applies:

● Only one VS_WAIT() macro per task.
● An SMP_Deduct(), SMP_GetOutput(), SMP_NextState() sequence must be

completed before calling SMP_Deduct() a second time.
● If you want to use RealLink all systems should be running in the same task.
UVS-4

visualSTATE®

User Guide

Testing visualSTATE
models using RealLink
This chapter describes how to set up RealLink and monitor and control the
runtime behavior of your visualSTATE model in the target application. For
RealLink memory consumption, see Appendix B: RealLink memory consumption,
page 409.

Setting up RealLink
This section describes how you prepare your target application for using RealLink, and
configure the RealLink connection.

CHECKLIST

To get RealLink configured and ready for your project, the following steps must be
completed:

Step 1: Enabling RealLink support, page 207.

Step 2: Adding RealLink files to your project, page 209.

Step 3: Using the RealLink API, page 210.

Step 4: Implementing target-specific functions, page 213.

Step 5: Completing the target source code, page 215.

Step 6: Configuring the Validator for RealLink, page 215.

For detailed information about code generation and the visualSTATE APIs, see Part 7:
Code generation, page 231 of this guide, and visualSTATE API Guide.

Step 1: Enabling RealLink support
1 Launch the Navigator, and open your workspace file.
UVS-4

207

208

Setting up RealLink
2 In the workspace browser (workspace view), select the visualSTATE Project for which
to enable RealLink support. Open the pop-up menu and choose Project>Options>Code
generation. The Coder Options dialog box is displayed. See Figure 164, page 208.

Figure 164: Navigator, Coder Options dialog box, Configuration tab

3 On the Configuration tab, select RealLink mode: Table-based.

4 Click the RealLink tab and set the options appropriate for your Project.

5 On the Navigator menu, choose Project>Code generate to generate the source code for
the active visualSTATE Project.

Targets with Harvard architecture

To connect to a target with Harvard architecture, your compiler must be capable of using
generic pointers, or you can specify extended keywords on RealLink symbol tables as
follows:

1 Open the Coder Options dialog box of the Navigator, and ensure that RealLink mode
on the Configuration tab has been set to Table-based.
UVS-4

visualSTATE®

User Guide

Testing visualSTATE models using RealLink
2 Click the RealLink tab. See Figure 165, page 209.

Figure 165: Navigator, Coder Options dialog box, RealLink tab

3 Select Use additional RealLink extended keywords.

4 Click RealLink data extended keyword and type a keyword that specifies a memory
area where both read and write operations can be performed.

5 Click RealLink const data extended keyword and type a keyword that specifies a
memory area where read operations can be performed.

Note: When you use RealLink extended keywords, the keywords must match the
visualSTATE Coder extended keywords. For example, the RealLink data extended
keyword must match the keywords you specify for external and internal variables in the
Coder options.

Step 2: Adding RealLink files to your project
In order to successfully compile and link your project with RealLink support, you must
add the following two C modules to your compiler project (or makefile):

● <SystemName>RealLink.c
● <SystemName>VSrlps.c

The <SystemName> prefix is prepended to the filename if the option Use prefix for
API is being used. The C module <SystemName>RealLink.c includes the C header
file <SystemName>RealLink.h. Include the <SystemName>RealLink.h file in the
file containing the visualSTATE deduction sequence (a sequence of the visualSTATE
API functions SEM_Deduct, SEM_GetOutput, SEM _NextState). See Examples of
main functions, page 210.

RealLink.c and RealLink.h are the RealLink API files. These files are generated by
the Coder for the Basic API. For the Expert API, the files are static and included with
the visualSTATE standard installation. The files are located in the
\IAR Systems\visualSTATE X.x\Api\VSApiRealLink directory.
UVS-4

209

210

Setting up RealLink
Note: This behavior is new from version 5.3. In earlier versions, the RealLink API files
were static also for the Basic API.

The <SystemName>VSrlps.c file is a Coder-generated RealLink support file. It is
placed in the output directory you have specified, together with the other
Coder-generated files.

Note: Do not manually edit any RealLink files, because they will be overwritten
during the next code generation.

Refer to your compiler manual on how to add additional source files to an existing
project.

Step 3: Using the RealLink API
To use the RealLink API, you must make the following changes to your code. (The
<SystemName> prefix is prepended to the filename if the Basic API is used with the
option Use prefix for API.)

1 Call the Basic API function SEM_InitAll().
(This replaces calls to the Basic API initialization functions such as SEM_Init(),
SEM_InitSignalQueue(), etc.).

2 Call the RealLink API function VS_RealLinkInit().

3 Insert the RealLink API macro VS_WAIT(SEM<SystemName>) in the main loop but
before the visualSTATE deduction sequence. The main loop is identified by an infinite
loop, typically a while(1) or for(;;) loop.

Note: The VS_WAIT() macro must not be inserted inside the visualSTATE main loop.
See Examples of main functions, page 210.

When the visualSTATE application enters the VS_WAIT() macro, data is exchanged
between the Validator and the target. When data exchange is completed, the
visualSTATE application program resumes execution, according to your commands
from the Validator.

Examples of main functions

Below is an example of a simple visualSTATE Basic API main function and a simple
visualSTATE Expert API main function. Each example includes a main loop with a
visualSTATE deduction sequence that has been modified to support RealLink. Note that
the VS_WAIT() macro is inside the main loop, but outside the visualSTATE deduction
sequence.

The code that you must insert is shown in bold.
UVS-4

visualSTATE®

User Guide

Testing visualSTATE models using RealLink
Example of Basic API main function

/* include RealLink API */
#include "SystemNameRealLink.h"

SEM_EVENT_TYPE EventNo;
SEM_ACTION_EXPRESSION_TYPE ActionEx;
unsigned char CC;

int main(void)
{
 /* init Basic API */
 SEM_InitAll();

 /* init RealLink */
 VS_RealLinkInit();

 while(1) /* main loop */
 {

 /* RealLink wait macro */
 VS_WAIT(SEMSystemName);

 /* Get event from queue */
 EventNo = GetEventFromQueue();

 if(EventNo != EVENT_UNDEFINED)
 {
 /* Deduct event */
 if((CC = SystemNameSEM_Deduct(EventNo)) != SES_OKAY)
 ErrorHandling(CC);

 while((CC = SystemNameSEM_GetOutput(&ActionEx) == SES_FOUND))
 SystemNameSEM_Action(ActionEx);
 if(CC != SES_OKAY)
 ErrorHandling(CC);

 if((CC = SystemNameSEM_NextState()) != SES_OKAY)
 ErrorHandling(CC);
 }
 }
}

Initialization

visualSTATE
deduction
sequence

Main
loop
UVS-4

211

212

Setting up RealLink
Example of Expert API main function

Note: The communication hardware must be initialized before entering the main loop.

/* RealLink task pointer */
VS_RLTASK* pTask;
/* standard context pointer */
SEM_CONTEXT* pContext;

/* initialize RealLink */
VS_RealLinkInit(&pTask);

/* Init <system name> */
/* VS_RealLinkInit(..) must have been called prior to
 initializing any VS System */
<system name>SMP_InitAll((&pContext, pTask);
while(1)
{
 /* RealLink macro */
 VS_WAIT(pContext);

 /* Standard vS */
 nEventNo = GetEventFromQueue();
 if (nEventNo != EVENT_UNDEFINED)
 {
 SMP_Deduct(pContext, nEventNo);
 while(SMP_GetOutput(pContext, &ActionNo) == SES_FOUND)
 SMP_Action(pContext, ActionNo);
 SMP_NextState(pContext);
 }
}

/* Cleans up vS */
SMP_Free(pContext);

/* Cleans up RealLink */
/* SMP_Free() must have been called for all VS Systems */
VS_RealLinkFree(pTask);
UVS-4

visualSTATE®

User Guide

Testing visualSTATE models using RealLink
Step 4: Implementing target-specific functions
Because both the visualSTATE API and RealLink APIs are target-independent, they
contain no information on how to use the communication device of the target.

Note: All visualSTATE Systems must be located in the same task if you want to apply
RealLink.

1 In order to access the communication device you must implement the following
target-specific RealLink functions that are used by the visualSTATE API:

You can change the default names of the functions by defining the macros:

#define VS_RL_RESET MyReset

#define VS_RL_TRANSMIT MyTransmit

#define VS_RL_TRANSMIT_FLUSH MyTransmitFlush

TIP: IAR MakeApp can be used to automatically generate device drivers.

Examples of implementation

The functions in the following examples were implemented using the following:

Reset() Resets the target. The function will be called by the RealLink
API. This function might not be necessary for your target.

Transmit() Transmits one byte on the communication port or adds bytes to
the buffer. The function will be called by the RealLink API. See
Example: Transmit function (RS232 implementation), page
214.

TransmitFlush() This function must only be implemented if a buffer is used. The
function should empty the transmit buffer.

Receive() Must be interrupt-based. The function receives characters from
the communication device. The received characters should be
passed to the RealLink protocol by calling the function
VS_RealLinkReceive(). See Example: Receive function
(RS232 implementation), page 215.

Microprocessor: ARM7 - LPC2138

Compiler: IAR Embedded Workbench for ARM (EWARM)
UVS-4

213

214

Setting up RealLink
Example: Transmit function (RS232 implementation)

Note: The function does not transmit new data until the transmit register is empty.

#if (VS_REALLINKMODE == 1)

/* *** UART functions *** */
/* Reset is not needed for this platform */
void RealLinkReset(void)
{
}

/* Transmits one byte via UART1 */
void RealLinkTransmit(unsigned char byte)
{
 unsigned char status;

 /* Wait for TXRDY */
 do
 {
 status = U1LSR;
 }
 while ((status & 0x20) == 0);

 U1THR = byte;
}

#endif
UVS-4

visualSTATE®

User Guide

Testing visualSTATE models using RealLink
Example: Receive function (RS232 implementation)

2 Include RealLink.h in the file where the Transmit() and Reset() functions are
implemented.

Step 5: Completing the target source code
When the preceding steps have been completed, the target source code is ready and can
be embedded in the target.

1 Compile and link the complete project.

2 Embed the source code in the target.

Step 6: Configuring the Validator for RealLink
By now the target application should be ready and embedded. The next step is to
configure the RealLink connection, as follows:

1 Launch the Validator and open your workspace.

/* Receive Interrupt routine for RealLink */
#if (VS_REALLINKMODE == 1)
static void UART1Interrupt()
{
 switch(U1FCR_bit.IID)
 {
 case IIR_CTI:
 case IIR_RDA: /* Receive data available */
 VS_RealLinkReceive(U1RBR); /* Call received byte callback */
 /* function */
 break;
 case IIR_THRE: /* THRE interrupt */
 case 0x0: /* Modem interrupt */
 case IIR_RSL: /* Receive line status interrupt (RDA) */
 /* Character time out indicator interrupt (CTI) */
 default:
 break;
 }
 VICVectAddr = 0;
}
#endif
UVS-4

215

216

Setting up RealLink
2 On the menu, choose RealLink>Properties. A RealLink Properties dialog box will be
displayed. See Figure 166, page 216.

Figure 166: RealLink Properties dialog box

3 In the Select Active Plugin list, select the communication plugin to use, or click the
Add button to browse for other plugins and add them to the list.

Alternatively, click the Scan button to scan a specific folder for communication plugins.

4 When you have selected a communication plugin, it must be configured to the same
communication settings as those implemented on the target. Click the Configure
button. A dialog box for setup of the selected communication plugin will be displayed.
See Setting up RealLink RS232 communication plugin, page 217, and Setting up
RealLink TCP/IP communication, page 218.

Clicking the Remove button will remove the selected communication plugin from the
list.

Information about the RealLink communication plugin selected is stored in the current
Validator workspace.
UVS-4

visualSTATE®

User Guide

Testing visualSTATE models using RealLink
Setting up RealLink RS232 communication plugin

1 Perform the steps described in Step 6: Configuring the Validator for RealLink, page
215. When you click the Configure button after having selected RS232
communication (see Figure 166, page 216), the RS232 Setup dialog box will be
displayed. See Figure 167, page 217.

Figure 167: RS232 Setup dialog box

2 Fill in the dialog box with the appropriate settings which must match the target
settings.

Click the Get Default button to apply the default settings.

Click the Set Default button to create a new default setting.

The visualSTATE RealLink RS232 plugin must have exclusive access to the serial port;
it cannot be shared with other programs. You will get an error message if trying to open
a serial port that is already in use by another program.

3 Go to Establishing the first RealLink connection, page 219.
UVS-4

217

218

Setting up RealLink
Setting up RealLink TCP/IP communication

1 Perform the steps described in Step 6: Configuring the Validator for RealLink, page
215. When you click the Configure button after having selected TCP/IP
communication, the Setup dialog box for TCP/IP communication will be displayed.
See Figure 168, page 218.

Figure 168: TCP/IP Communication Setup dialog box

2 In the Host Name/IP Address field, type target host name or IP address.

3 Specify target listen port and Validator listen port. The reason for this is that both the
target and the RealLink TCP/IP communication plugin listen on a specific port in order
to establish a connection to the target. By default, the following ports are used:

● Port 1024 is used as the target listen port.
● Port 1025 is used as the Validator listen port.

4 Specify size of receive buffer. The size you should specify depends on the
visualSTATE model. Set receive buffer size to at least the size of the largest entity that
will be transferred between the target and the Validator. This could for example be the
state vector, or a variable defined as a large array. The buffer size only affects
communication performance, not the functionality.

Implementation

To set up and configure RealLink in your target, see Setting up RealLink, page 207.

You may find it useful to add the RL_TCPIP.cpp file to your target project. The
RL_TCPIP.cpp file uses the Windows Sockets API to implement the TCP/IP
communication. Because the file uses the Berkeley function set to the widest possible
degree, it will be relatively easy to port the RL_TCPIP.cpp file to other platforms.

5 Go to Establishing the first RealLink connection, page 219.
UVS-4

visualSTATE®

User Guide

Testing visualSTATE models using RealLink
Setting up your own TCP/IP communication

If you prefer to set up your own TCP/IP communication in the target instead of using
the RL_TCPIP.cpp file, do the following:

1 Set up a server to listen on the port you have configured as the target listen port. All
data from the Validator will be sent to this port and any received data should be handed
to the RealLink API.

2 Each time a connection is established on this port, extract the Validator IP address from
the connection.

3 Using the Validator IP address, create a connection to the port you have configured as
the Validator listen port. All data to be sent to the Validator should be sent via this
connection. Thus the RealLink transmit function should use this connection.

4 Go to Establishing the first RealLink connection, page 219.

ESTABLISHING THE FIRST REALLINK CONNECTION

When the communication plugin has been configured as described in Step 6:
Configuring the Validator for RealLink, page 215, you can establish a RealLink
connection, as follows:

1 On the Validator menu, choose RealLink>Connect as shown in Figure 169, page 219.

Figure 169: Connecting to RealLink
UVS-4

219

220

Monitoring your target application
2 If the connection is successfully established, the Validator output window (RealLink
tab) will display the message shown in Figure 170, page 220.

Figure 170: Validator output window

When the RealLink connection has been successfully established, the Validator will stop
execution when the VS_WAIT() macro is reached for the first time (VS_WAIT() is the
macro that you inserted in the target application code, see Using the RealLink API, page
210). VS_WAIT() continually checks if execution should be halted.

You can now monitor and control the target application, as described in Monitoring your
target application, page 220 and Controlling your application in target, page 224.

Monitoring your target application
When you have created a visualSTATE application with support for visualSTATE
RealLink, and you have established a RealLink connection (see Setting up RealLink,
page 207), you can monitor and control the behavior of the visualSTATE model in the
target.

It is possible to monitor the behavior of all visualSTATE elements in target via the
Validator windows, except action function parameters and guard expressions (see
Monitoring visualSTATE elements, page 222).

USING VALIDATOR WINDOWS WITH REALLINK

By default, all open windows in the Validator show the Validator representation of the
visualSTATE model. However, when RealLink is used, the windows can be changed so
as to show the status of the target model. The only window that cannot be changed to
showing RealLink is the Guard Expression window. Generally, the windows in target
mode correspond to the windows in Validator mode (see Validator windows, page 152).
UVS-4

visualSTATE®

User Guide

Testing visualSTATE models using RealLink
The title bars of the windows show which version of the model is shown: Validator
model or target model (runtime model). See Figure 171, page 221.

Figure 171: Validator Event window in target mode

The Validator keeps track of which windows are set to target mode, and will
automatically open them next time RealLink is connected.

To change between Validator mode and target mode in Validator windows:

1 Select the appropriate window, for example Event window.

2 Open the pop-up menu and choose Target to toggle the mode, or press ALT + F8. See
Figure 171, page 221.
UVS-4

221

222

Monitoring your target application
Validator Watch window

For monitoring visualSTATE elements, you can also use the Validator Watch window.
You can add the various types of visualSTATE elements to this window, which shows
both the Validator model and the target model. See Figure 172, page 222.

Figure 172: Validator Watch window containing visualSTATE elements

MONITORING VISUALSTATE ELEMENTS

In target mode, simulation is performed in the same way as in Validator mode (see
Simulation, page 161).

The following visualSTATE elements can be monitored via the Validator windows:

Events In the Event window, it is possible to see whether an event is
active or not. If an event is active, it will be marked with a red
arrow. The evaluation of whether or not an event is active is
actually performed in target using the visualSTATE Basic API
and Expert API. This means that the value of guard expressions
is not considered, and if your target application does not include
the SEM_Inquiry()/SEM_GetInput() functions, all
events will be marked as being active.

Event parameters In the Event window, you can see the values of event parameters
used the last time a deduction with a specific event was
performed, or the value you have set.

Variables In the Variable window, you can see the value of both external
and internal variables.
UVS-4

visualSTATE®

User Guide

Testing visualSTATE models using RealLink
TIP: If only a single element of an array is of interest, select this
element in the Variable window and press SHIFT + F9 to show
the element in the Watch window.

System state In the System window, you can monitor the current state of a
System. If a state is currently active, it is marked with a red
arrow.
Graphical animation (Debug>Graphical Animation) is also
available when using RealLink. By using this option you can
monitor the current states in the statecharts of visualSTATE
Designer.

TIP: If only a single branch of a System is of interest, select the
branch in the System window. Then either press SHIFT + F9 to
show the branch in the Watch window, or choose the New
Branch command from the pop-up menu to add the branch to
the System window as a separate branch.

Signal queue The Signal Queue window shows the signal queue of all
Systems.

Executed actions The Action window lists the actions executed during the last
step. This includes both executed action functions and
assignments.

MANIPULATING YOUR TARGET APPLICATION FROM
WITHIN THE VALIDATOR

When the VS_WAIT() macro is reached and execution of your target application stops,
you have the following options of manipulating it from within the Validator:

● Changing variable values
● Sending events into target.

Changing variable values

The value of a variable can be changed either in the Variable window or in the Watch
window. See Figure 173, page 223.

Figure 173: Editing a variable in the Watch window
UVS-4

223

224

Controlling your application in target
Sending events into target

When you double-click on an event in the Event window (or select an event in the Watch
window and press ENTER), the event will be sent into the target and processed just as
if the event had occurred, for example due to a button being pressed.

Note: An event sent from the Validator bypasses all event queues in the target.

If the event has parameters, the Validator holds a copy of the values of these parameters.
Between deductions, the Validator event parameter values are shown. Until the first
deduction, the event parameter values are undefined.

Values can be assigned to event parameters in either of the following ways:

● If an event that occurred in target is processed and the event is shown either in an
Event window in target mode, or in the Watch window, then the Validator event
parameters will be assigned the value that the target event parameters have during
the processing.

● Alternatively, event parameters can be assigned a value in the Watch window (see
Watch window, page 157).

Note: In Autostep mode and Run mode, you cannot send events into the target model.

Controlling your application in target
It is possible to break execution of code in target. Breaks are performed on the following
two macros:

● VS_WAIT() macro which you must insert manually in the main loop (see Setting
up RealLink, page 207). When VS_WAIT() is reached, the Validator exchanges
data with the runtime application and updates all logical elements, according to the
options selected.

● A macro in the visualSTATE API which is parallel to VS_WAIT().

Break by the VS_WAIT() macro corresponds to break on a macrostep. Break on the
parallel macro in the visualSTATE API corresponds to break on a microstep.

MICROSTEPS AND MACROSTEPS

The visualSTATE concepts of microsteps and macrosteps are related to event processing
and signal queue handling. A macrostep includes the processing of the event and
furthermore handling of any signals added to the queue as a result of the event
processing. A microstep is the processing of a single event or signal, and thus a
UVS-4

visualSTATE®

User Guide

Testing visualSTATE models using RealLink
macrostep comprises at least one microstep. In visualSTATE, the signal queue is
completely emptied before a macrostep is finished (see Figure 174, page 225).

Figure 174: Microstep and macrostep in visualSTATE

For more information on signal queues and event processing in visualSTATE, see IAR
visualSTATE Reference Guide.

CONTROLLING EXECUTION OF CODE IN TARGET

Immediately after the RealLink connection with the target has been established, the
Validator will try to stop execution of the code when the first instance of the VS_WAIT()
macro is reached. When code execution stops, you can use the RealLink menu
commands to continue execution and thereby debug your application. The RealLink

Macrostep

Microstep

Time
First Signal Next Signal Last Signal

Macrostep Macrostep

Event
occurence

End of event
processing

Time

Event
occurence

Event
occurence

End of event
processing

End of event
processing
UVS-4

225

226

Controlling your application in target
menu commands are shown in Figure 175, page 226 and explained in Commands for
controlling execution of code in target, page 226.

Figure 175: Validator RealLink menu commands

Commands for controlling execution of code in target

For controlling execution of code in target, the following RealLink commands are
available on the Validator menu:

Microstep When you choose this command, a deduction with the next
trigger will be performed. In other words, execution will
continue until either the VS_WAIT() macro, or the parallel
microstep macro in the visualSTATE API is reached.

If the starting point for the Microstep command is that
execution is stopped on a microstep (the microstep macro), it
means that there are signals in the signal queue. Thus a
deduction will be performed using the first signal in the queue.

If the starting point for the Microstep command is that
execution is stopped on a macrostep (the VS_WAIT() macro),
a deduction will be performed using the next event in the event
queue. This results in one of the following cases:

If no events exist in the queue, this corresponds to one loop in
the visualSTATE main loop, without any deduction being
performed.

If an event is processed, and this results in signals being added
to the queue, execution will stop before processing the first
signal (microstep macro). This corresponds to break on a
microstep.

If an event is processed, and no signals are added to the queue,
execution will stop upon the next occurrence of the
VS_WAIT() macro. This corresponds to break on a macrostep.
UVS-4

visualSTATE®

User Guide

Testing visualSTATE models using RealLink
For a description of microsteps and macrosteps, see Microsteps
and macrosteps, page 224.

Macrostep When you choose this command, execution will continue until
the VS_WAIT() macro is reached.

If the starting point for the Macrostep command is that
execution is stopped on a microstep (the microstep macro), it
means that there are signals in the signal queue, and processing
will be performed with the first signal. If the queue still holds
signals, processing with the next signal will be performed. This
continues until the signal queue is empty, and the VS_WAIT()
macro is reached.

If the starting point for the Macrostep command is that
execution is stopped on a macrostep (the VS_WAIT() macro),
processing with the next event in the event queue will be
performed. If processing of this event results in signals being
added to the queue, processing is continued until the entire
queue has been emptied, and the VS_WAIT() macro is reached
again. As with the microstep, if no events exist in the queue, this
corresponds to one loop in the visualSTATE main loop, without
any processing being performed.

For a description of microsteps and macrosteps, see Microsteps
and macrosteps, page 224.

Autostep Choosing this RealLink command allows you to continuously
execute the code in target, while at the same time monitoring the
values of the visualSTATE elements. Each time a microstep or
macrostep is reached, the values of the visualSTATE elements
will be updated. When the values have been updated, execution
in target will continue.

Run Choosing this command lets the target execute code at a speed
as close as possible to that of a non-RealLink application. The
only difference in speed between this mode and a non-RealLink
application is that each time one of the break macros are passed,
for example VS_WAIT(), the target checks whether or not it
should stop execution. Note that if Record is turned on
(Debug>Record), Run mode corresponds to Autostep mode
because the values of all visualSTATE elements are needed for
the test sequence file.

Recording and playing sequences of target tests
The commands for recording and playing test sequences are also available when the
Validator is connected to a target. This means that it is possible both to record a sequence
executed in target, and to play a previously recorded sequence in target by means of a
UVS-4

227

228

Troubleshooting
test sequence file. A sequence recorded in target can also be used as input to a dynamic
analysis in order to see the test coverage.

For a description of how to use test sequence files, see Recording and playing test
sequences, page 187.

Troubleshooting
If RealLink fails to connect to the target microcontroller, a message box like the one
shown in Figure 176, page 228 will appear (message box text depends on the specific
error).

Figure 176: RealLink communication error message

The message box appears when the Validator has transmitted data to the microcontroller
and does not receive any valid response from the target after a number of seconds. If you
receive this error message, check the following:

GENERAL

● Is the cable between the PC and the target microcontroller connected?
● Is the target microcontroller powered on?
● Is the target software loaded and started?
● Is the correct communication plugin selected? See Configuring the Validator for

RealLink, page 215.
● Is the communication plugin correctly configured—does it match the target

settings? See Setting up RealLink, page 207.
● Is the cable between the PC and target microcontroller very long, or is there much

electronic noise in the environment? If so, try lowering the baud rate in both the
Validator and the microcontroller.

● Are the RealLinkTransmit() and RealLinkReceive() functions working?
TIP: Use a terminal program to transmit a known value to the microcontroller and
have it echo it back. For example use HyperTerminal that ships with Microsoft
Windows 9x/NT/2000
UVS-4

visualSTATE®

User Guide

Testing visualSTATE models using RealLink
SETTINGS FOR RS232 COMMUNICATION PLUGIN

● Are the baud rate, data bit, stop bit, parity, and hardware handshaking correct? If
not, change the communication settings in the Validator to match the settings in the
microcontroller, as explained in Configuring the Validator for RealLink, page 215.

● Is another program using the serial port? If so, close the other program using the
serial port. Other programs using a serial port include modem software, PDA
synchronization software, etc.

DIGITAL SIGNATURE

● Is the statechart loaded in the Validator the same as the one running in the target
microcontroller? If not, load the correct statechart into the Validator.

● Has the statechart been changed and the new program not downloaded to the target
microcontroller? If this is the case, code-generate the visualSTATE model, build the
complete application, and download it to the microcontroller.
UVS-4

229

230

Troubleshooting
UVS-4

visualSTATE®

User Guide

Part 7: Code generation
This part of the visualSTATE® User Guide includes the following chapters:

● Introduction

● Generating code

● Basic API code generation

● Expert API code generation

● Size of generated code.
UVS-4

231

232
UVS-4

Introduction
On the basis of designs created with visualSTATE Designer, it is possible to
automatically generate code for visualSTATE Projects (in the following
referred to as VS Projects) by means of visualSTATE Coder.

This chapter gives an introduction to the visualSTATE Coder, and describes
the following:

● Code generation and visualSTATE APIs

● Description of generated code

● Elements supported by the Coder

● Real-time operating system (RTOS).

Code generation and visualSTATE APIs
The Coder can generate code for the visualSTATE Basic APIs and visualSTATE Expert
API (see Basic API code generation, page 239, and Expert API code generation, page
245). A detailed description of the visualSTATE APIs is found in visualSTATE API
Guide.

The Coder will code generate code for one VS Project at a time, including all VS
Systems and VS Statecharts of the VS Project.
UVS-4

233

234

Description of generated code
Description of generated code
The Coder will generate the complete code for the visualSTATE global layer and the
visualSTATE local layer. For the Basic API, it will also generate the API layer. See
Figure 177, page 234.

Figure 177: visualSTATE layers

visualSTATE API layer

The visualSTATE API layer is the functions used to access the state machine engine and
model in runtime. The API files for the Basic API are generated at the same time as the
code is generated for the global and local layer.

Note: The generation of API files for the Basic API is new from visualSTATE version
5.3.

Files for the Expert API are static and are placed in the API subdirectory of the
visualSTATE installation.

visualSTATE global layer

The visualSTATE global layer contains what you could term external logic. It is external
in the sense that the user interfacing to the model can access the data in some way, for
example by calling an API function. The global layer includes events, constants,
external variables, action expressions, and element explanations.

visualSTATE local layer

The visualSTATE local layer contains the logic that is used internally in the model. Thus
it cannot be seen by the user interfacing to the model. The local layer includes
transitions, guard expressions, internal variables, and signals.

visualSTATE API layer

visualSTATE global layer

visualSTATE local layer
UVS-4

visualSTATE®

User Guide

Introduction
CODER REPORT FILE

The Coder can generate a report file during code generation. The report file contains the
following information:

For the VS Project

● Coder options
● Model characteristics
● Generated statistics.

For each VS System

● Coder options
● Model characteristics
● Generated statistics.

Summary information

● Information about the overall content of the generated code.
● Number of errors and warnings detected during code generation.

ELEMENTS SUPPORTED BY THE CODER

All elements of a VS System are supported in the visualSTATE Coder.

Real-time operating system (RTOS)
Runtime applications developed with visualSTATE can be used with or without a
real-time operating system. If you choose to use OSEK as operating system, you can use
the visualSTATE OSEK Kit. See Part 10: Working in an OSEK environment, page 311.
UVS-4

235

236

Real-time operating system (RTOS)
UVS-4

visualSTATE®

User Guide

Generating code
This chapter describes how to start code generation from the Navigator. It
also describes the options you must specify to have C++ code generated.

The code generation process can also be started from the command line, as
described in Coder options, page 375.

For information about code generation for RealLink, see Enabling RealLink
support, page 207.

Starting code generation
To start code generation:

1 Launch the Navigator, and open your workspace file.

2 Check that the correct visualSTATE Project is set as active and set the appropriate
Coder options (see Setting Verificator, Coder and Documenter options, page 29).

3 On the menu, choose Project>Code generate to generate code for the Project.

Code generation will start, and progress will be written to the Navigator output window.

By default, the Coder-generated files are located in the Coder directory of the directory
where your visualSTATE Project file is located. You can also specify a file output
directory under the File Output tab of the Coder Options dialog box (see Figure 21, page
30).

Generating C++ code
To have your visualSTATE Project code generated as C++ code, do the following:

1 Launch the Navigator, and open your workspace file.

2 Check that the correct visualSTATE Project has been set as active.
UVS-4

237

238

Generating C++ code
3 On the menu, choose Project>Options>Code generation. The Coder Options dialog
box is displayed. See Figure 178, page 238.

Figure 178: Navigator, Coder Options dialog box, Configuration tab

4 On the Configuration tab, select C++ code generation.

This will set the following values that are required for C++ code generation:

API type: Basic

API version: Version 4/5

Generate for C-SPYLink: Not selected

RealLink mode: None

Generate for Expert DLL: Not selected

Readable code generation: Not selected

Internal variable initialization: By function

Functional expression handling: Switch-case construct

In addition, options for specifying extended keywords that are used for non-static
members of the generated class are disabled (internal variables, double buffer data, etc.).

5 On the menu, choose Project>Code generate to generate C++ code for the Project.
UVS-4

visualSTATE®

User Guide

Basic API code generation
With the visualSTATE Basic API, code generation will be executed for one VS
Project containing one or more VS Systems. In a project with more than one
system, the code generated for each system is stand-alone and independent of
the other Systems in the project.

Detailed information about the Basic API can be found in visualSTATE API Guide.

Description of generated code
Choose between two fundamentally different types of C/C++ code output:

● Table-based code (C or C++) for maximum compactness (as in previous versions of
visualSTATE)

● Human-readable code (C only), a representation of the state machine logic based on
switch and if statements.

The human-readable code option is useful if, for example, you are required to show
traceability between high-level functional requirements and generated code. Moreover,
if speed is a more critical factor than code size, human-readable code is generally
preferable.

GENERATING TABLE-BASED CODE

During the code generation phase, a set of files is generated by default:

● VS Project-specific files
● VS System-specific files.

If you choose to enable extended configuration, the generated code is the same but it is
partitioned across a set of additional VS System-specific files, for more fine-grained
dependency control in your compiler project.

<SystemName> denotes the optional prefix used by the code generator, to distinguish
files from different systems. The default prefix is the system name, but this can be
changed in the Coder Options dialog box.

A group of files from one System can be compiled to be used by themselves in an
application binary file or together with files from another system.
UVS-4

239

240

Description of generated code
VS Project-specific files

VS System-specific files

VS System-specific files, generated with extended configuration

Note: The Extended configuration is enabled by specifying file names for Action
function header file, External variable header file, External variable source file, and
Constant header file on the File Output page of the Coder Options dialog box.

<Project>PExtVar.h Contains the declarations of all external variables that are
defined at project level and shared for all systems. This file
will only be generated if needed.

<Project>PExtVar.c Contains the definitions of all external variables that are
defined at project level and shared for all systems. This file
will only be generated if needed.

<System>.c Contains the core model logic of the VS System (primarily
transitions). This file is part of the local layer in Figure 177,
page 234.

<System>.h Header file for <System>.c

<System>Data.c Contains additional logic for the VS System (primarily guard
expressions, action expressions, and variables).

<System>Data.h Header file for <System>Data.c

<System>Action.h Contains the external declarations of action functions and
action expressions in the VS Project and VS System.

<System>SEMLibB.h Contains the function definitions for the API functions.

<System>SEMLibB.h Contains the function declarations for the API functions.

<System>SEMTypes.h Contains a set of Coder-generated type definitions named
SEM type definitions.

<System>SEMBDef.h Contains macro definitions and type definitions that configure
the Basic API.

<func>.h Contains external declarations of action functions. By default the
declarations are located in the <System>Action.h file.
UVS-4

visualSTATE®

User Guide

Basic API code generation
GENERATING HUMAN-READABLE CODE

The human-readable code option can only generate C code and the resulting application
cannot be debugged using RealLink. It can, however, be debugged with the C-SPY
Simulator or hardware emulator debugger in IAR Embedded Workbench, using
C-SPYLink. The human-readable code option is set on the project level on the
Configurations page.

Figure 179: Enabling human-readable code generation

<cext>.c Contains the external variables of the VS System (and of the VS
Project). The filename for project-external variables will have a
default value and the file cannot be removed, but it is only generated
if it is needed.

By default the external variables for a System are located in
the<System>Data.c file.

<hext>.h Header file for <cext>.c.

<constant>.h Contains the VS Project and VS System constants. By default the
constants are located in the <System>Data.h file.
UVS-4

241

242

Description of generated code
If you use the human-readable code option, both the API for calling the generated code
and the set of generated files are simplified. These files are generated:

<System>SEMTypes.h

<System>SEMLibB.h

<System>SEMLibB.c

<System>SEMBDef.h

Declarations of action functions as well as declarations and definitions of internal and
external data are included in the <System>SEMLibB.h and <System>SEMLibB.c
files. To access the declarations, include the <System>SEMLibB.h file in your own
files.

Furthermore, the table-based code API functions SEM_Deduct, SEM_GetOutput,
SEM_Action, and SEM_NextState are replaced by a single function call to
<System>VSDeduct that accepts the same parameters as SEM_Deduct.
<System>VSDeduct calls all action functions and action expression, and changes the
state appropriately.
UVS-4

visualSTATE®

User Guide

Basic API code generation
Default table-based code configuration
This figure shows the Coder-generated files and Basic API files that are used in a Basic
API default configuration for table-based code.

Figure 180: Basic API, default configuration

Note to Figure 180: Rectangles with rounded corners represent the source and header
files that are part of the visualSTATE API. The arrows in the figure indicate how the
header files are included in the source files.

<System>SEMLibB.c

<System>SEMLibB.h

<System>SEMBDef.h

<System>SEMTypes.h

<System>Data.c

<System>Data.h <System>Action.h

<System>.c

<System>.h

Basic API/
VS Project/
VS System

user_src.c

User-written
code
UVS-4

243

244

Default table-based code configuration
UVS-4

visualSTATE®

User Guide

Expert API code
generation
This chapter describes code generation with visualSTATE Expert API. With
this API, code generation will be executed for a VS Project containing one or
more VS Systems at a time.

Detailed information about the Expert API can be found in visualSTATE API
Guide.

Description of generated code
During the code generation phase, the following set of files is generated by default:

● VS Project-specific files
● VS System-specific files (for each VS System).

If you choose extended configuration, a set of additional VS System-specific files are
also generated.

VS Project-specific files

SEMTypes.h Contains a set of Coder-generated type definitions named
SEM type definitions.

SEMEDef.h Contains macro definitions and type definitions that configure
the Expert API.

<gcext>.c Contains the external variables of the VS Project.

<ghext>.h Header file for <gcext>.c.

<gconstant>.h Contains the constants of the VS Project.

<gevent>.h Contains the events of the VS Project.

VS System-specific files (for each VS System)

<source>.c Contains the core model logic of the VS System (primarily
transitions). This file is part of the local layer in Figure 177,
page 234.

<header>.h Header file for <source>.c.
UVS-4

245

246

Description of generated code
<sdata>.c Contains additional logic for the VS System (primarily guard
expressions, action expressions, variables).

<hdata>.h Header file for <sdata>.c.

<action>.h Contains the external declarations of action functions and
action expressions in the VS Project and VS System.

VS System-specific files, generated with extended configuration (for
each VS System)

<func>.h Contains external declarations of action functions. By default
the declarations are located in the <action>.h file.

<cext>.c Contains the external variables of the VS System. By default
the external variables are located in the <sdata>.c file.

<hext>.h Header file for <cext>.c.

<constant>.h Contains the VS System constants. By default these are
located in the <sdata>.h file.
UVS-4

visualSTATE®

User Guide

Expert API code generation
Default configuration
Figure 181, page 247 shows the Coder-generated files and Expert API files that are used
in an Expert API default configuration.

Figure 181: Expert API, default configuration

SEM<Xxx>.c/
SMP<Xxx>.c

SEMLibE.h

SEMEDef.h

SEMTypes.h

<sdata>.c

<hdata>.h <action>.h

<source>.c

<header>.h

Expert API/
VS Project

VS System

<ghext>.h

<gcext>.c

<gconstant>.h

User-written
code

<gevent>.h

user_src.c
UVS-4

247

248

Default configuration
Note to Figure 181, page 247: Rectangles with rounded corners represent the source and
header files that are part of the visualSTATE API. The arrows in the figure indicate how
the header files are included in the source files.
UVS-4

visualSTATE®

User Guide

Size of generated code
The size of the generated code depends on the data width and rule data
format applied by the Coder. By default, the Coder will optimize for size.

This chapter describes how data width and rule data formats influence the size
of generated table-based code. At the end, the size of human-readable code is
discussed.

Data width
The data width determines the size of SEM type definitions (see Table 6, page 249). The
size of the individual SEM type definitions can be 8 bit, 16 bit or 32 bit.

During the generation of table-based code, the Coder will by default optimize the size
of each SEM type definition. However, it is possible to force all SEM type definitions
to be of the same width by setting the data width to either 8, 16 or 32 bit. In this case all
SEM type definitions will have the same width.

The Coder option -D determines the VS System data width for all SEM type definitions.

Type identifier Explanation

SEM_EVENT_TYPE Event variable type.

SEM_EVENT_GROUP_TYPE Event group variable type.

SEM_GUARD_EXPRESION_TYPE Used internally in visualSTATE APIs.

SEM_STATE_TYPE State variable type.

SEM_ACTION_FUNCTION_TYPE Action function variable type. Used only for action
functions without parameters and which have the
return type VS_VOID.

SEM_ACTION_EXPRESSION_TYPE Action expression variable type.

SEM_SIGNAL_QUEUE_TYPE Signal queue variable type

SEM_INSTANCE_TYPE Instance variable type.

SEM_STATE_MACHINE_TYPE State machine variable type.

SEM_EXPLANATION_TYPE Explanation variable type.

SEM_INTERNAL_TYPE Used internally in visualSTATE APIs.

SEM_RULE_INDEX_TYPE Used internally in visualSTATE APIs.

SEM_RULE_TABLE_INDEX_TYPE Used internally in visualSTATE APIs.

Table 6: Coder-generated SEM type definitions
UVS-4

249

250

Rule data formats
TIP: The SEM type definitions will be defined in the Coder-generated file
SEMTypes.h. SEM type definitions are defined by using either the typedef keyword or
the #define keyword. Use the Coder option -tsemt to specify the keyword to use.

Rule data formats
Table 7, page 250 shows the rule data header word type, rule data header word width,
and rule data width of the different rule data formats. By default, the Coder will optimize
the size of the rule data format number.

The rule data format is used for storing transitions in the visualSTATE local layer. Each
transition consists of one rule data header word and one rule data element (see Table 7,
page 250) for each element of the transition (guard expression, state condition, signal,
etc.).

For VS Projects that do not use guard expressions and/or signals, you can apply rule data
formats with all data header types (type 1, 2, or 3). For VS Projects that contain guard
expressions and/or signals, you must apply a rule data format with rule data header word
type 2 or 3.

It is always possible to force the Coder to use a larger rule data format than the rule data
format determined by the Coder as the optimum one.

The Coder option -rdfm determines the rule data format to be used.

SEM_EGTI _TYPE Used internally in visualSTATE APIs.

Type identifier (Continued) Explanation

Table 6: Coder-generated SEM type definitions

Rule data

format number

Rule data header

word type

Rule data header

word width
Rule data width

0 Type 1 16 bit 8 bit

1 Type 2 24 bit 8 bit

2 Type 1 32 bit 8 bit

3 Type 2 48 bit 8 bit

4 Type 1 16 bit 16 bit

5 Type 3 32 bit 16 bit

6 Type 1 32 bit 16 bit

7 Type 2 48 bit 16 bit

8 Type 1 32 bit 32 bit

9 Type 3 64 bit 32 bit

Table 7: Rule data formats
UVS-4

visualSTATE®

User Guide

Size of generated code
TIP: The rule data format number 4 is compatible with visualSTATE Classic version 3,
provided the VS System data width has been set to 16 bit. The rule data format number
8 is compatible with visualSTATE Pro version 3, provided the VS System data width has
been set to 32 bit.

Coder options
See Table 36, page 379, for reference information about the functional expression
handling coder option (-funcexph) and other code project options.

Code size using visualSTATE
Contrary to popular belief, automatic code generation from design models does not
automatically lead to a huge code size overhead.

EXECUTION ENGINE OVERHEAD

visualSTATE® can generate code from UML state machine diagrams, using a
table-driven approach. The tables are generated in a way that is extremely compact, but
requires a runtime execution engine. This is common to all table-driven solutions and is
not limited to state machines.

The execution engine represents a fixed overhead in terms of code size. However, this
overhead is extremely small when used with a modern compiler. Since the code
generated from the model is so tight, the advantage over hand-coding the model is
apparent even for small state machines.

visualSTATE can also be configured to generate human-readable C code, see
Generating human-readable code, page 241.

THE CODE

A fully implemented visualSTATE® application consists of the following parts:

● The actual application using the state machine(s)

This includes all startup code and generic runtime library code as used by the
particular target hardware and compiler.

● The API file for the execution engine. (SEMLibB.c)
● The generated code – typically split in a number of files. The code consists of:

● The state machine tables
● Variables and expressions defined in the model
● Declarations of action functions
● Definitions of action expression functions.
UVS-4

251

252

Code size using visualSTATE
● Action functions implemented by you and called by the state machine.

All these parts are combined to give the footprint of the complete application.
visualSTATE only determines the size of the API and the generated code; the other parts
are fully controlled by you and are more or less independent of the implementation
model for the state machine.

A typical visualSTATE application uses a limited set of the functions present in the API
to insert stimuli into the state machine and process input.

THE SIZE

To measure the minimum size of the API code, a minimal state machine can be created
and compiled. The model consists of an initial state, a simple state and a default
transition that also assigns to an externally defined variable. The API functions used are
the ones typically used by a visualSTATE application. (Most other functions available
in the API are for advanced use to enable very fine-grained control of the state machine
or for debugging purposes.)

This type of minimal application was compiled with five different IAR Systems
compilers, two 8-bit products, two 16-bit products, and one 32-bit product. All of them
are built on the latest technology platform. The compilations were performed at
optimization level -z9, the highest level of size optimization. No target-specific tuning
was applied.

To find the maximum size of the API, a different method was used. The visualSTATE
code generator configures the API to exclude internal functionality that is not needed for
a particular model. This is dependent on the usage of specific model constructs, like
guard expressions, state conditions, action functions, action expressions, signals, etc. To
measure the API for a realistic application, a model was created that utilizes all of these
model constructs. It is sufficient to use the construct once in the model, to activate the
associated runtime code.

Results

For a modern compiler and a modern code generator, the overhead associated with
automatic code generation is small. Of the 5 compilers that were tried, 4 had API sizes
between 256 and 748 bytes, depending on the set of modeling constructs that was used.
This is a small price to pay for the benefits of high level design, verification, and test.
UVS-4

visualSTATE®

User Guide

Size of generated code
The size of human-readable code
The size of human-readable code is harder to calculate in advance than the size of
table-based code.

The number of transitions affects the code size, because each guard expression,
assignment, and action function call on a transition is generated "inline" in the generated
state machine logic. (In table-based code generation, calls of actions and guards are
handled by fixed API code.)

The code size is also affected by the contradiction test (or ambiguity conflict test) that
is generated for each transition. However, for human-readable code, this test code is not
generated for transitions where it is trivial for the code generator to detect that there can
be no transition contradictions. To turn off the generation of contradiction test code, see
Table 44, Code system options, page 387.

Moreover, human-readable code is much more dependent on the target compiler
behavior than table-based code. In table-based code generation, the data needed to
represent the model is fixed and cannot be influenced by the compiler, except for minor
alignment issues and similar things.

Note: If you generate human-readable code and use the Split readable code option, the
code size increases slightly. See Table 45, page 389.
UVS-4

253

254

The size of human-readable code
UVS-4

visualSTATE®

User Guide

Part 8: Documenting
visualSTATE Projects
This part of the visualSTATE® User Guide includes the following chapter:

● Introduction

● Setting up a visualSTATE Project report.
UVS-4

255

256
UVS-4

Introduction
For documentation of your visualSTATE Projects, you can create customized
reports by means of the visualSTATE Documenter. The Documenter can be
activated via the Navigator or the command line.

This chapter describes

● The generated Project report.

● How to create a Project report by means of the visualSTATE Navigator.

● How to view the generated Project report.

For information on using the command line for creation of Project reports, see
Documenter options, page 393.

Project report
A visualSTATE Project report generated by the Documenter includes information on
design, functional and formal testing, generated code and implementation of your
visualSTATE Project. All relevant Project information is collected from the other
visualSTATE modules and organized into a structured document. The document can be
in HTML format, or RTF (rich text format), according to your selection.
UVS-4

257

258

Creating a Project report
The information in the Project report is based on a number of visualSTATE files, as
shown in Figure 182, page 258.

Figure 182: Files that can be included in a visualSTATE Project report

INFORMATION IN GENERATED REPORT

It is possible to specify which information should be included in the report, for example
design and test, just as you can also choose between various levels of detail for the
report. See Setting up a visualSTATE Project report, page 261.

Creating a Project report
To create a visualSTATE Project report:

1 Launch the Navigator and open your workspace file.

2 In the workspace view of the browser, select the visualSTATE Project for which to
create a report.

3 On the menu, choose Project>Document. Report generation will start, and progress
information will be written to the Navigator output window (Document tab).

The generated report is displayed in the HTML viewer of the Navigator, and a reports
folder containing the report is created in the browser.

Note: If you have opened a generated Project report (file name extension rtf) in
Microsoft Word, close the RTF file before you start creating a new Project report in
RTF. For some systems it may also be necessary to close the Word application.

visualSTATE
Validator

Static analysis files
Dynamic analysis files

Test sequence files

visualSTATE
Verificator Report files

visualSTATE
Coder Report files

Text filesOther
applications

visualSTATE
Documenter

Project report:
RTF file(s)

Project report:
HTML file(s)

visualSTATE
Project
UVS-4

visualSTATE®

User Guide

Introduction
To change settings for report generation, see Setting up a visualSTATE Project report,
page 261.

Viewing the Project report
By default, reports generated by the Documenter are located in a subdirectory named
Doc in the directory containing your visualSTATE Project file.

Project reports in RTF format can be opened with for example Microsoft Word.

Note: If you open the RTF file in Microsoft Word, you will probably find that the table
of contents is not updated. Update the table of contents by right-clicking on it and
choose Update Field from the pop-up menu.

To update the page references in the entire RTF document, press CTRL+A to select all,
and press F9 to update all fields.
UVS-4

259

260

Viewing the Project report
UVS-4

visualSTATE®

User Guide

Setting up a visualSTATE
Project report
When creating a Project report, you can choose the default settings, or you
can customize it in various ways. To customize the Project report, you set a
number of Documenter options. Documenter options can be set in the
Navigator, as described here, or using the command line (see Documenter
options, page 393).

This chapter addresses the following issues related to setting up a Project
report:

● Specifying report contents

● Specifying report output format

● Setting up standard report layout

● Customizing report layout

General
You set options for your report in the Documenter Options dialog box of the Navigator
as follows:

1 Launch the Navigator, and open your workspace file.

2 In the workspace view of the Navigator browser, click the Project for which to specify
Documenter options.

3 Open the pop-up menu, and choose Options>Documentation. The Documenter
Options dialog box is displayed. Selected values are shown as command line options in
the pane below the option list. See Figure 183, page 262.

ONLINE HELP

To view the online help for an option, right-click the option in the options dialog box, or
press SHIFT+F1.
UVS-4

261

262

Specifying report contents
Specifying report contents
To specify the contents of the report, you select sections to include, detail level and files
to use as input.

SPECIFYING SECTIONS AND DETAIL LEVEL OF REPORT

1 Open the Documenter Options dialog box (as described in General, page 261), and
click the Configuration tab. See Figure 183, page 262.

Figure 183: Documenter Options dialog box, Configuration tab

2 To include a section in the report, select the appropriate Include... option. The contents
of the individual sections are listed in Table 8, page 262.

The last section in the report is an index which cannot be excluded from the report.

Project report section

(Include option)
Description

Introduction This section includes user-written text files. See Specifying
visualSTATE files to be used as input for Project report, page 263.

Model design This is the main section of the document. It contains a complete
description of the design, including statecharts, transitions,
elements, etc.

Table 8: Project report sections
UVS-4

visualSTATE®

User Guide

Setting up a visualSTATE Project report
SPECIFYING VISUALSTATE FILES TO BE USED AS INPUT FOR
PROJECT REPORT

For specifying the visualSTATE files to use as input for the report, you use the File Input
tab of the Documenter Options dialog box (see General, page 261).

Figure 184: Documenter Options dialog box, File Input tab

Model test This section contains test files, such as Validator static analysis
files, Validator dynamic analysis files, Validator test sequence files
and Verificator report files.

Model interface This section contains a table for each element type that is part of
the external interface, that is, events, action functions, external
variables and constants.

Implementation This section contains Coder report files.

Pseudo code This section contains pseudo code for the Project.

Element lists This section contains a table for each element type, that is, events,
event groups, action functions, external variables, internal
variables, signals, constants, and external statesa.

a. External states are declarations of states defined in another vsr file. The declarations are cre-
ated automatically by the visualSTATE Designer when states in another vsr file are referenced,
for example when using state conditions for a state in another vsr file.

Project report section

(Include option)
Description

Table 8: Project report sections (Continued)
UVS-4

263

264

Specifying report contents
The primary input files for the Documenter are the vsp and vsr files that make up the
visualSTATE Project. In addition, you can choose to have the following files included
as input for the Project report:

● User text files: Any unformatted text files that you have written. The files are
included in the introduction section of the report (see Table 8, page 262).

● visualSTATE generated files: Validator static analysis files, Validator dynamic
analysis files, Validator test sequence files, Verificator report files and Coder report
files.

To ensure consistency between the visualSTATE generated files to be used as input for
the report and the visualSTATE Project, the files are checked. By default, visualSTATE
generated input files are only included in the report if their digital signatures correspond
to the digital signature of the loaded Project.

You can change the level of file check by clicking the File inclusion criteria option. See
Figure 185, page 264.

Figure 185: Documenter Options dialog box, file inclusion criteria

To specify type of message to receive on inconsistencies between files selected as input
for report, click File inclusion message level.

You can add all visualSTATE generated files by selecting Automatically include
generated files. At the time of report generation, the Documenter will search the
directory where the vsp file is located. To have all subdirectories searched, select Auto
inclusion searches in subdirectories.
UVS-4

visualSTATE®

User Guide

Setting up a visualSTATE Project report
You can add visualSTATE generated files of a specific type by selecting the file type to
add, for example Coder report files, and click the browse button displayed.

Figure 186: Selecting visualSTATE generated files

In the Select Files dialog box displayed, click the AutoAdd button to automatically add
all files. See Figure 187, page 265.

Figure 187: Select Files dialog box

Click the Add button to open a dialog box where you can select the file to include. The
file is added to the list in the Select Files dialog box. Click OK.
UVS-4

265

266

Specifying report output format
Specifying report output format
The output format of the report can be RTF or HTML format. For both output formats,
page layouts and fonts can be specified (see Setting up standard report layout, page
268).

RTF OUTPUT

The RTF output generated by the Documenter generally conforms to the Rich Text
Format (RTF) Specification, version 1.6 (http://msdn.microsoft.com), except for the
following Documenter-specific RTF fields:

REF: Used to insert links to bookmarks.

PAGEREF: Used to insert links to pages.

INCLUDEPICTURE: Used to insert links to image files (icons and statecharts).

TOC: Used to insert a table of contents.

Note: The RTF fields may only be understood by MS Word.

Fields of type PAGEREF and TOC are not updated when the RTF output is generated. The
easiest way to update the fields is to mark the entire document (press CTRL+A) and then
update all fields (press F9).

SPECIFYING RTF OUTPUT FORMAT

1 Open the Documenter Options dialog box (as described in General, page 261), and
click the File Output tab. See Figure 188, page 266.

Figure 188: Documenter Options dialog box, File Output tab

2 Select Output format: RTF.

3 To have each report section generated into a separate RTF file, select Output to
multiple files.
UVS-4

visualSTATE®

User Guide

Setting up a visualSTATE Project report
4 To embed icons within the generated RTF output, select Embed icons in documents.

Note: The generated RTF output may become quite large when embedding icons
because the same icon often appears several times in the same document. If this is a
problem, deselect Embed icons in documents. The icons will be generated into separate
files and linked into the generated RTF output.

Note: The option to link icons into the RTF output is non-standard RTF and may only
be understood by Microsoft Word.

5 To embed statecharts within the generated RTF output, select Embed statecharts in
documents.

If you deselect Embed statecharts in documents, the statecharts will be generated into
separate files and linked into the generated RTF output.

Note: The option to link statecharts into the RTF output is non-standard RTF and may
only be understood by Microsoft Word.

When you have specified output format, you can set up report layout. See Setting up
standard report layout, page 268, and Customizing report layout, page 271.

HTML OUTPUT

The HTML output generated by the Documenter generally conforms to the HTML 4.01
Specification and the Cascading Style Sheets level 2, CSS2 Specification by W3C
(http://www.w3.org).

In addition to the HTML report output, a single CSS2 file is generated. The styles of the
CSS2 file are based on the options specified on the Page Layout tab, Fonts tab, and
HTML Styles tab of the Documenter Options dialog box.

See Specifying HTML output format, page 267.

Graphics for reports in HTML format

When you choose to generate a report in HTML format, all images such as icons and
statecharts will be generated into separate files that are linked into the HTML output.

Note: Statecharts are generated in EMF format, which is non-standard HTML Thus
statecharts in HTML output may not be visible in all browsers. Microsoft Internet
Explorer version 4 or higher can be used to view outputs that include statecharts.

SPECIFYING HTML OUTPUT FORMAT

1 Open the Documenter Options dialog box (as described in General, page 261), and
click the File Output tab. See Figure 188, page 266.

2 Select Output format: HTML.
UVS-4

267

268

Setting up standard report layout
3 To have each report section generated into a separate HTML file, select Output to
multiple files.

When you have specified output format, you can set up report layout. See Setting up
standard report layout, page 268, and Customizing report layout, page 271.

Setting up standard report layout
This section gives a general description of how to set up page and text layout of the
generated report. Advanced layout options are described in Customizing report layout,
page 271.

The report layout can be customized with regard to

● Page layout. See Setting up front page layout (RTF output only), page 268, and
Setting up page layout, page 269.

● Text fonts. See Specifying fonts, page 270.

SETTING UP FRONT PAGE LAYOUT (RTF OUTPUT ONLY)

1 Open the Documenter Options dialog box (as described in General, page 261), and
click the Front Page tab. See Figure 189, page 268.

Figure 189: Documenter Options dialog box, Front Page tab

2 Here you can specify top text, middle text and bottom text for the front page, along
with justification of the texts.
UVS-4

visualSTATE®

User Guide

Setting up a visualSTATE Project report
SETTING UP PAGE LAYOUT

1 Open the Documenter Options dialog box (as described in General, page 261), and
click the Page Layout tab. See Figure 190, page 269.

Figure 190: Documenter Options dialog box, Page Layout tab

2 Here you can specify margins, paper type and paper orientation.

Length values, such as margins, paper width, paper height, etc., can be entered in
different units of measurement (see the online help for available units).

The default values for the page layout options depend on the measurement system
specified for your system under Regional Options in the Control Panel.

If the US system is used, all lengths use inches as units and the default paper type is US
Letter. If the metric system is used, all lengths use centimeters as units, and the default
paper type is A4 Letter.
UVS-4

269

270

Setting up standard report layout
3 To specify headers and footers for the pages after the front page, click the
Header/Footer tab, and select the appropriate options. See Figure 191, page 270.

Figure 191: Documenter Options dialog box, Header/Footer tab

Note: The options on the Header/Footer tab can only be set for RTF output.

SPECIFYING FONTS

1 Open the Documenter Options dialog box (as described in General, page 261), and
click the Fonts tab. See Figure 192, page 270.

Figure 192: Documenter Options dialog box, Fonts tab

Heading font Used for headings, and text on front page.

Code font Used for code (for example pseudo code and inserted files).

Text font Used for all remaining text.
UVS-4

visualSTATE®

User Guide

Setting up a visualSTATE Project report
Customizing report layout
You can customize the layout for reports in both RTF and HTML format.

CUSTOMIZING LAYOUT FOR REPORTS IN RTF FORMAT

It is possible to use your own styles and templates for a generated report in RTF.

Note: The use of the Documenter RTF style and template options assumes that you are
familiar with styles and templates in Microsoft Word.

1 Open the Documenter Options dialog box (as described in General, page 261), and
click the RTF Styles tab. See Figure 193, page 271.

Figure 193: Documenter Options dialog box, RTF Styles tab

2 To specify an external template, click Style template, and type the path and file name of
the template in the field
UVS-4

271

272

Customizing report layout
If Microsoft Word is used for viewing the RTF output generated with an external
template, and the style to be applied to the Documenter RTF output is identical to the
default style in the default Microsoft Word template normal.dot, do the following to
have the correct style applied to the generated RTF output:
Modify the RTF style temporarily. For example change the font size for the style, save
the template, and change the font size back to its original value.

3 To rename a style, click the appropriate style name option, and type the new name in
the field.

CUSTOMIZING LAYOUT FOR REPORTS IN HTML FORMAT

You can also use your own styles and style sheets for a generated report in HTML
format.

Note: The use of the Documenter HTML style and style sheet options assumes that you
are familiar with styles and style sheets in HTML and CSS2.

1 Open the Documenter Options dialog box (as described in General, page 261), and
click the HTML Styles tab. See Figure 194, page 272.

Figure 194: Documenter Options dialog box, HTML Styles tab

2 To specify style sheet to link to from the HTML output, select Style sheet and type the
path and file name of the style sheet in the field.
UVS-4

visualSTATE®

User Guide

Setting up a visualSTATE Project report
3 If you have chosen to use an existing style sheet, and the sheet contains class names
that cannot be changed, you should specify class names for the various HTML
elements.

Example

Your existing style sheet file named company.css could look as follows:

body.company {font-family: "Verdana" serif; font-size: 10pt;
font-style: normal; font-weight: normal;}

To apply this style sheet to the generated HTML output, do the following:

1 Click Heading 1 style class name and type company in the field.

2 Click Style sheet and type company.css in the field.
UVS-4

273

274

Customizing report layout
UVS-4

visualSTATE®

User Guide

Part 9: Prototyping
This part of the visualSTATE® User Guide includes the following chapters:

● Introduction

● Prototyping with Altia

● Prototype based on visualSTATE generated code

● Prototyping with the visualSTATE Expert DLL.
UVS-4

275

276
UVS-4

Introduction
Often you will use visualSTATE to design and generate code for the dynamic behavior
or control logic part of an application that has a human/machine interface (HMI).

If you integrate the visualSTATE model with a prototype of your user interface you can
combine the test of the human/machine interface with the test of the behavior of the final
application at an early stage in your development process. This allows you to continue
developing, and refining each part separately.

When designing the control logic part with visualSTATE, you have several options for
creating a prototype by means of a graphical model of the user interface and integrate
this prototype with your designed visualSTATE model:

● Integration to the visualSTATE model by means of the Altia integration feature of
the Validator. This method does not require any programming. See Prototyping with
Altia, page 279.

● The prototype is created by integrating visualSTATE Coder-generated C code with
code developed in a third-party development tool. This approach allows you to use
the prototype code directly in the final application. See Prototype based on
visualSTATE generated code, page 291.

● Prototyping with the visualSTATE Expert DLL. See Prototyping with the
visualSTATE Expert DLL, page 299.
UVS-4

277

278
UVS-4

visualSTATE®

User Guide

Prototyping with Altia
When developing your visualSTATE model, you may want to simulate and test
a graphical prototype of it. This can be accomplished by using the Altia
integration feature of the Validator.

This chapter explains the basic concepts of the Altia integration feature, and
how to interface to an Altia design from the Validator. The chapter also
describes how to use parameter values when interfacing a visualSTATE model
to an Altia design.

For information on how to use the Altia application, refer to the online Altia
user documentation.

Note: In this chapter the term model will be used to refer to a visualSTATE
System. The term design will be used to refer to a graphical design created with
Altia FacePlate. Altia will be used to refer to Altia FacePlate.

Basic concepts
By means of the Altia FacePlate application, you can create a graphical prototype of
your visualSTATE model. Via the Validator you can connect the visualSTATE model to
the Altia design and simulate it.

ALTIA CONNECTION

An Altia connection is a communication link between the Validator and an Altia design.
Altia designs are created with the Altia application.

When the Validator Altia Connect command is activated, the Validator establishes an
Altia connection to an Altia design that is automatically loaded into a new instance of
the Altia application.

VISUALSTATE ELEMENTS AND ALTIA EXTERNAL SIGNALS

To be able to use the design as a graphical user interface for the model loaded in the
Validator, visualSTATE events and action functions must be connected to Altia objects.

If you want a push button in the Altia design to generate a visualSTATE event in the
Validator (the same effect as double-clicking an event in the Validator Event window),
UVS-4

279

280

Basic concepts
you must connect the event to the push button. Likewise you can make a visualSTATE
action function turn on an LED object in the design if you connect the action function
and the LED object.

Such connections are set up by connecting (or binding) "external signals" defined in the
Altia application to graphical objects in the design (see Connecting visualSTATE
elements to Altia objects, page 283). External signals are either inputs or outputs:

● The external input signals are sent from the design to the Validator, that is, they act
as events and are often bound to button objects.

● The external output signals are sent into the design as actions, for example TURN
ON LED2.

The configuration of the external signals is saved along with the graphical layout in the
design file (a file with name extension dsn).

Figure 195, page 280 shows the Altia main window and the dialog boxes listing external
signals and all graphical objects in the loaded AVSystem design.

Figure 195: Altia application loaded with the AVSystem design

The upper right dialog box named Connections (External) shows the list of external
signals. For example, the external signal E_POWER_ON is connected to the Toggle
Up Event connector of the Altia object called "Toggle", which is the power button in
the design. For more information on external signals, objects and connectors, refer to the
Altia user documentation.

The lower right dialog box named Connections (All Objects) lists all graphical objects
in the design.

Toggle button
UVS-4

visualSTATE®

User Guide

Prototyping with Altia
When the Validator opens an Altia design, it automatically adds the event names and
action function names from the visualSTATE model to the Connections (External)
dialog box, unless they are already listed in the dialog box. For example, the dialog box
shown in Figure 195, page 280 contains the names of the elements in the AVSystem
model example. The AVSystem example has been slightly modified in this chapter, as
described in Using parameters, page 286.

Existing external signals that already have an event name or action function name are
left unchanged by the Validator.

Note that the Validator merely adds external signals to the list, it does not connect them
to Altia objects. The external signals and Altia objects must be connected manually as
described in Interfacing a visualSTATE model to an Altia design, page 281.

Interfacing a visualSTATE model to an Altia design
In order to simulate your visualSTATE model using an Altia design, you must first
establish a connection between the two via the Validator.

To interface your visualSTATE model to an existing or new Altia design:

1 Start the Validator and load the visualSTATE model to simulate.

2 Choose Altia>Connect on the menu, or click the Altia Connect button (see Figure
196, page 282).
UVS-4

281

282

Interfacing a visualSTATE model to an Altia design
An Open Altia Design dialog box will be displayed where you can launch an existing
Altia design, or create a new one (see Figure 197, page 282).

Figure 196: Validator Altia Connect commands

Figure 197: Open Altia Design dialog box (Validator)

3 In the Open Altia Design dialog box, select the Altia design to connect to:

● If the desired design is listed in Open Most Recently Used Altia Design, select it
from the list. Or

Altia menu Altia Connect button
UVS-4

visualSTATE®

User Guide

Prototyping with Altia
● Click Open an Existing Altia Design… button to open a dialog box where you can
browse for the desired design file. Click OK to load the Altia design into a new
instance of the Altia application.

Or create a new design:

● Click Create a New Altia Design… , and subsequently click OK to open an empty
Altia editor. Here you can create the new design right away while the Altia
connection is active. For information on how to use the Altia editor, refer to the
Altia user documentation.

Whether you connect to an existing Altia design, or create a new one, it is possible to
edit it while the Altia connection is active. Any design changes will have immediate
effect in the Validator, for example adding new objects and connecting them to the
visualSTATE model through new or existing external signal connections (see
Connecting visualSTATE elements to Altia objects, page 283).

You may even choose to create only the parts of the Altia design that you want to
simulate at the moment, and maybe add more objects later.

CONNECTING VISUALSTATE ELEMENTS TO ALTIA OBJECTS

When you have connected your visualSTATE model to an Altia design, the names of the
visualSTATE events and action functions will be added to it as new external signals if
they are not already contained in it.

The events and action functions that are not connected as external signals to any object
in the Altia design are listed in the Validator output window as unbound visualSTATE
events and unbound visualSTATE action functions (see Figure 198, page 283).

Figure 198: Validator output window, Altia tab

Likewise, all bound external signals in the original Altia design that do not have a
visualSTATE event or visualSTATE action function counterpart are listed in the
UVS-4

283

284

Interfacing a visualSTATE model to an Altia design
Validator output window as unused Altia inputs and unused Altia outputs (see Figure
198, page 283).

Note: The lists of unbound visualSTATE events and action functions, and unused Altia
inputs and outputs are only written to the Validator output window when Altia
connection is established.

1 In Altia, bind the visualSTATE events and action functions you want to use in the Altia
design to objects. This binding is done via the Altia Connections (All Objects) and
Altia Connections (External) dialog boxes (see Figure 199, page 284). You open the
dialog boxes by choosing Connections>All Objects and Connections>External Signals
on the Altia menu.

Figure 199: Binding Altia objects to visualSTATE elements

visualSTATE input signals (events) must be bound to Altia output objects (marked with
OUTPUT in the Connections (All Objects) dialog box) and vice versa.

Example of binding a visualSTATE input signal to an Altia output object

1 In the Connections (All Objects) dialog box, select the Altia output connector you
want to use (marked OUTPUT).

2 In the Connections (External) dialog box, select the visualSTATE element which
you want to bind to the Altia object (marked INPUT).

3 Click the Connect button in one of the dialog boxes. If connection is successful, the
status line will read "Connection established", and the Altia object will be bound to
the visualSTATE element.

Note that you can bind an external signal to more than one design object, just as you can
bind several external signals to the same connector on an object.
UVS-4

visualSTATE®

User Guide

Prototyping with Altia
To unbind objects and elements connected:

● Select the object/element pair in question, and click the Disconnect button in one of
the dialog boxes.

2 When you have set up the external signal connections you want to, save the Altia
design to save the bindings.

Now your visualSTATE model is interfaced with the Altia design, and you can start
simulating, as described in Simulation with Altia, page 285.

Simulation with Altia
When you have interfaced your visualSTATE model to an Altia design, you can start
simulation. You may start simulation even if you have not created a complete Altia
design.

1 Put the Altia application in Run mode by selecting the Set Run Mode menu command,
or pressing CTRL+D in the Altia application.

2 Simulate by sending events and actions between the visualSTATE model and the Altia
design.

Events

You can simulate events in two ways: Either by double-clicking the event name in the
Event window of the Validator, or by manipulating the corresponding object in the
design, provided it is connected to an external input signal

When you send an event into the System using the Validator, the event is also sent to the
Altia design where the connected output object is "animated" accordingly, provided the
object type supports animation. For example toggle buttons will change from OFF
position to ON position.

Action functions

Action functions that are executed in the Validator and connected through an external
output signal to an Altia object will have a visible effect in the design, for example the
turning on an LED. Note that connected input objects work even if Altia is in Edit mode.

Note: Action functions executed in guard expressions and assignments will have no
visible effect in the Altia design.

Note: When Altia is in Edit mode, it is not possible to manipulate event generators such
as buttons in the Altia design, and thus no events will be sent from Altia to the model in
the Validator.
UVS-4

285

286

Closing the Altia connection
Closing the Altia connection
When you are finished using the Altia design, or you want to connect to another design,
you close the Altia connection by clicking the Altia toolbar button, or choosing
Altia>Disconnect on the Validator menu.

The Altia connection will also be closed automatically when the Validator is closed.
Closing the Altia connection does not close the Altia application. When you open an
Altia connection again, a new Altia instance will be launched.

Using parameters
This section describes why you may need to apply parameters to external Altia
connections. The AVSystem design included with the visualSTATE software will be
used as an example (referred to by the original AVSystem design), and it will be
explained why it is necessary to modify the original AVSystem design when you use
parameters for external Altia connections.

In visualSTATE models, events and action functions defined are declared to carry zero
or more parameters. For example, in the original AVSystem design the
E_POWER_KEY event has no parameters, while E_DETECT is declared with one
parameter.

External Altia signals on the other hand always carry one parameter, and many Altia
objects accept or emit one parameter. LED objects are input objects that require one
parameter for which the values zero and one typically means turn off and turn on (all
parameter values for Altia design objects can be configured). Hence to turn on an LED
object, you would typically send an external output signal with the parameter value one.

Toggle buttons are output objects with three connectors (refer to the Altia user
documentation). In Figure 195, page 280, the Toggle Value connector emits a signal
with one parameter value for OFF and one for ON. The output object parameters are also
used for animation of the objects.

The E_POWER_KEY event in the AVSystem example is typically connected to a button
like the power button in Figure 195, page 280. This is a toggle button, which by default
uses one as ON value, and zero as OFF value. When you click the power button in the
design, an external input signal with the parameter zero or one is sent to the System in
the Validator. Because the E_POWER_KEY is an event declared without parameters, the
parameter from Altia is ignored. Hence clicking the button has the same effect as
double-clicking E_POWER_KEY in the Validator Event window.
UVS-4

visualSTATE®

User Guide

Prototyping with Altia
ALTIA PARAMETER VALUES FOR VISUALSTATE EVENTS

So far, it has been quite straightforward to use parameters, but what parameter value
should be used for button animation when you click the event in the Validator?

If the button should change from OFF state to ON, the parameter one should be used,
and zero should be used in all other cases, provided the default configuration of the
button is used. However, it is not possible to express such a relationship in the original
AVSystem model.

To achieve correct animation, the E_POWER_KEY event in the original AVSystem
design should be replaced by two events: E_POWER_OFF_KEY and
E_POWER_ON_KEY. Both events should be connected to the power button shown in
Figure 195, page 280 through their external input signal connections. The power button
is called Toggle in the Connections (All Objects) dialog box (see Figure 195, page
280).

The two new events E_POWER_OFF_KEY and E_POWER_ON_KEY must be connected
to the Toggle Down Event and Toggle Up Event connectors respectively.
These two connectors require different parameter values:

● The Toggle Down Event connector requires the OFF value configured for the
toggle button object which by default is zero.

● The Toggle Up Event connector will of course require the ON value.

Consequently the E_POWER_OFF and E_POWER_ON events must be configured to
sending the values zero and one respectively as parameters for the external signals.
Configuration of events is described in Assigning Altia parameter values to
visualSTATE elements, page 288.

ALTIA PARAMETER VALUES FOR VISUALSTATE ACTION
FUNCTIONS

Like visualSTATE events, visualSTATE action functions must have fixed Altia
parameter values assigned to them (this is described in Assigning Altia parameter values
to visualSTATE elements, page 288).

For example, you could imagine a traffic light system that defines two action functions
for each light bulb: GreenOff and GreenOn, etc. These action functions are typically
connected through two external output signals to one Altia object for each color.
However, this LED object turns on by default when signaled with parameter value one,
etc., while the action functions are defined to be parameterless. Thus the action
functions must be configured as follows:

● The GreenOff action function should use the parameter value zero for the
external connection.

● The GreenOn action function should use parameter value one.
UVS-4

287

288

Configuring the Altia connection
ASSIGNING ALTIA PARAMETER VALUES TO VISUALSTATE
ELEMENTS

To assign fixed Altia parameter values to visualSTATE events and action functions,
choose Altia>Define Parameters on the Validator menu (see Figure 196, page 282). This
will open the Define Altia Parameters dialog box shown in Figure 200, page 288.

Figure 200: Define Altia Parameters dialog box, Event tab (Validator)

All events and action functions of the visualSTATE model are listed in the dialog box,
along with their parameter values which by default are zero.

The parameters are floating point values, but for most Altia objects, such as LEDs and
buttons, you typically use integers (0.0 and 1.0). Parameter values in the form of integers
are displayed without trailing zero decimals in the Define Altia Parameters dialog box.

Configuring the Altia connection
Typically the default values of the Altia connection will work fine. However, the Altia
connection can be configured to suit specific needs.
UVS-4

visualSTATE®

User Guide

Prototyping with Altia
To configure the Altia connection:

1 Choose Altia>Properties on the Validator menu (see Figure 196, page 282). This will
open a Define Altia Properties dialog box where you can configure the Altia
connection (see Figure 201, page 289).

Figure 201: Define Altia Properties dialog box (Validator)

Altia Response Timeout
Here you can specify the number of milliseconds for which the
Validator is to wait for a response from the Altia application
while establishing an Altia connection.

Reset Altia design when deducting SE_RESET
Select this option to ensure that the Altia design is synchronized
with the visualSTATE model upon deduction of the
visualSTATE reset event SE_RESET.

Altia Command Line Parameters
Here you can type a series of space-separated arguments to be
passed on to the Altia application when it is launched. An
example of user-specified command line parameter is shown in
Figure 201, page 289. For a description of recognized command
line parameters, refer to the Altia documentation.

When Connecting
Here you can specify whether the visualSTATE model should be
initialized and reset during establishing of the Altia connection.

Note: To ensure synchronization between the visualSTATE model and the Altia design,
select the options Reset Altia design when deducting SE_RESET and Always
initialize and reset the visualSTATE model.
UVS-4

289

290

Configuring the Altia connection
2 When you have configured the Altia connection, click OK.
UVS-4

visualSTATE®

User Guide

Prototype based on
visualSTATE generated
code
You can create a software prototype of your visualSTATE model using the
visualSTATE Coder-generated C code directly in any third-party development
tool that supports ANSI C code.

This chapter gives a general description of how a prototype based on
visualSTATE generated code is implemented. It also gives a specific example of
how you can integrate the visualSTATE code and visualSTATE APIs with C++
using Microsoft Visual C++.

General
The control logic code generated by the visualSTATE Coder is in C. By means of the
visualSTATE APIs, it can be combined with code developed with any third-party
development tool that supports the ANSI C standard, for example Microsoft Visual
C++, Borland C++ Builder, or Watcom C++.

You implement the prototype application as you would implement a final application
(see Code required for a visualSTATE application, page 9). This means that you can
reuse the control logic designed in visualSTATE from project to project and only write
UVS-4

291

292

Example: Implementing visualSTATE code in C++ code
code for the main loop, and for the handling of events and actions. The principle of this
approach is illustrated in Figure 202, page 292.

Figure 202: Prototype implementation

Example: Implementing visualSTATE code in C++ code
Creating a prototype in Microsoft Visual C++ differs from creating one in a console
application in how the visualSTATE event deduction sequence is implemented.
Implementing a while-infinite loop will halt the Windows message loop so this method
cannot be used.

Instead you can for example use the following methods:

● Latching onto the Windows idle message by capturing the WM_IDLEMESSAGE, for
Windows, or WM_KICKIDLE message for dialog boxes. Idle messages are sent by
Windows when the process has no other messages in the message queue. The
frequency of calls to the idle message cannot be determined so an event queue
should be implemented for storing and handling visualSTATE events, as described
here.

● Using separate threads.

visualSTATE Coder-
generated code

(C code)

Event
preprocessing

(C/C++)
visualSTATE

API
(C code)

Device drivers
(action

processing)
(C/C++)

Action
sequence

(C/C++)
Event queue

(C/C++)
UVS-4

visualSTATE®

User Guide

Prototype based on visualSTATE generated code
Below is an example of how a prototype can be implemented by capturing the Windows
idle message. The example is based on a visualSTATE model with two states: PowerOn
and PowerOff. A statechart of the model is shown in Figure 203, page 293.

Figure 203: visualSTATE statechart

Switching from state to state is done by triggering the event PowerBtn. When the state
machine is in the PowerOn state, an internal reaction can be triggered by the event
SetLevel. This internal reaction calls the action ShowLevel that can be used to
display the event parameter from SetLevel.

Implementing the prototype is done in Visual C++ using MFC. The application consists
of a dialog box with a button, a slider control and a progress bar (see Figure 204, page
293).

Figure 204: Visual C++ dialog box

The button PowerBtn will add the event PowerBtn to the event queue. The slider
control represents the SetLevel event, and the slider position is transmitted as an
event parameter. The action ShowLevel will activate the progress bar and the action
parameter is the display value of the progress bar.
UVS-4

293

294

Example: Implementing visualSTATE code in C++ code
STEPS OF IMPLEMENTATION

1 Include the visualSTATE generated code files in your Visual C++ project. Remember
to disable the Precompiled Headers option for these files, since you are including C
files in a C++ project.

2 Define an event queue for adding and retrieving events. For an example, see the sample
code included with the visualSTATE software.

3 Initialize the controls with the constants defined in visualSTATE and initialize the
visualSTATE System in the OnInitDialog dialog function as shown below.

BOOL CVisualSTATESampleDlg::OnInitDialog()

{

...

// nMin and nMax defined in VS as constants

// Initialize the slider control

m_hSlider.SetRange(nMin, nMax);

m_hSlider.SetPos(nMin);

// Initialize the progress control

m_hLevel.SetRange(nMin, nMax);

m_hLevel.SetPos(nMin);

// Initialize the VS System

SEM_Init();

// Initialize the VS System by sending the SE_RESET event

QueueElement hQe;

hQe.event = SE_RESET;

hQe.parameter = NO_PARAMETER;

add(hQe);

...

}

UVS-4

visualSTATE®

User Guide

Prototype based on visualSTATE generated code
4 Map the PowerBtn buttons click command to the function OnPowerBtn. Map the
slider controls slide message by implementing the OnHScroll function. The
following code shows the message map and the two functions.

BEGIN_MESSAGE_MAP(CMainDlg, CDialog)

...

ON_BN_CLICKED(IDC_POWER_BTN, OnPowerBtn)

ON_WM_HSCROLL()

...

END_MESSAGE_MAP()

void CMainDlg::OnPowerBtn()

{

// add the PowerBtn event onto the queue

QueueElement qe;

qe.event = PowerBtn;

qe.parameter = -1;

add(qe);

}

void CMainDlg::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar*

pScrollBar)

{

CDialog::OnHScroll(nSBCode, nPos, pScrollBar);

// get slider value and add the SetLevel event onto the

// queue

QueueElement qe;

qe.event = SetLevel;

qe.parameter = m_hSlider.GetPos();

add(qe);

}

UVS-4

295

296

Example: Implementing visualSTATE code in C++ code
5 Define the implementation of the visualSTATE action ShowLevel as follows:

6 Implement the visualSTATE event loop by latching onto the Windows message
WM_KICKIDLE. The message map and the event loop defined in the OnKickIdle
function are shown below.

VS_VOID ShowLevel(VS_INT nValue)

{

// get a handle to the main dialog

CMainDlg* pDlg = (CMainDlg*)AfxGetMainWnd();

ASSERT(pDlg);

// force the dialog to update the progress bar

pDlg->SetProgressPos(nValue);

}

UVS-4

visualSTATE®

User Guide

Prototype based on visualSTATE generated code
LRESULT CMainDlg::OnKickIdle(WPARAM, LPARAM)

{

// While events in the event queue

QueueElement hQe;

while(retrieve(hQe))

{

// Call SEM_Deduct with the event

unsigned char cc;

switch(hQe.event) {

case SE_RESET :

cc = SEM_Deduct(SE_RESET);

break;

case PowerBtn :

cc = SEM_Deduct(hQe.event);

break;

case SetLevel :

cc = SEM_Deduct(hQe.event, hQe.parameter);

break;

default :

cc = -1; // unknown event

break;

}

if(cc != SES_OKAY)

; // Error handler

// Get resulting action expressions and execute them

SEM_ACTION_EXPRESSION_TYPE nAction;

while((cc = SEM_GetOutput(&nAction)) == SES_FOUND)

SEM_Action(nAction);

if(cc != SES_OKAY)

; // Error handler

// Change the next state vector

if((cc = SEM_NextState()) != SES_OKAY)

; // Error handler

}

return 0L;

}

UVS-4

297

298

Example: Implementing visualSTATE code in C++ code
UVS-4

visualSTATE®

User Guide

Prototyping with the
visualSTATE Expert DLL
This chapter describes how to create a visualSTATE prototype using the
visualSTATE Expert DLL with Microsoft Visual Basic or C++. It also gives a
specific example of how to integrate the visualSTATE Expert DLL with a
prototype by means of Microsoft Visual Basic.

For a detailed description of the visualSTATE Expert DLL API functions, see
visualSTATE API Guide.

What is visualSTATE Expert DLL?
visualSTATE Expert DLL is a binary version of the Expert API delivered as a dynamic
link library (DLL). It can be used to interface to a VS Project from a programming
language different from C or C++. For example, if it is more convenient to design a
graphical user interface (GUI) in Visual Basic, you can write Visual Basic code that
interfaces to a VS Project via the Expert DLL.

The principle of this approach is illustrated in Figure 205, page 299.

Figure 205: Prototype implementation, visualSTATE Expert DLL

When you use the visualSTATE Expert DLL, the Coder output is a binary file. You
specify code generation for the Expert DLL in the Navigator (see Generating code for
the visualSTATE Expert DLL, page 301).

Note: If the user- written code is written in C or C++, it is recommended not to use the
Expert DLL. In this case it is recommended to use the Expert API, and compile the

visualSTATE Coder-
generated binary file

Event
preprocessing

(Visual Basic) visualSTATE
Expert DLL

Device drivers
(action

processing)
(Visual Basic)

Action
sequence

(Visual Basic)
Event queue
(Visual Basic)
UVS-4

299

300

Interaction
Expert API source files and user-written source files, and finally link all object files
together. See Prototype based on visualSTATE generated code, page 291.

EXPERT DLL FILES

The following Expert DLL files are provided:

● The Expert DLL itself, which is named ExpertR9.dll.
● Interface files containing declarations of Expert DLL API functions. The files are

used for interfacing to the Expert DLL, and comprise the following:
● ErrorR9.bas (Visual Basic Expert DLL error file)
● ExpertR9.bas (Visual Basic Expert DLL interface file)
● ErrorR9.pas (Borland Delphi Expert DLL error file)
● ExpertR9.pas (Borland Delphi Expert DLL interface file)
● ErrorR9.h (C header file containing error definitions)

The Expert DLL files can be used for the programming languages Microsoft Visual
Basic 5.0 and Borland Delphi 2.0, and compatible versions of the two languages.

VISUALSTATE PROJECT RESTRICTIONS

When the Expert DLL is used, the following restrictions apply to the VS Project:

● The VS Project may not contain multiple VS Systems.
● The VS Project may not contain events with parameters.
● The VS Project may not contain guard expressions.
● The VS Project may not contain assignments.
● The VS Project may not contain action functions with parameters.
● The VS Project may contain variables, but they are of no use because of the

above-mentioned restrictions.

Interaction
Figure 206, page 301 shows how to access the VS Project/VS System via the Expert
DLL. The <binary>.sld file is loaded by the Expert DLL and stored in memory.
UVS-4

visualSTATE®

User Guide

Prototyping with the visualSTATE Expert DLL
Accessing the VS Project/VS System is through the API functions of the Expert DLL.

Figure 206: Main flow of information, Expert DLL

Generating code for the visualSTATE Expert DLL
To generate code for the visualSTATE Expert DLL, do the following:

1 Launch the Navigator, and open your workspace file.

2 Choose Project>Options>Code Generation.... The Coder Options dialog box is
displayed. See Figure 207, page 301.

Figure 207: Coder Project Options dialog box, Configuration tab

3 In the pane to the left, select the visualSTATE Project containing the System to be code
generated for Expert DLL.

4 Click the Configuration tab and select Generate for Expert DLL. Click OK.

ExpertR9.dll

<binary>.sld

Application

Application

VS Project/VS System

Expert DLL
UVS-4

301

302

Interfacing to the Expert DLL using Visual Basic
5 On the menu, choose Project>Code generate.

The visualSTATE System will be code generated into a binary file.

Interfacing to the Expert DLL using Visual Basic
This section demonstrates how to implement a mobile phone in a Visual Basic project
using the Expert DLL. The mobile phone example shown in Figure 208, page 302 will
be used to illustrate the various steps in the implementation process.

Figure 208: Mobile phone example

The individual steps of the implementation process are described in the following
sections:

● Loading the VS System, page 303.
● Loading the VS System and initializing priority queues, page 303.
● Activating events, page 304.
● Responding to events (event deduction), page 305.
● Listing active events (event inquiry), page 306.
UVS-4

visualSTATE®

User Guide

Prototyping with the visualSTATE Expert DLL
● Retrieving current states, page 307.
● Unloading the VS System, page 308.

The mobile phone example can be converted to other development tools.

For the complete Visual Basic code, see Appendix C: Source code example, page 411.

LOADING THE VS SYSTEM

Initially, the VS Project/VS System must be loaded by calling the connecting function
SEM_Load. Next, all required initialization functions must be called, in this case only
SEM_Init. Notice that the "return value" from SEM_Init must be obtained by a call to
SEM_GetInitCC.

Code

Private Sub Form_Load()
 Dim cc As Byte

 'load VS System
 cc = SEM_Load("mobile.sld")
 If cc = SES_OKAY Then

 'initialize VS System
 Call SEM_Init

 'get result of initialization
 cc = SEM_GetInitCC()
 If cc <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_InitCC", cc)
 End If
 Else
 Call SEM_VBErrorHandler("SEM_Load", cc)
 MsgBox "Program terminated..."
 End
 End If
End Sub

LOADING THE VS SYSTEM AND INITIALIZING PRIORITY
QUEUES

Events are placed in queues prior to a deduction. A maximum of 10 queues can be
defined, with priorities ranging from 1 to 10 and 10 having the highest priority.
Whenever a deduction is performed, the next event is the first inserted event in the
high-priority queue.

The code below is an alternative to the code shown in Loading the VS System, page 303.
UVS-4

303

304

Interfacing to the Expert DLL using Visual Basic
Code

Private Sub Form_Load()
 Dim cc As Byte

 'load VS System
 cc = SEM_Load("mobile.sld")
 If cc = SES_OKAY Then

 'Initialize VS System
 Call SEM_Init

 'get result of initialization
 cc = SEM_GetInitCC()
 If cc <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_InitCC", cc)
 End If

 'initialize queues
 Call SEM_QueueInit

 'define queue 1 with low priority and room for 4 inputs
 cc = SEM_QueueCreate(1, 1, 4)
 If cc <> SES_QUEUE_OKAY Then
 Call SEM_VBErrorHandler("SEM_QueueCreate", cc)
 End If

 'define queue 2 with high priority and room for 4 inputs
 cc = SEM_QueueCreate(2, 10, 4)
 If cc <> SES_QUEUE_OKAY Then
 Call SEM_VBErrorHandler("SEM_QueueCreate", cc)
 End If
 Else
 Call SEM_VBErrorHandler("SEM_Load", cc)
 MsgBox "Program terminated..."
 End If
End Sub

ACTIVATING EVENTS

The mobile phone contains two types of events: events activated from buttons, and other
events. Other events are events that have no buttons associated with them.
'CALLING_REQUEST' is one such event. It is sent from the operator to the mobile
phone when a call is being received.

Both types of events are handled in the same way and can be activated from the 'Input(s)'
list box.
UVS-4

visualSTATE®

User Guide

Prototyping with the visualSTATE Expert DLL
Code for the button 'NO'

Private Sub But_No_Click()
 Dim cc As Byte

 'insert event into queue one
 cc = SEM_QueuePut(1, "KEY_NO")
 If cc = SES_QUEUE_OKAY Then
 'call function for event, state and output handling
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandling("SEM_QueuePut", cc)
 End If
End Sub

'KEY_NO' is the event identifier name defined in the <hdata>.h file.

RESPONDING TO EVENTS (EVENT DEDUCTION)

The code shown in Activating events, page 304, adds the event to the queue and then
calls the function 'DispatchOutput'. 'DispatchOutput' empties the queue(s), taking one
event at a time and calling SEM_Deduct, thereby triggering a transition.

After calling SEM_Deduct, retrieve action expressions by calling SEM_GetOutput.

Code for 'DispatchOutput'

Public Sub DispatchOutput()
 Dim cc As Byte
 Dim cc1 As Byte
 Dim event As Integer
 Dim iptr As Integer
 Dim str As String * 129
 Dim trimstr As String
 Static Busy As Boolean

 If Busy <> True Then
 Busy = True

 'while still events in queue(s)
 Do While SEM_QueueAllGet(event) = SES_QUEUE_OKAY
 'fire event
 cc = SEM_Deduct(event)
 If cc <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_Deduct", cc)
 End If

 Do 'while output found
UVS-4

305

306

Interfacing to the Expert DLL using Visual Basic
 'get next output number
 cc = SEM_GetOutput(iptr)
 If cc = SES_FOUND Then

 'get output name from output number
 If SEM_Name(OUTPUTTYPE, iptr, str, 128) =
 SES_OKAY Then
 'convert output string to Visual Basic string
 Call RemoveAsciiZeroAndTrim(str, trimstr)

 'Activate output drivers
 Select Case trimstr
 Case "CLEAR_DISP"
 (output driver for 'CLEAR_DISP')
 ...
 ...
 Case "UPDATE_DISP"
 (output driver for 'UPDATE_DISP')
 Case Else
 MsgBox "Output Var." & "'" & trimstr & "'" &
 "is not Defined"
 End Select
 End If
 End If
 'continue until no more outputs
 Loop Until cc <> SES_FOUND
 If cc <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_GetOutput", cc)
 End If

 'function for retrieving current states
 Call GetCurrentStates

 'function for retriving active events
 Call GetActiveEvents

 'continue until queues are empty
 Loop
 Busy = False
 End If
End Sub

LISTING ACTIVE EVENTS (EVENT INQUIRY)

After each call to SEM_Deduct, the VS System changes state(s), and new events
become active. Calling the function GetActiveEvents can retrieve the active events.
UVS-4

visualSTATE®

User Guide

Prototyping with the visualSTATE Expert DLL
Code for the function GetActiveEvents

Public Sub GetActiveEvents()
 Dim cc As Byte
 Dim iptr As Integer
 Dim str as String * 129
 Dim trimstr As String
 cc = SEM_Inquiry
 If cc <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_GetInput", cc)
 End If

 Do 'while still active events

 'get active event number
 cc = SEM_GetInput(iptr, 0)

 If cc = SES_FOUND Then

 'get event name from event number
 If SEM_Name(EVENT_TYPE, iptr, str, 128) = SES_OKAY Then

 'convert string to Visual Basic string
 Call RemoveAsciiZeroAndTrim(str, trimstr)

 'activate active event drivers
 Select Case trimstr
 Case "CALLING_REQUEST"
 (active event handling for 'CALLING_REQUEST')
 ...
 Case "WEAK_SIG"
 (active event handling for 'WEAK_SIG')
 End Select
 End If
 End If

 'until no more active events
 Loop Until cc <> SES_FOUND

 If cc <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_GetInput", cc)
 End If
End Sub

RETRIEVING CURRENT STATES

After each call to SEM_Deduct, new current states are found. Calling the function
GetCurrentStates can retrieve these current states.
UVS-4

307

308

Interfacing to the Expert DLL using Visual Basic
Code for the function GetCurrentStates

Public Sub GetCurrentStates()
 Dim cc As Byte
 Dim is_on As Byte
 Dim iState As Integer
 Dim str As String * 129
 Dim trimstr As String
 Dim Machine As Integer

 'loop through all state machines
 For Machine = 0 To SEM_NoMachines - 1 Step 1

 'get current state in state machine
 cc = SEM_State(Machine, iState)
 If cc <> SES_FOUND Then
 Call SEM_VBErrorHandler("SEM_State", cc)
 Exit For
 End If

 'get state name from state number
 cc = SEM_Name(STATE_TYPE, iState, str, 128)
 If cc <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_Name", cc)
 Exit For
 End If

 'convert string to Visual Basic string
 Call RemoveAsciiZeroAndTrim(str, trimstr)

 'Activate current state driver
 Select Case trimstr
 Case "call_wait"
 (handling for current state 'call_wait')
 ...
 Case "tryconnect"
 (handling for current state 'tryconnect')
 End Select

 'get next state machine
 Next Machine

End Sub

UNLOADING THE VS SYSTEM

When terminating the application, the VS System must be unloaded and queues must be
removed from memory.
UVS-4

visualSTATE®

User Guide

Prototyping with the visualSTATE Expert DLL
Code for the Terminate function

Private Sub Form_Terminate()
 Call SEM_Free
 SEM_QueueDestroy(1)
 SEM_QueueDestroy(2)
End Sub
UVS-4

309

310

Interfacing to the Expert DLL using Visual Basic
UVS-4

visualSTATE®

User Guide

Part 10: Working in an
OSEK environment
This part of the visualSTATE® User Guide includes the following chapters:

● Using the visualSTATE OSEK Kit

● Building a runtime application

● Runtime considerations.
UVS-4

311

312
UVS-4

Using the visualSTATE
OSEK Kit
Runtime applications developed with visualSTATE can be used with or without
a real-time operating system. If you choose to use OSEK as operating system,
you can use the visualSTATE OSEK Kit which provides a user-friendly interface
to using the visualSTATE software in an OSEK environment.

The visualSTATE OSEK Kit is launched via the Navigator and consists of a
visualSTATE OSEK API and a wizard.

This chapter describes how to enable OSEK support in visualSTATE and assign
visualSTATE Systems to OSEK tasks.

Generating visualSTATE files for use in an OSEK environment
To be able to generate visualSTATE files for use in the OSEK environment, the
following steps are necessary:

1 OSEK support must be enabled in the Navigator, and an OIL file must be selected
(see Enabling OSEK support, page 313).

2 A complete OIL file must be generated by means of an OIL file builder, for exam-
ple Motorola's OSEK Builder. From this OIL file, the visualSTATE OSEK wiz-
ard extracts information about tasks, messages etc. See your OSEK file builder
documentation.

3 The visualSTATE OSEK wizard must be run (see Assigning visualSTATE Sys-
tems to OSEK tasks, page 315).

Enabling OSEK support
OSEK support in visualSTATE can be enabled for one or more visualSTATE Projects
via the Navigator, as follows:

1 Start the Navigator, and open the workspace that contains the visualSTATE Project(s)
for which to enable OSEK support.
UVS-4

313

314

Enabling OSEK support
2 In the workspace browser, select the appropriate Project, open the pop-up menu and
choose Options>OSEK. An OSEK Options dialog box is displayed. See Figure 209,
page 314.

Figure 209: Navigator Settings dialog box, OSEK page

3 Select the Enable OSEK check box to enable OSEK support for the Project. The other
options of the dialog box will become available. See Figure 210, page 314.

Figure 210: OSEK support enabled

4 Click OIL File and click the browse button to find the OIL file to use for the
visualSTATE System.

5 Click OIL Configuration Program and click the browse button to specify the OIL
configuration program to use for the visualSTATE Project. The program is used for
editing the OIL file. If no program is specified here, your system’s default OIL
configuration program will be used for editing the OIL files used in the visualSTATE
Project.

Now the OSEK OIL file has been enabled which is indicated by an icon in the Navigator
workspace browser.
UVS-4

visualSTATE®

User Guide

Using the visualSTATE OSEK Kit
You can edit the OIL file by double-clicking the OSEK icon in the workspace browser.
This will launch the OIL configuration program that you have specified. If no program
was specified, the default OIL configuration program will be launched.

Assigning visualSTATE Systems to OSEK tasks
By means of the visualSTATE OSEK wizard it is possible to specify which
visualSTATE Systems are to be run in which OSEK tasks. This information is stored in
two ANSI C files that are generated by the visualSTATE OSEK wizard.

Note: Before running the visualSTATE OSEK wizard, the complete OSEK OIL file to
be used for the visualSTATE Project should be built in the OSEK OIL file builder.

To run the visualSTATE OSEK wizard:

1 Launch the Navigator and open your workspace. Ensure that the correct Project has
been set as active.

2 Choose Tools>OSEK Wizard.

The visualSTATE OSEK wizard is started which will load the specified OIL file. See
Figure 211, page 315.

Figure 211: OSEK wizard, first page

3 Specify destination directory. This is the directory where the wizard-generated ANSI C
files are to be stored. Default destination directory is the same directory as the one
specified for the visualSTATE Project file (file name extension vsp).
UVS-4

315

316

Assigning visualSTATE Systems to OSEK tasks
4 Specify source and header file names of the ANSI C files that will be generated by the
visualSTATE OSEK wizard. If existing file names are specified, you have the option of
overwriting the existing file name, appending to the file name, or canceling the
operation. The names of the two files generated by the wizard are automatically
prefixed with OS_ to avoid name conflicts in the final runtime application.

5 The Runtime format list shows the current OSEK options. If the visualSTATE Project
only contains one visualSTATE System, and the value for the OSEK option API type is
Expert (see Figure 210, page 314), a warning is given when you proceed to the next
wizard page.

Note: The runtime footprint of the visualSTATE Basic API is smaller than that of the
Expert API. If there is only one visualSTATE System in the visualSTATE Project, use
the Basic API.

OSEK options are specified in the Navigator as described in Enabling OSEK support,
page 313.

6 Click Next to proceed to the next wizard page. See Figure 212, page 316.

Figure 212: OSEK wizard, Select Systems

7 Drag the visualSTATE Systems into the OSEK tasks in which they should run. It is
possible to assign multiple visualSTATE Systems to one OSEK task.
UVS-4

visualSTATE®

User Guide

Using the visualSTATE OSEK Kit
Example

See Figure 213, page 317. The visualSTATE System ALARM_FUNCTION has been
assigned to the OSEK task TASKSND. The visualSTATE Systems in the left pane of the
window have not been assigned to any OSEK tasks yet.

Figure 213: visualSTATE System assigned to an OSEK task
UVS-4

317

318

Assigning visualSTATE Systems to OSEK tasks
8 When you have assigned visualSTATE Systems to the appropriate OSEK tasks, click
Next to proceed to the next wizard page. See Figure 214, page 318.

Figure 214: OSEK wizard, Select runtime options

9 Because each visualSTATE System must be loaded before use, you must specify load
options:

● Select Load all Systems in StartupHook() to have the visualSTATE Systems loaded
during OSEK startup.

● Select Load Systems in assigned task to have the visualSTATE Systems loaded
during OSEK task activation.

10 In the runtime application, the visualSTATE reset event SE_RESET must always be sent
into the visualSTATE System before any other events can be sent into it. Select Send
reset event to System during load for automatic reset of each visualSTATE System
during load.

Note: If the Send reset event to System during load check box is cleared, you must
incorporate the sending of the event in the runtime application.

The Unload option only applies when the Expert API is used. Each visualSTATE
System allocates a block of memory that must be released at some time. These memory
blocks can be released either when the specified OSEK task is closed, or when OSEK
shuts down.
UVS-4

visualSTATE®

User Guide

Using the visualSTATE OSEK Kit
11 Click Next. The Summary page of the wizard will be displayed (see example in Figure
215, page 319).

Figure 215: OSEK wizard, Summary

The Summary page shows the options specified. Check that they are correct before
clicking Finish.
UVS-4

319

320

Assigning visualSTATE Systems to OSEK tasks
UVS-4

visualSTATE®

User Guide

Building a runtime
application
This chapter describes how to build a runtime application with the ANSI C
files generated by the visualSTATE OSEK wizard.

Requirements for building a runtime application
The following is required for building a runtime application with the ANSI C files
generated by the visualSTATE OSEK wizard:

● OSEK API files (supplied by the OSEK vendor).
● The two ANSI C files generated by the visualSTATE OSEK wizard (prefixed OS_).

The files are found in the destination directory you specified on the first page of the
visualSTATE OSEK wizard (see Figure 211, page 315).

● Two visualSTATE OSEK API files named VS_OSEK.C and VS_OSEK.H, which are
used by the wizard-generated ANSI C files in the runtime application. These two
API files are a thin wrapper around the standard visualSTATE API functions with
some additional information.

● Additional source code that is necessary for supplying visualSTATE with events.
This source code must be provided by the developer. In addition, the developer must
write the functions for each of the actions defined in visualSTATE.
UVS-4

321

322

Requirements for building a runtime application
Figure 216, page 322 shows the components required for building a runtime application
in visualSTATE.

Figure 216: Components required for a runtime application
UVS-4

visualSTATE®

User Guide

Building a runtime application
Exported visualSTATE OSEK API functions
The following visualSTATE OSEK API functions are exported and used in the code
generated by the visualSTATE OSEK wizard:

Note: To select Expert API for the runtime application, define VS_EXPERT_MODE in the
compiler preprocessor. If VS_EXPERT_MODE is not defined, the Basic API will be
applied by default.

Supplying events
A typical loop in visualSTATE has the following structure (in the following example
some lines and syntax have been removed for clarity):

Example

while(TRUE)
 {

 /* Wait for OS signal */
 WaitEvent(USER_EVENT);

 /* Get event */
 EventNo = EventHandling();

 /* Process the event in visualSTATE */
 visualSTATE_Deduct(vs_context_pointer, EventNo);
 }

Because no task may consume 100% of the CPU time, there must be some sort of
scheduling. Inside the loop, you must add code that waits for OSEK to signal the task to
start.

visualSTATE_Load() Loads and initializes a visualSTATE System. When the Basic API is
used, the function does not take any parameters whereas the
Expert API takes a context pointer and a system ID.

visualSTATE_Deduct() Performs a deduction on the supplied event. Actions and
assignments are executed, and visualSTATE changes to the next
state. The Basic API takes one event as parameter, whereas the
Expert API also requires a system ID.

visualSTATE_Unload() Unloads the visualSTATE Systems from memory. Only available in
Expert API where a system ID is required as parameter.

Table 9: Exported OSEK API functions
UVS-4

323

324

API examples
visualSTATE must be supplied with events from an external source. The event can be
anything from physical events in the external hardware environment to events that occur
in other parts of the software.

Since OSEK supports messages being sent from one task to another, one possible
solution is to have a single task that handles all external events and via messages sends
them to the OSEK task(s) where visualSTATE runs.

Example

while(TRUE)
 {

 /* Get message */
 ReceiveMessage(MyMsg, _MyMsg);

 /* Process the event in visualSTATE */
 visualSTATE_Deduct(vs_context_pointer, _MyMsg.EventNo);
 }

API examples
This section gives two examples of how to use the code generated by the visualSTATE
OSEK wizard in a runtime application. The first example describes code generated for
the Basic API, and the second example describes code generated for the Expert API.

For a detailed description of the visualSTATE standard APIs, refer to visualSTATE API
Guide

BASIC API

Before any events can be processed, the entire visualSTATE System must be loaded and
initialized in the runtime application. This is done by calling the function
visualSTATE_Load(). The function must only be called once during the lifetime of
the runtime application, and it is therefore well-suited for StartupHook() or main().

Example

int main(void)
{
 /* load and initialize visualSTATE Basic */
 visualSTATE_Load();

 /* Start OSEK */
 StartOS(Mode);
UVS-4

visualSTATE®

User Guide

Building a runtime application
 return 0;
}

When visualSTATE_Load() has been called, visualSTATE is ready for normal
operation.

Events can be processed by using visualSTATE_Deduct() which always returns a
completion code. In case of an error, you should take the necessary action. Completion
codes are found in the Basic API file SEMLibB.h.

If event parameters are used, the parameters for visualSTATE_Deduct() change
slightly because visualSTATE_Deduct() is defined as a macro. The event and all its
parameters must therefore be enclosed in a pair of parentheses, as shown in the
following example.

Example

unsigned char nRes;
nRes = visualSTATE_Deduct((EventNo, param1, ..., paramN));
if(nRes != SES_OKAY)
{
 /* An error occurred */
}

EXPERT API

If there are multiple visualSTATE Systems, the Expert API is used. Each visualSTATE
System must be loaded and initialized in the runtime application before use.

Load and initialization of the visualSTATE System are by means of the
visualSTATE_Load() function which takes the following parameters:

● A pointer to a visualSTATE context pointer
● A unique system identifier.

Since each visualSTATE System can be configured independently of the others, the
wizard generates a static structure that contains the setup for each visualSTATE System.
In addition to this structure, there is an array of visualSTATE context pointers.

Each visualSTATE System is referred to via a specific context pointer that must be
supplied when using the visualSTATE_Deduct() and
visualSTATE_Unload() functions. The context pointer is assigned during the
calling of the visualSTATE_Load()function.
UVS-4

325

326

API examples
Loading of a visualSTATE System is either via the StatupHook(), main(), or
during OSEK task activation, as specified in the visualSTATE OSEK wizard (see Figure
214, page 318). An example of load during task activation is shown in the following:

Example

TASK (MyTask)
{
 CONTEXT* vs_context_pointer;
 unsigned char nRes;

 /* load and initialize expert system 1 */
 visualSTATE_Load(&vs_context_pointer, VS_SYSTEM_1);

 while(TRUE)
 {
 /* Wait for OS event */
 WaitEvent(MyEvent);

 /* Get event */
 EventNo = EventHandling();

 nRes = visualSTATE_Deduct(vs_context_pointer, EventNo);
 if(nRes != SES_OKAY)
 break;
 }

 visualSTATE_Unload(vs_context_pointer);
 TerminateTask();
}

In this example, first a context pointer is created. While system 1 is loaded, it will be
assigned to the visualSTATE System. When a visualSTATE deduct function is to be run,
the context pointer together with the event is supplied. In case the deduct should fail, the
while(TRUE) loop is broken, the visualSTATE System is unloaded, and the task
terminated.

Note: visualSTATE_Load() and visualSTATE_Unload() must always be
used in pairs. If the same visualSTATE System is loaded twice without being unloaded
in between, a memory leak will occur.

If event parameters are used, the parameters for visualSTATE_Deduct() change
slightly because visualSTATE_Deduct() is defined as a macro. The event and all
its parameters must be enclosed in a pair of parentheses, as shown in the following
example.
UVS-4

visualSTATE®

User Guide

Building a runtime application
Example

unsigned char nRes;
nRes = visualSTATE_Deduct(vs_context_pointer,(EventNo, param1,
..., paramN));

if(nRes != SES_OKAY)
{
 /* An error occurred */
}

If there are global external variables that must be initialized, the following code must be
inserted into the main() function, as follows:

int main(void)
{
#ifdef PROJECT_INIT_EXTERNAL_VARIABLES_NAME
 (*PROJECT_INIT_EXTERNAL_VARIABLES_NAME)();
#endif
 StartOS(Mode);
 return 0;
}

Global external variables should not be initialized more than once, so the main()
function is a most suitable place to put them.
UVS-4

327

328

API examples
UVS-4

visualSTATE®

User Guide

Runtime considerations
This chapter describes the stack usage and RAM/ROM usage by the
visualSTATE APIs when using the visualSTATE OSEK API.

Stack usage
It is possible to determine stack usage when using the visualSTATE OSEK API. See
Calculating stack usage, page 329.

The stack usage values listed Table 15, page 331 and Table 16, page 332 may not be the
maximum values. Stack usage depends on whether event parameters and action
parameters are used. For example, if event parameters are used, stack usage for the
visualSTATE_Deduct function increases by the variables used. An event that takes
two parameters of the type integer will cause stack usage to increase by 4 bytes. The use
of guard conditions, actions (without parameters) and assignments will not increase
stack usage.

Stack usage by the Basic API and Expert API functions are listed in Table 10, page 329
and Table 11, page 329 respectively. In the calculation of stack usage, the same
assumptions as those applied in Table 14, page 331 were used.

CALCULATING STACK USAGE

In order to calculate the exact stack usage some runtime information must be known. A
small runtime application with less than 256 events, 256 states, 256 actions etc. will
result in the smallest possible stack usage. However a full-blown real-word application
may use more than 256 states.

visualSTATE OSEK API function Stack usage in bytes

visualSTATE_Load 1

visualSTATE_Deduct 3

Table 10: Stack usage by Basic API

visualSTATE OSEK API function Stack usage in bytes

visualSTATE_Load 20

visualSTATE_Deduct 18

visualSTATE_Unload 3

Table 11: Stack usage by Expert API
UVS-4

329

330

Stack usage
The sizes of the following types are determined by the size of the runtime application:

The sizes of the following types are determined by the compiler, linker and target
hardware:

Stack sizes

Table 15, page 331 and Table 16, page 332 list stack usage by the Basic API and Expert
API. The calculated stack sizes in the tables are based on the assumptions in Table 14,
page 331.

Because stack usage depends on whether event parameters and action parameters are
used, the stack sizes listed Table 15, page 331 and Table 16, page 332 should only be

SEM_EVENT_TYPE The number of events in the project. A size of more than 1
byte is unlikely in many applications as it would require
more than 256 events.

SEM_INSTANCE_TYPE The number of instances of a given System. Most likely to
have a size of 1 byte.

SEM_ACTION_EXPRESSION_TYPE Size is determined by the total number of actions and
assignments. Likely to have a size of 2 bytes.

SEM_EXPLANATION_TYPE Size is determined by the total number of explanations.
Only available if you specified this option in the Coder.
Assumed to be 0 bytes (not used).

SEM_STATE_MACHINE_TYPE Size is determined by the total number of state machines.
Unlikely to have a size of more than 1 byte.

SEM_STATE_TYPE Size is determined by the total number of states in a given
System. Likely to have a size of 2 bytes.

Table 12: Type sizes determined by runtime application size

pointer The size of a pointer. On small 8-bit processors it is likely to have a size of 2
bytes, whereas large 32-bit processors use 4 bytes to store a pointer. Some
may even store a pointer in a CPU register thus requiring no stack space.

short The size of variable of type short is larger than the size of a byte and smaller
or equal to the size of an integer. Likely to have the same size as an integer.

int The size of an integer is typically 2 bytes for a small 8-bit processor, whereas
a large 32-bit processor requires 4 bytes.

long The size of a variable of type long is most likely to be 4 bytes.

Table 13: Type sizes determined by compiler, linker and target hardware
UVS-4

visualSTATE®

User Guide

Runtime considerations
regarded typical sizes that apply to the assumptions in Table 14, page 331. In the runtime
application, stack sizes will depend on the actual hardware and software platform used.

The return address of the visualSTATE API function is not included in the stack sizes.
All transfer of parameters is via the stack.

visualSTATE type Size in bytes

SEM_EVENT_TYPE 1

SEM_INSTANCE_TYPE 1

SEM_ACTION_EXPRESSION_TYPE 2

SEM_EXPLANATION_TYPE 0

SEM_STATE_MACHINE_TYPE 1

SEM_STATE_TYPE 2

Pointer 2

Short 2

int 2

long 4

Table 14: Assumptions for stack size calculation

visualSTATE Basic API

function
Stack size in bytes Typical size

SEM_InitSignalQueue 0 0

SEM_InitExternalVariables 0 0

SEM_InitInternalVariables 0 0

SEM_SignalQueuePut SEM_EVENT_TYPE + 1 2

SEM_SignalQueueGet 2*SEM_EVENT_TYPE 2

SEM_SignalQueueInfo Pointer 2

SEM_Init 0 0

SEM_InitInstances 1 1

SEM_SetInstance SEM_INSTANCE_TYPE + 1 2

SEM_Deduct SEM_EVENT_TYPE + 1.
See note a

2

SEM_GetOutput Pointer + 1 3

SEM_GetOutputAll Pointer + 2*
SEM_ACTION_EXPRESSION_TYPE + 2

8

Table 15: Typical stack sizes, Basic API
UVS-4

331

332

Stack usage
SEM_NextState 2 2

SEM_Inquiry 1 1

SEM_GetInput 2*Pointer + 1 5

SEM_GetInputAll 2*Pointer + 2* SEM_EVENT_TYPE + 2 6

SEM_Name 2*Pointer + SEM_EXPLANATION_TYPE + 3 +
2*short

11

SEM_NameAbs Pointer + SEM_EXPLANATION_TYPE + 2 4

SEM_Expl 2*Pointer + SEM_EXPLANATION_TYPE + 3 +
2*short

11

SEM_ExplAbs Pointer + SEM_EXPLANATION_TYPE + 2 4

SEM_State Pointer + SEM_STATE_MACHINE_TYPE + 1 4

SEM_StateAll Pointer + 2* SEM_STATE_MACHINE_TYPE +
1

5

SEM_Machine Pointer + SEM_STATE_TYPE + 1 5

SEM_TableAction See note b

SEM_ForceState SEM_STATE_TYPE + 1 3

a. If event parameters are used, SEM_Deduct will use more stack space, depending on the num-
ber and types of parameters used.
b. SEM_TableAction in itself does not use any stack. The action expressions called by
SEM_TableAction may use stack space, depending on the number and types of parameters used.
If for example an action takes two integer parameters, stack usage will be 4 bytes

visualSTATE Expert API

function
Stack size in bytes

Typical

size

SMP_Expl 3*Pointer + 2*short + 1 long + 1 int +
SEM_EXPLANATION_TYPE + 1

17

SMP_ExplAbs 2*Pointer + SEM_EXPLANATION_TYPE + long + 2 10

SMP_ForceState Pointer + SEM_STATE_TYPE + 1 5

SMP_Inquiry Pointer + 1 3

SMP_InitInstances Pointer + long + 1 7

SMP_SetInstance 2*Pointer + SEM_INSTANCE_TYPE +
SEM_STATE_MACHINE_TYPE + 1

7

SMP_Machine 2*Pointer + SEM_STATE_TYPE + 1 7

Table 16: Typical stack sizes, Expert API

visualSTATE Basic API

function
Stack size in bytes Typical size

Table 15: Typical stack sizes, Basic API (Continued)
UVS-4

visualSTATE®

User Guide

Runtime considerations
RAM/ROM usage
Using the generated code and the visualSTATE OSEK API has little impact on the
normal RAM/ROM usage by the visualSTATE API.

SMP_Connect 6*Pointer + 3 15

SMP_Free Pointer 2

SMP_Init Pointer + SEM_STATE_MACHINE_TYPE + 1 5

SMP_InitGuardCallBack 3*Pointer 6

SMP_InitSignalDBCallBack 2*Pointer + SEM_EVENT_TYPE 5

SMP_InitSignalQueue Pointer 2

SMP_SignalQueuePut Pointer + SEM_EVENT_TYPE + 1 4

SMP_SignalQueueGet Pointer + 2*SEM_EVENT_TYPE 4

SMP_Deduct Pointer + SEM_EVENT_TYPE + 1
See note a

4

SMP_GetOutput 2*Pointer + SEM_STATE_TYPE +
SEM_RULE_DATA_TYPE +
SEM_STATE_MACHINE_TYPE + 5 + [if guard
conditions or signals: 2]

13 (15)

SMP_GetOutputAll 2*Pointer + 2*SEM_ACTION_EXPRESSION_TYPE +
2 + SMP_GetOutput

10 + 13
(15)

SMP_NextState Pointer + SEM_STATE_MACHINE_TYPE +
SEM_ACTION_EXPRESSION_TYPE + 2

7

SMP_Name 3*Pointer + SEM_EXPLANATION_TYPE + int + long
+ short + 3

17

SMP_NameAbs 2*Pointer + SEM_EXPLANATION_TYPE + long + 2 10

SMP_StateAll 2*Pointer + SEM_STATE_MACHINE_TYPE + 1 7

SMP_TableAction See note b

SMP_State 2*Pointer + SEM_STATE_MACHINE_TYPE + 1 7

a. If event parameters are used, SMP_Deduct will use more stack space, depending on the num-
ber and type of parameters.
b. SMP_TableAction in itself does not use any stack. The action expressions called by
SMP_TableAction may use stack space, depending on the number and types of parameters used.
If for example an action takes two integer parameters, stack usage will be 4 bytes.

visualSTATE Expert API

function
Stack size in bytes

Typical

size

Table 16: Typical stack sizes, Expert API (Continued)
UVS-4

333

334

RAM/ROM usage
For information on RAM/ROM usage by the visualSTATE standard APIs, refer to
visualSTATE API Guide.

BASIC API

There is no overhead whatsoever when the visualSTATE Basic API is used together with
the visualSTATE OSEK API.

EXPERT API

There is a slight increase in ROM consumption when the visualSTATE Expert API is
used together with the visualSTATE OSEK API. There is no increase in RAM
consumption.

The visualSTATE OSEK API needs information about each visualSTATE System in
order to use the visualSTATE standard API. An array with the size of the total number
of visualSTATE Systems will be placed in ROM. Each array element will have the
following structure:

typedef struct VSSystemSetup {
 void* VSData;
 unsigned char (**VSGuard)(SEM_CONTEXT *Context);
 unsigned char (*VSDeduct)(SEM_CONTEXT *Context, SEM_EVENT_TYPE
EventNo);
 void (**VSAction)(SEM_CONTEXT* Context);
 void (*VSInitExtVar)(void);
 void (*VSInitIntVar)(void);
 SEM_EVENT_TYPE VS_RESET;
} VSSystemSetup;

The total increase in ROM usage will depend on the target hardware, target compiler and
the size of the visualSTATE System.

Example

A void pointer may require 2 bytes of ROM. If there are more than 256 events, the
SEM_EVENT_TYPE also requires 2 bytes. This gives a total of 7 * 2 bytes = 14 bytes ROM
overhead per visualSTATE System.

A visualSTATE Project with six visualSTATE Systems gives a total overhead of 84 bytes
of ROM.
UVS-4

visualSTATE®

User Guide

Part 11: General
reference
This part of the visualSTATE® User Guide includes the following chapters:

● Navigator menu commands

● Designer shortcuts

● Designer menu commands

● Validator shortcut keys

● Validator menu commands.

● Verificator command line options

● Coder options

● Documenter options.
UVS-4

335

336
UVS-4

Navigator menu
commands
This chapter describes the Navigator menu commands and lists their
corresponding shortcut keys and toolbars. The Navigator has the following
menus:

● File menu

● Edit menu

● View menu

● Project menu

● Tools menu

● Window menu

● Help menu.

For a description of the Navigator toolbars, see Navigator toolbars, page 19.

File menu
This menu contains the following commands:

Command Shortcut key Toolbar

New…

Creates a new workspace file, Project file, System or
Statechart file.

Ctrl+N Standard

Open...

Opens an existing file.
Ctrl+O Standard

Save

Saves the file in the currently active window.
Ctrl+S Standard

Table 17: Navigator File menu commands
UVS-4

337

338

File menu
Save As

Saves a copy of the file in the currently active window under
a new name.

Close

Open Workspace

Opens a visualSTATE workspace.

Save Workspace

Saves the current workspace and all its files.

Save Workspace As...

Saves a copy of the current workspace under a new name
(extension must be vnw).

Close Workspace

Closes the workspace.

Source Control

Opens a submenu of source control commands.

Source control>Get Latest Version...

Retrieves a read-only copy of the selected source control
files.

Source control>Check Out...

Retrieves the latest version of the selected file from source
control. The version is writable.

Source control>Check In...

Checks in a checked-out file and thereby updates the
source control system with the changes made in the file.

Source control>Undo Check Out...

Cancels a Check Out operation, undoing all changes.

Source control>Add to source control...

Copies a file, or group of files, into the source control
system.

Source control>Remove from source control...

Removes the selected files from the source control system.

Source control>Refresh Status

Retrieves the source control status of all files in the Project.

Source control>Launch Source Control System...
Launches the source control application you have set up as
default for your visualSTATE files.

Exit Alt+F4

Command Shortcut key Toolbar

Table 17: Navigator File menu commands (Continued)
UVS-4

visualSTATE®

User Guide

Navigator menu commands
Edit menu
The commands on this menu are used for editing text in the currently active Navigator
window, and correspond to standard Windows editing commands.

View menu
This menu contains the following commands:

Project menu
This menu contains the following commands:

Command Shortcut key Toolbar

Toolbars

Opens a submenu for showing or hiding toolbars.

Status bar

Shows or hides the status bar.

Workspace

Shows or sets focus to the workspace browser.
Alt+0

Output

Shows or sets focus to the output window.
Alt+2

Go To

Opens a submenu of standard Internet browser commands
for browsing the web or local files.

Internet
Browser

Stop

Stops the current browser search.
Esc Internet

Browser

Refresh

Updates the content of the page in the browser.
F5 Internet

Browser

Properties

Opens a box showing the properties of the currently active
item.

Alt+Enter Standard

Table 18: Navigator View menu commands

Command Shortcut key Toolbar

Designer...

Launches the Designer application.
F7

Validator...

Launches the Validator application.
F8

Table 19: Navigator Project menu commands
UVS-4

339

340

Tools menu
Tools menu
This menu contains the following commands:

Window menu
This menu offers basic window display commands such as Tile and Cascade windows.

Help menu
This menu gives you access to the online help, user documentation PDF files, and
general information about the visualSTATE Navigator.

Code-generate

Starts code generation for the selected Project.
F9 Standard

Verify All Systems

Verifies one or more Systems in the selected Project.
F10 Standard

Verify System

Verifies the System selected in the workspace browser.
Ctrl+F10

Document

Creates a documentation report for the Project selected.
F11 Standard

Options

Opens a submenu for setting Coder, Verificator and
Documenter options.

Options>Code generation Alt+F9 Standard

Options>Verfication Alt+F10 Standard

Options>Documentation Alt+F11 Standard

Command Shortcut key Toolbar

Table 19: Navigator Project menu commands (Continued)

Command Shortcut key Toolbar

OSEK Wizard...

Launches the visualSTATE OSEK wizard

Settings...

Opens a dialog box for configuring the Navigator.

Custom Commands...

Opens a custom commands editor.

Table 20: Navigator Tools menu commands
UVS-4

visualSTATE®

User Guide

Designer shortcuts
This chapter lists the shortcuts available in the Designer.

General
Create new Project CTRL+N
Open Project CTRL+O
Save Project CTRL+S
Print the design CTRL+P
Set focus to Project browser ALT+0
Set focus to element browser ALT+1
Set focus to property window ALT+2
Set focus to output window ALT+2
Update/refresh window F5
Open Designer online help F1
Close window ALT+F4

EDITING

Edit name F2
Undo the latest action CTRL+Z
Cut selected text or graphics CTRL+X
Copy text or graphics CTRL+C
Paste text or graphics CTRL+V
Open Compose window for selected object ENTER
Search for an element CTRL+F

Diagram tools
GENERAL

Activate selection tool CTRL+0
Deactivate a tool Right mouse button
Activate note tool CTRL+9
Activate zoom tool CTRL+SHIFT+2
Go to parent diagram BACKSPACE
To delete an item just added DELETE
UVS-4

341

342

Project, System and statechart diagram views
TRANSITIONS

Activate normal transition tool CTRL+3
Activate curved transition tool CTRL+ALT+3
Activate orthogonal transition tool CTRL+SHIFT+3
Activate self- transition tool CTRL+4
Remove last placed route point Right mouse button

(transition tool must be active)
Clone a route point
(add a route point to a transition). Press CTRL and drag route point
Delete dragged route point Drag route point onto another route

point on the same transition.

STATES

Activate simple state tool CTRL+2
Activate composite state tool CTRL+SHIFT+2
Define number of regions in composite state Press and hold CTRL while drawing a

composite state.
Swap two regions within the same state SHIFT + drag a region
Activate initial state tool CTRL+5
Activate shallow history state tool CTRL+ALT+5
Activate deep history state tool CTRL+SHIFT+5
Activate final state tool CTRL+6
Activate join state tool CTRL+7
Activate fork state tool CTRL+ALT+7
Activate junction state tool CTRL+SHIFT+7
Activate connector state tool CTRL+8

Project, System and statechart diagram views
Select object(s) Click and hold left mouse button on

the statechart (not on an object). Drag
a rectangle. All objects within the
rectangle will be selected when you
release the left mouse button.

Clone selected object(s) Press CTRL and drag selection
Delete selected text or object DELETE
Cancel editing ESC
UVS-4

visualSTATE®

User Guide

Designer shortcuts
NAVIGATION

Go to next object (from selected object) TAB
Go to previous object (from selected object) SHIFT+TAB
Scroll up CTRL+UP ARROW
Scroll down CTRL+DOWN ARROW
Scroll left CTRL+LEFT ARROW
Scroll right CTRL+RIGHT ARROW
Scroll up one page PAGE UP /

CTRL+SHIFT+UP ARROW
Scroll down one page PAGE DOWN /

CTRL+SHIFT+DOWN ARROW
Scroll left one page CTRL+PAGE UP
Scroll right one page CTRL+PAGE DOWN
Go to top of view HOME
Go to bottom of view CTRL+HOME
Go to the far left of view END
Go to the far right of view CTRL+END
To change between windows and views CTRL+TAB

MOVING OBJECTS

Move selected objects one grid unit ARROW keys
Move selected objects one pixel SHIFT+ARROW keys

ZOOMING STATECHART DIAGRAMS

Zoom in +
Zoom out -
Zoom all objects Zoom +"+"
Zoom selection Zoom +"-"
Set zoom percentage to 100% Press CTRL and click right mouse

button (zoom tool must be active)

GRID AND SNAP

Show grid ALT+G
Grid on top ALT+SHIFT+G
Use snap ALT+S
UVS-4

343

344

Element browser
Element browser
Create a new element CTRL+N
Select next element type CTRL+PAGE DOWN
Select previous element type CTRL+PAGE UP
Delete selected element DELETE
UVS-4

visualSTATE®

User Guide

Designer menu commands
This chapter describes the Designer menu commands and lists their
corresponding shortcut keys and toolbars. The Designer has the following
menus:

● File menu

● Edit menu

● View menu

● Insert menu

● Format menu

● Tools menu

● Window menu

● Help menu.

For a description of the Designer toolbars, see Designer toolbars, page 53.

File menu
This menu contains the following commands:

Command Shortcut key Toolbar

New…

Creates a new Project. The new Project and its Systems can later
be imported into a Navigator workspace, for example for testing
and code generation by means of the other visualSTATE tools.

Ctrl+N Standard

Open Project...

Opens an existing visualSTATE Project file (extension vsp).
Ctrl+O Standard

Save Project

Saves the current Project and all its files.
Ctrl+S Standard

Table 21: Designer File menu commands
UVS-4

345

346

Edit menu
Edit menu
Figure 217, page 346 shows the commands available on this menu which are described
in Table 22, page 347.

Figure 217: Designer Edit menu

Close Project

Closes the Project file.
Standard

Save As...

Saves the selected Statechart file under a new name.

Import…

Imports function declarations and constants contained in a C
header file.

Standard

Page Setup…

This command is used for defining headers, footers, margins etc.
for print-out of statechart diagrams.

Standard

Print Preview…

Opens a view showing how the statechart diagrams will look when
printed. It is possible to print from the view.

Standard

Print...

Prints the current statechart diagrams.
Ctrl+P Standard

Source Control

Opens a submenu of source control commands.
The commands correspond to the source control commands on
the Navigator File menu (see File menu, page 337).

Source
control

Exit

Closes the visualSTATE Designer application.

Command Shortcut key Toolbar

Table 21: Designer File menu commands (Continued)
UVS-4

visualSTATE®

User Guide

Designer menu commands
View menu
This menu allows you to hide or show windows and toolbars by clicking the individual
commands on the menu (see Designer toolbars, page 53). Figure 218, page 348 shows
the commands available on this menu which are described in Table 23, page 348.

Command Shortcut key Toolbar

Undo

Undoes the last action performed, such as Move, Delete,
Rename etc. The type of Undo is specified in the menu, for
example Undo Move. Undo depth is specified by choosing
Tools>Settings.

Alt+Backspace Standard

Cut

Removes the selected item (state or text) and places it on the

clipboard. The item may then be pasted into another field or

diagram. The item will remain on the clipboard until it is

replaced by another item. It may be pasted more than once.

Ctrl+X Standard

Copy

Makes a copy of the selected item (state or text) and places it on
the clipboard. The item may then be pasted into another field or
diagram. The item will remain on the clipboard until it is
replaced by another item. It may be pasted more than once.

Ctrl+C Standard

Paste

Inserts a copy of the item from the clipboard.
Note: It is not possible to cut/copy/paste between different
types of views.

Ctrl+V Standard

Delete

Deletes the selected object(s).
Delete

Find

Opens a window where you can search for element types in

Projects, Systems or topstates.

Ctrl+F

Table 22: Designer Edit menu commands
UVS-4

347

348

View menu
Figure 218: Designer View menu

Command Shortcut key Toolbar

Project Browser

Shows or hides the Project Browser window.
Alt+0

Element Browser

Shows or hides the Element Browser window.
Alt+1

Output

Shows or hides the output window.
Alt+2

Property

Shows or hides the property window.
Alt+3

Zoom view

Opens the zoom view.
Alt+4

Toolbars

Choosing this command opens a submenu by which you can select
display of the Standard, Diagram, Size, Source Control and Zoom
toolbars.

Status bar

Shows or hides the status bar. The status bar is placed at the
bottom of the screen and displays information about the menu
commands, toolbar commands and cursor position in diagram
windows.

Table 23: Designer View menu commands
UVS-4

visualSTATE®

User Guide

Designer menu commands
Insert menu
On this menu you can select the drawing tools that are also available on the Diagram
toolbar. Figure 219, page 350 shows the commands available on this menu.

Show Grid

Shows or hides grid.
Alt+G

Grid On Top

Choose this command to have a grid drawn over all other
elements in the Diagram view.

Shift+Alt+G

Page Border Lines

Shows or hides page border lines. The lines define the editable
area of the diagram page.

Actual Size

Resets size (zoom percentage is reset to 100).
Zoom

Zoom In

Enlarges the size of the items in the current statechart diagram
window.

+ Zoom

Zoom Out

Reduces the size of the items in the current statechart diagram
window.

- Zoom

Zoom All

Zooms so that all objects in the statechart diagram become visible.
Alt + Num + Zoom

Zoom Selection

Zooms so that the selected objects in the statechart diagram
become visible.

Alt + Num - Zoom

Command Shortcut key Toolbar

Table 23: Designer View menu commands (Continued)
UVS-4

349

350

Format menu
Figure 219: Designer Insert menu

Note: The System Tool is only available when the Project Browser window is active.

Format menu
Figure 220, page 350 shows the commands available on this menu which are described
in Table 24, page 351.

Figure 220: Designer Format menu

Figure 221: Alignment menu commands, Designer Format menu
UVS-4

visualSTATE®

User Guide

Designer menu commands
Figure 222: Size menu commands, Designer Format menu

Figure 223: Space menu commands, Designer Format menu

Command Shortcut key Toolbar

Alignment

Opens a submenu of object alignment commands (also found on the
Size toolbar). Objects must be selected for the commands to be
available (click on the states while at the same time pressing the SHIFT
key down).
Objects will be aligned according to the state last selected.

Size

Opens a submenu of object size commands (also found on the Size
toolbar). Objects must be selected for the commands to be available.
Sizes of objects will be changed according to the object last selected.

Space

Opens a submenu of commands for distributing space evenly between
objects (also found on the Size toolbar). At least three objects must be
selected for the commands to be available.
Objects are distributed according to the space between the three
objects last selected.

Reposition Lost Objects

Repositions objects located outside the diagram onto the diagram.

Go to Parent Diagram

Moves your diagram one level up in the hierarchy, for example from
statechart diagram view to System view.

Table 24: Designer Format menu commands
UVS-4

351

352

Tools menu
Tools menu
On this menu you specify various settings for your diagrams and their elements, for
example grid size and zoom percentage. Figure 224, page 352 shows the commands
available on this menu which are described in Table 25, page 352.

Figure 224: Designer Tools menu

Figure 225: Safe Mode menu commands, Designer Tools menu

Command Shortcut key Toolbar

Selection

Activates/deactivates selection tool. Choosing the command when
using a Diagram tool, for example Insert State, deactivates the
Diagram tool.

Ctrl+0 Diagram

Zoom

Activates/deactivates the zoom tool.
Ctrl+Shift+0 Zoom

Use Snap

Activates/deactivates snap. When objects are moved, snap will
move the top-left corners of selected objects to the corners of the
grid.

Alt+S

Grid...

Opens a grid setup dialog box.

Table 25: Designer Tools menu commands
UVS-4

visualSTATE®

User Guide

Designer menu commands
Window menu
This menu offers basic window display commands such as Tile and Cascade windows.
See Figure 226, page 353.

Figure 226: Designer Window menu

Help menu
This menu gives you access to the online help (shortcut key: F1) and general information
about the visualSTATE Designer. See Figure 227, page 353.

Figure 227: Designer Help menu

Safe Mode

Opens a submenu of safe mode commands. By enabling Safe Mode
you will receive a warning when you create or use a non-verifiable
element, according to selection on the submenu.

Standard

Customize...

Opens a dialog box for specifying the default look of the objects
drawn in statechart diagrams, for example default state color.

Settings...

Opens a Designer configuration dialog box for specifying backup
option, undo depth, display of messages, etc.

Command Shortcut key Toolbar

Table 25: Designer Tools menu commands (Continued)
UVS-4

353

354

Help menu
UVS-4

visualSTATE®

User Guide

Validator shortcut keys
This chapter lists the shortcut keys available in the Validator.

General
Create a new workspace CTRL+N
Open a workspace CTRL+O
Save an open file CTRL+S
(if the active window is a Test Sequence File window).
Exit the Validator ALT+F4
Open the Validator online help F1
Stop timer (focus must be set to Timers window) DELETE

Windows
Open a new System window CTRL+1
Open a new Event window CTRL+2
Open a new Action window CTRL+3
Open a new Variable window CTRL+4
Open a new Guard Expression window CTRL+5
Open a new Signal Queue window CTRL+6
Show runtime model (only when in target mode) ALT+F8
Show and/or set focus to the Field Chooser window ALT+0
Show and/or set focus to the System Setup window ALT+1
Show and/or set focus to the output window ALT+2
Show and/or set focus to the Watch window ALT+3
Show and/or set focus to the Timer window ALT+4
Show and/or set focus to the Breakpoints window ALT+9

Editing
Undo the latest action CTRL+Z
Open the Edit Breakpoints dialog box ALT+F9
UVS-4

355

356

Debugging
Debugging
Initialize System(s) ALT+I
Start playing a recorded test sequence F9
Step recorded test sequence one step forward F10
Start execution of a recorded test sequence and
stop it again at the selected step (Run to cursor) CTRL+F10
Set the selected step as the next step in
the recorded test sequence ALT+F10
Stop execution of recorded test sequence
and return the cursor to the first step SHIFT+F5
Pause execution of recorded test sequence CTRL+F5
Mark the selected step of a test sequence
file as a stop point CTRL+F9
Start recording to a test sequence file ALT+R
Send the first signal in the queue F11
Switch between automatic and
manual emptying of signal queue SHIFT+F11
Empty all signal queues by sending the signals CTRL+F11
Start static or dynamic analysis
(depending on the active window) CTRL+F8
Add element to Watch window SHIFT+F9

Navigation in test sequence files
Go to the next sequence CTRL+ DOWN ARROW
Go to the previous sequence CTRL+UP ARROW
UVS-4

visualSTATE®

User Guide

Validator menu
commands
This chapter describes the Validator menu commands and lists their
corresponding shortcut keys and toolbars. The Validator has the following
menus:

● File menu

● Edit menu

● View menu

● Debug menu

● RealLink menu

● Altia menu

● Window menu

● Help menu.

For a description of the Validator toolbars, see Validator toolbars, page 158.
UVS-4

357

358

File menu
File menu
Figure 228, page 358 shows the commands available on this menu which are described
in Table 26, page 358.

Figure 228: Validator File menu

Command Shortcut key Toolbar

New Workspace

Creates a new Validator workspace. You will be prompted to
specify whether or not to load a visualSTATE Project into the new
workspace. If you load a Project into the workspace, the Validator
will automatically open and arrange the windows according to
Classic Simulation style, giving a good starting point for simulation.

Ctrl+N Standard

Open Workspace...

Opens an existing Validator workspace.
Ctrl+O Standard

Close Workspace

Closes the open workspace. If this is a new workspace not yet
assigned to a file, you will be prompted to specify whether or not to
save the workspace.
If the workspace has been assigned to a file, and anything regarding
the functionality of the workspace has changed since the last save,
you will also be prompted to specify whether or not to save the
workspace.
If the workspace has been assigned to a file, window setup etc. will
always be saved.

Table 26: Validator File menu commands
UVS-4

visualSTATE®

User Guide

Validator menu commands
Save Workspace

Saves the current workspace. Functionality setup and window setup
of the workspace will be saved.

Standard

Save Workspace As...

Opens a Save As dialog box by which the workspace can be saved
under a new name.

Standard

Load Project...

Loads a visualSTATE Project into the Validator workspace. Before
interactive simulation, automatic simulation and analysis can be
performed, a visualSTATE Project must be loaded into the
workspace. The Validator workspace only handles one visualSTATE
Project at a time.

Close Project

Closes the visualSTATE Project loaded. Closing a Project will
remove all Project-related information from the Validator
workspace, including breakpoints, System setup, and Windows
directly related to the specific Project.
During the closing of a Validator workspace, the Project is
automatically closed, so unless another Project is to be loaded into
the current workspace, there is no need to close the Project.

Test Sequence File

Opens a submenu of commands for the handling of test sequence
files.

Test Sequence File>New

Opens a new test sequence file. No file is created before save.

Test Sequence File>Open

Opens an existing test sequence file thereby making it possible to
append commands to a sequence, create a new sequence etc.

Test Sequence File>Close

Closes an open test sequence file.

Test Sequence File>Save

Saves an open test sequence file.

Test Sequence File>Save As…

Saves an open test sequence file under a new name.

Analysis

Opens a submenu of commands for the handling of static and
dynamic analysis files.

Command Shortcut key Toolbar

Table 26: Validator File menu commands (Continued)
UVS-4

359

360

Edit menu
Edit menu
Figure 229, page 360 shows the commands available on this menu which are described
in Table 27, page 361.

Figure 229: Validator Edit menu

Analysis>New Dynamic

Creates a new dynamic analysis file and opens it in a new window.

Analysis>New Static

Creates a new static analysis file and opens it in a new window.

Analysis>Open...

Opens either an existing static analysis file or an existing dynamic
analysis file. The Validator will by itself resolve file type on the basis
of the file extension.

Analysis>Close

Closes an open analysis file.

Analysis>Save

Saves an open analysis file.

Analysis>Save As…

Saves an open analysis file under a new name.

Print

Prints an open Validator file. Files that can be printed are test
sequence files, and static and dynamic analysis files.

Standard

Most Recently Used Files list

Contains the four most recently used Validator workspaces. The
first time the Validator is started, the list is empty.

Exit

Closes the Validator application. It is only possible to close the
Validator application if it is not performing any form of analysis or
executing recorded test sequences.

Alt+F4

Command Shortcut key Toolbar

Table 26: Validator File menu commands (Continued)
UVS-4

visualSTATE®

User Guide

Validator menu commands
Command Shortcut key Toolbar

Undo

All operations on the Systems in the loaded visualSTATE Project can
be undone. The commands correspond to the commands that can be
recorded to a file and played from a test sequence file.
Note: The Undo command only applies to the Validator model, not
the runtime model (RealLink).
The following commands can be undone:
Initializing a System.
Sending an event.
Sending a signal.
Setting the value for an internal variable.
Setting the value for an external variable.
Setting the return value for an action.
Forcing a System into a specific state.

Although the manual sending of an event will cause the event to be
sent to all enabled Systems, undoing the Send Event command will
only undo the event last sent. To undo all Send Event commands,
activate the Undo command the same number of times as the
number of enabled Systems in the Project.
Global events can be sent to multiple Systems. To undo the sending
of a global event, you must apply Undo as many times as there are
Systems to which the event was sent.

If the Validator is recording to a test sequence file, the Undo
command will cause the last recorded command to be removed from
the test sequence file.
If the command that is being undone is performed from a test
sequence file, the Undo command will cause the recorded test
sequence to be reversed to its original position.

Ctrl+Z Debug

Designer Path

This command specifies where the Validator is to locate visualSTATE
Designer. This information must be specified in the Validator if
Graphical Animation is to be performed.
The command launches a Windows Open File dialog box to enable
navigation through the available drives and directories of the System.
If the visualSTATE software is installed in its default directories, you
do not have to to specify where to locate the visualSTATE Designer.

Table 27: Validator Edit menu commands
UVS-4

361

362

View menu
View menu
This menu allows you to hide or show windows and toolbars. Figure 230, page 362
shows the commands available on this menu which are described in Table 28, page 362.

Figure 230: Validator View menu

Speed

Opens a submenu of commands related to execution speed for test
sequence files.

Timer Tick Length

Opens a submenu of commands by which it is possible to set the tick
length of timer ticks used in the Validator. You can set the tick length
to one of four predefined values, or set up a custom tick length.

Breakpoints…

Opens a dialog box for defining breakpoints.
Alt+F9

Command Shortcut key Toolbar

Table 27: Validator Edit menu commands (Continued)

Command Shortcut key Toolbar

Field Chooser

Shows and/or sets focus to the Field Chooser window.
Alt+0

Table 28: Validator View menu commands
UVS-4

visualSTATE®

User Guide

Validator menu commands
Debug menu
Figure 231, page 364 shows the commands available on this menu which are described
in Table 29, page 364.

System Setup

Shows and/or sets focus to the System Setup window. System setup
is only relevant if the visualSTATE Project contains more than one
System and/or the System contains multiple instances.

Alt+1

Output

Shows and/or sets focus to the output window.
Alt+2

Watch

Shows and/or sets focus to the Watch window to which elements
from other windows can be added.

Alt+3

Timers

Shows and/or sets focus to the Timer window. The Timer window
shows all running timers.

Alt+4

Breakpoints

Shows and/or sets focus to the Breakpoints window.
Alt+9

Standard

Shows or hides the Standard toolbar.

Debug

Shows or hides the Debug toolbar.

RealLink

Shows or hides the RealLink toolbar.

Analyze

Shows or hides the Analysis toolbar.

Status Bar

Shows or hides the status bar.

Command Shortcut key Toolbar

Table 28: Validator View menu commands (Continued)
UVS-4

363

364

Debug menu
Figure 231: Validator Debug menu

Command Shortcut key Toolbar

Initialize System / Initialize System(s)

Initializes the System (or Systems, if the Project contains multiple
Systems) to its startup state. The command does the following:
● Initializes the state configuration to State-Undefined.
● Initializes all internal and external variables to their initial values.
● Resets the signal queue.

Alt+I Debug

Run

Executes a recorded test sequence.
F9 Debug

Step

Steps a test sequence one step forward.
F10 Debug

Run to Cursor

This command sets a step in a recorded test sequence as a
temporary stop point.

Ctrl+F10

Set as Next Step

Allows jumping back and forward in a recorded test sequence.
Alt+F10

Stop

Stops the playing of a recorded test sequence and resets the cursor
to the start of the file.

Shift+F5 Debug

Table 29: Validator Debug menu commands
UVS-4

visualSTATE®

User Guide

Validator menu commands
Pause

Stops the playing of a test sequence file and leaves the cursor at the
current step.

Ctrl+F5 Debug

Stop Point

Sets a breakpoint in a recorded test sequence. The command is used
to stop execution at a critical point.

Ctrl+F9

Record

Starts or stops recording to a test sequence file.
Alt+R Debug

Auto Empty Signal Queues

Turns the Auto Signal Queue mode of the Validator workspace
on/off. When Auto Signal Queue mode is applied, the signal queue is
automatically emptied when an event is sent manually to a System.
During execution, the signal queue is not emptied automatically.

Shift+F11 Debug

Empty Signal Queues

Sends the first signal in the first queue. If the queue still contains
signals, the next signal is sent. The command continues to send
signals until the queue is empty. It then moves on to the next System
having a signal queue. The command will continue processing until all
signal queues in the Systems are empty.

Ctrl+F11 Debug

Send Signal

Sends the top signal in the first queue not empty. The order in which
the queues are emptied is determined by the System setup.

F11 Debug

Timer Message

This command specifies whether or not a warning message should be
given whenever an event from a timer is about to be sent.

Action Function Return Value Prompt

Choose this command if you want to be prompted for action
function return values.

Analyze

This command starts a static or dynamic analysis whichever is the
active window.

Ctrl+F8 Analysis

Graphical Animation

This command launches the visualSTATE Designer and establishes a
link between the Designer and Validator applications. This gives a
graphical view of the simulation of the System.

Debug

Command Shortcut key Toolbar

Table 29: Validator Debug menu commands (Continued)
UVS-4

365

366

RealLink menu
RealLink menu
Figure 232, page 366 shows the commands available on this menu which are described
in Table 30, page 366.

Figure 232: Validator RealLink menu

Command Shortcut key Toolbar

Connect/ Disconnect

Connect establishes connection between the Validator and target.
Disconnect will set the target into Run mode and close the
RealLink connection.

F6 RealLink

Reset Communication

Resets the communication to its initial state. This button is only
active when the Validator is communicating with the target.

RealLink

Run

This command will cause the target to run in real-time mode. This
means that the Validator does not update its windows to reflect the
status of the target. To stop Run mode, click the Break button.

F8 RealLink

Autostep

First performs a macrostep, then retrieves data from the target.
This sequence of actions is repeated.

Shift+F8 RealLink

Macrostep

Performs a macrostep.
F7 RealLink

Microstep

Performs a microstep.
Shift+F7 RealLink

Break

Stops the target.
Shift+F6 RealLink

Table 30: Validator RealLink menu commands
UVS-4

visualSTATE®

User Guide

Validator menu commands
Altia menu
Figure 233, page 367 shows the commands available on this menu which are described
in Table 31, page 367. A detailed description of the use of the Validator Altia facility is
given in Prototyping with Altia, page 279.

Figure 233: Validator Altia menu

Properties

Used for selection and configuration of a communication module
for RealLink.

Command Shortcut key Toolbar

Table 30: Validator RealLink menu commands (Continued)

Command Shortcut key Toolbar

Connect

Connects the Validator to an Altia design.
Debug

Define Parameters

Opens a dialog box for defining Altia parameter values for
visualSTATE events and action functions.

Properties

Opens a dialog box where you can configure the Altia
connection.

Table 31: Validator Altia menu commands
UVS-4

367

368

Window menu
Window menu
Figure 234, page 368 shows the commands available on this menu which are described
in Table 32, page 368.

Figure 234: Validator Window menu

Command Shortcut key Toolbar

New Window

Opens a submenu of commands by which a number of windows
can be opened.

New Window>System

Opens a new System window.
Ctrl+1

New Window>Event

Opens a new Event window.
Ctrl+2

New Window>Action

Opens a new Action window.
Ctrl+3

New Window>Variable

Opens a new Variable window.
Ctrl+4

New Window>Guard Expression

Opens a new Guard Expression window.
Ctrl+5

New Window>Signal Queue

Opens a new Signal Queue window.
Ctrl+6

Table 32: Validator Window menu commands
UVS-4

visualSTATE®

User Guide

Validator menu commands
Help menu
This menu gives you access to the online help (shortcut key: F1) and general information
about the visualSTATE Validator. See Figure 235, page 369. The commands on this
menu are also available on the Standard toolbar.

Figure 235: Validator Help menu

Close

Closes the currently active window.

Close All

Closes all open windows.

Cascade

Cascades all open windows.
Standard

Tile Horizontally/

Vertically

These commands tile the open windows horizontally and
vertically.

Standard

Classic Simulation

Activation of this command arranges the windows in Classic
Simulation style, with an Event window, a System window and an
Action window tiled vertically. All other opened windows are
minimized.

Standard

Arrange Icons

This command arranges all minimized windows at the bottom of

the Validator window.

Command Shortcut key Toolbar

Table 32: Validator Window menu commands (Continued)
UVS-4

369

370

Help menu
UVS-4

visualSTATE®

User Guide

Verificator command line
options
This chapter describes the options available in the command line version of the
Verificator.

General
You can set the Verificator options in the Navigator or via the command line. There is a
command line equivalent for all the Verificator options that can be set in the Navigator.

A detailed description of the implications of selecting the various Verificator options is
found in Checks performed by visualSTATE Verificator, page 123.

Command line syntax
The command line syntax is as follows:

Verificator <VS Projectfile> <VS Systemname> [option]...

Example 1

verificator.exe Example.vsp VS_System -v

Explanation: Verify the System VS_System in the visualSTATE Project file
Example.vsp and write the result to the screen.

Example 2

verificator.exe Example.vsp VS_System -x local_dead_ends -v
report.txt -c -s 4

Explanation: Verify the System VS_System in the Project file Example.vsp
in compositional mode using a signal queue of length 4.
Exclude check for local dead ends. Write the result to the file
report.txt.

Example 3

verificator.exe Example.vsp System -tOut.vlg -dsTopstate.StateA

Explanation: Perform a trace for the state Topstate.StateA. The
Verificator will find a trace to that state if possible and save the
resulting trace in the file Out.vlg.
UVS-4

371

372

List of Verificator command line options
List of Verificator command line options

Option Explanation

-a Verify in full mode. When verifying in this mode, guard expressions and
assignments are included in the verification.

-B<n> Treat all variables as signed integers encoded in <n> bits.

-c Perform verification in compositional mode.

-ds<state name> <state name> is the destination state in trace. This option may be
repeated to add more states.

-f Do not exclude regions and states marked for exclusion from
verification. (By default, items marked for exclusion are excluded.)

-g Verify in guard mode. When verifying in this mode, guard expressions
are included in the verification.

-Large | -large Minimize the memory consumption at the expense of a larger time
usage. This setting is suitable for large systems.

-p Use the Verificator options specified in the Navigator.

-s<n> Verify using a signal queue. This option is followed by a parameter <n>.
n is a number, use a signal queue of size n. If the s option is not
specified, use a signal queue with the length specified in the visualSTATE
Project file.

-S<n> Specify the initial size of node space. Larger node space usually yields
quicker verification. One node uses 20-40 bytes of memory.

-Small | -small Speed up verification at the expense of a larger memory consumption.
This setting is suitable for small systems.

-t<trace output> <trace output> specifies the file the trace should be saved in. Normally
with a .vlg extension.

-u Control variable ranges in assignments. If a range error is detected in
an assignment, a fixed constant value is assigned to the variable on the
left-hand side. This value does not have to be within the variable's
range. The benefit is that constant values can be represented very
compactly by the Verificator, and speed up the remaining verification
process.

-v[<outfile>] Writes a text report to the file <outfile>, if specified. If no output file is
specified, the text report is written to the screen.

-w Specify that VS_INT and VS_UINT variables are 16 bits.

Table 33: Verificator command line options
UVS-4

visualSTATE®

User Guide

Verificator command line options
-x<check> Exclude <check>. The <checks> that can be excluded are the
following:
use
activation
state_dead_ends
local_dead_ends
system_dead_ends
conflicts

Option Explanation

Table 33: Verificator command line options (Continued)
UVS-4

373

374

List of Verificator command line options
UVS-4

visualSTATE®

User Guide

Coder options
This chapter lists the Coder options available and how to set them via the
command line. You can also set Coder options via the Navigator as described
in Setting Verificator, Coder and Documenter options, page 29.

Command line syntax
A Coder option is either a Project option or a System option.

In general, Project options will affect the Project and all Systems contained in it. System
options only affect the System(s) for which they are specified.

The command line syntax for Coder options is:

<vsp_filename> [--l] [--@<filename>] <-<option>[argument]>*

At any point on the command line, the contents of an option file can be inserted. The
syntax for specifying an option file is:

--@<option-file>

The option file must contain options separated by line breaks; thus there is one option
on each line. A line is treated as a comment if the line starts with the character sequence
'//'.

Specifying --l will load options from the specified vsp file.

Both Project options and System options can be specified anywhere on the command
line. System options that are specified before any System has been specified (option -V)
apply to all Systems.

If no options and no vsp file are specified on the command line, a list of the options will
be displayed.

The command line is case-sensitive.

COMMAND LINE EXAMPLES

Example 1

Coder Mobile.vsp

This command will generate a VS Project located in the file Mobile.vsp.
UVS-4

375

376

Lists of Coder options
Example 2

Coder Mobile.vsp -api_type1 -api_version4 -Vmobile1 -txte3 -txts3
-txta3 -Vmobile2

This command will generate a VS Project containing VS Systems named Mobile1 and
Mobile2. Code generation will be for Expert API version 4.

In addition, the VS System Mobile1 will be generated with names and explanation texts
for events, states, and action functions.

Example 3

Coder Mobile.vsp --@MobileSetup.txt

Contents of the MobileSetup.txt option file:

-Vmobile

-txte3

-txts3

-txta3

This command will generate a VS Project containing a VS System named Mobile.
Code generation will be for Basic API version 4.

In addition, the VS System Mobile will be generated with names and explanation texts
for events, states, and action functions.

Lists of Coder options
The individual Coder options are listed in Project options, page 377 and System options,
page 386. The contents of the lists correspond to the online help of the Coder Options
dialog box (see Online help, page 31).

CODER OPTION TYPES

Enumerated options [E]

Integral options [I]

Text options [T]

Boolean options [B]
UVS-4

visualSTATE®

User Guide

Coder options
Project options

Project option, configuration Explanation / [option type]

-api_type<argument> API type. [E]
Default argument: Basic
Specifies the runtime API to use for code generation.
0 (Basic): The Basic API is the most efficient API in all respects, but it can only handle a VS
Project with a single VS System and it cannot load VS Projects from disk.
1 (Expert): The Expert API should primarily be used for VS Projects containing multiple VS
Systems, but it can also be used for VS Projects containing a single VS System. The Expert
API must also be used if a VS Project is to be loaded from disk, even if the VS Project only
contains a single VS System.

-api_version<argument> API version. [E]
Default argument: Version 4/5
Specifies the version of the runtime API to generate code for.
4 (Version 4/5): Forces generation of code compatible with versions 4 and 5 of visualSTATE.

-reallinkmode<argument> RealLink mode. [E]
Default argument: None
Specifies the RealLink mode to generate code for.
0 (None): Disables all RealLink related code generation.
1 (Table-based): Generates RealLink related tables.

-expertDLL[{0|1}] Generate for Expert DLL. [B]
Default argument: 0
Specifies whether to generate code for the Expert DLL.

-cpp[{0|1}] C++ code generation. [B]
Default argument: 0
Specifies whether to generate C++ code.

-warnings_are_errors[{0|1}] Treat warnings as errors. [B]
Default argument: 0
Specifies whether to treat warnings as errors. If set, warnings will be reported as errors.

-warnings_affect_exit_code[{0|1}] Warnings affect exit code. [B]
Default argument: 0
Specifies whether warnings affect the exit code. If set, warnings will result in an exit code
different from 0. This option is primarily intended for command line usage.

-no_warnings[{0|1}] Ignore warnings. [B]
Default argument: 0
Specifies whether to ignore warnings. If set, warnings will not be reported and cannot affect
the exit code.

Table 34: Configuration project options
UVS-4

377

378

Lists of Coder options
-include_excluded[{0|1}] Include excluded items. [B]
Default argument: 0
Specifies whether to ignore exclusion marks in the design and include all states and regions
when generating code.

Project option, configuration (Continued) Explanation / [option type]

Table 34: Configuration project options (Continued)

Project option, file output Explanation / [option type]

-path[driveDir] Output path. [T]
Default argument: coder\
Specifies the output path for all generated Project files. If the path does not exist, it is created
automatically. The path may be a relative path.

-R[pathname] Report file. [T]
Default argument: vscoder.cre
Specifies the name of the report file. The file contains a header identifying the VS Project, applied
options, model characteristics and statistics as well as a summary of the overall code generation. If this
option is specified without an argument (file name), the file is not generated.

-geventh[pathname] Event header file. [T]
Default argument: PRJ_PEvent.h
Specifies the name of the file containing VS Project level event definitions. This option is only available
if the expert API has been selected and also requires that the option to print event names is set. If an
empty argument is specified for this option, the default name is used.

-gextvarh[pathname] External variable header file. [T]
Default argument: PRJ_PExtVar.h
Specifies the name of the file containing VS Project level external variable declarations.

-gextvarc[pathname] External variable source file. [T]
Default argument: PRJ_PExtVar.c
Specifies the name of the file containing VS Project level external variable definitions.

-G[pathname] Constant header file. [T]
Default argument: PRJ_PConstant.h
Specifies the name of the file containing VS Project level constant definitions.

Table 35: File output project options
UVS-4

visualSTATE®

User Guide

Coder options
Project option, code Explanation / [option type]

-rdfm<argument> Rule data format. [E]
Default argument: Optimized
Specifies the rule data format to use.
O (Optimized): Uses the most optimal rule data format. The Coder determines the optimal rule data
format with regard to minimal usage of constant data (size optimization).
0 (Format 0): Uses rule data format 0. This format uses 8-bit access to rule data. The format supports
rules with a maximum of 15 8-bit elements of each type, but does not support guard expressions and
signals.
1 (Format 1): Uses rule data format 1. This format uses 8-bit access to rule data. The format supports
rules with a maximum of 15 8-bit elements of each type.
2 (Format 2): Uses rule data format 2. This format uses 8-bit access to rule data. The format supports
rules with a maximum of 255 8-bit elements of each type, but does not support guard expressions and
signals.
3 (Format 3): Uses rule data format 3. This format uses 8-bit access to rule data. The format supports
rules with a maximum of 255 8-bit elements of each type.
4 (Format 4): Uses rule data format 4. This format uses 16-bit access to rule data. The format supports
rules with a maximum of 15 16-bit elements of each type, but does not support guard expressions and
signals.
5 (Format 5): Uses rule data format 5. This format uses 16-bit access to rule data. The format supports
rules with a maximum of 15 16-bit elements of each type.
6 (Format 6): Uses rule data format 6. This format uses 16-bit access to rule data. The format supports
rules with a maximum of 255 16-bit elements of each type, but does not support guard expressions and
signals.
7 (Format 7): Uses rule data format 7. This format uses 16-bit access to rule data. The format supports
rules with a maximum of 255 16-bit elements of each type.
8 (Format 8): Uses rule data format 8. This format uses 32-bit access to rule data. The format supports
rules with a maximum of 255 32-bit elements of each type, but does not support guard expressions and
signals.
9 (Format 9): Uses rule data format 9. This format uses 32-bit access to rule data. The format supports
rules with a maximum of 255 32-bit elements of each type.

Table 36: Code project options
UVS-4

379

380

Lists of Coder options
-D<argument> Data width. [E]
Default argument: Optimized
Specifies the data width for SEM variable types.
O (Optimized): Optimizes the data widths for SEM type definitions. Selecting this value sets the width
for all SEM types to the smallest possible size in order to reduce usage of variable and constant data.
0 (8-bit): Sets the data width of all SEM types to 8-bit. If the intended target handles 8-bit access well,
speed will probably be increased.
1 (16-bit): Sets the data width of all SEM types to 16-bit. If the intended target handles 16-bit access
well, speed will probably be increased.
2 (32-bit): Sets the data width of all SEM types to 32-bit. If the intended target handles 32-bit access
well, speed will probably be increased.

-iev<argument> External variable initialization. [E]
Default argument: By definition
Specifies the method(s) for external variable initialization.
0 (By function): Initializes variables in a function. If variables need to be reinitialized at some point
during execution of the VS model, select this value for the option. For example, this could be the case
if VS Systems are reinitialized.
1 (By definition): Initializes variables along with their definition. If variables only need to be initialized
once, select this value for the option.
2 (Both): Initializes variables in a function and by definition. This value for the option should only be
selected for debug purposes, since one of the methods should suffice.

-iiv<argument> Internal variable initialization. [E]
Default argument: By definition
Specifies the method(s) for internal variable initialization.
0 (By function): Initializes variables in a function. If variables need to be reinitialized at some point
during execution of the VS model, select this value for the option. For example, this could be the case
if VS Systems are reinitialized.
1 (By definition): Initializes variables along with their definition. If variables only need to be initialized
once, select this value for the option.
2 (Both): Initializes variables in a function and by definition. This value for the option should only be
selected for debug purposes, since one of the methods should suffice.

-iss[{0|1}] Explicitly initialize static storage with zero values. [B]
Default argument: 0
Specifies whether explicitly to initialize static storage with zero values (external and internal
variables). If the initial value of an external or internal variable is zero, there is no need for an explicit
initializer, since the target compiler does the initialization anyway. The option should only be applied
for compilers that do not adhere to the standard, i.e. compilers that do not do this initialization as
required.

Project option, code (Continued) Explanation / [option type]

Table 36: Code project options (Continued)
UVS-4

visualSTATE®

User Guide

Coder options
-funcexph<argument> Functional expression handling. [E]
Default argument: Function pointer tables
Specifies how functional expressions (guard expressions and action expressions) are handled.
0 (Function pointer tables): Uses a function pointer table for functional expressions. The table ensures
constant time access to functional expressions by defining separate functions for functional
expressions and including pointers to those functions in an array.
1 (Binary if-else construct): Uses a binary if-else construct for functional expressions. A single
function is generated with a binary if-else construct to determine the functional expression to execute.
This method should only be used if the compiler does not handle the alternatives efficiently.
2 (Switch-case construct): Uses a switch-case construct for functional expressions. A single function
is generated with a switch-case construct to determine the functional expression to execute. If the
compiler is able to recognize the switch-case construct and convert it into a jump table, this may be the
most efficient way to handle functional expressions.

-osm[{0|1}] Optimizes states and state machines. [B]
Default argument: 1
Specifies whether to optimize states and state machines. If the option is set, any state machine with a
single state is optimized away, thus reducing the number of states, the number of state machines and
the size of the core model logic.

-useegti[{0|1}] Forces the use of egti tables. [B]
Default argument: 0
Specifies whether to force the use of event group table indexing. This option is primarily provided for
internal use.

-gdef[{0|1}] Generate global definitions. [B]
Default argument: 0
Specifies whether to generate global definitions, which are used internally by some visualSTATE
applications.

-gds[{0|1}] Generate digital signature. [B]
Default argument: 0
Specifies whether to include a digital signature in the generated code.

-useheap[{0|1}] Use heap memory. [B]
Default argument: 1
Specifies whether to use heap memory. If heap memory is not used, all variable data except for stack
data are allocated statically, and the standard functions malloc and free are not used.

Project option, code (Continued) Explanation / [option type]

Table 36: Code project options (Continued)
UVS-4

381

382

Lists of Coder options
Project option, style Explanation / [option type]

-style<argument> Naming style. [E]
Default argument: New
Specifies which naming style to use.
0 (New): Disables version 3 compatible names for API functions.
(All other argument to -style are now disabled.)

-tsemt<argument> SEM type definitions. [E]
Default argument: As macros
Specifies how to define SEM type definitions.
0 (As typedefs): Uses the 'typedef' keyword for type definitions. Select this value whenever possible, since
it helps the compiler to do type checking.
1 (As macros): Uses the '#define' keyword for type definitions. The value is needed for compilers that cannot
determine that two type definitions actually are the same.

-tvsvt<argument> VS type definitions. [E]
Default argument: As macros
Specifies how to define VS type definitions.
0 (As typedefs): Uses the 'typedef' keyword for type definitions. Select this value whenever possible, since
it helps the compiler to do type checking.
1 (As macros): Uses the '#define' keyword for type definitions. The value is needed for compilers that cannot
determine that two type definitions actually are the same.

Table 37: Style project options

Project option, extended keywords Explanation / [option type]

-c51vs_prj<argument> C51 variable segment. [E]
Default argument: None
Specifies where to place C51 variable data. If an extended keyword is specified for a specific type
of variable data, the C51 segment will be ignored.
0 (None): No C51 keywords are used. Select this value if the intended target does not support C51
keywords.
1 (DATA segment): Coder-generated variable data are stored in DATA.
2 (IDATA segment): Coder-generated variable data are stored in IDATA.
3 (PDATA segment): Coder-generated variable data are stored in PDATA.
4 (XDATA segment): Coder-generated variable data are stored in XDATA.

-kw_context[string] Ext. keyword for System context. [T]
Specifies an extended keyword string for the System context variable(s) (variable data).

-kw_prj_extvar[string] Ext. keyword for external variables. [T]
Specifies an extended keyword string for external variables (variable data).

Table 38: Extended keyword project options
UVS-4

visualSTATE®

User Guide

Coder options
-c51cs_prj<argument> C51 constant segment. [E]
Default argument: None
Specifies where to place C51 constant data. If an extended keyword is specified for a specific type
of constant data, the C51 segment will be ignored.
0 (None): No C51 keywords are used. Select this value if the intended target does not support C51
keywords.
1 (CODE segment): Coder-generated constant data are stored in CODE.

-kw_corelogic[string] Ext. keyword for core model logic. [T]
Specifies an extended keyword string for the core model logic struct variable(s) (constant data).

-kw_guardexpr[string] Ext. keyword for guard expression collection. [T]
Specifies an extended keyword string for the guard expression collection variable(s) (constant
data).

-kw_actionexpr[string] Ext. keyword for action expression collection. [T]
Specifies an extended keyword string for the action expression collection variable(s) (constant
data).

-kw_runtimeinfo[string] Ext. keyword for runtime info. [T]
Specifies an extended keyword string for the runtime info struct variable (constant data). At
present, the runtime info struct only contains the digital signature for the VS Project.

Project option, extended keywords Explanation / [option type]

Table 38: Extended keyword project options (Continued)

Project option, RealLink Explanation / [option type]

-kw_rlpd[string] RealLink protocol data ext. keyword. [T]
Specifies an extended keyword string used for RealLink protocol data.

-userlkw[{0|1}] Use additional RealLink extended keywords. [B]
Default argument: 0
Specifies whether to use additional RealLink extended keywords.

-kw_rld[string] RealLink data ext. keyword. [T]
Specifies an extended keyword string used for RealLink symbol table data.

-kw_rlcd[string] RealLink const data ext. keyword. [T]
Specifies an extended keyword string used for RealLink symbol table const data.

Table 39: RealLink project options
UVS-4

383

384

Lists of Coder options
Project option, C-SPYLink Explanation / [option type]

-suppress_cspylink_common_files[{0|1}] Suppress C-SPYLink common files. [B]
Default argument: 0
This option prevents multiple C-SPYLink files from being generated when you are
using two or more systems in the same linked image together with the C-SPYLink
debug facility.

Table 40: C-SPYLink project options

Project option, API functions Explanation / [option type]

-seminquiry[{0|1}] Enable SEM_Inquiry and SEM_GetInput. [B]
Default argument: 0
Specifies whether to enable the API functions SEM_Inquiry and SEM_GetInput. If the
option is set, the function will be enabled. The option is available if API type is Basic.

-semname[{0|1}] Enable SEM_Name. [B]
Default argument: 0
Specifies whether to enable the API function SEM_Name. If the option is set, the function
will be enabled. The option is available if API type is Basic.

-semexpl[{0|1}] Enable SEM_Expl. [B]
Default argument: 0
Specifies whether to enable the API function SEM_Expl. If the option is set, the function will
be enabled. The option is available if API type is Basic.

-semstate[{0|1}] Enable SEM_State. [B]
Default argument: 0
Specifies whether to enable the API function SEM_State. If the option is set, the function
will be enabled. The option is available if API type is Basic.

-semmachine[{0|1}] Enable SEM_Machine. [B]
Default argument: 0
Specifies whether to enable the API function SEM_Machine. If the option is set, the function
will be enabled. The option is available if API type is Basic.

-semforcestate[{0|1}] Enable SEM_ForceState. [B]
Default argument: 0
Specifies whether to enable the API function SEM_ForceState. If the option is set, the
function will be enabled. The option is available if API type is Basic.

-semstateall[{0|1}] Enable SEM_StateAll. [B]
Default argument: 0
Specifies whether to enable the API function SEM_StateAll. If the option is set, the function
will be enabled. The option is available if API type is Basic.

Table 41: API functions project options
UVS-4

visualSTATE®

User Guide

Coder options
-semnextstatechg[{0|1}] Enable SEM_NextStateChg. [B]
Default argument: 0
Specifies whether to enable the API function SEM_NextStateChg. If the option is set, the
function will be enabled. The option is available if API type is Basic.

-semexplabs[{0|1}] Enable SEM_ExplAbs. [B]
Default argument: 0
Specifies whether to enable the API function SEM_ExplAbs. If the option is set, the function
will be enabled. The option is available if API type is Basic.

-semnameabs[{0|1}] Enable SEM_NameAbs. [B]
Default argument: 0
Specifies whether to enable the API function SEM_NameAbs. If the option is set, the
function will be enabled. The option is available if API type is Basic.

-semgetoutputall[{0|1}] Enable SEM_GetOutputAll. [B]
Default argument: 0
Specifies whether to enable the API function SEM_GetOutputAll. If the option is set, the
function will be enabled. The option is available if API type is Basic.

-semgetinputall[{0|1}] Enable SEM_GetInputAll. [B]
Default argument: 0
Specifies whether to enable the API function SEM_GetInputAll. If the option is set, the
function will be enabled. The option is available if API type is Basic.

-semsignalqueueinfo[{0|1}] Enable SEM_SignalQueueInfo. [B]
Default argument: 0
Specifies whether to enable the API function SEM_SignalQueueInfo. If the option is set, the
function will be enabled. The option is available if API type is Basic.

Project option, API functions (Continued) Explanation / [option type]

Table 41: API functions project options (Continued)
UVS-4

385

386

Lists of Coder options
System options

System option, basic Explanation / [option type]

-V[string] System. [T]
Specifies a System.

Table 42: Basic system options

System option, file output Explanation / [option type]

-usepop[{0|1}] Use Project output path. [B]
Default argument: 1
Specifies whether to use the same output path as the path specified for the Project.

-spath[driveDir] Output path. [T]
Specifies the output path for all generated System files. If the path does not exist, it is created
automatically. The path may be a relative path.

-H[pathname] System header file. [T]
Default argument: SYS.h
Specifies the name of the header file containing System level model declarations. If an empty
argument is specified for this option, the default name is used.

-S[pathname] System source file. [T]
Default argument: SYS.c
Specifies the name of the source file containing System level model definitions. If an empty
argument is specified for this option, the default name is used.

-L[pathname] System data header file. [T]
Default argument: SYSData.h
Specifies the name of the header file containing additional System level model declarations. If
an empty argument is specified for this option, the default name is used.

-K[pathname] System data source file. [T]
Default argument: SYSData.c
Specifies the name of the source file containing additional System level model definitions. If
an empty argument is specified for this option, the default name is used.

-A[pathname] Action expression header file. [T]
Default argument: SYSAction.h
Specifies the name of the header file containing System level action expression declarations. If
an empty argument is specified for this option, the default name is used.

-F[pathname] Action function header file. [T]
Specifies the name of the header file containing System level action function declarations. If
an empty argument is specified for this option, the declarations are generated in the action
expression header file.

Table 43: File output system options
UVS-4

visualSTATE®

User Guide

Coder options
-extvarh[pathname] External variable header file. [T]
Specifies the name of the header file containing System level external variable declarations. If
an empty argument is specified for this option, the declarations are generated in the System data
header file.

-extvarc[pathname] External variable source file. [T]
Specifies the name of the source file containing System level external variable definitions. If
an empty argument is specified for this option, the definitions are generated in the System data
source file.

-M[pathname] Constant header file. [T]
Specifies the name of the header file containing System level constant definitions. If an empty
argument is specified for this option, the definitions are not generated.

-B[pathname] System binary file. [T]
Default argument: SYS.sld
Specifies the name of the file containing a model of the VS System in a binary loadable format.
This file is only used if a System is to be loaded from disk. If an empty argument is specified
for this option, the default name is used.

System option, file output (Continued) Explanation / [option type]

Table 43: File output system options (Continued)

System option, code Explanation / [option type]

-constcml[{0|1}] Const core model logic. [B]
Default argument: 1
Specifies whether to define the core model logic as a const variable. Only unset this option in
exceptional cases. For example, if the target has sufficient and fast RAM, and speed is of highest
importance, the option should be unset.

-constguardfpt[{0|1}] Const guard expression FPT. [B]
Default argument: 1
Specifies whether to define the guard expression function pointer table as a const variable. Only unset
this option in exceptional cases. For example, if the target has sufficient and fast RAM, and speed is of
highest importance, the option should be unset.

-constactionfpt[{0|1}] Const action expression FPT. [B]
Default argument: 1
Specifies whether to define the action expression function pointer table as a const variable. Only unset
this option in exceptional cases. For example, if the target has sufficient and fast RAM, and speed is of
highest importance, the option should be unset.

Table 44: Code system options
UVS-4

387

388

Lists of Coder options
-static[{0|1}] Static items. [B]
Default argument: 0
Specifies whether to define the core model logic, guard expressions and action expressions as static
variables and/or functions. Only set this option when using the Basic API file SEMCfgB.c (which is
obsolete), and all generated source files are included in this single 'source' file. The option is available
if API type is Basic.

-og[{0|1}] Merge guard expressions. [B]
Default argument: 0
Specifies whether to merge guard expressions. If the option is set, speed may be increased since
multiple guard expressions associated with a single transition are generated as a compound statement
in the generated code. The drawback is that the same guard expression may be generated multiple times
if constructs such as entry reactions, exit reactions and/or history states are used. If size is essential,
unsetting the option may generate smaller code.

-oa[{0|1}] Merge action expressions. [B]
Default argument: 0
Specifies whether to merge action expressions. If the option is set, speed may be increased since
multiple action expressions associated with a single transition are generated as a compound statement
in the generated code. The drawback is that the same action expression may be generated multiple
times if constructs such as entry reactions, exit reactions and/or history states are used. If size is
essential, unsetting the option may generate smaller code.

-noactionfpt[{0|1}] Skips generation of action expression collection. [B]
Default argument: 0
Specifies whether to skip generation of the action expression collection. If the option is set, the macros
for executing an action expression (for example SEM_Action/SMP_Action) are of no use, since they
depend on the existence of an action expression collection. The option should only be set when
generating code compatible with version 3 of visualSTATE.

-omitcontradictiontests[{0|
1}]

Omit contradiction tests. [B]
Default argument: 0
Turns off the generation of contradiction test code for each transition. Only use this option if you know
that your system is free from transition conflicts or if you have particular testing requirements, for
example, various branch coverage metrics. Note that if the system is verified in some way to be
conflict-free, no test sequence that will exercise the error part of the conflict test can be constructed
unless you modify the generated code by inserting test code to manipulate variable values. This option
can be used for both human-readable code and table-based code. See also The size of human-readable
code, page 253.

System option, code Explanation / [option type]

Table 44: Code system options (Continued)
UVS-4

visualSTATE®

User Guide

Coder options
System option, readable code Explanation / [option type]

-splitreadable[{0|1}] Split readable code. [B]
Default argument: 0
This option rewrites a <SystemName>VSDeduct() function to use helper functions for event
processing. This can be beneficial for very large <SystemName>VSDeduct() function, because it
reduces the compilation time if aggressive compiler optimization flags are used. It can also overcome
arbitrary implementation function size limits of your compiler. This option causes a slight code size
and speed overhead.

Table 45: Readable code system options

System option, style Explanation / [option type]

-struct[identifier] System structure name. [T]
Default argument: System
Specifies the name of the core model logic struct variable.

-N[identifier] Action expression collection name. [T]
Default argument: SystemVSAction
Specifies the name of the action expression collection.

-lower[{0|1}] (This option is now ignored)
Generates lowercase action function names. [B]
Default argument: 0
Specifies whether to generate action function names in lowercase. This option is provided for
compatibility with version 3 of visualSTATE.

Table 46: Style system options

System option, ext. keywords Explanation / [option type]

-c51vs_sys<argument> C51 variable segment. [E]
Default argument: None
Specifies where to place C51 variable data. If an extended keyword is specified for a specific type of
variable data, the C51 segment will be ignored.
0 (None): No C51 keywords are used. Select this value if the intended target does not support C51
keywords.
1 (DATA segment): Coder-generated variable data are stored in DATA.
2 (IDATA segment): Coder-generated variable data are stored in IDATA.
3 (PDATA segment): Coder-generated variable data are stored in PDATA.
4 (XDATA segment): Coder-generated variable data are stored in XDATA.

-kw_sys_extvar[string] Ext. keyword for external variables. [T]
Specifies an extended keyword string for external variables (variable data).

-kw_intvar[string] Ext. keyword for internal variables. [T]
Specifies an extended keyword string for internal variables (variable data).

Table 47: Extended keywords system options
UVS-4

389

390

Lists of Coder options
-kw_dbdata[string] Ext. keyword for double buffer variable. [T]
Specifies an extended keyword string for the double buffer variable (variable data).

System option, ext. keywords Explanation / [option type]

Table 47: Extended keywords system options (Continued)

System option, names Explanation / [option type]

-txte<argument> Event name inclusion. [E]
Default argument: No text
Specifies the amount of event name inclusion in the core model logic struct.
0 (No text): Includes no element texts in the generated code.
1 (Names included): Includes names in the generated code. If it is necessary to extract names from
the VS model running in the target, select this value for the option. See the documentation for the
API functions with suffix '_Name' and '_NameAbs'.
2 (Explanations included): Includes explanations in the generated code. If it is necessary to extract
explanations from the VS model running in the target, select this value for the option. See the
documentation for the API functions with suffix '_Expl' and '_ExplAbs'.
3 (Names and explanations): Includes names and explanations in the generated code.

-sne<argument> Printing of symbolic event names. [E]
Default argument: Do not convert
Specifies how to print symbolic event names.
0 (Do not print): Does not generate symbolic element names.
1 (Do not convert): Generates symbolic element names as defined in the VS model.
2 (Convert to uppercase): Generates symbolic element names as defined in the VS model, but
converted to uppercase.

-txts<argument> State name inclusion. [E]
Default argument: No text
Specifies the amount of state name inclusion in the core model logic struct.
0 (No text): Includes no element texts in the generated code.
1 (Names included): Includes names in the generated code. If it is necessary to extract names from
the VS model running in the target, select this value for the option. See the documentation for the
API functions with suffix '_Name' and '_NameAbs'.
2 (Explanations included): Includes explanations in the generated code. If it is necessary to extract
explanations from the VS model running in the target, select this value for the option. See the
documentation for the API functions with suffix '_Expl' and '_ExplAbs'.
3 (Names and explanations): Includes names and explanations in the generated code.

Table 48: Names system options
UVS-4

visualSTATE®

User Guide

Coder options
-sns<argument> Printing of symbolic state names. [E]
Default argument: Do not print
Specifies how to print symbolic state names.
0 (Do not print): Does not generate symbolic element names.
1 (Do not convert): Generates symbolic element names as defined in the VS model.
2 (Convert to uppercase): Generates symbolic element names as defined in the VS model, but
converted to uppercase.

-txta<argument> Action function name inclusion. [E]
Default argument: No text
Specifies the amount of action function name inclusion in the core model logic struct.
0 (No text): Includes no element texts in the generated code.
1 (Names included): Includes names in the generated code. If it is necessary to extract names from
the VS model running in the target, select this value for the option. See the documentation for the
API functions with suffix '_Name' and '_NameAbs'.
2 (Explanations included): Includes explanations in the generated code. If it is necessary to extract
explanations from the VS model running in the target, select this value for the option. See the
documentation for the API functions with suffix '_Expl' and '_ExplAbs'.
3 (Names and explanations): Includes names and explanations in the generated code.

-sna<argument> Printing of symbolic action function names. [E]
Default argument: Do not print
Specifies how to print symbolic action function names.
0 (Do not print): Does not generate symbolic element names.
1 (Do not convert): Generates symbolic element names as defined in the VS model.
2 (Convert to uppercase): Generates symbolic element names as defined in the VS model, but
converted to uppercase.

-snm<argument> Printing of symbolic state machine names. [E]
Default argument: Do not print
Specifies how to print symbolic state machine names.
0 (Do not print): Does not generate symbolic element names.
1 (Do not convert): Generates symbolic element names as defined in the VS model.
2 (Convert to uppercase): Generates symbolic element names as defined in the VS model, but
converted to uppercase.

System option, names (Continued) Explanation / [option type]

Table 48: Names system options (Continued)
UVS-4

391

392

Lists of Coder options
System option, API functions Explanation / [option type]

-seminitall[{0|1}] Enable SEM_InitAll or [system_name]SMP_InitAll. [B]
Default argument: 0
Specifies whether to enable the API function SEM_InitAll (Basic API name) or
[system_name]SMP_InitAll (Expert API name(s)). If the option is set, the function(s)
will be enabled.

Table 49: API functions system options
UVS-4

visualSTATE®

User Guide

Documenter options
This chapter lists the Documenter options available and how to set them via
the command line. You can also set Documenter options via the Navigator as
described in Setting Verificator, Coder and Documenter options, page 29.

Command line syntax
The command line syntax for Documenter options is:

<vsp_filename> [--l] [--@<filename>] <-<option>[argument]>*

Specifying --l will load options from the specified vsp file.

Specifying --@ will load additional options from the specified file. Each line in the file
must contain exactly one option. A line is treated as a comment if the line starts with the
character sequence '//'.

Lists of Documenter options
The individual Documenter options are listed below. The contents of the lists correspond
to the online help of the Documenter Options dialog box (see Online help, page 31).

DOCUMENTER OPTION TYPES

Enumerated options [E]

Integral options [I]

Text options [T]

Boolean options [B]
UVS-4

393

394

Lists of Documenter options
Project option, configuration Explanation / [option type]

-title[string] Title. [T]
Default argument: PRJ
Specifies the title of the report.

-detail<argument> Detail level. [E]
Default argument: Medium
Specifies the detail level of the report.
0 (Low): Explanations, state vectors from Validator test sequence files, and
transreactions are excluded.
1 (Medium): Explanations and state vectors from Validator test sequence files are
excluded.
2 (High): All information related to a Project is included.

-introduction[{0|1}] Include introduction. [B]
Default argument: 0
Specifies whether to include an introduction. This section will contain user-written text
files.

-design[{0|1}] Include model design. [B]
Default argument: 1
Specifies whether to include information on model design. This is the main section of
the report. It contains a complete description of the design, including statecharts,
transitions, elements, etc.

-test[{0|1}] Include model test. [B]
Default argument: 1
Specifies whether to include information on model test. This section contains test files,
such as Validator static analysis files, Validator dynamic analysis files, Validator test
sequence files and Verificator report files.

-interface[{0|1}] Include model interface. [B]
Default argument: 1
Specifies whether to include information on model interface. This section contains a
table for each element type that is part of the external interface, that is events, action
functions, external variables and constants.

-implementation[{0|1}] Include implementation. [B]
Default argument: 1
Specifies whether to include information on implementation. This section contains
Coder report files.
UVS-4

visualSTATE®

User Guide

Documenter options
-pseudo_code[{0|1}] Include pseudo code. [B]
Default argument: 1
Specifies whether to include pseudo code. This section includes pseudo code for the
Project.

-element_lists[{0|1}] Include element lists. [B]
Default argument: 1
Specifies whether to include element lists. This section contains a table for each element
type, that is events, event groups, action functions, external variables, internal variables,
signals, constants, and external states.

Project option, configuration (Continued) Explanation / [option type]

Project option, file input Explanation / [option type]

-usertxtfiles[pathlist] User text files. [T]
Specifies which user text files to include in the report.

-fiCriteria<argument> File inclusion criteria. [E]
Default argument: Signature and file format match
Specifies the criteria for inclusion of generated files that contain a digital signature such
as Validator test sequence files, Coder result files, etc. If an included file does not meet
the criteria, either a message, a warning, or an error is generated.
0 (Signature and file format match): The signature (thus also the Project file name) and
the file format must all match.
1 (Project file name and format match): The signatures need not match, but the Project
file name and format must match.
2 (File format match): The signatures and the Project file name need not match, but the
file format must match.
3 (None): No criteria is used to determine which files to include.

-fiLevel<argument> File inclusion message level. [E]
Default argument: Error
Specifies the message level to use if an included file does not meet the criteria for
inclusion of generated files.
0 (Information):
1 (Warning):
2 (Error):

-fiAutoInclude[{0|1}] Automatically include generated files. [B]
Default argument: 0
Specifies whether to automatically include generated files that contain a digital
signature such as Validator test sequence files, Coder result files, etc. By default, the
directory searched is the directory where the Project file is located. Only files meeting
the file inclusion criteria will be included.
UVS-4

395

396

Lists of Documenter options
-fiSearchSubDir[{0|1}] Auto inclusion searches in subdirectories. [B]
Default argument: 1
If generated files are included automatically, setting this option will cause all
subdirectories relative to the location of the Project file to be searched.

-vsafiles[pathlist] Validator static analysis files. [T]
Specifies which Validator static analysis files (extension .vsa) to include in the report.

-vdafiles[pathlist] Validator dynamic analysis files. [T]
Specifies which Validator dynamic analysis files (extension .vda) to include in the
report.

-vlgfiles[pathlist] Validator test sequence files. [T]
Specifies which Validator test sequence files (extension .vlg) to include in the report.

-vrefiles[pathlist] Verificator result files. [T]
Specifies which Verificator result files (extension .vre) to include in the report.

-crefiles[pathlist] Coder report files. [T]
Specifies which Coder report files (extension .cre) to include in the report.

Project option, file input (Continued) Explanation / [option type]

Project option, file output Explanation / [option type]

-of<argument> Output format. [E]
Default argument: RTF
Specifies the output format for the report.
0 (RTF):
1 (HTML):

-path[driveDir] Output path. [T]
Default argument: doc\
Specifies the output path for all generated files. If the path does not exist, it is created
automatically. The path may be a relative path.

-mf[{0|1}] Output to multiple files. [B]
Default argument: 0
Specifies whether to generate output to multiple files.

-ei[{0|1}] Embed icons in reports. [B]
Default argument: 1
Specifies whether to embed icons (images) within the generated reports.

-ec[{0|1}] Embed statecharts in reports. [B]
Default argument: 1
Specifies whether to embed statecharts (images) within the generated reports.
UVS-4

visualSTATE®

User Guide

Documenter options
-pngcharts[{0|1}] Use png files for statecharts (debug option, may throw exception). [B]
Default argument: 0
Specifies whether to use png files for statecharts.

Project option, file output (Continued) Explanation / [option type]

Project option, format Explanation / [option type]

-pfe[{0|1}] Parse functional expressions. [B]
Default argument: 1
Specifies whether to parse functional expressions. The option should be set in order to
generate links from elements used in functional expressions to their respective
definitions. The option can be unset when generating documentation for incomplete
designs that contain invalid functional expressions.

-lsn[{0|1}] Use long state names. [B]
Default argument: 0
Specifies whether to use long state names in state references.

-split[{0|1}] Split transition texts on multiple lines. [B]
Default argument: 0
Specifies whether to split transition texts on multiple lines.

-il[{0|1}] Insert links. [B]
Default argument: 1
Specifies whether to insert links between uses of elements and their associated
definitions.

Project option, page layout Explanation / [option type]

-top_margin<double>[{"|cm|mm|twips|points}] Top margin. [I]
Default argument: 2.5 cm
Specifies the top margin for the report.

-bottom_margin<double>[{"|cm|mm|twips|points}] Bottom margin. [I]
Default argument: 2.5 cm
Specifies the bottom margin for the report.

-left_margin<double>[{"|cm|mm|twips|points}] Left margin. [I]
Default argument: 2.5 cm
Specifies the left margin for the report.
UVS-4

397

398

Lists of Documenter options
-right_margin<double>[{"|cm|mm|twips|points}] Right margin. [I]
Default argument: 2.5 cm
Specifies the right margin for the report.

-header_from_edge<double>[{"|cm|mm|twips|points}] Header distance to edge. [I]
Default argument: 1.25 cm
Specifies the distance from the top of the page to the header.

-footer_from_edge<double>[{"|cm|mm|twips|points}] Footer distance to edge. [I]
Default argument: 1.25 cm
Specifies the distance from the footer to the bottom of the page.

-paper_type<argument> Paper type. [E]
Default argument: A4
Specifies the paper type. If measurement system is the metric system,
default type is A4, otherwise letter.
0 (User defined):
1 (Letter):
2 (Letter Small):
3 (Tabloid):
4 (Ledger):
5 (Legal):
6 (Statement):
7 (Executive):
8 (A3):
9 (A4):
10 (A4 Small):
11 (A5):
12 (B4 (JIS)):
13 (B5 (JIS)):
14 (Folio):
15 (Quarto):
16 (10x14):
17 (11x17):

Project option, page layout (Continued) Explanation / [option type]
UVS-4

visualSTATE®

User Guide

Documenter options
18 (Note):
19 (Envelope 9):
20 (Envelope 10):
21 (Envelope 11):
22 (Envelope 12):
23 (Envelope 14):
24 (Envelope D1):
25 (Envelope C5):
26 (Envelope C3):
27 (Envelope C4):
28 (Envelope C6):
29 (Envelope C65):
30 (Envelope B4):
31 (Envelope B5):
32 (Envelope B6):
33 (Envelope Italy):
34 (Envelope Monarch):
35 (6 3/4 Envelope):
36 (US Std Fanfold):
37 (German Std Fanfold):
38 (German Legal Fanfold):

-paper_width<double>[{"|cm|mm|twips|points}] Paper width. [I]
Default argument: 0 cm
Specifies paper width.

-paper_height<double>[{"|cm|mm|twips|points}] Paper height. [I]
Default argument: 0 cm
Specifies paper height.

-paper_orientation<argument> Paper orientation. [E]
Default argument: Portrait
Specifies paper orientation.
0 (Portrait):
1 (Landscape):

Project option, page layout (Continued) Explanation / [option type]
UVS-4

399

400

Lists of Documenter options
Project option, fonts Explanation / [option type]

-hdr_fname<argument> Heading font name. [E]
Default argument: Arial
Specifies the font name used for headings (including text on the front page).

-hdr_fstyle<argument> Heading font style. [E]
Default argument: Bold
Specifies the font style used for headings (including text on the front page).
0 (Normal): Normal
1 (Bold): Bold
2 (Italic): Italic
3 (Bold Italic): Bold Italic

-hdr_fsize<integer> Heading font size. [I]
Default argument: 10
Specifies the font size used for headings (including text on the front page).

-code_fname<argument> Code font name. [E]
Default argument: Courier New
Specifies the font name used for code (for example pseudo code).

-code_fstyle<argument> Code font style. [E]
Default argument: Normal
Specifies the font style used for code (for example pseudo code).
0 (Normal): Normal
1 (Bold): Bold
2 (Italic): Italic
3 (Bold Italic): Bold Italic

-code_fsize<integer> Code font size. [I]
Default argument: 9
Specifies the font size used for code (for example pseudo code).

-text_fname<argument> Text font name. [E]
Default argument: Times New Roman
Specifies the font name used for all other texts than headings and code.

-text_fstyle<argument> Text font style. [E]
Default argument: Normal
Specifies the font style used for all other texts than headings and code.
0 (Normal): Normal
1 (Bold): Bold
2 (Italic): Italic
3 (Bold Italic): Bold Italic
UVS-4

visualSTATE®

User Guide

Documenter options
-text_fsize<integer> Text font size. [I]
Default argument: 10
Specifies the font size used for all other texts than headings and code.

Project option, fonts (Continued) Explanation / [option type]

Project option, front page Explanation / [option type]

-toptext_str[string] Top text. [T]
Specifies the top text.

-toptext_justification<argument> Top text justification. [E]
Default argument: Centered
Specifies the justification of the top text.
0 (Left):
1 (Right):
2 (Centered):

-middletext_str[string] Middle text. [T]
Default argument: PRJ
Specifies the middle text.

-middletext_justification<argument> Middle text justification. [E]
Default argument: Centered
Specifies the justification of the middle text.
0 (Left):
1 (Right):
2 (Centered):

-bottomtext_str[string] Bottom text. [T]
Specifies the bottom text.

-bottomtext_justification<argument> Bottom text justification. [E]
Default argument: Centered
Specifies the justification of the bottom text.
0 (Left):
1 (Right):
2 (Centered):
UVS-4

401

402

Lists of Documenter options
Project option, header/footer Explanation / [option type]

-headertextl[string] Header text left. [T]
Specifies the header text aligned left.

-headertextc[string] Header text centered. [T]
Specifies the header text aligned centered.

-headertextr[string] Header text right. [T]
Default argument: Page $PAGE$
Specifies the header text aligned right.

-header_separator[{0|1}] Separator line after header. [B]
Default argument: 1
Specifies whether to include a separator line after the header.

-footertextl[string] Footer text left. [T]
Specifies the footer text aligned left.

-footertextc[string] Footer text centered. [T]
Specifies the footer text aligned centered.

-footertextr[string] Footer text right. [T]
Specifies the footer text aligned right.

-footer_separator[{0|1}] Separator line before footer. [B]
Default argument: 0
Specifies whether to include a separator line before the footer.

Project option, RTF styles Explanation / [option type]

-template[pathname] Style template. [T]
Specifies the style template used by RTF reports.

-ibat[{0|1}] Insert bullet and tab stop in hierarchy. [B]
Default argument: 1
Specifies whether to specifically insert a bullet and a tab stop in list hierarchies. The
option should be unset when the generated report uses an external template with list
styles that by definition include such a list marker and indentation.

-sn_fph[string] Front page header style name. [T]
Default argument: Front Page Header
Specifies the name of the front page header style.
UVS-4

visualSTATE®

User Guide

Documenter options
-sn_fpt[string] Front page text style name. [T]
Default argument: Front Page Text
Specifies the name of the front page middle text style.

-sn_fpf[string] Front page footer style name. [T]
Default argument: Front Page Footer
Specifies the name of the front page footer style.

-sn_bt[string] Body text style name. [T]
Default argument: Body Text
Specifies the name of the body text style.

-sn_rtfcode[string] Code style name. [T]
Default argument: Code
Specifies the name of the code style.

-sn_rtftoc[string] TOC heading style name. [T]
Default argument: TOC Heading
Specifies the name of the heading style of the table of contents.

-sn_hdr[string] Header style name. [T]
Default argument: Header
Specifies the name of the header style.

-sn_ftr[string] Footer style name. [T]
Default argument: Footer
Specifies the name of the footer style.

-sn_rtfh1[string] Heading 1 style name. [T]
Default argument: Heading 1
Specifies the name of the heading style.

-sn_rtfh2[string] Heading 2 style name. [T]
Default argument: Heading 2
Specifies the name of the heading style.

-sn_rtfh3[string] Heading 3 style name. [T]
Default argument: Heading 3
Specifies the name of the heading style.

-sn_rtfh4[string] Heading 4 style name. [T]
Default argument: Heading 4
Specifies the name of the heading style.

-sn_rtfh5[string] Heading 5 style name. [T]
Default argument: Heading 5
Specifies the name of the heading style.

Project option, RTF styles (Continued) Explanation / [option type]
UVS-4

403

404

Lists of Documenter options
-sn_rtfh6[string] Heading 6 style name. [T]
Default argument: Heading 6
Specifies the name of the heading style.

-sn_rtfh7[string] Heading 7 style name. [T]
Default argument: Heading 7
Specifies the name of the heading style.

-sn_rtfh8[string] Heading 8 style name. [T]
Default argument: Heading 8
Specifies the name of the heading style.

-sn_rtfh9[string] Heading 9 style name. [T]
Default argument: Heading 9
Specifies the name of the heading style.

-sn_lb1[string] List Bullet 1 style name. [T]
Default argument: List Bullet
Specifies the name of the list bullet style.

-sn_lb2[string] List Bullet 2 style name. [T]
Default argument: List Bullet 2
Specifies the name of the list bullet style.

-sn_lb3[string] List Bullet 3 style name. [T]
Default argument: List Bullet 3
Specifies the name of the list bullet style.

-sn_lb4[string] List Bullet 4 style name. [T]
Default argument: List Bullet 4
Specifies the name of the list bullet style.

-sn_lb5[string] List Bullet 5 style name. [T]
Default argument: List Bullet 5
Specifies the name of the list bullet style.

-sn_lb6[string] List Bullet 6 style name. [T]
Default argument: List Bullet 6
Specifies the name of the list bullet style.

-sn_lb7[string] List Bullet 7 style name. [T]
Default argument: List Bullet 7
Specifies the name of the list bullet style.

-sn_lb8[string] List Bullet 8 style name. [T]
Default argument: List Bullet 8
Specifies the name of the list bullet style.

Project option, RTF styles (Continued) Explanation / [option type]
UVS-4

visualSTATE®

User Guide

Documenter options
-sn_lb9[string] List Bullet 9 style name. [T]
Default argument: List Bullet 9
Specifies the name of the list bullet style.

Project option, RTF styles (Continued) Explanation / [option type]

Project option, HTML styles Explanation / [option type]

-stylesheet[pathname] Style sheet. [T]
Specifies the style sheet used by HTML reports.

-html_uhover[{0|1}] Underline links at mouse over. [B]
Default argument: 1
Specifies whether only to underline links when the mouse pointer is over the link.

-html_stl[{0|1}] Simple table layout. [B]
Default argument: 1
Specifies whether to apply a simple layout for tables.

-scn_htmlbody[identifier] Body style class name. [T]
Specifies the name of the body style class (HTML element body).

-scn_htmlcode[identifier] Code style class name. [T]
Specifies the name of the code style class (HTML element pre).

-scn_htmltoc[identifier] TOC heading style class name. [T]
Specifies the name of the heading style class for table of contents (HTML element h1).

-scn_htmlh1[identifier] Heading 1 style class name. [T]
Specifies the name of the heading style class (HTML element h1).

-scn_htmlh2[identifier] Heading 2 style class name. [T]
Specifies the name of the heading style class (HTML element h2).

-scn_htmlh3[identifier] Heading 3 style class name. [T]
Specifies the name of the heading style class (HTML element h3).

-scn_htmlh4[identifier] Heading 4 style class name. [T]
Specifies the name of the heading style class (HTML element h4).

-scn_htmlh5[identifier] Heading 5 style class name. [T]
Specifies the name of the heading style class (HTML element h5).

-scn_htmlh6[identifier] Heading 6 style class name. [T]
Specifies the name of the heading style class (HTML element h6).

-scn_htmlh7[identifier] Heading 7 style class name. [T]
Specifies the name of the heading style class (HTML element h7).
UVS-4

405

406

Lists of Documenter options
-scn_htmlh8[identifier] Heading 8 style class name. [T]
Specifies the name of the heading style class (HTML element h8).

-scn_htmlh9[identifier] Heading 9 style class name. [T]
Specifies the name of the heading style class (HTML element h9).

Project option, HTML styles (Continued) Explanation / [option type]
UVS-4

visualSTATE®

User Guide

Appendix A: visualSTATE
file name extensions
Extension File type

vsp visualSTATE Project file

vsr visualSTATE Statechart file

vnw visualSTATE workspace file

vtg visualSTATE Project options file

bk<#> Designer backup file

vst Designer interval backup file

vdi Designer Project diagram information

vdg Designer Project diagram information (graphical animation)

vsa Validator static analysis file

vda Validator dynamic analysis file

vlg Validator test sequence file

vre Verificator result file

cre Coder result file

For detailed information about vsp and vsr files, see visualSTATE Reference Guide.
UVS-4

407

408
UVS-4

visualSTATE®

User Guide

Appendix B: RealLink
memory consumption
Using RealLink will increase the size of the generated code. Memory consumption
depends on:

● visualSTATE model dependent memory usage
● RealLink API dependent memory usage.

visualSTATE model dependent memory usage
When RealLink is used, the Coder generates additional tables with constant data
(CONST DATA) and variable data (DATA). The sizes of these tables largely depend on
the visualSTATE application.

The exact memory usage in bytes for CONST DATA memory and DATA can be found
by means of the following formulas.

Memory usage in bytes for each visualSTATE Project

CONST DATA = (10 + S) * CDP + (1 + GEV) * DP + 10 * ST +13

Memory usage in bytes for each visualSTATE System

CONST DATA =
8 * CDP + FP + (2 + LEV) * DP + (AE + 1) * AET + EP * ST + (IVT + 1) * ST

Additional memory usage due to code generation with Expert API

Code generated by the visualSTATE Coder for the visualSTATE Expert API requires
additional memory usage which is calculated as follows:

DATA = S * size of SEM_CONTEXT pointer

For all the above formulas the following applies:

S = Number of visualSTATE Systems.

FP = Size of function pointer

CDP = Size of CONST DATA void pointer

DP = Size of DATA pointer

GEV = Number of global external variables
UVS-4

409

410

RealLink API dependent memory usage
ST = Size of size_t

AE = VS_NOF_ACTION_EXPRESSIONS

AET = Size of SEM_ACTION_EXPRESSION_TYPE

EP = Number of global and local event parameters

IVT = Number of internal variable types used.

Items in monospace font refer to code generated by the visualSTATE Coder.

RealLink API dependent memory usage
The RealLink API memory usage largely depends on the compiler used. Table 50, page
410 shows the additional memory consumption by the Basic API when RealLink is used
(RealLink.c and RealLink.h) for an IAR Systems SH7740 32-bit compiler.

Memory Basic API (all figures in bytes)

CODE 1558

CONST DATA 2

DATA 33

Max. stack used 32

Table 50: RealLink memory consumption, IAR SH7740 32-bit compiler
UVS-4

visualSTATE®

User Guide

Appendix C: Source code
example
Here you find the source code in Visual Basic for the mobile phone example
described in Interfacing to the Expert DLL using Visual Basic, page 302.

Mobile phone.frm
Public Display_Pict As Byte
Public no_hold_accept As Byte
Public no_hold_down As Byte
Public clr_hold_down As Byte
Public clr_hold_accept As Byte
Public do_time_timer As Byte
Public display_buf As String
Public display_buf_len As Byte
Public last_input As String

Private Sub But_0_Click()
 Dim cc As Byte

 last_input = "KEY_0"
 cc = SEM_QueuePut(1, "KEY_0")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If

End Sub

Private Sub But_0_DblClick()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_0")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
UVS-4

411

412

Mobile phone.frm
End Sub

Private Sub But_1_Click()
 Dim cc As Byte

 last_input = "KEY_1"
 cc = SEM_QueuePut(1, "KEY_1")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_1_DblClick()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_1")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_2_Click()
 Dim cc As Byte

 last_input = "KEY_2"
 cc = SEM_QueuePut(1, "KEY_2")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_2_DblClick()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_2")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
UVS-4

visualSTATE®

User Guide

Appendix C: Source code example
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If

End Sub

Private Sub But_3_Click()
 Dim cc As Byte

 last_input = "KEY_3"
 cc = SEM_QueuePut(1, "KEY_3")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_3_DblClick()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_3")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If

End Sub

Private Sub But_4_Click()
 Dim cc As Byte

 last_input = "KEY_4"
 cc = SEM_QueuePut(1, "KEY_4")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_4_DblClick()
UVS-4

413

414

Mobile phone.frm
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_4")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If

End Sub

Private Sub But_5_Click()
 Dim cc As Byte

 last_input = "KEY_5"
 cc = SEM_QueuePut(1, "KEY_5")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_5_DblClick()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_5")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If

End Sub

Private Sub But_6_Click()
 Dim cc As Byte

 last_input = "KEY_6"
 cc = SEM_QueuePut(1, "KEY_6")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
UVS-4

visualSTATE®

User Guide

Appendix C: Source code example
 End If
End Sub

Private Sub But_6_DblClick()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_6")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If

End Sub

Private Sub But_7_Click()
 Dim cc As Byte

 last_input = "KEY_7"
 cc = SEM_QueuePut(1, "KEY_7")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_7_DblClick()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_7")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If

End Sub

Private Sub But_8_Click()
 Dim cc As Byte

 last_input = "KEY_8"
UVS-4

415

416

Mobile phone.frm
 cc = SEM_QueuePut(1, "KEY_8")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_8_DblClick()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_8")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If

End Sub

Private Sub But_9_Click()
 Dim cc As Byte

 last_input = "KEY_9"
 cc = SEM_QueuePut(1, "KEY_9")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_9_DblClick()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_9")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If

End Sub
UVS-4

visualSTATE®

User Guide

Appendix C: Source code example
Private Sub But_CLR_Click()
 Dim cc As Byte

 If clr_hold_accept = False Then
 last_input = "KEY_CLR"
 cc = SEM_QueuePut(1, "KEY_CLR")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
 Form1.Timer3.Enabled = False
 Else
 clr_hold_accept = False
 last_input = KEY_CLR_HOLD
 End If
End Sub

Private Sub But_CLR_DblClick()
 Dim cc As Byte

 If Key_Clr_Hold_Ok = False Then
 cc = SEM_QueuePut(1, "KEY_CLR")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
 End If
End Sub

Private Sub But_CLR_MouseDown(Button As Integer, Shift As Integer,
x As

Single, y As Single)
clr_hold_down = True
Form1.Timer3.Enabled = True
End Sub

Private Sub But_CLR_MouseUp(Button As Integer, Shift As Integer, x
As

Single, y As Single)
 clr_hold_down = False
End Sub
UVS-4

417

418

Mobile phone.frm
Private Sub But_No_Click()
 Dim cc As Byte

 If no_hold_accept = False Then
 last_input = "KEY_NO"
 cc = SEM_QueuePut(1, "KEY_NO")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
 Form1.Timer1.Enabled = False
 Else
 no_hold_accept = False
 last_input = "KEY_NO_HOLD"
 End If
End Sub

Private Sub But_No_MouseDown(Button As Integer, Shift As Integer,
x As

Single, y As Single)
 no_hold_down = True
 Form1.Timer1.Enabled = True
End Sub

Private Sub But_No_MouseUp(Button As Integer, Shift As Integer, x
As

Single, y As Single)
 no_hold_down = False
End Sub

Private Sub But_Square_Click()
 Dim cc As Byte

 last_input = "KEY_NUMBER"
 cc = SEM_QueuePut(1, "KEY_NUMBER")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub
UVS-4

visualSTATE®

User Guide

Appendix C: Source code example
Private Sub But_Square_DblClick()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_NUMBER")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_Star_Click()
 Dim cc As Byte

 last_input = "KEY_ASTERIX"
 cc = SEM_QueuePut(1, "KEY_ASTERIX")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_Star_DblClick()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "KEY_ASTERIX")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub But_Yes_Click()
 Dim cc As Byte

 last_input = "KEY_YES"
 cc = SEM_QueuePut(1, "KEY_YES")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
UVS-4

419

420

Mobile phone.frm
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub Command1_Click()
 Dim cc As Byte

 cc = SEM_QueuePut(1, "SE_RESET")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub Command2_Click()
 Unload Me
 End
End Sub

Private Sub Form_Load()
Dim cc As Byte
Dim hInst As Integer

 Call RepositionImages

 Form1.Visible = True

 cc = SEM_Load(0) 'Dll loads MOBILE.SLD
 If cc = SES_OKAY Then
 Call SEM_Init
 cc = SEM_GetInitCC()
 If cc <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_Init", cc)
 End If
 Call SEM_QueueInit
 cc = SEM_QueueCreate(1, 1, 4)
 If cc <> SES_QUEUE_OKAY Then
 Call SEM_VBErrorHandler("SEM_QueueCreate", cc)
 End If
 cc = SEM_QueueCreate(2, 10, 4)
 If cc <> SES_QUEUE_OKAY Then
 Call SEM_VBErrorHandler("SEM_QueueCreate", cc)
 End If
 Else
UVS-4

visualSTATE®

User Guide

Appendix C: Source code example
 Call SEM_VBErrorHandler("SEM_Load", cc)
 MsgBox "Program terminated..."
 End
 End If
 cc = SEM_QueuePut(1, "SE_RESET")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
End Sub

Private Sub Form_Terminate()
 Call SEM_Free
 SEM_QueueDestroy (1)
 SEM_QueueDestroy (2)
End Sub

Private Sub List3_DblClick()
Dim cc As Byte

 last_input = List3.Text
 cc = SEM_QueuePut(1, List3.Text)
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If

End Sub

Private Sub Timer1_Timer()
 Dim cc As Byte

 If no_hold_down = True Then
 cc = SEM_QueuePut(1, "KEY_NO_HOLD")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
 Timer1.Enabled = False
 no_hold_accept = True
 End If
UVS-4

421

422

Mobile phone.frm
End Sub

Private Sub Timer2_Timer()
If do_time_timer = True Then
 Label3.Caption = Format(Time, "hh:mm") & " "
End If
End Sub

Private Sub Timer3_Timer()
 Dim cc As Byte

 If clr_hold_down Then
 clr_hold_accept = True
 Timer3.Enabled = False
 cc = SEM_QueuePut(1, "KEY_CLR_HOLD")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
 End If
End Sub

Private Sub Timer4_Timer()
 Timer4 = False
 do_time_timer = True
 Label1.Caption = "WORLD "
 Label3.Caption = Format(Time, "hh:mm") & " "
End Sub

Private Sub Timer5_Timer()
 Dim do_beep As Byte

 do_beep = False
 Select Case Display_Pict
 Case 10
 Display_Pict = 13
 do_beep = True
 Case 11
 Display_Pict = 14
 do_beep = True
 Case 12
 Display_Pict = 15
UVS-4

visualSTATE®

User Guide

Appendix C: Source code example
 do_beep = True
 Case 13
 Display_Pict = 10
 Case 14
 Display_Pict = 11
 Case 15
 Display_Pict = 12
 End Select
 If Display_Pict <> 0 Then
 Form1.Image1.Picture = LoadResPicture(Display_Pict, 0)
 If Display_Pict>12 Then
 Form1.Image2.Picture = LoadResPicture(20, 0)
 Else
 Form1.Image2.Picture = LoadPicture()
 End If
 End If
 If do_beep Then
 For i = 1 To 2
 Beep
 Next i
End If
End Sub

Main.bas
Public Sub DispatchOutput()
 Dim cc1 As Byte

 Dim cc2 As Byte
 Dim event As Integer
 Dim iptr As Integer
 Dim str As String * 129
 Dim trimstr As String
 Dim strlen As Byte
 Static Busy As Boolean

 If Busy <> True Then
 Busy = True

 Do While SEM_QueueAllGet(event) = SES_QUEUE_OKAY
 'If cc1 <> SES_QUEUE_OKAY Then
 ' Exit Do

 'Common initialiation field performed between every incoming
 'event
 Form1.List1.Clear
UVS-4

423

424

Main.bas
 Form1.List2.Clear
 Form1.List3.Clear

 cc2 = SEM_Deduct(event)
 If cc2 <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_Deduct", cc2)
 End If

 Do
 cc2 = SEM_GetOutput(iptr)
 If cc2 = SES_FOUND Then

 If SEM_Name(OUTPUTTYPE, iptr, str, 128) = SES_OKAY Then
 Call RemoveAsciiZeroAndTrim(str, trimstr)

 Select Case trimstr
 Case "CLEAR_DISP"
 Form1.Label1.Caption = ""
 Form1.Label2.Caption = ""
 Form1.Label3.Caption = ""
 Form1.display_buf = ""
 Form1.display_buf_len = 0
 Case "DELETE_DIG"
 Dim cc As Byte

 Form1.List1.AddItem "DELETE_DIG"
 If Form1.display_buf_len < 1 Then 'If buffer is
 'empty
 Form1.display_buf = ""
 Form1.display_buf_len = 0
 Else
 If Form1.display_buf_len = 1 Then 'If last digit
 'change state to stand_by
 cc = SEM_QueuePut(1, "INTERN_CLR")
 If cc = SES_QUEUE_OKAY Then
 Call DispatchOutput
 Else
 Call SEM_VBErrorHandler("SEM_QueuePut", cc)
 End If
 Else 'Remove last digit from diaplay
 Form1.display_buf_len =
 Form1.display_buf_len - 1
 Form1.display_buf = Left(Form1.display_buf,
 Form1.display_buf_len)
 End If
UVS-4

visualSTATE®

User Guide

Appendix C: Source code example
 End If
 Form1.Label3.Caption = Form1.display_buf
 Case "DISCONNECTED"
 Form1.List1.AddItem "DISCONNECTED"
 Form1.Timer4.Enabled = True
 Case "DISPLAY_CON"
 Form1.Timer4.Enabled = False
 Form1.List1.AddItem "DISPLAY_CON"
 Form1.Label1.Caption = "CONNECTED"
 Case "DISPLAY_MAX_SIG"
 Form1.List1.AddItem "DISPLAY_MAX_SIG"
 Form1.Display_Pict = 10
 Form1.Image1.Picture =
 LoadResPicture(Form1.Display_Pict, 0)
 Case "DISPLAY_MIN_SIG"
 Form1.List1.AddItem "DISPLAY_MIN_SIG"
 Form1.Display_Pict = 11
 Form1.Image1.Picture =
 LoadResPicture(Form1.Display_Pict, 0)
 Case "DISPLAY_NO_SIG"
 Form1.List1.AddItem "DISPLAY_NO_SIG"
 Form1.Timer5.Enabled = False
 Form1.Display_Pict = 12
 Form1.Image1.Picture =
 LoadResPicture(Form1.Display_Pict, 0)
 Form1.Image2.Picture = LoadPicture()
 Form1.Timer4.Enabled = True
 Case "FIXGS"
 Form1.List1.AddItem "FIXGS"
 Case "INITIALIZE" 'OK
 Form1.List1.AddItem "INITIALIZE"
 Form1.Timer1.Enabled = False
 Form1.Timer2.Enabled = True
 Form1.Timer3.Enabled = False
 Form1.Timer4.Enabled = False
 Form1.Timer5.Enabled = False
 Form1.Display_Pict = 0
 Form1.do_time_timer = False
 Form1.no_hold_accept = False
 Form1.no_hold_down = False
 Form1.Picture = LoadResPicture(1, 0)
 Form1.Image1.Picture = LoadPicture()
 Form1.Image2.Picture = LoadPicture()
 Form1.Label1.Caption = ""
 Form1.Label2.Caption = ""
UVS-4

425

426

Main.bas
 Form1.Label3.Caption = ""
 Form1.display_buf = ""
 Form1.display_buf_len = 0
 Case "INT_RESTORE" 'OK
 Form1.List1.AddItem "INT_RESTORE"
 Form1.Timer4.Enabled = True
 Case "LIGHT_BLINK" 'OK
 Form1.List1.AddItem "LIGHT_BLINK"
 Form1.do_time_timer = False
 Form1.Label1.Caption = "CALLING "
 Case "LIGHT_OFF" 'OK
 Form1.List1.AddItem "LIGHT_OFF"
 Form1.Picture = LoadResPicture(1, 0)
 Form1.Image1.Picture = LoadPicture()
 Form1.Image2.Picture = LoadPicture()
 Case "LIGHT_ON" 'OK
 Form1.List1.AddItem "LIGHT_ON"
 If Form1.Display_Pict = 13 Then
 Form1.Display_Pict = 10
 Else
 If Form1.Display_Pict = 14 Then
 Form1.Display_Pict = 11
 Else
 If Form1.Display_Pict = 15 Then
 Form1.Display_Pict = 12
 End If
 End If
 End If
 Form1.Image1.Picture =
 LoadResPicture(Form1.Display_Pict, 0)
 Form1.Image2.Picture = LoadPicture()
 Form1.Timer4.Enabled = True
 Case "OPENDISPLAY" 'OK
 Form1.List1.AddItem "OPENDISPLAY"
 Form1.Picture = LoadResPicture(2, 0)
 Form1.Display_Pict = 10
 Beep
 Case "OPENPORT1"
 Form1.List1.AddItem "OPENPORT1"
 Case "RESTORE_DISPLAY" 'OK
 Form1.List1.AddItem "RESTORE_DISPLAY"
 Form1.Timer4.Enabled = True
 Form1.Display_Pict = 10
 Case "RING_OFF"
 Form1.List1.AddItem "RING_OFF"
UVS-4

visualSTATE®

User Guide

Appendix C: Source code example
 Form1.Timer5.Enabled = False
 Case "RING_ON"
 Form1.List1.AddItem "RING_ON"
 Form1.Timer5.Enabled = True
 Case "SENDNUMBER"
 Form1.List1.AddItem "SENDNUMBER"
 Form1.Label1.Caption = "CALLING "
 Case "STORE_DIG" 'OK
 Form1.do_time_timer = False
 Form1.List1.AddItem "STORE_DIG"
 Select Case Form1.last_input
 Case "KEY_0"
 Form1.display_buf = Form1.display_buf & "0"
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 Case "KEY_1"
 Form1.display_buf = Form1.display_buf & "1"
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 Case "KEY_2"
 Form1.display_buf = Form1.display_buf & "2"
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 Case "KEY_3"
 Form1.display_buf = Form1.display_buf & "3"
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 Case "KEY_4"
 Form1.display_buf = Form1.display_buf & "4"
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 Case "KEY_5"
 Form1.display_buf = Form1.display_buf & "5"
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 Case "KEY_6"
 Form1.display_buf = Form1.display_buf & "6"
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 Case "KEY_7"
 Form1.display_buf = Form1.display_buf & "7"
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 Case "KEY_8"
 Form1.display_buf = Form1.display_buf & "8"
UVS-4

427

428

Main.bas
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 Case "KEY_9"
 Form1.display_buf = Form1.display_buf & "9"
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 Case "KEY_NUMBER"
 Form1.display_buf = Form1.display_buf & "#"
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 Case "KEY_ASTERIX"
 Form1.display_buf = Form1.display_buf & "*"
 Form1.display_buf_len =
 Form1.display_buf_len + 1
 End Select
 Case "SWITCHGS"
 Form1.List1.AddItem "SWITCHGS"
 Case "SWITCH_OFF"
 Form1.List1.AddItem "SWITCH_OFF"
 Form1.do_time_timer = False
 Beep
 Case "TESTGS"
 Form1.List1.AddItem "TESTGS"
 Case "UPDATE_DISP" 'OK
 Form1.Label1.Caption = ""
 Form1.Label3.Caption = Form1.display_buf
 Case Else
 MsgBox "Output Var." & "'" & trimstr &
 "'" & "is not Defined"
 End Select
 End If
 End If
 Loop Until cc2 <> SES_FOUND

 If cc2 <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_GetOutput", cc2)
 End If

 cc2 = SEM_NextState()
 If cc2 <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_NextState", cc2)
 End If

 Call UpdateStateListBox

UVS-4

visualSTATE®

User Guide

Appendix C: Source code example
 cc2 = SEM_Inquiry()
 If cc2 <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_Inquiry", cc2)
 End If
 Do
 cc2 = SEM_GetInput(iptr, 0)
 If cc2 = SES_FOUND Then
 If SEM_Name(INPUTTYPE, iptr, str, 128) = SES_OKAY Then
 Call RemoveAsciiZeroAndTrim(str, trimstr)
 Form1.List3.AddItem trimstr
 End If
 End If
 Loop Until cc2 <> SES_FOUND

 If cc2 <> SES_OKAY Then
 Call SEM_VBErrorHandler("SEM_GetInput", cc2)
 End If

 Loop
 Busy = False
 End If
End Sub

Utility.bas
Public Sub RepositionImages()
Dim x As Integer
Dim y As Integer
Dim w As Integer
Dim h As Integer

x = Screen.TwipsPerPixelX
y = Screen.TwipsPerPixelY
w = Screen.Width / x
h = Screen.Height / y

'Form1
Form1.Top = y * ((h - 577) / 2)
If Form1.Top < 0 Then
 Form1.Top = 0
End If
Form1.Left = x * ((w - 396) / 2)
Form1.Width = x * 396
Form1.Height = y * 577
UVS-4

429

430

Utility.bas
'Input text
Form1.Label4.Top = y * 0
Form1.Label4.Left = x * 184
Form1.Label4.Width = x * 200
Form1.Label4.Height = y * 20

'Input list box
Form1.List3.Top = y * 21
Form1.List3.Left = x * 184
Form1.List3.Width = x * 200
Form1.List3.Height = y * 262

'State text
Form1.Label5.Top = y * 290
Form1.Label5.Left = x * 184
Form1.Label5.Width = x * 200
Form1.Label5.Height = y * 20

'State list box
Form1.List2.Top = y * 310
Form1.List2.Left = x * 184
Form1.List2.Width = x * 200
Form1.List2.Height = y * 80

'Output text
Form1.Label6.Top = y * 398
Form1.Label6.Left = x * 184
Form1.Label6.Width = x * 200
Form1.Label6.Height = y * 20

'Output list box
Form1.List1.Top = y * 418
Form1.List1.Left = x * 184
Form1.List1.Width = x * 200
Form1.List1.Height = y * 80

'SE_RESET
Form1.Command1.Top = y * 510
Form1.Command1.Left = x * 184
Form1.Command1.Width = x * 100
Form1.Command1.Height = y * 28

'Exit
Form1.Command2.Top = y * 510
Form1.Command2.Left = x * 285
Form1.Command2.Width = x * 100
Form1.Command2.Height = y * 28
UVS-4

visualSTATE®

User Guide

Appendix C: Source code example
'Diode
Form1.Image2.Top = y * 124
Form1.Image2.Left = x * 110
Form1.Image2.Width = x * 8
Form1.Image2.Height = y * 10

'Display
Form1.Image1.Top = y * 250
Form1.Image1.Left = x * 32
Form1.Image1.Width = x * 123
Form1.Image1.Height = y * 44

'Top display text line
Form1.Label1.Top = y * 254
Form1.Label1.Left = x * 47
Form1.Label1.Width = x * 91
Form1.Label1.Height = y * 13

'Middle display text line
Form1.Label2.Top = y * 266
Form1.Label2.Left = x * 47
Form1.Label2.Width = x * 91
Form1.Label2.Height = y * 13

'Height display text line
Form1.Label3.Top = y * 278
Form1.Label3.Left = x * 38
Form1.Label3.Width = x * 110
Form1.Label3.Height = y * 13

'Key_Yes
Form1.But_Yes.Top = y * 312
Form1.But_Yes.Left = x * 33
Form1.But_Yes.Width = x * 51
Form1.But_Yes.Height = y * 30

'Key_No
Form1.But_No.Top = y * 312
Form1.But_No.Left = x * 102
Form1.But_No.Width = x * 50
Form1.But_No.Height = y * 30

'Key_Clr
Form1.But_CLR.Top = y * 350
Form1.But_CLR.Left = x * 75
Form1.But_CLR.Width = x * 34
UVS-4

431

432

Utility.bas
Form1.But_CLR.Height = y * 24

'Key_1
Form1.But_1.Top = y * 381
Form1.But_1.Left = x * 30
Form1.But_1.Width = x * 34
Form1.But_1.Height = y * 24

'Key_2
Form1.But_2.Top = y * 381
Form1.But_2.Left = x * 75
Form1.But_2.Width = x * 34
Form1.But_2.Height = y * 24

'Key_3
Form1.But_3.Top = y * 381
Form1.But_3.Left = x * 120
Form1.But_3.Width = x * 34
Form1.But_3.Height = y * 24

'Key_4
Form1.But_4.Top = y * 413
Form1.But_4.Left = x * 30
Form1.But_4.Width = x * 34
Form1.But_4.Height = y * 24

'Key_5
Form1.But_5.Top = y * 413
Form1.But_5.Left = x * 75
Form1.But_5.Width = x * 108
Form1.But_5.Height = y * 24

'Key_6
Form1.But_6.Top = y * 413
Form1.But_6.Left = x * 120
Form1.But_6.Width = x * 34
Form1.But_6.Height = y * 24

'Key_7
Form1.But_7.Top = y * 445
Form1.But_7.Left = x * 30
Form1.But_7.Width = x * 34
Form1.But_7.Height = y * 24

'Key_8
Form1.But_8.Top = y * 445
Form1.But_8.Left = x * 75
UVS-4

visualSTATE®

User Guide

Appendix C: Source code example
Form1.But_8.Width = x * 34
Form1.But_8.Height = y * 24

'Key_9
Form1.But_9.Top = y * 445
Form1.But_9.Left = x * 120
Form1.But_9.Width = x * 34
Form1.But_9.Height = y * 24

'Key_0
Form1.But_0.Top = y * 477
Form1.But_0.Left = x * 75
Form1.But_0.Width = x * 34
Form1.But_0.Height = y * 24

'Key_Star
Form1.But_Star.Top = y * 477
Form1.But_Star.Left = x * 30
Form1.But_Star.Width = x * 34
Form1.But_Star.Height = y * 24

'Key_Number
Form1.But_Square.Top = y * 477
Form1.But_Square.Left = x * 120
Form1.But_Square.Width = x * 34
Form1.But_Square.Height = y * 24

End Sub
Public Sub UpdateStateListBox()
 Dim cc As Byte
 Dim is_on As Byte
 Dim iState As Integer
 Dim str As String * 129
 Dim trimstr As String
 Dim Machine As Integer

 Form1.List2.Clear
 is_on = True
 For Machine = 0 To SEM_NoMachines - 1 Step 1
 cc = SEM_State(Machine, iState)
 If cc <> SES_FOUND Then
 Call SEM_VBErrorHandler("SEm_State", cc)
 Exit For
 End If
 cc = SEM_Name(STATETYPE, iState, str, 128)
 If cc <> SES_OKAY Then
UVS-4

433

434

Utility.bas
 Call SEM_VBErrorHandler("SEM_Name", cc)
 Exit For
 End If
 Call RemoveAsciiZeroAndTrim(str, trimstr)
 If trimstr = "power_off" Then
 is_on = False
 End If
 Form1.List2.AddItem trimstr
 Next Machine
End Sub

Public Sub RemoveAsciiZeroAndTrim(
 ByVal sText1 As String, ByRef sText2
As String)
Dim sSearch As String
Dim iPos As Integer
Dim iLength As Integer

 If Len(sText1)>0 Then
 sSearch = String(1, 0)
 Trim (sText1)
 iPos = InStr(sText1, sSearch)
 sText2 = Mid$(sText1, 1, iPos - 1)
 Else
 sText2 = ""
 End If

End Sub
UVS-4

visualSTATE®

User Guide

Appendix D: Handling
visualSTATE files from
previous versions
It is possible to use visualSTATE models in version 6 that were created with
visualSTATE version 4.x.

In order to be able to modify the models with version 6 programs, the models
must be converted from the previous version 4.x file format to version 6 file
format. This is done with the conversion facility ConvertF1ToF2.exe which is
included in the visualSTATE software.

The models can be converted in two ways: manually, as described here, or by
using the version 6 Navigator or Designer (see Handling Projects from previous
visualSTATE versions, page 35).

In the following, the file format used in visualSTATE version 4.x will be called
format 1.

Manual conversion from format 1 to 6 format
visualSTATE models saved in file format 1 can be converted to visualSTATE version 6
by using the program ConvertF1ToF2.exe. The program will convert the specified
Project with all its files to a new Project file and related vsr files.

The conversion program must be run from a DOS command prompt. The program has
the following call syntax:

<Project> <Output directory>

where

<Project> is the name of the source visualSTATE Project.

<Output directory>is the directory where the the new converted files should be
placed.
UVS-4

435

436

Manual conversion from format 1 to 6 format
Example

ConvertF1ToF2 project.vsp converted

The format 1 Project project.vsp will be converted to a new Project with the same
name and placed in the output directory converted. All files in the Project will also be
converted and placed in the directory converted.

All files of the previous visualSTATE version will be copied to an automatically created
directory named Backup below the Project directory.
UVS-4

visualSTATE®

User Guide

Index
A
accessing files under source code control 38
action function editor . 93
action function parameters, arguments for 91
action function return values, setting. 177
action functions

activated. 126
Altia . 283
creating . 91
external declarations . 246
in external C files . 93
simulating with Altia . 285
unbound, Altia . 283
unused . 124

action processing . 8
action sequences . 8–9
action side. 83
Action window . 154
actions

produced by sent events . 165
return values. 177
setting up breakpoints for. 174

activated action functions . 126
activated assignments . 126
activated guard expressions. 125
activating custom commands . 44
activating events . 304
activating instances . 178
activating the Verificator . 137, 141
activation of elements . 125
active events . 154, 164
adding files to source code control 37
alias, states . 68
aligning objects in statechart diagrams 63
Altia . 279

action functions . 283
animation of objects. 286
binding external signals . 280

binding visualSTATE elements to objects 284
button objects. 280
command line parameters . 289
communication link . 279
connecting external signals 280–281
connecting visualSTATE elements to objects 283
connectors . 280, 284, 286
creating new designs . 283
defining properties . 289
disconnecting objects and elements 285
Edit mode. 285
editing designs . 283
establishing connection to visualSTATE model 281
events . 283
events not sent to visualSTATE model 285
external connections. 287
external input signals . 280
external output signals . 280
external signals 280–281, 283–284, 286
input signals. 284
interfacing with visualSTATE model 281
manipulating event generators not possible 285
opening existing designs . 283
output object parameters . 286
output objects. 284, 286
parameter values . 287
power buttons. 286
Run mode. 285
saving connection bindings . 285
simulating events . 285
simulation . 285
synchronization with visualSTATE model 289
toggle buttons. 286
unbinding objects and elements 285
unbound action functions . 283
unbound events . 283
unused inputs . 284
unused outputs . 284
using parameters for external connections 286

Index
UVS-4:1

437

438
using with visualSTATE elements 279
Altia Command Line Parameters option 289
Altia connections . 279–280, 286

closing . 286
configuring. 289

Altia editor . 283
Altia FacePlate . 279
Altia menu . 282
Altia objects . 284
Altia parameters . 286
Altia Response Timeout . 289
ambiguous assignments . 131, 133
ambiguous behavior . 119
analysis

dynamic . 198
static . 183, 195

Analyze command, Validator . 365
analyzing visualSTATE models 4, 149, 195, 365
animation of objects, Altia . 286
API examples, OSEK . 324
API files

Basic, default configuration . 243
Expert, default configuration . 247
RealLink . 209

API functions . 234
API layers . 234
APIs . 8–9, 164

code generation . 233
stack sizes . 330

application programming interface . 8
arguments

for action function parameters . 91
for custom commands . 43

arguments, for custom commands. 43
arithmetic . 121
arrowhead

double . 164
red . 162

assigning events as conditions to breakpoints 171

assigning expressions to breakpoints 172
assigning signals as conditions to breakpoints 171
assignments. 165

activated. 126
adding . 94
dynamic ambiguous . 131
static ambiguous . 133

assumptions in this guide . xxvi
automatic signal queue handling. 168
automatic simulation. 149
automatic vs. manual signal queue handling 167
automatically generated code . 9

B
backup files. 102

number of. 102
backup intervals . 103
Basic API

code generation . 239
default configuration . 243

Basic API main function, example 211
basic verification mode . 114, 118
basic verification mode, conflicting transitions. 122
baud rate . 217
binding external signals, Altia. 280
binding visualSTATE elements to Altia objects 284
bindings, Altia . 285
bk files . 102
blank workspaces, creating . 24
bound external signals, Altia. 283
breaking execution of test sequences 192
breakpoint conditions . 169

searching for . 192
breakpoints . 169, 174, 192

assigning conditions to. 171
assigning expressions to. 172
conditions . 170
defining . 170, 362
UVS-4:1

visualSTATE®

User Guide

Index
deleting . 180
disabling . 170
enabling . 170
evaluation of expressions . 172
executed actions. 174
expressions. 172
for executed actions . 174
graphical animation . 180
pre-deduct conditions. 174
setting for graphical animation. 180
setting up for specific states . 173
stepping over . 174
stopping on . 176
using . 174

Breakpoints window . 158
breaks . 170, 175
breaks, macros performed on . 224
building run-time applications, OSEK 321
button objects, Altia . 280

C
C header files, syntax . 105
case-sensitivity, Coder command line 375
changing alias names . 60
changing between Designer windows and views. 343
changing explanation notes . 60
changing state names . 68
changing variable values . 176
changing variable values, RealLink 223
checking in files, source code control 38
checking out files, source code control 38
checks by Verificator. 123

activation of elements . 125
conflicting transitions. 128
dynamic ambiguous assignments 131
local dead ends. 130
signal queue . 133
state dead ends . 129

static ambiguous assignments 133
System dead ends. 131
unused elements. 123

closing Altia connection . 286
closing the Designer . 106
closing the Navigator . 35
closing Validator workspaces . 152
code

readable. See human-readable code
sizes . 249
table-based. 239
user-written . 8

code generation. 237
Basic API. 239
Expert API . 245
starting . 237
visualSTATE APIs . 233

code generation information . 235
code required for a visualSTATE application 9
Coder . 4
Coder command line, case-sensitivity. 375
Coder options . 375

command line syntax . 375
data width . 249
lists of . 375
rule data formats . 250
setting . 29
specifying keywords . 250
specifying option files . 375

Coder report files . 235
Coder-generated code . 8–9
Coder-generated files . 240

header.h . 240
SEMBDef.h . 240
SEMTypes.h. 240
source.c . 240
used in Basic default configuration 243
used in Expert default configuration 247

Coder-generated SEM type definitions 249
UVS-4:1

439

440
Coder-supported elements. 235
COM. 217
command line of Coder, case-sensitivity. 375
command line options, Verificator 371–372
command line parameters, Altia . 289
command line syntax

Coder options. 375
Documenter options . 393
Verificator . 371

commands recorded to test sequence files. 188
commands, user-specified . 41
communication devices, RealLink 213
communication hardware, initialization of 212
communication link, Altia . 279
communication modules, RealLink. 204
communication, RealLink. 206
comparing outputs of test sequences 193
compatibility, rule data format numbers 251
compilation time, hints for reducing 389
completion transitions. 86
complexity of verification

reducing . 144
System configurations . 145
use of operators . 145
use of signals and signal queues. 133, 144
use of verification modes . 144

composing states. 67
composing transitions . 83
composite states . 72, 74

creating . 72–73
with concurrent regions . 72

compositional Systems . 118
compositional verification mode 114, 118
concurrent regions. 72–73
concurrent subsystems . 75
condition side . 83
conditions

assigning to breakpoints. 171
breakpoints . 170, 192

configurations
Basic API, default . 243
Expert API, default . 247

configuring Altia connection. 289
configuring application, hints . 81
configuring RealLink connection 215
configuring the Navigator . 20
configuring the Validator for RealLink 215
conflicting transitions 111–112, 121, 128

basic verification mode . 122
full verification mode. 122
guard verification mode . 122

connecting external signals, Altia 280–281
connecting visualSTATE elements to Altia objects . . 283–284
connection between Validator and target. 204
connections, Altia . 280
connector states. 77
connectors, Altia . 280, 284, 286
consistency, verification . 113
constants . 104

in existing files. 104
unused . 124
verification. 123

contradiction test code, disabling 388
controlling applications in target. 224
controlling execution of code in target 225–226
conventions in this guide. xxvi
conventions in this guide, verification. 109
conversion of visualSTATE files . 35
conversion of visualSTATE files, manual 435
copies of Statechart files, creating. 100
core model logic . 240, 245
coverage (test)

in percent . 199
creating blank workspaces . 24
creating composite states . 72–73
creating custom commands. 41
creating elements . 89
creating graphical prototypes . 279
UVS-4:1

visualSTATE®

User Guide

Index
creating new Altia designs . 283
creating new Projects in workspaces. 25
creating parameters . 90–91
creating Projects, Systems, and files in the Designer 97
creating software prototypes . 291
creating state reactions . 69
creating test sequences . 190
creating Validator workspaces. 152
creating workspaces . 22
critical errors. 135–136
current states . 164
current states, retrieving . 307
custom command arguments. 43
custom command macros, renumbering 45
custom commands . 41

activating . 44
arguments for . 43
creating . 41
deleting . 44
editing . 44
Project-specific . 42
prompt for arguments. 44
renaming . 44
silent mode. 44
workspace-specific. 42

customizing report layout . 271
customizing the Designer . 64
customizing the Navigator . 20
C++ code, generating . 237
C++ code, implementing visualSTATE code in 292

D
data width . 249
dead ends . 129–131
debugging visualSTATE models 4, 149
declarations, action functions . 246
declared elements . 166
declaring action functions in external C files 93

deduction . 174
deduction of events . 305
deduction sequence . 209
deep history states. 78, 342
default configurations

Basic API. 243
Expert API . 247

default layout (statechart diagrams) 353
default names of RealLink functions, changing 213
default speed, test sequences. 192
default values of options . 31
defined events . 153
defining Altia properties . 289
defining breakpoint conditions . 170
defining breakpoints . 170, 362
defining elements . 89
defining SEM type definitions . 250
definitions configuring the Expert API 245
deleting breakpoints . 180
deleting custom commands. 44
deleting elements . 89–90
deleting objects in statechart diagrams 60
deleting test sequences . 190
design guidelines for verification 143
Designer . 4

changing between windows and views. 343
closing . 106
customizing . 64
importing files into. 101
shortcuts. 341

Designer backup files . 102
Designer environment . 49
Designer Project browser . 50
Designer simulation mode . 179
Designer toolbars . 53–54
Designer windows. 50
Designer-created files . 37
detail level, generated visualSTATE Project reports 262
development with visualSTATE . 7
UVS-4:1

441

442
device drivers . 8–9
device drivers, generating . 213
device drivers, MakeApp . 104
diagram window . 51
digital signature . 33
digital signature, troubleshooting in RealLink 229
disabling breakpoints . 170
disabling Systems . 178
disconnecting objects and elements, Altia. 285
display of warnings, setting . 20
documentation report . 4
Documenter . 4
Documenter options

command line syntax . 393
online help . 261
setting . 29

Documenter-generated reports. See generated visualSTATE
Project reports
domains . 121
double arrowhead . 164
drawing states . 58
drawing tools . 349
drawing transitions . 59
drop-if-full signal queue . 134
dsn files. 280
dynamic ambiguous assignments 131
dynamic analysis. 197–198
dynamic analysis results . 200
dynamic analysis, verification. 113
dynamic formal verification . 4
dynamic verification check . 125
dynamically unread internal variables. 126
dynamically unwritten internal variables 126

E
Edit mode, Altia . 285
editing Altia designs . 283
editing custom commands. 44

editing elements . 89
editing files under source code control 38
editing statechart diagrams . 60
editor, Altia . 283
editor, external . 93–94
element browser . 52
element searches, results of. 95
element types, for transitions . 84
elements

checked . 123
checked for activation . 125
creating . 89
declared . 166
defining . 89
deleting . 89–90
editing . 89
for transitions. 85
not verified in full mode. 117
not verified in guard mode . 117
renaming . 89
searching for . 95
supported by RealLink. 205
supported by the Coder . 235
using with Altia . 279
verified. 123

embedded applications . 8–9
emptying signal queues for specific Systems 169
emptying signal queues, manual . 168
enabling breakpoints . 170
enabling RealLink support . 207
enabling Systems . 178
environment, verification . 114
error conditions, hints for tracking 81
errors

because of signal queue overflow. 134
critical . 135
RealLink . 228
verification. 112

establishing connection to Altia design. 281
UVS-4:1

visualSTATE®

User Guide

Index
establishing RealLink connection 219
evaluating breakpoint expressions. 172
event deduction . 305
event generators in Altia . 285
event groups

never activated . 126
unused . 124

event inquiry . 306
event parameters

never activated . 126
unused . 124
verification. 123

event preprocessing. 8
event queues . 8–9
Event window . 153

active events. 164
filtering information. 163

events . 284
activating . 304
Altia . 283
as conditions to breakpoints . 171
defined . 153
global . 162
listing active. 306
local . 162
never activated . 126
not sent from Altia to visualSTATE model. 285
responding to . 305
sending. 167
sending inactive . 162
simulating with Altia . 285
unbound . 283
unused . 124
with parameters . 162

examples
mobile phone . 302
traffic light system . 287
visualSTATE Projects . 4
VS OSEK API . 324

excluding states and regions from processing 80
overriding. 81

exclusion marks, overriding . 81
Expert API

code generation . 245
default configuration . 247

Expert API files
default configuration . 247

Expert API main function, example 212
Expert API requirements, RealLink 206
Expert DLL. 299

generating code for . 301
implementing code in Visual Basic projects. 302
interaction . 300
interface files . 300
interfacing to . 302
mobile phone example . 302
restrictions . 300

Expert DLL files . 300
ExpertR9.dll . 300
expressions, assigning to breakpoints 172
extensions

dsn . 280
oil. 37
visualSTATE file names. 407
vws . 150

external Altia connections. 286–287
external Altia signals . 286
external declarations, action functions 246
external editor . 93
external input signals, Altia . 280
external logic . 234
external output signals, Altia. 280
external signals and Altia objects, connecting. 281
external signals, Altia 280–281, 283–284
external variables

never activated . 126
unused . 123
UVS-4:1

443

444
F
Field Chooser window, Validator 156
FIFO . 167
file status, source code control . 38
file types, source code control. 37
files

creating and saving in the Designer 97
from previous visualSTATE versions 35
importing into the Designer . 101
input for generated visualSTATE Project reports 263
opening in the Designer . 101

files from previous visualSTATE versions 435
files generated. See Coder-generated files
files included in generated Project reports 258
filtering information in Event window 163
filtering information in System window 165
final states . 342
finding elements . 95
footers. 346
forcing states. 177
forcing Systems . 177
fork states . 78
formal test. See formal verification
formal verification . 110
Free Run . 192
full verification mode . 114–115

conflicting transitions. 122
elements not verified . 117

function declarations, in existing files. 104
functionality test . 149

G
generated code, sizes. 249
generated files. See Coder-generated files
generated visualSTATE Project reports. 257, 259

creating . 258
customizing layout. 271

included files . 258
sections and detail level . 262
setting options for . 261
specifying contents . 262
specifying files used as input . 263
specifying HTML output format 267
specifying RTF output format 266
standard report layout . 268

generating code. 237
for Basic API . 239
for Expert API . 245
for Expert DLL . 301

generating C++ code. 237
generating device drivers . 213
generating visualSTATE Project reports 258
getting started, Designer . 57
getting started, visualSTATE. 11
global events . 162
graphical animation . 179
Graphical Animation command . 365
graphical animation options . 180
graphical animation, setting breakpoints. 180
graphical environment, Navigator . 17
graphical prototypes, creating . 279
graphical settings, Designer . 65
graphical user interfaces, Visual Basic 299
Guard Expression window . 155
guard expressions . 163, 166

activated. 125
adding . 94
resolving . 163
unresolved . 166
values between deductions. 166

guard verification mode . 114–115
conflicting transitions . 122
elements not verified . 117

GUIs, in Visual Basic . 299
UVS-4:1

visualSTATE®

User Guide

Index
H
handling of signal queues, manual 168
handling visualSTATE files from previous versions 435
Harvard architecture, RealLink 206, 208
headers . 346
header.h. 240
hierarchical state machines . 75
history states. See shallow history states
HTML output format, generated Project reports 267
HTML page shown at start up, changing 20
human-readable code . 241

size. 253
human/machine interface . 277

I
implementation of functions, RealLink examples 213
implementation, prototypes. 292
implementing action functions in external C files 93
implementing code in Visual Basic projects 302
implementing target-specific functions, RealLink. 213
implementing visualSTATE code in C++ code 292
importing files into the Designer. 101
importing Projects into workspaces 27
inactive events, sending. 162
Include Guard Expressions command. 164
information about code generation 235
information in Event window, filtering 163
information in System window, filtering 165
initial states . 78
initialization, Systems. 364
initializing priority queues . 303
initializing Systems. 162
input signals, Altia . 280, 284
inputs . 280
instances, activating . 178
instances, setting up order of. 178
instances, specifying number of . 101

integrating visualSTATE code with user-written code. 9
interaction, visualSTATE Expert DLL 300
interactive simulation . 161, 178, 188
interface, verification . 114
interfacing to the Expert DLL using Visual Basic 302
interfacing visualSTATE model with Altia design 281
internal logic . 234
internal variables

dynamically unread . 126
dynamically unwritten . 126
statically unread . 123
statically unwritten. 123

interrupt functions, generating . 213
intervals, backup . 103

J
join states . 78
junction states . 79

K
keywords, specifying . 250

L
large state spaces, verification. 113
layout, statechart diagrams . 353
LED objects . 280
level of detail, verification . 114
limitations when using Expert DLL 300
listing active events . 306
livelock . 168
loading visualSTATE Systems . 303
local dead ends . 112, 130
local events . 162
location of visualSTATE user documentation files 20
logic

external . 234
UVS-4:1

445

446
internal. 234
visualSTATE Systems 51, 240, 246

logical consistency . 113
login, source code control systems 39
login, Windows. 39

M
macrosteps . 224
macros, VS_WAIT() . 224
macros, where breaks are performed. 224
main function . 210–212
main loop . 210
MakeApp device drivers . 104
manipulating event generators not possible, Altia. 285
manual conversion of files from previous VS versions . . . 435
manual emptying of signal queues 168
manual signal queue handling. 168
manual simulation. 188
manual vs. automatic signal queue handling 167
mapping MakeApp device drivers. 104
margins, statechart print-outs . 346
memory consumption, RealLink 409–410
memory usage, RealLink . 409–410
memory, RealLink . 206
menus, Altia . 282
Microsoft Common Source Code Control. 37
Microsoft SCC API. 37
microsteps. 224
mobile phone example . 302
model dependent memory usage, RealLink 409
modeling guidelines for verification 143
models . 279

analyzing . 195
verification. 114

modes of verification . 114
basic mode . 114, 118
compositional mode. 114, 118
differences . 114

full mode . 114–115
guard mode . 114–115

monitoring target applications. 220
monitoring visualSTATE elements 222
Move cursor . 63
MultiUser Management . 37
mutually exclusive substates . 74

N
navigating in statechart diagrams . 60
Navigator . 3

closing . 35
customizing . 20
reloading files . 32

Navigator graphical environment . 17
Navigator output window . 18
Navigator properties window . 19
Navigator toolbars. 19
Navigator windows . 18
Navigator workspace browser . 18
Navigator workspaces . 21
Navigator workspaces, saving. 338
Navigator-created files . 37
never activated elements . 111
never activated event groups . 126
never activated event parameters. 126
never activated events . 126
never activated external variables 126
never activated transitions . 126
never sent signals . 124, 126
non-verifiable elements. 119
notes, in statecharts . 60
number of backup files . 102
N/A. 166

O
objects in statechart diagrams . 62
UVS-4:1

visualSTATE®

User Guide

Index
objects, Altia. 284
off-page regions . 75
OIL . 314
oil files . 37
online help . 5, 31
online help, Documenter options 261
opening existing Altia designs . 283
opening Projects in the Designer. 101
opening test sequences . 191
opening Validator workspaces. 152
opening workspaces . 25
operating systems . 313
operators . 145
optimization of SEM type definition sizes 249
optimization, generated code . 249
option files . 375
options

default values . 31
for Coder . 375
for generated Project reports . 261
graphical, in the Designer . 65

order
of signal queue emptying . 168
of Systems/instances . 178

OSEK . 313, 321
building run-time applications 321
OIL . 314
running visualSTATE OSEK wizard 315
stack usage. 329
supplying events . 323
visualSTATE API examples . 324
visualSTATE OSEK API functions 323

OSEK environment, using visualSTATE files in 313
OSEK support, enabling . 313
OSEK tasks. 315
output object parameters, Altia . 286
output objects, Altia . 284, 286
output signals, external . 280
output types . 189

output window, Navigator . 18
output window, Validator . 157
outputs . 280
outputs of steps recorded to a test sequence file 188
outputs of test sequences, comparing 193
outputs produced by sent events . 165

P
pairs of states . 77
parameter values, visualSTATE elements and Altia 287
parameters. 162

Altia . 286
Altia output objects . 286
creating . 90–91

parity. 217
pausing execution of recorded test sequences 192
playing recorded test sequences . 191
playing sequences of target tests . 227
positioning objects in statechart diagrams. 63
power buttons, Altia . 286
preparing target application for using RealLink 207
previous visualSTATE versions, files from 35
printing statechart diagrams . 63
priority queues, initializing . 303
processors, RealLink. 206
Project browser, Designer . 50
Project examples. 4
Project view . 51
Projects . 300

creating and saving in the Designer 97
creating new in workspaces . 25
importing into a workspace . 27
in workspaces. 22
opening in the Designer . 101
removing from workspaces . 28
restrictions when using Expert DLL
setting as active . 28
setting up . 12
UVS-4:1

447

448
Project-specific custom commands 42
Project-specific files . 240, 245
prompt for arguments, custom commands 44
properties window, Navigator . 19
properties, RealLink . 216
prototype implementation . 292
prototypes . 277
prototypes, creating graphical . 279
prototyping . 277
prototyping, with visualSTATE Expert DLL. 299
pseudostates . 77

Q
queues of signals. 225

R
RAM/ROM usage, visualSTATE OSEK API 333
reachable transitions . 125
readable code. See human-readable code
RealLink . 4, 180, 222, 226

accessing target communication device 213
changing variable values . 223
communication . 206
communication modules . 204
configuration of Validator . 215
controlling applications in target 224
controlling execution of code in target 225–226
errors . 228
Harvard architecture. 206, 208
implementation of functions, examples 213
implementation of Receive function 215
implementation of Transmit function 214
implementing target-specific functions 213
initialization of communication hardware 212
location of visualSTATE Systems 213
manipulating target application 223
memory . 206

memory consumption, with Basic API. 410
model dependent memory usage 409
monitoring target applications 220
monitoring visualSTATE elements. 222
preparing target application . 207
properties . 216
receive functions . 206
RS232 setup. 217
sending events into target. 224
setting up . 207
setting up RS232 communication 217
setting up TCP/IP communication 218–219
setup . 204
supported visualSTATE elements. 205
target processors . 206
target requirements . 206
target-specific functions . 213
troubleshooting . 228–229
Validator windows . 220
variable sizes . 206
visualSTATE Expert API requirements 206
VS_WAIT() . 220

RealLink API dependent memory usage. 410
RealLink API files . 209
RealLink API, using . 210
RealLink components . 204
RealLink connection . 204

configuring. 215
establishing . 219
setting up . 215

RealLink functions . 213, 215
changing default names of . 213
Receive() . 213
Reset() . 213
TransmitFlush() . 213
Transmit() . 213

RealLink memory consumption . 409
RealLink support file . 210
RealLink support, enabling . 207
UVS-4:1

visualSTATE®

User Guide

Index
RealLink.c file . 209
RealLink.h file . 209
real-time operating systems 235, 313
receive functions, RealLink . 206
Receive(), RealLink function 213, 215
recorded test sequences. 192
recorded test sequences, playing . 191
recording sequences of target tests 227
recording test sequences . 187
recording to test sequence files . 365
red arrowhead . 162
reducing complexity of verifying Systems 144
regions . 75

concurrent . 72–73
contents of . 75
excluding from processing . 80

overriding . 81
in topstates . 76
off-page . 75

reloading files in the Navigator . 32
removing Projects from workspaces 28
renaming custom commands. 44
renaming elements . 89
renaming objects in statechart diagrams 60
renumbering of custom command macros 45
report contents, specifying . 262
report files, Coder . 235
report layout

customizing . 271
standard . 268

reports on visualSTATE Projects. See generated visualSTATE
Project reports
reset event . 318
reset event name . 162
Reset(), RealLink function . 213
resizing objects in statechart diagrams 63
resolving guard expressions . 163
responding to events . 305
restoring options to default values. 31
restrictions when using Expert DLL 300

results
of dynamic analysis . 200
of element searches . 95

retrieving copies of files under source code control 38
retrieving current states. 307
return values of actions . 177
RL_TCPIP.cpp file . 218
route points . 59
RS232 communication for RealLink, setting up 217
RS232 communication plugin, troubleshooting 229
RS232 setup, RealLink . 217
RTF output format, generated Project reports 266
RTOS . 235
rule data format numbers

visualSTATE Classic version 3 compatibility. 251
visualSTATE Pro version 3 compatibility 251

rule data formats . 250
rule data header word types . 250
rule data header word width . 250
rule data width . 250
Run mode, Altia . 285
run-time applications, building for OSEK. 321
run-time models, viewing . 180

S
safe mode . 64, 119
sample code, visualSTATE . 5
saving connection bindings, Altia 285
saving Navigator workspaces . 338
saving Projects, Systems, and files in the Designer. 97
saving workspaces . 22, 338
searching for breakpoint conditions 192
searching for elements . 95
sections, of generated visualSTATE Project reports 262
selecting objects in statechart diagrams 62
SEM type definitions

Coder-generated. 249
defining . 250
UVS-4:1

449

450
forcing width of . 249
sizes . 249

SEMBDef.h . 240
SEMTypes.h . 240
sending events into target, RealLink 224
sending inactive events . 162
Set Next Step command . 192
setting action function return values 177
setting breakpoints for graphical animation 180
setting Coder options . 29
setting Documenter options . 29
setting Projects as active . 28
setting speed of test sequence execution 192
setting Systems as active. 28
setting up breakpoint conditions . 170
setting up breakpoints for executed actions. 174
setting up custom commands . 41
setting up order of Systems/instances 178
setting up RealLink. 207
setting up RealLink connection. 215
setting up visualSTATE Projects . 12
setting Verificator options . 29
settings, graphical in the Designer 65
setup, RealLink. 204
setup, Systems . 178, 363
SE_RESET . 162, 318
shallow history states . 78, 342
shortcut keys, Validator. 355
shortcuts, Designer . 341
signal queue behavior, specifying . 95
signal queue handling . 156

automatic . 168
manual . 168

signal queue overflow . 133
signal queue size, specifying. 95
Signal Queue window. 155–156, 165
signal queues . 156, 165, 225

automatic handling. 168
emptying for specific Systems 169

manual emptying . 168
manual vs. automatic handling. 167
not empty . 167
single-stepping. 168
stepping . 169
unbounded . 135
verification. 133, 144

signals. 165
Altia . 280
as conditions to breakpoints . 171
external . 280
never sent . 124, 126
never used as triggers. 124, 126
stop sending of. 168
verification. 133, 144

silent mode, custom commands . 44
simple states, drawing. 58
simulating visualSTATE action functions 285
simulation . 4, 149, 161, 164

Altia . 285
automatic . 149
interactive . 161, 178
manual . 188

simulation modes, Validator . 149
simulation mode, Designer . 179
single-stepping signal queues . 168
sizes

of generated code. 249
of SEM type definitions . 249
optimization, SEM type definitions 249

software prototypes. 291
source code control

adding files . 37
checking in files . 38
checking out files . 38
editing files . 38
file status . 38
retrieving copies of files. 38
supported visualSTATE file types 37
UVS-4:1

visualSTATE®

User Guide

Index
using . 37
source code control systems . 37

accessing files . 38
user name. 39

source code editor, external. 94
source.c. 240
Specify bits for encoding variables option 121
specifying keywords . 250
specifying number of System instances 101
specifying option files. 375
specifying report contents . 262
speed of test sequence execution, setting 192
speeding up verification of compositional Systems. 118
speed, test sequences. 192
Split readable code option. 389
stack sizes, visualSTATE APIs . 330
stack usage . 329
standard report layout . 268
starting code generation . 237
starting verification . 137, 141
starting visualSTATE programs . 11
startup state, initializing System to 364
state dead ends . 112, 129
state machines, hierarchical . 75
state names, changing . 68
state reactions, creating. 69
state spaces, verification . 113
statechart diagrams . 57, 62

aligning and resizing objects in 63
default layout . 353
deleting objects in . 60
editing . 60
navigating . 60
printing . 63
selecting objects in. 62

Statechart files . 21
Statechart files, creating copies of. 100
statechart notes . 60

states
composing . 67
drawing . 58
excluding from processing . 80

overriding . 81
forcing . 177
never activated . 125
pairs of . 77
retrieving current . 307
setting up breakpoints for. 173
unused . 123

static ambiguous assignments . 133
static analysis . 183, 195
statically unread internal variables 123
statically unwritten internal variables 123
status of files, source code control 38
stepping signal queues . 169
stepping test sequences . 364
steps, in test sequences . 187
stop points. 192
stop sending signals . 168
stopping recording to test sequence files. 365
stopping timers . 158
substates . 74
subsystems, concurrent . 75
summary information . 235
supported visualSTATE file types, source code control. . . . 37
synchronization, with Altia design 289
syntax, C header files . 105
syntax, option files . 375
System configurations, and complexity of verification . . . 145
System dead ends . 112, 131
System instances, specifying number of 101
System setup. 178
System Setup window. 156
System tools . 350
System view, Designer . 51
System window. 152
System window, filtering information in 165
UVS-4:1

451

452
Systems. 21
commands recorded in test sequence files 188
compositional. 118
core model logic . 245
creating and saving in the Designer 97
disabling . 178
enabling . 178
forcing . 177
initialization . 364
initializing . 162
loading . 303
location when using RealLink 213
logic . 51, 240, 246
order . 178
setting as active . 28
setting up order of . 178
setup . 363
unloading . 308

System-specific files . 240

T
table-based code . 239
target applications, manipulating 223
target mode . 150, 180
target processors, RealLink. 206
target requirements, RealLink. 206
target tests, recording and playing sequences of 227
target-specific RealLink functions 213
TCP/IP communication for RealLink, setting up . . . 218–219
test coverage . 197

in percent . 199
test sequence execution, speed . 192
test sequence files . 188

deleting current sequences . 191
outputs of steps . 188
recording . 365
stopping recording . 365

test sequences . 187, 190, 192–193
breaking execution . 192
creating . 190
default speed . 192
deleting . 190
opening . 191
playing . 191
recording . 187
stepping . 364

Timers window . 158
timers, stopping . 158
toggle buttons . 286
toolbars

Designer. 53–54
Navigator . 19
Validator . 158

topstates, with regions. 76
tracing visualSTATE models. 149, 183
traffic light system, example . 287
transition description. 59
transition elements . 84–85
transitions

composing . 83
conflicting . 128
drawing . 59
never activated . 126
reachable . 125
without triggers . 86

TransmitFlush(), RealLink function 213
Transmit(), RealLink function. 213–214
troubleshooting

event generators in Altia cannot be manipulated 285
events not sent from Altia . 285
RealLink . 228

type definitions . 240, 245
types of outputs. 189
UVS-4:1

visualSTATE®

User Guide

Index
U
unbinding objects and elements, Altia 285
unbound action functions, Altia . 283
unbound events, Altia . 283
unbounded signal queues . 135
unloading visualSTATE Systems 308
unresolved variables . 166
unused action functions. 124
unused Altia inputs . 284
unused Altia outputs . 284
unused constants . 124
unused elements . 123
unused event groups . 124
unused event parameters . 124
unused events . 124
unused external variables . 123
user documentation files, setting location 20
user documentation, visualSTATE . 5
user name, source code control systems 39
user name, Windows . 39
user-specified commands . 41
user-written code . 8–9
using breakpoints . 174
using the RealLink API. 210

V
Validator . 4
Validator Altia connection, configuring 289
Validator Analyze command. 365
Validator environment. 150
Validator mode . 149, 180
Validator output window. 157
Validator shortcut keys . 355
Validator toolbars . 158
Validator tools. 149
Validator Watch window. 157, 222
Validator windows . 152

Validator windows and RealLink 220
Validator workspace files . 151
Validator workspaces . 150
Validator workspaces, closing. 152
Validator workspaces, creating . 152
Validator workspaces, opening . 152
Validator-created files . 37
variable sizes, RealLink . 206
variable values, changing . 176
Variable window . 155
variables

unresolved . 166
verification. 121, 123

verification . 110
activated action functions. 126
activated assignments. 126
activated guard expressions . 125
ambiguous behavior . 119
arithmetic. 121
basic mode . 114, 118
compared with simulation . 110
compositional mode. 114, 118
conflicting transitions . 121
critical errors . 135–136
design guidelines . 143
domains . 121
dynamic . 4
dynamic analysis . 113
dynamically unread internal variables 126
dynamically unwritten internal variables 126
elements checked for activation 125
elements not verified in full mode 115, 117
elements not verified in guard mode 115, 117
environment . 114
errors . 112
full mode . 115
guard mode . 114–115
interface . 114
large state spaces . 113
UVS-4:1

453

454
level of detail . 114
logical consistency. 113
model . 114
never activated event groups . 126
never activated event parameters 126
never activated events . 126
never activated external variables. 126
never activated states . 125
never activated transitions . 126
non-verifiable elements . 119
of compositional Systems . 118
reducing complexity of verifying Systems 144
signal queue overflow . 133
signals . 133
signals never sent . 124, 126
signals never used as triggers 124, 126
starting . 137, 141
statically unread internal variables 123
unused action functions . 124
unused constants . 124
unused event groups. 124
unused event parameters . 124
unused events. 124
unused external variables . 123
unused states . 123
variables. 121
variables read . 123
variables written. 123
visualSTATE generated code . 146
warnings and errors . 112

verification checks . 123, 135
activation of elements . 125
conflicting transitions. 128
dynamic ambiguous assignments 131
local dead ends. 130
signal queues . 133
state dead ends . 129
static ambiguous assignments 133
System dead ends. 131

unused elements. 123
verification errors . 135
verification modes. 114, 135

basic mode . 114, 118
complexity of verification . 144
compositional mode. 114, 118
conflicting transitions . 122
differences . 114
full mode . 114–115
guard mode . 114–115

Verificator . 4
Verificator command line options 371–372
Verificator command line syntax. 371
Verificator options, setting . 29
Verificator, activating . 137, 141
verified elements. 123
viewing copies of files under source code control. 38
viewing generated visualSTATE Project reports 259
viewing run-time models . 180
Visual Basic . 299
Visual Basic projects, implementing code. 302
Visual Basic, interfacing to Expert DLL 302
visualSTATE APIs. See APIs
visualSTATE application, code required 9
visualSTATE Coder. See Coder
visualSTATE code, implementing in C++ code 292
visualSTATE deduction sequence 209
visualSTATE Designer. See Designer
visualSTATE development . 7
visualSTATE Documenter. See Documenter
visualSTATE elements supported by RealLink 205
visualSTATE embedded applications 8–9
visualSTATE Expert DLL. See Expert DLL
visualSTATE file name extensions 407
visualSTATE files from previous versions 35, 435
visualSTATE files, for use in OSEK environment. 313
visualSTATE global layers . 234
visualSTATE layers. 234
visualSTATE local layers 234, 240, 245
UVS-4:1

visualSTATE®

User Guide

Index
visualSTATE MakeApp files. 104
visualSTATE models, analyzing . 195
visualSTATE models, interfacing with Altia designs 281
visualSTATE modules. 3
visualSTATE MultiUser Management 37
visualSTATE Navigator. See Navigator
visualSTATE OSEK API . 329
visualSTATE OSEK API functions 323
visualSTATE OSEK API, RAM/ROM usage 333
visualSTATE OSEK Kit . 313

building run-time applications 321
visualSTATE OSEK wizard . 315
visualSTATE programs . 3
visualSTATE Project examples . 4–5
visualSTATE Project reports. See generated visualSTATE
Project reports
visualSTATE Projects. See Projects
visualSTATE RealLink. See RealLink
visualSTATE reset event . 318
visualSTATE sample code. 5
visualSTATE software. 3
visualSTATE Statechart files. See Statechart files.
visualSTATE Systems. See Systems
visualSTATE user documentation . 5
visualSTATE Validator. See Validator
visualSTATE Verificator. See Verificator
visualSTATE, previous versions . 435
visualSTATE, starting . 11
VS Project-specific files . 240, 245
VS System-specific files . 240
VSrlps.c file . 210
VS_WAIT() . 210, 220, 224
vws files . 150

W
warnings . 365
warnings, verification . 112
Watch window, Validator . 157, 222

width of SEM type definitions, forcing. 249
Windows user name . 39
windows, Navigator . 18
windows, Validator . 152
wizard, for creating a Navigator workspace 22
workspace browser, Navigator . 18
workspace files, Validator . 151
workspace wizard, Navigator . 22
workspaces . 21

creating . 22, 24
creating new Projects in . 25
importing Projects into. 27
opening . 25
Projects in . 22
removing Projects from . 28
saving. 22, 338
saving in Navigator . 338

workspaces, Validator . 150
workspace-specific custom commands 42
wrap-around . 121

Z
zoom view . 53
zooming . 343
UVS-4:1

455

	Contents
	Tables
	Figures
	Preface
	Structure of this guide

	Part 1: Introduction
	What is visualSTATE?
	visualSTATE modules
	Navigator
	Designer
	Verificator
	Validator
	RealLink
	Coder
	Documenter

	visualSTATE Project examples
	Sample code
	visualSTATE user documentation

	Application development with visualSTATE
	General
	visualSTATE APIs
	Code required for a visualSTATE application

	Getting started
	How you start visualSTATE
	Setting up a visualSTATE Project

	Part 2: Project management
	Graphical environment
	General
	Navigator windows
	Workspace browser
	Output window
	HTML viewer
	Properties window

	Navigator toolbars
	Standard toolbar
	Internet browser toolbar

	Customizing the Navigator

	Handling visualSTATE Projects, Systems and files
	The workspace
	Projects in workspace

	Creating and saving a workspace
	Creating a workspace using workspace wizard
	Creating a blank workspace

	Opening a workspace
	Creating a new Project in a workspace
	Creating a blank Project in a workspace
	Creating a simple Project in a workspace
	Creating a Project using Project wizard

	Adding an existing Project to a workspace
	Removing a Project from a workspace
	Setting a Project or System as active
	Setting Verificator, Coder and Documenter options
	Online help

	Reloading files in the Navigator
	Digital signature
	visualSTATE Project code-generated via the Navigator
	Generated files included in Documenter report
	Runtime application

	Handling Projects from previous visualSTATE versions
	Closing the Navigator

	Source code control
	Supported visualSTATE file types
	Using source code control
	Accessing files under source code control
	Source code control status of files

	User name for source code control system

	Custom commands
	What is a custom command?
	Creating custom commands
	Activating custom commands
	Editing, renaming, and deleting custom commands
	Renumbering of custom command macros

	Part 3: Modeling
	Graphical environment
	General
	Designer windows
	Project browser window
	Diagram window
	Element browser window
	Property window
	Output window
	Zoom view

	Designer toolbars
	Standard toolbar
	Diagram toolbar
	Size toolbar
	Source Control toolbar
	Zoom toolbar

	Getting started
	Designing statechart diagrams
	Drawing a simple state
	Drawing a transition between two states
	Editing objects in statechart diagrams
	Statechart notes
	Deleting objects in statechart diagrams

	Navigating in statechart diagrams
	Selecting a collection of objects

	Resizing and positioning objects in statechart diagrams
	Moving a collection of objects

	Printing statechart diagrams
	Safe mode
	Customizing the Designer
	Changing graphical settings

	States
	Composing states
	Creating elements while composing states

	Composite states
	Creating a composite state consisting of concurrent regions
	Creating a composite state consisting of mutually exclusive substates

	Regions
	Viewing contents of regions
	Regions in topstates

	Connector states
	Pseudostates
	Initial, shallow history, and deep history states
	Fork and join states
	Junction states

	Excluding states and regions
	Marking states or regions for exclusion
	Transitions
	Overriding exclusion marks

	Transitions
	Composing transitions
	Creating a transition element

	Completion transitions

	Elements
	Creating and editing elements
	Creating parameters
	Action functions
	Adding assignments and guard expressions
	Specifying signal queue behavior
	Specifying signal queue size

	Searching for an element

	Handling Projects, Systems, and files for modeling
	Creating and saving Projects, Systems, and files in the Designer
	Creating Systems and Statechart files in a blank Project
	Creating a copy of a Statechart file

	Opening a Project in the Designer
	Importing files into the Designer
	Specifying number of System instances
	Using Designer backup files
	Setting backup options

	Using function declarations and constants in existing files
	Syntax of C header files

	Closing the Designer

	Part 4: Formal testing
	Introduction
	Conventions used in this part
	Verification with visualSTATE Verificator
	Overview
	Warnings and errors

	Approach
	Aspects of formal verification
	Logical consistency
	Verification modes
	Non-verifiable elements
	Systems with ambiguous behavior
	Variables, domains, and arithmetics
	Conflicting transitions

	Checks performed by visualSTATE Verificator
	Check for unused elements
	States
	Variables, event parameters, and constants
	Action functions
	Events, event groups, and signals

	Check for activation of elements
	States
	Variables, event parameters, and constants
	Action functions
	Events, event groups, and signals
	Transitions

	Check for conflicting transitions
	Check for state dead ends
	Check for local dead ends
	Check for System dead ends
	Check for dynamic ambiguous assignments
	Check for static ambiguous assignments
	Check for signal queue size
	Overview of checks, modes, and errors

	Verifying your visualSTATE Project
	Starting verification

	Tracing your visualSTATE Project
	Performing a trace

	Designing for verification
	Using time/memory options to help verification
	Small/Large options
	Node space size option

	Keeping down the complexity of verifying Systems
	Verification mode
	Signals and signal queue
	Operators
	Depth of System state space

	Verification and visualSTATE generated code
	Expressions
	Environment
	Non-verifiable elements

	Part 5: Functional testing
	Introduction
	Simulation with visualSTATE Validator
	Validator tools
	Simulation modes

	Graphical environment
	The Validator workspace
	Validator windows
	Validator toolbars

	Simulation
	Starting simulation
	Sending events
	Active events
	Using the Watch window for sending events

	Viewing elements during simulation
	States
	Actions
	Assignments
	Signals
	Guard expressions
	Declared elements

	Specifying event parameters
	Signal queue handling
	Automatic vs. manual signal queue handling
	Handling signal queues for a single System

	Breakpoints
	Defining breakpoints
	Using breakpoints

	Changing variable values
	Setting action function return values
	Forcing states
	System setup
	Graphical animation
	Setting breakpoints for graphical animation
	Setting graphical animation options

	Toggling between Validator mode and target mode

	Tracing visualSTATE models
	Tracing
	Setting up a trace
	Setting up the Trace Point

	Recording and playing test sequences
	Recording a test sequence
	Viewing outputs of steps
	Collecting test sequences in the same file

	Playing recorded test sequences
	Speed
	Breaking execution of a test sequence
	Jumping to a specific step in a recorded test sequence
	Comparing played test sequences with recorded output

	Analyzing visualSTATE models
	Static analysis
	Performing a static analysis
	Opening an existing static analysis file

	Dynamic analysis
	Performing a dynamic analysis
	Opening an existing dynamic analysis file

	Part 6: Testing in target applications
	Introduction
	What is RealLink?
	RealLink connection to target
	visualSTATE elements supported by RealLink
	Target requirements

	Testing visualSTATE models using RealLink
	Setting up RealLink
	Checklist
	Establishing the first RealLink connection

	Monitoring your target application
	Using Validator windows with RealLink
	Monitoring visualSTATE elements
	Manipulating your target application from within the Validator

	Controlling your application in target
	Microsteps and macrosteps
	Controlling execution of code in target

	Recording and playing sequences of target tests
	Troubleshooting
	General
	Settings for RS232 communication plugin
	Digital signature

	Part 7: Code generation
	Introduction
	Code generation and visualSTATE APIs
	Description of generated code
	Coder report file
	Elements supported by the Coder

	Real-time operating system (RTOS)

	Generating code
	Starting code generation
	Generating C++ code

	Basic API code generation
	Description of generated code
	Generating table-based code
	Generating human-readable code

	Default table-based code configuration

	Expert API code generation
	Description of generated code
	Default configuration

	Size of generated code
	Data width
	Rule data formats
	Coder options
	Code size using visualSTATE
	Execution engine overhead
	The code
	The size

	The size of human-readable code

	Part 8: Documenting visualSTATE Projects
	Introduction
	Project report
	Information in generated report

	Creating a Project report
	Viewing the Project report

	Setting up a visualSTATE Project report
	General
	Online help

	Specifying report contents
	Specifying sections and detail level of report
	Specifying visualSTATE files to be used as input for Project report

	Specifying report output format
	RTF output
	Specifying RTF output format
	HTML output
	Specifying HTML output format

	Setting up standard report layout
	Setting up front page layout (RTF output only)
	Setting up page layout
	Specifying fonts

	Customizing report layout
	Customizing layout for reports in RTF format
	Customizing layout for reports in HTML format

	Part 9: Prototyping
	Introduction
	Prototyping with Altia
	Basic concepts
	Altia connection
	visualSTATE elements and Altia external signals

	Interfacing a visualSTATE model to an Altia design
	Connecting visualSTATE elements to Altia objects

	Simulation with Altia
	Closing the Altia connection
	Using parameters
	Altia parameter values for visualSTATE events
	Altia parameter values for visualSTATE action functions
	Assigning Altia parameter values to visualSTATE elements

	Configuring the Altia connection

	Prototype based on visualSTATE generated code
	General
	Example: Implementing visualSTATE code in C++ code
	Steps of implementation

	Prototyping with the visualSTATE Expert DLL
	What is visualSTATE Expert DLL?
	Expert DLL files
	visualSTATE Project restrictions

	Interaction
	Generating code for the visualSTATE Expert DLL
	Interfacing to the Expert DLL using Visual Basic
	Loading the VS System
	Loading the VS System and initializing priority queues
	Activating events
	Responding to events (event deduction)
	Listing active events (event inquiry)
	Retrieving current states
	Unloading the VS System

	Part 10: Working in an OSEK environment
	Using the visualSTATE OSEK Kit
	Generating visualSTATE files for use in an OSEK environment
	Enabling OSEK support
	Assigning visualSTATE Systems to OSEK tasks

	Building a runtime application
	Requirements for building a runtime application
	Exported visualSTATE OSEK API functions
	Supplying events
	API examples
	Basic API
	Expert API

	Runtime considerations
	Stack usage
	Calculating stack usage

	RAM/ROM usage
	Basic API
	Expert API

	Part 11: General reference
	Navigator menu commands
	File menu
	Edit menu
	View menu
	Project menu
	Tools menu
	Window menu
	Help menu

	Designer shortcuts
	General
	Editing

	Diagram tools
	General
	Transitions
	States

	Project, System and statechart diagram views
	Navigation
	Moving objects
	Zooming statechart diagrams
	Grid and snap

	Element browser

	Designer menu commands
	File menu
	Edit menu
	View menu
	Insert menu
	Format menu
	Tools menu
	Window menu
	Help menu

	Validator shortcut keys
	General
	Windows
	Editing
	Debugging
	Navigation in test sequence files

	Validator menu commands
	File menu
	Edit menu
	View menu
	Debug menu
	RealLink menu
	Altia menu
	Window menu
	Help menu

	Verificator command line options
	General
	Command line syntax
	List of Verificator command line options

	Coder options
	Command line syntax
	Command line examples

	Lists of Coder options
	Coder option types

	Documenter options
	Command line syntax
	Lists of Documenter options
	Documenter option types

	Appendix A: visualSTATE file name extensions
	Appendix B: RealLink memory consumption
	visualSTATE model dependent memory usage
	RealLink API dependent memory usage

	Appendix C: Source code example
	Mobile phone.frm
	Main.bas
	Utility.bas

	Appendix D: Handling visualSTATE files from previous versions
	Manual conversion from format 1 to 6 format

	Index

