IAR Embedded Workbench®

C-SPY® Debugging Guide

for the Texas Instruments

MSP430 Microcontroller Family
-

o

©IAR

UCS430-3 SYSTEMS

2

C-SPY® Debugging Guide
for MSP430

COPYRIGHT NOTICE
© 2010-2015 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, C-RUN, C-STAT, visualSTATE,
Focus on Your Code, IAR KickStart Kit, IAR Experiment!, I-jet, I-jet Trace, I-scope,
IAR Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Texas Instruments is a registered trademark of Texas Instruments Corporation. MSP430
is a trademark of Texas Instruments Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Third edition: February 2015

Part number: UCS430-3

This guide applies to version 6.x of IAR Embedded Workbench® for the Texas
Instruments MSP430 microcontroller family.

Internal reference: M18, Hom7.2, IMAE/IJOA.

Brief contents

TaABIES ... 19
Preface ... 21
Part |. Basic debugging ... 29
The IAR C-SPY Debugger ... 31
Getting started using C-SPY ... 41
Executing your application ... 57
Variables and eXpressions ... 79
Breakpointso 113
MemOory and reQISTErS ... 147
Part 2. Analyzing your application ... 177
TPACE .o 179
ProOfiling ...t 199
COAE COVEIAZE ... 209
Power debugging ... 213
Part 3. Advanced debugging ... 237
INEEITUPES ..ot 239
The advanced cycle counter ... 259
SEALE STOMAZEoooooorerreeiieei e 267
The SEQUENCET ..o 273
C-SPY MACIOS ..o 279

The C-SPY command line utility—cspybatcccooorriernn. 337

Part 4. Additional reference information ... 359

Debugger OPLIONS ... 361

Additional information on C-SPY drivers ..., 373

Contents

TABIES ... 19
Preface ... 21
Who should read this guide ... 21
Required KNOWIEAZEccceeeeiiieieieieieieeee e 21
How to use this guide ..., 21
What this guide contains ... 22

Part 1. Basic debugging
Part 2. Analyzing your appliCationccecevveneeneenienneenieeneeneennes 22
Part 3. Advanced debuggingccccceevereneneneneneneneneeeeeaen 23
Part 4. Additional reference informationcccceeceveveneneneneenen. 23
Other documentation ... 23
User and reference gUIidesccccoceeveeereeieienienieneneneneseeeeeeeenees 24

The online help system

WED SIEES ..ttt
Document cONVENtioNs ..o 25
Typographic CONVENTIONScceeverueruirririerieieteieriesiesiesiesieeseeneeneeneas 25
Naming CONVENLIONScoeeeruteieieieienienienrenienenene et eieeieereeneeseeneens 26
Part |. Basic debugging ... 29
The IAR C-SPY Debugger ... 31
Introduction to C-SPY ... 31
An integrated enVIrONMENTccceeveeerrereririeeeienienteneneseeseeeeeeveenee 31
General C-SPY debugger featuresc..coceveeveeneeiienieneeneeneennen. 32
RTOS aWarenessc.ccocevveeerieieieieieiententenenenesesreeieeeeseeeeeeeens 33
Debugger CONCEPLS ... 34
C-SPY and target SYSEIMScccverueerieerierrieirienieniteseenieeieeseesreseesinens 34
The deDUZEZETcvevuirieiieiiiiieieeetcteteee s 35
The target SYSIEIMN ...ccvevveeuierieririiriirieeiteitet ettt 35

The application
C-SPY debugger SYStEIMScceevueueeuerrerrenrenienienenenenienienieeseeneeneeeens 35

The ROM-mONItOr PrOZIamceceeeerererrerereeeerienienienenensesseeseenees 36

Third-party debUZEETScc.covuievieriiiriiiieiieeteeeet et 36
C-SPY plugin modulescccceeuevueieniininineneneneneceneneceeeeeeeene 36
C-SPY drivers overview ... 37
Differences between the C-SPY driversccccocceeveneninineneenene 37
The IAR C-SPY Simulator ...
The C-SPY hardware debugger drivers
FEAtUIES ..ottt s
CommuNICAtION OVEIVIEWcoueruiriiriiriiriiriieiieiieiererenrenieniesiesieereeneene
Getting started using C-SPY ... 41
Setting UP C-SPY ..o 41
Setting up for debUZZINgcovveveevieriinenerereerereeeeeeeeene 41
Executing from reset
Using a setup macro filecoceveeeriririniiiiiceneneeseseeeeeeeen 42
Selecting a device description filecccccevevevienienienenienienieiene 42
Loading plugin modulesc.cceceriirienienieninninieeieneeseesieeeeene 43
Starting C-SPY ... 43
Starting a debug SESSIONcc.eeueeueeuieuiirieieieieterie et

Loading executable files built outside of the IDE

Starting a debug session with source files missingcccccoeeveeeeneee 44
Loading multiple iMagesceceveerierienienenenenenesieeeeeeie e 45
Adapting for target hardware ...,

Modifying a device description filec..ccceeveverenenenencnceieienee

Initializing target hardware before C-SPY starts

Using predefined C-SPY macros for device supportcccceeueee 47
Running example projects ... 47
Running an example Projectcccevevererenenenenenenesieeeeeeeneas 47
Reference information on starting C-SPYccccoccovne. 49
C-SPY Debugger main Windowccccceevererenenieneneneeeeeeeeneens 49

Images window

Get Alternative File dialog DOXccoceeviiviniiniiiniiieiececeeeee 55

Device Information Windowccccceeeieeiiieiiiieeieeeiee e 56

Contents °

Executing your application ... 57

Introduction to application execution ... 57
Briefly about application €XeCutionc.ccceceeveerierieneeneeneeneennes 57
Source and disassembly mode debuggingc..ccccecevverererieieeenne 57
Single stepping ...
SEEPPING SPEEA ..eeviiiiiriieiieiteieereet ettt st
Running the applicationc..ccccecceceevievieiieniinenencnienencneseeeneeene 62
Highlightingooooveiiniiii e 62
Call stack informationccceceviiniiiiiiiiii 63
Terminal input and OULPULcccecveierieriinienienenenereeeeeeceeeeeeeeene 63
Debug logging

Reference information on application execution 64
Disassembly WINAOWc.cccocveriiiiniiniininieneneneneneeeeese et 65
Call Stack WINAOWccoiiiiiiiiiiicicrceee e 69
Terminal I/O Window ... 71
Terminal I/0 Log File dialog boXcccccccoevenininennennicieieienee 72
LCD WINAOW ...t 73
LCD Settings dialog DOXccceevverierriieninienienieeneeieeeeee et 73
Debug Log WINAOWcc.coevirinininiiiiiiieeteieneneneseseeeeeeeeeene 74
Log File dialog BOXcccoeeuieirieieieieicieiereneseseseeeee e

Report Assert dialog DOXcc.eevueerieriiriienienieniesteeeieeeeeeeee e

Autostep settings dialog box

Variables and eXpressions ... 79
Introduction to working with variables and expressions 79

Briefly about working with variables and expressionsc........... 79

C-SPY EXPIESSIONS ...eeruvieureriiieiieniienieenieenteesieeteeiteseesieesieesteeseeenaeeneens 80

Limitations on variable informationc..ccccccoceoiiniiiniiinnnnnn. 82

Working with variables and expressions ... 83

Using the windows related to variables and expressions 83

Viewing assembler variablescccceceveviereninenenienenceeeeees 84

Getting started using data [0ZZINGcccceceevieierienienienenereneeeeeeene 85

Getting started using data Samplingcccceecveevieriieneenieneeneeneenen. 85

Reference information on working with variables and

EXPFESSIONS ...ttt ettt ettt ees 86
AULO WINAOW ..o 87
Locals WINAOWcc.ciiuiiiiiiiiiiecceeeeeeee e 88
Watch Windowccccoiiiiiiiiiii 90
Live Watch Windowcccccciiiiiiiiiniiiiiiiicceecce e 92
Statics window
Quick Watch WINAOWcceeviiiiiiiiiieiiieeiie et 97
Symbols WINAOWcoceriiiriiiiiiiiiinienentcenesesese et 99
Resolve Symbol Ambiguity dialog boXcc.ccceeverenerieenicncncnennene 101
Data Log WINAOWooviiiiriiiiieiieieeieeieteeeesteeeeee st 102
Data Log Summary Windowcoccecevererenerneeenieneneeiencnennenes 104
Data Sample Setup Windowccccevereneneneneneeieneeneeneneneneens 105
Data Sample WINdOWcocooveeriiiiiriiinienieeeceeeeee st 106
Sampled Graphs WindOWc..ccccovevviriininininieieierccresesenenee 108
Breakpointso 113
Introduction to setting and using breakpoints 113
Reasons for using breakpointscoceeceeererereneenienienienienenennens

Briefly about setting breakpoints ..

Breakpoint tyPescc.eeeeeeieiieieieienereneeeeeeeeet ettt
Breakpoint 1CONScceeieieiieiieieienesesieeee ettt
Breakpoints in the C-SPY simulatorccccevveeveineniieeneniencenene 116
Breakpoints in the C-SPY hardware Debugger driverc..c........ 116
Breakpoint consumers 118
Setting breakpoints 119
Various ways to set a breakpointcoceeveveeverereeneeneeneenenenenens 119
Toggling a simple code breakpointcoccceeecveinecenerncneennne. 119
Setting breakpoints using the dialog boXc...ccccevvevvieniiiniiinennennns 120
Setting a data breakpoint in the Memory windowc...c.cccceveuee. 121
Setting breakpoints using system macros
Useful breakpoint hintsccocceveriierienienieniieeieeeseeseeneesens
Reference information on breakpoints ... 124

Breakpoints Windowcoceceveieninienininneeeeeee e 125

Contents °

Breakpoint Usage window

Code breakpoints dialog DOXccceeverierienieeniiniienienienieeneerieeieenne 128
Log breakpoints dialog boXcccceeveeieinininieninieicicienenenenene 129
Data breakpoints dialog BOXccceeevererereneneeienieieeenieneneeneene 131
Data Log breakpoints dialog boXcccceecvevienieneinenieenienieneenene 133
Immediate breakpoints dialog bOXc.cceccevevereenienienieniininenenene. 134
Range breakpoints dialog box
Conditional breakpoints dialog DOXc.cceeceevervieiiieniieniiniinenieee 137
Advanced Trigger breakpoints dialog boXcccceceeeveevecrinenenenenne 140
Enter Location dialog BOXcccceverereneninininenecteeeeenienenieneens 142
Breakpoint combiner dialog boXcocevieriiniiniiininiinienieeeene 143
Resolve Source Ambiguity dialog bOXccceveevecviiiciencncnencnenne 144
MemOory and reQiSTErsS ... eseeeenns 147
Introduction to monitoring memory and registers 147
Briefly about monitoring memory and registersc..coceeveeveerueneene 147
C-SPY MEMOTY ZOMNES ...ccuveririruiiiieniienieenieenieeieetesieeseesieesieeseeenaeenne
Stack diSPIAY ..evververieriiirece e e
Memory access Checkingccevveieiieninieninenceceeeeseee

Monitoring memory and registers

Defining application-specific register groupscoccecevvererreeruennene 151
Reference information on memory and registers 152
MeEmOTY WINAOW ...eevuiiiiiiniiiiieniieieeieeeesiteite ettt s 153
Memory Save dialog DOXcccccevievievieiiniinineneeeneceeee e 157
Memory Restore dialog DOXc.coceeeeierienienenenenenteteeeieneesieene 158
Fill dialog DOX .c.veeiiiriiieiiieee e 158
Symbolic Memory WindOWccccoeeererinrenenieieieieienienenienenee 160
Stack WINAOW ..cc.ovuiriiiiiiiiiiiieieteeee ettt s
RegiSter WINAOWcceiviiiniiiiiiieeieeieeteteseesteeee et
SFR Setup WINAOW ...c..coeveriiiiiieiiniiienieniereeieeiee et
Edit SFR dialog box
Memory Access Setup dialog boXccccovvevieniineniiiniiiienieeeee 172
Edit Memory Access dialog DOXccccoevererereneenienieienicnieneneneene 174
Memory Dump dialog DOXccecvevierierenenienineneeeeteeeeesese e 175

Introduction to using trace ...
Reasons for USING traCecccceveruieuieieieieienienie et

Briefly about tracecccoevivinieieiiiiiiieicicencecceeecene

Requirements for using trace

Collecting and using trace dataccocoooiicn 180
Getting started With traCeccoceervieriinienenieierieeeeeseeseeeee 180
Trace data collection using breakpointsc.cceceeverereeeeeenenuennens 181
Searching in trace datac.ccoeverierereninineeiee e

Browsing through trace datacccccoceviiiiiiniiniinienesceeeeeee
Reference information on trace ..
Trace WINAOW ...cviveiiienieiieiieieietete ettt ettt et
Function Trace WindOWcccccevieiiieiiiiiiiininenenineceeeeeeiens
Timeline WiNdOWcccoevieirieieiiiiictciccenene et
Viewing Range dialog DOXccceeceevieiienieneneneneneeteeeeenieseesienenn
Trace Start breakpoints dialog box
Trace Stop breakpoints dialog box

Trace EXpressions WindOWccceceeerereneneneneenienienienieneeniennens

Find in Trace dialog BOXccoceviiriiniiniieeeeceeeeteseeeene

Find in Trace windowcccccociviiiiiiiiiiniiiccccce
PrOfiliNg ... 199
Introduction to the profiler ... 199
Reasons for using the profilercccocecevevevnenninccnececneenes 199
Briefly about the profilerc..coccoveviiveneninnninnciceceee. 199
Requirements for using the profilercccceoveneninienicninncnennens 200
Using the profiler ... 201
Getting started using the profiler on function levelc..c..c..c... 201

Analyzing the profiling data

Getting started using the profiler on instruction level 203
Reference information on the profiler ... 204
Function Profiler windowccoccciiiiiiiiiccececne 204

Contents °

COdE COVEIAZEcooiriiiiceei et 209
Introduction to code coverage ... 209
Reasons for using code COVErageocevveerieneineenieenennieenieneenns 209

Briefly about code COVEragecc.ocvvvevienenenenenineeeeieeciennenes 209

Requirements and restrictions for using code coverage 209
Reference information on code coverage209
Code Coverage WindOWc.ccceeeveuenienieniinininineneneeeeeeeeeenenne 210
Power debugging ... e 213
Introduction to power debuggingccococooiniinnninninnn. 213
Reasons for using power debuggingc.ccecevvevveerienienienenenenennens 213
Briefly about power debuggingccccoveevervieriienienieneeneeieeiene 213
Requirements and restrictions for power debuggingccccecceueue 215
Optimizing your source code for power consumption 215
Waiting for device status216
Software delays216

DMA versus polled I/Occoocoeriieineiniicinccccneee e 216
Low-power mode dia@NOSHCSccceevuverueerierrierrierienirenieenieenieeeeeeenne 216

CPU fIEQUENCY ...ovviuieiiiirienieniecitcitetetetestttere ettt sae e 217
Detecting mistakenly unattended peripheralscccceceevierienenennen. 217
Peripheral units in an event-driven SyStemc.cceceeervererveeeennns 218
Finding conflicting hardware Setupscccccoceeevenenenceecvecencnenne 219
ANalog INtEITEIENCEc.coveuiieiieiiriiieiiieereeeee et 219
Debugging in the power domain ... 220
Displaying a power profile and analyzing the result 220
Detecting unexpected power usage during application execution ...222
Measuring low POWET CUITENLSevvverueereeerieeniersienrenieseenieeneenaeens 222
Changing the graph resolutioncc.ccceevevveneninineniecieieienenenne 223
Reference information on power debugging 223
Power Log Setup WindOWcocoeouerieniinienienieeieeie et 224

Power Log WIndOWcoceeieieiiiiiinineneieneeceecteteteeesee e 226

Power graph in the Timeline window ..

State Log windowc.ccoeceevvenennienns ...230
State Log SUmmary Windowc.ccccceeeerineneeieieieieieneneneneenne 232

State Log graph in the Timeline Windowccccccecvevieviinencncnene 234

Part 3. Advanced debugging ... 237

INEEITUPTS ..ottt 239
Introduction to interrupts ...

Briefly about interrupt logging
Briefly about the interrupt simulation Systemc..coceeceeeereeneeneene 240
Interrupt charaCteristicseeeeeeieieienieieeseee ettt 241
Interrupt SIMUlation SLALESccceeveerierieerieerieiieeierre et 241
C-SPY system macros for interrupt simulationcc.ceceeeeeenene. 242
Target-adapting the interrupt simulation systemcc.ccccevevuennene 243

Using the interrupt system

Simulating a Simple INTETTUPL ...c.cevvervireirieneirireeieieeeieteree e 244
Simulating an interrupt in a multi-task systemccccceeevenenene 245
Getting started using interrupt 10ggINgccceevvvrvieriieniieniienierieeeene 246
Reference information on interrupts ... 246
Interrupt Setup dialog box ...
Edit Interrupt dialog BOXccceovieviiniiiiiieiineeteeeeeeee
Forced Interrupt Windowcceeevereneneninenecieeeeeeenienenieneens
Interrupt Status WindOWccoceeieieiienienienienene et
Interrupt Log WindowWc.ccovceeviiiiiiiiiiiiinieiieeeiceeeeste e
Interrupt Log Summary windowcc.ceccevevereneneenenienenenenennens 255
The advanced cycle counter ... 259
Introduction to the advanced cycle counter
Reasons for using the advanced cycle countercocceceeeeeeieneee
Briefly about the advanced cycle counterc.ceceeeevvevenenncnncnne.
Requirements for using the advanced cycle countercc.ccuueee 259
Using the cycle counter applicationscccoccovevncncncaee. 260
Counting all CPU cycles
Measuring the DMA load versus the CPU loadcccccoevvencnnnnene 260
Profiling a specific part of your applicationcccceeeveereereeneennene 261

Measuring the Trigger hitsc.ccoeverininininiinieieicieecsenenee 262

Contents °

Measuring the number of CPU cycles for a taskc.cceccecerveeeennee 262

Reference information on the advanced cycle counter 263
Advanced Cycle Counter Control Windowccccceevevenenenenenne 263

SEALE SLOMAZEoooooeeee e 267
Introduction to state storage ... 267
Reasons for using State StOrageccceeveeeeeeeerierierieneneseneeeeeens 267

Briefly about state storage ...

REQUITEMENLS ..c..eviiiiiiiiiiiiieiititeetetcec ettt
Using state Storage ...

Setting Up StAte SLOTAZE .e.vervverreerieeriierierieerierreeeesieesieesieenteereeereenne
Reference information on state storage ..o 269

State Storage Control Windowccceeeeereeieeeeeiieiieienesesenene 270

State Storage window

The SEQUENCET ... 273
Introduction to the sequencer ... 273
Reasons for using the SEqUENCETc.ceceeeeieieiienenenieneneeeeieeene 273

Briefly about the SEqUENCETccceeieierieiieienereeeeteteee e 273

Requirements for using the SEqUENCErcccccevevveevenenenerereeennn 274

Using the SEqUENCEF ..o 274
Setting up the sequencer (SIMple SEtUP)covemveververrenrenrenienieienens 274

Setting up the sequencer (advanced SEtUP)ccccovevveerererernenennenn 274

Using the sequencer to locate a problemcccocevevverereenecniennns 275

Reference information on the sequencerc......... 277
Sequencer Control WINAOWcoeeeeieieniinieninieieeeieeererenrenaenne 2717

C-SPY MACIOS .o 279

Introduction to C-SPY macros

Reasons for using C-SPY macros

Briefly about using C-SPY macroscceceveeneenennieneniieeieeienne 280
Briefly about setup macro functions and filesc.ccecevcceiennne. 280
Briefly about the macro 1anguagecccceceverereninieenecncncnennene 280
Using C-SPY MACKOSccccooiimieiniinenenen e 281
Registering C-SPY macros—an OVEIVIEWc.ccceeveeeevevecuenenenne 282

Executing C-SPY macros—an OVEIrVIEWc..ceceeveeeeeeeerveneenennens 282

Registering and executing using setup macros and setup files 283
Executing macros using Quick Watchc..ccceveviniinincnicinnene 283
Executing a macro by connecting it to a breakpointc..c.cceueeee. 284
Aborting @ C-SPY MaCTOccceeveriiiriieiieieeieeeeeiecte et 285
Reference information on the macro language 286

Macro functions

Macro variables

MaACTO PATAMEGLETSvevververierierieeieententeterentereereereeteeseenrenenenesaessenne 287
MACTO SEIINES .evenvinveeiiietietieiteiieite ettt sttt et et nae e 287
MaACTO SLALEMENLSocuievieiieiieiieiieieietenteeteee ettt 288
Formatted OULPULcoveruerieriirieieieicictestcetceieeeeee e 289
Reference information on
reserved setup macro function names ..., 291
execUserPreload
execUserExecutionStartedcocecevevenenenenenenieiceeneneneeene 292
execUserExecutionStoppedccccevveevievienienieenienieneseeseenee s 292
EXECUSETSELUP ..cvviviiiiieiieiieieeictet ettt 292
EXECUSEIPIERESEL ..ottt 293
€XECUSETRESELoviviiiiiiiiciciciciccccce 293
EXECUSETEXIL .uviiiiiiiiciciiiiiciccnencccc et 293
Reference information on C-SPY system macros 293
__CanCEIAIIINLEITUPLS ..vevuveriieriieriieniieieeie ettt st 295
__cancelInterrupt
ClearBreakoevviiiiieieeee e
_CLOSEFILE ..ot
EIAY e
__disablelnterrupts
__AEIVEITYPE oottt
__eNAbIEINIeITUPLS ...eoviiiiiiieiietieieietee ettt 298
@VALUALE .evvieiiieie et

__fillMemory8
__fAIIMEMOTY 16 oo 300
__fAIIMEMOTY32 ittt 301

Contents °

__isBatchMode ...302
__10adImMage ...coeeiiiieiie e 302
__MEMOTYRESIOTEcovviniiiiiiniiiieiieiicieecteterce e 304
__IMNEIOTYSAVE ceivivieuieiienieiteuieitenteientestesbesbe st ese et esteseesaestensensennens 304
__mesSageBOXYESNOoovviiiiiiieieiieteee e 305
__OPENFILE it 306
__orderInterrupt 307
__popSimulatorInterruptExecutingStackcccccoeeviiviiniieneennn. 308
_1€AAFIIR ..ot 308
__1€AdFIIEBYLE ..ot 309
__readMemory8, __readMemoryByteccccooveviiniineniiinenienne 309
__1€adMEmOTY 16 ...ccooouiiiiiiiiiiiieccce et 310
__1€adMEMOTY32 ...ouiiiiieiieieieeetee e 310
__1eg@iSterMacrOFIlec.coviiiiiiiiiiiiieeeeeee e 311
_TESELFILE Lot 311
__setAdvancedTriggerBreakcccccooeviveninininiiniiincncncncnee 312
__8etCodeBreakcocoiviiiiiiiiiiiiiie 313
__setConditionalBreak314
__SEtDAtABIEaKoeiiiiiiiiiee e 315
__setDatallogBreakccccoveiviiiiiiiiiiee e 317
__SetLOEBIEakccoviiiiiiiii e 318
__SetRaN@EBIeakccoceiiiiiiiiieicee e 319
__SetSIMBIeak ...t 320
__setTraceStartBreak321
__SetTraceStopBIeakccccocveieiieiieiienienineneneeeetetee e 322
__SOUTCEPOSILIONoviiiiiiiiiiiiicicieeseee et 323
C SRR 323
__SUDSIIING oottt sttt s 324
__targetDebuggerVersion324
_EOLIOWET ittt 325
__EOSHINGZ ettt 325
_EOUDPPET ettt et st 326
__unloadlmageccccoeviriniiiiieieeecc e 326
4 6 115 S 1 (SISO 327

__writeFileByte

__writeMemory8, __writeMemoryByteccccccocevniineriiinennnenne 328
__WIEMEMOTY 16 ..ottt 328
__WITEMEMOTY32 .ottt 329
Graphical environment for macros ..., 329
Macro Registration Windowc..cccceveeeeieeeeneeeeciecienenenenenenne 330

Debugger Macros window

Macro Quicklaunch Windowcccccoeeviieniiiiiiieeniieieeeeeeiee e 334
The C-SPY command line utility—cspybat ..., 337
Using C-SPY in batch mode ..., 337
Starting CSPYDAL ..c.vevveemeemiriieiieieieierteeteetesre ettt
OULPUL ettt ettt et et s e st e b e b eaeenee
Invocation syntax
Summary of C-SPY command line options 339
General cspybat OPHONSc..ccevueeeuerieuinerineneeeereeeree e 339
Options available for all C-SPY driversccccoceevveenienneenennennns 340
Options available for the simulator driverc.cocceveevererieniennne 340
Options available for the C-SPY FET Debugger driver 340
Reference information on C-SPY command line options ...341
—-allow_access_to_BSL ... 341
--allow_locked_flash_acCesScooovveeiiviiiiiiiiiiiiieieeeeee e 342
—-attaCh L

=-DACKENA ...t

--connection ...

--debugfile
--derivative
-=diSAbIE_INLEITUPLS ..eevvieiieiiiiieieeieetert ettt 346
--disable_Memory_Cachec..cc.ccoeveerierueniinenininineeieeeeeseniee 346

-~ dOWNI0AdONLY ..cveeiiiiiiiiiiiieieteeeee e 346

Contents °

-—erase_eXCludecoccooiviiiiiiiiiiiie 347
=-€1aSE_IP_PrOtECLEAeovveueiueiiiiiiitietietiercereee ettt 348
“=@IASE_TNAIN ..vevrentenieieierienieeteeentetetebesreeseebeebeesee st entesaessenteseeneenne 348
-—erase_main_and_infoc.ccceciiviiniiniiniininince 348
-—erase_retain_fileccooviriiiiiiiinii

——erase_retain_target

--hardware_multiplierc.ccocevveririiiienieniccceeeeeeereeeene 350

“SNWINUIE_EYPE vttt s 350

SPTOLOCOL <.ttt s
--Set_eXit_DIreakpPOintcccecerereriiieieienienienie ettt
--set_getchar_breakpointc.cocvevierienieneniienieniesieseeseeeeeee
--set_putchar_breakpoint
==SEEHNGHIME ...ouviieieriirierieeiteeeeete ettt ettt s
SoSIIBIE it
SmHIMNEOUL ittt ettt ettt b bttt n et esaesresaesaesaene
--use_emulated_breakpoints
--use_virtual_breakpoints

“2VECVOILAZE vttt ettt s

==VETIEY_all oo

Part 4. Additional reference information ... 359

Debugger OPLIONS ... 361
Setting debugger options ... 361
Reference information on debugger options 362

EXtra OPtONS ..ocvveviiiiieieiieeieete ettt sttt 365
Reference information on the C-SPY simulator 366
Setup options for the SIMUIALOrcceevuereiriinieieieieieieee e 366

Reference information on

C-SPY hardware debugger driver optionsccccoeeueee. 367
Setup for FET Debuggerccoceveriririnininieieieieeesesiesieniee 367
Download
BIEaKPOINLS ..eviiiiiiiieiiiieictetetenesene ettt 370
Additional information on C-SPY drivers ..., 373
Reference information on C-SPY driver menus 373
C=SPY AFIVET .ottt 373
SIMUIALOr MENU ..eovvieiiiiiiiiieie ettt eiee e e ebe e e e saeeeseaeesaaee e 374
Emulator Menuccooiiiiiiiiiieciie e 376

Reference information on
the C-SPY FET Debugger driver ..o, 379
General Clock Control dialog box
Extended Clock Control dialog box

Resolving problems ...
The device port pins do not work

Write failure during load

No contact with the target hardwarecccoceeeevieveninceiiccenienene 382
SIOW StEPPING SPEEAevveveriiriiiiieiieietetenteeteere ettt 382
INA@X oot 385

Tables

© NN AW N =

: Handling name conflicts between hardware registers and assembler labels ..

: Typographic conventions used in this UIdeccccecerererinieenieneniericnencereaeee 25
: Naming conventions used in this guideccccoceeviriiriieieneneneneneeeseeeen 26

1 DIIver dIffEereNCeSoeeeviieiiiceeceeeee e e e 37

C-SPY assembler Symbols €Xpressionsc..ceceeeeeeienieneeneneneneneeneeneeneeneensennes

C-SPY macros for breakpointsc..coeverererininieinieeteieieresesesesieseeeeneene

: Supported graphs in the Timeline Windowcccceceevieieiieiienencnenieneneneeene
1 C-SPY driver profiling SUPPOITcceevueruerierienieniinieeiieieeiteitetese e sieeneene
: Project options for enabling the profilerc..cccocvvivininrniinneiieciencnene
10:
1 TImer INtEITUPL SELUINEZS ..eouveruverereriierieeieerieete et etesitesteeteebe et et sresieeseeesaeenees
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

Project options for enabling code COVETagecccvververereeneeneenienenenenenene

Cycle Counter 1, combinations of start, stop, and clear reactions
Sequencer settings - examplec..c.....
State Storage Control settings—example ...
Examples of C-SPY macro variablesccccoeverireninniiiiniincnineneneneeee
Summary Of SYStEIM MACTOScoeeueeeerieriiniintenienienieeeetete ettt sre e
__cancellnterrupt return ValUESscovveevierienienienieneeeeeee e
__disableInterrupts return VAlUESccceeveerveriiriininieieieieieieneenenesienieeneene
__driverType return VAIUESccceeeeveeieienieniinieneeeeieee ettt
__enablelnterrupts return ValUEScoceeveerieeiiienieniienienieseese e
__evaluate TetUIN VAIUEScoeeerieiiiiiiiinientieeeteeteet ettt st eneene
__isBatchMode return values

__loadImage return valuescccooeeieieininiiieiiiciceesenee e

__messageBoxYesNo return valuescccooeoiviiiiiiniiiiiiicce

__openFile return VAIUEScccceeerieirinieieieietet et

__readFile return Valuescccccooeiiiniininininiiieicicicicsesese s 308
__setAdvancedTriggerBreak return valuescccoceeevinvininiinnienicnenenenenne 313
__setCodeBreak return ValUesc.ccoevererenieieieieieiertesenie e eieeeeneene 314
__setConditionalBreak return valuesccccoceecveviivieniinenenencneneneeeeeenens 315

__setDataBreak return values

_setDatalLogBreak return valuesc.ccocevererernieienienienineneeeeeeeeeeeeeee 317

20

32:
33:
34:
35:
36:
37:
38:
39:
40:

__setLogBreak return valuesc..coccoeririninininieieieeeee e 318

__setRangeBreak return Valuescoocoeveviieiieniinienieeeeee et 320
__setSimBreak return valuesccccoeririninieininieiciccee e 321
__setTraceStartBreak return valuescccoeverenenenenieiienierieneneneseneeiene 321
__setTraceStopBreak return valuesccoceeveeneiiieniieniienieneenieeeeieeie e 322
__SourcePosition return VAlUESc..ccccecveruerienienieniinieieieeeresteneesieseesiesieeneene 323

_unloadImage return values

CSPYDAL PATAMELELSeevinieiieiireietiteiertet ettt ettt sae e bt er et et eaeeenen

Options specific to the C-SPY drivers you are usingcccceceeeeeeereeeennne 361

Preface

Welcome to the C-SPY® Debugging Guide . The purpose of this guide is to help
you fully use the features in the IAR C-SPY® Debugger for debugging your
application based on the MSP430 microcontroller.

Who should read this guide

Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features available in C-SPY.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

o The architecture and instruction set of the MSP430 microcontroller (refer to the
chip manufacturer's documentation)

® The C or C++ programming language
o Application development for embedded systems
o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 23.

How to use this guide

Each chapter in this guide covers a specific fopic. In many chapters, information is
typically divided in different sections based on information types:

o Concepts, which describes the topic and gives overviews of features related to the
topic. Any requirements or restrictions are also listed. Read this section to learn
about the topic.

o Tasks, which lists useful tasks related to the topic. For many of the tasks, you can
also find step-by-step descriptions. Read this section for information about required
tasks as well as for information about how to perform certain tasks.

® Reference information, which gives reference information related to the topic. Read
this section for information about certain GUI components. You can easily access
this type of information for a certain component in the IDE by pressing F1.

21

What this guide contains

22

If you are new to using IAR Embedded Workbench, we suggest that you first read the

guide Getting Started with IAR Embedded Workbench® for an overview of the tools and
the features that the IDE offers. The tutorials, which you can find in the IAR Information
Center, will help you get started using IAR Embedded Workbench.

Finally, we recommend the Glossary in the IDE Project Management and Building
Guide if you should encounter any unfamiliar terms in the IAR Systems user
documentation.

What this guide contains

C-SPY® Debugging Guide
for MSP430

Below is a brief outline and summary of the chapters in this guide.

Note: Some of the screenshots in this guide are taken from a similar product and not
from IAR Embedded Workbench for MSP430.

PART I|. BASIC DEBUGGING

® The IAR C-SPY Debugger introduces you to the C-SPY debugger and to the
concepts that are related to debugging in general and to C-SPY in particular. The
chapter also introduces the various C-SPY drivers. The chapter briefly shows the
difference in functionality that the various C-SPY drivers provide.

o Getting started using C-SPY helps you get started using C-SPY, which includes
setting up, starting, and adapting C-SPY for target hardware.

® Executing your application describes the conceptual differences between source
and disassembly mode debugging, the facilities for executing your application, and
finally, how you can handle terminal input and output.

e Jariables and expressions describes the syntax of the expressions and variables
used in C-SPY, as well as the limitations on variable information. The chapter also
demonstrates the various methods for monitoring variables and expressions.

® Breakpoints describes the breakpoint system and the various ways to set
breakpoints.

® Memory and registers shows how you can examine memory and registers.

PART 2. ANALYZING YOUR APPLICATION
o Collecting and using trace data describes how you can inspect the program flow up
to a specific state using trace data.

e Using the profiler describes how the profiler can help you find the functions in your
application source code where the most time is spent during execution.

Preface __4

Code coverage describes how the code coverage functionality can help you verify
whether all parts of your code have been executed, thus identifying parts which have
not been executed.

Power debugging describes techniques for power debugging and how you can use
C-SPY to find source code constructions that result in unexpected power
consumption.

PART 3. ADVANCED DEBUGGING

Interrupts contains detailed information about the C-SPY interrupt simulation
system and how to configure the simulated interrupts to make them reflect the
interrupts of your target hardware.

The advanced cycle counter describes the advanced cycle counter for MSP430
devices, and how it can help you to profile your application or to measure how long
some tasks take.

State storage describes how the state storage module can help you to examine how
your code is executed, and find problems in a specific stage of the execution.

The sequencer describes the sequencer module, a simple state machine that lets you
break the execution or trigger the state storage module using a more complex
method than a standard breakpoint.

Using C-SPY macros describes the C-SPY macro system, its features, the purposes
of these features, and how to use them.

The C-SPY command line utility—cspybat describes how to use C-SPY in batch
mode.

PART 4. ADDITIONAL REFERENCE INFORMATION

Debugger options describes the options you must set before you start the C-SPY
debugger.

e Additional information on C-SPY drivers describes menus and features provided by

the C-SPY drivers not described in any dedicated topics.

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the [AR Embedded Workbench IDE. The online help
system is also available via the F1 key.

23

Other documentation

24

C-SPY® Debugging Guide
for MSP430

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

System requirements and information about how to install and register the IAR
Systems products, is available in the booklet Quick Reference (available in the
product box) and the Installation and Licensing Guide.

Getting started using IAR Embedded Workbench and the tools it provides, is
available in the guide Getting Started with IAR Embedded Workbench®.

Using the IDE for project management and building, is available in the /DE Project
Management and Building Guide.

Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide for
MSP430.

Programming for the IAR C/C++ Compiler for MSP430, is available in the /4R
C/C++ Compiler User Guide for MSP430.

Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, is available in the IAR Linker and Library Tools Reference Guide.
Programming for the IAR Assembler for MSP430), is available in the /AR Assembler
Reference Guide for MSP430.

Using the IAR DLIB Library, is available in the DLIB Library Reference
information, available in the online help system.

Using the IAR CLIB Library, is available in the IAR C Library Functions Reference
Guide, available in the online help system.

Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

Developing safety-critical applications using the MISRA C guidelines, is available
in the /AR Embedded Workbench® MISRA C:2004 Reference Guide or the IAR
Embedded Workbench® MISRA C:1998 Reference Guide.

Porting application code and projects created with a previous version of the IAR
Embedded Workbench for MSP430, is available in the JAR Embedded Workbench®
Migration Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

Information about project management, editing, and building in the IDE

Information about debugging using the IAR C-SPY® Debugger

Preface __4

o Reference information about the menus, windows, and dialog boxes in the IDE

e Compiler reference information

o Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1. Note that if you select a function name in the editor window and press F1 while
using the CLIB library, you will get reference information for the DLIB library.

WEB SITES

Recommended web sites:

o The Texas Instruments web site, www.ti.com, that contains information and news
about the MSP430 microcontrollers.

o The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

o The web site of the C standardization working group,
www.open-std.org/jtcl/sc22/wgl4.

o The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

o Finally, the Embedded C++ Technical Committee web site,

www.caravan.net/ec2plus, that contains information about the Embedded C++
standard.

Document conventions

When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example 430\ doc, the full
path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench 7.n\430\doc.

TYPOGRAPHIC CONVENTIONS

The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.

 Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example

filename.h where £ilename represents the name of the file.

Table 1: Typographic conventions used in this guide

25

Document conventions

26

C-SPY® Debugging Guide
for MSP430

Style Used for

[option] An optional part of a directive, where [and] are not part of the actual
directive, but any [, 1, {, or } are part of the directive syntax.

{option} A mandatory part of a directive, where { and } are not part of the
actual directive, but any [,], {, or } are part of the directive syntax.

[option] An optional part of a command.

[a]b|c] An optional part of a command with alternatives.

{a|b]|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic * A cross-reference within this guide or to another guide.

* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide (Continued)

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

Brand name

Generic term

IAR Embedded Workbench® for MSP430 IAR Embedded Workbench®
IAR Embedded Workbench® IDE for MSP430 the IDE

IAR C-SPY® Debugger for MSP430 C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for MSP430 the compiler

IAR Assembler™ for MSP430 the assembler

IAR XLINK Linker™

XLINK, the linker

IAR XAR Library Builder™ the library builder

Table 2: Naming conventions used in this guide

Brand name

Generic term

Preface 4

IAR XLIB Librarian™
IAR DLIB Library™
IAR CLIB Library™

the librarian
the DLIB library
the CLIB library

Table 2: Naming conventions used in this guide (Continued)

27

Document conventions

C-SPY® Debugging Guide
28 for MSP430

Part |. Basic debugging

This part of the C-SPY® Debugging Guide for MSP430 includes these chapters:
e The IAR C-SPY Debugger

e Getting started using C-SPY

e Executing your application

e Variables and expressions

e Breakpoints

o Memory and registers

.hmuhhhhi

N

9

AAARRIE

30

The IAR C-SPY Debugger

e Introduction to C-SPY

e Debugger concepts

e C-SPY drivers overview
e The IAR C-SPY Simulator

o The C-SPY hardware debugger drivers

Introduction to C-SPY

These topics are covered:

e An integrated environment
o General C-SPY debugger features

e RTOS awareness

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR Systems compilers and assemblers, and is completely integrated in the
IDE, providing development and debugging within the same application. This will give
you possibilities such as:

e Editing while debugging. During a debug session, you can make corrections directly
in the same source code window that is used for controlling the debugging. Changes
will be included in the next project rebuild.

e Setting breakpoints at any point during the development cycle. You can inspect and
modify breakpoint definitions also when the debugger is not running, and
breakpoint definitions flow with the text as you edit. Your debug settings, such as
watch properties, window layouts, and register groups will be preserved between
your debug sessions.

All windows that are open in the Embedded Workbench workspace will stay open when

you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows are opened.

31

Introduction to C-SPY

32

C-SPY® Debugging Guide
for MSP430

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire toolchain, the output from the compiler and
linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you.

C-SPY offers these general features:

Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required,
for both C or C++ and assembler source code.

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function
call—inside expressions, and function calls that are part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging
C++ code, where numerous extra function calls are made, for example to object
constructors.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest.
For example, you set breakpoints to investigate whether your program logic is correct
or to investigate how and when the data changes.

Monitoring variables and expressions

For variables and expressions there is a wide choice of facilities. You can easily
monitor values of a specified set of variables and expressions, continuously or on
demand. You can also choose to monitor only local variables, static variables, etc.
Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and
debugging opportunities when you work with C++ STL containers.

Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the
program counter is. You can select any function in the call stack, and for each
function you get valid information for local variables and available registers.
Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex
sets of actions to be performed. C-SPY macros can be used on their own or in

The IAR C-SPY Debugger __o

conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY debugger features
This list shows some additional features:

Threaded execution keeps the IDE responsive while running the target application
Automatic stepping

The source browser provides easy navigation to functions, types, and variables
Extensive type recognition of variables

Configurable registers (CPU and peripherals) and memory windows

Graphical stack view with overflow detection

Support for code coverage and function level profiling

The target application can access files on the host PC using file I/O (requires the
DLIB library)

UBRGOF, Intel-extended, and Motorola input formats supported

o Optional terminal I/O emulation.

RTOS AWARENESS
C-SPY supports RTOS-aware debugging.
These operating systems are currently supported:

FreeRTOS/OpenRTOS/SafeRTOS
CMX

TI-RTOS

Segger embOS

Micrium uC/OS-1I

Micrium uC/OS-III

OSEK

RTOS plugin modules can be provided by IAR Systems, and by third-party suppliers.
Contact your software distributor or IAR Systems representative, alternatively visit the
IAR Systems web site, for information about supported RTOS modules.

A C-SPY RTOS awareness plugin module gives you a high level of control and visibility
over an application built on top of an RTOS. It displays RTOS-specific items like task
lists, queues, semaphores, mailboxes, and various RTOS system variables. Task-specific
breakpoints and task-specific stepping make it easier to debug tasks.

33

Debugger concepts

34

A loaded plugin will add its own menu, set of windows, and buttons when a debug
session is started (provided that the RTOS is linked with the application). For
information about other RTOS awareness plugin modules, refer to the manufacturer of
the plugin module.

Debugger concepts

C-SPY® Debugging Guide
for MSP430

These topics are covered:

C-SPY and target systems
The debugger

The target system

The application

C-SPY debugger systems
The ROM-monitor program
Third-party debuggers

C-SPY plugin modules

This section introduces some of the concepts and terms that are related to debugging in
general and to C-SPY in particular. This section does not contain specific information
related to C-SPY features. Instead, you will find such information in the other chapters
of this documentation. The IAR Systems user documentation uses the terms described
in this section when referring to these concepts.

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.

The IAR C-SPY Debugger __o

This figure gives an overview of C-SPY and possible target systems:

— e e e e g e e e e e e — ==

Target system with application software

|
|
I Simulator I .
| s | Simulator
| |
[——

! Emulator
| d:iver —\[JTAG Target
emulator [T | hardware

3rd-party
driver

Target
| hardware

|

| |
| |
| |
| |
| |
ROM-monitor |
IAR Embedded : ' driver 7 monitor |
Workbench | C-SPY (— Target hardware |
| |
' I

|
|

|
| |
|

|
|

|
|

|
| |
|
|

= Provided by IAR Systems
|:| = Provided by IAR Systems or third-party vendors

Note: In IAR Embedded Workbench for MSP430, there are no ROM-monitor drivers.

THE DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

THE TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

THE APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a target-specific back end. The back end consists of two components: a processor
module—one for every microcontroller, which defines the properties of the

35

Debugger concepts

36

C-SPY® Debugging Guide
for MSP430

microcontroller, and a C-SPY driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides the user
interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints. Typically, there are three main types of C-SPY
drivers:

e Simulator driver

o ROM-monitor driver

e Emulator driver.

C-SPY is available with a simulator driver, and depending on your product package,
optional drivers for hardware debugger systems. For an overview of the available C-SPY

drivers and the functionality provided by each driver, see C-SPY drivers overview, page
37.

THE ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the IAR Systems toolchain as long as
the third-party debugger can read any of the output formats provided by XLINK, such
as UBROF, ELF/DWARF, COFF, Intel-extended, Motorola, or any other available
format. For information about which format to use with a third-party debugger, see the
user documentation supplied with that tool.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR Systems, or can be supplied by third-party vendors.
Examples of such modules are:

Code Coverage, which is integrated in the IDE.

The various C-SPY drivers for debugging using certain debug systems.

RTOS plugin modules for support for real-time OS aware debugging.

C-SPYLink that bridges IAR visual STATE and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to

The IAR C-SPY Debugger __o

the normal C level symbolic debugging. For more information, see the
documentation provided with IAR visualSTATE.

For more information about the C-SPY SDK, contact IAR Systems.

C-SPY drivers overview

At the time of writing this guide, the IAR C-SPY Debugger for the MSP430
microcontrollers is available with drivers for these target systems and evaluation boards:

e Simulator
e FET Debugger.

DIFFERENCES BETWEEN THE C-SPY DRIVERS

This table summarizes the key differences between the C-SPY drivers:

Feature Simulator FET Debugger
Code breakpoints Unlimited x|
Data breakpoints X -
Execution in real time - X
Zero memory footprint X X
Simulated interrupts x -
Real interrupts - X
Interrupt logging X --
Data logging x -
Live watch X --
Cycle counter X x!
Code coverage X -
Data coverage X -
Function/instruction profiling X -
Trace X -
Power debugging ' - X

Table 3: Driver differences

1 With specific requirements or restrictions, see the respective chapter in this guide.

37

The IAR C-SPY Simulator

38

The IAR C-SPY Simulator

The C-SPY Simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

The C-SPY Simulator supports:

Instruction-level simulation
Memory configuration and validation

Interrupt simulation

Peripheral simulation (using the C-SPY macro system in conjunction with
immediate breakpoints).

Simulating hardware instead of using a hardware debugging system means that some
limitations do not apply, but that there are other limitations instead. For example:

® You can set an unlimited number of breakpoints in the simulator.

e When you stop executing your application, time actually stops in the simulator.
When you stop application execution on a hardware debugging system, there might
still be activities in the system. For example, peripheral units might still be active
and reading from or writing to SFR ports.

o Application execution is significantly much slower in a simulator compared to when
using a hardware debugging system. However, during a debug session, this might
not necessarily be a problem.

o The simulator is not cycle accurate.

e Peripheral simulation is limited in the C-SPY Simulator and therefore the simulator
is suitable mostly for debugging code that does not interact too much with
peripheral units.

The C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for MSP430

The C-SPY Flash Emulator Tool Debugger is a JTAG debugger that supports all Texas
Instruments’ debug probes and boards, and several third-party JTAG debug probes. It
provides automatic flash downloading and takes advantage of on-chip debug facilities.

To make the C-SPY FET Debugger work, a communication driver must be installed on
the host PC. This driver is automatically installed during the installation of the IAR
Embedded Workbench IDE. Because the hardware debugger kernel is built into the
microcontroller, no ordinary ROM-monitor program or extra specific hardware is
needed to make the debugging work. You can also use the debugger on your own
hardware design.

The IAR C-SPY Debugger __o

At the time of writing this guide, the IAR C-SPY Debugger for the MSP430
microcontrollers is available with drivers for these JTAG debug probes supported by the
FET debugger driver:

MSP-FET430UIF

MSP-FET

eZFET

eZ430

Olimex JTAG interface

Elprotronic JTAG interface.

FEATURES
In addition to the general features of C-SPY, the FET Debugger driver also provides:

Execution in real time with full access to the microcontroller
High-speed communication through a JTAG interface

Zero memory footprint on the target system

Hardware code breakpoints

Built-in flash loader.

Depending on the level of Enhanced Emulation Module (EEM) support, you might have
access also to:

e State storage
e Sequencer

o Clock control.

COMMUNICATION OVERVIEW

Most target systems have a debug probe or a debug adapter connected between the host
computer and the evaluation board.

39

The C-SPY hardware debugger drivers

40

C-SPY® Debugging Guide
for MSP430

The C-SPY FET Debugger driver uses the USB or parallel port to communicate with the
FET Interface module. The FET Interface module communicates with the JTAG
interface on the hardware.

C-SPY debugger
— C-SPY FET Debugger driver

USB or parallel

connection

-
/ mAGable @ et

For further information, refer to the documentation supplied with the FET Debugger.
When a debug session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.
Hardware installation

For information about the hardware installation, see the documentation supplied with
the hardware debugger from Texas Instruments. The following power-up sequence is
recommended to ensure proper communication between the target board, hardware
debugger, and C-SPY:

Power up the target board.
Power up the hardware debugger.

Start the C-SPY debug session.

Getting started using
C-SPY

e Setting up C-SPY

e Starting C-SPY

Adapting for target hardware

Running example projects

e Reference information on starting C-SPY

Setting up C-SPY

These tasks are covered:

Setting up for debugging
Executing from reset
Using a setup macro file

Selecting a device description file

Loading plugin modules

SETTING UP FOR DEBUGGING

Before you start C-SPY, choose Project>Options>Debugger>Setup and select the
C-SPY driver that matches your debugger system: simulator or a hardware debugger
system.

In the Category list, select the appropriate C-SPY driver and make your settings.
For information about these options, see Debugger options, page 361.

Click OK.

Choose Tools>Options to open the IDE Options dialog box:

o Select Debugger to configure the debugger behavior

e Select Stack to configure the debugger’s tracking of stack usage.

For more information about these options, see the IDE Project Management and
Building Guide.

41

Setting up C-SPY

42

C-SPY® Debugging Guide
for MSP430

See also Adapting for target hardware, page 45.

EXECUTING FROM RESET

The Run to option—available on the Debugger>Setup page—specifies a location you
want C-SPY to run to when you start a debug session as well as after each reset. C-SPY
will place a temporary breakpoint at this location and all code up to this point is executed
before stopping at the location.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty,

USING A SETUP MACRO FILE

A setup macro file is a macro file that you choose to load automatically when C-SPY
starts. You can define the setup macro file to perform actions according to your needs,
using setup macro functions and system macros. Thus, if you load a setup macro file you
can initialize C-SPY to perform actions automatically.

For more information about setup macro files and functions, see Introduction to C-SPY
macros, page 279. For an example of how to use a setup macro file, see Initializing
target hardware before C-SPY starts, page 46.

To register a setup macro file:
Before you start C-SPY, choose Project>Options>Debugger>Setup.

Select Use macro file and type the path and name of your setup macro file, for
example Setup.mac. If you do not type a filename extension, the extension mac is
assumed.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY uses device description files to handle device-specific information.

A default device description file is automatically used based on your project settings. If
you want to override the default file, you must select your device description file. Device
description files are provided in the msp430\config directory and they have the
filename extension daf.

For more information about device description files, see Adapting for target hardware,
page 45.

To override the default device description file:

Before you start C-SPY, choose Project>Options>Debugger>Setup.

Getting started using C-SPY ___4

2 Enable the use of a device description file and select a file using the Device
description file browse button.

Note: You can easily view your device description files that are used for your project.
Choose Project>Open Device Description File and select the file you want to view.
LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules to load and make available
during debug sessions. Plugin modules can be provided by IAR Systems, and by
third-party suppliers. Contact your software distributor or IAR Systems representative,
or visit the AR Systems web site, for information about available modules.

For more information, see Plugins, page 364.

Starting C-SPY

When you have set up the debugger, you are ready to start a debug session.
These tasks are covered:

Starting a debug session
Loading executable files built outside of the IDE

°
°
e Starting a debug session with source files missing
°

Loading multiple images

STARTING A DEBUG SESSION

You can choose to start a debug session with or without loading the current executable

file.
b To start C-SPY and download the current executable file, click the Download and
£ Debug button. Alternatively, choose Project>Download and Debug.
b To start C-SPY without downloading the current executable file, click the Debug
sy

without Downloading button. Alternatively, choose Project>Debug without
Downloading.
LOADING EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with an application that was built outside the IDE, for example
applications built on the command line. To load an externally built executable file and
to set build options you must first create a project for it in your workspace.

To create a project for an externally built file:

I Choose Project>Create New Project, and specify a project name.

43

Starting C-SPY

44

C-SPY® Debugging Guide
for MSP430

2

To add the executable file to the project, choose Project>Add Files and make sure to
choose All Files in the Files of type drop-down list. Locate the executable file.

To start the executable file, click the Download and Debug button. The project can be
reused whenever you rebuild your executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

STARTING A DEBUG SESSION WITH SOURCE FILES MISSING

Normally, when you use the IJAR Embedded Workbench IDE to edit source files, build
your project, and start the debug session, all required files are available and the process
works as expected.

However, if C-SPY cannot automatically find the source files, for example if the
application was built on another computer, the Get Alternative File dialog box is
displayed:

Get Alternative File g|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

Typically, you can use the dialog box like this:

o The source files are not available: Click If possible, don’t show this dialog again
and then click Skip. C-SPY will assume that there simply is no source file available.
The dialog box will not appear again, and the debug session will not try to display
the source code.

e Alternative source files are available at another location: Specify an alternative
source code file, click If possible, don’t show this dialog again, and then click Use
this file. C-SPY will assume that the alternative file should be used. The dialog box
will not appear again, unless a file is needed for which there is no alternative file
specified and which cannot be located automatically.

If you restart the JAR Embedded Workbench IDE, the Get Alternative File dialog box
will be displayed again once even if you have clicked If possible, don’t show this
dialog again. This gives you an opportunity to modify your previous settings.

For more information, see Get Alternative File dialog box, page 55.

Getting started using C-SPY ___4

LOADING MULTIPLE IMAGES

Normally, a debuggable application consists of exactly one file that you debug.
However, you can also load additional debug files (images). This means that the
complete program consists of several images.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided

features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files.

If more than one image has been loaded, you will have access to the combined debug
information for all the loaded images. In the Images window you can choose whether
you want to have access to debug information for one image or for all images.

To load additional images at C-SPY startup:

I Choose Project>Options>Debugger>Images and specify up to three additional
images to be loaded. For more information, see /mages, page 363.

2 Start the debug session.
To load additional images at a specific moment:

Use the __1loadImage system macro and execute it using either one of the methods
described in Using C-SPY macros, page 281.

To display a list of loaded images:

Choose Images from the View menu. The Images window is displayed, see Images
window, page 54.

Adapting for target hardware

These topics are covered:

o Modifying a device description file
e Initializing target hardware before C-SPY starts

e Using predefined C-SPY macros for device support

MODIFYING A DEVICE DESCRIPTION FILE

C-SPY uses device description files provided with the product to handle several of the
target-specific adaptations, see Selecting a device description file, page 42. They contain
device-specific information such as:

o Memory information for device-specific memory zones, see C-SPY memory zones,
page 148.

45

Adapting for target hardware

46

C-SPY® Debugging Guide
for MSP430

o Definitions of memory-mapped peripheral units, device-specific CPU registers, and
groups of these.

e Definitions for device-specific interrupts, which makes it possible to simulate these
interrupts in the C-SPY simulator; see Interrupts, page 239.

Normally, you do not need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. Note, however,
that the format of these descriptions might be updated in future upgrades of the product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file. Reload the project to make the changes take
effect.

For information about how to load a device description file, see Selecting a device
description file, page 42.

INITIALIZING TARGET HARDWARE BEFORE C-SPY STARTS

You can use C-SPY macros to initialize target hardware before C-SPY starts. For
example, if your hardware uses external memory that must be enabled before code can
be downloaded to it, C-SPY needs a macro to perform this action before your
application can be downloaded.

Create a new text file and define your macro function.

By using the built-in execUserPreload setup macro function, your macro function
will be executed directly after the communication with the target system is established
but before C-SPY downloads your application.

For example, a macro that enables external SDRAM could look like this:

/* Your macro function. */
enableExternal SDRAM ()
{
__message "Enabling external SDRAM\n";
__writeMemory32(...);

}

/* Setup macro determines time of execution. */
execUserPreload()

{
enableExternal SDRAM () ;
}

Save the file with the filename extension mac.
Before you start C-SPY, choose Project>Options>Debugger and click the Setup tab.

Select the option Use Setup file and choose the macro file you just created.

Getting started using C-SPY ___4

Your setup macro will now be loaded during the C-SPY startup sequence.

USING PREDEFINED C-SPY MACROS FOR DEVICE SUPPORT

For some MSP430 devices, there are predefined C-SPY macros available for specific
device support, typically provided by the chip manufacturer. These macros are useful for
performing certain device-specific tasks,

You can easily access and execute these macros using the Macro Quicklaunch window.

Running example projects

These tasks are covered:

e Running an example project

RUNNING AN EXAMPLE PROJECT

Example applications are provided with IAR Embedded Workbench. You can use these
examples to get started using the development tools from IAR Systems. You can also
use the examples as a starting point for your application project.

You can find the examples in the msp430\examples directory. The examples are ready
to be used as is. They are supplied with ready-made workspace files, together with
source code files and all other related files.

To run an example project:
I Choose Help>Information Center and click EXAMPLE PROJECTS.

2 Browse to the example that matches the specific evaluation board or starter kit you are
using.

47

Running example projects

48

C-SPY® Debugging Guide
for MSP430

4

5
nop &
— 7
v++| 8

Information Center - EXAMPLE PROJECTS T

1T} 1] 111 111 T}

Info Open Name Description
project

This example shows how
Basic LCD fo use the LCD and the
fouch screen controller

This example shows
- basic use of the parallel
EEDEINE IfO, timer and the
interrupt controller

fol JJ

Click the Open Project button.
In the dialog box that appears, choose a destination folder for your project.

The available example projects are displayed in the workspace window. Select one of
the projects, and if it is not the active project (highlighted in bold), right-click it and
choose Set As Active from the context menu.

To view the project settings, select the project and choose Options from the context
menu. Verify the settings for General Options>Target> and
Debugger>Setup>Driver. As for other settings, the project is set up to suit the target
system you selected.

For more information about the C-SPY options and how to configure C-SPY to interact
with the target board, see Debugger options, page 361.

Click OK to close the project Options dialog box.

To compile and link the application, choose Project>Make or click the Make button.
To start C-SPY, choose Project>Debug or click the Download and Debug button.
Choose Debug>Go or click the Go button to start the application.

Click the Stop button to stop execution.

Getting started using C-SPY ___4

Reference information on starting C-SPY

Reference information about:

o C-SPY Debugger main window, page 49
o [mages window, page 54

o Get Alternative File dialog box, page 55
® Device Information window, page 56
See also:

e Tools options for the debugger in the IDE Project Management and Building Guide.

C-SPY Debugger main window
When you start a debug session, these debugger-specific items appear in the main IAR
Embedded Workbench IDE window:
o A dedicated Debug menu with commands for executing and debugging your
application

o Depending on the C-SPY driver you are using, a driver-specific menu, often
referred to as the Driver menu in this documentation. Typically, this menu contains
menu commands for opening driver-specific windows and dialog boxes.

e A special debug toolbar

o Several windows and dialog boxes specific to C-SPY.

The C-SPY main window might look different depending on which components of the
product installation you are using.

Menu bar
These menus are available during a debug session:

Debug
Provides commands for executing and debugging the source application. Most
of the commands are also available as icon buttons on the debug toolbar.
C-SPY driver menu

Provides commands specific to a C-SPY driver. The driver-specific menu is only
available when the driver is used. For information about the driver-specific
menu commands, see Reference information on C-SPY driver menus, page 373.

49

Reference information on starting C-SPY

50

Debug menu

The Debug menu is available during a debug session. The Debug menu provides
commands for executing and debugging the source application. Most of the commands
are also available as icon buttons on the debug toolbar.

Go
Break:
Reset

F5

Stop Debugging

Chrl+Shift+D

Step Over F10
Step Into Fii
Step Out

Shift+F11

MNext Statement
Run to Cursor
Autostep...

Set Next Statement

C++ Exceptions

X

C-SPY® Debugging Guide

for MSP430

Memory 3
Refresh

Macros...

Logging 3

These commands are available:

Go F5

Break

Reset

Executes from the current statement or instruction until a breakpoint or program
exit is reached.

Stops the application execution.

Resets the target processor. Click the drop-down button to access a menu with
additional commands.

Enable Run to '1abel', where l1abel typically is main. Enables and disables
the project option Run to without exiting the debug session. This menu
command is only available if you have selected Run to in the Options dialog
box.

Reset strategies, which contains a list of reset strategies supported by the C-SPY
driver you are using. This means that you can choose a different reset strategy
than the one used initially without exiting the debug session. Reset strategies are
only available if the C-SPY driver you are using supports alternate reset
strategies.

Stop Debugging (Ctrl+Shift+D)

Stops the debugging session and returns you to the project manager.

e & B K

Getting started using C-SPY ___4

Step Over (F10)

Executes the next statement, function call, or instruction, without entering C or
C++ functions or assembler subroutines.

Step Into (F11)

Executes the next statement or instruction, or function call, entering C or C++
functions or assembler subroutines.

Step Out (Shift+F11)

Executes from the current statement up to the statement after the call to the
current function.

Next Statement
Executes directly to the next statement without stopping at individual function
calls.

Run to Cursor

Executes from the current statement or instruction up to a selected statement or
instruction.

Autostep
Displays a dialog box where you can customize and perform autostepping, see
Autostep settings dialog box, page 76.

Set Next Statement

Moves the program counter directly to where the cursor is, without executing
any source code. Note, however, that this creates an anomaly in the program
flow and might have unexpected effects.

C++ Exceptions>
Break on Throw
This menu command is not supported by your product package.
C++ Exceptions>
Break on Uncaught Exception
This menu command is not supported by your product package.

Memory>Save
Displays a dialog box where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 157.

Memory>Restore

Displays a dialog box where you can load the contents of a file in, for example
Intel-extended or Motorola s-record format to a specified memory zone, see
Memory Restore dialog box, page 158.

51

Reference information on starting C-SPY

52

C-SPY windows

C-SPY® Debugging Guide
for MSP430

Refresh
Refreshes the contents of all debugger windows. Because window updates are
automatic, this is needed only in unusual situations, such as when target memory
is modified in ways C-SPY cannot detect. It is also useful if code that is
displayed in the Disassembly window is changed.

Macros
Displays a dialog box where you can list, register, and edit your macro files and
functions, see Using C-SPY macros, page 281.

Logging>Set Log file
Displays a dialog box where you can choose to log the contents of the Debug
Log window to a file. You can select the type and the location of the log file. You
can choose what you want to log: errors, warnings, system information, user
messages, or all of these. See Log File dialog box, page 75.

Logging>

Set Terminal I/0 Log file

Displays a dialog box where you can choose to log simulated target access
communication to a file. You can select the destination of the log file. See
Terminal 1/O Log File dialog box, page 72

Depending on the C-SPY driver you are using, these windows specific to C-SPY are
available during a debug session:
C-SPY Debugger main window
Disassembly window

Memory window

Symbolic Memory window
Register window

Watch window

Locals window

Auto window

Live Watch window

Quick Watch window

Statics window

Call Stack window

Trace window

Function Trace window

Getting started using C-SPY ___4

Timeline window
Terminal I/O window
LCD window

Code Coverage window
Function Profiler window
Images window

Stack window

Symbols window.

Additional windows are available depending on which C-SPY driver you are using.

Editing in C-SPY windows

You can edit the contents of the Memory, Symbolic Memory, Register, Auto, Watch,
Locals, Statics, Live Watch, and Quick Watch windows.

Use these keyboard keys to edit the contents of these windows:

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.

In windows where you can edit the Expression field and in the Quick Watch window,
you can specify the number of elements to be displayed in the field by adding a
semicolon followed by an integer. For example, to display only the three first elements

of an array named myArray, or three elements in sequence starting with the element
pointed to by a pointer, write:

myArray; 3
To display three elements pointed to by myPtr, myPtr+1, and myPtr+2, write:
myPtr;3

Optionally, add a comma and another integer that specifies which element to start with.
For example, to display elements 10-14, write:

myArray; 5,10
To display myPtr+10, myPtr+11l, myPtr+12, myPtr+13, and myPtr+14, write:
myPtr;5,10

Note: For pointers, there are no built-in limits on displayed element count, and no
validation of the pointer value.

53

Reference information on starting C-SPY

54

Images window

The Images window is available from the View menu.

MName Path
<All images> [Combines debug information from all images]
project] ChDocuments and Settingsihy Documentsi| AR Embedded WorkbenchDebughExeyproject! .out

exfralmage ChDocuments and Settingsi\hy Documentst| AR Embedded WorkbenchDebughExehextralmage.out

The Images window lists all currently loaded images (debug files).

Normally, a source application consists of exactly one image that you debug. However,
you can also load additional images. This means that the complete debuggable unit
consists of several images.

Requirements

None; this window is always available.

Display area

C-SPY can either use debug information from all of the loaded images simultaneously,
or from one image at a time. Double-click on a row to show information only for that
image. The current choice is highlighted.

This area lists the loaded images in these columns:

Name
The name of the loaded image.

Path
The path to the loaded image.

Context menu

C-SPY® Debugging Guide
for MSP430

This context menu is available:

Show only 'projectl’
These commands are available:

Show all images
Shows debug information for all loaded debug images.

Show only image
Shows debug information for the selected debug image.

Getting started using C-SPY ___4

Related information
For related information, see:
® Loading multiple images, page 45
o [mages, page 363
o _ loadlmage, page 302.

Get Alternative File dialog box

The Get Alternative File dialog box is displayed if C-SPY cannot automatically find
the source files to be loaded, for example if the application was built on another
computer.

Get Alternative File PZ|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

Could not find the following source file

The missing source file.

Suggested alternative

Specify an alternative file.

Use this file

After you have specified an alternative file, Use this file establishes that file as the alias
for the requested file. Note that after you have chosen this action, C-SPY will
automatically locate other source files if these files reside in a directory structure similar
to the first selected alternative file.

The next time you start a debug session, the selected alternative file will be preloaded
automatically.

Skip

C-SPY will assume that the source file is not available for this debug session.

55

Reference information on starting C-SPY

If possible, don’t show this dialog again

Instead of displaying the dialog box again for a missing source file, C-SPY will use the
previously supplied response.

Related information

For related information, see Starting a debug session with source files missing, page 44.

Device Information window

The Device Information window is available from the Emulator menu.

Device Information =

Device name
WCCvoltage
External valtage

MEP430FEE3E
30
0.0

Displays information about the target hardware being used.

Requirements

The C-SPY FET Debugger driver.

C-SPY® Debugging Guide
56 for MSP430

Executing your application

e Introduction to application execution

e Reference information on application execution

Introduction to application execution
These topics are covered:

Briefly about application execution
Source and disassembly mode debugging
Single stepping

Stepping speed

Running the application

Highlighting

Call stack information

Terminal input and output

Debug logging

BRIEFLY ABOUT APPLICATION EXECUTION

C-SPY allows you to monitor and control the execution of your application. By
single-stepping through it, and setting breakpoints, you can examine details about the
application execution, for example the values of variables and registers. You can also use
the call stack to step back and forth in the function call chain.

The terminal I/O and debug log features let you interact with your application.

You can find commands for execution on the Debug menu and on the toolbar.

SOURCE AND DISASSEMBLY MODE DEBUGGING

C-SPY allows you to switch between source mode and disassembly mode debugging as
needed.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

57

Introduction to application execution

58

C-SPY® Debugging Guide
for MSP430

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control of the application code. You can open a
disassembly window which displays a mnemonic assembler listing of your application
based on actual memory contents rather than source code, and lets you execute the
application exactly one machine instruction at a time.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

SINGLE STEPPING

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just
stepping on statements.

There are several factors that can slow down the stepping speed. If you find it too slow,
see Slow stepping speed, page 382 for some tips.

The step commands
There are four step commands:

e Step Into
o Step Over
o Next Statement
e Step Out.

Using the Autostep settings dialog box, you can automate the single stepping. For more
information, see Autostep settings dialog box, page 76.

Executing your application __4

Consider this example and assume that the previous step has taken you to the £ (1)
function call (highlighted):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}
int main()

{

£(i);
value ++;

Step Into

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine g (n-1):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Step Over

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the g (n-2) function
call, which is not a statement on its own but part of the same statement as g (n-1) . Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

59

Introduction to application execution

60

C-SPY® Debugging Guide
for MSP430

Next Statement

The Next Statement command executes directly to the next statement, in this case
return value, allowing faster stepping:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

Step Out

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) g(n-3);
return value;

}
int main()

{

£(1i);
value ++;

}

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for C++, which tends to have many implicit function calls,
such as constructors, destructors, assignment operators, and other user-defined
operators.

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.
Single-stepping and flash memory in the C-SPY FET Debugger

When you use the FET Debugger driver, be aware that single-stepping over instructions
that manipulate the flash memory might cause some unexpected side-effects.

Multiple internal machine cycles are required to clear and program the flash memory.
When single-stepping over instructions that manipulate the flash memory, control is
given back to C-SPY before these operations are complete. Consequently, C-SPY will

Executing your application ___4

update its memory window with erroneous information. A workaround to this behavior
is to follow the flash access instruction with a NOP instruction, and then step past the NOP
before reviewing the effects of the flash access instruction.

STEPPING SPEED

Stepping in C-SPY is normally performed using breakpoints. When performing a step
command, a breakpoint is set on the next statement and the program executes until
reaching this breakpoint. If you are debugging using a hardware debugger system, the
number of hardware breakpoints—typically used for setting a stepping breakpoint, at
least in code that is located in flash/ROM memory—is limited. If you for example, step
into a C switch statement, breakpoints are set on each branch, and hence, this might
consume several hardware breakpoints. If the number of available hardware breakpoints
is exceeded, C-SPY switches into single stepping at assembly level, which can be very
slow.

For this reason, it can be helpful to keep track of how many hardware breakpoints are
used and make sure to some of them are left for stepping. For more information, see
Breakpoints in the C-SPY hardware Debugger driver, page 116 and Breakpoint
consumers, page 118.

In addition to limited hardware breakpoints, these issues might also affect stepping
speed:

o If Trace or Function profiling is enabled. This might slow down stepping because
collected Trace data is processed after each step. Note that it is not sufficient to
close the corresponding windows to disable Trace data collection. Instead, you must
disable the Enable/Disable button in both the Trace and the Function profiling
windows.

e If the Register window is open and displays SFR registers. This might slow down
stepping because all registers in the selected register group must be read from the
hardware after each step. To solve this, you can choose to view only a limited
selection of SFR register; you can choose between two alternatives. Either type
#SFR_name (Where #SFR_name reflects the name of the SFR you want to monitor)
in the Watch window, or create your own filter for displaying a limited group of
SFRs in the Register window. See Defining application-specific register groups,
page 151.

e If any of the Memory or Symbolic memory windows is open. This might slow down
stepping because the visible memory must be read after each step.

e If any of the expression related windows such as Watch, Live Watch, Locals, Statics
is open. This might slow down stepping speed because all these windows reads
memory after each step.

61

Introduction to application execution

62

C-SPY® Debugging Guide
for MSP430

+++|

\

e If the Stack window is open and especially if the option Enable graphical stack
display and stack usage tracking option is enabled. To disable this option, choose
Tools>Options>Stack and disable it.

e If a too slow communication speed has been set up between C-SPY and the target
board/emulator you should consider to increase the speed, if possible.

RUNNING THE APPLICATION

Go

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

Run to Cursor

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the windows was last active.

Tutor.c I!EEE

void init_fib({ woid)
i
int i = 45;
o root[0] = root[l] = 1;

for { i=2 ; i<MAX _FIE : i++)
{

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

Executing your application ___4

CALL STACK INFORMATION

The compiler generates extensive backtrace information. This allows C-SPY to show,
without any runtime penalty, the complete function call chain at any time.

Typically, this is useful for two purposes:

e Determining in what context the current function has been called

e Tracing the origin of incorrect values in variables and in parameters, thus locating
the function in the call chain where the problem occurred.

The Call Stack window shows a list of function calls, with the current function at the
top. When you inspect a function in the call chain, the contents of all affected windows
are updated to display the state of that particular call frame. This includes the editor,
Locals, Register, Watch and Disassembly windows. A function would normally not
make use of all registers, so these registers might have undefined states and be displayed
as dashes (---).

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command to execute to that function.

Assembler source code does not automatically contain any backtrace information. To
see the call chain also for your assembler modules, you can add the appropriate CFI
assembler directives to the assembler source code. For further information, see the /4R
Assembler Reference Guide for MSP430.

TERMINAL INPUT AND OUTPUT

Sometimes you might have to debug constructions in your application that use stdin

and stdout without an actual hardware device for input and output. The Terminal I/O
window lets you enter input to your application, and display output from it. You can also
direct terminal I/O to a file, using the Terminal I/O Log Files dialog box.

This facility is useful in two different contexts:

e If your application uses stdin and stdout

e For producing debug trace printouts.

For more information, see Terminal 1/0 window, page 71 and Terminal 1/0 Log File
dialog box, page 72.

DEBUG LOGGING

The Debug Log window displays debugger output, such as diagnostic messages,
macro-generated output, event log messages, and information about trace.

63

Reference information on application execution

64

&

It can sometimes be convenient to log the information to a file where you can easily
inspect it. The two main advantages are:

The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

The file provides history about how you have controlled the execution, for instance,
which breakpoints that have been triggered etc.

Reference information on application execution
Reference information about:

C-SPY® Debugging Guide
for MSP430

Disassembly window, page 65

Call Stack window, page 69

Terminal 1/0 window, page 71

Terminal 1/0 Log File dialog box, page 72
LCD window, page 73

LCD Settings dialog box, page 73

Debug Log window, page 74

Log File dialog box, page 75

Report Assert dialog box, page 76
Autostep settings dialog box, page 76

See also Terminal I/O options in the IDE Project Management and Building Guide.

Executing your application ___4

Disassembly window

The C-SPY Disassembly window is available from the View menu.

[Go to memory address] [Select zone to display] I Toggle embedded source code
Y I '."'
Disassembly ~ | / =]
Disassembly |~
& 001EA o7 RET |—|
NextCounter() ;
7| DoForegroundProcess:
Code coverage & O0LEE FDE701 CALL N:NextCounter
information fib = GetFib(callCount) ;
& 0O01EE AFOOEF MOV A¥, N:callCount
& 001F1 FD4502 CALL N:UFOSTR
PutFila{ fily) ;
& 001F4 EDS002 ER N:UF1CTLO
callCount = 0O;
main:
7] & 001F7 Fi5 CLEW AKX
[Current position | % 0O0IF® BFOOBF MOVW N:callCount, AX
_ InitFib() ;
& 001FE FDOEODZ2 CALL N:TCR27
& 001FE EFO03 ER S:4+0x05
_— DoForegroundProcess() ;
[Breakpeint] L]
P] :
- while {(callCount = MAX FIE)
& 00203 AFOOEF MOV A¥, N:callCount
* 00206 TCR0 XOR A, #0x80 5

This figure reflects the C-SPY simulator.
This window shows the application being debugged as disassembled application code.

To change the default color of the source code in the Disassembly window:
I Choose Tools>Options>Debugger.
2 Set the default color using the Source code coloring in disassembly window option.
9 To view the corresponding assembler code for a function, you can select it in the editor

window and drag it to the Disassembly window.

Requirements

None; this window is always available.

65

Reference information on application execution

66

Toolbar

Display area

C-SPY® Debugging Guide
for MSP430

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 148.

Toggle Mixed-Mode

Toggles between displaying only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information

The display area shows the disassembled application code.

This area contains these graphic elements:

Green highlight Indicates the current position, that is the next assembler
instruction to be executed. To move the cursor to any line in
the Disassembly window, click the line. Alternatively, move
the cursor using the navigation keys.

Yellow highlight Indicates a position other than the current position, such as
when navigating between frames in the Call Stack window
or between items in the Trace window.

Red dot Indicates a breakpoint. Double-click in the gray left-side
margin of the window to set a breakpoint. For more
information, see Breakpoints, page 113.

Green diamond Indicates code that has been executed—that is, code
coverage.

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has
been executed.

Executing your application ___4

Context menu

This context menu is available:

Move to PC

Run ko Cursor

Code Coverage 3
Instruction Profiling 3

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)

Toggle Breakpoint {Trace Start)
Toggle Breakpoint {Trace Stop)
Enable/disable Ereakpaint

Set Mext Statement

Copy Window Contents
v Mixed-Mode

Note: The contents of this menu are dynamic, which means that the commands on the
menu might depend on your product package.

These commands are available:

Move to PC

Displays code at the current program counter location.

Run to Cursor

Executes the application from the current position up to the line containing the
Cursor.

Code Coverage

Displays a submenu that provides commands for controlling code coverage.
This command is only enabled if the driver you are using supports it.

Enable Toggles code coverage on or off.

Show Toggles the display of code coverage on or off.
Executed code is indicated by a green diamond.

Clear Clears all code coverage information.

Instruction Profiling

Displays a submenu that provides commands for controlling instruction
profiling. This command is only enabled if the driver you are using supports it.

Enable Toggles instruction profiling on or off.

Show Toggles the display of instruction profiling on or off.
For each instruction, the left-side margin displays
how many times the instruction has been executed.

67

Reference information on application execution

Clear Clears all instruction profiling information.

Toggle Breakpoint (Code)

Toggles a code breakpoint. Assembler instructions and any corresponding label
at which code breakpoints have been set are highlighted in red. For more
information, see Code breakpoints dialog box, page 128.

Toggle Breakpoint (Log)

Toggles a log breakpoint for trace printouts. Assembler instructions at which log
breakpoints have been set are highlighted in red. For more information, see Log
breakpoints dialog box, page 129.

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, the trace
data collection starts. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Start breakpoints dialog box, page 194.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, the trace
data collection stops. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see 7race
Stop breakpoints dialog box, page 195.

Enable/Disable Breakpoint

Enables and Disables a breakpoint. If there is more than one breakpoint at a
specific line, all those breakpoints are affected by the Enable/Disable
command.

Edit Breakpoint

Displays the breakpoint dialog box to let you edit the currently selected
breakpoint. If there is more than one breakpoint on the selected line, a submenu
is displayed that lists all available breakpoints on that line.

Set Next Statement
Sets the program counter to the address of the instruction at the insertion point.

Copy Window Contents
Copies the selected contents of the Disassembly window to the clipboard.

Mixed-Mode
Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

C-SPY® Debugging Guide
68 for MSP430

Executing your application ___4

Call Stack window

The Call stack window is available from the View menu.

Call Stack (=]

| Destination for Step Into

T Fibonacci::next()
2 main
[_call_main + 0x3]

Jump te main from label
plus offset

This window displays the C function call stack with the current function at the top. To
inspect a function call, double-click it. C-SPY now focuses on that call frame instead.

If the next Step Into command would step to a function call, the name of the function is
displayed in the grey bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

Requirements

None; this window is always available.

Display area

Provided that the command Show Arguments is enabled, each entry in the display area
has the format:

function(values) ***
where

(values) is alist of the current values of the parameters, or empty if the function does
not take any parameters.

**x*_if visible, indicates that the function has been inlined by the compiler. For
information about function inlining, see the /AR C/C++ Compiler User Guide for
MSP430.

69

Reference information on application execution

Context menu

This context menu is available:
Go to Source
Show Arguments
Run to Cursor
Toggle Breakpoint (Code)
Toggle Breakpoint (Log)
Toggle Breakpoint (Trace Start)
Toggle Breakpoint (Trace Stop)
Enable/Disable Breakpoint

This figure reflects the C-SPY simulator.
These commands are available:

Go to Source
Displays the selected function in the Disassembly or editor windows.

Show Arguments
Shows function arguments.

Run to Cursor
Executes until return to the function selected in the call stack.

Toggle Breakpoint (Code)
Toggles a code breakpoint.

Toggle Breakpoint (Conditional)
Toggles a conditional breakpoint.

Toggle Breakpoint (Advanced Trigger)
Toggles an Advanced Trigger breakpoint.

Toggle Breakpoint (Log)
Toggles a log breakpoint.

Toggle Breakpoint (Trace Start)
Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Toggle Breakpoint (Trace Stop)
Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. Note that this menu command is only available if the C-SPY
driver you are using supports it.

C-SPY® Debugging Guide
70 for MSP430

Executing your application ___4

Enable/Disable Breakpoint

Enables or disables the selected breakpoint

Terminal 1/O window

The Terminal I/O window is available from the View menu.

Terminal I/0 =

Output: Log file: OFff

[a—

21
34
bh

Input: LCtl codes | InputMode...|

Buffer size: 1]

Use this window to enter input to your application, and display output from it.
To use this window, you must:
I Link your application with the option With I/0 emulation modules.

C-SPY will then direct stdin, stdout and stderr to this window. If the Terminal I/O
window is closed, C-SPY will open it automatically when input is required, but not for
output.

Requirements

None; this window is always available.

Input

Type the text that you want to input to your application.

71

Reference information on application execution

Ctrl codes

Input Mode

Opens a menu for input of special characters, such as EOF (end of file) and NUL.

0:x00-0x0f »
O:x10-0:x1F »
ECF

Opens the Input Mode dialog box where you choose whether to input data from the
keyboard or from a file.

& Buffered e

" Direct ﬂl
" File

& Text

| Binary
$PROJ_DIREAT ermnlOlnput bt J

For reference information about the options available in this dialog box, see Terminal
1/0O options in IDE Project Management and Building Guide.

Terminal I/O Log File dialog box

Requirements

The Terminal I/0 Log File dialog box is available by choosing Debug>Logging>Set
Terminal 1/0 Log File.

Terminal I/0 Log File

Terminal [/0 Log File 0Ok

™ Enable Teminal 10 log file
J Cancel

Use this dialog box to select a destination log file for terminal I/O from C-SPY.

None; this dialog box is always available.

Terminal 10 Log Files

C-SPY® Debugging Guide
72 for MSP430

Controls the logging of terminal I/O. To enable logging of terminal I/O to a file, select
Enable Terminal 10 log file and specify a filename. The default filename extension is
log. A browse button is available for your convenience.

Executing your application ___4

LCD window

The LCD window is available from the View menu.
LCD =]

72

This window simulates a 7- or 14-segments LCD display.

Requirements
The C-SPY FET Debugger driver.

Toolbar

% LCD Settings

Displays the LCD Settings dialog box, where you can configure the LCD
window.

LCD Settings dialog box

The LCD Settings dialog box is available from the LCD window.
LCD Settings [%]

LCD configuration file

I$TDDLKIT_DIF|$\plugins\lcd\lcd?seg.Ic:d _I

LCD control register address:

IDHSD

0K

x|
Cancel |

Use this dialog box to configure the LCD window.

Requirements
The C-SPY FET Debugger driver.

73

Reference information on application execution

74

LCD configuration file

Specity the LCD display to simulate, using the browse button. Choose between a
7-segment display and a 14-segment display.

LCD control register address

Debug Log window

Requirements

Context menu

C-SPY® Debugging Guide
for MSP430

Specify the address of the LCD control register.

The Debug Log window is available by choosing View>Messages.

. |

Log

Fri Feb 06 10:41:40 2004: Loaded module
Fri Felb 06 10:41:40 2004: Target reset

This window displays debugger output, such as diagnostic messages, macro-generated
output, event log messages, and information about trace. This output is only available
during a debug session. When opened, this window is, by default, grouped together with
the other message windows, see IDE Project Management and Building Guide.

Double-click any rows in one of the following formats to display the corresponding
source code in the editor window:

<path> (<row>) :<message>
<path> (<row>,<column>) :<message>

None; this window is always available.

This context menu is available:

Copy
Select Al

Clear Al
These commands are available:

Copy
Copies the contents of the window.

Log File dialog box

Requirements

Enable Log file

Include

Executing your application ___4

Select All

Selects the contents of the window.

Clear All
Clears the contents of the window.

The Log File dialog box is available by choosing Debug>Logging>Set Log File.

r Log File
o Include:
¥ Enable log file
¥ Enmors ¥ “wamings
¥ Info IV User
$PROJ_DIR$ LogFile1.log J

()3 I Cancel |

Use this dialog box to log output from C-SPY to a file.

None; this dialog box is always available.

Enables or disables logging to the file.

The information printed in the file is, by default, the same as the information listed in
the Log window. Use the browse button, to override the default file and location of the
log file (the default filename extension is 1og). To change the information logged,
choose between:
Errors

C-SPY has failed to perform an operation.

Warnings
An error or omission of concern.

Info
Progress information about actions C-SPY has performed.

75

Reference information on application execution

User

Messages from C-SPY macros, that is, your messages using the __message
statement.

Report Assert dialog box

The Report Assert dialog box appears if you have a call to the assert function in your
application source code, and the assert condition is false. In this dialog box you can
choose how to proceed.

Report Assert

The following Failed:

File: C:\Documents and SettingsiMy DocumentsiIAR Embedded Workbenchiresolve.cpp
Line: 35

Expression Failed:

a

Abort | Debug |

Abort
The application stops executing and the runtime library function abort, which is part
of your application on the target system, will be called. This means that the application
itself terminates its execution.

Debug
C-SPY stops the execution of the application and returns control to you.

Ignore

The assertion is ignored and the application continues to execute.

Autostep settings dialog box

The Autostep settings dialog box is available from the Debug menu.

Autostep settings E

I Step Into [Source level] j Start I
Delay [miIIiseconds]:I‘I] Cancel |

Use this dialog box to customize autostepping.

The drop-down menu lists the available step commands.

C-SPY® Debugging Guide
76 for MSP430

Executing your application ___4

Requirements

None; this dialog box is always available.

Delay

Specify the delay between each step in milliseconds.

77

Reference information on application execution

C-SPY® Debugging Guide
78 for MSP430

Variables and expressions

e Introduction to working with variables and expressions
e Working with variables and expressions

e Reference information on working with variables and expressions

Introduction to working with variables and expressions

These topics are covered:

e Briefly about working with variables and expressions
o C-SPY expressions

o Limitations on variable information.

BRIEFLY ABOUT WORKING WITH VARIABLES AND
EXPRESSIONS

There are several methods for looking at variables and calculating their values:

e Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

o The Auto window displays a useful selection of variables and expressions in, or
near, the current statement. The window is automatically updated when execution
stops.

o The Locals window displays the local variables, that is, auto variables and function
parameters for the active function. The window is automatically updated when
execution stops.

o The Watch window allows you to monitor the values of C-SPY expressions and
variables. The window is automatically updated when execution stops.

o The Live Watch window repeatedly samples and displays the values of expressions
while your application is executing. Variables in the expressions must be statically
located, such as global variables.

o The Statics window displays the values of variables with static storage duration. The
window is automatically updated when execution stops.

o The Macro Quicklaunch window and the Quick Watch window give you precise
control over when to evaluate an expression.

79

Introduction to working with variables and expressions

80

C-SPY® Debugging Guide
for MSP430

o The Symbols window displays all symbols with a static location, that is, C/C++
functions, assembler labels, and variables with static storage duration, including
symbols from the runtime library.

o The Data Log window and the Data Log Summary window display logs of accesses
up to four different memory locations or areas you choose by setting Data Log
breakpoints. Data logging can help you locate frequently accessed data. You can
then consider whether you should place that data in more efficient memory.

o The Data Sample window displays samples for up to four different variables. You
can also display the data samples as graphs in the Sampled Graphs window. By
using data sampling, you will get an indication of the data value over a length of
time. Because it is a sampled value, data sampling is best suited for slow-changing
data. Variables in the expressions must be of integer type and statically located, for
example global variables.

o The Trace-related windows let you inspect the program flow up to a specific state.
For more information, see Trace, page 179.

C-SPY EXPRESSIONS

C-SPY expressions can include any type of C expression, except for calls to functions.
The following types of symbols can be used in expressions:

C/C++ symbols

°
o Assembler symbols (register names and assembler labels)
o C-SPY macro functions

°

C-SPY macro variables.

Expressions that are built with these types of symbols are called C-SPY expressions and
there are several methods for monitoring these in C-SPY. Examples of valid C-SPY
expressions are:

i+ 3

i = 42

myVar = cVar

cVar = myVar + 2

#asm_label

#R2

#PC

my_macro_func(19)

If you have a static variable with the same name declared in several different functions,
use the notation function: : variable to specify which variable to monitor.

Variables and expressions __¢

C/C++ symbols

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions (functions can be used as symbols but
cannot be executed). C symbols can be referenced by their names. Note that C++
symbols might implicitly contain function calls which are not allowed in C-SPY
symbols and expressions.

Note: Some attributes available in C/C++, like volatile, are not fully supported by
C-SPY. For example, this line will not be accepted by C-SPY:

sizeof (unsigned char volatile __memattr *)
However, this line will be accepted:

sizeof (unsigned char __memattr *)

Assembler symbols

Assembler symbols can be assembler labels or registers, for example the program
counter, the stack pointer, or other CPU registers. If a device description file is used, all
memory-mapped peripheral units, such as I/O ports, can also be used as assembler
symbols in the same way as the CPU registers. See Modifying a device description file,
page 45.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

Example What it does
#PC++ Increments the value of the program counter.
myVar = #SP Assigns the current value of the stack pointer register to your

C-SPY variable.
myVar = #label Sets myVar to the value of an integer at the address of label.

myptr = &#label? Sets myptr to an int * pointer pointing at label7.

Table 4: C-SPY assembler symbols expressions

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes * (ASCII character 0x60). For example:

Example What it does
#PC Refers to the program counter.
PC" Refers to the assembler label PC.

Table 5: Handling name conflicts between hardware registers and assembler labels

Which processor-specific symbols are available by default can be seen in the Register
window, using the CPU Registers register group. See Register window, page 166.

81

Introduction to working with variables and expressions

82

C-SPY® Debugging Guide
for MSP430

C-SPY macro functions

Macro functions consist of C-SPY macro variable definitions and macro statements
which are executed when the macro is called.

For information about C-SPY macro functions and how to use them, see Briefly about
the macro language, page 280.

C-SPY macro variables

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assign both its value and type.

For information about C-SPY macro variables and how to use them, see Reference
information on the macro language, page 286.

Using sizeof
According to standard C, there are two syntactical forms of sizeof:

sizeof (type)
sizeof expr

The former is for types and the latter for expressions.

Note: In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

LIMITATIONS ON VARIABLE INFORMATION

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice, the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

Effects of optimizations

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. The optimization can affect the code so that
debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

Variables and expressions __¢

Consider this example:

myFunction ()

{
int 1 = 42;

x = computer(i); /* Here, the value of i is known to C-SPY */

}

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means that C-SPY will not be able to display the value until it is actually used. If
you try to view the value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Working with variables and expressions

These tasks are covered:

o Using the windows related to variables and expressions
o Viewing assembler variables

o Getting started using data logging

o Getting started using data sampling

USING THE WINDOWS RELATED TO VARIABLES AND
EXPRESSIONS

Where applicable, you can add, modify, and remove expressions, and change the display
format in the windows related to variables and expressions.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click the Value field and modify
its content. To remove an expression, select it and press the Delete key.

For text that is too wide to fit in a column—in any of the these windows, except the Trace
@ window—and thus is truncated, just point at the text with the mouse pointer and tooltip
information is displayed.

83

Working with variables and expressions

Right-click in any of the windows to access the context menu which contains additional
commands. Convenient drag-and-drop between windows is supported, except for in the
Locals window, Data logging windows, and the Quick Watch window where it is not
relevant.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY by default treats all data located at assembler labels as
variables of type int. However, in the Watch, Live Watch, and Quick Watch windows,
you can select a different interpretation to better suit the declaration of the variables.

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

asm.s f0 - x Wathi
NHAME main — | Expression YWalue Location Type
-~ ssmvarl 42 0x=00000080 int
PUBLIC _ iar program start astrvar? 456 O=00000084 int
astrvard 55 O0=00000088 <8-bit unsigned>
SECTION .intwec : CODE (2)
CODE32 <clickta .. Default Format
__ilar program start EibanjEotnat
B main Octal Format
v Decimal Format
SECTION .text : CODE (2) Hexadecimal Format
Char Format
asmvarl: DC32 42
asmvar2: DC32 456 Show As b Asls
asmvar3: DC8 55 8-bit Signed
asmvard: DC8 10 Save to File...
16-bit Signed
CopE32 16-bit Unsigned
= main NOE 32-bit Signed
B main 32-bit Unsigned
64-bit Signed
END 64-bit Unsigned
float
double

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

C-SPY® Debugging Guide
84 for MSP430

Variables and expressions __¢

GETTING STARTED USING DATA LOGGING

In the Breakpoints or Memory window, right-click and choose New
Breakpoints>Data Log to open the breakpoints dialog box. Set a Data Log breakpoint
on the data you want to collect log information for. You can set up to four Data Log
breakpoints.

Choose C-SPY driver>Data Log to open the Data Log window. Optionally, you can
also choose:

o C-SPY driver>Data Log Summary to open the Data Log Summary window

o C-SPY driver>Timeline to open the Timeline window to view the Data Log graph.

From the context menu, available in the Data Log window, choose Enable to enable
the logging.

Start executing your application program to collect the log information.

To view the data log information, look in any of the Data Log, Data Log Summary, or
the Data graph in the Timeline window.

If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

To disable data and interrupt logging, choose Disable from the context menu in each
window where you have enabled it.

GETTING STARTED USING DATA SAMPLING
Choose C-SPY driver>Data Sample Setup to open the Data Sample Setup window.
In the Data Sample Setup window, perform these actions:

o In the Expression column, type the name of the variable for which you want to
sample data. The variable must be an integral type with a maximum size of 32 bits
and you can specify up to four variables. Make sure that the checkbox is selected for
the variable that you want to sample data.

o In the Sampling interval column, type the number of milliseconds to pass between
the samples.

To view the result of data sampling, you must enable it in the window in question:

o Choose C-SPY driver>Data Sample to open the Data Sample window. From the
context menu, choose Enable.

o Choose C-SPY driver>Sampled Graph to open the Sampled Graph window. From
the context menu, choose Enable.

85

Reference information on working with variables and expressions

4 Start executing your application program. This starts the data sampling. When the
execution stops, for example because a breakpoint is triggered, you can view the result
either in the Data Sample window or as the Data Sample Graph in the Sampled Graphs
window

5 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

6 To disable data sampling, choose Disable from the context menu in each window
where you have enabled it.

Reference information on working with variables and expressions

Reference information about:

Auto window, page 87

Locals window, page 88

Watch window, page 90

Live Watch window, page 92

Statics window, page 94

Quick Watch window, page 97
Symbols window, page 99

Resolve Symbol Ambiguity dialog box, page 101
Data Log window, page 102

Data Log Summary window, page 104
Data Sample Setup window, page 105
Data Sample window, page 106

Sampled Graphs window, page 108
See also:

® Reference information on trace, page 182 for trace-related reference information

® Macro Quicklaunch window, page 334

C-SPY® Debugging Guide
86 for MSP430

Auto window

Requirements

Context menu

Variables and expressions __¢

The Auto window is available from the View menu.

Expression Yalue Location Type

i 5 0x7 short

Fib[i] 0 Mermory:0xC00C unsigned int
Fik <array> hemony:0xC002 unsigned int[10]
GetFib GetFib (0xBC) unsigned int (*)...

This window displays a useful selection of variables and expressions in, or near, the
current statement. Every time execution in C-SPY stops, the values in the Auto window
are recalculated. Values that have changed since the last stop are highlighted in red.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 49.

None; this window is always available.

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Save to File...

These commands are available:

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

87

Reference information on working with variables and expressions

88

Locals window

C-SPY® Debugging Guide
for MSP430

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 84.

Options
Displays the IDE Options dialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

Save to File
Saves content to a file in a tab-separated format.

The Locals window is available from the View menu.

Expression Yalue Location Type
i 2 R7 short

This window displays the local variables and parameters for the current function. Every
time execution in C-SPY stops, the values in the Locals window are recalculated. Values
that have changed since the last stop are highlighted in red.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 49.

Variables and expressions __¢

Requirements

None; this window is always available.

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Save to File...

These commands are available:

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

89

Reference information on working with variables and expressions

90

Woatch window

C-SPY® Debugging Guide
for MSP430

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 84.

Options
Displays the IDE Options dialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

Save to File

Saves content to a file in a tab-separated format.

The Watch window is available from the View menu.

Watch 1 =]
Expression Yalue Location Type
2 |vemory.0rEr00 [m
Fik <array> v : 0xFBFO2 unsigned int...
[0 1 0xFEFO2 unsigned int
M 1 0xFEFO4 unsigned int
[2] 2 v : 0xFBFOS unsigned int
3 3 0xFEFO8 unsigned int
[4] 5 Memory : 0xFEFOA unsigned int
[5] a Memory : 0xFEFOC unsigned int
[E] 13 Memory : 0xFEFOE unsigned int
[71 21 Memory : 0xFEF10 unsigned int
8] 34 Memory : 0xFEF12 unsigned int
------ [4] 55 Memory : 0xFEF14 unsigned int

Use this window to monitor the values of C-SPY expressions or variables. You can open
up to four instances of this window, where you can view, add, modify, and remove
expressions. Tree structures of arrays, structs, and unions are expandable, which means
that you can study each item of these.

Every time execution in C-SPY stops, the values in the Watch window are recalculated.
Values that have changed since the last stop are highlighted in red.

Be aware that expanding very huge arrays can cause an out-of-memory crash. To avoid
this, expansion is automatically performed in steps of 5000 elements.

Variables and expressions __¢

For more information about editing in C-SPY windows, see C-SPY Debugger main
window, page 49.

Requirements

None; this window is always available.

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Save to File...

These commands are available:

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

91

Reference information on working with variables and expressions

92

Live Watch window

Requirements

Display area

C-SPY® Debugging Guide
for MSP430

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 84.

Options
Displays the IDE Options dialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

Save to File

Saves content to a file in a tab-separated format.

The Live Watch window is available from the View menu.

Expression | Yalue Location Type
Bl GetFib GetFib (0x218) unsigned int (..
L GetFib (0x218) Logical Code:0x0218 unsigned int {int)

Locals Live Watch B I

This window repeatedly samples and displays the value of expressions while your
application is executing. Variables in the expressions must be statically located, such as
global variables.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 49.

The C-SPY simulator.

This area contains these columns:

Expression
The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Variables and expressions __¢

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location
The location in memory where this variable is stored.

Type
The data type of the variable.

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Save to File...

These commands are available:

Default Format,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

93

Reference information on working with variables and expressions

94

Statics window

Structure fields All elements with the same definition—the same field

name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type

interpretation of variables. The commands on this submenu are mainly useful

for assembler variables—data at assembler labels—because these are, by

default, displayed as integers. For more information, see Viewing assembler

variables, page 84.
Options

Displays the IDE Options dialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the

Live Watch window will be updated once every second during program

execution. Note that this command is only available from this context menu in

the Live Watch window.

Save to File

Saves content to a file in a tab-separated format.

The Statics window is available from the View menu.

Statics
“ariable Walue Location Type todule
= f<CppTutoryf> <class:> 0=00000000 class stdictype<chary CppTutar
<struct> 0=00000000 stuct std:ctype_base
L vptr 0=20000490 0=00000000 woid (* const™)()
f <CppTutoryf> <class:> 0x200002F4 class std:numpunct<char> CppTutar
f<CppTutoryf> <class:> 0=20000308 class stdinurm_put<char, stdio.. CppTutor
= msFib <Fibonacci\FibonaccizmsFib> <array: 0=2000032C unsigned long[100] Fibonacci
e 0] 1 0=2000032C unsigned lang
M 1 0=20000330 unsigned long
[2] 2 0=20000334 unsigned long

C-SPY® Debugging Guide
for MSP430

This window displays the values of variables with static storage duration that you have
selected. Typically, that is variables with file scope but it can also be static variables in

functions and classes. Note that volatile declared variables with static storage

duration will not be displayed.

Every time execution in C-SPY stops, the values in the Statics window are recalculated.

Values that have changed since the last stop are highlighted in red.

Click any column header (except for Value) to sort on that column.

Variables and expressions __¢

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 49.

To select variables to monitor:

I In the window, right-click and choose Select statics from the context menu. The
window now lists all variables with static storage duration.

2 Either individually select the variables you want to display, or choose one of the Select
commands from the context menu.

3 When you have made your selections, choose Select statics from the context menu to

toggle back to normal display mode.

Requirements

None; this window is always available.

Display area
This area contains these columns:

Expression

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location

The location in memory where this variable is stored.

Type
The data type of the variable.

95

Reference information on working with variables and expressions

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3
Save to File...

v Select Statics
Select All
Select None
Select All in ‘Tutor'

Select None in ‘Tutor'

These commands are available:

Default Format,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Save to File
Saves the content of the Statics window to a log file.

C-SPY® Debugging Guide
96 for MSP430

Variables and expressions __¢

Select Statics
Selects all variables with static storage duration; this command also enables all
Select commands below. Select the variables you want to monitor. When you
have made your selections, select this menu command again to toggle back to
normal display mode.

Select All
Selects all variables.

Select None
Deselects all variables.

Select All in module
Selects all variables in the selected module.

Select None in module

Deselects all variables in the selected module.

Quick Watch window

The Quick Watch window is available from the View menu and from the context menu
in the editor window.

Quick Watch =]

-

Expression Yalue Location Type
TimerStatus() 'Timer disabled® macro string

Use this window to watch the value of a variable or expression and evaluate expressions
at a specific point in time.

In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be necessary,
but for expressions with possible side effects, such as assignments and C-SPY macro
functions, it allows you to perform evaluations under controlled conditions.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 49.

To evaluate an expression:

I In the editor window, right-click on the expression you want to examine and choose
Quick Watch from the context menu that appears.

97

Reference information on working with variables and expressions

98

[eh

Requirements

Context menu

C-SPY® Debugging Guide
for MSP430

The expression will automatically appear in the Quick Watch window.
Alternatively:

In the Quick Watch window, type the expression you want to examine in the
Expressions text box.

Click the Recalculate button to calculate the value of the expression.

For an example, see Using C-SPY macros, page 281.

None; this window is always available.

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Save to File...

These commands are available:

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Symbols window

Variables and expressions __¢

All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Structure fields

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 84.

Options
Displays the IDE Options dialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

Save to File
Saves content to a file in a tab-separated format.

The Symbols window is available from the View menu after you have enabled the
Symbols plugin module.

Symbal | Location | Full Mame |"
call_count 0x00102228 call_count
do_foreground_process 0x000003C8 do_foreground_process()

exit 0x000005E4 exit

get_fib 0x0000028C get_fib(int)

init_fibh 0x00000248 init_fib()

main 0x000003E2 mainf)

next_counter 0x000003BC next_counter()

put_fib 0x000002B8 put_fib{unsigned int)

putchar 0x00000464 putchar

root 0x00102200 root v

This window displays all symbols with a static location, that is, C/C++ functions,
assembler labels, and variables with static storage duration, including symbols from the
runtime library.

To enable the Symbols plugin module, choose Project>Options>Debugger>Select
plugins to load>Symbols.

929

Reference information on working with variables and expressions

100

Requirements

Display area

Context menu

C-SPY® Debugging Guide

for MSP430

None; this window is always available.

This area contains these columns:

Symbol
The symbol name.

Location

The memory address.

Full name
The symbol name; often the same as the contents of the Symbol column but
differs for example for C++ member functions.

Click the column headers to sort the list by symbol name, location, or full name.

This context menu is available:

Functions
Variables
Labels

These commands are available:

Functions
Toggles the display of function symbols on or off in the list.

Variables
Toggles the display of variables on or off in the list.

Labels
Toggles the display of labels on or off in the list.

Variables and expressions __¢

Resolve Symbol Ambiguity dialog box

The Resolve Symbol Ambiguity dialog box appears, for example, when you specify a
symbol in the Disassembly window to go to, and there are several instances of the same
symbol due to templates or function overloading.

Resolve Symbol Ambiguity

Ambiguous symbol: foo

Ok

foo[void]

fon<T: Camcel

Requirements

None; this window is always available.

Ambiguous symbol

Indicates which symbol that is ambiguous.

Please select one symbol

A list of possible matches for the ambiguous symbol. Select the one you want to use.

101

Reference information on working with variables and expressions

102

Data Log window

Requirements

Display area

C-SPY® Debugging Guide

for MSP430

The Data Log window is available from the C-SPY driver menu.

Time | Program Counter | 11 Address 52 Address 2

. lG6Es === W 0=0000 @ 0=2004
0.160us O=FFEOOD49 = @ 0=x2000
24 .480us O0=FFEOOOBS R 0=0000 @ 0=2006
24 .720us O0=FFEOOOBF W O0=0042 @ 0=2004
24 .760us O=FFEOOOCE R 0O=0042 @ 0=2006
24 .960us O=FFEOODOE4 W O=00004444 @ 0=2000
FE FEfGes O=FFE00104 R 0O=0042 @ O=2004+7
79.000us — W O0=0084 @ 0=2004
100.800us O=FFEOO104 R 0=0084 @ 0=2006
101.040us O=FFEOO10E W 0=00CA @ 0=2004
JFE Edfus Overflow
136.880us O=FFEOO10E - @ 0=2004 3
White rows indicate Grey rows indicate

read accesses write accesses

Use this window to log accesses to up to four different memory locations or areas.

See also Getting started using data logging, page 85.

The C-SPY simulator.

Each row in the display area shows the time, the program counter, and, for every tracked
data object, its value and address in these columns:

Time
If the time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.
This column is available when you have selected Show time from the context
menu.

Cycles

The number of cycles from the start of the execution until the event. This
information is cleared at reset.

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

Variables and expressions __¢

This column is available when you have selected Show cycles from the context
menu.

Program Counter*
Displays one of these:

An address, which is the content of the PC, that is, the address of the instruction
that performed the memory access.

---, the target system failed to provide the debugger with any information.

overflowinred, the communication channel failed to transmit all data from the
target system.

Value

Displays the access type and the value (using the access size) for the location or
area you want to log accesses to. For example, if zero is read using a byte access
it will be displayed as 0x00, and for a long access it will be displayed as
0x00000000.

To specify what data you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 115.

Address

The actual memory address that is accessed. For example, if only a byte of a
word is accessed, only the address of the byte is displayed. The address is
calculated as base address + offset, where the base address is retrieved from the
Data Log breakpoint dialog box and the offset is retrieved from the logs. If the
log from the target system does not provide the debugger with an offset, the
offset contains + ?.

* You can double-click a line in the display area. If the value of the pc for that line is
available in the source code, the editor window displays the corresponding source code
(this does not include library source code).

Context menu

Identical to the context menu of the Interrupt Log window, see Interrupt Log window,
page 253.

103

Reference information on working with variables and expressions

Data Log Summary window

The Data Log Summary window is available from the C-SPY driver menu.

Data Total Accesses Read Accesses Write Accesses Unknown Accesses
tvarl 42 8 25 17

tVar2 66 17 49 8

tvar3 32 32 2] 2]

Approximative time count: 16
Overflow count: 8
Current time: 4301.52 us

Data Log Summary

This window displays a summary of data accesses to specific memory location or areas.

See also Getting started using data logging, page 85.

Requirements
The C-SPY simulator.

Display area
Each row in this area displays the type and the number of accesses to each memory
location or area in these columns:
Data

The name of the data object you have selected to log accesses to. To specify
what data object you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 115.

The current time or cycles is displayed—execution time since the start of
execution or the number of cycles. Overflow count displays the number of
overflows.

Total Accesses
The number of total accesses.
If the sum of read accesses and write accesses is less than the total accesses,
there have been a number of access logs for which the target system for some
reason did not provide valid access type information.

Read Accesses
The number of total read accesses.

Write Accesses
The number of total write accesses.

C-SPY® Debugging Guide
104 for MSP430

Context menu

Unknown Accesses

Variables and expressions __¢

The number of unknown accesses, in other words, accesses where the access
type is not known.

Identical to the context menu of the Interrupt Log window, see Interrupt Log window,

page 253.

Data Sample Setup window

The Data Sample Setup window is available from the C-SPY driver menu.

Requirements

Display area

Data Sample Setup

=)

Expression
V| myVarl

Address
OxFFFFBO2A

Size
1

Sampling interval [ms]
10

Use this window to specify the variable to sample data for. You can view the sampled
data for the variable either in the Data Sample window or as graphs in the Sampled

Graphs window.

See also Getting started using data sampling, page 85.

A device that supports the trace buffer.

This area contains these columns:

Expression

Type the name of the variable which must be an integral type with a maximum
size of 32 bits. Click the checkbox to enable or disable data sampling for the

variable.

Alternatively, drag an expression from the editor window and drop it in the

display area.

Variables in the expressions must be statically located, for example global

variables.

Address

The actual memory address that is accessed. The column cells cannot be edited.

105

Reference information on working with variables and expressions

106

Context menu

Data Sample window

C-SPY® Debugging Guide
for MSP430

Size
The size of the variable, either 1, 2, or 4 bytes. The column cells cannot be
edited.

Sampling interval [ms]
Type the number of milliseconds to pass between the samples, defined in

milliseconds. The shortest allowed interval is 10 ms and the interval you specify
must be a multiple of that.

This context menu is available:

Rermove

Rermove All

These commands are available:

Remove
Removes the selected variable.

Remove All
Removes all variables.

The Data Sample window is available from the C-SPY driver menu.

Data Sample @
Sampling Time myVarl i
1160 ms R 8x8e
1170 ms R @x1@
1178 ms Stop
1180 ms R @x1@
1196 ms R 8x20
1280 ms R @x1@
1210 ms R 8xl1e
1220 ms R 8x8e -

Use this window to view the result of the data sampling for the variable you have
selected in the Data Sample Setup window.

Choose Enable from the context menu to enable data sampling.

See also Getting started using data sampling, page 85.

Variables and expressions __¢

Requirements

A device that supports the trace buffer.

Display area
This area contains these columns:
Sampling Time
The time when the data sample was collected. Time starts at zero after a reset.
Every time the execution stops, a red Stop indicates when the stop occurred.

The selected expression

The column headers display the names of the variables that you selected in the
Data Sample Setup window. The column cells display the sampling values for
the variable.

* You can double-click a row in the display area. If you have enabled the data sample
graph in the Sampled Graphs window, the selection line will be moved to reflect the time
of the row you double-clicked.

Context menu

This context menu is available:
v Enable
Clear
Hexadecimal (for myVarl)
v Hexadecimal (for myVar2)
Save to Log File...
Open Setup Window

These commands are available:

Enable
Enables data sampling.

Clear
Clears the sampled data.

Hexadecimal (for var)

Toggles between displaying the values of selected variable in decimal or
hexadecimal format. The display format affects the Data Sample window and
the Sampled Graphs window.

Save to Log File

Displays a standard save dialog box.

107

Reference information on working with variables and expressions

108

Open setup window

Opens the Data Sample Setup window.

Sampled Graphs window

The Sampled Graphs window is available from the C-SPY driver menu.

C-SPY® Debugging Guide
for MSP430

Linear graph |»_ |}

Sampled Graphs

Use this window to display graphs for one variable, and where:

The graph displays how the value of the variable changes over time. The area on the
left displays the limits, or range, of the Y-axis for the variable. You can use the
context menu to change these limits. The graph is a graphical representation of the
information in the Data Sample window, see Data Sample window, page 106.

The graph can be displayed as levels, where a horizontal line—optionally
color-filled—shows the value until the next sample. Alternatively, the graph can be
linear, where a line connects consecutive samples.

A red vertical line indicates the time of application execution stops.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

To navigate in the graph, use any of these alternatives:

Right-click and choose Zoom In or Zoom Out from the context menu.
Alternatively, use the + and - keys to zoom.

Right-click in the graph and choose Navigate and the appropriate command to
move backward and forward on the graph. Alternatively, use any of the shortcut
keys: arrow keys, Home, End, and Ctrl+End.

Double-click on a sample to highlight the corresponding source code in the editor
window and in the Disassembly window.

Click on the graph and drag to select a time interval. Press Enter or right-click and
choose Zoom>Zoom to Selection from the context menu. The selection zooms in.

Variables and expressions __¢

@ Hover with the mouse pointer in the graph to get detailed tooltip information for that
location.

See also Getting started using data sampling, page 85.

Requirements

A device that supports the trace buffer.

Context menu

This context menu is available:

MNavigate 3
v Auto Scroll
Zoom 3

Data Sample
v | Enable
Clear
myVar2:
Viewing Range...
Size 3
Style 3
v | Solid Graph
v | Show Mumerical Values

v Hexadecimal

Select Graphs 3
These commands are available:

Navigate
Commands for navigating in the graphs. Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection to the previous relevant point in the graph.
Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

109

Reference information on working with variables and expressions

110

C-SPY® Debugging Guide
for MSP430

Auto Scroll

Zoom

Toggles auto scrolling on or off. When on, the most recently collected data is
automatically displayed if you have executed the command Navigate>End.

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +.
Zoom Out zooms out on the time scale. Shortcut key: -.

1us, 10us, 100us makes an interval of 1 microseconds, 10 microseconds, or 100
microseconds, respectively, fit the window.

1ms, 10ms, 100ms makes an interval of 1 millisecond, 10 milliseconds, or 100
milliseconds, respectively, fit the window.

1s, 10s, 100s makes an interval of 1 second, 10 seconds, or 100 seconds,
respectively, fit the window.

1k s, 10k s, 100k s makes an interval of 1,000 seconds, 10,000 seconds, or
100,000 seconds, respectively, fit the window.

1M s, 10M s, makes an interval of 1,000,000 seconds or 10,000,000 seconds,
respectively, fit the window.

Data Sample

A menu item that shows that the Data Sample-specific commands below are
available.

Open Setup window (Data Sample Graph)

Enable

Clear

Opens the Data Sample Setup window.

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the Data Sample window. If no data has been sampled for
a graph, no data will appear instead of the graph.

Clears the sampled data.

Variables and expressions __¢

Variable
The name of the variable for which the Data Sample-specific commands below
apply. This menu item is context-sensitive, which means it reflects the Data
Sample Graph you selected in the Sampled Graphs window (one of up to four).

Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 193.
Size
Controls the vertical size of the graph; choose between Small, Medium, and
Large.
Style
Choose how to display the graph. Choose between:
Levels, where a horizontal line—optionally color-filled—shows the value until
the next sample.
Linear, where a line connects consecutive samples.
Solid Graph

Displays the graph as a color-filled solid graph instead of as a thin line. This is
only possible if the graph is displayed as Levels.
Hexadecimal (for var)

Toggles between displaying the selected variable in decimal or hexadecimal
format. The display format affects the Data Sample window and the Sampled
Graphs window.

Show Numerical Value
Shows the numerical value of the variable, in addition to the graph.

Select Graphs
Selects which graphs to display in the Sampled Graphs window.

Reference information on working with variables and expressions

C-SPY® Debugging Guide
112 for MSP430

Breakpoints

e Introduction to setting and using breakpoints
e Setting breakpoints

e Reference information on breakpoints

Introduction to setting and using breakpoints

These topics are covered:

Reasons for using breakpoints
Briefly about setting breakpoints
Breakpoint types

Breakpoint icons

Breakpoints in the C-SPY simulator

Breakpoint consumers

REASONS FOR USING BREAKPOINTS

C-SPY® lets you set various types of breakpoints in the application you are debugging,
allowing you to stop at locations of particular interest. You can set a breakpoint at a code
location to investigate whether your program logic is correct, or to get trace printouts.
In addition to code breakpoints, and depending on what C-SPY driver you are using,
additional breakpoint types might be available. For example, you might be able to set a
data breakpoint, to investigate how and when the data changes.

You can let the execution stop under certain conditions, which you specify. You can also
let the breakpoint trigger a side effect, for instance executing a C-SPY macro function,
by transparently stopping the execution and then resuming. The macro function can be
defined to perform a wide variety of actions, for instance, simulating hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of your
application.
BRIEFLY ABOUT SETTING BREAKPOINTS

You can set breakpoints in many various ways, allowing for different levels of
interaction, precision, timing, and automation. All the breakpoints you define will
appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new

113

Introduction to setting and using breakpoints

breakpoints. The Breakpoint Usage window also lists all internally used breakpoints,
see Breakpoint consumers, page 118.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping; for more information about the precision, see Single stepping, page
58.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

Note: For most hardware debugger systems it is only possible to set breakpoints when
the application is not executing.

BREAKPOINT TYPES

Depending on the C-SPY driver you are using, C-SPY supports different types of
breakpoints.

Code breakpoints

Code breakpoints are used for code locations to investigate whether your program logic
is correct or to get trace printouts. Code breakpoints are triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop, before the
instruction is executed.

For the C-SPY FET Debugger driver, a code breakpoint can be either a hardware or a
software breakpoint.

Log breakpoints

Log breakpoints provide a convenient way to add trace printouts without having to add
any code to your application source code. Log breakpoints are triggered when an
instruction is fetched from the specified location. If you have set the breakpoint on a
specific machine instruction, the breakpoint will be triggered and the execution will
temporarily stop and print the specified message in the C-SPY Debug Log window.

Trace Start and Stop breakpoints
Trace Start and Stop breakpoints start and stop trace data collection—a convenient way
to analyze instructions between two execution points.

Data breakpoints

Data breakpoints are primarily useful for variables that have a fixed address in memory.
If you set a breakpoint on an accessible local variable, the breakpoint is set on the

C-SPY® Debugging Guide
114 for MSP430

Breakpoints °

corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. Data breakpoints are triggered when data is accessed at the
specified location. The execution will usually stop directly after the instruction that
accessed the data has been executed.

Data Log breakpoints

Data Log breakpoints are triggered when data is accessed at the specified location. If
you have set a breakpoint on a specific address or a range, a log message is displayed in
the Data Log window for each access to that location. Data logs can also be displayed
on the Data Log graph in the Timeline window, if that window is enabled.

Immediate breakpoints

The C-SPY Simulator lets you set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
simulated processor is about to read data from a location or immediately after it has
written data. Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the simulated processor reads from a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the simulated processor writes to a memory-mapped
location, a C-SPY macro function can act on the value that was written.

Range breakpoints

Range breakpoints can be set on a data or an address range, and the action can be
specified to occur on an access inside or outside the specified range. These breakpoints
are only available if you are using a device that supports the Enhanced Emulation
Module at the required level.

Advanced trigger breakpoints

Advanced trigger breakpoints can be set with various operators on the address bus, the
data bus, or on a register, to be triggered by a certain kind of access. These breakpoints
are only available if you are using a device that supports the Enhanced Emulation
Module at the required level.

Conditional breakpoints

Conditional breakpoints can be set with various operators on the address bus, the data
bus, or on a register, to be triggered by a certain kind of access. You can also specify a
conditional value. These breakpoints are only available if you are using a device that
supports the Enhanced Emulation Module at the required level.

115

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
116 for MSP430

BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
varies with the type of breakpoint:

Tutor.c m |

unsigned int get_fib({ int nr |

{
| RECinr >) s (nr <= MAX FIB) |
{
keturn { rooclnr-] 7
}

I Code breakpoint l

I Log breakpoint l .

I Tooltip information l __ || [tog @ Utilities.c:37.5
—_— Memory:0x6a [Fetch]
Disabled code o) s (D)8
breakpeint

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options in the IDE Project Management and Building Guide.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage window.

Note: The breakpoint icons might look difterent for the C-SPY driver you are using.

BREAKPOINTS IN THE C-SPY SIMULATOR

The C-SPY simulator supports all breakpoint types and you can set an unlimited amount
of breakpoints.

BREAKPOINTS IN THE C-SPY HARDWARE DEBUGGER DRIVER

Using the C-SPY drivers for the C-SPY FET debugger, you can set code breakpoints. If
you are using a device that supports the Enhanced Emulation Module at the required
level, you also have access to an extended breakpoint system with support for:

e breakpoints on addresses, data, and registers

e defining which type of access that should trigger the breakpoint: read, write, or
fetch

e setting conditional breakpoints

e triggering different actions: stopping the execution, or starting the state storage
module

o cmulated breakpoints.

Breakpoints °

The Enhanced Emulation Module (at the required level) also gives you access to the
sequencer module which is a state machine that uses breakpoints for triggering new
states.

Hardware breakpoints

To set breakpoints, the C-SPY FET Debugger uses the hardware breakpoints available
on the device. The number of hardware breakpoints is limited, and when all hardware
breakpoints have been used, C-SPY can use software breakpoints.

A hardware breakpoint can be used for either a code breakpoint, a range breakpoint, an
advanced trigger breakpoint, or a conditional breakpoint.

For information about the number of available hardware breakpoints for each device, see
the release notes or the hardware documentation.

Software breakpoints

There are two types of software breakpoints: virtual breakpoints and emulated
breakpoints. See Breakpoints, page 370, for information about how to specify which
type to use.

When virtual breakpoints are used, C-SPY is forced into single-step mode after all
hardware breakpoints have been used. However, if your device supports the Enhanced
Emulation Module at the required level, you can use emulated breakpoints for access to
an unlimited number of breakpoints.

When emulated breakpoints are used, the instruction where the breakpoint is set will be
replaced by a special instruction that the debugger recognizes. When the debugger
encounters such an instruction, it stops. This mechanism uses one hardware breakpoint
to emulate an unlimited number of breakpoints.

Note: Emulated breakpoints cannot be used when the MPU is enabled.

To prevent the debugger from executing in single-step mode if emulated software
breakpoints are not supported, you can disable the use of virtual breakpoints and—in the
CLIB runtime environment—{fine-tune the use of breakpoint consumers. This will
increase the performance of the debugger, but you will only have access to the available
number of hardware breakpoints. For information about the breakpoint consumers of the
debugger system, see Breakpoint consumers, page 118.

17

Introduction to setting and using breakpoints

BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

User breakpoints

The breakpoints you define in the breakpoint dialog box or by toggling breakpoints in
the editor window often consume one physical breakpoint each, but this can vary greatly.
Some user breakpoints consume several physical breakpoints and conversely, several
user breakpoints can share one physical breakpoint. User breakpoints are displayed in
the same way both in the Breakpoint Usage window and in the Breakpoints window, for
example Data @[R] callCount.

C-SPY itself
C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

o The debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set during a debug session. This
means that they are not visible in the Breakpoints window.

e The linker option With I/0 emulation modules has been selected.

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.

In the CLIB runtime environment, C-SPY will set a breakpoint if:

o the library functions putchar and getchar are used (low-level routines used by
functions like printf and scanf)

o the application has an exit label.

You can disable the setting of system breakpoints on the putchar and getchar
functions and on the exit label; see Breakpoints, page 370.

When the Run to option is selected and all hardware breakpoints have already been
used, a virtual breakpoint will be set even if you have deselected the Use virtual
breakpoints option. When you start the debugger under these conditions, C-SPY will
prompt you to choose whether you want to execute in single-step mode or stop at the
first instruction.

These types of breakpoint consumers are displayed in the Breakpoint Usage window, for
example, C-SPY Terminal I/O & libsupport module.

C-SPY plugin modules

For example, modules for real-time operating systems can consume additional
breakpoints. Specifically, by default, the Stack window consumes one physical
breakpoint.

C-SPY® Debugging Guide
118 for MSP430

Breakpoints °

To disable the breakpoint used by the Stack window:
I Choose Tools>Options>Stack.
2 Deselect the Stack pointer(s) not valid until program reaches: label option.

To disable the Stack window entirely, choose Tools>Options>Stack and make sure all
options are deselected.

Setting breakpoints

These tasks are covered:

Various ways to set a breakpoint

Toggling a simple code breakpoint

Setting breakpoints using the dialog box

Setting a data breakpoint in the Memory window

Setting breakpoints using system macros

Useful breakpoint hints.

VARIOUS WAYS TO SET A BREAKPOINT
You can set a breakpoint in various ways:

o Toggling a simple code breakpoint.

o Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and in
the Disassembly window. The dialog boxes give you access to all breakpoint
options.

e Setting a data breakpoint on a memory area directly in the Memory window.

o Using predefined system macros for setting breakpoints, which allows automation.

The different methods offer different levels of simplicity, complexity, and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:
o Click in the gray left-side margin of the window

e Place the insertion point in the C source statement or assembler instruction where
!? you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

o Choose Edit>Toggle Breakpoint

o Right-click and choose Toggle Breakpoint from the context menu.

19

Setting breakpoints

120

C-SPY® Debugging Guide
for MSP430

SETTING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

To set a new breakpoint:
Choose View>Breakpoints to open the Breakpoints window.

In the Breakpoints window, right-click, and choose New Breakpoint from the context
menu.

On the submenu, choose the breakpoint type you want to set.
Depending on the C-SPY driver you are using, different breakpoint types are available.
In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

To modify an existing breakpoint:

Breakpoints °

I In the Breakpoints window, editor window, or in the Disassembly window, select the

breakpoint you want to modify and right-click to open the context menu.

35woid init fib(woid)
36 1
37 imt 1 = 45;
38 root[0] = root[l] = 1:

: 39

S 40 for | 1287 i<MAY FIB ; i++)
LA
L J az —

LAz)
a4
45
ol Complete
47 fnrt
48 4/ Match Brackets
49 unsi Insert Template 3
B Open HeaderfSource File
51 ii 1B |
52 Go ko definition of rook
& Toggle Breakpoint {Code)
54) i
55 el Toggle Breakpoint {Log)
56 | Enable/disable Ereakpaint
57 Set Data Breakpoint For 'root[i]'
53) Edit Code Breakpoint at column 15
:3 1 cek Next Statement Edit Log Breakpoint at column 7

If there are several breakpoints on the same source code line, the breakpoints will be

listed on a submenu.

2 On the context menu, choose the appropriate command.

The breakpoint is displayed in the Breakpoints window.

In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted in the Memory window; instead, you can see, edit, and
remove it using the Breakpoints window, which is available from the View menu. The
breakpoints you set in the Memory window will be triggered for both read and write
accesses. All breakpoints defined in this window are preserved between debug sessions.

121

Setting breakpoints

122

C-SPY® Debugging Guide
for MSP430

Note: Setting breakpoints directly in the Memory window is only possible if the driver
you use supports this.

SETTING BREAKPOINTS USING SYSTEM MACROS

You can set breakpoints not only in the breakpoint dialog box but also by using built-in
C-SPY system macros. When you use system macros for setting breakpoints, the
breakpoint characteristics are specified as macro parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session
will be documented, and that several engineers involved in the development project can
share the macro files.

Note: If you use system macros for setting breakpoints, you can still view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros are removed when you
exit the debug session.

These breakpoint macros are available:

C-SPY macro for breakpoints Simulator FET Debugger
__setAdvancedTriggerBreak — Yes
__setCodeBreak Yes Yes
__setConditionalBreak — Yes
__setDataBreak Yes —
__setLogBreak Yes Yes
__setRangeBreak — Yes
__setDataLogBreak Yes —
__setSimBreak Yes —
__setTraceStartBreak Yes —
__setTraceStopBreak Yes —
__clearBreak Yes Yes

Table 6: C-SPY macros for breakpoints

For information about each breakpoint macro, see Reference information on C-SPY
system macros, page 293.

Breakpoints °

Setting breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Using C-SPY macros, page 281.

USEFUL BREAKPOINT HINTS

Below are some useful hints related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, you might want to debug that behavior. These methods can be useful:

e Set a breakpoint on the first line of the function with a condition that is true only
when the parameter is 0. The breakpoint will then not be triggered until the
problematic situation actually occurs. The advantage of this method is that no extra
source code is needed. The drawback is that the execution speed might become
unacceptably low.

® You can use the assert macro in your problematic function, for example:

int MyFunction (int * MyPtr)
{

assert (MyPtr != 0); /* Assert macro added to your source

code. */

/* Here comes the rest of your function. */
}
The execution will break whenever the condition is true. The advantage is that the
execution speed is only very slightly affected, but the drawback is that you will get a
small extra footprint in your source code. In addition, the only way to get rid of the
execution stop is to remove the macro and rebuild your source code.

e Instead of using the assert macro, you can modify your function like this:

int MyFunction (int * MyPtr)
{

if (MyPtr == 0)

MyDummyStatement; /* Dummy statement where you set a
breakpoint. */

/* Here comes the rest of your function. */
}
You must also set a breakpoint on the extra dummy statement, so that the execution
will break whenever the condition is true. The advantage is that the execution speed
is only very slightly affected, but the drawback is that you will still get a small extra
footprint in your source code. However, in this way you can get rid of the execution
stop by just removing the breakpoint.

123

Reference information on breakpoints

Performing a task and continuing execution

You can perform a task when a breakpoint is triggered and then automatically continue
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed. In this case, the execution
will not continue automatically.

Instead, you can set a condition which returns 0 (false). When the breakpoint is
triggered, the condition—which can be a call to a C-SPY macro that performs a task—
is evaluated and because it is not true, execution continues.

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count ()

{
my_counter += 1;
return 0;

}

To use this function as a condition for the breakpoint, type count () in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Using breakpoints when programming flash memory

When programming the flash memory, do not set a breakpoint on the instruction
immediately following the write to flash operation. A simple work-around is to follow
the write to flash operation with a NOP instruction, and set a breakpoint on the instruction
following the NOP instruction.

Reference information on breakpoints

C-SPY® Debugging Guide

124 for MSP430

Reference information about:

Breakpoints window, page 125
Breakpoint Usage window, page 127
Code breakpoints dialog box, page 128
Log breakpoints dialog box, page 129

Data breakpoints dialog box, page 131

Breakpoints °

Data Log breakpoints dialog box, page 133
Immediate breakpoints dialog box, page 134

Range breakpoints dialog box, page 135
Conditional breakpoints dialog box, page 137
Advanced Trigger breakpoints dialog box, page 140
Enter Location dialog box, page 142

Breakpoint combiner dialog box, page 143

Resolve Source Ambiguity dialog box, page 144.
See also:

® Reference information on C-SPY system macros, page 293

® Reference information on trace, page 182.

Breakpoints window

The Breakpoints window is available from the View menu.

Code @ Tutar.c:46.2

The Breakpoints window lists all breakpoints you define.
Use this window to conveniently monitor, enable, and disable breakpoints; you can also

define new breakpoints and modify existing breakpoints.

Requirements

None; this window is always available.

Display area

This area lists all breakpoints you define. For each breakpoint, information about the
breakpoint type, source file, source line, and source column is provided.

125

Reference information on breakpoints

126

Context menu

C-SPY® Debugging Guide
for MSP430

This context menu is available:
G0 ko Source
Edi...

Delete
Disable
Enable Al
Disable Al

Mew Breakpoint ¥
These commands are available:

Go to Source
Moves the insertion point to the location of the breakpoint, if the breakpoint has
a source location. Double-click a breakpoint in the Breakpoints window to
perform the same command.

Edit
Opens the breakpoint dialog box for the breakpoint you selected.

Delete
Deletes the breakpoint. Press the Delete key to perform the same command.

Enable
Enables the breakpoint. The check box at the beginning of the line will be
selected. You can also perform the command by manually selecting the check
box. This command is only available if the breakpoint is disabled.
Disable
Disables the breakpoint. The check box at the beginning of the line will be
deselected. You can also perform this command by manually deselecting the
check box. This command is only available if the breakpoint is enabled.
Enable All
Enables all defined breakpoints.

Disable All
Disables all defined breakpoints.

New Breakpoint
Displays a submenu where you can open the breakpoint dialog box for the
available breakpoint types. All breakpoints you define using this dialog box are
preserved between debug sessions.

Breakpoints °

Breakpoint Usage window

The Breakpoint Usage window is available from the menu specific to the C-SPY driver
you are using.

Breakpoint Usage [%]

[Fetch
-SSP Terminal 140 & libsupport module

The Breakpoint Usage window lists all breakpoints currently set in the target system,
both the ones you have defined and the ones used internally by C-SPY. The format of
the items in this dialog box depends on the C-SPY driver you are using.

The window gives a low-level view of all breakpoints, related but not identical to the list
of breakpoints displayed in the Breakpoints window.

C-SPY uses breakpoints when stepping. Use the Breakpoint Usage window for:
o Identifying all breakpoint consumers

o Checking that the number of active breakpoints is supported by the target system

e Configuring the debugger to use the available breakpoints in a better way, if
possible.

For more information, see Breakpoints in the C-SPY hardware Debugger driver, page
116.

Requirements

None; this window is always available.

Display area

For each breakpoint in the list, the address and access type are displayed. Each
breakpoint in the list can also be expanded to show its originator.

127

Reference information on breakpoints

128

Code breakpoints dialog box

Requirements

Break At

Size

C-SPY® Debugging Guide
for MSP430

The Code breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

& Code
Break &f:
| Edit...l
— Size
&+ Auta I_I—
 Marual
— Action
Expression: I
Condition:
Expression:
' Condition true Skip count; I il
" Condition changed

This figure reflects the C-SPY simulator.

Use the Code breakpoints dialog box to set a code breakpoint.

None; this dialog box is always available.

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 142.

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto
The size will be set automatically, typically to 1.

Manual
Specity the size of the breakpoint range in the text box.

Note: The Size option is not available for the C-SPY FET Debugger driver.

Breakpoints °

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 123.

Conditions

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 80.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Log breakpoints dialog box

The Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.
8 1o

Break &t

C:htutorsTutor.c.47.3

Meszage: C-Spy macro "'__message' style
"depth ="', call_count

Conditions
Expression:

(%) Condition true
(O Condition changed

This figure reflects the C-SPY simulator.

Use the Log breakpoints dialog box to set a log breakpoint.

129

Reference information on breakpoints

130

Requirements

Trigger at

Message

C-SPY macro "__|

Conditions

C-SPY® Debugging Guide

for MSP430

The C-SPY simulator.

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 142.

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
" __message" style—a comma-separated list of arguments.

message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 289.

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 80.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Breakpoints °

Data breakpoints dialog box

The Data breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.
’ [rata |
Break &f:

| [

5

—Access Type e
& Feadfwiite & buto |1—
 Read Manual
7 wirite - Action
Expression: I
r— Condition:
Expression:

% Condition true Skip count; I 0

" Condition changed

This figure reflects the C-SPY simulator.

Use the Data breakpoints dialog box to set a data breakpoint. Data breakpoints never
stop execution within a single instruction. They are recorded and reported after the
instruction is executed.

Requirements
The C-SPY simulator.

Break At

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 142.

Access Type
Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location.

Write
Writes to location.

131

Reference information on breakpoints

132

Size

Action

Conditions

C-SPY® Debugging Guide
for MSP430

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto
The size will automatically be based on the type of expression the breakpoint is
set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes.

Manual

Specify the size of the breakpoint range in the text box.

For data breakpoints, this can be useful if you want the breakpoint to be triggered on
accesses to data structures, such as arrays, structs, and unions.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 123.

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 80.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Breakpoints °

Data Log breakpoints dialog box

The Data Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Data Log

Variable:

Access Type
@ Read/write
' Read
) Write

This figure reflects the C-SPY simulator.

Use the Data Log breakpoints dialog box to set a maximum of four data log breakpoints
on variables of integer type with static storage duration. The microcontroller must also
be able to access the variable with a single-instruction memory access, which means that
you can only set data log breakpoints on 8-bit variables.

See also Data Log breakpoints, page 115 and Getting started using data logging, page
85.

Requirements
The C-SPY simulator.

Variable
Specity the variable to log accesses to.
Access Type
Selects the type of access to the variable that generates a log:
Read/Write
Reads from or writes to location of the variable.
Read
Reads from the location of the variable.
Write

Writes to location of the variable.

133

Reference information on breakpoints

134

Immediate breakpoints dialog box

Requirements

Trigger at

Access Type

Action

C-SPY® Debugging Guide
for MSP430

The Immediate breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Immediate

Trigger at:
Edit...
Access Type Action
@ Read Expression:
) Write

In the C-SPY simulator, use the Immediate breakpoints dialog box to set an immediate
breakpoint. Immediate breakpoints do not stop execution at all; they only suspend it
temporarily.

The C-SPY simulator.

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 142.

Selects the type of memory access that triggers the breakpoint:
Read

Reads from location.

Write

Writes to location.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 123.

Breakpoints °

Range breakpoints dialog box

Requirements

Start value

Range delimiter

The Range breakpoints dialog box is available from the context menu in the
Breakpoints window and the Memory window.

;‘% Fange |
Start value
f Edit...l
— Range delimiter
& End value
' Length
 Automatic
Edlt
— Type Acce: Action Action when...—
& Address [MAB)| | € Read [+ Break @ Inside range
' Data [MDE) ke State ' Dutside range
C Readfwite || T ?torage
' Felch 2=

Use the Range breakpoints dialog box to set a range breakpoint.

Range breakpoints are available for the C-SPY FET Debugger driver on devices that
support the Enhanced Emulation Module at the required level.

The C-SPY FET Debugger driver.

Specify the start value for the range breakpoint in the Start value text box; an
expression, an absolute address, or a source location. Alternatively, click the Edit button
to open the Enter Location dialog box; see Enter Location dialog box, page 142.

Sets the end location of the range. Choose the type of delimiter and specify the value in
the text box:

End value
The same type of value as for the Start value.

Length
The length of the range in bytes (in hexadecimal notation).

135

Reference information on breakpoints

136

Type

Access type

Action

C-SPY® Debugging Guide
for MSP430

Automatic

Bases the range automatically on the type of expression the breakpoint is set on.
For example, if you set the breakpoint on a 12-byte structure, the range of the
breakpoint will be 12 bytes.

Selects which breakpoint type to use:

Address (MAB)

Sets a breakpoint on a specified address, or anything that can be evaluated to
one. The breakpoint is triggered when the specified location is accessed. If you
have set the breakpoint on a specific machine instruction, the breakpoint will be
triggered and the execution will stop exactly before the instruction will be
executed.

Data (MDB)

Sets a breakpoint on a specified value. It is the value on the data bus that triggers
the breakpoint.

Selects the type of access that triggers the selected breakpoint:

Read
Read from location.

Write

Write to location.

Read/Write
Read from or write to location.

Fetch
At instruction fetch.

Selects the action that occurs when the breakpoint is triggered:

Break
The execution stops when the breakpoint is triggered.

State Storage Trigger

Defines the breakpoint as a state storage trigger. To control the behavior of the
state storage module, see State Storage Control window, page 270.

Action when

Breakpoints °

Selects when the action shall occur:

Inside range
The action occurs at an access inside the specified range.

Outside range
The action occurs at an access outside of the specified range.

Conditional breakpoints dialog box

Requirements

Break At

Type

The Conditional breakpoints dialog box is available from the context menu in the
Breakpoints window and the Disassembly window.

2 Conditional
Type COperator Access Mask
@ Address bus (MAB) @) == ©) Read [] Enable
() Data bus {(MDB})) 3= ©) Wite (FFFFF
(0 Register %) <= (©) Read/Write
@ = @ Fetch
Condition Action
MDE Value Break
COperator Access @
@ == ©) Read State
Mask) Write] St_olage
- Trigger
[C Enable @ Read/ Write Cycle
[kFFFFF [Counter
Trigger

Use the Conditional breakpoints dialog box to set a conditional breakpoint.

Conditional breakpoints are available for the C-SPY FET Debugger driver on devices
that support the Enhanced Emulation Module at the required level.

The C-SPY FET Debugger driver.

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter Location dialog box; see Enter Location dialog box, page
142.

Selects which breakpoint type to use:

137

Reference information on breakpoints

138

Operator

Access

C-SPY® Debugging Guide
for MSP430

Address bus (MAB)

Sets a breakpoint on the address specified in the Break At text box, or anything
that can be evaluated to one. The breakpoint is triggered when the specified
location is accessed. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop exactly
before the instruction will be executed.

Data bus (MDB)

Sets a breakpoint on a specified value. It is the value on the data bus that triggers
the breakpoint.

Register
Sets a breakpoint on a register. Specify the register, or anything that can be
evaluated to such, in the Break At text box. In the Register Value text box, type
the value that should trigger the breakpoint.

Selects a condition operator for when the breakpoint should be triggered:

Equal to.

Greater than or equal to.

Less than or equal to.

Not equal to.

Selects the type of access that triggers the selected breakpoint:

Read
Read from location.

Write
Write to location.

Read/Write
Read from or write to location.

Fetch
At instruction fetch.

Mask

Condition

Action

Breakpoints °

Specify a bit mask value that the breakpoint address or value will be masked with. (On
the FET hardware the mask is inverted, but this is not the case in the FET Debugger
driver.)

Optionally, specify an additional condition to a conditional breakpoint. This means that
a conditional breakpoint can be a single data breakpoint or a combination of two
breakpoints that must occur at the same time. These settings can be specified for the
additional condition:

MDB/Register Value
The extra conditional data value.
Mask
The bit mask value that the breakpoint value will be masked with.
Operator
The operator of condition, either ==, >=, <=, or !=.
Access

The access type of the condition, either Read, Write, or Read/Write.

Selects the action that occurs when the breakpoint is triggered:

Break
The execution stops when the breakpoint is triggered.

State Storage Trigger
State storage starts when the breakpoint is triggered. To control the behavior of
the state storage module, see State Storage Control window, page 270.

Cycle Counter Trigger

Starts, stops, resets, or counts the Cycle counter 1. To control the behavior of the
cycle counter, see The advanced cycle counter, page 259.

139

Reference information on breakpoints

140

Advanced Trigger breakpoints dialog box

Requirements

Break At

Type

C-SPY® Debugging Guide
for MSP430

The Advanced Trigger breakpoints dialog box is available from the context menu in
the Breakpoints window and the Disassembly window.

B Advanced Trigger

Break At:
:s"EEM Examples‘\EEM_examples®AdvancedDebugging1.c}.68.3

Type COperator Mask
@ Address bus (MAB) @ == [] Enable
_ Data bus (MDE) »= FFFFF
_) Register ‘=
1=
Action
/| Break
Access type rea

[State Storage Trigger
[T Cycle Courter Trigger

Instruction Fetch -]

Use the Advanced Trigger breakpoints dialog box to set an advanced trigger
breakpoint.

Advanced trigger breakpoints are available for the C-SPY FET Debugger driver on
devices that support the Enhanced Emulation Module at the required level.

The C-SPY FET Debugger driver.

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter Location dialog box; see Enter Location dialog box, page
142.

Selects which breakpoint type to use:

Address bus (MAB)

Sets a breakpoint on a specified address, or anything that can be evaluated to
one. The breakpoint is triggered when the specified location is accessed. If you
have set the breakpoint on a specific machine instruction, the breakpoint will be
triggered and the execution will stop exactly before the instruction will be
executed.

Operator

Mask

Value

Access type

Action

Breakpoints °

Data bus (MDB)

Sets a breakpoint on a specified value. It is the value on the data bus that triggers
the breakpoint.

Register
Sets a breakpoint on a register. Specify the register, or anything that can be
evaluated to such, in the Break At text box. In the Value text box, type the value
that should trigger the breakpoint.

Selects a condition operator for when the breakpoint should be triggered:

Equal to.

Greater than or equal to.

Less than or equal to.

Not equal to.

Specify a bit mask value that the breakpoint address or value will be masked with. (On
the FET hardware the mask is inverted, but this is not the case in the FET Debugger
driver.)

Specify the data value in the specified register that should be triggered.

Selects the type of access that triggers the selected breakpoint.

Selects the action that occurs when the breakpoint is triggered:

Break

The execution stops when the breakpoint is triggered.

141

Reference information on breakpoints

142

State Storage Trigger

State storage starts when the breakpoint is triggered. To control the behavior of
the state storage module, see State Storage Control window, page 270.

Cycle Counter Trigger

Enter Location dialog box

The Enter Location dialog box is available from the breakpoints dialog box, either
when you set a new breakpoint or when you edit a breakpoint.

Type

C-SPY® Debugging Guide
for MSP430

Enter Location E
Type Expression:

' Expression I
7 Absolute address

 Souree location

Starts, stops, resets, or counts the Cycle counter 1. To control the behavior of the
cycle counter, see The advanced cycle counter, page 259.

()3 I Cancel |

Use the Enter Location dialog box to specify the location of the breakpoint.

Note: This dialog box looks different depending on the Type you select.

Selects the type of location to be used for the breakpoint, choose between:

Expression

A C-SPY expression, whose value evaluates to a valid code or data location.

A code location, for example the function main, is typically used for code
breakpoints.

A data location is the name of a variable and is typically used for data
breakpoints. For example, my_var refers to the location of the variable my_var,
and arr [3] refers to the location of the fourth element of the array arr. For
static variables declared with the same name in several functions, use the syntax
my_func::my_static_variable to refer to a specific variable.

For more information about C-SPY expressions, see C-SPY expressions, page
80.

Breakpoints °

Absolute address
An absolute location on the form zone: hexaddress or simply hexaddress
(for example Memory: 0x42). zone refers to C-SPY memory zones and

specifies in which memory the address belongs, see C-SPY memory zones, page
148.

Source location

A location in your C source code using the syntax:
{filename} .row.column.

filename specifies the filename and full path.
row specifies the row in which you want the breakpoint.
column specifies the column in which you want the breakpoint.

For example, {C:\src\prog.c}.22.3

sets a breakpoint on the third character position on row 22 in the source file
prog.c. Note that in quoted form, for example in a C-SPY macro, you must
instead write {C:\ \src\\prog.c}.22.3.

Note that the Source location type is usually meaningful only for code locations
in code breakpoints. Depending on the C-SPY driver you are using, Source
location might not be available for data and immediate breakpoints.

Breakpoint combiner dialog box
The Breakpoint combiner dialog box is available from the Emulator menu.
Breakpoint Combiner, §|

Select a breakpoint and right-click to add a new
breakpoint dependency.

De [F]

Code & 028026 [F]

[caned | [ok |

Use this dialog box to combine two already defined breakpoints.

143

Reference information on breakpoints

Select a breakpoint and right-click to display a list of breakpoints to combine it with.
When two breakpoints have been combined, the defined action will not occur until both
breakpoints have been reached.

Note: Only available for devices that support the Enhanced Emulation Module at the
required level. The settings are not saved when the debug session is closed.

Requirements
The C-SPY FET Debugger driver.

Resolve Source Ambiguity dialog box

The Resolve Source Ambiguity dialog box appears, for example, when you try to set a
breakpoint on templates and the source location corresponds to more than one function.

Resolve Source Ambiguity

The zource location coresponds to multiple functions.
‘which onefz] do you mean?

woid foo(T, T #|[with T=unsigned long] Al

woid foo(T, T #|[with T=double]

Cancel

™ Automatically choose all

If you check. this item, the dialog will not be shown again
unless you re-enable it in the Tools->Dptions dialog, on
the Debugger page.

To resolve a source ambiguity, perform one of these actions:

o In the text box, select one or several of the listed locations and click Selected.
e Click AllL

All

The breakpoint will be set on all listed locations.

Selected

The breakpoint will be set on the source locations that you have selected in the text box.

C-SPY® Debugging Guide
144 for MSP430

Breakpoints °

Cancel

No location will be used.

Automatically choose all

Determines that whenever a specified source location corresponds to more than one
function, all locations will be used.

Note that this option can also be specified in the IDE Options dialog box, see Debugger
options in the IDE Project Management and Building Guide.

145

Reference information on breakpoints

C-SPY® Debugging Guide
146 for MSP430

Memory and registers

e Introduction to monitoring memory and registers
e Monitoring memory and registers

e Reference information on memory and registers

Introduction to monitoring memory and registers

These topics are covered:

e Briefly about monitoring memory and registers
o C-SPY memory zones
e Stack display

o Memory access checking

BRIEFLY ABOUT MONITORING MEMORY AND REGISTERS

C-SPY provides many windows for monitoring memory and registers, each of them
available from the View menu:

o The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Different colors are used for indicating data coverage along with
execution of your application. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. You can open several
instances of this window, to monitor different memory areas. The content of the
window can be regularly updated while your application is executing.

o The Symbolic memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

o The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, some integrity checks of the stack can be performed to detect
and warn about problems with stack overflow. For example, the Stack window is
useful for determining the optimal size of the stack. You can open up to two instances
of this window, each showing different stacks or different display modes of the same
stack.

147

Introduction to monitoring memory and registers

148

C-SPY® Debugging Guide
for MSP430

o The Register window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them. Because of the large amount of registers—memory-mapped
peripheral unit registers and CPU registers—it is inconvenient to show all registers
concurrently in the Register window. Instead you can divide registers into register
groups. You can choose to load either predefined register groups or define your own
application-specific groups. You can open several instances of this window, each
showing a different register group.

o The SFR Setup window

Displays the currently defined SFRs that C-SPY has information about. If required,
you can use this window to customize aspects of the SFRs.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic memory window. The memory area where the
variable is located will appear.

Reading the value of some registers might influence the runtime behavior of your
application. For example, reading the value of a UART status register might reset a
pending bit, which leads to the lack of an interrupt that would have processed a received
byte. To prevent this from happening, make sure that the Register window containing
any such registers is closed when debugging a running application.

C-SPY MEMORY ZONES

In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. The MSP430

Memory and registers °

architecture has only one zone, Memory, which covers the whole MSP430 memory
range.

0x0000 SFR 0x0000
0x0200
RAM
0x 0A 00
0x1100
Flash
OxFFFF OxFFFF
Default zone Memory Additional zones for MSP430F149

Memory zones are used in several contexts, most importantly in the Memory and
Disassembly windows, and in C-SPY macros. In the windows, use the Zone box to
choose which memory zone to display.

Device-specific zones

Memory information for device-specific zones is defined in the device description files.
When you load a device description file, additional zones that adhere to the specific
memory layout become available.

See the device description file for information about available memory zones.

These zones are available, depending on the device description file you are using: SFR,
RAM, INFO, and Flash. Some devices have FRAM instead of Flash.

If your hardware does not have the same memory layout as any of the predefined device
description files, you can define customized zones by adding them to the file.

For more information, see Selecting a device description file, page 42 and Modifying a
device description file, page 45.
STACK DISPLAY

The Stack window displays the contents of the stack, overflow warnings, and it has a
graphical stack bar. These can be useful in many contexts. Some examples are:

e Investigating the stack usage when assembler modules are called from C modules
and vice versa

e Investigating whether the correct elements are located on the stack

e Investigating whether the stack is restored properly

149

Introduction to monitoring memory and registers

o Determining the optimal stack size

o Detecting stack overflows.

For microcontrollers with multiple stacks, you can select which stack to view.

Stack usage

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xCD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can
incorrectly grow outside its bounds, and even modify memory outside the stack area,
without actually modifying any of the bytes near the stack range. Likewise, your
application might modify memory within the stack area by mistake.

The Stack window cannot detect a stack overflow when it happens, but can only detect
@ the signs it leaves behind. However, when the graphical stack bar is enabled, the
functionality needed to detect and warn about stack overflows is also enabled.

Note: The size and location of the stack is retrieved from the definition of the segment
holding the stack, made in the linker configuration file. If you, for some reason, modify
the stack initialization made in the system startup code, cstartup, you should also
change the segment definition in the linker configuration file accordingly; otherwise the
Stack window cannot track the stack usage. For more information about this, see the /AR
C/C++ Compiler User Guide for MSP430.

MEMORY ACCESS CHECKING

The C-SPY simulator can simulate various memory access types of the target hardware
and detect illegal accesses, for example a read access to write-only memory. If a memory
access occurs that does not agree with the access type specified for the specific memory
area, C-SPY will regard this as an illegal access. Also, a memory access to memory
which is not defined is regarded as an illegal access. The purpose of memory access
checking is to help you to identify any memory access violations.

The memory areas can either be the zones predefined in the device description file, or
memory areas based on the segment information available in the debug file. In addition
to these, you can define your own memory areas. The access type can be read and write,
read-only, or write-only. You cannot map two different access types to the same memory
area. You can check for access type violation and accesses to unspecified ranges. Any
violations are logged in the Debug Log window. You can also choose to have the
execution halted.

C-SPY® Debugging Guide
150 for MSP430

Memory and registers __4

Monitoring memory and registers

These tasks are covered:

o Defining application-specific register groups, page 151.

DEFINING APPLICATION-SPECIFIC REGISTER GROUPS

Defining application-specific register groups minimizes the amount of registers
displayed in the Register window and speeds up the debugging.

I Choose Tools>Options>Register Filter during a debug session.

IDE Dptions [%]
¥ Use register filter Groups:
IMyFiIter.fIt Filter Files. .. | I VI

Group members:

Register Filker
i Terminal IfO

QK | Cancel | Apply | Help |

For information about the register filter options, see the IDE Project Management and
Building Guide.

2 Select Use register filter and specify the filename and destination of the filter file for
your new group in the dialog box that appears.

3 Click New Group and specify the name of your group, for example My Timer Group.

New Group x|

IMy Timer Group

()8 I Cancel |

4 In the register tree view on the Register Filter page, select a register and click the arrow
button to add it to your group. Repeat this process for all registers that you want to add
to your group.

151

Reference information on memory and registers

5 Optionally, select any registers for which you want to change the integer base, and
choose a suitable base.

6 When you are done, click OK. Your new group is now available in the Register
window.

If you want to add more groups to your filter file, repeat this procedure for each group
you want to add.

Note: The registers that appear in the list of registers are retrieved from the ddf file that
is currently used. If a certain SFR that you need does not appear, you can register your
own SFRs. For more information, see SFR Setup window, page 168.

Reference information on memory and registers

C-SPY® Debugging Guide
152 for MSP430

Reference information about:

Memory window, page 153

Memory Save dialog box, page 157
Memory Restore dialog box, page 158

Fill dialog box, page 158

Symbolic Memory window, page 160
Stack window, page 162

Register window, page 166

SFR Setup window, page 168

Edit SFR dialog box, page 171

Memory Access Setup dialog box, page 172
Edit Memory Access dialog box, page 174.

Memory Dump dialog box, page 175

Memory window

12

Requirements

Toolbar

Memory and registers __4

The Memory window is available from the View menu.

Available zones Context menu button

‘ Live update

LY

_\ \ =
- & &

- Memory ~
Go to location

[—Goto Tmnory A
000fe=f0 £f Ef Ef Ef Ef Ef EEf EE -
000fe=fs ff £f ff £f ff Ff Ff Ef
i 000fef00 HEVES B8 B8 Bf 20 57 Bf| Hello o
Memory ‘ 000fef08 {72 6c 64 21 00 00 68 6a rld!l...
addresses | 000fefl0 B2 74 Ja 4¢ 00 OO0 OO0 OO
S 000fefls OO0 OO OO OO OO OO OO0 OO
000fe£20 0O OO OO OO OO OO OO0 OO
000fef28 OO0 OO0 OO0 00 cd cd cd cd
— | oo0fefiT od ed cd cd cd cd od ed
Drata coverage - 000fe=£38 3¢ 01 OO0 ed ff £f £f ff
information 000fe=f40 f£f Ef Ef Ef Ef Ef Ef Ef
000fe=f48 f£f £f Ef £f Ef Ef Ef Ef n

nNNfefsn ff Ff ff ff FfFf FFf Ff £F

Mem ory contents Mem ory contents in ASCII format

This window gives an up-to-date display of a specified area of memory—a memory
zone—and allows you to edit it. You can open several instances of this window, which
is very convenient if you want to keep track of several memory or register zones, or
monitor different parts of the memory.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 49.

None; this window is always available.

The toolbar contains:

Go to

The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 148.

153

Reference information on memory and registers

Context menu button

Displays the context menu.

Update Now

Updates the content of the Memory window while your application is executing.
This button is only enabled if the C-SPY driver you are using has access to the
target system memory while your application is executing.

Live Update

Updates the contents of the Memory window regularly while your application is
executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing. To set
the update frequency, specify an appropriate frequency in the IDE
Options>Debugger dialog box.

Display area

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and—provided that the display mode is set to

1x Units—the memory contents in ASCII format. You can edit the contents of the
display area, both in the hexadecimal part and the ASCII part of the area.

Data coverage is displayed with these colors:

Yellow Indicates data that has been read.
Blue Indicates data that has been written
Green Indicates data that has been both read and written.

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY Simulator.

C-SPY® Debugging Guide
154 for MSP430

Memory and registers °

Context menu

This context menu is available:

Copy
Paste

Zone 3

v lxUnits
2x Units
4x Units
8x Units

v Little Endian
Big Endian

Data Coverage 3

Find...

Replace...

Mermory Fill...
Memory Save...

Mermory Restore...

Set Data Breakpoint

These commands are available:
Copy, Paste

Standard editing commands.
Zone

Selects a memory zone, see C-SPY memory zones, page 148.
1x Units

Displays the memory contents as single bytes.
2x Units

Displays the memory contents as 2-byte groups.
4x Units

Displays the memory contents as 4-byte groups.
8x Units

Displays the memory contents as 8-byte groups.

Little Endian
Displays the contents in little-endian byte order.

155

Reference information on memory and registers

Big Endian

Displays the contents in big-endian byte order.

Data Coverage
Choose between:

Enable toggles data coverage on or off.
Show toggles between showing or hiding data coverage.
Clear clears all data coverage information.

These commands are only available if your C-SPY driver supports data
coverage.

Find
Displays a dialog box where you can search for text within the Memory

window; read about the Find dialog box in the IDE Project Management and
Building Guide.

Replace

Displays a dialog box where you can search for a specified string and replace
each occurrence with another string; read about the Replace dialog box in the
IDE Project Management and Building Guide.

Memory Fill

Displays a dialog box, where you can fill a specified area with a value, see Fill
dialog box, page 158.

Memory Save

Displays a dialog box, where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 157.

Memory Restore
Displays a dialog box, where you can load the contents of a file in Intel-hex or
Motorola s-record format to a specified memory zone, see Memory Restore
dialog box, page 158.

Set Data Breakpoint

Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog box. The
breakpoints you set in this window will be triggered for both read and write
access. For more information, see Setting a data breakpoint in the Memory
window, page 121.

C-SPY® Debugging Guide
156 for MSP430

Memory and registers __4

Memory Save dialog box

Requirements

Zone

Start address

End address

File format

Filename

Save

The Memory Save dialog box is available by choosing Debug>Memory>Save or from
the context menu in the Memory window.

Memory Save P§|

Zone:

| Memary ¥ | [Save]

Close

Start address: End address:
[oxs0 | [oxFr |

File: Farmat:

| intel-extended v |

Filename:
| Ciiprojectsimemary, hex | E]

Use this dialog box to save the contents of a specified memory area to a file.

None; this dialog box is always available.

Selects a memory zone, see C-SPY memory zones, page 148.

Specify the start address of the memory range to be saved.

Specify the end address of the memory range to be saved.

Selects the file format to be used, which is Intel-extended by default.

Specify the destination file to be used; a browse button is available for your convenience.

Saves the selected range of the memory zone to the specified file.

157

Reference information on memory and registers

158

Memory Restore dialog box

Requirements

Zone

Filename

Restore

Fill dialog box

C-SPY® Debugging Guide

for MSP430

The Memory Restore dialog box is available by choosing Debug>Memory>Restore
or from the context menu in the Memory window.

Memory Restore E

Zone:

= 5
Close |
Filename:

I Ciiprojectsimemary, hex e |

Use this dialog box to load the contents of a file in Intel-extended or Motorola S-record,
or msp430-txt format to a specified memory zone.

None; this dialog box is always available.

Selects a memory zone, see C-SPY memory zones, page 148.

Specify the file to be read; a browse button is available for your convenience.

Loads the contents of the specified file to the selected memory zone.

The Fill dialog box is available from the context menu in the Memory window.

Start address: Length: Zone:
101D [0 |Memay x|
Walue: Operation

FF ' Copy AND

" HOR 0OR

()3 I Cancel |

Use this dialog box to fill a specified area of memory with a value.

Requirements

Start address

Length

Zone

Value

Operation

Memory and registers °

None; this dialog box is always available.

Type the start address—in binary, octal, decimal, or hexadecimal notation.

Type the length—in binary, octal, decimal, or hexadecimal notation.

Selects a memory zone, see C-SPY memory zones, page 148.

Type the 8-bit value to be used for filling each memory location.

These are the available memory fill operations:

Copy
Value will be copied to the specified memory area.

AND

An AND operation will be performed between Value and the existing contents of
memory before writing the result to memory.

XOR

An XOR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

OR

An OR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

159

Reference information on memory and registers

160

Symbolic Memory window

&

Requirements

Toolbar

C-SPY® Debugging Guide
for MSP430

The Symbolic Memory window is available from the View menu during a debug
session.

Go ko I j IMemory j Previousl TMext |
Location | Data | ‘ariable | Walue | Tvpe | ;I
0x5C 0x0200C300
0x60 0x0002 call count 10 int
0x62 0x0001 root[0] 1 unsigned int
0x64 0x0001 root1] 1 unsigned int
0x66 0x0002 root[2] 2 unsigned int
0x68 0x0003 root3] 3 unsigned int
0x6A 0x0005 root[4] 5 unsigned int
0x6C 0x0008 root[5]] unsigned int
0x6E 0x000D rootfB] 13 unsigned int
0x70 0x0015 root[7] 21 unsigned int
0x72 0x0022 rootf8] 34 unsigned int
0x74 0x0037 root[9] 55 unsigned int
0x76 0xCDCDCDCD
Ox7A 0xCDCDCICD x|

This window displays how variables with static storage duration, typically variables
with file scope but also static variables in functions and classes, are laid out in memory.
This can be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example buffer overruns. Other areas of use
are spotting alignment holes or for understanding problems caused by buffers being
overwritten.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Symbolic Memory window.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 49.

None; this window is always available.

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 148.

Previous
Highlights the previous symbol in the display area.

Memory and registers __4

Next
Highlights the next symbol in the display area.

Display area
This area contains these columns:

Location
The memory address.

Data
The memory contents in hexadecimal format. The data is grouped according to
the size of the symbol. This column is editable.

Variable
The variable name; requires that the variable has a fixed memory location. Local
variables are not displayed.

Value
The value of the variable. This column is editable.

Type

The type of the variable.
There are several different ways to navigate within the memory space:

o Text that is dropped in the window is interpreted as symbols

o The scroll bar at the right-side of the window

o The toolbar buttons Next and Previous

o The toolbar list box Go to can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

Context menu

This context menu is available:

Mext Symbol
Previous Symbaol

1 Units
2x Units
¢ Units

&dd B Watch Windaw

These commands are available:

Next Symbol
Highlights the next symbol in the display area.

161

Reference information on memory and registers

Previous Symbol
Highlights the previous symbol in the display area.

1x Units

Displays the memory contents as single bytes. This applies only to rows which
do not contain a variable.

2x Units

Displays the memory contents as 2-byte groups.
4x Units

Displays the memory contents as 4-byte groups.

Add to Watch Window
Adds the selected symbol to the Watch window.

Stack window

The Stack window is available from the View menu.

[Current stack pointer] { Used memory stack, in grey ‘

——— T T

The graphical

[Stack view l stack bar with
S— tooltip
- - - information
| Locat|0n| Diata Yariahle Yalue | Frame \f .
[oxerFe] oxo0s .
i — .- +1 Ox08 T~
Cu.rrent stack ' +2 0x0000 p.mStatus i [1]__exit Unused stack
pointer +4 OxdR memory, in
+5 Ox67 light grey
+65 OxEOD '
+7 0Ox04

This window is a memory window that displays the contents of the stack. In addition,
some integrity checks of the stack can be performed to detect and warn about problems
with stack overflow. For example, the Stack window is useful for determining the
optimal size of the stack.

To view the graphical stack bar:

I Choose Tools>Options>Stack.
2 Select the option Enable graphical stack display and stack usage.

You can open up to two Stack windows, each showing a different stack—if several
stacks are available—or the same stack with different display settings.

C-SPY® Debugging Guide
162 for MSP430

Memory and registers °

Note: By default, this window uses one physical breakpoint. For more information, see
Breakpoint consumers, page 118.

For information about options specific to the Stack window, see the IDE Project
Management and Building Guide.

Requirements

None; this window is always available.

Toolbar
The toolbar contains:

Stack

Selects which stack to view. This applies to microcontrollers with multiple
stacks.

The graphical stack bar

Displays the state of the stack graphically.
The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end

of the memory space reserved for the stack. The graphical stack bar turns red when the
stack usage exceeds a threshold that you can specity.

When the stack bar is enabled, the functionality needed to detect and warn about stack
overflows is also enabled.

@ Place the mouse pointer over the stack bar to get tooltip information about stack usage.

Display area
This area contains these columns:

Location

Displays the location in memory. The addresses are displayed in increasing
order. The address referenced by the stack pointer, in other words the top of the
stack, is highlighted in a green color.

Data

Displays the contents of the memory unit at the given location. From the Stack
window context menu, you can select how the data should be displayed; as a 1-,
2-, or 4-byte group of data.

163

Reference information on memory and registers

Context menu

C-SPY® Debugging Guide
164 for MSP430

Variable
Displays the name of a variable, if there is a local variable at the given location.
Variables are only displayed if they are declared locally in a function, and
located on the stack and not in registers.

Value
Displays the value of the variable that is displayed in the Variable column.

Frame

Displays the name of the function that the call frame corresponds to.

This context menu is available:

v Show Variables
Show Offsets
1x Units
2x Units

v dxUnits
Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format

Options...

These commands are available:

Show variables

Displays separate columns named Variables, Value, and Frame in the Stack
window. Variables located at memory addresses listed in the Stack window are
displayed in these columns.

Show offsets

Displays locations in the Location column as offsets from the stack pointer.
When deselected, locations are displayed as absolute addresses.

1x Units
Displays the memory contents as single bytes.

2x Units
Displays the memory contents as 2-byte groups.

Memory and registers °

4x Units

Displays the memory contents as 4-byte groups.

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Options

Opens the IDE Options dialog box where you can set options specific to the
Stack window, see the IDE Project Management and Building Guide.

165

Reference information on memory and registers

166

Register window

Requirements

C-SPY® Debugging Guide
for MSP430

The Register window is available from the View menu.

Register @

CPU Registers -

RO = Ox0001 R13 = 0x00000000
R1 = Ox0000 RA = 0x00000035
R2 = OxCOO0O0 SP = 0x0000C128
R3 = Ox0000 FH PSR = 0x0240

R4 = Ox0000 Hcre = 0x0100

R5 = Ox0000 ISP = 0x0000C268E
Ré = Ox0000 Usp = 0x00000000
R7 = Ox002D INTBASE = 0x000001A2
RE8 = Ox0008 BPC = 0x0000008C
R® = OxCOOE

R10 = Ox(C548

R11 = Ox0OBE

R12 = Ox00000000

This window gives an up-to-date display of the contents of the processor registers and
special function registers, and allows you to edit the content of some of the registers.
Optionally, you can choose to load either predefined register groups or to define your
own application-specific groups.

You can open several instances of this window, which is very convenient if you want to
keep track of different register groups.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 49.

To enable predefined register groups:

Select a device description file that suits your device, see Selecting a device description

file, page 42.

The register groups appear in the Register window, provided that they are defined in
the device description file. Note that the available register groups are also listed on the
Register Filter page.

To define application-specific register groups:

See Defining application-specific register groups, page 151.

None; this window is always available.

Memory and registers °

Toolbar

The toolbar contains:

CPU Registers
Selects which register group to display, by default CPU Registers. If some of
your SFRs are missing, you can register your own SFRs in a Custom group, see
SFR Setup window, page 168.Additional registers are defined in a specific
register definition file—with the filename extension s fr—which is included
from the register section of the device description file. These registers are the
device-specific memory-mapped control and status registers for the peripheral
units on the MSP430 microcontrollers.

Display area
Displays registers and their values. Every time C-SPY stops, a value that has changed
since the last stop is highlighted. Some of the registers are read-only, some of the
registers are write-only (marked with w), and some of the registers are editable. To edit
the contents of an editable register, click it, and modify its value. Press Esc to cancel the
new value.

Some registers are expandable, which means that the register contains interesting bits or
subgroups of bits.

To change the display format, change the Base setting on the Register Filter
page—available by choosing Tools>Options.

Note: When the FET Debugger is used, the cycle counter registers can only be used
while single-stepping in the Disassembly window.

167

Reference information on memory and registers

168

SFR Setup window

Requirements

C-SPY® Debugging Guide
for MSP430

For the C-SPY Simulator and possibly in the C-SPY hardware debugger drivers, these
additional support registers are available in the group:

CYCLECOUNTER Cleared when an application is started or reset and is
incremented with the number of used cycles during

execution.
CCSTEP Shows the number of used cycles during the last performed
C/C++ source or assembler step.
CCTIMERI1 and Two trip counts that can be cleared manually at any given
CCTIMER2 time. They are incremented with the number of used cycles

during execution.

The SFR Setup window is available from the Project menu.

SFR Setup =]
Name Address Zone Size Access *

+ MyOwnSFR 0x20004000 Memory 8 Read only

+ MyHideSFR 0x20004004 Memory 16 MNone
TIM2_CR1 0x40000000 Memory 32 Read/Write

c TIM2_CR2 0x40000004 Memory 32 Read only
TIM2_SMCR 0x40000008 Memory 32 Read/Write
TIM2_DIER 0x4000000C Memory 32 Read/Write
TIM2_SR 0x40000010 Memory 32 Read/Write -

This window displays the currently defined SFRs that C-SPY has information about.
You can choose to display only factory-defined or custom-defined SFRs, or both. If
required, you can use this window to customize the aspects of the SFRs. For
factory-defined SFRs (that is, retrieved from the ddf file that is currently used), you can
only customize the access type.

Any custom-defined SFRs are added to a dedicated register group called Custom, which
you can choose to display in the Register window. Your custom-defined SFRs are saved
in projectCustomSFR.sfr.

You can only add or modify SFRs when the C-SPY debugger is not running.

None; this window is always available.

Memory and registers °

Display area
This area contains these columns:

Status
A character that signals the status of the SFR, which can be one of:

blank, a factory-defined SFR.
¢, a factory-defined SFR that has been modified.
+, a custom-defined SFR.

2, an SFR that is ignored for some reason. An SFR can be ignored when a
factory-defined SFR has been modified, but the SFR is no longer available, or it
is located somewhere else or with a different size. Typically, this might happen
if you change to another device.

Name
A unique name of the SFR.

Address
The memory address of the SFR.

Zone
Selects a memory zone, see C-SPY memory zones, page 148.

Size
The size of the register, which can be any of 8, 16, 32, or 64.

Access

The access type of the register, which can be one of Read/Write, Read only,
Write only, Or None.

You can click a name or an address to change the value. The hexadecimal 0x prefix for
the address can be omitted, the value you enter will still be interpreted as hexadecimal.
For example, if you enter 4567, you will get 0x4567.

You can click a column header to sort the SFRs according to the column property.
Color coding used in the display area:

o Green, which indicates that the corresponding value has changed

o Red, which indicates an ignored SFR.

169

Reference information on memory and registers

170

Context menu

C-SPY® Debugging Guide
for MSP430

This context menu is available:
v Show All
Show Custom SFRs only
Show Factory SFRs only

Add...

Edit...

Delete

Delete/Revert All Custom SFRs
Save Custom SFRs...

& bits

16 bits

32 bits

64 bits
Read/Write
Read only
Write only

MNone

These commands are available:

Show All
Shows all SFR.
Show Custom SFRs only
Shows all custom-defined SFRs.
Show Factory SFRs only
Shows all factory-defined SFRs retrieved from the ddf file.
Add
Displays the Edit SFR dialog box where you can add a new SFR, see Edit SFR
dialog box, page 171.
Edit
Displays the Edit SFR dialog box where you can edit an SFR, see Edit SFR
dialog box, page 171.
Delete

Deletes an SFR. This command only works on custom-defined SFRs.

Delete/revert All Custom SFRs

Deletes all custom-defined SFRs and reverts all modified factory-defined SFRs
to their factory settings.

Memory and registers °

Save Custom SFRs
Opens a standard save dialog box to save all custom-defined SFRs.
8|16|32|64 bits
Selects display format for the selected SFR, which can be 8, 16, 32, or 64 bits.
Note that the display format can only be changed for custom-defined SFRs.
Read/Write|Read only|Write only|None

Selects the access type of the selected SFR, which can be Read/Write, Read
only, Write only, or None. Note that for factory-defined SFRs, the default
access type is indicated.

Edit SFR dialog box
The Edit SFR dialog box is available from the SFR Setup window.
Edit SFR (=23
SFR
M ame:
MyDwnSFR Cancel
Address: Zone:
0400004567 Memary -
Size Access
@ 8 bits @ Read wiite
16 bitz Fiead only
32 bitz write: only
B4 bits MHone

Use this dialog box to define the SFRs.

Requirements

None; this dialog box is always available.

Name

Specify the name of the SFR that you want to add or edit.

Address

Specify the address of the SFR that you want to add or edit. The hexadecimal 0x prefix
for the address can be omitted, the value you enter will still be interpreted as
hexadecimal. For example, if you enter 4567, you will get 0x4567.

171

Reference information on memory and registers

Zone
Selects the memory zone for the SFR you want to add or edit. The list of zones is
retrieved from the ddf file that is currently used.

Size
Selects the size of the SFR. Choose between 8, 16, 32, or 64 bits. Note that the display
format can only be changed for custom-defined SFRs.

Access

Selects the access type of the SFR. Choose between Read/Write, Read only, Write
only, or None. Note that for factory-defined SFRs, the default access type is indicated.

Memory Access Setup dialog box
The Memory Access Setup dialog box is available from the C-SPY driver menu.

Memory Access Setup _|

™ Use ranges based on

X

% Deyvice description file

it

| Debug file segment information [anly shovwn while debugging) Cancel
Zone | Start Addr | End Addr | Accesz Type |
Memory 0x0 0x1FF R

Memory 0200 0x9FF R
Memory 01000 0«10FF R
Memory 0x1100 0«FFFF R

™ Use manual ranges
Zone | Start Addr| End Addr| Accesz Type | e

Exdit....

Delete

L

[elete &l

Memony aczess checking
Check far: Schor:
¥ Access bype violation € Log violations
¥ Access tounspeciied ranges % [Log and stop execution

This dialog box lists all defined memory areas, where each column in the list specifies
the properties of the area. In other words, the dialog box displays the memory access
setup that will be used during the simulation.

Note: If you enable both the Use ranges based on and the Use manual ranges option,
memory accesses are checked for all defined ranges.

C-SPY® Debugging Guide
172 for MSP430

Memory and registers °

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 174.

Requirements
The C-SPY simulator.

Use ranges based on

Selects any of the predefined alternatives for the memory access setup. Choose between:

Device description file
Loads properties from the device description file.

Debug file segment information

Properties are based on the segment information available in the debug file. This
information is only available while debugging. The advantage of using this
option, is that the simulator can catch memory accesses outside the linked
application.

Use manual ranges

Specify your own ranges manually via the Edit Memory Access dialog box. To open
this dialog box, choose New to specify a new memory range, or select a memory zone
and choose Edit to modify it. For more information, see Edit Memory Access dialog
box, page 174.

The ranges you define manually are saved between debug sessions.

Memory access checking

Check for determines what to check for;

® Access type violation

® Access to unspecified ranges.
Action selects the action to be performed if an access violation occurs; choose between:

e Log violations

e Log and stop execution.

Any violations are logged in the Debug Log window.

173

Reference information on memory and registers

Buttons

These buttons are available:

New
Opens the Edit Memory Access dialog box, where you can specify a new
memory range and attach an access type to it, see Edit Memory Access dialog
box, page 174.

Edit
Opens the Edit Memory Access dialog box, where you can edit the selected
memory area. See Edit Memory Access dialog box, page 174.

Delete
Deletes the selected memory area definition.

Delete All

Deletes all defined memory area definitions.

Note that except for the OK and Cancel buttons, buttons are only available when the
option Use manual ranges is selected.

Edit Memory Access dialog box
The Edit Memory Access dialog box is available from the Memory Access Setup

dialog box.

— Memory range

Zone:

I Memory - l Cancel |
Start address: End address:
Jo [1FFF

—Access lype

 Fead and write
' Fead only
© Wfrite anly

Use this dialog box to specify the memory ranges, and assign an access type to each
memory range, for which you want to detect illegal accesses during the simulation.

Requirements
The C-SPY simulator.

C-SPY® Debugging Guide
174 for MSP430

Memory and registers __4

Memory range
Defines the memory area specific to your device:

Zone
Selects a memory zone, see C-SPY memory zones, page 148.

Start address
Specify the start address for the memory area, in hexadecimal notation.

End address
Specity the end address for the memory area, in hexadecimal notation.

Access type
Selects an access type to the memory range; choose between:
e Read and write

o Read only
o Write only.

Memory Dump dialog box

The Memory Dump dialog box is available from the Emulator menu.

Memory Dump @

Cump File Mame
|
Farmat
Start Address: 0000 | b @ ward
Dump Length: (200 | h) Byte
[[] Add Address Information
[] &ppend Register Contents

Use this dialog box to write memory contents to a file.

Requirements
The C-SPY FET Debugger driver.

175

Reference information on memory and registers

176

Dump File Name

Start Address

Dump Length

Specify the name of the destination file where the contents of the selected part of the
memory will be saved in text format. You can find the file using the Browse button.

Specify the start address for the memory section you want to save to a file.

Specify the length of the memory section you want to save to a file, in hexadecimal
notation. The maximum length is FFFF, which limits the number of bytes that can be
written to 65535. Consequently, you cannot write memory from address 0x0000 to
OxFFFF, inclusive, as this would require a length specifier of 65536 bytes (0x10000).

Add address information

Adds address information to the file.

Append register contents

Format

C-SPY® Debugging Guide
for MSP430

Appends register contents to the file. Choose between:
Program Counter (R0)

Stack Pointer (R1)

Status Register (R2)

Register R4 to R15

Selects format for the text that is written to the file. Choose between:
Word
Byte

Part 2. Analyzing your
application

This part of the C-SPY® Debugging Guide for MSP430 includes these chapters:
e Trace

e Profiling

e Code coverage

e Power debugging

.hmuhhhhi

177

AAARRIE

178

Trace

e Introduction to using trace
e Collecting and using trace data

e Reference information on trace

Introduction to using trace

These topics are covered:

o Reasons for using trace

e Briefly about trace

o Requirements for using trace

See also:

Getting started using data logging, page 85
Power debugging, page 213

Getting started using interrupt logging, page 246
Profiling, page 199

State storage, page 267

REASONS FOR USING TRACE

By using trace, you can inspect the program flow up to a specific state, for instance an
application crash, and use the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have irregular symptoms and occur
sporadically.

BRIEFLY ABOUT TRACE

To use trace in C-SPY requires that your target system can generate trace data. Once
generated, C-SPY can collect it and you can visualize and analyze the data in various
windows and dialog boxes.

Trace data is a continuously collected sequence of every executed instruction for a
selected portion of the execution.

179

Collecting and using trace data

180

Trace features in C-SPY

In C-SPY, you can use the trace-related windows Trace, Function Trace, Timeline, and
Find in Trace.

Depending on your C-SPY driver, you:

o Can set various types of trace breakpoints to control the collection of trace data.

o Have access to windows such as the Interrupt Log, Interrupt Log Summary, Data
Log, and Data Log Summary.

In addition, several other features in C-SPY also use trace data, features such as
Profiling, Code coverage, and Instruction profiling.
REQUIREMENTS FOR USING TRACE

The C-SPY simulator supports trace-related functionality, and there are no specific
requirements.

Trace data cannot be collected from the hardware debugger systems.

Collecting and using trace data

C-SPY® Debugging Guide
for MSP430

These tasks are covered:

o Getting started with trace
o Trace data collection using breakpoints
e Searching in trace data

o Browsing through trace data.

GETTING STARTED WITH TRACE

To collect trace data using the C-SPY simulator, no specific build settings are required.

To get started using trace:

After you have built your application and started C-SPY, open the Trace
window—available from the driver-specific menu—and click the Activate button to
enable collecting trace data.

Start the execution. When the execution stops, for example because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 182.

Trace __4

TRACE DATA COLLECTION USING BREAKPOINTS

A convenient way to collect trace data between two execution points is to start and stop
the data collection using dedicated breakpoints. Choose between these alternatives:

e In the editor or Disassembly window, position your insertion point, right-click, and
toggle a Trace Start or Trace Stop breakpoint from the context menu.

o In the Breakpoints window, choose Trace Start or Trace Stop.

o The C-SPY system macros __setTraceStartBreak and
__setTraceStopBreak can also be used.

For more information about these breakpoints, see Trace Start breakpoints dialog box,
page 194 and Trace Stop breakpoints dialog box, page 195, respectively.

SEARCHING IN TRACE DATA

When you have collected trace data, you can perform searches in the collected data to
locate the parts of your code or data that you are interested in, for example, a specific
interrupt or accesses of a specific variable.

You specify the search criteria in the Find in Trace dialog box and view the result in the
Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

To search in your trace data:

On the Trace window toolbar, click the Find button.

In the Find in Trace dialog box, specify your search criteria.
Typically, you can choose to search for:

e A specific piece of text, for which you can apply further search criteria
o An address range
o A combination of these, like a specific piece of text within a specific address range.

For more information about the various options, see Find in Trace dialog box, page 197.

When you have specified your search criteria, click Find. The Find in Trace window is
displayed, which means you can start analyzing the trace data. For more information,
see Find in Trace window, page 198.

181

Reference information on trace

182

BROWSING THROUGH TRACE DATA

To follow the execution history, simply look and scroll in the Trace window.
Alternatively, you can enter browse mode.

To enter browse mode, double-click an item in the Trace window, or click the Browse
toolbar button.

The selected item turns yellow and the source and disassembly windows will highlight
the corresponding location. You can now move around in the trace data using the up and
down arrow keys, or by scrolling and clicking; the source and Disassembly windows
will be updated to show the corresponding location. This is like stepping backward and
forward through the execution history.

Double-click again to leave browse mode.

Reference information on trace

Trace window

Requirements

C-SPY® Debugging Guide
for MSP430

Reference information about:

Trace window, page 182

Function Trace window, page 185

Timeline window, page 185

Viewing Range dialog box, page 193

Trace Start breakpoints dialog box, page 194
Trace Stop breakpoints dialog box, page 195
Trace Expressions window, page 196

Find in Trace dialog box, page 197

Find in Trace window, page 198.

The Trace window is available from the C-SPY driver menu.

This window displays the collected trace data.

The C-SPY simulator.

Trace __4

Trace toolbar
The toolbar in the Trace window and in the Function trace window contains:

Enable/Disable

Enables and disables collecting and viewing trace data in this window. This
button is not available in the Function trace window.

e

Clear trace data

X

Clears the trace buffer. Both the Trace window and the Function trace window
are cleared.

Toggle source

=

Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse
]

Toggles browse mode on or off for a selected item in the Trace window, see
Browsing through trace data, page 182.

% Find
— Displays a dialog box where you can perform a search, see Find in Trace dialog
box, page 197.

E Save

g Edit Settings
In the C-SPY simulator, this button is not enabled.

Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

Edit Expressions (C-SPY simulator only)

Opens the Trace Expressions window, see Trace Expressions window, page 196.

183

Reference information on trace

184

Display area

C-SPY® Debugging Guide
for MSP430

This area displays a collected sequence of executed machine instructions. In addition,
the window can display trace data for expressions.
Trace @

OX[BYSYHE & A
Cycles Trace callCount e
5064 13582 00044F JC 0x043C 5
DoForegroundProcess() ;
5065 13588 00043C LCALL DoForegrou... &
DoForegroundProcess: : Prelay:
5066 13594 0ooos3 18 Bt 5
?YBDISPATCH_FF:
5067 13597 000075 POP LDFH 5
5068 13600 000077 POP DPL 5
5069 13604 000072 PUSH ?CBANE 5 w
Trace |Trace Expressions =

This area contains these columns for the C-SPY simulator:

#
A serial number for each row in the trace buffer. Simplifies the navigation within
the buffer.

Cycles
The number of cycles elapsed to this point.

Trace
The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

Expression
Each expression you have defined to be displayed appears in a separate column.
Each entry in the expression column displays the value after executing the
instruction on the same row. You specify the expressions for which you want to
collect trace data in the Trace Expressions window, see Trace Expressions
window, page 196.

A red-colored row indicates that the previous row and the red row are not consecutive.
This means that there is a gap in the collected trace data, for example because trace data
has been lost due to an overflow.

Function Trace window

Trace __4

The Function Trace window is available from the C-SPY driver menu during a debug

session.

Function Trace

=)

AyE E

@]
#

475
476
477
483
485
491
494
504

Cycles
1050
1055
1058
1069
1074
1086
1092
1109

Trace

O0x000000E4 :
Ox00000242:

Ox0000025C

Ox0000022C:
Ox00000220:
0x00000232:
O0x00000074:
O0x00000234:

PutFib{un=signed int)
DoForegroundProce=ss()
cmaini) + 24
DoForegroundProce=ss()

HextCounter()
DoForegroundProce=ss()

GetFib{int)
DoForegroundProce=ss()

4

76
22

14

rmyariable

PO M3 P — o

-

Function Trace | Trace | Trace Expressions

This window displays a subset of the trace data displayed in the Trace window. Instead
of displaying all rows, the Function Trace window only shows trace data corresponding
to calls to and returns from functions.

Requirements

The C-SPY simulator.

Toolbar

For information about the toolbar, see Trace window, page 182.

Display area

For information about the columns in the display area, see Trace window, page 182

Timeline window

The Timeline window is available from the C-SPY driver menu during a debug session.

Depending on the abilities in hardware, the debug probe, and the C-SPY driver you are
using, this window displays trace data in different graphs in relation to a common time

axis:

Call Stack graph
Interrupt Log graph

Power Log graph, see Power graph in the Timeline window, page 229.
State Log graph, see State Log graph in the Timeline window, page 234.

185

Reference information on trace

To display a graph:
I Choose Timeline from the C-SPY driver menu to open the Timeline window.

2 In the Timeline window, click in the graph area and choose Enable from the context
menu to enable a specific graph.

3 For the Data Log Graph, you need to set a Data Log breakpoint for each variable you
want a graphical representation of in the Timeline window. See Data Log breakpoints
dialog box, page 133.

4 Click Go on the toolbar to start executing your application. The graph appears.
To navigate in the graph, use any of these alternatives:

e Right-click and from the context menu choose Zoom In or Zoom Out.
Alternatively, use the + and - keys. The graph zooms in or out depending on which
command you used.

o Right-click in the graph and from the context menu choose Navigate and the
appropriate command to move backwards and forwards on the graph. Alternatively,
use any of the shortcut keys: arrow keys, Home, End, and Ctrl+End.

o Double-click on a sample of interest and the corresponding source code is
highlighted in the editor window and in the Disassembly window.

e Click on the graph and drag to select a time interval. Press Enter or right-click and
from the context menu choose Zoom>Zoom to Selection. The selection zooms in.
Point in the selection with the mouse pointer to get detailed tooltip information
about the selected part of the graph:

Start time of

S 127
selection in
seconds and yﬂw
cycles T t1: 181.70 us (1817 cycles)

Fl-t2: 194,50 us (1945 cycles) The frequency that)

u
T (€ - t1): 1280 us (128 cycles) b | COTresPonds tothe

‘ End of selection

in seconds and i time interval.
cycles T8 1/T; 78125 Hz —— 1= | Typically, useful for
' : periodically
o

| s 020s 025 occurring events.
The time interval 5s 0.00020s 0.00025s]

of the selection

9 Point in the graph with the mouse pointer to get detailed tooltip information for that
location.

Requirements

None; this window is always available.

C-SPY® Debugging Guide
186 for MSP430

Trace __4

Depending on the abilities in hardware, the debug probe, and the C-SPY driver you are
using, the display area can be populated with different graphs:

Call Stack Data Log Interrupt State log Power Log
Graph Graph Log Graph Graph Graph
C-SPY simulator X X X -
C-SPY FET Debugger driver -- - X X

Target system

Table 7: Supported graphs in the Timeline window
For more information about requirements related to trace data, see Requirements for

using trace, page 180.

Display area for the Call Stack Graph
The Call Stack Graph displays the sequence of calls and returns collected by trace.

Timing information

Timeline =
b =
_w _w __w| _w _w
[putchar]| [putchar]| [putchar]| [putchar]| [putchar]| 3
) |?Springboa| |?Springboa| |?Springboa| |?Springboa| |?Springboa|
putch [_printf 517
?Spring [printf 537 |
_Printf | [nmiHandler::??INTVEC 16 1
printf | [nmiHandler:??INTVEC 16 ;
main 87 / <

a. 9999225__.-’; 8.000024s 8.008026s a. B___B"BBZSS 8.008030s 8.008032s

4 | Lom |

Commaon time axis] { Selection for current graph

At the bottom of the graph you will usually find main, and above it, the functions called
frommain, and so on. The horizontal bars, which represent invocations of functions, use
four different colors:

o Medium green for normal C functions with debug information

o Light green for functions known to the debugger only through an assembler label

o Medium or light yellow for interrupt handlers, with the same distinctions as for

green.

The timing information represents the number of cycles spent in, or between, the
function invocations.

187

Reference information on trace

188

The numbers represent the number of cycles spent in, or between, the function
invocations.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Display area for the Data Log graph

C-SPY® Debugging Guide
for MSP430

The Data Log graph displays the data logs generated by trace, for up to four different
variables or address ranges specified as Data Log breakpoints.

Graph in Levels style] [Graph in Linear style]

Timeline \'-\ \\ @

| 0x10 —— ox0n 0x10 Ox10 -

8.80398s 8.80399s 8.80400s 8.80401s 8.80402s

[

Commaon time axis]

Where:

The label area at the left end of the graph displays the variable name or the address
for which you have specified the Data Log breakpoint.

The graph itself displays how the value of the variable changes over time. The label
area also displays the limits, or range, of the Y-axis for a variable. You can use the

context menu to change these limits. The graph is a graphical representation of the
information in the Data Log window, see Data Log window, page 102.

The graph can be displayed either as a thin line between consecutive logs or as a
rectangle for every log (optionally color-filled).

A red vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system. A red question mark indicates
a log without a value.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Trace __4

Display area for the Interrupt Log graph

The Interrupt Log graph displays interrupts reported by the C-SPY simulator. In other
words, the graph provides a graphical view of the interrupt events during the execution
of your application.

Active interrupt l |Overf|ow |

Timeline |E |

— (N

e [
= i ===

2.90815s 8.000208s 8.00025s 8.00038s 8.90835s

Commaon time axis

Where:

o The label area at the left end of the graph displays the names of the interrupts.

o The graph itself shows active interrupts as a thick green horizontal bar where the
white figure indicates the time spent in the interrupt. This graph is a graphical
representation of the information in the Interrupt Log window, see Interrupt Log
window, page 253.

e If the bar is displayed without horizontal borders, there are two possible causes:

o The interrupt is reentrant and has interrupted itself. Only the innermost interrupt
will have borders.

o There are irregularities in the interrupt enter-leave sequence, probably due to
missing logs.

e If the bar is displayed without a vertical border, the missing border indicates an
approximate time for the log.

o A red vertical line indicates overflow, which means that the communication channel
failed to transmit all interrupt logs from the target system.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Selection and navigation

Click and drag to select. The selection extends vertically over all graphs, but appears
highlighted in a darker color for the selected graph. You can navigate backward and
forward in the selected graph using the left and right arrow keys. Use the Home and End

189

Reference information on trace

keys to move to the first or last relevant point, respectively. Use the navigation keys in
combination with the Shift key to extend the selection.

Context menu

This context menu is available:

MNavigate 3
v Auto Scroll
Zoom 3
Call Stack
v Enable

v | Show Timing

Go to Source

Select Graphs 3
Time Axis Unit 3

Note: The context menu contains some commands that are common to all graphs and

some commands that are specific to each graph. The figure reflects the context menu for
the Call Stack Graph, which means that the menu looks slightly different for the other
graphs.

These commands are available:
Navigate (All graphs)
Commands for navigating over the graph(s); choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll (All graphs)
Toggles auto scrolling on or off. When on, the most recently collected data is
automatically displayed if you have executed the command Navigate>End.
Zoom (All graphs)

Commands for zooming the window, in other words, changing the time scale;
choose between:

C-SPY® Debugging Guide
190 for MSP430

Trace __4

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +.
Zoom Out zooms out on the time scale. Shortcut key: -.

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Data Log (Data Log Graph)
A heading that shows that the Data Log-specific commands below are available.

Power Log (Power Log Graph)

A heading that shows that the Power Log-specific commands below are
available.

Call Stack (Call Stack Graph)
A heading that shows that the Call stack-specific commands below are available.

Interrupt (Interrupt Log Graph)
A heading that shows that the Interrupt Log-specific commands below are
available.

Enable (All graphs)

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the Timeline window. If no trace data has been collected
for a graph, no data will appear instead of the graph.

Show Timing (Call Stack Graph)
Toggles the display of the timing information on or off.

Variable (Data Log Graph)

The name of the variable for which the Data Log-specific commands below
apply. This menu command is context-sensitive, which means it reflects the
Data Log Graph you selected in the Timeline window (one of up to four).

Solid Graph (Data Log Graph)
Displays the graph as a color-filled solid graph instead of as a thin line.

Viewing Range (Data, and Power Log Graph)
Displays a dialog box, see Viewing Range dialog box, page 193.

191

Reference information on trace

192

C-SPY® Debugging Guide
for MSP430

Size (Data, and Power Log Graph)
Determines the vertical size of the graph; choose between Small, Medium, and
Large.

Show Numerical Value (Data, and Power Log Graph)
Shows the numerical value of the variable, in addition to the graph.

Go To Source (Common)

Displays the corresponding source code in an editor window, if applicable.

Open Setup Window (Power Log Graph)
Opens the Power Log Setup window.

Sort by (Interrupt Graph)
Sorts the entries according to their ID or name. The selected order is used in the
graph when new interrupts appear.

Select Graphs (Common)
Selects which graphs to be displayed in the Timeline window.

Time Axis Unit (Common)
Selects the unit used in the time axis; choose between Seconds and Cycles.

Profile Selection

Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling.

Viewing Range dialog box
The Viewing Range dialog box is available from the context menu that appears when
you right-click in the Power Log Graph or the Data Log Graph in the Timeline window.

Requirements

Range for ...

Viewing Range

Range for power:

(& Auto
O Factory
O Custom

Lowest value:

{currently 0 - 70)
(5 - 200)

Scale:

O Linear

Highest value:

Trace __4

3

(%) Logarithmic

ok | [Cancel

]

Use this dialog box to specify the value range, that is, the range for the Y-axis for the

graph.

The C-SPY FET Debugger driver.

Selects the viewing range for the displayed values:

Auto

Uses the range according to the range of the values that are actually collected,
continuously keeping track of minimum or maximum values. The currently
computed range, if any, is displayed in parentheses. The range is rounded to
reasonably even limits.

Factory

For the Data Log Graph: Uses the range according to the value range of the
variable, for example 0-65535 for an unsigned 16-bit integer.

For the Power Log Graph: Uses the range according to the properties of the
measuring hardware.

Custom

Use the text boxes to specify an explicit range.

193

Reference information on trace

194

Scale

Selects the scale type of the Y-axis:

e Linear

o Logarithmic.

Trace Start breakpoints dialog box

C-SPY® Debugging Guide
for MSP430

The Trace Start dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

New Breakpoint PZ|
9 Trace Start l

Trigger At:

| Ed,.

(] 8 | Cancel |

Use this dialog box to set a Trace Start breakpoint where you want to start collecting
trace data. If you want to collect trace data only for a specific range, you must also set a
Trace Stop breakpoint where you want to stop collecting data.

See also, Trace Stop breakpoints dialog box, page 195.

To set a Trace Start breakpoint:

In the editor or Disassembly window, right-click and choose Trace Start from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.
In the Breakpoints window, right-click and choose New Breakpoint>Trace Start.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

When the breakpoint is triggered, the trace data collection starts.

Trace __4

Requirements
The C-SPY simulator.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 142.

Trace Stop breakpoints dialog box

The Trace Stop dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

x
& Trace Stop |

Trigger At:

| Edit.. |

()8 I Cancel |

Use this dialog box to set a Trace Stop breakpoint where you want to stop collecting
trace data. If you want to collect trace data only for a specific range, you might also need
to set a Trace Start breakpoint where you want to start collecting data.

See also, Trace Start breakpoints dialog box, page 194.

To set a Trace Stop breakpoint:

I In the editor or Disassembly window, right-click and choose Trace Stop from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.
2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Stop.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection stops.

195

Reference information on trace

Requirements
The C-SPY simulator.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 142.

Trace Expressions window

The Trace Expressions window is available from the Trace window toolbar.

Trace Expressions B
+ 3

Expression | Format

i Default

race Expression:

Use this window to specify, for example, a specific variable (or an expression) for which
you want to collect trace data.

Requirements
The C-SPY simulator.

Toolbar
The toolbar buttons change the order between the expressions:

Arrow up
Moves the selected row up.

Arrow down
Moves the selected row down.

Display area
Use the display area to specify expressions for which you want to collect trace data:

Expression

Specify any expression that you want to collect data from. You can specify any
expression that can be evaluated, such as variables and registers.

C-SPY® Debugging Guide
196 for MSP430

Trace __4

Format

Shows which display format that is used for each expression. Note that you can
change display format via the context menu.

Each row in this area will appear as an extra column in the Trace window.

Find in Trace dialog box

Requirements

Text search

The Find in Trace dialog box is available by clicking the Find button on the Trace
window toolbar or by choosing Edit>Find and Replace>Find.

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

Find in Trace P§|

W' Text search
| =l
Cancel

[~ Match case
I Match whale word

™ only search in one colurnn

| I

™ Address range

Use this dialog box to specify the search criteria for advanced searches in the trace data.

The search results are displayed in the Find in Trace window—available by choosing the
View>Messages command, see Find in Trace window, page 198.

See also Searching in trace data, page 181.

The C-SPY simulator.

Specify the string you want to search for. To specify the search criteria, choose between:

Match Case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise int will also find INT and Int and so on.

197

Reference information on trace

198

Address Range

Find in Trace window

Requirements

Display area

C-SPY® Debugging Guide
for MSP430

Match whole word

Searches only for the string when it occurs as a separate word. Otherwise int
will also find print, sprintf and so on.

Only search in one column
Searches only in the column you selected from the drop-down list.

Specify the address range you want to display or search. The trace data within the
address range is displayed. If you also have specified a text string in the Text search
field, the text string is searched for within the address range.

The Find in Trace window is available from the View>Messages menu. Alternatively, it
is automatically displayed when you perform a search using the Find in Trace dialog

box or perform a search using the Find in Trace command available from the context

menu in the editor window.

Find In Trace B
Trace i

008led CHP R4, #10 2

Find In Trace

This window displays the result of searches in the trace data. Double-click an item in the
Find in Trace window to bring up the same item in the Trace window.

Before you can view any trace data, you must specify the search criteria in the Find in
Trace dialog box, see Find in Trace dialog box, page 197.

For more information, see Searching in trace data, page 181.

The C-SPY simulator.

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria.

Profiling

e Introduction to the profiler
e Using the profiler

e Reference information on the profiler

Introduction to the profiler

These topics are covered:

o Reasons for using the profiler
e Briefly about the profiler

o Requirements for using the profiler

REASONS FOR USING THE PROFILER

Function profiling can help you find the functions in your source code where the most
time is spent during execution. You should focus on those functions when optimizing
your code. A simple method of optimizing a function is to compile it using speed
optimization. Alternatively, you can move the data used by the function into more
efficient memory. For detailed information about efficient memory usage, see the /4R
C/C++ Compiler User Guide for MSP430.

Alternatively, you can use filtered profiling, which means that you can exclude, for
example, individual functions from being profiled. To profile only a specific part of your
code, you can select a time interval—using the Timeline window—for which C-SPY
produces profiling information.

Instruction profiling can help you fine-tune your code on a very detailed level, especially
for assembler source code. Instruction profiling can also help you to understand where
your compiled C/C++ source code spends most of its time, and perhaps give insight into
how to rewrite it for better performance.

BRIEFLY ABOUT THE PROFILER

Function profiling information is displayed in the Function Profiler window, that is,
timing information for the functions in an application. Profiling must be turned on
explicitly using a button on the window’s toolbar, and will stay enabled until it is turned
off.

199

Introduction to the profiler

200

C-SPY® Debugging Guide
for MSP430

Instruction profiling information is displayed in the Disassembly window, that is, the
number of times each instruction has been executed.

Profiling sources

The profiler can use different mechanisms, or sources, to collect profiling information.
Depending on the available trace source features, one or more of the sources can be used
for profiling:

o Trace (calls)

The full instruction trace is analyzed to determine all function calls and returns.
When the collected instruction sequence is incomplete or discontinuous, the
profiling information is less accurate.

o Trace (flat)

Each instruction in the full instruction trace or each PC Sample is assigned to a
corresponding function or code fragment, without regard to function calls or returns.
This is most useful when the application does not exhibit normal call/return
sequences, such as when you are using an RTOS, or when you are profiling code
which does not have full debug information.

Power sampling

Some debug probes support sampling of the power consumption of the development
board. Each sample is associated with a PC sample and represents the power
consumption (actually, the electrical current) for a small time interval preceding the time
of the sample. When the profiler is set to use Power Sampling, additional columns are
displayed in the Profiler window. Each power sample is associated with a function or
code fragment, just as with regular PC Sampling. Note that this does not imply that all
the energy corresponding to a sample can be attributed to that function or code fragment.
The time scales of power samples and instruction execution are vastly different; during
one power measurement, the CPU has typically executed many thousands of
instructions. Power Sampling is a statistics tool.

REQUIREMENTS FOR USING THE PROFILER

The C-SPY simulator supports the profiler; there are no specific requirements.

The function profiler is available in the hardware debugger system if your device and
debug probe support it. The instruction profiler is not available in the hardware debugger
system.

Profiling °

This table lists the C-SPY driver profiling support:

C-SPY driver Trace (calls) Trace (flat) Power
C-SPY simulator X X -
C-SPY FET Debugger driver - - X

Table 8: C-SPY driver profiling support

Using the profiler

These tasks are covered:

o Getting started using the profiler on function level
e Analyzing the profiling data

o Getting started using the profiler on instruction level

GETTING STARTED USING THE PROFILER ON FUNCTION
LEVEL

To display function profiling information in the Function Profiler window:

I Build your application using these options:

Category Setting
C/C++ Compiler Output>Generate debug information
Linker Output>Format>Debug information for C-SPY

Table 9: Project options for enabling the profiler

2 To set up the profiler for function profiling, choose Options>Debugger>FET
Debugger>Setup and select Enable ULP/LPMx.5 debug.

g 3 When you have built your application and started C-SPY, choose C-SPY
Driver>Function Profiler to open the Function Profiler window, and click the Enable
button to turn on the profiler. Alternatively, choose Enable from the context menu that
is available when you right-click in the Function Profiler window.

4 Start executing your application to collect the profiling information.

Profiling information is displayed in the Function Profiler window. To sort, click on the
relevant column header.

,_l 6 When you start a new sampling, you can click the Clear button—alternatively, use the
| context menu—to clear the data.

201

Using the profiler

202

C-SPY® Debugging Guide
for MSP430

ANALYZING THE PROFILING DATA
Here follow some examples of how to analyze the data.

The first figure shows the result of profiling using Source: Trace (calls). The profiler
follows the program flow and detects function entries and exits.
For the InitFib function, Flat Time 231 is the time spent inside the function itself.

For the InitFib function, Acc Time 487 is the time spent inside the function itself,
including all functions InitFib calls.

o For the InitFib/GetFib function, Acc Time 256 is the time spent inside GetFib (but
only when called from InitFib), including any functions GetFib calls.

o Further down in the data, you can find the GetFib function separately and see all of
its subfunctions (in this case none).

Function Profier .
WEEE | |

Function Calls Flat Time FlatTime (*%6) Acc. Time Acc Time (*
= rain 1 185 3.58 4358 94.39
; DoForegroundProcess 10 3704
= InitFib 1 487
PutFib 10 3174 58,78 3174 58,78
MextCaounter 10 100 2.17 100 2.17
= InitFib 1 @ 5.01 E 187 ; 10.55
e GetFib 16 (256
GetFib 26 418 9.01 118 9.01

DoForegroundProcess 10 3704 80.26
; MNextCounter Enable
oo PutFib 10
= <Ctherr o 25 98.85

Source: Trace (calls)

The second figure shows the result of profiling using Source: Trace (flat). In this case,
the profiler does not follow the program flow, instead the profiler only detects whether
the pC address is within the function scope. For incomplete trace data, the data might
contain minor errors.

Profiling °

For the InitFib function, Flat Time 231 is the time (number of hits) spent inside the
function itself.

»

FCSamp... PCSamples ..

<ldle> 0 0.00

I <Mo function> 5 0.21
DoForegroundProcess a0 3.85
GetFib 260 11.12
InitFik 141 65.03 =
MNextCounter [s] 2.57
PutFib 230 9.84
__crain, ?main 4 0.17
_ dhwrite Enable R
__exit
__iar_close_ttio Clear
_?ar_copy_.in.itS Filtering 3
__iar_data_init3
__iar_get_ttio Source: .
_!ar_lookup_tnoh Source: Trace (flat)
__iar_sh_stdout b‘ -

To secure valid data when using a debug probe, make sure to use the maximum trace
buffer size and set a breakpoint in your code to stop the execution before the buffer is
full.

GETTING STARTED USING THE PROFILER ON INSTRUCTION
LEVEL

To display instruction profiling information in the Disassembly window:

To set up the profiler for function profiling, choose Options>Debugger>FET
Debugger>Setup and select Enable ULP/LPMXx.5 debug.

When you have built your application and started C-SPY, choose View>Disassembly
to open the Disassembly window, and choose Instruction Profiling>Enable from the
context menu that is available when you right-click in the left-hand margin of the
Disassembly window.

Make sure that the Show command on the context menu is selected, to display the
profiling information.

Start executing your application to collect the profiling information.

When the execution stops, for instance because the program exit is reached or a
breakpoint is triggered, you can view instruction level profiling information in the
left-hand margin of the window.

203

Reference information on the profiler

204

toeclod
08005F92 BO82

02005F94 EDOS

FD1lw100us_1:

08005F96 9900
08005F98 1E49
08005F94 9100

'Dlyl00us 2.
08005F9C 9900
0800SF9E 2900
08005FAD DI1F9
while(Dly——}
?Dlyl00us

08005FA2 0001
08005FA4 1E483

for{wolatile int 1

SUB

£320 Dlvy = {Int32Wiarg:

SP. SP. #0=8

B ??D1lyl00us_0
= LOCP_DLY_10 i

0USy i di==)s

LDR R1. [SF]

SUBS El, R1. #0=1

STR R1. [5SF]
for{volatile int i = LOOP_DLY_100US; i; i——):

LDR R1. [SFP]

CHP E1l, #0=0

EHE ??D1lyl00us_1

HOVS R1. RO

SUBS RO, R1. #0=1

o

For each instruction, the number of times it has been executed is displayed.

Reference information on the profiler

Reference information about:

® Function Profiler window, page 204

See also:

o Disassembly window, page 65

Function Profiler window

The Function Profiler window is available from the C-SPY driver menu.

C-SPY® Debugging Guide
for MSP430

Function Profiler

E|

[© tl@|E]]

Function | calls | FlatTime | Flat Time (%) | Acc. Time | Acc. Time (%) |

main() 1 165 3.57 4356 54.18
FutFib{unsigned int) 10 3174 62.63 3174 68.63
MextCounter() 10 100 2.16 100 2.16

InitFib) 1 231 4.93 487 10.53
GetFih(int) 26 416 8.99 416 8.93

DoForegroundProcess() 10 270 5.84 3704 80.09

<Other> o 269 5.82 4572 98.4a5

This figure reflects the C-SPY simulator driver.

This window displays function profiling information.

Profiling °

When Trace(flat) is selected, a checkbox appears on each line in the left-side margin of
the window. Use these checkboxes to include or exclude lines from the profiling.
Excluded lines are dimmed but not removed.

Requirements
One of these alternatives:

o The C-SPY simulator

o The C-SPY FET Debugger driver and an MSP430 device with JSTATE register and
an eZFET or MSP-FET debug probe.

Note that if you are using the C-SPY FET Debugger driver, the profiling sources
Trace (flat) and Trace (calls) are not available.

Toolbar

The toolbar contains:

) Enable/Disable

Enables or disables the profiler.
ﬁl Clear

Clears all profiling data.
[Save

Opens a standard Save As dialog box where you can save the contents of the
window to a file, with tab-separated columns. Only non-expanded rows are
included in the list file.

Graphical view

Overlays the values in the percentage columns with a graphical bar.

Progress bar
Displays a backlog of profiling data that is still being processed. If the rate of
incoming data is higher than the rate of the profiler processing the data, a
backlog is accumulated. The progress bar indicates that the profiler is still
processing data, but also approximately how far the profiler has come in the
process. Note that because the profiler consumes data at a certain rate and the
target system supplies data at another rate, the amount of data remaining to be
processed can both increase and decrease. The progress bar can grow and shrink
accordingly.

205

Reference information on the profiler

206

Display area

C-SPY® Debugging Guide
for MSP430

The content in the display area depends on which source that is used for the profiling
information:

e For the Trace (calls) source, the display area contains one line for each function
compiled with debug information enabled. When some profiling information has
been collected, it is possible to expand rows of functions that have called other
functions. The child items for a given function list all the functions that have been
called by the parent function and the corresponding statistics.

e For the Trace (flat) source, the display area contains one line for each C function of
your application, but also lines for sections of code from the runtime library or from
other code without debug information, denoted only by the corresponding
assembler labels. Each executed pcC address from trace data is treated as a separate
sample and is associated with the corresponding line in the Profiling window. Each
line contains a count of those samples.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 200.

More specifically, the display area provides information in these columns:

Function (All sources)
The name of the profiled C function.

Calls (Trace (calls))
The number of times the function has been called.

Flat time (Trace (calls))
The time expressed in cycles spent inside the function.

Flat time (%) (Trace (calls))
Flat time expressed as a percentage of the total time.

Acc. time (Trace (calls))

The time expressed in cycles spent inside the function.

Acc. time (%) (Trace (calls))
Accumulated time expressed as a percentage of the total time.

PC Samples (Trace (flat))
The number of PC samples associated with the function.

PC Samples (%) (Trace (flat))

The number of PC samples associated with the function as a percentage of the
total number of samples.

Profiling °

Power Samples (Power Sampling)

The number of power samples associated with that function.

Energy (%) (Power Sampling)

The accumulated value of all measurements associated with that function,
expressed as a percentage of all measurements.

Avg Current [mA] (Power Sampling)

The average measured value for all samples associated with that function.

Min Current [mA] (Power Sampling)
The minimum measured value for all samples associated with that function.

Max Current [mA] (Power Sampling)
The maximum measured value for all samples associated with that function.

Context menu
This context menu is available:
| ¥ Enable
Clear

| ¥ Source: Trace (calls)

Source: Trace (flat)

Save to Log File...
The contents of this menu depend on the C-SPY driver you are using.
These commands are available:

Enable

Enables the profiler. The system will collect information also when the window
is closed.

Clear
Clears all profiling data.

Filtering
Selects which part of your code to profile. Choose between:

Check All—Excludes all lines from the profiling.
Uncheck All—Includes all lines in the profiling.
Load—Reads all excluded lines from a saved file.

Save—Saves all excluded lines to a file. Typically, this can be useful if you are
a group of engineers and want to share sets of exclusions.

207

Reference information on the profiler

These commands are only available when using Trace(flat).
Source*

Selects which source to be used for the profiling information. Choose between:

Trace (calls)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Trace (flat)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Power Sampling
Toggles power sampling information on or off.
Save to Log File

Saves all profiling data to a file.

* The available sources depend on the C-SPY driver you are using.

C-SPY® Debugging Guide
208 for MSP430

Code coverage

e Introduction to code coverage

e Reference information on code coverage.

Introduction to code coverage
These topics are covered:

o Reasons for using code coverage
e Briefly about code coverage

o Requirements and restrictions for using code coverage.

REASONS FOR USING CODE COVERAGE

The code coverage functionality is useful when you design your test procedure to verify
whether all parts of the code have been executed. It also helps you identity parts of your
code that are not reachable.

BRIEFLY ABOUT CODE COVERAGE

The Code Coverage window reports the status of the current code coverage analysis. For
every program, module, and function, the analysis shows the percentage of code that has
been executed since code coverage was turned on up to the point where the application
has stopped. In addition, all statements that have not been executed are listed. The
analysis will continue until turned off.

REQUIREMENTS AND RESTRICTIONS FOR USING CODE
COVERAGE

Code coverage is supported by the C-SPY Simulator and there are no specific
requirements or restrictions.

Reference information on code coverage
Reference information about:

o Code Coverage window, page 210.
See also Single stepping, page 58.

209

Reference information on code coverage

Code Coverage window

C-SPY® Debugging Guide

210 for MSP430

The Code Coverage window is available from the View menu.

[© sl[c]le & &

=% project] 91.18%
=@ Tutor 100.00%
¢ DoFaregroundProcess 100.00%
¢ NextCounter 100.00%
% main 100.00%
=% Utilities 86.96%
=@ GetFib 66.67%
< 5-13:54 addr((xDE)
4 InitFib 100.00%
=@ PutFib 84.62%
< 5-17:65 addr(IxEB)
< 5-11:66 addr(0xF0)

This window reports the status of the current code coverage analysis. For every program,
module, and function, the analysis shows the percentage of code that has been executed
since code coverage was turned on up to the point where the application has stopped. In
addition, all statements that have not been executed are listed. The analysis will continue
until turned off.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window must be refreshed because the displayed information is no
longer up to date. To update the information, use the Refresh command.

To get started using code coverage:

Before using the code coverage functionality you must build your application using
these options:

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Format>Debug information for C-SPY

Debugger Plugins>Code Coverage

Table 10: Project options for enabling code coverage

After you have built your application and started C-SPY, choose View>Code
Coverage to open the Code Coverage window.

Click the Activate button, alternatively choose Activate from the context menu, to
switch on code coverage.

Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button to view the code
coverage information.

Code coverage ___4

Requirements
The C-SPY simulator.

Display area

The code coverage information is displayed in a tree structure, showing the program,
module, function, and statement levels. The window displays only source code that was
compiled with debug information. Thus, startup code, exit code, and library code is not
displayed in the window. Furthermore, coverage information for statements in inlined
functions is not displayed. Only the statement containing the inlined function call is
marked as executed. The plus sign and minus sign icons allow you to expand and
collapse the structure.

These icons give you an overview of the current status on all levels:

Red diamond Signifies that 0% of the modules or functions has been
executed.

Green diamond Signifies that 100% of the modules or functions has been
executed.

Red and green diamond Signifies that some of the modules or functions have been
executed.

Yellow diamond Signifies a statement that has not been executed.

The percentage displayed at the end of every program, module, and function line shows
the amount of statements that has been covered so far, that is, the number of executed
statements divided with the total number of statements.

For statements that have not been executed (yellow diamond), the information displayed
is the column number range and the row number of the statement in the source window,
followed by the address of the step point:

<column_start>-<column_end>:row address.

A statement is considered to be executed when one of its instructions has been executed.
When a statement has been executed, it is removed from the window and the percentage
is increased correspondingly.

Double-clicking a statement or a function in the Code Coverage window displays that
statement or function as the current position in the source window, which becomes the
active window. Double-clicking a module on the program level expands or collapses the
tree structure.

211

Reference information on code coverage

212

Context menu

C-SPY® Debugging Guide
for MSP430

= e

© 2

This context menu is available:

v Activate
Clear
Refresh
Auko-refresh
Save As...

These commands are available:

Activate

Switches code coverage on and off during execution.

Clear
Clears the code coverage information. All step points are marked as not
executed.
Refresh
Updates the code coverage information and refreshes the window. All step
points that have been executed since the last refresh are removed from the tree.
Auto-refresh

Toggles the automatic reload of code coverage information on and off. When
turned on, the code coverage information is reloaded automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As

Saves the current code coverage result in a text file.

Save session

Saves your code coverage session data to a * . dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

Power debugging

e Introduction to power debugging
e Optimizing your source code for power consumption
e Debugging in the power domain

e Reference information on power debugging.

Introduction to power debugging

These topics are covered:

e Reasons for using power debugging
e Briefly about power debugging

o Requirements and restrictions for power debugging.

REASONS FOR USING POWER DEBUGGING

Long battery lifetime is a very important factor for many embedded systems in almost
any market segment: medical, consumer electronics, home automation, etc. The power
consumption in these systems does not only depend on the hardware design, but also on
how the hardware is used. The system software controls how it is used.

For examples of when power debugging can be useful, see Optimizing your source code
for power consumption, page 215.

BRIEFLY ABOUT POWER DEBUGGING

Power debugging is based on the ability to sample the power consumption—more
precisely, the power being consumed by the CPU and the peripheral units—and
correlate each sample with the application’s instruction sequence and hence with the
source code and various events in the program execution.

Traditionally, the main software design goal has been to use as little memory as possible.
However, by correlating your application’s power consumption with its source code you
can get insight into how the software affects the power consumption, and thus how it can
be minimized.

Power debugging in C-SPY supports the EnergyTraceTM Technology provided by Texas
Instruments.

213

Introduction to power debugging

214

C-SPY® Debugging Guide
for MSP430

Measuring power consumption

Debug probes with EnergyTraceTM Technology support measure the power supplied to
a target microcontroller. A software-controlled DC-DC converter generates the target
power supply. The time density of the DC-DC converter charge pulses equals the power
consumption of the target microcontroller. A built-in on-the-fly calibration circuit
defines the energy equivalent of a single DC-DC charge pulse.

For more information about the debug probes, see the MSP430 Hardware Tools User s
Guide on the Texas Instruments website.

Power debugging using C-SPY

C-SPY provides an interface for configuring your power debugging and a set of
windows for viewing the power values:

o The Power Setup window is where you can specify a threshold and an action to be
executed when the threshold is reached. This means that you can enable or disable
the power measurement or you can stop the application’s execution and determine
the cause of unexpected power values.

o The Power Log window displays all logged power values. This window can be used
for finding peaks in the power logging and because the values are correlated with
the executed code, you can double-click on a value in the Power Log window to get
the corresponding code. The precision depends on the frequency of the samples, but
there is a good chance that you find the source code sequence that caused the peak.

o The power graph in the Timeline window displays power values on a time scale.
This provides a convenient way of viewing the power consumption in relation to the
other information displayed in the window. The Timeline window is correlated to
both the Power Log window, the source code window, and the Disassembly window,
which means you are just a double-click away from the source code that
corresponds to the values you see on the timeline.

o The State Log window logs activity—state changes—for peripheral units and
clocks, as well as for CPU modes. The State Log Summary window displays a
summary of the logged activity. The State Log graphs display a graphical view of
the activity. The information is useful for tracing the activity on the target system.

o The Function Profiler window combines the function profiling with the power
logging to display the power consumption per function—power profiling. You will
get a list of values per function and also the average values together with max and
min values. Thus, you will find the regions in the application that you should focus
when optimizing for power consumption.

Power debugging ___4

REQUIREMENTS AND RESTRICTIONS FOR POWER
DEBUGGING

Power debugging in C-SPY support two capture modes, with different capabilities:

° EnergyTraceTM, which can output timestamps, voltage, current, and energy
information. This mode is available for all MSP430 devices with both MSP-FET
(black box) and eZ-FET.

° EnergyTrace++TM, which can output timestamps, state log information for
peripheral units, clocks, and CPU modes (64-bit JSTATE register content), voltage,
current, and energy information. This mode is available for all MSP430 devices
with the JSTATE register, currently the MSP430FR59xx device family, together
with both the MSP-FET (black box) and the eZ-FET debugger probe. The
respective device-specific .menu file includes an <energytrace>1</energytrace>
tag.

To use the features in C-SPY for power debugging, you also need:
o The C-SPY FET Debugger driver.

Note: The MSP-FET430UIF (gray box) and the eZ430 debug probes do not support
power debugging.

Optimizing your source code for power consumption

These topics are covered:

Waiting for device status

Software delays

DMA versus polled I/O

Low-power mode diagnostics

CPU frequency

Detecting mistakenly unattended peripherals
Peripheral units in an event-driven system

Finding conflicting hardware setups

Analog interference

This section gives some examples where power debugging can be useful and thus
hopefully help you identify source code constructions that can be optimized for low
power consumption.

215

Optimizing your source code for power consumption

WAITING FOR DEVICE STATUS

One common construction that could cause unnecessary power consumption is to use a
poll loop for waiting for a status change of, for example a peripheral device.
Constructions like this example execute without interruption until the status value
changes into the expected state.

while (USBD_GetState() < USBD_STATE_CONFIGURED) ;
while ((BASE_PMC->PMC_SR & MC_MCKRDY) != PMC_MCKRDY) ;

To minimize power consumption, rewrite polling of a device status change to use
interrupts if possible, or a timer interrupt so that the CPU can sleep between the polls.

SOFTWARE DELAYS
A software delay might be implemented as a for or while loop like for example:

i = 10000; /* A software delay */
do i--;
while (i != 0);

Such software delays will keep the CPU busy with executing instructions performing
nothing except to make the time go by. Time delays are much better implemented using
a hardware timer. The timer interrupt is set up and after that, the CPU goes down into a
low power mode until it is awakened by the interrupt.

DMA VERSUS POLLED l/O

DMA has traditionally been used for increasing transfer speed. For MCUs there are
plenty of DMA techniques to increase flexibility, speed, and to lower power
consumption. Sometimes, CPUs can even be put into sleep mode during the DMA
transfer. Power debugging lets you experiment and see directly in the debugger what
effects these DMA techniques will have on power consumption compared to a
traditional CPU-driven polled solution.

LOW-POWER MODE DIAGNOSTICS

Many embedded applications spend most of their time waiting for something to happen:
receiving data on a serial port, watching an I/O pin change state, or waiting for a time
delay to expire. If the processor is still running at full speed when it is idle, battery life
is consumed while very little is being accomplished. So in many applications, the
microcontroller is only active during a very small amount of the total time, and by
placing it in a low-power mode during the idle time, the battery life can be extended
considerably.

A good approach is to have a task-oriented design. In a task-oriented design, a task can
be defined with the lowest priority, and it will only execute when there is no other task
that needs to be executed. This idle task is the perfect place to implement power

C-SPY® Debugging Guide
216 for MSP430

Power debugging ___4

management. In practice, every time the idle task is activated, it sets the microcontroller
into a low-power mode. All MSP430 devices have a number of different low-power
modes, in which different parts of the microcontroller can be turned off when they are
not needed. The oscillator can for example either be turned off or switched to a lower
frequency. In addition, individual peripheral units, timers, and the CPU can be stopped.
The different low-power modes have different power consumption based on which
peripherals are left turned on. A power debugging tool can be very useful when
experimenting with different low-level modes.

You can use the Function profiler in C-SPY to compare power measurements for the task
or function that sets the system in a low-power mode when different low-power modes
are used. Both the mean value and the percentage of the total power consumption can be
useful in the comparison.

CPU FREQUENCY

Power consumption in a CMOS MCU is theoretically given by the formula:
P=f* U2 * k

where £ is the clock frequency, U is the supply voltage, and k is a constant.

Power debugging lets you verify the power consumption as a factor of the clock
frequency. A system that spends very little time in sleep mode at 10 MHz is expected to
spend 50% of the time in sleep mode when running at 20 MHz. You can use the power
data collected in C-SPY to verify the expected behavior, and if there is a non-linear
dependency on the clock frequency, make sure to choose the operating frequency that
gives the lowest power consumption.

DETECTING MISTAKENLY UNATTENDED PERIPHERALS

Peripheral units can consume much power even when they are not actively in use. If you
are designing for low power, it is important that you disable the peripheral units and not
just leave them unattended when they are not in use. But for different reasons, a
peripheral unit can be left with its power supply on; it can be a careful and correct design
decision, or it can be an inadequate design or just a mistake. If not the first case, then
more power than expected will be consumed by your application. This will be easily
revealed by the Power graph in the Timeline window. Double-clicking in the Timeline
window where the power consumption is unexpectedly high will take you to the
corresponding source code and disassembly code. In many cases, it is enough to disable
the peripheral unit when it is inactive, for example by turning off its clock which in most
cases will shut down its power consumption completely.

However, there are some cases where clock gating will not be enough. Analog
peripherals like converters or comparators can consume a substantial amount of power

217

Optimizing your source code for power consumption

even when the clock is turned off. The Timeline window will reveal that turning off the
clock was not enough and that you need to turn off the peripheral completely.

PERIPHERAL UNITS IN AN EVENT-DRIVEN SYSTEM

Consider a system where one task uses an analog comparator while executing, but the
task is suspended by a higher-priority task. Ideally, the comparator should be turned off
when the task is suspended and then turned on again once the task is resumed. This
would minimize the power being consumed during the execution of the high-priority
task.

This is a schematic diagram of the power consumption of an assumed event-driven
system where the system at the point of time t; is in an inactive mode and the current is
Iof

Power consumption

Time

v

% LR, 5} 5 4

Atty, the system is activated whereby the current rises to I; which is the system’s power
consumption in active mode when at least one peripheral device turned on, causing the
current to rise to I;. At t,, the execution becomes suspended by an interrupt which is
handled with high priority. Peripheral devices that were already active are not turned off,
although the task with higher priority is not using them. Instead, more peripheral devices
are activated by the new task, resulting in an increased current I, between t, and t; where
control is handed back to the task with lower priority.

The functionality of the system could be excellent and it can be optimized in terms of
speed and code size. But also in the power domain, more optimizations can be made.
The shadowed area represents the energy that could have been saved if the peripheral
devices that are not used between t, and t3 had been turned off, or if the priorities of the
two tasks had been changed.

C-SPY® Debugging Guide
218 for MSP430

Power debugging ___4

If you use the Timeline window, you can make a closer examination and identify that
unused peripheral devices were activated and consumed power for a longer period than
necessary. Naturally, you must consider whether it is worth it to spend extra clock cycles
to turn peripheral devices on and off in a situation like in the example.

FINDING CONFLICTING HARDWARE SETUPS

To avoid floating inputs, it is a common design practice to connect unused MCU I/O
pins to ground. If your source code by mistake configures one of the grounded I/O pins
as a logical 1 output, a high current might be drained on that pin. This high unexpected
current is easily observed by reading the current value from the Power Graph in the
Timeline window. It is also possible to find the corresponding erratic initialization code
by looking at the Power Graph at application startup.

A similar situation arises if an I/O pin is designed to be an input and is driven by an
external circuit, but your code incorrectly configures the input pin as output.

ANALOG INTERFERENCE

When mixing analog and digital circuits on the same board, the board layout and routing
can affect the analog noise levels. To ensure accurate sampling of low-level analog
signals, it is important to keep noise levels low. Obtaining a well-mixed signal design
requires careful hardware considerations. Your software design can also affect the
quality of the analog measurements.

Performing a lot of I/O activity at the same time as sampling analog signals causes many
digital lines to toggle state at the same time, which might introduce extra noise into the
AD converter.

Noise spike |

Lmin=-

Power debugging will help you investigate interference from digital and power supply
lines into the analog parts. Power spikes in the vicinity of AD conversions could be the
source of noise and should be investigated. All data presented in the Timeline window

219

Debugging in the power domain

220

is correlated to the executed code. Simply double-clicking on a suspicious power value
will bring up the corresponding C source code.

Debugging in the power domain

C-SPY® Debugging Guide
for MSP430

These tasks are covered:

e Displaying a power profile and analyzing the result

o Detecting unexpected power usage during application execution
o Measuring low power currents

o Changing the graph resolution.

See also:

o Timeline window, page 185

DISPLAYING A POWER PROFILE AND ANALYZING THE
RESULT

To view the power profile on a device with EnergyTrace++:

Before you start the debug session, choose Project>Options>Debugger>FET
Debugger>Setup>Enable ULP/LPMXx.5 debug.

Start the debugger.

Choose C-SPY driver>Power Log Setup. In the ID column, make sure to select the
alternatives for which you want to enable power logging: Current, Voltage, or
Energy.

Choose C-SPY driver>Timeline to open the Timeline window.

Right-click in the graph area and choose Enable from the context menu to enable the
power graph you want to view. Repeat this for each graph you want to view.

Choose C-SPY driver>Power Log to open the Power Log window.

Optionally, if you want to correlate power values to the status of peripheral units,
clocks, and CPU modes, right-click in the State Log graph area, and choose Enable
from the context menu.

Optionally, before you start executing your application you can configure the viewing
range of the Y-axis for the power graphs. See Viewing Range dialog box, page 193.

Click Go on the toolbar to start executing your application. In the Power Log window,
all power values are displayed. In the Timeline window, you will see a graphical
representation of the power values, and a graphical representation of the logged
activity—state changes—for peripheral units and clocks, as well as CPU modes if you

Power debugging ___4

enabled the State Log graph. For information about how to navigate on the graph, see
Timeline window, page 185.

Timeline

Increased voltage 1
level while

ADC is ON. s ADC
| | | | | | | nesded?
|

m

10 To analyze power consumption:

o Double-click on an interesting power value to highlight the corresponding source
code in the editor window and in the Disassembly window. The corresponding log
is highlighted in the Power Log window. For examples of when this can be useful,
see Optimizing your source code for power consumption, page 215.

e You can identify peripheral units to disable if they are not used. You can detect this
by analyzing the power graph in combination with the State Log Graph in the
Timeline window. See also Detecting mistakenly unattended peripherals, page 217.

To view the power profile on a device without EnergyTrace++:

I Start the debugger.

2 Choose C-SPY driver>Power Log Setup. In the ID column, make sure to select the
alternatives for which you want to enable power logging: Current, Voltage, or
Energy.

Choose C-SPY driver>Timeline to open the Timeline window.

4 Right-click in the graph area and choose Enable from the context menu to enable the
power graph you want to view. Repeat this for each graph you want to view.

5 Choose C-SPY driver>Power Log to open the Power Log window.

221

Debugging in the power domain

C-SPY® Debugging Guide
222 for MSP430

6 Click Go on the toolbar to start executing your application. In the Power Log window,

all power values are displayed. In the Timeline window, you will see a graphical
representation of the power values. For information about how to navigate on the
graph, see Timeline window, page 185.

Timeline

Increased voltage i
level while

ADC is ON. s ADC
| | | | | | nesded?
|

m

0.970s 0.975s 0.980s 0.985
< || +

DETECTING UNEXPECTED POWER USAGE DURING
APPLICATION EXECUTION

To detect unexpected power consumption on a device with
EnergyTrace++:

Choose C-SPY driver>Power Log Setup to open the Power Setup window.

In the Power Setup window, specify a threshold value and the appropriate action, for
example Log All and Halt CPU Above Threshold.

Choose C-SPY driver>Power Log to open the Power Log window. If you
continuously want to save the power values to a file, choose Choose Live Log File
from the context menu. In this case you also need to choose Enable Live Logging to.

Start the execution.

When the power consumption passes the threshold value, the execution will stop and
perform the action you specified.

If you saved your logged power values to a file, you can open that file in an external tool
for further analysis.

MEASURING LOW POWER CURRENTS

During the capture of the internal states or even when simply executing until a
breakpoint stops the execution, the target microcontroller is constantly accessed via
JTAG or Spy-Bi-Wire debug logic. These debug accesses consume energy that will be
included in the numbers displayed in the Power Log window and graphs. To measure
the power numbers of just the application, it is therefore recommended to use the

Power debugging ___4

Release JTAG on Go option, which means that the debug logic of the target
microcontroller is not accessed while measuring the power consumption.

To measure low power currents:

I Before you start the debug session, choose Project>Options>Debugger>FET
Debugger>Setup>Enable ULP/LPMXx.5 debug.

2 Start the debugger.
Choose C-SPY driver>Release JTAG on Go.

4 Choose C-SPY driver>Power Log Setup. In the ID column, select the alternatives for
which you want to enable power logging: Current, Voltage, or Energy.

5 To enable the graphs in the Timeline window, choose Emulator>Timeline to open the
Timeline window. Right-click in the graph area for each graph that you have enabled
power logging for and choose Enable from the context menu.

6 Start the execution.
Power logging is enabled and you can now see the graphs appear in the Timeline
window.

CHANGING THE GRAPH RESOLUTION

To change the resolution of a Power graph in the Timeline window:

I In the Timeline window, select the Power graph, right-click and choose Open Setup
Window to open the Power Log Setup window.

2 From the context menu in the Power Log Setup window, choose a suitable unit of
measurement.

3 In the Timeline window, select the Power graph, right-click and choose Viewing
Range from the context menu.

4 1In the Viewing Range dialog box, select Custom and specify range values in the
Lowest value and the Highest value text boxes. Click OK.

5 The graph is automatically updated accordingly.

Reference information on power debugging
Reference information about:

® Power Log Setup window, page 224
® Power Log window, page 226.

® Power graph in the Timeline window, page 229.

223

Reference information on power debugging

224

o State Log window, page 230.
o State Log Summary window, page 232.
e State Log graph in the Timeline window, page 234.

See also:

o Trace window, page 182

o Timeline window, page 185

e Viewing Range dialog box, page 193
°

Function Profiler window, page 204.

Power Log Setup window

Requirements

Display area

C-SPY® Debugging Guide
for MSP430

The Power Log Setup window is available from the C-SPY driver menu during a debug
session.

Power Log Setup @
D MName Threshold Unit Action
V| Current Current 0 uA Log All
v Voltage Vaoltage 0 ' Log All
v Energy Energy 2 mi's Log All

Use this window to configure the power measurement.

Note: To enable power logging, choose Enable from the context menu in the Power Log
window or from the context menu in the power graph in the Timeline window.

An eZFET or MSP-FET debug probe.

This area contains these columns:

ID
A unique string that identifies the measurement channel in the probe. Select the
check box to activate the channel. If the check box is deselected, logs will not
be generated for that channel.

Name

Specify a user-defined name.

Power debugging ___4

Threshold

Specity a threshold value in the selected unit. The action you specify will be
executed when the threshold value is reached.

Unit
Selects the unit for power display. Choose between: nA, uA, mA for Current,
uV, mV, V for Voltage, and uWs, mWs, Ws for Energy.

Action

Displays the selected action for the measurement channel. Choose between:
Log All, Log Above Threshold, Log Below Threshold, Log All and Halt
CPU Above Threshold, and Log All and Halt CPU Below Threshold.

Context menu

This context menu is available:

nA
uA
W mA

Log All
Log Above Threshold
Log Below Threshold
v Log All and Halt CPU Above Threshold
Log All and Halt CPU Below Threshold

These commands are available:

nA, uA, mA
Selects the unit for the power display. These alternatives are available for
channels that measure current: nA, uA, mA for Current, uV, mV, V for Voltage,
and uWs, mWs, Ws for Energy.

Log All

Logs all values.

Log Above Threshold
Logs all values above the threshold.

Log Below Threshold
Logs all values below the threshold.

Log All and Halt CPU Above Threshold
Logs all values. If a logged value exceeds the threshold, execution is stopped.

Log All and Halt CPU Below Threshold

Logs all values. If alogged value goes below the threshold, execution is stopped.

225

Reference information on power debugging

226

Power Log window

Requirements

Display area

C-SPY® Debugging Guide
for MSP430

The Power Log window is available from the C-SPY driver menu during a debug
session.

Power Log @
Time Program Counter Current [uA] Vaoltage [mY] Energy [mis] i
s 73478 us 0xz004444 457 .2 3622 E0.648
s 74406 us 0xz00443E 457 .2 3622 E0.665
s 75273 us 0x004454 457 .2 3621 E0.683
s 76140 us 0xz004464 457 .2 3620 E0.706
s 77007 us 0xz004548 457 .2 3620 E0.719 -

This window displays collected power values.

A row with only Time/Cycles and Program Counter displayed in grey denotes a logged
power value for a channel that was active during the actual collection of data but
currently is disabled in the Power Log Setup window.

Note: The number of logged power values is limited. When this limit is exceeded, the
entries at the beginning of the buffer are erased.

An eZFET or MSP-FET debug probe.

This area contains these columns:
Time
The time from the application reset until the event, based on time stamps.

This column is available when you have selected Show Time from the context
menu.

Program Counter
Displays one of these:

An address, which is the content of the pc, that is, the address of an instruction
close to where the power value was collected.

---, the target system failed to provide the debugger with any information.

overflowinred, the communication channel failed to transmit all data from the
target system.

Note that the Program Counter column is available only if your device
supports it.

Power debugging ___4

Name |unit]
The power measurement value expressed in the unit you specified in the Power
Setup window.

Context menu
This context menu is available:

| ¥ Enable
Clear

Save to Log File...

Choose Live Log File...
Enable Live Logging to ‘PowerLoglivelog’

Clear 'PowerLoglive.log
Show Time

| ¥ Show Cycles

Open Setup Window

These commands are available:

Enable
Enables the logging system, which means that power values are saved internally
within the IDE. The values are displayed in the Power Log window and in the
Power Graph in the Timeline window (if enabled). The system will log
information also when the window is closed.

Clear

Clears the power values saved internally within the IDE. The values will also be
cleared when you reset the debugger.

Save to Log File
Displays a standard file selection dialog box where you can choose the
destination file for the logged power values. This command then saves the
current content of the internal log buffer.

Choose Live Log File
Displays a standard file selection dialog box where you can choose a destination
file for the logged power values. The power values are continuously saved to that
file during execution. The content of the live log file is never automatically
cleared, the logged values are simply added at the end of the file.

Enable Live Logging to
Toggles live logging on or off. The logs are saved in the specified file.

Clear log file
Clears the content of the live log file.

227

Reference information on power debugging

Show Time
Displays the Time column in the Power Log window. This choice is also
reflected in the log files.
Show Cycles
Displays the Cycles column in the Power Log window. This choice is also
reflected in the log files. The contents are the same as the Time column.
Open Setup Window
Opens the Power Log Setup window.

The format of the log file

The log file has a tab-separated format. The entries in the log file are separated by TAB
and line feed. The logged power values are displayed in these columns:

Time/Cycles
The time from the application reset until the power value was logged.

Approx
An x in the column indicates that the power value has an approximative value
for time/cycle.

PC
The value of the program counter close to the point where the power value was
logged.

Name|unit|

The corresponding value from the Power Log window, where Name and unit are
according to your settings in the Power Log Setup window.

C-SPY® Debugging Guide
228 for MSP430

Power debugging ___4

Power graph in the Timeline window

The power graph in the Timeline window is available from the C-SPY driver menu
during a debug session.

Timeline @

-~
,Threepower . 0.965= x 0.9%70s 0.9%75s 0.980s i 0.985 .
graphs, Current, p—
Voltage and /
Energy Common tim e axis

The power graph displays a graphical view of power measurement samples.

Depending on the abilities in hardware, the debug probe, and the C-SPY driver you are
using, this window can display a Power Log graph that shows power measurement
samples generated by the debug probe or associated hardware in relation to a common
time axis.

For more information about the Timeline window, how to display a graph, and the other
supported graphs, see Timeline window, page 185.

See also Requirements and restrictions for power debugging, page 215.

Requirements
An eZFET or MSP-FET debug probe.

Display area
Where:
o The label area at the left end of the graph displays the name of the measurement
channel.

o The Voltage and the Current graphs show power measurement samples generated by
the debug probe or associated hardware. The Energy graph shows accumulated
energy since the last time the CPU was stopped.

o The graphs can be displayed as a thin line between consecutive logs, as a rectangle
for every log (optionally color-filled), or as columns.

o The resolution of the graphs can be changed.

229

Reference information on power debugging

230

State Log window

Requirements

Display area

C-SPY® Debugging Guide
for MSP430

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

The State Log window is available from the C-SPY driver menu.

State Log @
Time Source Status Frogram Co... Active i
359784 u= TBD On Oxd426
K 8 Oxd426
360891 u= ADC On 0x443E
361818 u=s ADC Off 0x4438 927 us
362685 u=s ADC On 0x444C
363551 u= ADC Off Ox4460 866 us
364419 us AM Off Ox4548 4635 . ..
364419 us LPMO On 0x4548 v

This window logs activity—state changes—for peripheral units and clocks, as well as
for CPU modes.

The information is useful for tracing the activity on the target system. When the State
Log window is open, it is updated continuously at runtime.

Note: The number of saved logs is limited. When this limit is exceeded, the entries at
the beginning of the buffer are erased.

For more information, see Displaying a power profile and analyzing the result, page
220.

See also, State Log graph in the Timeline window, page 234.

An MSP430 device with JSTATE register and an eZFET or MSP-FET debug probe.

This area contains these columns:
Time
The time for the state change, based on the .

If a time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

Source
The name of the peripheral unit or the device .

Power debugging ___4

Status

The status at the given time.

Program Counter*
The address of the program counter when the status changed, or shows idle if
the log was taken during CPU idle mode, or shows --- for an unknown pC
value.

Active
The active time calculated using the on and off time for the source. If it is written
in italics, it is based on at least one approximative time.

* You can double-click an address. If it is available in the source code, the editor window
displays the corresponding source code, for example for the interrupt handler (this does
not include library source code).

Context menu

This context menu is available:

v | Enable
Clear

Save to Log File...

v | Show Time
Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to log file
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF. An X in the Approx column indicates that the timestamp is an
approximation.

Show Time
Displays the Time column.

This menu command might not be available in the C-SPY driver you are using,
which means that the Time column is always displayed.

231

Reference information on power debugging

232

Show Cycles

Displays the Cycles column.

If the C-SPY driver you are using does not support the Cycles column, this
menu command is not available.

State Log Summary window

The State Log Summary window is available from the C-SPY driver menu.

State Log Summary @
Source Count First Time Total (Time) Total (%) Shortest Longest in Intersal Max Interval i
Db, 237 10024 us 492483 us 45.95 1170 us 7262 us 2437 us 26846 us
Abd 5 180431 us 18477 us 1.72 2840 uws 4635 us 179353 us 181201 us
MCLK. 5 180431 us 18477 us 1.72 2840 us 4635 us 179353 us 181201 us
TED 234 183271 us 578594 us 53.98 1170 us 10786... 2437 us 12114 us
TA1 186 364419 us 461314 us 43.04 1170 us 10786 .. 2437 us 12114 us |_
TAZ 139 544518 us 343769 us 32.07 1170 us 9306 us 2438 us 10574 us |°
TA3 48 724549 us 118454 us 11.05 1171 us 5803 us 2444 us 5936 us
WP 1 902043 us 927 us 0.09 927 us 927 us

This window displays a summary of logged activity—state changes—for peripheral
units and clocks, as well as for CPU modes.
Click a column to sort it according to the values. Click again to reverse the sort order.
At the bottom of the display area, the current time or cycles is displayed—the number
of cycles or the execution time since the start of execution.
For more information, see Displaying a power profile and analyzing the result, page
220.
See also, State Log graph in the Timeline window, page 234.

Requirements

Display area

C-SPY® Debugging Guide
for MSP430

An MSP430 device with JSTATE register and an eZFET or MSP-FET debug probe.

Each row in this area displays statistics about the specific measurement source based on
the log information in these columns:

Source
The name of the peripheral unit, clock, or CPU mode.

Count
The number of times the source was activated.

Power debugging ___4

First time
The first time the source was activated.
Total (Time)**
The accumulated time the source has been active.
Total (%)
The accumulated time in percent that the source has been active.
Shortest
The shortest time spent with this source active.
Longest
The longest time spent with this source active.

Min interval
The shortest time between two activations of this source.

Max interval
The longest time between two activations of this source.

** Calculated in the same way as for the Execution time/cycles in the State Log window.

Context menu

This context menu is available:

v | Enable
Clear

Save to Log File...

v | Show Time
Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to log file

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF. An X in the Approx column indicates that the timestamp is an
approximation.

233

Reference information on power debugging

Show Time
Displays the Time column.

This menu command might not be available in the C-SPY driver you are using,
which means that the Time column is always displayed.

Show Cycles
Displays the Cycles column.

If the C-SPY driver you are using does not support the Cycles column, this
menu command is not available.

State Log graph in the Timeline window

C-SPY® Debugging Guide
234 for MSP430

The State Log graph in the Timeline window is available from the C-SPY driver menu
during a debug session.

Timeline @

09655 / 0.970s 0D.975= [0,980= D.985

4 / |/ || b

1

Source names Commen tim e axis State On/Off

The State Log graph displays a graphical view of logged activity—state changes—for
peripheral units and clocks, as well as CPU modes in relation to a common time axis.

For more information about the Timeline window, how to display a graph, and the other
supported graphs, see Timeline window, page 185.

See also, Requirements and restrictions for power debugging, page 215.

Power debugging ___4

Requirements
An MSP430 device with JSTATE register and an eZFET or MSP-FET debug probe.

Display area
Where:
o The label area at the left end of the graph displays the name of the sources of the
status information.

e The graph itself shows the state of the peripheral units, clocks, and CPU modes
generated by the debug probe or associated hardware. The white figure indicates the
time spent in the state. This graph is a graphical representation of the information in
the State Log window, see State Log window, page 230.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

235

Reference information on power debugging

C-SPY® Debugging Guide
236 for MSP430

Part 3. Advanced
debugging

This part of the C-SPY® Debugging Guide for MSP430 includes these chapters:

e Interrupts

e The advanced cycle counter
e State storage

e The sequencer

e C-SPY macros

e The C-SPY command line utility—cspybat

.hmuhhhhi

237

AAARRIE

238

Interrupts

e Introduction to interrupts
e Using the interrupt system

e Reference information on interrupts

Introduction to interrupts

These topics are covered:

Briefly about interrupt logging

Briefly about the interrupt simulation system
Interrupt characteristics

Interrupt simulation states

C-SPY system macros for interrupt simulation

Target-adapting the interrupt simulation system
See also:
® Reference information on C-SPY system macros, page 293

® Breakpoints, page 113
o The IAR C/C++ Compiler User Guide for MSP430

BRIEFLY ABOUT INTERRUPT LOGGING

Interrupt logging provides you with comprehensive information about the interrupt
events. This might be useful for example, to help you locate which interrupts you can
fine-tune to become faster. You can log entrances and exits to and from interrupts. You
can also log internal interrupt status information, such as triggered, expired, etc. The
logs are displayed in the Interrupt Log window and a summary is available in the
Interrupt Log Summary window. The Interrupt Graph in the Timeline window provides
a graphical view of the interrupt events during the execution of your application
program.

Requirements for interrupt logging
Interrupt logging is supported by the C-SPY simulator.

See also Getting started using interrupt logging, page 246.

239

Introduction to interrupts

240

C-SPY® Debugging Guide
for MSP430

BRIEFLY ABOUT THE INTERRUPT SIMULATION SYSTEM

By simulating interrupts, you can test the logic of your interrupt service routines and

debug the interrupt handling in the target system long before any hardware is available.
If you use simulated interrupts in conjunction with C-SPY macros and breakpoints, you
can compose a complex simulation of, for instance, interrupt-driven peripheral devices.

The C-SPY Simulator includes an interrupt simulation system where you can simulate
the execution of interrupts during debugging. You can configure the interrupt simulation
system so that it resembles your hardware interrupt system.

The interrupt system has the following features:

Simulated interrupt support for the MSP430 microcontroller
Single-occasion or periodical interrupts based on the cycle counter
Predefined interrupts for various devices

Configuration of hold time, probability, and timing variation

State information for locating timing problems

Configuration of interrupts using a dialog box or a C-SPY system macro—that is,
one interactive and one automating interface. In addition, you can instantly force an
interrupt.

o A log window that continuously displays events for each defined interrupt.
o A status window that shows the current interrupt activities.
All interrupts you define using the Interrupt Setup dialog box are preserved between

debug sessions, unless you remove them. A forced interrupt, on the other hand, exists
only until it has been serviced and is not preserved between sessions.

The interrupt simulation system is activated by default, but if not required, you can turn
off the interrupt simulation system to speed up the simulation. To turn it off, use either
the Interrupt Setup dialog box or a system macro.

Interrupts °

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, a variance, and a probability.

H H H
Activation | |_‘ |_|—| | | |
signal } I | I I
F‘meI] | | | l |
cycles
B Ton ot wt it
A A+R A+2R A+3R

*If probability is less than 100%, some interrupts may be omitted.

A = Activation time
R = Repeat interval
H =Hold time

Y =Variance

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options
probability—the probability, in percent, that the interrupt will actually appear in a
period—and variance—a time variation range as a percentage of the repeat interval.
These options make it possible to randomize the interrupt simulation. You can also
specify a hold time which describes how long the interrupt remains pending until
removed if it has not been processed. If the hold time is set to infinite, the corresponding
pending bit will be set until the interrupt is acknowledged or removed.

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that you can use for locating
timing problems in your application. The Interrupt Status window displays the available
status information. For an interrupt, these states can be displayed: Idle, Pending,
Executing, or Suspended.

241

Introduction to interrupts

242

C-SPY® Debugging Guide
for MSP430

Normally, a repeatable interrupt has a specified repeat interval that is longer than the
execution time. In this case, the status information at different times looks like this:

Hold time
- >
| T

| | 1
Interrupt A B | C DI E F | G H
activation | I \ - = -
signal
& | | I

——— Iq

| .
Execution time for

interrupt handler

Time Status

A Idle

B Pending
D Executing

E Idle

F Pending

G, H Executing

Note: The interrupt activation signal—also known as the pending bit—is automatically
deactivated the moment the interrupt is acknowledged by the interrupt handler.

However, if the interrupt repeat interval is shorter than the execution time, and the
interrupt is reentrant (or non-maskable), the status information at different times looks
like this:

Hold time
-
T
| |
Interrupt Br C D Er F G
activation : : L
signal | L
' Execution time for ! on time
interrupt invocation (1) !Execunon'nme or
interrupt invocation (2)
Time Status
A Idle
B Pending

C,DE Executing
FG 1st interrupt: Suspended
2nd interrupt: Executing

An execution time that is longer than the repeat interval might indicate that you should
rewrite your interrupt handler and make it faster, or that you should specify a longer
repeat interval for the interrupt simulation system.

C-SPY SYSTEM MACROS FOR INTERRUPT SIMULATION

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. If you write a macro function containing
definitions for the simulated interrupts, you can execute the functions automatically

Interrupts °

when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides these predefined system macros related to interrupts:
__enableInterrupts

__disablelInterrupts

__orderInterrupt

__cancellInterrupt

__cancelAllInterrupts

__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupts dialog box.

For more information about each macro, see Reference information on C-SPY system
macros, page 293.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using.

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To simulate device-specific interrupts, the interrupt system must have detailed
information about each available interrupt. This information is provided in the device
description files.

For information about device description files, see Selecting a device description file,
page 42.

Using the interrupt system

These tasks are covered:

o Simulating a simple interrupt

o Simulating an interrupt in a multi-task system

243

Using the interrupt system

244

C-SPY® Debugging Guide
for MSP430

o Getting started using interrupt logging.
See also:

o Using C-SPY macros, page 281 for details about how to use a setup file to define
simulated interrupts at C-SPY startup

o The tutorial Simulating an interrupt in the Information Center.

SIMULATING A SIMPLE INTERRUPT

This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.

To simulate and debug an interrupt:

Assume this simple application which contains an interrupt service routine for the
BasicTimer, which increments a tick variable. The main function sets the necessary
status registers. The application exits when 100 interrupts have been generated.

#include "io0430x41x.h"
#include <intrinsics.h>

volatile int ticks = 0;
void main (void)
{

/* Timer setup code */

WDTCTL = WDTPW + WDTHOLD; /* Stop WDT */

IE2 |= BTIE; /* Enable BT interrupt */
BTCTL = BTSSEL+BTIP2+BTIP1+BTIPO;

__enable_interrupt () ; /* Enable interrupts */
while (ticks < 100); /* Endless loop */

printf ("Done\n") ;

/* Timer interrupt service routine */
#pragma vector = BASICTIMER_VECTOR
__interrupt void basic_timer (void)

{

ticks += 1;

}

Add your interrupt service routine to your application source code and add the file to
your project.

Choose Project>Options>Debugger>Setup and select a device description file. The
device description file contains information about the interrupt that C-SPY needs to be
able to simulate it. Use the Use device description file browse button to locate the ddf
file.

Interrupts °

Build your project and start the simulator.

Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. For the timer example, verify these settings:

Option Settings

Interrupt BASICTIMER_VECTOR
First activation 4000

Repeat interval 2000

Hold time 10

Probability (%) 100

Variance (%) 0

Table 11: Timer interrupt settings
Click OK.

Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

o Generate an interrupt when the cycle counter has passed 4000

o Continuously repeat the interrupt after approximately 2000 cycles.

To watch the interrupt in action, choose Simulator>Interrupt Log to open the
Interrupt Log window.

From the context menu, available in the Interrupt Log window, choose Enable to
enable the logging. If you restart program execution, status information about
entrances and exits to and from interrupts will now appear in the Interrupt Log window.

For information about how to get a graphical representation of the interrupts correlated
with a time axis, see Timeline window, page 185.

SIMULATING AN INTERRUPT IN A MULTI-TASK SYSTEM

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If too
many interrupts are executing simultaneously, a warning might be issued.

To simulate a normal interrupt exit:

Set a code breakpoint on the instruction that returns from the interrupt function.

245

Reference information on interrupts

246

Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.
GETTING STARTED USING INTERRUPT LOGGING

Choose C-SPY driver>Interrupt Log to open the Interrupt Log window. Optionally,
you can also choose:

o C-SPY driver>Interrupt Log Summary to open the Interrupt Log Summary
window

o C-SPY driver>Timeline to open the Timeline window and view the Interrupt graph.

From the context menu in the Interrupt Log window, choose Enable to enable the
logging.
Start executing your application program to collect the log information.

To view the interrupt log information, look in any of the Interrupt Log, Interrupt Log
Summary, or the Interrupt graph in the Timeline window.

If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

To disable interrupt logging, from the context menu in the Interrupt Log window,
toggle Enable off.

Reference information on interrupts

C-SPY® Debugging Guide
for MSP430

Reference information about:

Interrupt Setup dialog box, page 247
Edit Interrupt dialog box, page 248
Forced Interrupt window, page 250
Interrupt Status window, page 251
Interrupt Log window, page 253

Interrupt Log Summary window, page 255.

Interrupts °

Interrupt Setup dialog box

The Interrupt Setup dialog box is available by choosing Simulator>Interrupt Setup.

Interrupt Setup

Enable interrupt simulation

Intermupt [} Type Timing [cycles] 0K
MM 2 Fepeat 0+ n*2000

Edit...

Delete

% 4

This dialog box lists all defined interrupts. Use this dialog box to enable or disable the
interrupt simulation system, as well as to enable or disable individual interrupts.

Requirements
The C-SPY simulator.

Enable interrupt simulation

Enables or disables interrupt simulation. If the interrupt simulation is disabled, the
definitions remain but no interrupts are generated. Note that you can also enable and
disable installed interrupts individually by using the check box to the left of the interrupt
name in the list of installed interrupts.

Display area
This area contains these columns:

Interrupt

Lists all interrupts. Use the checkbox to enable or disable the interrupt.

ID
A unique interrupt identifier.

Type
Shows the type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt Window.

Single, a single-occasion interrupt.

247

Reference information on interrupts

248

Buttons

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro)
is added, for example: Repeat (macro).

Timing
The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

These buttons are available:
New

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 248.
Edit

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 248.
Delete

Removes the selected interrupt.

Delete All
Removes all interrupts.

Edit Interrupt dialog box

C-SPY® Debugging Guide
for MSP430

The Edit Interrupt dialog box is available from the Interrupt Setup dialog box.

Edit Interrupt g|
Interrupt:
UBRT v

Drescription:

1 0x40 UART.INTEN UART INTPEND

First activatior:

4000 Hold tirne
(&) Infinite
Fiepeat interval:
2000 o
Wariance [%]: Probability [%]:
a v 100 .

Use this dialog box to interactively fine-tune the interrupt parameters. You can add the
parameters and quickly test that the interrupt is generated according to your needs.

Interrupts °

Note: You can only edit or remove non-forced interrupts.

Requirements
The C-SPY simulator.

Interrupt

Selects the interrupt that you want to edit. The drop-down list contains all available
interrupts. Your selection will automatically update the Description box. The list
ispopulated with entries from the device description file that you have selected.

Description

A description of the selected interrupt, if available. The description is retrieved from the
selected device description file and consists of a string describing the vector address, the
default priority, enable bit, and pending bit, separated by space characters. For interrupts
specified using the system macro __orderInterrupt, the Description box is empty.

First activation

Specify the value of the cycle counter after which the specified type of interrupt will be
generated.

Repeat interval

Specify the periodicity of the interrupt in cycles.

Variance %

Selects a timing variation range, as a percentage of the repeat interval, in which the
interrupt might occur for a period. For example, if the repeat interval is 100 and the
variance 5%, the interrupt might occur anywhere between T=95 and T=105, to simulate
a variation in the timing.

Hold time

Specify how long, in cycles, the interrupt remains pending until removed if it has not
been processed. If you select Infinite, the corresponding pending bit will be set until the
interrupt is acknowledged or removed.

Probability %

Selects the probability, in percent, that the interrupt will actually occur within the
specified period.

249

Reference information on interrupts

250

Forced Interrupt window

Requirements

Display area

Context menu

C-SPY® Debugging Guide
for MSP430

The Forced Interrupt window is available from the C-SPY driver menu.

Forced Interrupt =]
Interrupt Description it
PORT 0x0C 2 P2IEFT1 P2IFG.F1 £
PORTZ 0x10 2 P2IEF2 P2IFG.PZ

Use this window to force an interrupt instantly. This is useful when you want to check
your interrupt logic and interrupt routines. Just start typing an interrupt name and focus
shifts to the first line found with that name.

The hold time for a forced interrupt is infinite, and the interrupt exists until it has been
serviced or until a reset of the debug session.

To sort the window contents, click on either the Interrupt or the Description
column header. A second click on the same column header reverses the sort order.

To force an interrupt:
Enable the interrupt simulation system, see Interrupt Setup dialog box, page 247.

Double-click the interrupt in the Forced Interrupt window, or activate by using the
Force command available on the context menu.

The C-SPY simulator.

This area lists all available interrupts and their definitions. The description field is
editable and the information is retrieved from the selected device description file. See
this file for a detailed description.

This context menu is available:

Force

This command is available:

Force
Triggers the interrupt you selected in the display area.

Interrupts °

Interrupt Status window

The Interrupt Status window is available from the C-SPY driver menu.

Interrupt Status @
Interrupt Id | Type Status Mext Time Timing [eycles]

MNRAI 2 Forced Executing — —

IRQ0 1 Repeat(macro) Suspended — —

[R1E]] 0 Repeat Idle 4345 2000 + n*2345

IRQ0 1 Repeat(macro) Idle 5020 3010 + n*2010

This window shows the status of all the currently active interrupts, in other words
interrupts that are either executing or waiting to be executed.

Requirements

The C-SPY simulator.

Display area
This area contains these columns:

Interrupt

Lists all interrupts.

ID
A unique interrupt identifier.

Type
The type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt window.
Single, a single-occasion interrupt.
Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro)
is added, for example: Repeat (macro).

Status
The state of the interrupt:

Idle, the interrupt activation signal is low (deactivated).

Pending, the interrupt activation signal is active, but the interrupt has not been
yet acknowledged by the interrupt handler.

251

Reference information on interrupts

252

C-SPY® Debugging Guide
for MSP430

Executing, the interrupt is currently being serviced, that is the interrupt handler
function is executing.

Suspended, the interrupt is currently suspended due to execution of an interrupt
with a higher priority.

(deleted) is added to Executing and Suspended if you have deleted a currently
active interrupt. (deleted) is removed when the interrupt has finished executing.

Next Time

The next time an idle interrupt is triggered. Once a repeatable interrupt stats
executing, a copy of the interrupt will appear with the state Idle and the next time
set. For interrupts that do not have a next time—that is pending, executing, or
suspended—the column will show --.

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

Interrupts °

Interrupt Log window
The Interrupt Log window is available from the C-SPY driver menu.

Interrupt Leg @
Time Interrupt Status Program Counter Execution Time *
189.32 us IRQTO Triggered Bx13E8 £
111.26 us IRQTO Enter Bx13F@
135.78 us IRQT1 Enter Bx1126
148.72 us IRQT1 Leave Bx1378 12.94 us
189.34 us Overflow
2087.30 us IRQTO Leave Bx1126 96.84 us
230.80 us IRQTO Triggered 9x1118
231.34 us IRQTO Enter 0x1126
240.26, us IRQTO Leave 0x1122 . 8.92 us
300.00 \us IRQT1 Enter _
371.12 i'x_ls IRQT1 Leave \ 8x1120 171.12 us -
Red indicates overflows Light-colored rows Darker rews
and italic indicates indicate entrances indicate exits
approximate values tointerrupts from interrupts

This window logs entrances to and exits from interrupts. The C-SPY simulator also logs
internal state changes.

The information is useful for debugging the interrupt handling in the target system.
When the Interrupt Log window is open, it is updated continuously at runtime.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
entries in the beginning of the buffer are erased.

For more information, see Getting started using interrupt logging, page 246.
For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window, page 185.
Display area
This area contains these columns:
Time
The point in time, measured in seconds, when the event occurred.

This column is available when you have selected Show Time from the context
menu.

Cycles
The number of cycles from the start of the execution until the event.

253

Reference information on interrupts

This column is available when you have selected Show Cycles from the context
menu.

Interrupt
The interrupt as defined in the device description file.

Status

Shows the event status of the interrupt:
Triggered, the interrupt has passed its activation time.

Forced, the same as Triggered, but the interrupt was forced from the Forced
Interrupt window.

Enter, the interrupt is currently executing.
Leave, the interrupt has been executed.

Expired, the interrupt hold time has expired without the interrupt being
executed.

Rejected, the interrupt has been rejected because the necessary interrupt
registers were not set up to accept the interrupt.

Program Counter
The value of the program counter when the event occurred.

Execution Time/Cycles
The time spent in the interrupt, calculated using the Enter and Leave
timestamps. This includes time spent in any subroutines or other interrupts that
occurred in the specific interrupt.

Context menu
This context menu is available in the Data Log window, the Data Log Summary
window, the Interrupt Log window, and in the Interrupt Log Summary window:

v | Enable
Clear

Save to Log File...

v | Show Time
Show Cycles

Note: The commands are the same in each window, but they only operate on the specific
window.

C-SPY® Debugging Guide
254 for MSP430

Interrupts °

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to log file

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF. An X in the Approx column indicates that the timestamp is an
approximation.

Show Time
Displays the Time column in the Data Log window and in the Interrupt Log
window, respectively.

This menu command might not be available in the C-SPY driver you are using,
which means that the Time column is by default displayed in the Data Log
window.

Show Cycles

Displays the Cycles column in the Data Log window and in the Interrupt Log
window, respectively.

This menu command might not be available in the C-SPY driver you are using,
which means that the Cycles column is not supported.

Interrupt Log Summary window
The Interrupt Log Summary window is available from the C-SPY driver menu.

Interrupt Log Summary @
Interrupt Count First Time Total (Time) Total (%) Fastest Slowest in Intersal Max Interval
ADC |3 25 BElus 95 400us 17 .61 16.320us 30.120us 192 640us 1284 . 100us
RTC 4 41 700us EE . 200us 22 BB 13 . 800us 13.800us 27 .060us 2687 420us

Approximative time count. 1
COwerflow count. 1
Currenttime: 3350.080us us

This window displays a summary of logs of entrances to and exits from interrupts.

255

Reference information on interrupts

For more information, see Getting started using interrupt logging, page 246.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window, page 185.

Requirements
The C-SPY simulator.

Display area

Each row in this area displays statistics about the specific interrupt based on the log
information in these columns:

Interrupt
The type of interrupt that occurred.

At the bottom of the column, Overflow count and approximative time count is
always zero.

Count

The number of times the interrupt occurred.

First time

The first time the interrupt was executed.

Total (Time)**
The accumulated time spent in the interrupt.

Total (%)

The time in percent of the current time.

Fastest**

The fastest execution of a single interrupt of this type.

Slowest**
The slowest execution of a single interrupt of this type.
Min interval

The shortest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

Max interval
The longest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

C-SPY® Debugging Guide
256 for MSP430

Interrupts °

** Calculated in the same way as for the Execution time/cycles in the Interrupt Log
window.

Context menu
This context menu is available in the Data Log window, the Data Log Summary
window, the Interrupt Log window, and in the Interrupt Log Summary window:

v | Enable
Clear

Save to Log File...

v | Show Time
Show Cycles

Note: The commands are the same in each window, but they only operate on the specific
window.

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to log file

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF. An X in the Approx column indicates that the timestamp is an
approximation.

Show Time
Displays the Time column in the Data Log window and in the Interrupt Log

window, respectively.

This menu command might not be available in the C-SPY driver you are using,
which means that the Time column is by default displayed in the Data Log
window.

Show Cycles
Displays the Cycles column in the Data Log window and in the Interrupt Log
window, respectively.

This menu command might not be available in the C-SPY driver you are using,
which means that the Cycles column is not supported.

257

Reference information on interrupts

C-SPY® Debugging Guide
258 for MSP430

The advanced cycle
counter

e Introduction to the advanced cycle counter
e Using the cycle counter applications

e Reference information on the advanced cycle counter.

Introduction to the advanced cycle counter

This section introduces the advanced cycle counter.
These topics are covered:

o Reasons for using the advanced cycle counter
e Briefly about the advanced cycle counter

o Requirements for using the advanced cycle counter.

For related information, see Register window, page 166.

REASONS FOR USING THE ADVANCED CYCLE COUNTER

The advanced cycle counter for MSP430 devices can help you, for example, to measure
the DMA load, to profile a part of your application, or to measure how long some tasks
take.

BRIEFLY ABOUT THE ADVANCED CYCLE COUNTER

The advanced cycle counter provides one or two 40-bit counters to count the number of
cycles used by the CPU to execute certain tasks. On some devices, the cycle counter
operation can be controlled using triggers. This allows, for example, conditional
profiling, such as profiling a specific section of code.

The Advanced Cycle Counter Control window contains preconfigured applications, as
well as the opportunity to customize your own use of the cycle counter.
REQUIREMENTS FOR USING THE ADVANCED CYCLE
COUNTER

The advanced cycle counter is only available if you are using the C-SPY FET Debugger
driver and an MSP430 device that supports the Enhanced Emulation Module at the

259

Using the cycle counter applications

260

required level. Some devices have one cycle counter and some have two. If your device
has one cycle counter, it is referred to as Cycle counter 0. If your device has two cycle
counters, they are referred to as Cycle counter 0 and Cycle counter 1.

Using the cycle counter applications

C-SPY® Debugging Guide
for MSP430

This section gives you descriptions of the Cycle counter 1 applications available in the
Advanced Cycle Counter Control window; that is, step-by-step descriptions of how to
use the extra cycle counter.

More specifically, you will get information about:
Counting all CPU cycles
Measuring the DMA load versus the CPU load

Profiling a specific part of your application

Measuring the Trigger hits

Measuring the number of CPU cycles for a task.

COUNTING ALL CPU CYCLES

The Cycle counter application in the Advanced Cycle Counter Control window makes
Cycle counter 1 behave like an ordinary cycle counter, counting all CPU cycles.

To count all CPU cycles:

Choose Emulator>Advanced Cycle Counter to open the Advanced Cycle Counter
Control window.

Select the Cycle counter option.

Click the Reset Counter 1 button to reset Cycle counter 1.

Execute your program and then stop the execution.

Cycle counter 1 in the Cycle Counter Values area now shows the number of CPU
cycles that were executed.

MEASURING THE DMA LOAD VERSUS THE CPU LOAD

The DMA load vs. CPU load application in the Advanced Cycle Counter Control
window measures the DMA load versus the CPU load by comparing the number of
DMA bus cycles with the total number of bus cycles.

To measure the DMA load versus the CPU load:

Choose Emulator>Advanced Cycle Counter to open the Advanced Cycle Counter
Control window.

The advanced cycle counter °

2 Select the DMA load vs. CPU load option.
3 Click the Reset Counter 1 button to reset Cycle counter 1.
4 Execute your program and then stop the execution.

In the Cycle Counter Values area, Cycle counter 1 now shows the number of DMA bus
cycles, which can be compared with the number of CPU cycles shown by cycle counter
0.

PROFILING A SPECIFIC PART OF YOUR APPLICATION

The Profiling application in the Advanced Cycle Counter Control window lets you
profile a specific part of your program. Two reaction triggers or breakpoints define the
start and stop points for the cycle counter. Cycle counter 1 starts to count cycles at the
first trigger point and stops counting cycles at the second trigger.

Note: You cannot define which trigger point should be used as the start point or stop
point; the first of the two that is reached will start the cycle counter. The execution does
not stop at any of the triggers. You can compare the amount of time spent in a specific
function with the result for cycle counter O, which counts all cycles for the entire
application.

To profile a section of your application:

I Set up an advanced trigger at the start point of the code section that you want to
measure. For information about setting advanced trigger breakpoints, see Advanced
trigger breakpoints, page 115.

2 Setup a second advanced trigger at the stop point of the code section that you want to
measure.

3 Choose Emulator>Advanced Cycle Counter to open the Advanced Cycle Counter
Control window.

Select the Profiling option.
Select the start trigger point from the drop-down list Reaction trigger 1.
Select the stop trigger point from the drop-down list Reaction trigger 2.

Click the Reset Counter 1 button to reset Cycle counter 1.

0 N O 1 A

Execute your program and then stop the execution.

In the Cycle Counter Values area, Cycle counter 1 shows the number of CPU cycles
spent in the selected code section or function. Cycle counter 0 shows all counted CPU
cycles.

261

Using the cycle counter applications

262

C-SPY® Debugging Guide
for MSP430

N U1 A W

N O 1 b

MEASURING THE TRIGGER HITS

The Trigger hits application in the Advanced Cycle Counter Control window measures
the number of times a certain point in your program has been reached. Cycle counter 1
counts the number of times a trigger point has been triggered.

To measure how many times a point in your application is reached:

Set up an advanced trigger at the trigger point that you want to measure. For
information about setting advanced trigger breakpoints, see Advanced Trigger
breakpoints dialog box, page 140.

Choose Emulator>Advanced Cycle Counter to open the Advanced Cycle Counter
Control window.

Select the Trigger hits option.

Select the trigger point from the drop-down list Reaction trigger 1.

Click the Reset Counter 1 button to reset Cycle counter 1.

Execute your program and then stop the execution.

In the Cycle Counter Values area, Cycle counter 1 now shows the number of times the
trigger point has been triggered.

MEASURING THE NUMBER OF CPU CYCLES FOR A TASK

The Trip counter application in the Advanced Cycle Counter Control window
measures the number of CPU cycles required to execute a certain task or function. Cycle
counter 1 starts to count cycles at the start trigger and stops counting cycles at the stop
trigger. The execution stops when the stop trigger is reached.

To measure the number of cycles required to execute a task or function:

Set up an advanced trigger at the start point of the code section that you want to
measure. For information about setting advanced trigger breakpoints, see the C-SPY®
Debugging Guide for MSP430.

Set up a second advanced trigger at the stop point of the code section that you want to
measure.

Choose Emulator>Advanced Cycle Counter to open the Advanced Cycle Counter
Control window.

Select the Trip counter option.
Select the start trigger point from the drop-down list Reaction trigger 1.
Select the stop trigger point from the drop-down list Reaction trigger 2.

Click the Reset Counter 1 button to reset Cycle counter 1.

The advanced cycle counter °

8 Execute your program. The execution stops when the stop trigger is reached.

In the Cycle Counter Values area, Cycle counter 1 now shows the number of CPU
cycles required to execute the task or function.

Reference information on the advanced cycle counter

This section gives reference information about the Advanced Cycle Counter Control
window.

Advanced Cycle Counter Control window

The Advanced Cycle Counter Control window is available from the Emulator menu
when the debugger is running.

Cycle Counter 1
Applications Mode Start Stop Clear
@ Cycle counter Reaction Fieaction Fieaction Fieaction
DM4 load ve. CPU laad Fetch @ CPU starts @ CPU stops @ Mo event
Profiling Bus incl. Dibda, Act a5 counter 0 Act a5 counter 0 Act a5 counter 0
Trigger hitz
Trip counter 2 O ezl B Feaction tigger 1 Feaction trigger 2
Dby

Custom

Reset Counter 1

Use this window to set the behavior of Cycle counter 0 and Cycle counter 1, the extra
cycle counter for some MSP430 devices.

Requirements
The C-SPY FET Debugger driver.

Applications

The Advanced Cycle Counter Control window contains preconfigured applications for
Cycle counter 1, as well as the opportunity to customize your own use of the cycle
counter. Use the cycle counter Applications to configure for what purpose to use the
cycle counter. Choose between:

Cycle counter

Makes Cycle counter 1 count all CPU cycles; see Counting all CPU cycles, page
260.

263

Reference information on the advanced cycle counter

DMA load vs. CPU load
Compares the number of DMA bus cycles with the total number of bus cycles;
see Measuring the DMA load versus the CPU load, page 260.
Profiling
Profiles a specific part of your program; see Profiling a specific part of your
application, page 261.
Trigger hits
Measures the number of times a certain point in your program has been reached;
see Measuring the Trigger hits, page 262.
Trip counter
Measures the number of CPU cycles required to execute a certain task or
function; see Measuring the number of CPU cycles for a task, page 262.
Custom
Make a custom application using the options in the Cycle Counter 1 area.

Cycle counter values

Cycle counter 0

The value of cycle counter 0. Cycle counter O is the same cycle counter as the
one displayed in the Register window.

Cycle counter 1

The value of Cycle counter 1. Cycle counter 1 is controlled by the settings in the
Advanced Cycle Counter Control window.

Mode

Reaction

Increments the counter on reactions. This option is only available for Cycle
counter 1.

Fetch
Increments the counter on all instruction fetch cycles.

Bus incl. DMA
Increments the counter on all bus cycles (including DMA cycles).
CPU excl. DMA

Increments the counter on all CPU bus cycles (excluding DMA cycles).

DMA
Increments the counter on all DMA bus cycles.

C-SPY® Debugging Guide
264 for MSP430

The advanced cycle counter °

Start
Reaction

Uses the cycle counter reaction to start the cycle counter. This option is only
available for Cycle counter 1.

CPU starts
Starts counting cycles when the CPU starts to execute.

Act as counter 0/1

Starts counting when the other counter starts. This option is only available for
devices with two cycle counters.

Stop
Reaction

Uses the cycle counter reaction to stop the cycle counter. This option is only
available for Cycle counter 1.

CPU stops
Stops counting when the CPU stops the execution.

Act as counter 0/1

Stops counting when the other counter stops. This option is only available for
devices with two cycle counters.

Clear
Reaction

Clears the cycle counter on the cycle count reaction. This option is only
available for Cycle counter 1.

No event
Does not clear the counter.

Act as counter 0/1

Clears the cycle counter when the other automatically resets.

Combinations of start, stop, and clear reactions

Start Stop Clear Description

Reaction Reaction The cycle counter reaction starts the cycle counter and
clears it at start.

Table 12: Cycle Counter 1, combinations of start, stop, and clear reactions

265

Reference information on the advanced cycle counter

Start Stop Clear

Description

Reaction Reaction

Reaction Reaction

Reaction Reaction Reaction

The cycle counter reaction stops and clears the cycle
counter.

If the cycle counter is stopped, the cycle counter
reaction starts the counter. If the counter is running, the
cycle counter reaction stops the counter.

If the cycle counter is stopped, the cycle counter
reaction starts the counter and clears it at start. If the
counter is running, the cycle counter reaction stops the
counter.

Table 12: Cycle Counter 1, combinations of start, stop, and clear reactions

Reaction trigger |, Reaction trigger 2

Selects breakpoints to act as a reaction triggers.

Reset Counter 0/1

Resets the value and state of the cycle counter.

C-SPY® Debugging Guide
266 for MSP430

State storage

e Introduction to state storage
e Using state storage

e Reference information on state storage.

Introduction to state storage

This section introduces the state storage module, a limited variant of a traditional trace
module available for the C-SPY FET Debugger driver.

These topics are covered:

o Reasons for using state storage
e Briefly about state storage

o Requirements.
For related information, see also:

o The sequencer, page 273.

REASONS FOR USING STATE STORAGE

State storage allows you to examine the last eight states or instructions that were
executed before a specific point was reached or a specific event occurred, or the next
eight states that will be executed after a specific point is reached or a specific event
occurs.

BRIEFLY ABOUT STATE STORAGE

The state storage module is a limited variant of a traditional trace module. It can store
eight states and can be used for monitoring program states or program flow, without
interfering with the execution. It uses a built-in buffer to store MAB, MDB, and CPU
control signal information.

REQUIREMENTS

The state storage module is only available if you are using the C-SPY FET Debugger
driver and a device that supports the Enhanced Emulation Module at the required level.

267

Using state storage

268

Using state storage

C-SPY® Debugging Guide
for MSP430

This section gives you step-by-step descriptions about how to use certain features
related to state storage.

e® More specifically, you will get information about:

Setting up state storage.

SETTING UP STATE STORAGE
To use the state storage module, you must:
Define one or several range breakpoints or conditional breakpoints.

In the breakpoints dialog box, select the action State Storage Trigger for these
breakpoints. This means that the breakpoint is defined as a state storage trigger. (State
storage can also be triggered from the Sequencer Control window.)

Note: Depending on the behavior you want when the state storage module is triggered,
it is useful to consider the combination of the Action options and the options available
in the State Storage Control window. See the examples following immediately after
these steps.

Choose Emulator>State Storage Control to open the State Storage Control window.

Select the option Enable state storage. Set the options Buffer wrap around, Trigger
action, and Storage action according to your preferences.

In the list State Storage Triggers, all breakpoints defined as state storage triggers are
listed.

For more details about the options, see State Storage Control window, page 270.
Click Apply.
Choose Emulator>State Storage window to open the State Storage window.

Choose Debug>Go to execute your application. Before you can view the state storage
information, you must stop the execution. You can do this, for instance, by using the
Break command.

For information about the window contents, see State Storage window, page 271.

Example
As an example, assume the following setup:

o There is a conditional breakpoint which has both of the action options
selected—Break and State Storage Trigger

State storage ___4

o The state storage options Instruction fetch and Buffer wrap around are selected
in the State Storage Control window.

This will start the state storage immediately when you start executing your application.
When the breakpoint is triggered, the execution will stop and the last eight states can be
inspected in the State Storage window.

However, if you do not want the state storage module to start until a specific state is
reached, you would usually not want the execution to stop, because no state information
has been stored yet.

In this case, select the State Storage Trigger action in the Conditional breakpoints
dialog box (making sure that Break is deselected), and deselect the option Buffer wrap
around in the State Storage Control window.

When the breakpoint is triggered, the execution will not stop, but the state storage will
start. Because the option Buffer wrap around is deselected, you have ensured that the
data in the buffer will not be overwritten.

When another breakpoint (which has Break selected) is triggered, or if you stop the
execution by clicking the Break button, the State Storage window will show eight states
starting with the breakpoint that was used for starting the state storage module.

Reference information on state storage

This section gives reference information about these windows:

o State Storage Control window, page 270
e State Storage window, page 271.

269

Reference information on state storage

State Storage Control window

Requirements

The State Storage Control window is available from the Emulator menu.

State Storage Control

IV Enable state storage Reset |
¥ Buffer wrap around
Apply |

—Trigger ackion Storage ackion on
(o Start on brigger “ Triggers
" Stop on krigger & Instruction fetch

& MNone all oyles

State storage triggers

Conditional @ {fet440_1.c}.26.3 == [MAB-F]

Use this window to define how to use the state storage module. The window is only
available for devices that support the Enhanced Emulation Module at the required level.

The C-SPY FET Debugger driver.

Enable state storage

Enables the state storage module.

Buffer wrap around

Reset

Trigger action

C-SPY® Debugging Guide
270 for MSP430

Determines whether the state storage buffer should wrap around. If you select this
option, the state storage buffer is continuously overwritten until the execution is stopped
or a breakpoint is triggered. Only the eight last states are stored.

Alternatively, in order not to overwrite the information in the state storage buffer,
deselect this option. To guarantee that the eight first states will be stored, you should also

click Reset.

Resets the state storage module.

Selects which action to take when breakpoints defined as state storage triggers are

triggered:

State storage ___4

Start on trigger
Starts state storage when the breakpoint is triggered.

Stop on trigger
Starts state storage immediately when execution starts. State storage stops when
the breakpoint is triggered.

None

Starts state storage immediately when execution starts. State storage does not
stop when the breakpoint is triggered. However, if execution stops, state storage
also stops but it will resume when execution resumes.

Storage action on
Selects when the state information should be collected:

Triggers

Stores state information at the time when the state storage trigger is triggered.
That is, when the breakpoint defined as a state storage trigger is triggered.

Instruction fetch
Stores state information at all instruction fetches.

All cycles
Stores state information for all cycles.

State storage triggers

Lists all the breakpoints that are defined as state storage triggers. That is, the breakpoints
that have the action State Storage Trigger selected.

State Storage window

The State Storage window is available from the Emulator menu.
State Storage Window]

[Ipdate | ¥ Automatic update [~ Automatic restat [~ Append data

Address bus... | Instr. | Mnermonic | Data bus ... | Contral Signals | Contral Signals... |
0x1100 314004 movay #0xA00LSF 0x4031 0x03 Break Trig.=0; ...
0x1104 BOT21211 call #main 0x12B0 0x03 Break Trig. = 0; ..
0=0000 ---- Y 0=0000 =00 Break Trig.=0; ...
0=0000 ---- Y 0=0000 =00 Break Trig.=0; ...
0=0000 ---- Y 0=0000 =00 Break Trig.=0; ...
0=0000 ---- Y 0=0000 =00 Break Trig. = 0; ...

0x0000 ---- 77 0x0000 0x00 Break Trig.=0; ...
0x0000 ---- 77 0x0000 0x00 Break Trig. =0: ..

271

Reference information on state storage

This window displays state storage information for eight states. Invalid data is displayed
in red color.

Requirements
The C-SPY FET Debugger driver.

Toolbar
The toolbar contains:

Update

Refreshes the data in the State Storage window, alternatively appends new data.

Automatic update

Updates the data in the state storage window automatically each time new data
is available in the state storage buffer.

Automatic restart

Resets the state storage module for consecutive data readouts after each readout.

Append data

Appends collected data from the state storage buffer to the data that is already
present in the State Storage window. The new data is added below the data that
is already present.

Display area
This area contains these columns:

Address bus
The stored value of the address bus.

Instruction
The instruction.

Mnemonic

The mnemonic.

Data bus
The stored content of the data bus.

C-SPY® Debugging Guide
272 for MSP430

The sequencer

e Introduction to the sequencer
e Using the sequencer

e Reference information on the sequencer.

Introduction to the sequencer

This section introduces the sequencer module.
These topics are covered:

® Reasons for using the sequencer, page 273
o Briefly about the sequencer, page 273

® Requirements for using the sequencer, page 274.
For related information, see also:

o State storage, page 267.

REASONS FOR USING THE SEQUENCER

The sequencer is useful if you, for instance, want to stop the execution or start the state
storage module under certain conditions, for instance a specific program flow. If you
combine this with letting the state storage module continuously store information, you
will have useful state information logged in the State Storage window when the
execution stops.

BRIEFLY ABOUT THE SEQUENCER

The sequencer module is a simple state machine that lets you break the execution or
trigger the state storage module using a more complex method than a standard
breakpoint.

In a simple setup, you can define three transition triggers, where the last one triggers an
action. In an advanced setup, the state machine can have four states (0-3). State O is the
starting state, and state 3 is the state that triggers a breakpoint (the action state). This
breakpoint can be designed either to stop execution, or to trigger the state storage
module.

273

Using the sequencer

274

REQUIREMENTS FOR USING THE SEQUENCER

The sequencer module is only available for the C-SPY FET Debugger driver and if you
are using a device that supports the Enhanced Emulation Module at the required level.

Using the sequencer

C-SPY® Debugging Guide
for MSP430

This section gives you step-by-step descriptions about how to use certain features of the
sequencer module.

More specifically, you will get information about:

e Setting up the sequencer (simple setup)
e Setting up the sequencer (advanced setup)

o Using the sequencer to locate a problem.

SETTING UP THE SEQUENCER (SIMPLE SETUP)

In a simple setup, you can define three transition triggers, where the last one triggers an
action.

To define a simple sequencer setup:
Choose Emulator>Sequencer Control to open the Sequencer Control window.
Select the option Enable Sequencer.

Use the Transition trigger drop-down lists to define three breakpoints, where the last
breakpoint should act as a transition trigger.

SETTING UP THE SEQUENCER (ADVANCED SETUP)

In an advanced setup, the state machine can have four states (0-3). State 0 is the starting
state, and state 3 is the state that triggers a breakpoint (the action state). This breakpoint
can be designed either to stop execution, or to trigger the state storage module.

To define an advanced sequencer setup:
Choose Emulator>Sequencer Control to open the Sequencer Control window.
Select the option Enable Sequencer.

Click the Advanced button. This will let you define 4 states (0-3) with two transition
triggers each (a and b).

From the eight available hardware breakpoints (0-7) of the device, breakpoint number 7
will be reserved for state 3. The Transition trigger drop-down lists let you define one
breakpoint each, where the breakpoint should act as a transition trigger.

The sequencer PY

4 For each transition trigger, define which state should be the next state after the
transition.

Use the following options:

State Storage Trigger Select a breakpoint from the drop-down list to move the state
machine from one state to another. Note: to do this you must
first define the required conditional breakpoints.

Next state Select a state to define which state should be the next state after
the transition.

5 Select an action to determine the result of the final transition trigger. If you select the
option Break, the execution will stop. If you select the option State Storage Trigger,
the state storage module will be triggered.

USING THE SEQUENCER TO LOCATE A PROBLEM
Consider this example:

void my_putchar (char c)

{

/* Code suspected to be erroneous */

void my_function (void)

{
ﬁ?;putchar('a');
ﬁ&;putchar('x');
ﬁ;;putchar('@');

}

In this example, the customized putchar function my_putchar has for some reason a
problem with special characters. To locate the problem, it might be useful to stop
execution when the function is called, but only when it is called with one of the
problematic characters as the argument.

To locate the problem:

I Set a hardware breakpoint on the statement my_putchar ('@") ;.

2 Set another breakpoint on the suspected code within the function my_putchar ().

275

Using the sequencer

276

C-SPY® Debugging Guide
for MSP430

3 Define these breakpoints as transition triggers. Choose Emulator>Sequencer Control

to open the Sequencer Control window. Select the option Enable sequencer.

In this simple example you will only need two transition triggers. Make sure the
following options are selected:

Option Setting

Transition trigger 0 The breakpoint which is set on the function call
my_putchar('@"');

Transition trigger | The breakpoint which is set on the suspected code within the function
my_putchar ()
Action Break

Table 13: Sequencer settings - example

The transition trigger 1 depends on the transition trigger 0. This means that the execution
will stop only when the function my_putchar () is called by the function call
my_putchar('@');

Click OK.
Set up the state storage module. Choose Emulator>State Storage Control to open the

State Storage Control window. Make sure the following options are selected:

Option Setting

Enable state storage Selected
Buffer wrap around Selected
Storage action Instruction fetch

Trigger action None

Table 14: State Storage Control settings—example

Click OK.

Start the program execution. The state storage module will continuously store trace
information. Execution stops when the function my_putchar () has been called by the
function call my_putchar ('@') ;

Choose Emulator>State Storage Window to open the State Storage window. You
can now examine the stored trace information. For more information, see State Storage
window, page 271.

When the sequencer is in state 3, the C-SPY breakpoint mechanism—which is used for
all breakpoints, not only transition triggers—can be locked. Therefore, you should
always end the session with one of these steps:

e Disabling the sequencer module. This will restore all breakpoint actions.

The sequencer PY

o Resetting the state machine by clicking the Reset States button. The sequencer will
still be active and trigger on the defined setup during the program execution.

Reference information on the sequencer

This section gives reference information about the Sequencer Control window.

Sequencer Control window

The Sequencer Control window is available from the Emulator menu.

Sequencer Control]
¥ Enable sequencer Action Current state : 0 Reset States |
v Break
R " Reset Trigger Apply |
™ State Storage Trigger I - j
IAdvanced €

—State 0 — State 2
Trangition trigger a Trangition trigger b Trangition trigger a Trangition trigger b
[oa12¢[F] 1] =il - = E [=
Mewt state |1 = Mext state ID 'l Mext stateID 'l Mext stateID 'l
—State 1 — State 3 [action state]
Trangition trigger a Trangition trigger b Trangition trigger a Trangition trigger b
=l 3} || B =l =
Mext state I 1] 'l Mext state I 1] 'l Mext state I 1] 'l Mext state I 1] 'l

Use this window to break the execution or trigger the state storage module, using a more
complex method than a standard breakpoint. The window is only available for devices
that support the Enhanced Emulation Module at the required level.

For related information about state storage, see State storage, page 267.

Requirements

The C-SPY FET Debugger driver.

Enable Sequencer

Enables the sequencer.

Action

Controls the result of the final transition trigger:

277

Reference information on the sequencer

278

Current state

Reset Trigger

Reset States

Advanced

State 0-3

C-SPY® Debugging Guide

for MSP430

Break

Stops the execution.

State Storage Trigger

Triggers to move the state machine from one state to another and activates the
state storage module. Requires that you select a conditional breakpoint, that you
have defined, from the Transition trigger drop-down list.

Displays the current state of the state machine.

Selects a trigger that will reset the state machine.

Sets the state machine to state 0.

Displays the advanced setup options. This will let you define 4 states (numbered 0-3)
with two transition triggers each (a and b). For each transition trigger, you can define
which state should be the next state after the transition.

Controls the transition triggers and the state that follows the transitions.

Transition trigger a
Selects a breakpoint to act as a transition trigger.

Transition trigger b
Selects a breakpoint to act as a transition trigger.

Next state
Select the next state after the transition.

For state 3—the final transition trigger—you must also define an Action: Break or
State Storage Trigger.

C-SPY macros

e Introduction to C-SPY macros

e Using C-SPY macros

e Reference information on the macro language

e Reference information on reserved setup macro function names
e Reference information on C-SPY system macros

e Graphical environment for macros

Introduction to C-SPY macros

These topics are covered:

o Reasons for using C-SPY macros
e Briefly about using C-SPY macros
e Briefly about setup macro functions and files

e Briefly about the macro language

REASONS FOR USING C-SPY MACROS

You can use C-SPY macros either by themselves or in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks. Some examples
where macros can be useful:

o Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

o Hardware configuring, such as initializing hardware registers.

e Feeding your application with simulated data during runtime.

o Simulating peripheral devices, see the chapter /nterrupts. This only applies if you
are using the simulator driver.

o Developing small debug utility functions, for instance calculating the stack depth.

279

Introduction to C-SPY macros

280

C-SPY® Debugging Guide
for MSP430

BRIEFLY ABOUT USING C-SPY MACROS
To use C-SPY macros, you should:

o Write your macro variables and functions and collect them in one or several macro
files

e Register your macros

e Execute your macros.

For registering and executing macros, there are several methods to choose between.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register or execute your macro.

BRIEFLY ABOUT SETUP MACRO FUNCTIONS AND FILES

There are some reserved setup macro function names that you can use for defining
macro functions which will be called at specific times, such as:

o Once after communication with the target system has been established but before
downloading the application software

o Once after your application software has been downloaded

o FEach time the reset command is issued

o Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register

a macro function with one of the reserved names. For instance, if you want to clear a

specific memory area before you load your application software, the macro setup

function execUserPreload should be used. This function is also suitable if you want

to initialize some CPU registers or memory-mapped peripheral units before you load
your application software.

You should define these functions in a setup macro file, which you can load before
C-SPY starts. Your macro functions will then be automatically registered each time you
start C-SPY. This is convenient if you want to automate the initialization of C-SPY, or
if you want to register multiple setup macros.

For more information about each setup macro function, see Reference information on
reserved setup macro function names, page 291.

BRIEFLY ABOUT THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are:

® Macro statements, which are similar to C statements.

® Macro functions, which you can define with or without parameters and return
values.

C-SPY macros __4

o Predefined built-in system macros, similar to C library functions, which perform
useful tasks such as opening and closing files, setting breakpoints, and defining
simulated interrupts.

® Macro variables, which can be global or local, and can be used in C-SPY
expressions.

® Macro strings, which you can manipulate using predefined system macros.

For more information about the macro language components, see Reference information
on the macro language, page 286.

Example

Consider this example of a macro function which illustrates the various components of
the macro language:

__var oldval;
CheckLatest (val)
{
if (oldval !'= wval)
{
__message "Message: Changed from ", oldval, " to ", wval, "\n";
oldval = val;
}
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

Using C-SPY macros

These tasks are covered:

Registering C-SPY macros—an overview

Executing C-SPY macros—an overview

Registering and executing using setup macros and setup files
Executing macros using Quick Watch

Executing a macro by connecting it to a breakpoint

Aborting a C-SPY macro

For more examples using C-SPY macros, see:

o The tutorial about simulating an interrupt, which you can find in the Information
Center

e I[nitializing target hardware before C-SPY starts, page 46.

281

Using C-SPY macros

282

C-SPY® Debugging Guide
for MSP430

REGISTERING C-SPY MACROS—AN OVERVIEW

C-SPY must know that you intend to use your defined macro functions, and thus you
must register your macros. There are various ways to register macro functions:

You can register macro functions during the C-SPY startup sequence, see
Registering and executing using setup macros and setup files, page 283.

You can register macros interactively in the Macro Registration window, see Macro
Registration window, page 330. Registered macros appear in the Debugger macros
window, see Debugger Macros window, page 332.

You can register a file containing macro function definitions, using the system
macro __registerMacroFile. This means that you can dynamically select which
macro files to register, depending on the runtime conditions. Using the system
macro also lets you register multiple files at the same moment. For information
about the system macro, see __registerMacroFile, page 311.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register your macro.

EXECUTING C-SPY MACROS—AN OVERVIEW

There are various ways to execute macro functions:

You can execute macro functions during the C-SPY startup sequence and at other
predefined stages during the debug session by defining setup macro functions in a
setup macro file, see Registering and executing using setup macros and setup files,
page 283.

The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions. For an example, see Executing macros using Quick
Watch, page 283.

The Macro Quicklaunch window is similar to the Quick Watch window, but is more
specified on designed for C-SPY macros. See Macro Quicklaunch window, page
334.

A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro is executed. For an example, see Executing a macro by connecting it to a
breakpoint, page 284.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to execute your macro.

C-SPY macros __4

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence. To do
this, specify a macro file which you load before starting the debug session. Your macro
functions will be automatically registered each time you start the debugger.

If you use the reserved setup macro function names to define the macro functions, you
can define exactly at which stage you want the macro function to be executed.

To define a setup macro function and load it during C-SPY startup:
Create a new text file where you can define your macro function.
For example:

execUserSetup ()
{

_ _registerMacroFile("MyMacroUtils.mac") ;
_ _registerMacroFile("MyDeviceSimulation.mac") ;

}

This macro function registers the additional macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the function
name execUserSetup, it will be executed directly after your application has been
downloaded.

Save the file using the filename extension mac.

Before you start C-SPY, choose Project>Options>Debugger>Setup. Select Use
Setup file and choose the macro file you just created.

The macros will now be registered during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window lets you dynamically choose when to execute a macro
function.

Consider this simple macro function that checks the status of a timer enable bit:

TimerStatus ()
{
if ((TimerStatreg & 0x01) != 0)/* Checks the status of reg */
return "Timer enabled"; /* C-SPY macro string used */
else
return "Timer disabled"; /* C-SPY macro string used */

283

Using C-SPY macros

284

C-SPY® Debugging Guide
for MSP430

Save the macro function using the filename extension mac.

To load the macro file, choose View>Macros>Macro Registration. The Macro
Registration window is displayed. Click Add and locate the file using the file browser.
The macro file appears in the list of macros in the Macro Registration window.

Select the macro you want to register and your macro will appear in the Debugger
Macros window.

Choose View>Quick Watch to open the Quick Watch window, type the macro call
TimerStatus () in the text field and press Return,

Alternatively, in the macro file editor window, select the macro function name
TimerStatus (). Right-click, and choose Quick Watch from the context menu that
appears.

Quick Watch =]
@ TimerStatus]] -
Expression Yalue Location Type
TimerStatus() 'Timer disabled® macro string

The macro will automatically be displayed in the Quick Watch window.

For more information, see Quick Watch window, page 97.

EXECUTING A MACRO BY CONNECTINGITTO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed when the
breakpoint is triggered. The advantage is that you can stop the execution at locations of
particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers change. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

To create a log macro and connect it to a breakpoint:
Assume this skeleton of a C function in your application source code:

int fact(int x)
{

}

C-SPY macros __4

2 Create a simple log macro function like this example:

logfact ()
{
__message "fact(" ,x, ")";

}
The __message statement will log messages to the Log window.
Save the macro function in a macro file, with the filename extension mac.

3 To register the macro, choose View>Macros>Macro Registration to open the Macro
Registration window and add your macro file to the list. Select the file to register it.
Your macro function will appear in the Debugger Macros window.

4 To set a code breakpoint, click the Toggle Breakpoint button on the first statement
within the function fact in your application source code. Choose View>Breakpoints
to open the Breakpoints window. Select your breakpoint in the list of breakpoints and
choose the Edit command from the context menu.

5 To connect the log macro function to the breakpoint, type the name of the macro
function, logfact (), in the Action field and click Apply. Close the dialog box.

6 Execute your application source code. When the breakpoint is triggered, the macro
function will be executed. You can see the result in the Log window.

o Note that the expression in the Action field is evaluated only when the breakpoint
causes the execution to really stop. If you want to log a value and then automatically
continue execution, you can either:

Use a Log breakpoint, see Log breakpoints dialog box, page 129

o Use the Condition field instead of the Action field. For an example, see Performing
a task and continuing execution, page 124.

7 You can easily enhance the log macro function by, for instance, using the __fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 289.

For an example where a serial port input buffer is simulated using the method of
connecting a macro to a breakpoint, see the tutorial Simulating an interrupt in the
Information Center.

ABORTING A C-SPY MACRO

To abort a C-SPY macro:
I Press Ctrl+Shift+. (period) for a short while.

2 A message that says that the macro has terminated is displayed in the Debug Log
window.

285

Reference information on the macro language

This method can be used if you suspect that something is wrong with the execution, for
example because it seems not to terminate in a reasonable time.

Reference information on the macro language
Reference information about:

Macro functions, page 286
Macro variables, page 286
Macro parameters, page 287
Macro strings, page 287

Macro statements, page 288

Formatted output, page 289.

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has this form:

macroName (parameterList)
{

macroBody

}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.
MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application. It can then
be used in a C-SPY expression, or you can assign application data—values of the
variables in your application—to it. For more information about C-SPY expressions, see
C-SPY expressions, page 80.

The syntax for defining one or more macro variables is:
__var nameList;

where nameList is a list of C-SPY variable names separated by commas.

C-SPY® Debugging Guide
286 for MSP430

C-SPY macros __4

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

Expression What it means
myvar = 3.5; myvar is now type double, value 3.5.
myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 15: Examples of C-SPY macro variables

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

MACRO PARAMETERS

A macro parameter is intended for parameterization of device support. The named

parameter will behave as a normal C-SPY macro variable with these differences:

o The parameter definition can have an initializer

e Values of a parameters can be set through options (either in the IDE or in cspybat).

o A value set from an option will take precedence over a value set by an initializer

e A parameter must have an initializer, be set through an option, or both. Otherwise, it
has an undefined value, and accessing it will cause a runtime error.

The syntax for defining one or more macro parameters is:

__param param|[= value, ...;]

Use the command line option --macro_param to specify a value to a parameter, see
--macro_param, page 353.

MACRO STRINGS

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello! ", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subString. The result can be a new macro string. You can

287

Reference information on the macro language

concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example s##[3]. You can get the
length of a string using sizeof (str). Note that a macro string is not
NULL-terminated.

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char []) to a macro string. For example, assume
this definition of a C string in your application:

char const *cstr = "Hello";

Then examine these macro examples:

__var str; /* A macro variable */

str = cstr /* str is now just a pointer to char */

sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */

str[l] /* 101, the ASCII code for 'e' */

str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 289.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions
expression;

For more information about C-SPY expressions, see C-SPY expressions, page 80.

Conditional statements

if (expression)
Sstatement

if (expression)
statement
else
statement

C-SPY® Debugging Guide
288 for MSP430

C-SPY macros __4

Loop statements

for (init_expression; cond_expression; update_expression)
statement

while (expression)
statement

do
Sstatement
while (expression);

Return statements
return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
statementl
statement2

statementN

FORMATTED OUTPUT

C-SPY provides various methods for producing formatted output:

__message argList; Prints the output to the Debug Log window.
__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

where argList is acomma-separated list of C-SPY expressions or strings, and £ileis
the result of the __openFile system macro, see _openkFile, page 306.

To produce messages in the Debug Log window:

289

Reference information on the macro language

290

C-SPY® Debugging Guide
for MSP430

varl = 42;
var2 = 37;
__message "This line prints the values ", varl, " and ", var2,

" in the Log window.";

This produces this message in the Log window:

This line prints the values 42 and 37 in the Log window.
To write the output to a designated file:

__fmessage myfile, "Result is ", res, "!\n";

To produce strings:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer.".

Specifying display format of arguments

To override the default display format of a scalar argument (number or pointer) in
argList, suffix it with a : followed by a format specifier. Available specifiers are:

%b for binary scalar arguments

%0 for octal scalar arguments

%d for decimal scalar arguments

$x for hexadecimal scalar arguments
%c for character scalar arguments

These match the formats available in the Watch and Locals windows, but number
prefixes and quotes around strings and characters are not printed. Another example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

Depending on the value of the variables, this produces this message:
The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%C;

would produce:

65 is the numeric value of the character A

C-SPY macros __4

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the $x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

Reference information on reserved setup macro function names

There are reserved setup macro function names that you can use for defining your setup
macro functions. By using these reserved names, your function will be executed at
defined stages during execution. For more information, see Briefly about setup macro
functions and files, page 280.

Reference information about:

execUserPreload
execUserExecutionStarted

execUserExecutionStopped

execUserPreReset

[]

[]

[]

® execUserSetup
[]

® execUserReset
[]

execUserExit

execUserPreload
Syntax execUserPreload
For use with All C-SPY drivers.
Description Called after communication with the target system is established but before

downloading the target application.

Implement this macro to initialize memory locations and/or registers which are vital for
loading data properly.

291

Reference information on reserved setup macro function names

execUserExecutionStarted

Syntax

For use with

Description

execUserExecutionStarted

All C-SPY drivers.
The C-SPY simulator.
Called when the debugger is about to start or resume execution. The macro is not called

when performing a one-instruction assembler step, in other words, Step or Step Into in
the Disassembly window.

execUserExecutionStopped

Syntax

For use with

Description

execUserSetup

Syntax
For use with

Description

C-SPY® Debugging Guide
292 for MSP430

execUserExecutionStopped

All C-SPY drivers.
The C-SPY simulator.
Called when the debugger has stopped execution. The macro is not called when

performing a one-instruction assembler step, in other words, Step or Step Into in the
Disassembly window.

execUserSetup
All C-SPY drivers.

Called once after the target application is downloaded.

Implement this macro to set up the memory map, breakpoints, interrupts, register macro
files, etc.

If you define interrupts or breakpoints in a macro file that is executed at system start
(using execUserSetup) we strongly recommend that you also make sure that they are
removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see the tutorials in the Information Center.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

execUserPreReset

Syntax
For use with

Description

execUserReset

Syntax
For use with

Description

execUserExit

Syntax
For use with

Description

C-SPY macros __4

execUserPreReset

All C-SPY drivers.

Called each time just before the reset command is issued.

Implement this macro to set up any required device state.

execUserReset
All C-SPY drivers.

Called each time just after the reset command is issued.

Implement this macro to set up and restore data.

execUserExit

All C-SPY drivers.

Called once when the debug session ends.

Implement this macro to save status data etc.

Reference information on C-SPY system macros

This section gives reference information about each of the C-SPY system macros.
This table summarizes the pre-defined system macros:

Macro Description

__cancelAllInterrupts Cancels all ordered interrupts

__cancelInterrupt Cancels an interrupt
__clearBreak Clears a breakpoint
__closeFile Closes a file that was opened by __openFile

Table 16: Summary of system macros

293

Reference information on C-SPY system macros

Macro

Description

__delay
__disablelInterrupts
__driverType
__enableInterrupts

__evaluate

__fillMemory8
__fillMemorylé6
__fillMemory32
__1isBatchMode
__loadImage

__memoryRestore

_ _memorySave

__messageBoxYesNo
__openFile

__orderInterrupt

__popSimulatorInterruptExecu

tingStack
__readFile
__readFileByte

__readMemoryS8,
__readMemoryByte

__readMemoryl6

__readMemory32

__registerMacroFile
__resetFile

__setCodeBreak

__setConditionalBreak

_setAdvancedTriggerBreak

Delays execution

Disables generation of interrupts
Verifies the driver type

Enables generation of interrupts

Interprets the input string as an expression and
evaluates it.

Fills a specified memory area with a byte value.
Fills a specified memory area with a 2-byte value.
Fills a specified memory area with a 4-byte value.
Checks if C-SPY is running in batch mode or not.
Loads an image.

Restores the contents of a file to a specified
memory zone

Saves the contents of a specified memory area to a
file

Displays a Yes/No dialog box for user interaction
Opens a file for I/O operations
Generates an interrupt

Informs the interrupt simulation system that an
interrupt handler has finished executing

Reads from the specified file
Reads one byte from the specified file

Reads one byte from the specified memory location

Reads two bytes from the specified memory
location

Reads four bytes from the specified memory
location

Registers macros from the specified file
Rewinds a file opened by __openFile
Sets an advanced trigger breakpoint
Sets a code breakpoint

Sets a conditional breakpoint

Table 16: Summary of system macros (Continued)

C-SPY® Debugging Guide
294 for MSP430

C-SPY macros __4

Macro Description

__setDataBreak Sets a data breakpoint

_ _setDataLogBreak Sets a data log breakpoint

__setLogBreak Sets a log breakpoint

__setRangeBreak Sets a range breakpoint

__setSimBreak Sets a simulation breakpoint
__setTraceStartBreak Sets a trace start breakpoint
__setTraceStopBreak Sets a trace stop breakpoint
__sourcePosition Returns the file name and source location if the

current execution location corresponds to a source
location

__strFind Searches a given string for the occurrence of
another string

__subString Extracts a substring from another string
__targetDebuggerVersion Returns the version of the target debugger
__toLower Returns a copy of the parameter string where all the

characters have been converted to lower case
__toString Prints strings

_toUpper Returns a copy of the parameter string where all the
characters have been converted to upper case

__unloadImage Unloads a debug image

__writeFile Writes to the specified file

__writeFileByte Werites one byte to the specified file

__writeMemorys8, Writes one byte to the specified memory location

__writeMemoryByte

__writeMemoryl6 Writes a two-byte word to the specified memory
location

__writeMemory32 Writes a four-byte word to the specified memory
location

Table 16: Summary of system macros (Continued)

__cancelAllinterrupts
Syntax __cancelAllInterrupts()
Return value int 0

295

Reference information on C-SPY system macros

For use with The C-SPY Simulator.

Description Cancels all ordered interrupts.
__cancellnterrupt

Syntax __cancelInterrupt (interrupt_id)

Parameters interrupt_id

The value returned by the corresponding __orderInterrupt macro call
(unsigned long).

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 17: __cancellnterrupt return values

For use with The C-SPY Simulator.

Description Cancels the specified interrupt.
__clearBreak

Syntax __clearBreak (break_id)

Parameters break_id

The value returned by any of the set breakpoint macros.

Return value int 0

For use with All C-SPY drivers.

Description Clears a user-defined breakpoint.
See also Breakpoints, page 113.

C-SPY® Debugging Guide
296 for MSP430

__closeFile

Syntax

Parameters

Return value
For use with

Description

__delay

Syntax

Parameters

Return value
For use with

Description

__disablelnterrupts

Syntax

Return value

For use with

Description

C-SPY macros __4

__closeFile(fileHandle)

fileHandle
A macro variable used as filehandle by the __openFile macro.

int 0
All C-SPY drivers.

Closes a file previously opened by __openFile.

_delay(value)

value

The number of milliseconds to delay execution.
int 0
All C-SPY drivers.

Delays execution the specified number of milliseconds.

__disableInterrupts|()

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 18: __disablelnterrupts return values
The C-SPY Simulator.

Disables the generation of interrupts.

297

Reference information on C-SPY system macros

__driverType

Syntax

Parameters

Return value

For use with

Description

Example

__enablelnterrupts

Syntax

Return value

For use with

Description

C-SPY® Debugging Guide
298 for MSP430

__driverType (driver_id)

driver_id
A string corresponding to the driver you want to check for. Choose one of these:
"sim" corresponds to the simulator driver.

"fet" corresponds to the C-SPY FET Debugger driver.

Result Value
Successful 1
Unsuccessful 0

Table 19: __driverType return values
All C-SPY drivers

Checks to see if the current C-SPY driver is identical to the driver type of the
driver_1id parameter.

__driverType("sim")

If the simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__enableInterrupts()

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 20: __enablelnterrupts return values
The C-SPY Simulator.

Enables the generation of interrupts.

C-SPY macros __4

__evaluate
Syntax __evaluate(string, valuePtr)
Parameters string

Expression string.

valuePtr

Pointer to a macro variable storing the result.

Return value

Result Value
Successful int 0
Unsuccessful int 1

Table 21: __evaluate return values
For use with All C-SPY drivers.

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valuePtr.

Example This example assumes that the variable i is defined and has the value 5:
__evaluate("i + 3", &myVar)

The macro variable myVar is assigned the value 8.

__fillMemory8
Syntax __fillMemory8 (value, address, zone, length, format)
Parameters value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 148.

length
An integer that specifies how many bytes are affected.

299

Reference information on C-SPY system macros

300

Return value
For use with
Description

Example

__fillMemoryl 6

Syntax

Parameters

C-SPY® Debugging Guide
for MSP430

format

One of these alternatives:

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between value and the

existing contents of memory before writing the result to memory.

int 0
All C-SPY drivers.
Fills a specified memory area with a byte value.

__fillMemory8(0x80, 0x700, "Memory", 0x10, "OR");

__fillMemoryl6 (value, address, zone, length, format)
value
An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 148.

length
An integer that defines how many 2-byte entities to be affected.

format

One of these alternatives:

Copy value will be copied to the specified memory area.

Return value
For use with
Description

Example

__fillMemory32

Syntax

Parameters

C-SPY macros __4

AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.

int 0
All C-SPY drivers.

Fills a specified memory area with a 2-byte value.

__fillMemoryl6 (0xCDCD, 0x7000, "Memory", 0x200, "Copy"):;

_fillMemory32 (value, address, zone, length, format)

value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 148.

length
An integer that defines how many 4-byte entities to be affected.

format

One of these alternatives:

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value
and the existing contents of memory before writing
the result to memory.

301

Reference information on C-SPY system macros

OR An OR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

XOR An XOR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

Return value int 0

For use with All C-SPY drivers.

Description Fills a specified memory area with a 4-byte value.

Example __fillMemory32 (0x0000FFFF, 0x4000, "Memory", 0x1000, "XOR");
__isBatchMode

Syntax __isBatchMode ()

Return value

Result Value
True int 1
False int 0

Table 22: __isBatchMode return values

For use with All C-SPY drivers.
Description This macro returns True if the debugger is running in batch mode, otherwise it returns
False.
__loadlmage
Syntax __loadImage(path, offset, debugInfoOnly)
Parameters path

A string that identifies the path to the image to download. The path must either
be absolute or use argument variables. For information about argument
variables, see the IDE Project Management and Building Guide.

C-SPY® Debugging Guide
302 for MSP430

Return value

For use with

Description

Example |

Example 2

C-SPY macros __4

offset
An integer that identifies the offset to the destination address for the downloaded
image.

debugInfoOnly

A non-zero integer value if no code or data should be downloaded to the target
system, which means that C-SPY will only read the debug information from the
debug file. Or, 0 (zero) for download.

Value Result

Non-zero integer number A unique module identification.

int 0 Loading failed.

Table 23: __loadlmage return values
All C-SPY drivers.

Loads an image (debug file).

Note: Flash loading will not be performed; using the Images options you can only
download images to RAM.

Your system consists of a ROM library and an application. The application is your active
project, but you have a debug file corresponding to the library. In this case you can add
this macro call in the execUserSetup macro in a C-SPY macro file, which you
associate with your project:

__loadImage (ROMfile, 0x8000, 1);

This macro call loads the debug information for the ROM library rRoMf£1i1e without
downloading its contents (because it is presumably already in ROM). Then you can
debug your application together with the library.

Your system consists of a ROM library and an application, but your main concern is the
library. The library needs to be programmed into flash memory before a debug session.
While you are developing the library, the library project must be the active project in the
IDE. In this case you can add this macro call in the execUserSetup macro in a C-SPY
macro file, which you associate with your project:

_loadImage (ApplicationFile, 0x8000, 0);

The macro call loads the debug information for the application and downloads its
contents (presumably into RAM). Then you can debug your library together with the
application.

303

Reference information on C-SPY system macros

See also

__memoryRestore

Syntax

Parameters

Return value
For use with
Description
Example

See also

__memorySave

Syntax

Parameters

C-SPY® Debugging Guide
304 for MSP430

Images, page 363 and Loading multiple images, page 45.

__memoryRestore (zone, filename)

zone

A string that specifies the memory zone, see C-SPY memory zones, page 148.

filename

A string that specifies the file to be read. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide.

int 0

All C-SPY drivers.

Reads the contents of a file and saves it to the specified memory zone.
__memoryRestore ("Memory", "c:\\temp\\saved_memory.hex") ;

Memory Restore dialog box, page 158.

__memorySave (start, stop, format, filename)

start

A string that specifies the first location of the memory area to be saved.

stop
A string that specifies the last location of the memory area to be saved.

format

A string that specifies the format to be used for the saved memory. Choose
between:

intel-extended
motorola

motorola-sl9

C-SPY macros __4

motorola-s28
motorola-s37
msp430-txt.

filename
A string that specifies the file to write to. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide.

Return value int 0

For use with All C-SPY drivers.

Description Saves the contents of a specified memory area to a file.

Example _ _memorySave ("Memory:0x00", "Memory:0xFF", "intel-extended",

"c:\\temp\\saved_memory.hex") ;

See also Memory Save dialog box, page 157.
__messageBoxYesNo

SwWax __messageBoxYesNo (string message, string caption)

Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Return value

Result Value
Yes 1
No 0

Table 24: __messageBoxYesNo return values
For use with All C-SPY drivers.

Description Displays a Yes/No dialog box when called and returns the user input. Typically, this is
useful for creating macros that require user interaction.

305

Reference information on C-SPY system macros

__openFile
Syntax __openFile(filename, access)
Parameters filename

The file to be opened. The filename must include a path, which must either be
absolute or use argument variables. For information about argument variables,
see the IDE Project Management and Building Guide.

access

The access type (string).

These are mandatory but mutually exclusive:

"a" append, new data will be appended at the end of the open file

"r" read (by default in text mode; combine with b for binary mode: rb)
"w" write (by default in text mode; combine with b for binary mode: wb)
These are optional and mutually exclusive:

"b" binary, opens the file in binary mode

"t ASCII text, opens the file in text mode

This access type is optional:

"+" together with r, w, or a; r+ or w+ is read and write, while a+ is read and

append
Return value
Result Value
Successful The file handle
Unsuccessful An invalid file handle, which tests as False

Table 25: __openFile return values
For use with All C-SPY drivers.

Description Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (* . ewp) is located. The argument to __openFile can
specify a location relative to this directory. In addition, you can use argument variables
such as $PROJ_DIRS$ and $TOOLKIT_DIRS in the path argument.

C-SPY® Debugging Guide
306 for MSP430

Example

See also

__orderinterrupt

Syntax

Parameters

Return value

C-SPY macros __4

__var myFileHandle; /* The macro variable to contain */
/* the file handle */

myFileHandle = __openFile("$SPROJ_DIRS\\Debug\\Exe\\test.tst",

I|rl|);

if (myFileHandle)
{

/* successful opening */

For information about argument variables, see the IDE Project Management and
Building Guide.

__orderInterrupt (specification, first_activation,
repeat_interval, variance, infinite_hold time,
hold_time, probability)

specification
The interrupt (string). The specification can either be the full specification used
in the device description file (dd£f) or only the name. In the latter case the
interrupt system will automatically get the description from the device
description file.

first_activation

The first activation time in cycles (integer)

repeat_interval

The periodicity in cycles (integer)

variance

The timing variation range in percent (integer between 0 and 100)

infinite_ _hold time

1 if infinite, otherwise 0.

hold_time
The hold time (integer)

probability
The probability in percent (integer between 0 and 100)

The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.

307

Reference information on C-SPY system macros

For use with
Description

Example

The C-SPY Simulator.
Generates an interrupt.

This example generates a repeating interrupt using an infinite hold time first activated
after 4000 cycles:

__orderInterrupt ("USARTORX_VECTOR", 4000, 2000, 0, 1, 0O, 100);

__popSimulatorinterruptExecutingStack

Syntax
Return value
For use with

Description

See also

__readFile
Syntax

Parameters

Return value

C-SPY® Debugging Guide
308 for MSP430

_ _popSimulatorInterruptExecutingStack (void)

int 0

The C-SPY Simulator.

Informs the interrupt simulation system that an interrupt handler has finished executing,

as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

Simulating an interrupt in a multi-task system, page 245.

__readFile(fileHandle, valuePtr)

fileHandle

A macro variable used as filehandle by the __openFile macro.

valuePtr

A pointer to a variable.

Result Value
Successful 0
Unsuccessful Non-zero error number

Table 26: __readFile return values

C-SPY macros __4

For use with All C-SPY drivers.

Description Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Only printable characters representing hexadecimal digits and white-space characters
are accepted, no other characters are allowed.

Example __var number;
if (__readFile(myFileHandle, &number) == 0)
{
// Do something with number

}

In this example, if the file pointed to by myFileHandle contains the ASCII characters
1234 abcd 90ef, consecutive reads will assign the values 0x1234 0Oxabcd 0x90ef
to the variable number.

__readFileByte
Syntax __readFileByte(fileHandle)
Parameters fileHandle
A macro variable used as filehandle by the __openFile macro.
Return value -1 upon error or end-of-file, otherwise a value between 0 and 255.
For use with All C-SPY drivers.
Description Reads one byte from a file.
Example __var byte;

while ((byte = __readFileByte(myFileHandle)) != -1)
{
/* Do something with byte */

__readMemory8, __readMemoryByte

Syntax __readMemory8 (address, zone)
__readMemoryByte (address, zone)

309

Reference information on C-SPY system macros

Parameters address

The memory address (integer).

zone
A string that specifies the memory zone, see C-SPY memory zones, page 148.
Return value The macro returns the value from memory.
For use with All C-SPY drivers.
Description Reads one byte from a given memory location.
Example __readMemory8 (0x0108, "Memory") ;
__readMemoryl 6
Syntax __readMemorylé6 (address, zone)
Parameters address
The memory address (integer).
zone
A string that specifies the memory zone, see C-SPY memory zones, page 148.
Return value The macro returns the value from memory.
For use with All C-SPY drivers.
Description Reads a two-byte word from a given memory location.
Example __readMemoryl6 (0x0108, "Memory") ;
__readMemory32
Syntax __readMemory32 (address, zone)
Parameters address
The memory address (integer).
zone

A string that specifies the memory zone, see C-SPY memory zones, page 148.

C-SPY® Debugging Guide
310 for MSP430

C-SPY macros __4

Return value The macro returns the value from memory.

For use with All C-SPY drivers.

Description Reads a four-byte word from a given memory location.

Example __readMemory32 (0x0108, "Memory") ;
__registerMacroFile

Syntax __registerMacroFile(filename)

Parameters filename

A file containing the macros to be registered (string). The filename must include
a path, which must either be absolute or use argument variables. For information
about argument variables, see the IDE Project Management and Building

Guide.
Return value int 0
For use with All C-SPY drivers.
Description Registers macros from a setup macro file. With this function you can register multiple

macro files during C-SPY startup.

Example __registerMacroFile("c:\\testdir\\macro.mac") ;
See also Using C-SPY macros, page 281.
__resetFile
Syntax __resetFile(fileHandle)
Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value int 0
For use with All C-SPY drivers.
Description Rewinds a file previously opened by __openFile.

Reference information on C-SPY system macros

__setAdvancedTriggerBreak

Swnax __setAdvancedTriggerBreak (type, condition, access, action, mask

Parameters

type

condition

access

action

mask

cond_value

C-SPY® Debugging Guide
312 for MSP430

cond_value)

All parameters are strings.

The breakpoint type; either "Address", "Data", or "Register".

The breakpoint condition operator, either "==", ">=", "<=" or

The memory access type. Choose between:
"Read"

"Write"

"ReadWrite"

"Fetch"

"FetchHold"

"NoFetch"

"NoFetchRead"

"NoFetchNoDMA"

"DMA "

"NoDMA"

"WriteNoDMA"

"NoFetchReadNoDMA"

"ReadNoDMA"

"ReadDMA"

"WriteDMA"

The action type: "Break", "Trigger", or "BreakTrigger".

A 16-bit value that the breakpoint address or value will be masked
with.

An extra conditional data value.

Return value

For use with
Description

Example

See also

__setCodeBreak

Syntax

Parameters

C-SPY macros __4

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 27: __setAdvancedTriggerBreak return values
The C-SPY FET Debugger driver.
Sets an advanced trigger breakpoint.

__var brk;
brk = __setAdvancedTriggerBreak ("Register", ">=", "Write",
"Trigger", "0x0000", "0x4000");

__clearBreak (brk) ;

Breakpoints, page 113.

__setCodeBreak (location, count, condition, cond_ type, action)

location
A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 142.

count
The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).
action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

313

Reference information on C-SPY system macros

Return value

For use with

Description

Examples

See also

___setConditionalBreak

Syntax

Parameters

C-SPY® Debugging Guide
314 for MSP430

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 28: __setCodeBreak return values

Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

__setCodeBreak ("{D:\\src\\prog.c}.12.9", 3,
"ActionCode () ") ;

"d>16", "TRUE",

This example sets a code breakpoint on the label main in your source:

__setCodeBreak ("main", 0, "1", "TRUE", "");

Breakpoints, page 113.

__setConditionalBreak(location, type, operator, access, action,

mask, cond_value, cond_operator,
cond_access, cond_mask)

All parameters are strings.

location The breakpoint location. Choose between:

A source location on the form " { filename} . line.col" (for
example " {D:\\src\\prog.c}.12.9")

An absolute location on the form " zone: hexaddress" or simply
"hexaddress" (for example "Memory:0x42")

An expression whose value designates a location (for example
"my_global_variable").

A register (for example "R10")
type The breakpoint type: "Address", "Data", Or "Register".

operator The breakpoint operator: "==", ">="_"<="_or "!=".

Return value

For use with
Description

Example

See also

__setDataBreak

Syntax

access

action

mask

cond_value
cond_operator
cond_access

cond_mask

C-SPY macros __4

The memory access type: "Read", "Write", "ReadWrite", or
"Fetch".

The action type: "Break", "Trigger", or "BreakTrigger".

A 16-bit value that the breakpoint address or value will be masked
with.

An extra conditional data value.
The condition operator: "==", ">=", "<=" or "!=".
The access type of the condition: "Read" or "Write".

The mask value of the condition.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 29: __setConditionalBreak return values

The C-SPY FET Debugger driver.

Sets a conditional breakpoint.

__var brk;

brk = __setConditionalBreak ("R10", "Register", "0x5000", ">=",
"Write", "Trigger", "0x0000", "0x4000", "<=", "Write",
“0x00FF") ;

__clearBreak (brk) ;

Breakpoints, page 113.

__setDataBreak (location, count, condition, cond_type, access,

action)

315

Reference information on C-SPY system macros

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
142.

count
The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).
cond_type
The condition type; either "CHANGED" or "TRUE" (string).

access

The memory access type: "R", for read, "w" for write, or "Rw" for read/write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 30: __setDataBreak return values
For use with The C-SPY Simulator.

Description Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

Example __var brk;
brk = __setDataBreak("Memory:0x4710", 3, "d>6", "TRUE",
"W", "ActionData()");

__clearBreak (brk) ;

See also Breakpoints, page 113.

C-SPY® Debugging Guide
316 for MSP430

C-SPY macros __4

__setDatalLogBreak
Syntax __setDataLogBreak (location, access)
Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
142.

access

The memory access type: "R", for read, "w" for write, or "Rw" for read/write.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 31: __setDataLogBreak return values

For use with

Description Sets a data log breakpoint, that is, a breakpoint which is triggered when the processor
reads or writes data at the specified location. Note that a data log breakpoint does not
stop the execution it just generates a data log.

Example __var brk;
brk = __setDataLogBreak ("Memory:0x4710", "R");
__clearBreak (brk) ;

See also Breakpoints, page 113 and Getting started using data logging, page 85.

317

Reference information on C-SPY system macros

__setLogBreak

Syntax

Parameters

Return value

For use with

Description

C-SPY® Debugging Guide
318 for MSP430

__setLogBreak (location, message, msg_type, condition,
cond_type)

location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 142.

message

The message text.

msg_type
The message type; choose between:

TEXT, the message is written word for word.

ARGS, the message is interpreted as a comma-separated list of C-SPY
expressions or strings.

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 32: __setLogBreak return values
All C-SPY drivers.

Sets a log breakpoint, that is, a breakpoint which is triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will temporarily halt and
print the specified message in the C-SPY Debug Log window.

C-SPY macros __4

Example __var logBpl;
__var logBp2;
logOn ()
{
logBpl = __setLogBreak ("{C:\\temp\\Utilities.c}.23.1",
"\"Entering trace zone at :\", #PC:%X", "ARGS", "1", "TRUE");
logBp2 = __setLogBreak ("{C:\\temp\\Utilities.c}.30.1",
"Leaving trace zone...", "TEXT", "1", "TRUE");
}
logOff ()
{

__clearBreak(logBpl) ;
__clearBreak (logBp2) ;

See also Formatted output, page 289 and Breakpoints, page 113.

__setRangeBreak

Syntax __setRangeBreak (start_loc, end_loc, end cond, type, access,
action, action_when)

Parameters All parameters are strings.

start_loc The start location. Choose between:

A source location on the form " { filename}.line.col" (for
example "{D:\\src\\prog.c}.12.9")

An absolute location on the form " zone: hexaddress" or simply
"hexaddress" (for example "Memory:0x42")

An expression whose value designates a location (for example
"my_global_variable").

end_loc The end location. This can be either the same as for start_loc
above or the length of the range.

end_cond The type of end condition: "Location", "Length", or
"Automatic".

type The breakpoint type: "Address" or "Data".

access The memory access type: "Read", "Write", "ReadWrite", or
"Fetch".

319

Reference information on C-SPY system macros

action The action type: "Break", "Trigger", or "BreakTrigger".

action_when Specifies if the action should happen at an access inside or outside of
the specified range: "Inside" or "Outside".

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 33: __setRangeBreak return values

For use with The C-SPY FET Debugger driver.
Description Sets a range breakpoint.
Example __var brk;
brk = __setRangeBreak ("Memory:0x1240", "Memory:0x1360",
"Location", "Address", "Fetch", "Trigger", "Inside");

__clearBreak (brk) ;

See also Breakpoints, page 113.

__setSimBreak
Syntax __setSimBreak(location, access, action)
Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
142.

access

The memory access type: "R" for read or "w" for write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

C-SPY® Debugging Guide
320 for MSP430

C-SPY macros __4

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 34: __setSimBreak return values
For use with The C-SPY Simulator.

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

__setTraceStartBreak
Syntax __setTraceStartBreak(location)
Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 142.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 35: __setTraceStartBreak return values
For use with The C-SPY Simulator.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is started.

321

Reference information on C-SPY system macros

Example

See also

__setTraceStopBreak

Syntax

Parameters

Return value

For use with

Description

Example

C-SPY® Debugging Guide
322 for MSP430

__var startTraceBp;

__var stopTraceBp;

traceOn ()
{
startTraceBp = __setTraceStartBreak
("{C:\\TEMP\\Utilities.c}.23.1");
stopTraceBp = __setTraceStopBreak

("{C:\\temp\\Utilities.c}.30.1");

traceOff ()
{

__clearBreak(startTraceBp) ;
__clearBreak (stopTraceBp) ;

Breakpoints, page 113.

__setTraceStopBreak (location)

location
A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 142.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful int 0

Table 36: __setTraceStopBreak return values
The C-SPY Simulator.

Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is stopped.

See setTraceStartBreak, page 321.

C-SPY macros __4

See also Breakpoints, page 113.
__sourcePosition

Syntax __sourcePosition(linePtr, colPtr)

Parameters linePtr

Pointer to the variable storing the line number

colPtr
Pointer to the variable storing the column number

Return value

Result Value
Successful Filename string
Unsuccessful Empty (" ") string

Table 37: __sourcePosition return values
For use with All C-SPY drivers.

Description If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind
Syntax __strFind(macroString, pattern, position)
Parameters macroString
A macro string.
pattern
The string pattern to search for
position
The position where to start the search. The first position is 0
Return value The position where the pattern was found or -1 if the string is not found.
For use with All C-SPY drivers.

323

Reference information on C-SPY system macros

Description

Example

See also

__subString

Syntax

Parameters

Return value
For use with
Description

Example

See also

This macro searches a given string (macroString) for the occurrence of another string
(pattern).

__strFind("Compiler", "pile", 0) =3
__strFind("Compiler", "foo", 0) = -1

Macro strings, page 287.

__subString(macroString, position, length)

macroString

A macro string.

position

The start position of the substring. The first position is 0.

length
The length of the substring

A substring extracted from the given macro string.
All C-SPY drivers.
This macro extracts a substring from another string (macroString).

__subString("Compiler", 0, 2)
The resulting macro string contains Co.
__subString("Compiler", 3, 4)

The resulting macro string contains pile.

Macro strings, page 287.

__targetDebuggerVersion

Syntax
Return value

For use with

C-SPY® Debugging Guide
324 for MSP430

__targetDebuggerVersion ()
A string that represents the version number of the C-SPY debugger processor module.

All C-SPY drivers.

C-SPY macros __4

Description This macro returns the version number of the C-SPY debugger processor module.
Example __var toolVer;
toolVer = __targetDebuggerVersion() ;
__message "The target debugger version is, ", toolVer;
__tolLower
Syntax __toLower (macroString)
Parameters macroString

A macro string.

Return value The converted macro string.
For use with All C-SPY drivers.
Description This macro returns a copy of the parameter macroString where all the characters have

been converted to lower case.

Example __toLower ("IAR")
The resulting macro string contains iar.
__toLower ("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 287.
__toString

Syntax __toString(C_string, maxlength)

Parameters C_string

Any null-terminated C string.

maxlength

The maximum length of the returned macro string.
Return value Macro string.

For use with All C-SPY drivers.

325

Reference information on C-SPY system macros

326

Description

Example

See also

__toUpper

Syntax

Parameters

Return value
For use with

Description

Example

See also

__unloadlmage

Syntax

Parameters

C-SPY® Debugging Guide
for MSP430

This macro is used for converting C strings (char* or char []) into macro strings.

Assuming your application contains this definition:
char const * hptr = "Hello World!";

this macro call:

__toString (hptr, 5)

would return the macro string containing Hello.

Macro strings, page 287.

__toUpper (macroString)

macroString

A macro string.
The converted string.
All C-SPY drivers.

This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

_toUpper ("string")

The resulting macro string contains STRING.

Macro strings, page 287.

__unloadImage (module_id)

module_id

An integer which represents a unique module identification, which is retrieved
as a return value from the corresponding __loadImage C-SPY macro.

C-SPY macros __4

Return value

Value Result

module_id A unique module identification (the same as the input
parameter).

int 0 The unloading failed.

Table 38: __unloadlmage return values

For use with All C-SPY drivers.

Description Unloads debug information from an already downloaded image.

See also Loading multiple images, page 45 and Images, page 363.
__writeFile

Syntax __writeFile(fileHandle, value)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value
An integer.
Return value int 0
For use with All C-SPY drivers.
Description Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __fmessage statement can do the same thing. The __writeFile macro is
provided for symmetry with __readfFile.

__writeFileByte
Syntax __writeFileByte(fileHandle, value)
Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.

327

Reference information on C-SPY system macros

Return value int 0
For use with All C-SPY drivers.
Description Writes one byte to the file £ileHandle.

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8 (value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters value
An integer.

address

The memory address (integer).

zone
A string that specifies the memory zone, see C-SPY memory zones, page 148.
Return value int 0
For use with All C-SPY drivers.
Description Writes one byte to a given memory location.
Example _ _writeMemory8 (0x2F, 0x8020, "Memory");
__writeMemoryl 6
Syntax __writeMemoryl6 (value, address, zone)
Parameters value
An integer.
address
The memory address (integer).
zone
A string that specifies the memory zone, see C-SPY memory zones, page 148.
Return value int 0

C-SPY® Debugging Guide
328 for MSP430

C-SPY macros __4

For use with All C-SPY drivers.
Description Writes two bytes to a given memory location.
Example __writeMemoryl6 (0x2FFF, 0x8020, "Memory"):;
__writeMemory32

Syntax __writeMemory32 (value, address, zone)
Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 148.

Return value int 0

For use with All C-SPY drivers.

Description Writes four bytes to a given memory location.

Example __writeMemory32 (0x5555FFFF, 0x8020, "Memory");

Graphical environment for macros

Reference information about:

® Macro Registration window, page 330
® Debugger Macros window, page 332
® Macro Quicklaunch window, page 334

329

Graphical environment for macros

330

Macro Registration window

The Macro Registration window is available from the View>Macros submenu during a

debug session.

V| SetupSimple.mac
SetupAdvanced.mac

Macro Registration =]
Add Remove Remove Al Reload
File Full Path

ChtutonSetupSimple.mac
ChtutonSetupAdvanced.mac

Use this window to list, register, and edit your debugger macro files.

Double-click a macro file to open it in the editor window and edit it.

Requirements

None; this window is always available.

Display area

This area contains these columns:

File

The name of an available macro file. To register the macro file, select the check
box to the left of the filename. The name of a registered macro file appears in

bold style.
Full path

The path to the location of the added macro file.

C-SPY® Debugging Guide

for MSP430

C-SPY macros __4

Context menu

This context menu is available:
Add...

Remove
Rermove All

Reload
Open File

Open Debugger Macros Window

These commands are available:

Add
Opens a file browser where you can locate the macro file that you want to add
to the list. This menu command is also available as a function button at the top
of the window.

Remove

Removes the selected debugger macro file from the list. This menu command is
also available as a function button at the top of the window.

Remove All

Removes all macro files from the list. This menu command is also available as
a function button at the top of the window.

Reload

Registers the selected macro file. Typically, this is useful when you have edited
a macro file. This menu command is also available as a function button at the
top of the window.

Open File

Opens the selected macro file in the editor window.

Open Debugger Macros Window
Opens the Debugger Macros window.

331

Graphical environment for macros

332

Debugger Macros window

Requirements

Display area

C-SPY® Debugging Guide
for MSP430

The Debugger Macros window is available from the View>Macro submenu during a

debug session.

Debugger Macros |
MName Parameters File i
Access i} SetupSimple.mac =
__cancelAllinterrupts i}

__cancellnterrupt {inf)
__clearBreak {id)
closeFile file
_delay Eval)ue) Select a macro and
_disablelnterrupts " click Fl for reference
__driverType (string) information -

Use this window to list all registered debugger macro functions, either predefined
system macros or your own. This window is useful when you edit your own macro
functions and want an overview of all available macros that you can use.

Double-clicking a macro defined in a file opens that file in the editor window.

To open a macro in the Macro Quicklaunch window, drag it from the Debugger Macros
window and drop it in the Macro Quicklaunch window.

Select a macro and press F1 to get online help information for that macro.

None; this window is always available.

This area contains these columns:

Name
The name of the debugger macro.

Parameters
The parameters of the debugger macro.

File
For macros defined in a file, the name of the file is displayed. For predefined
system macros, -System Macro- is displayed.

C-SPY macros __4

Context menu

This context menu is available:

Open File

Add to Quicklaunch Window

User Macros
System Macros

v All Macros

Open Macro Registration Window

These commands are available:
Open File
Opens the selected debugger macro file in the editor window.

Add to Quicklaunch Window
Adds the selected macro to the Macro Quicklaunch window.

User Macros

Lists only the debugger macros that you have defined yourself.

System Macros
Lists only the predefined system macros.

All Macros

Lists all debugger macros, both predefined system macros and your own.

Open Macro Registration Window

Opens the Macro Registration window.

333

Graphical environment for macros

334

Macro Quicklaunch window

al'

Requirements

C-SPY® Debugging Guide
for MSP430

The Macro Quicklaunch window is available from the View menu.

= Expression Result
G testEval()
G nval Error (col 1): Unknown or ambiguous symbol. nval
G testEval2() 0
Q s2-37
G incval() 3
=
2
B
=
5
&
2
= Macro Quicklaunch B

Use this window to evaluate expressions, typically C-SPY macros.

For some devices, there are predefined C-SPY macros available with device support,
typically provided by the chip manufacturer. These macros are useful for performing
certain device-specific tasks. The macros are available in the Macro Quicklaunch
window and are easily identified by their green icon,

The Macro Quicklaunch window is similar to the Quick Watch window, but is primarily
designed for evaluating C-SPY macros. The window gives you precise control over
when to evaluate an expression.

To add an expression:
Choose one of these alternatives:

o Drag the expression to the window

e In the Expression column, type the expression you want to examine.

If the expression you add and want to evaluate is a C-SPY macro, the macro must first
be registered, see Using C-SPY macros, page 281.

To evaluate an expression:

Double-click the Recalculate icon to calculate the value of that expression.

None; this window is always available.

C-SPY macros __4

Display area
This area contains these columns:

g Recalculate icon

To evaluate the expression, double-click the icon. The latest evaluated
expression appears in bold style.

Expression

One or several expressions that you want to evaluate. Click <click to add>
to add an expression. If the return value has changed since last time, the value
will be displayed in red.

Result
Shows the return value from the expression evaluation.

Context menu

This context menu is available:

Evaluate Now
Rermove
Rermove All

These commands are available:

Evaluate Now

Evaluates the selected expression.

Remove
Removes the selected expression.

Remove All
Removes all selected expressions.

335

Graphical environment for macros

C-SPY® Debugging Guide
336 for MSP430

The C-SPY command line
utility—cspybat

e Summary of C-SPY command line options

e Reference information on C-SPY command line options.

Using C-SPY in batch mode

These topics are covered:

e Starting cspybat
e Output

e Invocation syntax

You can execute C-SPY in batch mode if you use the command line utility cspybat,
installed in the directory common\bin.

STARTING CSPYBAT

I To start cspybat you must first create a batch file. An easy way to do that is to use one
of the batch files that C-SPY automatically generates when you start C-SPY in the
IDE.

C-SPY generates a batch file projectname. buildconfiguration.cspy.bat every
time C-SPY is initialized. In addition, two more files are generated:

® project.buildconfiguration.general .xcl, which contains options specific
to cspybat.

® project.buildconfiguration.driver.xcl, which contains options specific to
the C-SPY driver you are using.

You can find the files in the directory $PROJ_DIR$\settings. The files contain the
same settings as the IDE, and provide hints about additional options that you can use.

2 To start cspybat, you can use this command line:

project.cspybat.bat [debugfile]

337

Using C-SPY in batch mode

338

C-SPY® Debugging Guide
for MSP430

Note that debugfileis optional. You can specify it if you want to use a different debug
file than the one that is used in the project.buildconfiguration.general .xcl
file.

OUTPUT

When you run cspybat, these types of output can be produced:

Terminal output from cspybat itself

All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

Terminal output from the application you are debugging

All such terminal output is directed to stdout, provided that you have used the
--plugin option. See --plugin, page 354.

Error return codes

cspybat returns status information to the host operating system that can be tested in

abatch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor DLL driver DLL debug_file

[cspybat_options] --backend driver_ options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.

Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file; available in 430\bin.

driver DLL The C-SPY driver DLL file; available in 430\bin.

debug_file The object file that you want to debug (filename extension d43). See

also —debugfile, page 486.

cspybat_options The command line options that you want to pass to cspybat. Note

that these options are optional. For information about each option,
see Reference information on C-SPY command line options, page 341.

Table 39: cspybat parameters

The C-SPY command line utility—cspybat ___¢

Parameter Description

--backend Marks the beginning of the parameters to the C-SPY driver; all

options that follow will be sent to the driver. Note that this option is

mandatory.

driver_options The command line options that you want to pass to the C-SPY driver.

Note that some of these options are mandatory and some are

optional. For information about each option, see Reference information

on C-SPY command line options, page 341.

Table 39: cspybat parameters (Continued)

Summary of C-SPY command line options

Reference information about:

General cspybat options

Options available for all C-SPY drivers
Options available for the simulator driver
Options available for the C-SPY FET Debugger driver

GENERAL CSPYBAT OPTIONS

--backend

--code_coverage_file

--cycles
--debugfile

--downloadonly

-f

--leave_running

——-macro
——-macro_param

--plugin

Marks the beginning of the parameters to be sent to the
C-SPY driver (mandatory).

Enables the generation of code coverage information and
places it in a specified file.

Specifies the maximum number of cycles to run.
Specifies an alternative debug file.

Downloads a code image without starting a debug session
afterwards.

Extends the command line.

Starts the execution on the target and then exits but leaves
the target running.

Specifies a macro file to be used.
Assigns a value to a C-SPY macro parameter.

Specifies a plugin file to be used.

339

Summary of C-SPY command line options

--silent Onmits the sign-on message.

--timeout Limits the maximum allowed execution time.

OPTIONS AVAILABLE FOR ALL C-SPY DRIVERS

--core Specifies the core to be used.
-d Specifies the C-SPY driver to be used.
-p Specifies the device description file to be used.

OPTIONS AVAILABLE FOR THE SIMULATOR DRIVER

--disable_interrupts Disables the interrupt simulation.

--mapu Activates memory access checking.
--o0dd_word_check Stops the execution if an access to an odd address is
found.

OPTIONS AVAILABLE FOR THE C-SPY FET DEBUGGER
DRIVER

--allow_access_to_BSL Enables erase/write access to BSL flash memory.

--allow_locked_flash_ Enables erase/write access to locked flash memory.

access

--attach Attaches the debugger to a running target.
--connection Specifies the communication channel to be used.
--derivative Specifies the device.

--disable_memory_cach Disables the memory cache in the FET debugger.
e

--eem Specifies the level of Enhanced Emulation Mode.
--erase_exclude Excludes a memory segment from erase.

--erase_ip_protected Erases main and Information flash memories, including
the IP protected area before download.

--erase_main Erases main flash memory before download.

C-SPY® Debugging Guide
340 for MSP430

The C-SPY command line utility—cspybat ___¢

--erase_main_and_info Erases the main and Information flash memories before
download.

--erase_retain_file Retains unchanged memory during download.
--erase_retain_target Retains unchanged memory during download.

--hardware_multiplier Generates code for the hardware multiplier peripheral

unit.
--hwmult_type Specifies the type of hardware multiplier to be used.
--jtag_speed Specifies the JTAG communication speed.
--1lptx Specifies the parallel port to be used.
--port Specifies the serial port to be used.
--protocol Specifies the debug protocol to be used.

--set_exit_breakpoint Sets a system breakpoint on exit.

--set_getchar_breakpo Sets a system breakpoint on getchar.
int

--set_putchar_breakpo Sets a system breakpoint on putchar.
int

--settlingtime Specifies the delay after setting the voltage.

--use_emulated_breakp Allows C-SPY to use emulated breakpoints.

oints

--use_virtual_breakpo Allows C-SPY to use virtual breakpoints.

ints
--vccvoltage Specifies the voltage provided by the USB interface.
--verify_all Verifies the download of your application.

Reference information on C-SPY command line options

This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

--allow_access_to BSL

Syntax --allow_access_to_BSL

341

Reference information on C-SPY command line options

For use with The C-SPY FET Debugger driver.

Description Use this option to enable erase/write access to BSL flash memory.

Project>Options>Debugger>FET Debugger>Download>Allow erase/write access
to BSL flash memory

--allow_locked flash_access

Syntax --allow_locked_flash_access
For use with The C-SPY FET Debugger driver.
Description Use this option to enable erase/write access to locked flash memory.

Project>Options>Debugger>FET Debugger>Download>Allow erase/write access
to locked flash memory

--attach
Syntax --attach
For use with The C-SPY FET Debugger driver.
Description Use this option to make the debugger attach to a running application at its current
location, without resetting the target system.
Project>Options>Debugger>FET Debugger>Setup>Attach to running target
--backend
Syntax --backend {driver options}
Parameters driver options
Any option available to the C-SPY driver you are using.
For use with cspybat (mandatory).
Description Use this option to send options to the C-SPY driver. All options that follow --backend

will be passed to the C-SPY driver, and will not be processed by cspybat itself.

C-SPY® Debugging Guide
342 for MSP430

--connection

Syntax

Parameters

For use with

Description

==core

Syntax

Parameters

For use with
Description

See also

--code_coverage_file

Syntax

The C-SPY command line utility—cspybat ___¢

This option is not available in the IDE.

--connection Port

Port
The communication channel to be used; choose between: ti_usb, ti_lpt,
jlink, olimex, olimex_parallel, elprotonic, softbaugh_lpt,
softbaugh_usb, and softbaugh_usb_pro.

The C-SPY FET Debugger driver.

Use this option to specify the communication channel to be used between C-SPY and
the target system.

Project>Options>Debugger>FET Debugger>Setup>Connection

--core {430X|430Xv2}

430X|430%Xv2

The core you are using. This option reflects the corresponding compiler option.
All C-SPY drivers.
Use this option to specify the core you are using.

The IAR C/C++ Compiler User Guide for MSP430 for information about the cores.

Project>Options>General Options>Target>Device

--code_coverage_file file

Note that this option must be placed before the --backend option on the command line.

343

Reference information on C-SPY command line options

344

Parameters

For use with

Description

See also

--cycles

Syntax

Parameters

For use with

Description

Syntax

Parameters

C-SPY® Debugging Guide
for MSP430

file

The name of the destination file for the code coverage information.
cspybat

Use this option to enable the generation of code coverage information. The code
coverage information will be generated after the execution has completed and you can
find it in the specified file.

Note that this option requires that the C-SPY driver you are using supports code
coverage. If you try to use this option with a C-SPY driver that does not support code
coverage, an error message will be directed to stderr.

Code coverage, page 209.

To set this option, choose View>Code Coverage, right-click and choose Save As when
the C-SPY debugger is running.

--cycles cycles

Note that this option must be placed before the --backend option on the command line.

cycles

The number of cycles to run.
cspybat
Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.

Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

This option is not available in the IDE.

-d {sim|fet}

sim Specifies the simulator driver.

For use with

Description

--debugfile

Syntax

Parameters

For use with

Description

--derivative

Syntax

Parameters

For use with

Description

The C-SPY command line utility—cspybat ___¢

fet Specifies the FET debugger driver.

All C-SPY drivers.

Use this option to specify the C-SPY driver to be used.

Project>Options>Debugger>Setup>Driver

--debugfile filename

filename

The name of the debug file to use.

cspybat

This option can be placed both before and after the - -backend option on the command
line.

Use this option to make cspybat use the specified debug file instead of the one used in
the generated cpsybat .bat file.

This option is not available in the IDE.

--derivative device

device Specifies the device to be used.

The C-SPY FET Debugger driver.

Use this option to select the device for which you will build your application.

Project>Options>General Options>Target>Device

345

Reference information on C-SPY command line options

--disable_interrupts

Syntax --disable_interrupts
For use with The C-SPY Simulator driver.
Description Use this option to disable the interrupt simulation.

To set this option, choose Simulator>Interrupt Setup and deselect the Enable
interrupt simulation option.

--disable_memory_cache

Syntax --disable_memory_cache
For use with The C-SPY FET Debugger driver.
Description Use this option to disable the memory cache in the FET debugger.

Project>Options>Debugger>FET Debugger>Setup>Disable memory cache

--downloadonly
Syntax --downloadonly
Note that this option must be placed before the --backend option on the command line.
For use with cspybat
Description Use this option to download the code image without starting a debug session afterwards.
Project>Download>Download active application
-=eem
Syntax --eem {level}

C-SPY® Debugging Guide
346 for MSP430

The C-SPY command line utility—cspybat ___¢

Parameters
level Implementation level of Enhanced Emulation Module. Choose
between:

EMEX_LOW

EMEX_MEDIUM
EMEX_HIGH
EMEX_EXTRA_SMALL_5XX
EMEX_SMALL_5XX
EMEX_MEDIUM_5XX
EMEX_LARGE_5XX

EMEX_NONE

For use with The C-SPY FET Debugger driver.

Description Use this option to specify the implementation level of Enhanced Emulation Module for
a MSP430 device. The default value is EMEX_NONE. The value of this option depends on
the device you are using.

This option is automatically set when you are using the IDE.

--erase_exclude

Syntax --erase_exclude range
Parameters

range The memory range of the segment, in the form
startaddress-endaddress.

For use with The C-SPY FET Debugger driver.

Description Use this option to exclude a memory segment from erase. The segments that overlap
with the specified area will not be erased.

Example --erase_exclude 0x2180-0x2220

To set this option, use Project>Options>Debugger>Extra Options.

347

Reference information on C-SPY command line options

--erase_ip_protected

Syntax
For use with

Description

--erase_main

Syntax
For use with

Description

--erase_main_and_info

Syntax
For use with

Description

--erase_retain_file

Syntax

For use with

C-SPY® Debugging Guide
348 for MSP430

--erase_1ip_protected

The C-SPY FET Debugger driver.

Use this option to erase the main and Information flash memories, including the IP
protected area before download.

Project>Options>Debugger>FET Debugger>Download>Erase main and
Information memory inc. IP PROTECTED area

--erase_main

The C-SPY FET Debugger driver.

Use this option to erase the main flash memory before download. The Information
memory is not erased.

Project>Options>Debugger>FET Debugger>Download>Erase main memory

--erase_main_and_info
The C-SPY FET Debugger driver.

Use this option to erase both flash memories—main and Information memory—before
download.

Project>Options>Debugger>FET Debugger>Download>Erase main and
Information memory

--erase_retain_file

The C-SPY FET Debugger driver.

--erase_retain_target

-f

Description

Syntax
For use with

Description

Syntax

Parameters

For use with

Description

The C-SPY command line utility—cspybat ___¢

Use this option to make C-SPY read the main and Information memories into a buffer.
Only the flash segments that are needed are erased. If data that is to be written into a
segment matches the data in the image that is cached on the host computer, the data in
the image is left as is, and no download is performed. The new data effectively replaces
the old data, and unchanged old data is retained.

Project>Options>Debugger>FET Debugger>Download>Retain unchanged
memory>Compare with image cached on PC

--erase_retain_target

The C-SPY FET Debugger driver.

Use this option to make C-SPY read the main and Information memories into a buffer.
Only the flash segments that are needed are erased. If data that is to be written into a
segment matches the data on the target, the data on the target is left as is, and no
download is performed. The new data effectively replaces the old data, and unchanged
old data is retained.

Project>Options>Debugger>FET Debugger>Download>Retain unchanged
memory>Compare with image on target

-f filename

filename

A text file that contains the commands (default filename extension xc1).
cspybat
This option can be placed both before and after the --backend option on the command
line.
Use this option to make cspybat read command line options from the named file.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character is treated
like a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

349

Reference information on C-SPY command line options

To set this option, use Project>Options>Debugger>Extra Options.

--hardware_multiplier

Syntax --hardware_multiplier {1632}
Parameters
16 The size of the multiplicands in bits.

Note that this parameter can only be used in combination with the
--hwmult_type parameters 1 and 2.

32 The size of the multiplicands in bits.

Note that this parameter can only be used in combination with the
--hwmult_type parameters 4 and 8.

For use with The C-SPY FET Debugger driver.

Description Use this option to generate code for the MSP430 hardware multiplier peripheral unit.
Use this option only when you have chosen a device with a hardware multiplier.
Note: This option requires that you also specify the --hwmult_type option.

To set related options, choose:

Project>Options>General Options>Target>Hardware multiplier

--hwmult_type

Syntax --hwmult_type {1|2]4]8}
Parameters

1 16 bits

Note that this parameter can only be combined with the
--hardware_multiplier parameter 16.

2 16 bits, the 2xx Family

Note that this parameter can only be combined with the
--hardware_multiplier parameter 16.

C-SPY® Debugging Guide
350 for MSP430

The C-SPY command line utility—cspybat ___¢

4 32 bits

Note that this parameter can only be combined with the
--harware_multiplier parameter 32.

8 32 bits, the 5xx Families

Note that this parameter can only be combined with the
--hardware_multiplier parameter 32.

For use with The C-SPY FET Debugger driver.

Description Use this option to generate code for the MSP430 hardware multiplier peripheral unit.
Use this option only when you have chosen a device with a hardware multiplier.
Note: This option requires that you also specify the --hardware_multiplier option.

To set related options, choose:

Project>Options>General Options>Target>Hardware multiplier

--jtag_speed

Syntax --jtag_speed{fast |medium|slow}

Parameters
fast The fast communication speed.
medium The medium communication speed.
slow The slow communication speed.

For use with The C-SPY FET Debugger driver.

Description Use this option to set the JTAG communication speed.

Project>Options>Debugger>Fet Debugger>Setup>Jtag speed

--leave_running

Syntax --leave_running

Note that this option must be placed before the --backend option on the command line.

351

Reference information on C-SPY command line options

For use with

Description

--Iptx
Syntax
For use with

Description

=-=macro

Syntax

Parameters

For use with

Description

See also

C-SPY® Debugging Guide
352 for MSP430

cspybat

Makes cspybat start the execution on the target and then exits but leaves the target
running.

To set a related option, choose:

Project>Options>Debugger>FET Debugger>Setup>Attach to running target

--lptx
The C-SPY FET Debugger driver.

Use this option to specify which parallel port the FET Debugger is connected to. x can
be 1, 2, or 3.

Project>Options>Debugger>FET Debugger>Setup>Parallel port

--macro filename

Note that this option must be placed before the --backend option on the command line.

filename

The C-SPY macro file to be used (filename extension mac).
cspybat

Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

Briefly about using C-SPY macros, page 280.

Project>Options>Debugger>Setup>Setup macros>Use macro file

The C-SPY command line utility—cspybat ___¢

=--Macro_param

Syntax --macro_param [param=valuel]

Note that this option must be placed before the - -backend option on the command line.

Parameters param = value
paramis a parameter defined using the __param C-SPY macro construction.
value is a value.

For use with cspybat

Description Use this option to assign av value to a C-SPY macro parameter.This option can be used
more than once on the command line.

See also Macro parameters, page 287.

Project>Options>Debugger>Extra Options

--mapu

Syntax --mapu

For use with The C-SPY simulator driver.

Description Specify this option to use the segment information in the debug file for memory access
checking. During the execution, the simulator will then check for accesses to
unspecified memory ranges. If any such access is found, the C function call stack and a
message will be printed on stderr and the execution will stop.

See also Memory access checking, page 150.

To set related options, choose:

Simulator>Memory Access Setup

--odd_word_check

Syntax --odd_word_check

For use with The C-SPY simulator driver.

353

Reference information on C-SPY command line options

354

Description

-p
Syntax

Parameters

For use with
Description

See also

--plugin

Syntax

Parameters

For use with

Description

C-SPY® Debugging Guide
for MSP430

Use this option to make the simulator issue a warning if there is a word access to an odd
address.

Project>Options>Debugger>Simulator>Setup>Check for word access on odd
address

-p filename

filename

The device description file to be used.
All C-SPY drivers.
Use this option to specify the device description file to be used.

Selecting a device description file, page 42.

Project>Options>Debugger>Setup>Device description file

--plugin filename

Note that this option must be placed before the - -backend option on the command line.

filename

The plugin file to be used (filename extension d11).
cspybat

Certain C/C++ standard library functions, for example print£, can be supported by
C-SPY—for example, the C-SPY Terminal I/O window—instead of by real hardware
devices. To enable such support in cspybat, a dedicated plugin module called
430bat.dl11l located in the 430\bin directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

Note: You can use this option to include also other plugin modules, but in that case the
module must be able to work with cspybat specifically. This means that the C-SPY

The C-SPY command line utility—cspybat ___¢

plugin modules located in the common\plugin directory cannot normally be used with
cspybat.

Project>Options>Debugger>Plugins

--port
Syntax --port port
Parameters
port The serial port to be used, can be COMx or Automatic. x is
the number of the COM port.
For use with The C-SPY FET Debugger driver.
Description Use this option to specify which serial port the FET Debugger is connected to.
Project>Options>Debugger>FET Debugger>Setup>Connection
--protocol
Syntax --protocol {spy-bi-wire|spy-bi-wire-jtag|4wire}
Parameters
spy-bi-wire The Spy-Bi-Wire JTAG protocol.
spy-bi-wire-jtag 4-wire JTAG protocol for devices that also support
Spy-Bi-Wire.
dwire The ordinary 4-wire JTAG protocol.
For use with The C-SPY FET Debugger driver.
Description Use this option to specify the debug protocol. Spy-Bi-Wire works for the parallel port

FET module and the TI USB FET module.
Project>Options>Debugger>FET Debugger>Setup>Debug protocol

355

Reference information on C-SPY command line options

--set_exit_breakpoint

Syntax
For use with

Description

--set_exit_breakpoint
The C-SPY FET Debugger driver.

Use this option to set a system breakpoint for exit.

Project>Options>Debugger>FET Debugger>Breakpoints>System breakpoints
on>exit

--set_getchar_breakpoint

Syntax
For use with

Description

--set_getchar_breakpoint
The C-SPY FET Debugger driver.

Use this option to set a system breakpoint for getchar.

Project>Options>Debugger>FET Debugger>Breakpoints>System breakpoints
on>getchar

--set_putchar_breakpoint

Syntax
For use with

Description

--settlingtime

Syntax
For use with

Description

C-SPY® Debugging Guide
356 for MSP430

--set_putchar_breakpoint
The C-SPY FET Debugger driver.

Use this option to set a system breakpoint for putchar.

Project>Options>Debugger>FET Debugger>Breakpoints>System breakpoints
on>putchar

--settlingtime=milliseconds
The C-SPY FET Debugger driver.
Use this option to specity the delay between switching on the target VCC and starting

the identification of the MSP430 device. Give the value in milliseconds in the range
0-9999 ms. This option can only be used with a USB connection.

--silent

Syntax

For use with

Description

--timeout

Syntax

Parameters

For use with

Description

The C-SPY command line utility—cspybat ___¢

Project>Options>Debugger>FET Debugger>Setup>Target VCC>Settling time (in
ms)

--silent

Note that this option must be placed before the - -backend option on the command line.
cspybat

Use this option to omit the sign-on message.

This option is not available in the IDE.

--timeout milliseconds

Note that this option must be placed before the --backend option on the command line.

milliseconds

The number of milliseconds before the execution stops.
cspybat

Use this option to limit the maximum allowed execution time.

This option is not available in the IDE.

--use_emulated_breakpoints

Syntax
For use with

Description

--use_emulated_breakpoints
The C-SPY FET Debugger driver.

Use this option to allow C-SPY to use emulated breakpoints.

Project>Options>Debugger>FET Debugger>Breakpoints>Use software
breakpoints>Emulated breakpoints

357

Reference information on C-SPY command line options

--use_virtual_breakpoints

Syntax
For use with

Description

--vccvoltage

Syntax
For use with

Description

--verify_all

Syntax
For use with

Description

C-SPY® Debugging Guide
358 for MSP430

--use_virtual_breakpoints

The C-SPY FET Debugger driver.

Use this option to allow C-SPY to use virtual breakpoints.

Project>Options>Debugger>FET Debugger>Breakpoints>Use software
breakpoints>Virtual breakpoints

--vcecvoltage=volts
The C-SPY FET Debugger driver.

Use this option to specify the voltage provided by the USB interface. Give the value in
Volts with one decimal’s precision in the range 1.0-4.0 V. This option can only be used
with a USB connection.

Project>Options>Debugger>FET Debugger>Setup>Target VCC>Target VCC (in
Volt)

--verify_all

The C-SPY FET Debugger driver.

Use this option to verify that the downloaded code image can be read back from target
memory with the correct contents.

Project>Options>Debugger>FET Debugger>Download>Verify download

Part 4. Additional
reference information

This part of the C-SPY® Debugging Guide for MSP430 includes these chapters:
e Debugger options

o Additional information on C-SPY drivers

.hmuhhhhi

359

AAARRIE

360

Debugger options

e Setting debugger options
e Reference information on debugger options
e Reference information on the C-SPY simulator

e Reference information on C-SPY hardware debugger driver options

Setting debugger options

Before you start the C-SPY debugger you might need to set some options—both C-SPY
generic options and options required for the target system (C-SPY driver-specific
options). This section gives detailed information about the options in the Debugger
category.

To set debugger options in the IDE:
I Choose Project>Options to display the Options dialog box.
2 Select Debugger in the Category list.

For more information about the generic options, see Reference information on debugger
options, page 362.

3 On the Setup page, make sure to select the appropriate C-SPY driver from the Driver
drop-down list.

4 To set the driver-specific options, select the appropriate driver from the Category list.
Depending on which C-SPY driver you are using, different options are available.

C-SPY driver Available options pages

C-SPY FET Debugger driver Setup for FET Debugger, page 367
Download, page 369
Breakpoints, page 370

C-SPY Simulator Setup options for the simulator, page 366

Table 40: Options specific to the C-SPY drivers you are using
5 To restore all settings to the default factory settings, click the Factory Settings button.

6 When you have set all the required options, click OK in the Options dialog box.

361

Reference information on debugger options

Reference information on debugger options

Reference information about:

e Setup

e Images

o Extra Options
o Plugins

Setup

The Setup options select the C-SPY driver, the setup macro file, and device description
file to use, and specify which default source code location to run to.

Setup |
Driver———————————— ¥ Funto
I Simulator j Imain
— Setup macro

™ Use macra file
| L

— Device description file

™ Overide default

| L

Driver

Selects the C-SPY driver for the target system you have.

Run to

Specifies the location C-SPY runs to when the debugger starts after a reset. By default,
C-SPY runs to the main function.

To override the default location, specify the name of a different location you want
C-SPY to run to. You can specify assembler labels or whatever can be evaluated as such,
for example function names.

If the option is deselected, the program counter will contain the regular hardware reset
address at each reset.

C-SPY® Debugging Guide
362 for MSP430

Images

Setup macros

Debugger options °

Registers the contents of a setup macro file in the C-SPY startup sequence. Select Use
macro file and specify the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

Device description file

A default device description file is selected automatically based on your project settings.
To override the default file, select Override default and specify an alternative file. A
browse button is available for your convenience.

For information about the device description file, see Modifying a device description
file, page 45.

Device description files for each MSP430 device are provided in the directory
430\config and have the filename extension ddf.

The Images options control the use of additional debug files to be downloaded.

Images

[Download extra image

=

i

[Download extra image

:

[Download extra image

:

Note: Flash loading will not be performed; using the Images options you can only
download images to RAM.

Download extra Images

Controls the use of additional debug files to be downloaded:

Path

Specity the debug file to be downloaded. A browse button is available for your
convenience.

363

Reference information on debugger options

Offset
Specity an integer that determines the destination address for the downloaded
debug file.

Debug info only
Makes the debugger download only debug information, and not the complete
debug file.

If you want to download more than three images, use the related C-SPY macro, see
__loadlmage, page 302.

For more information, see Loading multiple images, page 45.

Plugins

The Plugins options select the C-SPY plugin modules to be loaded and made available
during debug sessions.

Flugins

Select pluging to load:

Code Coverage

Description: |[Enables code coverage in the debugger.

Lacatian: |\common\plugins\EodeEoverage\EodeEoverage.dII
Originator: |IAF| Systems
Wersior: |4.B.D.D

Select plugins to load

Selects the plugin modules to be loaded and made available during debug sessions. The
list contains the plugin modules delivered with the product installation.

Description

Describes the plugin module.

Location

Informs about the location of the plugin module.

Generic plugin modules are stored in the common\plugins directory. Target-specific
plugin modules are stored in the 430\plugins directory.

C-SPY® Debugging Guide
364 for MSP430

Debugger options °

Originator

Informs about the originator of the plugin module, which can be modules provided by
IAR Systems or by third-party vendors.

Version

Informs about the version number.

Extra Options

The Extra Options page provides you with a command line interface to C-SPY.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Use command line options

Specify command line arguments that are not supported by the IDE to be passed to
C-SPY.

Note that it is possible to use the /args option to pass command line arguments to the
debugged application.

Syntax: /args arg0 argl
Multiple lines with /args are allowed, for example:
/args --logfile log.txt

/args --verbose

365

Reference information on the C-SPY simulator

If you use /args, these variables must be defined in your application:

/* __argc, the number of arguments in __argv. */
__no_init int __argc;
/* __argv, an array of pointers to strings that holds the

arguments; must be large enough to fit the number of
parameters.*/

__no_init const char * __argv[MAX_ ARGS];

/* __argvbuf, a storage area for __argv; must be large enough to
hold all command line parameters. */

__no_init __root char __argvbuf [MAX_ ARG_SIZE];

Reference information on the C-SPY simulator

Reference information about:
e Setup options for the simulator

This section gives reference information on the C-SPY simulator options.

Setup options for the simulator

The simulator Setup options control the C-SPY simulator.
Setup

Peripheral simulation
[Enable peripheral simulation

Check for word access on odd address

Peripheral simulation

These options set up peripheral simulation, which requires a plugin from a third-party
vendor. For information, see the PDF EW_PeripheralSimulationGuide.pdf in the
EW_DIR\430\doc\ directory and the examples in the
EW_DIR\430\plugins\simulation directory.

C-SPY® Debugging Guide
366 for MSP430

Debugger options °

Check for word access on odd address

Makes the simulator issue a warning if there is a word access to an odd address.

Reference information on C-SPY hardware debugger driver options
This section covers these topics:
e Setup for FET Debugger, page 367
® Download, page 369
® Breakpoints, page 370

Setup for FET Debugger
The FET Debugger Setup options control the C-SPY FET Debugger driver.

Setup

Connection Jtag speed
Texas Instrument USB-F | Automatic D Fast
Paralel oot 1 Medium
arallel po
P @ Slow
Debug protocol Target VCT

3) Automatic selection Overide default &l

4-\Wire JTAG

Settling time {n ms): 0.0
[Attach to running target
[Disable memary cache Enable ULP/LPMx.5 debug

Click the arrows below to display more information.

Connection
Controls the communication between C-SPY and the target device.

The C-SPY FET Debugger can communicate with the target device via a number of
different emulators. Select the emulator you are using.

If your emulator is connected to the host computer via a parallel port, you must also
specify which parallel port to use: Parallel port 1, Parallel port 2, or Parallel port 3. If
your emulator is connected to the host computer via a USB port, the debugger will
automatically connect to the correct port.

Some emulator drivers support multiple emulators connected to the same host computer.
Each emulator requires its own instance of IAR Embedded Workbench and each
instance must identify its emulator. To identify an emulator, click the browse button to

367

Reference information on C-SPY hardware debugger driver options

368

Debug protocol

display a list of all detected emulators. To identify a connection, click the port in the list
and the Mode LED on the attached emulator will light up.

Determines the debug interface to use:

Automatic selection

Selects the debug interface automatically. (If Connection is set to Automatic,
C-SPY correctly determines which interface to use.)

Manual selection

Spy-Bi-Wire to select the 2-wire JTAG (Spy-Bi-Wire) interface. Works with
emulators from Elprotronic, Olimex, and Texas Instruments that connect via
USB.

Attach to running target

Makes the debugger attach to a running application at its current location, without
resetting the target system. To avoid unexpected behavior when using this option, the
Debugger>Setup option Run to should be deselected.

Disable memory cache

Jtag speed

Target VCC

C-SPY® Debugging Guide
for MSP430

Disables the memory cache in the FET debugger.

Sets the JTAG communication speed. Choose between Fast, Medium, and Slow.

Specify the voltage provided by the USB interface:

Override default
Overrides the default voltage. To see what the default voltage is, see Device
Information window, page 56.

Target VCC
Specify the voltage with one decimal’s precision in the range 1.0-4.0 V. This
option can only be used with a USB connection.

Settling time

Specity a delay that will be used between switching on the target VCC and
starting the identification of the MSP430 device.

Debugger options °

Enable ULP/LPMx.5 debug
Enables debugging of applications that use the LPMx5 low-power mode.

Download

By default, C-SPY downloads the application to RAM or flash when a debug session
starts. The Download options let you modify the behavior of the download.

Download

[Verify download
[Allow erase/write access to locked flash memory

[Mllow erase/write access to BSL flash memory
Extemal code download
Flash erase
(@) Erase main memory
() Erase main and Information memony
() Retain unchanged memory
(@ Compare with image on target
Compare with image cached on PC

Erase main and Information memory inc. IP PROTECTED area

Click the arrows below to display more information.

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Allow erasel/write access to locked flash memory

Enables erase/write access to Info Segment A. This option can only be used with an
MSP430F2xx device.

Allow erase/write access to BSL flash memory

Enables erase/write access to BSL flash memory. This option can only be used with an
MSP430F5xx device.

External code download

Saves user code to external SPI memory.

Erase main memory

Erases only the main flash memory before download. The Information memory is not
erased.

369

Reference information on C-SPY hardware debugger driver options

Erase main and Information memory

Erases both flash memories—main and Information memory—before download.

Retain unchanged memory

Reads the main and Information memories into a buffer. Only the flash segments that
are needed are erased.

Compare with image on target

Compares the data that is to be written into a segment with the image on the
target. If the data matches the image, the data on the target is left as is, and
nothing is downloaded. The new data effectively replaces the old data, and
unchanged old data is retained.

Compare with image cached on PC
Compares the data that is to be written into a segment with the image that is

cached on the host computer.
Erase main and Information memory inc. IP PROTECTED area
Erases the main and Information flash memories, including the IP protected area before
download.
JTAG password

If a JTAG device is password-protected, supply the needed password here.

Breakpoints

The Breakpoints options control the use of breakpoints.

Breakpoints

Software breakpoint
[Use software breakpoints
@) Virtual breakpoints

Emulated breakpoints

System breakpoints on
[exit

putchar

getchar

Reserve breakpoints for Data Sample

Click the arrows below to display more information.

C-SPY® Debugging Guide
370 for MSP430

Debugger options °

Use software breakpoints
Allows C-SPY to use software breakpoints when all available hardware breakpoints
have been used. Choose between:
Virtual breakpoints
Makes C-SPY use virtual breakpoints.

Emulated breakpoints
Makes C-SPY use emulated breakpoints: the instruction where the breakpoint is
set will be replaced by a special instruction that the debugger recognizes.

For information, see Breakpoints in the C-SPY hardware Debugger driver, page 116.

System breakpoints on

Controls the use of system breakpoints in the CLIB runtime environment. If the C-SPY
Terminal I/O window is not required or if you do not need a breakpoint on the exit
label, you can save hardware breakpoints by not reserving system breakpoints. Select or
deselect the options exit, putchar, and getchar respectively, if you want, or do not want,
C-SPY to use system breakpoints for these. For more information, see Breakpoint
consumers, page 118.

In the DLIB runtime environment, C-SPY will always set a system breakpoint on the

__DebugBreak label. You cannot disable this behavior.

Reserve breakpoints for Data Sample

This option reserves the two hardware breakpoints that are required for the Sampled
Graphs window.

371

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
372 for MSP430

Additional information on
C-SPY drivers

This chapter describes the additional menus and features provided by the

C-SPY® drivers. You will also find some useful hints about resolving problems.

Reference information on C-SPY driver menus

C-SPY driver

This section gives reference information on the menus specific to the C-SPY drivers.
More specifically, this means:
o Simulator menu, page 374

o Emulator menu, page 376.

Before you start the C-SPY debugger, you must first specify a C-SPY driver in the
Options dialog box, using the option Debugger>Setup>Driver.

When you start a debug session, a menu specific to that C-SPY driver will appear on the
menu bar, with commands specific to the driver.

When we in this guide write “choose C-SPY driver>" followed by a menu command,
C-SPY driver refers to the menu. If the feature is supported by the driver, the command
will be on the menu.

373

Reference information on C-SPY driver menus

Simulator menu
When you use the simulator driver, the Simulator menu is added to the menu bar.
Memory Access Setup..
Trace
Function Trace

Function Profiler

Data Log
Data Log Summary
Interrupt Log

Interrupt Summary
Timeline
Simulated Frequency...

v | Interrupt Setup...
Forced Interrupt

Interrupt Status

Breakpoint Usage...

Menu commands

These commands are available on the menu:

Memory Access Setup

Displays a dialog box to simulate memory access checking by specitying
memory areas with different access types, see Memory Access Setup dialog box,
page 172.

Trace

Opens a window which displays the collected trace data, see Trace window,
page 182.

Function Trace

Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 185.

Function Profiler
Opens a window which shows timing information for the functions, see
Function Profiler window, page 204.

Data Log

Opens a window which logs accesses to up to four different memory locations
or areas, see Data Log window, page 102.

C-SPY® Debugging Guide
374 for MSP430

Additional information on C-SPY drivers __4

Data Log Summary
Opens a window which displays a summary of data accesses to specific memory
location or areas, see Data Log Summary window, page 104.

Interrupt Log
Opens a window which displays the status of all defined interrupts, see Interrupt
Log window, page 253.

Interrupt Log Summary
Opens a window which displays a summary of the status of all defined
interrupts, see Interrupt Log Summary window, page 255.

Timeline
Opens a window which gives a graphical view of various kinds of information
on a timeline, see Timeline window, page 185.

Simulated Frequency
Opens the Simulated Frequency dialog box where you can specify the
simulator frequency used when the simulator displays time information, for
example in the log windows. Note that this does not affect the speed of the
simulator.

Interrupt Setup
Displays a dialog box where you can configure C-SPY interrupt simulation, see
Interrupt Setup dialog box, page 247.

Forced Interrupts
Opens a window from where you can instantly trigger an interrupt, see Forced
Interrupt window, page 250.

Interrupt Status
Opens a window from where you can instantly trigger an interrupt, see Interrupt
Status window, page 251.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 127.

375

Reference information on C-SPY driver menus

Emulator menu

Menu commands

C-SPY® Debugging Guide
376 for MSP430

When you are using the C-SPY FET Debugger driver, the Emulator menu is added to
the menu bar.

Power Log Setup
Power Log
State Log

State Log Summary
Timeline
Data Sample Setup
Data Sample
Sampled Graphs
Function Profiler
Release JTAG on Go
v | Leave Target Running
GIE on/off
Force Single Stepping
Force hardware RST/NMI
Resynchronize JTAG

Init Mew Device

State Storage Control

State Storage Window

Sequencer Control

Advanced Cycle Counter

Advanced 3

User code erase (unlocks device)
Secure - Blow JTAG Fuse...

Breakpoint usage...
Device Information
MSP430F5342

These commands are available on the menu:

These commands are available on the menu:

Power Log Setup
Opens a window; see Power Log Setup window, page 224.

Power Log
Opens a window; see Power Log window, page 226.

Additional information on C-SPY drivers __4

State Log

Opens a window; see State Log window, page 230.
State Log Summary

Opens a window; see State Log Summary window, page 232.
Timeline

Opens a window; see Timeline window, page 185.

Data Sample Setup

Opens a window; see Data Sample Setup window, page 105.

Data Sample
Opens a window; see Data Sample window, page 106.

Sampled Graphs
Opens a window; see Sampled Graphs window, page 108.

Function Profiler

Opens a window which shoes timing information for the functions; see Function
Profiler window, page 204.

Release JTAG on Go

Sets the JTAG drivers in tri-state so that the device is released from JTAG
control—TEST pin is set to GND—when Go is activated.

Leave Target Running

Leaves the application running on the target hardware after the debug session is
closed.

GIE on/off
Clears the General Interrupt Enable bit (GIE) in the Processor Status register.

Force Single Stepping
Forces single step debugging.

Force hardware RST/NMI
Forces an RST/NMI clear reset when the Reset button is pressed.

Resynchronize JTAG

Regains control of the device.

It is not possible to resynchronize JTAG while the device is operating.

377

Reference information on C-SPY driver menus

Init New Device

Initializes the device according to the settings in the Projects>Options>FET
Debugger category. The current program file is downloaded to the device
memory, and the device is then reset. This command can be used to program
multiple devices with the same program from within the same C-SPY session.

It is not possible to choose Init New Device while the device is operating, thus
the command will be dimmed.

& State Storage Control
Opens the State Storage Control window, which lets you define the use of the
state storage module; see State Storage Control window, page 270.

State Storage Window

— Opens the State Storage window which contains state storage information
according to your definitions; see State Storage window, page 271.

@ Sequencer Control

— Opens the Sequencer Control window, which lets you define a state machine;
see Sequencer Control window, page 277.

Advanced Cycle Counter
Opens a window; see Advanced Cycle Counter Control window, page 263.

& Advanced>Clock Control

i Lets you control the clocks on the device. Depending on the hardware support,
either the General Clock Control dialog box or the Extended Clock Control
dialog box is displayed; see General Clock Control dialog box, page 379 and
Extended Clock Control dialog box, page 380, respectively.

Advanced>Emulation Mode

Specifies the device to be emulated. The device must be reset (or reinitialized by
using the menu command Init New Device) following a change to the emulation
mode.

Advanced>Memory Dump

Displays the Memory Dump dialog box, which lets you write device memory
contents to a file; see Memory Dump dialog box, page 175.

b Advanced>Breakpoint Combiner

Displays the Breakpoint combiner dialog box, which lets you combine two
already defined breakpoints; see Breakpoint combiner dialog box, page 143.

User code erase (unlocks device)

Overrides and clears FRAM memory protection and erases the Information and
main memories. (Only available for FR2xx and FR4xx devices.)

C-SPY® Debugging Guide
378 for MSP430

Additional information on C-SPY drivers __4

Secure - Blow JTAG Fuse

Blows the fuse on the target device. After the fuse is blown, no communication
with the device is possible.

Only available if you are using a USB-connected debug probe.

Breakpoint Usage
Opens a window which lists all active breakpoints; see Breakpoint Usage
window, page 127.

Device information
Opens the Device Information window with information about the device used
for debugging, see Device Information window, page 56.

Connected device
The name of the device used for debugging.

Note: Not all Emulator>Advanced submenu commands are available on all MSP430
devices.

Reference information on the C-SPY FET Debugger driver
This section gives additional reference information on the C-SPY hardware debugger
drivers, reference information not provided elsewhere in this documentation.

More specifically, this means:

o General Clock Control dialog box, page 379
e Extended Clock Control dialog box, page 380

General Clock Control dialog box
The General Clock Control dialog box is available from the Emulator menu.

General Clock Control @

Stop modules when execution stops:

ACLK

Flsmoik

TACLE

Use this dialog box to control the clocks of the device.

379

Resolving problems

380

Requirements

Select the clock modules you want to stop when the execution stops. The other clocks
will keep running.

Which clock modules that are displayed depends on the available clocks on the
connected device.

The C-SPY FET Debugger driver.

Extended Clock Control dialog box

Requirements

The Extended Clock Control dialog box is available from the Emulator menu.
Extended Clock Control

Extended Clock Contral
Stop modules when execution stops:

‘Watchdog Timer

Timerd_AS

Timerl_&3 RTC

[Timerd_B7 [Japcize
[Juse Timer2_a3
[Juscio [] Comparator B
[Jusci [Joaci12

[JLcoe

Use this dialog box for module level control over the clocks of the device.

Select the clock modules you want to stop when the execution stops. The other clocks
will keep running.

Which clock modules that are displayed depends on the available clocks on the
connected device.

The C-SPY FET Debugger driver.

Resolving problems

C-SPY® Debugging Guide
for MSP430

These topics are covered:

o The device port pins do not work
o Write failure during load

o No contact with the target hardware

Additional information on C-SPY drivers __4

o Slow stepping speed

Debugging using the C-SPY hardware debugger systems requires interaction between
many systems, independent from each other. For this reason, setting up this debug
system can be a complex task. If something goes wrong, it might be difficult to locate
the cause of the problem.

This section includes suggestions for resolving the most common problems that can
occur when debugging with the C-SPY hardware debugger systems.

For problems concerning the operation of the evaluation board, refer to the
documentation supplied with it, or contact your hardware distributor.

To troubleshoot the Flash Emulation Tool, see appendix A in the document
MSP-FET430 Flash Emulation Tool Users Guide at the Texas Instruments web site,
www.ti.com. The document has the literature number SLAUI38K.

THE DEVICE PORT PINS DO NOT WORK

On some MSP430 devices, the device port pins are shared with the JTAG pins that
C-SPY uses to debug the device. Normally, C-SPY maintains the pins in JTAG mode so
that the device can be debugged. During this time the port functionality of the shared
pins is not available.

To release the JTAG pins:

Choose Emulator>Release JTAG on Go to set the JTAG drivers to tri-state and release
the device from JTAG control (the TEST pin is set to GND) when Go is activated. Any
active on-chip breakpoints are retained and the shared JTAG port pins revert to their port
functions.

Note: Be aware of the following:

o The JTAG pins will only be released if there are N or fewer active breakpoints.

e When you measure the electrical current of the device, the JTAG control signals
must be released, otherwise the device will be powered by the signals on the JTAG
pins and the measurements will be incorrect.

e If you release the JTAG pins, C-SPY has no access to the device and cannot
determine if an active breakpoint has been triggered. C-SPY must be manually told
to stop the device, at which time the state of the device will be determined (that is,
has a breakpoint been reached?).

WRITE FAILURE DURING LOAD

There are several possible reasons for write failure during load. The most common is
that your application has been incorrectly linked:

381

Resolving problems

382

C-SPY® Debugging Guide
for MSP430

o Check the contents of your linker configuration file and make sure that your
application has not been linked to the wrong address

o Check that you are using the correct linker configuration file.

To choose a device:

Choose Project>Options.

Select the General Options category.

Click the Target tab.

Choose the appropriate device from the Device drop-down list.
To override the default linker configuration file:
Choose Project>Options.

Select the Linker category.

Click the Config tab.

Choose the appropriate linker configuration file in the Linker configuration file area.

NO CONTACT WITH THE TARGET HARDWARE

There are several possible reasons for C-SPY to fail to establish contact with the target
hardware. Do this:

Check the communication devices on your host computer

Verify that the cable is properly plugged in and not damaged or of the wrong type

Make sure that the evaluation board is supplied with sufficient power

Check that the correct options for communication have been specified in the IAR
Embedded Workbench IDE.

Examine the linker configuration file to make sure that the application has not been
linked to the wrong address.

SLOW STEPPING SPEED

If you find that the stepping speed is slow, these troubleshooting tips might speed up

stepping:

o If you are using a hardware debugger system, keep track of how many hardware
breakpoints that are used and make sure some of them are left for stepping.
Stepping in C-SPY is normally performed using breakpoints. When C-SPY performs

a step command, a breakpoint is set on the next statement and the application
executes until it reaches this breakpoint. If you are using a hardware debugger

Additional information on C-SPY drivers __4

system, the number of hardware breakpoints—typically used for setting a stepping
breakpoint in code that is located in flash/ROM memory—is limited. If you, for
example, step into a C switch statement, breakpoints are set on each branch; this
might consume several hardware breakpoints. If the number of available hardware
breakpoints is exceeded, C-SPY switches into single stepping on assembly level,
which can be very slow.

For more information, see Breakpoints in the C-SPY hardware Debugger driver,
page 116 and Breakpoint consumers, page 118.

Disable trace data collection, using the Enable/Disable button in both the Trace and
the Function Profiling windows. Trace data collection might slow down stepping
because the collected trace data is processed after each step. Note that it is not
sufficient to just close the corresponding windows to disable trace data collection.

Choose to view only a limited selection of SFR registers. You can choose between
two alternatives. Either type #SFR_name (where SFR_name reflects the name of the
SFR you want to monitor) in the Watch window, or create your own filter for
displaying a limited group of SFRs in the Register window. Displaying many SFR
registers might slow down stepping because all registers must be read from the
hardware after each step. See Defining application-specific register groups, page
151.

Close the Memory and Symbolic Memory windows if they are open, because the
visible memory must be read after each step and that might slow down stepping.

Close any window that displays expressions such as Watch, Live Watch, Locals,
Statics if it is open, because all these windows read memory after each step and that
might slow down stepping.

Close the Stack window if it is open. Choose Tools>Options>Stack and disable the
Enable graphical stack display and stack usage tracking option if it is enabled.
If possible, increase the communication speed between C-SPY and the target
board/emulator.

383

Resolving problems

C-SPY® Debugging Guide
384 for MSP430

A

Abort (Report Assertoption)c..ouen... 76
absolute location, specifying for a breakpoint. 143
Access type (Advanced Trigger breakpoints option). 141
Access type (Edit Memory Access option) 175
Access (Conditional breakpoints option) 138
Access (Edit SFRoption)o i, 172
Action (Advanced Trigger breakpoints option). 141
Action (Conditional breakpoints option). 139
Action (Sequencer option)i.ino... 277
Add to Watch Window (Symbolic Memory window context
10731111 [N 162
Add (SFR Setup window context menu). 170
Address Range (Find in Trace option) 198
Address (Edit SFRoption) 171
Advanced Cycle Counter Control window 263
Advanced Trigger breakpoints dialogbox 140
advanced trigger breakpoints, overview 115
Advanced (Sequencer option).oo.... 278
Advanced>Breakpoint Combiner (Emulator menu) 378
Advanced>Clock Control (Emulator menu) 378
Advanced>Emulation Mode (Emulator menu) 378
Advanced>Memory Dump (Emulator menu) 378
Allow erase/write access to locked

flash memory (C-SPY FET Debugger option) 369
Allow erase/write access to

BSL flash memory (C-SPY FET Debugger option) 369

--allow_access_to_BSL (C-SPY command line option) . . 341
--allow_locked_flash_access

(C-SPY command line option) 342
Ambiguous symbol (Resolve Symbol Ambiguity option). 101
application flow, monitoring. 267
Applications (Advanced Cycle Counter option) 263
application, built outside the IDE 43
assembler labels, viewing oL L. 84
assembler source code, fine-tuning. 199
assembler symbols, using in C-SPY expressions 81
assembler variables, viewing. 84
assumptions, programming eXperience. 21

Index °

--attach (C-SPY command line option). 342
Attach to program (debugger option) 368
Auto Scroll (Sampled Graphs window context menu) ... 110
Auto Scroll (Timeline window context menu) 190
AUto window 87
Autostep settings dialog box. L. 76
Autostep (Debugmenu) 51
--backend (C-SPY command line option)............. 342
backtrace information
generated by compiler 63
viewing in Call Stack window 69
batch mode, using C-SPY in....................... 337
Big Endian (Memory window context menu) 156
blocks, in C-SPY macrosc....... 289
bold style, inthisguide. 26
Break At (Advanced Trigger breakpoints option). 140
Break At (Conditional breakpoints option). 137
Break on Throw (Debug menu). 51
Break on Uncaught Exception (Debug menu). 51
Break (Debugmenu)., 50
Breakpoint combiner dialogbox.................... 143
breakpoint condition, example 123-124
Breakpoint Usage window 127
Breakpoint Usage (Emulatormenu) 379
Breakpoint Usage (Simulator menu). 375
breakpoints
advanced trigger. i 140
code,exampleooiiiii 314
conditional 137
ST . oot te 268
connectinga C-SPYmacro 284
consumers of i 118
data ... 131
datalog ... 133
descriptionof 113
disabling used by Stack window 119

385

386

emulated, configuring 371

iconsforinthe IDE 116
in Memory window 121
listingall o i 127
TANZE .« o v vttt et e e e e e 135
reasons forusing 113
setting
inmemory window 121
USINg SYSteM MACIOS . . « . v v v e e eeeeaene 122
using the dialogbox 120
toggling 119
YPeS Of .« oot 114
useful tips.o 123
virtual, configuring 371
Breakpoints dialog box
Advanced Trigger 140
Code 128
Conditional 137
Data..... 131
Datalog ...t 133
Immediate 134
Log ..o 129
Range. 135
Trace Start 194
Trace StOp 195
Breakpoints window i 125
Breakpoints (FET debugger options) 370
Browse (Tracetoolbar) 183
byte order, setting in Memory window 155
C function information, in C-SPY............... 63
C symbols, using in C-SPY expressions 81
C variables, using in C-SPY expressions 80
call chain, displaying in C-SPY 63
Call stack information. 63
Call Stackwindow 69
for backtrace information. 63

C-SPY Debugging Guide
for MSP430

Call Stack (Timeline window context menu) 191
__cancelAlllnterrupts (C-SPY system macro) 295
__cancellnterrupt (C-SPY system macro). 296
Check for word access on odd address
(C-SPY simulatoroption)coveninen. .. 367
Clear All (Debug Log window context menu) 75
Clear trace data (Trace toolbar). 183
Clear (Advanced Cycle Counter option) 265
Clear (Interrupt Log Summary
window COnteXt MeNu) o.ovvvvnenenenenenen .. 257
Clear (Interrupt Log window context menu). 255
Clear (Power Log window contextmenu). 227
Clear (State Log Summary
window contextmenu)veinenenn.n.. 233
Clear (State Log window context menu). 231
__clearBreak (C-SPY systemmacro) 296
CLIB
consuming breakpoints 118
documentation........... 24
library reference informationfor 25
Naming CONVENtION. . . .ot v vv vt e e e eeeeennn. 27
__closeFile (C-SPY systemmacro) 297
code breakpoints
OVEIVIBW . ottt ettt et e 114
toggling 119
Code Coverage windowcocuvnen... 210

Code Coverage (Disassembly window context menu)67
--code_coverage_file (C-SPY command line option)343

code, covering executionof 210
command line options. 341

typographic convention 26
command prompt icon, in this guide. 26
computer style, typographic convention 25
Condition (Conditional breakpoints option) 139
conditional breakpoints

OVEIVIEWttt 115

triggering state storage. 268
Conditional breakpoints dialogbox 137
conditional statements, in C-SPY macros............. 288
--connection (C-SPY command line option). 343

Connection (C-SPY FET Debugger option) 367
context menu, in windows. 84
conventions, used inthisguide 25
Copy Window Contents (Disassembly
window context menu)uuiintnannann.. 68
Copy (Debug Log window context menu) 74
copyrightnoticet 2
CPU cycles,countingcovovnenennnnn.. 260, 262
CSpPYbat . .. 337
reading options from file (-f) 349
current position, in C-SPY Disassembly window 66
Current state (Sequencer option). 278
cursor, in C-SPY Disassembly window. 66
Cycle counter values (Advanced Cycle Counter option). . 264
--cycles (C-SPY command line option) 344
C-SPY
batch mode, usingin 337
debugger systems, overview of 35
environment OVerview 31
plugin modules, loading. 43
SELNG UP .« v v ettt 41-42
starting the debugger 43
C-SPY drivers
differences between drivers 37
OVEIVIEWttt 37
Specifying 362
YPES Of .« oot 36
C-SPY eXPressionsvvveeet e e 80
evaluating, using Macro Quicklaunch window. 334
evaluating, using Quick Watch window 97
inC-SPYmacros............. 288
Tooltip watch, using. il 79
Watch window, using 79
C-SPY hardware debugger driver
extending functionality of 47
C-SPY macros
blocks. 289
conditional statements 288
C-SPY expressionsc.c.oeeeuenenennnn.. 288
examples 281

Index °

checking status of register. 283
creatingalogmacro 284
EXECULING . o ettt et e 281
connecting to a breakpoint 284
using Quick Watch 283
using setup macro and setup file. 283
functions 82, 286
loop statementsiuiiiiiiien.. 289
MACIO STALEMENLS .+« v v v e v et e e e e eeeaen e 288
PATAMELETS « « o v e v v et e 287
setupmacrofile L L 280
EXECULING. . o vttt et e 283
setup macro functions 280
SUMMATY - ¢ ov ettt e et e e e e eee s 291
system macros, summary of. 293
USING « . ov et e 279
variables. 82, 286
C-SPY options
Breakpoints i 370
Download. 369
ExtraOptions.ot 365
Images 363
Plugins. i 364
SetUP « et 362
Setup (FET) . .. oo 367
C-SPYLInK. .. oot e 36
C-STAT for static analysis, documentation for 24
CH++terminology.o oo et 25
-d (C-SPY command line option) 344
data breakpoints, OVerviewcovuen... 114
Data Coverage (Memory window context menu) 156
data coverage, in Memory window 154
data log breakpoints, overview 115
Data Log Summary window 104
Datalogwindowoiiiiiiiiininan.. 102
Data Log (Timeline window context menu) 191

387

388

Data Sample Setup window 105

Data Sample window 106
Data Sample (Sampled Graphs window context menu) .. 110
ddf (filename extension), selecting afile............... 42
Debug Logwindow. 74
Debug menu (C-SPY main window). 50
Debug protocol (C-SPY FET Debugger option) 368
Debug (Report Assert option)covuenen.n.. 76
--debugfile (cspybatoption) 345
debugger concepts, definitionsof 34
debugger drivers
FET Debugger....... ..ot 38
simulator 38
debugger drivers. See C-SPY drivers
Debugger Macros window 332
debugger system OVerviewc.cuen.n.. 35
debugging projects
externally built applications. 43
loading multiple images. 45
debugging, RTOS awareness.c.cooun.. 33
__delay (C-SPY system macro)c....... 297
Delay (Autostep Settings option) 77
Delete (Breakpoints window context menu) 126
Delete (SFR Setup window context menu) 170
Delete/revert All Custom SFRs (SFR Setup window context
10753111 [P 170
--derivative (C-SPY command line option). 345
Description (Edit Interrupt option) 249
description (interrupt property).c.ooen... 249
Device description file (debugger option) 363
device descriptionfiles 42
definitionof L il 45
MEMOTY ZONES .+« e v evve e e ee e eeeeaenen 149
modifying 45
TEEISIET ZONC. « . v vt ettt e e 149
specifying interrupts 307
Device Information window 56
Device information (Emulatormenu) 379
Device Support Module 47
Disable All (Breakpoints window context menu) 126

C-SPY Debugging Guide
for MSP430

Disable memory cache (C-SPY FET Debugger option) . . 368

Disable (Breakpoints window context menu) 126
__disableInterrupts (C-SPY system macro) 297
--disable_interrupts (C-SPY command line option) 346
--disable_memory_cache (C-SPY command line option) . 346
Disassembly window 65
CONEEXEMENU . . o v v ev e ettt et e et e e e e 67
disclaimer.t 2
DLIB
consuming breakpoints, 118
documentationi i 24
Naming CONVeNtion.uuvenenenenen .. 27
DMA load, measuring.c.cuiuininnnaea.. 260
do (macro statement), 289
document CONVENtioNS.o vvvenen e 25
documentation
overviewof guides. L., 23
overview of thisguide 22
thisguide 21
Download (FET debugger options). 369
--download_only (C-SPY command line option) 346
Driver (debugger option)., 362
__driverType (C-SPY systemmacro) 298
Edit Expressions (Trace toolbar). 183
Edit Interrupt dialog box. i 248
Edit Memory Access dialogbox.................... 174
Edit Memory Range dialogbox 171
Edit Settings (Trace toolbar). 183
Edit (Breakpoints window context menu). 126
Edit (SFR Setup window context menu). 170
edition, of thisguide i 2
--eem (C-SPY command line option) 346
Embedded C++ Technical Committee 25
emulated breakpoints, configuring 371
Emulator menu (reference information) 376
Enable All (Breakpoints window context menu). 126

Enable interrupt simulation (Interrupt Setup option). 247
Enable Log File (Log File option). 75
Enable ULP/LPMx.5 debug
(C-SPY FET Debuggeroption).covovnvnenn... 369
Enable (Breakpoints window context menu). 126
Enable (Interrupt Log Summary
window contexXt menu)ouvueeniurann.nn. 257
Enable (Interrupt Log window context menu). 255
Enable (Power Log window context menu) 227
Enable (Sampled Graphs window context menu) 110
Enable (State Log Summary
window conteXtmenu)otintanan.... 233
Enable (State Log window context menu). 231
Enable (Timeline window context menu) 191
__enablelnterrupts (C-SPY system macro)............ 298
Enable/Disable Breakpoint (Call
Stack window contextmenu) 71
Enable/Disable Breakpoint (Disassembly window context
1073111 [P 68
Enable/Disable (Trace toolbar) 183
endianness. See byte order
Enter Location dialogboxX. 142
Erase main and Information memory inc. I[P PROTECTED
area (C-SPY FET Debugger option) 370
Erase main and Information memory
(C-SPY FET Debugger option).vovovnenenn... 370
Erase main memory (C-SPY FET Debugger option)369
--erase_exclude (C-SPY command line option) 347
--erase_ip_protected (C-SPY command line option). 348
--erase_main (C-SPY command line option) 348
--erase_main_and_info (C-SPY command line option) .. 348
--erase_retain_file (C-SPY command line option) 348
--erase_retain_target (C-SPY command line option)349
__evaluate (C-SPY systemmacro) 299
Evaluate Now (Macro Quicklaunch
Window CONtEXt MENU) . . oo vv v et ee e e 335
examples

C-SPYmacros..... ..o, 281

interrupts

interrupt loggingol 246

Index °

110013 o 244
macros
checking status of register. 283
creatingalogmacro 284
using Quick Watch 283
performing tasks and continue execution. 124
tracing incorrect function arguments 123
execUserExecutionStarted (C-SPY setup macro) 292
execUserExecutionStopped (C-SPY setup macro) 292
execUserExit (C-SPY setupmacro) 293
execUserPreload (C-SPY setup macro). 2901
execUserPreReset (C-SPY setup macro). 293
execUserReset (C-SPY setupmacro) 293
execUserSetup (C-SPY setup macro) 292
executed code, coveringl 210
execution history, tracing 182
execution, stopping using the sequencer.............. 273
expressions. See C-SPY expressions
Extended Clock Control dialogbox 380
extended command line file, for cspybat. 349
External code download (C-SPY FET option) 369
extracyclecounter i, 259
Extra Options, for C-SPY 365
-f(cspybatoption). 349
FET Debugger (C-SPY driver)
COMMUNICAtIONottt 381
hardware installation 40
File format (Memory Save option) 157
file types
device description, specifyinginIDE 42
1172163 ¢ o 42,363
filename extensions
ddf, selecting device descriptionfile 42
mac, usingmacrofile. 42
sfr, register definitions for C-SPY 167
Filename (Memory Restore option) 158

389

390

Filename (Memory Save option). 157
Fill dialog boX. 158
__writeMemory8 (C-SPY system macro)............. 299
__writeMemory16 (C-SPY system macro)............ 300
__writeMemory32 (C-SPY system macro)............ 301
Find in Trace dialogbox 197
Findin Tracewindow 198
Find (Memory window contextmenu) 156
Find (Trace toolbar) 183
first activation time (interrupt property)
definitionof 241
First activation (Edit Interrupt option). 249
flash memory, load library moduleto 303
flash memory, single-stepping in C-SPY emulator 60
for (macro statement) 289
Force hardware RST/NMI (Emulator menu). 377
Force Single Stepping (Emulator menu). 377
Forced Interrupt window. 250
Forced Interrupts (Simulatormenu) 375
formats, C-SPY input i 33
Function Profiler window 204
Function Profiler (Simulatormenu) 374
Function Trace window. 185
Function Trace (Simulatormenu) 374
functions

call stack information for........................ 63

C-SPY running to when starting 42,362

most time spent in, locating 199
fuse, blowing on the target device. 379
General Clock Control dialogbox 379
GIE on/off (Emulatormenu). 377
Go to Source (Breakpoints window context menu). 126
Go to Source (Call Stack window context menu) 70
Go To Source (Timeline window context menu). 192
Go(Debugmenu)...........coiiiiiiii. 50, 62

C-SPY Debugging Guide
for MSP430

H

hardware setup, power consumption because of 219
--hardware_multiplier (C-SPY command line option) . ..350
highlighting, inC-SPY 62
Hold time (Edit Interrupt option) 249
hold time (interrupt property), definitionof 241
--hwmult_type (C-SPY command line option) 350
icons,inthisguide 26
if else (macro statement). 288
if (macro statement), 288
Ignore (Report Assertoption)ovuienen.. 76
illegal memory accesses, checking for 150
Imageswindow. 54
Images, loading multiple. 363
immediate breakpoints, overview 115
Include (Log Fileoption)o... 75
Init New Device (Emulator menu) 378
input formats, C-SPY 33
Input Mode dialogbox 72
input, special characters in Terminal I/O window 72
installation directory i 25
Instruction Profiling (Disassembly window context menu). 67
Intel-extended, C-SPY input format 33
Intel-extended, C-SPY output format 36
interference, power consumption because of. 219
interrupt handling, power consumption during 218
Interrupt Log Summary window. 232,255
Interrupt Log Summary (Simulator menu) 374-375
Interrupt Log window 253
Interrupt Log (Simulatormenu) 375
Interrupt Setup dialogbox 247
Interrupt Setup (Simulator menu) 375
Interrupt Status window 251
interrupt system, using device description file 243
Interrupt (Edit Interrupt option) 249

Interrupt (Timeline window context menu). 191
interrupts

adapting C-SPY system for target hardware 243

simulated, introductionto 239

timer,example i 244

USING SYSLEM MACTOS .« . v vv vt eee e eee e enennn 242
__isBatchMode (C-SPY system macro) 302
italic style, inthisguide 25-26
JTAG password (C-SPY FET Debugger option). 370
JTAG pins, shared with portpins 381
JTAG speed (C-SPY FET Debugger option). 368
--jtag_speed (C-SPY command line option) 351
labels (assembler), viewing. 84
LCD Settings dialogbox. o il 73
LCDWIndowt 73
Leave Target Running (Emulator menu).............. 377
Length (Fill option)., 159
library functions

C-SPY support for using, plugin module. 354

onlinehelpfor.......... 25
lightbulb icon, in this guide. 26
linker options

typographic convention 26

consuming breakpoints 118
Little Endian (Memory window context menu) 155
Live Watchwindow 92
__loadImage (C-SPY systemmacro) 302
loading multiple debug files, list currently loaded. 54
loading multiple images, 45
Locals windowo i, 88
log breakpoints, overview. 114
Log File dialog box.t 75
Logging>Set Log file (Debugmenu) 52

Index °

Logging>Set Terminal I/O Log file (Debug menu). 52
loop statements, in C-SPY macros 289
low-power mode, power consumption during. 216
--Iptl (C-SPY command line option) 352
--Ipt2 (C-SPY command line option) 352
--Ipt3 (C-SPY command line option) 352
mac (filename extension), using a macro file 42
--macro (C-SPY command line option) 352
macro files, specifying 42,363
Macro Quicklaunch window. 334
Macro Registration window 330
MACTO StAtEMENTS . . . oo vttt et e e e e 288
macros

EXECULING « o vttt e e e et 281

USIIE & ottt et ettt e e e 279
Macros (Debugmenu)c.ovuvivinenenan.. 52
--macro-param (C-SPY command line option) 353
main function, C-SPY running to when starting 42,362
--mapu (C-SPY command line option) 353
Mask (Advanced Trigger breakpoints option). 141
Mask (Conditional breakpoints option). 139
memory access checking. 150
Memory access checking (Memory Access Setup option) 173
Memory Access Setup dialog box. 172
Memory Access Setup (Simulator menu) 374
memory accesses, illegal. 150
memory contents, writingtoafile 175
Memory Dump dialogbox, 175
Memory Fill (Memory window context menu). 156
MEMOTY MAP .+« v vt v te e et et e e et e e eeenens 172
Memory Restore dialogbox 158
Memory Restore (Memory window context menu). 156
Memory Save dialogbox, 157
Memory Save (Memory window context menu). 156
Memory Window.v vt 153

391

392

MEMOTY ZONES. « . ¢ v e vov vt teee et e e e e e e 148

in device descriptionfile 149
__memoryRestore (C-SPY system macro) 304
__memorySave (C-SPY system macro) 304
Memory>Restore (Debugmenu) 51
Memory>Save (Debugmenu). 51
menu bar, C-SPY-specific.......................... 49
__messageBoxYesNo (C-SPY system macro) 305
migration, from earlier IAR compilers 24
MISRA C, documentationc.ouuu.o... 24
Mixed Mode (Disassembly window context menu) 68
Mode (Advanced Cycle Counter option). 264
Motorola, C-SPY input format 33
Motorola, C-SPY output format 36
Move to PC (Disassembly window context menu) 67
Name (Edit SFRoption), 171
NAMING CONVENLIONS . . o\ v v ve et eee e e 26
Navigate (Sampled Graphs window context menu) 109
Navigate (Timeline window context menu) 190

New Breakpoint (Breakpoints window context menu) . . . 126
Next Statement (Debugmenu) 51
Next Symbol (Symbolic Memory window context menu) 161

o

--odd_word_check (C-SPY command line option). 353
Open Setup Window (Power Log window context menu). 228
__openFile (C-SPY system macro). 306
Operation (Filloption) 159
Operator (Advanced Trigger breakpoints option) 141
Operator (Conditional breakpoints option) 138
operators, sizeof in C-SPY 82
optimizations, effects on variables 82
options

intheIDE i 361

onthecommandline 341, 365

C-SPY Debugging Guide
for MSP430

Options (Stack window contextmenu)
__orderInterrupt (C-SPY system macro).
Originator (debuggeroption)

P

-p (C-SPY command line option)
parameters
tracing incorrect valuesof,
typographic convention
part number, of thisguide
Peripheral simulation (C-SPY simulator option).
peripheral units
debugging power consumption for.
detecting mistakenly unattended
detecting unattended
device-specific......... ... i
displayed in Register window
in an event-driven system.
in C-SPY expressionscouvuenn.n.
initializing using setup macros.
simulating
Please select one symbol
(Resolve Symbol Ambiguity option)
--plugin (C-SPY command line option)
plugin modules (C-SPY). oot
loading. ..ot
Plugins (C-SPY options).ovviiieneninnn..
__popSimulatorInterruptExecutingStack (C-SPY
SYStEIM MACTO). &« v v v ov et ettt e et e e et e eaeeeenns
pop-up menu. See context menu
--port (C-SPY command line option)
port pins, shared with JTAG pins
power consumption, Measuring. 200,
Power graph in Timeline window
Power Logwindow.,
Power Log (Timeline window context menu)
power sampling.ouiii i
Power Setup window,

prerequisites, programming experience. 21
Previous Symbol (Symbolic
Memory window contextmenu) 162
probability (interrupt property)c.c.ouo... 249
definitionof L L L. 241
Probability % (Edit Interrupt option) 249
Profile Selection (Timeline window context menu) 192
profiling
analyzingdata i 202
onfunctionlevel 201
oninstructionlevel. L L. 203
using MSP430 advanced cycle counter 261
profiling information, on functions and instructions. 199
profiling sources
trace (calls) 200, 206
trace(flat), 200, 206
program execution
breaking........... i 114-115
INC-SPY ..o 57
program flow, monitoring 267
program states, mONitoringoeueuenennn.. 267
programming eXperience.veueien ettt 21
program. See application
projects, for debugging externally built applications. 43
--protocol (C-SPY command line option) 355
publication date, of this guide. 2
Quick Watchwindow 97
executing C-SPY macros. ..., 283
Range breakpoints dialogbox...................... 135
range breakpoints, OVerview 115
Range for (Viewing Range option) 193
Reaction trigger (Advanced Cycle Counter option) 266
__readFile (C-SPY systemmacro) 308

Index

__readFileByte (C-SPY system macro) 309
reading guidelines. 21
__readMemoryByte (C-SPY system macro)........... 309
__readMemory8 (C-SPY system macro) 309
__readMemory16 (C-SPY system macro) 310
__readMemory32 (C-SPY system macro) 310
reference information, typographic convention. 26
Refresh (Debugmenu) 52
TEISET GTOUPS « . v v et e e e e e e e e et 148
predefined, enabling. 166
Registerwindow, 166
registered trademarks 2
__registerMacroFile (C-SPY system macro). 311
registers, displayed in Register window 166
Release JTAG on Go (Emulator menu). 377
Remove All (Macro Quicklaunch window
CONLEXE MENU) . o\ v ettt e et e et et e e e e e 335
Remove (Macro Quicklaunch window context menu) . .. 335
Repeat interval (Edit Interrupt option) 249
repeat interval (interrupt property), definition of. 241
Replace (Memory window context menu) 156
Report Assert dialogbox 76
Reserve breakpoints for Data Sample (C-SPY FET Debugger
OPLON) .ttt e 371
Reset Counter (Advanced Cycle Counter option) 266
Reset States (Sequencer option) 278
Reset Trigger (Sequencer option) 278
Reset (Debugmenu)c. i, 50
__resetFile (C-SPY systemmacro). 311
Resolve Source Ambiguity dialogbox 144
Restore (Memory Restore option). 158
Resynchronize JTAG (Emulator menu). 377
Retain unchanged
memory (C-SPY FET Debugger option). 370
return (macro statement).0 ..., 289
ROM-monitor, definitionof 36
RTOS awareness debugging 33
RTOS awareness (C-SPY plugin module). 33
Run to Cursor (Call Stack window context menu) 70
Run to Cursor (Debugmenu) 51

—eo

393

394

Run to Cursor (Disassembly window context menu) 67

Run to Cursor, command for executing. 62
Runto (C-SPYoption)oovenon.. 42,362
Sampled Graphs window 108

Save Custom SFRs (SFR Setup window context menu) . . 171
Save to log file (Interrupt Log Summary

window context menu)o.eiuirrann.n. 257
Save to log file (Interrupt Log window context menu) . . . 255
Save to log file (Power Log window context menu) 227
Save to log file (State Log window context menu) 231
Save to log file (State Log

Summary window context menu) 233
Save (Memory Save option)c.c.ouiu.... 157
Save (Tracetoolbar) 183
Scale (Viewing Range option). 194
Secure - Blow JTAG Fuse (Emulator menu)........... 379
Select All (Debug Log window context menu) 75
Select Graphs (Sampled Graphs window context menu). . 111
Select Graphs (Timeline window context menu). 192
Select plugins to load (debugger option). 364
Sequencer Control window. 277
Sequencer Control (Emulator menu). 378
SeqUeNCer, SetNG UP. « . ottt e et 274

Set Data Breakpoint (Memory window context menu) . . . 156
Set Next Statement (Debugmenu) 51
Set Next Statement (Disassembly window context menu) . 68
__setAdvancedTriggerBreak (C-SPY system macro)312

__setCodeBreak (C-SPY system macro). 313
__setConditionalBreak (C-SPY system macro) 314
__setDataBreak (C-SPY system macro) 315
__setDatal.ogBreak (C-SPY system macro)........... 317
__setLogBreak (C-SPY system macro) 318
__setRangeBreak (C-SPY system macro). 319
__setSimBreak (C-SPY system macro) 320
Settling time (C-SPY FET option) 368
--settlingtime (C-SPY command line option) 356

C-SPY Debugging Guide
for MSP430

__setTraceStartBreak (C-SPY system macro). 321
__setTraceStopBreak (C-SPY system macro). 322
setup macro file, registering 42
setup macro functions. oo, 280

reserved NAMES.o oot 291
Setup macros (debugger option) 363
Setup (C-SPY options)ovevenennnan... 362
Setup (FET debugger options) 367

--set_exit_breakpoint (C-SPY command line option) 356
--set_getchar_breakpoint (C-SPY command line option) . 356
--set_putchar_breakpoint (C-SPY command line option) . 356

SFR, using as assembler symbols 81
SFR Setupwindow, 168
shortcut menu. See context menu

Show all images (Images window context menu) 54
Show All (SFR Setup window context menu). 170
Show Arguments (Call Stack window context menu). 70
Show Custom SFRs only (SFR Setup

window contexXt menu)oueeuueennnnnn. 170
Show Cycles (Interrupt Log Summary

Wwindow CONteXt MenU)ovveveennennnnnnn. 257
Show Cycles (Interrupt Log window context menu). 255
Show Cycles (Power Log window context menu). 228
Show Cycles (State Log window context menu). 232
Show Cycles (State Log Summary

Wwindow COnteXt Menu)ooveenneennnnnn. 234
Show Factory SFRs only (SFR Setup

window context menu)oueueenenenn.n.. 170
Show Numerical Value (Sampled Graphs window context
F301=3 110) I N 111
Show Numerical Value (Timeline window context menu) 192
Show offsets (Stack window context menu) 164
Show only (Image window context menu) 54
Show Time (Interrupt Log Summary

Window conteXt Menu)ovvvvenenenenenn .. 257
Show Time (Interrupt Log window context menu) 255
Show Time (Power Log window context menu) 228
Show Time (State Log Summary

window contexXt menu)oueenueennnnann. 234
Show Time (State Log window context menu) 231

Show variables (Stack window context menu) 164
--silent (C-SPY command line option) 357
simulating interrupts, enabling/disabling 247
Simulatormenu. i 374
simulator, introduction 38
Size (Edit SFRoption), 172
Size (Sampled Graphs window context menu) 111
Size (Timeline window context menu) 192
sizeof 82
software delay, power consumption during. 216
Solid Graph (Sampled Graphs window context menu) . .. 111
Solid Graph (Timeline window context menu) 191
__sourcePosition (C-SPY system macro) 323
special function registers (SFR)

descriptionfiles 167

using as assembler symbols, 81
stack usage, computing. 150
Stack window il 162
standard C, sizeof operator in C-SPY 82
Start address (Fill option) 159
Start address (Memory Save option) 157
Start (Advanced Cycle Counter option) 265
State Logwindow. i 230
state storage

SELMZ UP .« o v v ettt et e 268

starting using the sequencer. 273
State Storage Control window 270
State Storage Control (Emulator menu) 378
State Storage window 271
static analysis, documentation for. 24
Statics Windowt 94
stdin and stdout, redirecting to C-SPY window 71
Step Into (Debugmenu) i, 51
Step Into, description 59
Step Out (Debugmenu)c.cuiuiuienen.n. 51
Step Out, description.coviniinnnn. 60
Step Over (Debugmenu)c.ovuiuen.n. 51
Step Over, description., 59
step points, definitionof L. 58

Index °

Stop address (Memory Save option) 157
Stop Debugging (Debug menu). 50
Stop (Advanced Cycle Counter option) 265
stopping execution using the sequencer 273
__strFind (C-SPY system macro) 323
__subString (C-SPY system macro) 324
Symbolic Memory window. 160
Symbols window i 99
symbols, using in C-SPY expressions. 80

System breakpoints on (C-SPY FET Debugger option) . .371

T

target system, definitionof 35
Target VCC (C-SPY FET Debugger option). 368
__targetDebuggerVersion (C-SPY system macro) 324
Terminal 10 Log Files (Terminal IO Log Files option). .. .72
Terminal I/O Log Files dialogbox 72
Terminal /Owindow 63,71
terminology.o v et 25
Text search (Find in Trace option) 197
Time Axis Unit (Timeline window context menu) 192
Timeline window 185, 234
power graph.oiiiii i 229
Timeline (Simulatormenu). 375
--timeout (C-SPY command line option) 357
timer interrupt, example 244
Toggle Breakpoint (Code) (Call
Stack window contextmenu) 70
Toggle Breakpoint (Code) (Disassembly
window COnteXt Menu)ouveenneennnnann.. 68
Toggle Breakpoint (Log) (Call
Stack window contextmenu) 70
Toggle Breakpoint (Log) (Disassembly
window COnteXt Menu)ouvueenennnnnnn.. 68
Toggle Breakpoint (Trace Start) (Call
Stack window contextmenu) 70
Toggle Breakpoint (Trace Start) (Disassembly
Wwindow CONteXt Menu)vve v ene e ennenen... 68

395

396

Toggle Breakpoint (Trace Stop) (Call

Stack window contextmenu) 70
Toggle Breakpoint (Trace Stop) (Disassembly

Window contexXt Mmenu)oueennnennnnnn. 68
Toggle source (Trace toolbar) 183
__toLower (C-SPY system macro) 325
tools icon, inthisguide. 26
__toString (C-SPY systemmacro) 325
__toUpper (C-SPY system macro) 326
TrACE . .. i ittt 179
Trace Expressions window 196
trace start and stop breakpoints, overview. 114
Trace Start breakpoints dialogbox 194
Trace Stop breakpoints dialogbox 195
Tracewindow 182
trace (calls), profiling source. 200, 206
trace (flat), profiling source. 200, 206
Trace (Simulatormenu) 374
trace, in Timeline window. 185, 229, 234
trace, state storage being variantof.................. 267
trademarks L L i 2
Trigger (Forced Interrupt window context menu) 250
Type (Advanced Trigger breakpoints option) 140
Type (Conditional breakpoints option) 137
typographic conventions 25
UBROF. e 33
Unavailable, C-SPY message 83
Universal Binary Relocatable Object Format. See UBROF
__unloadImage(C-SPY system macro)............... 326
Use command line options (debugger option). 365
Use Extra Images (debugger option). 363
Use manual ranges (Memory Access Setup option) 173
Use ranges based on (Memory Access Setup option) 173
Use software breakpoints (C-SPY FET Debugger option) 371
user application, definitionof 35

--use_emulated_breakpoints
(C-SPY command line option) 357

C-SPY Debugging Guide
for MSP430

--use_virtual_breakpoints (C-SPY command line option). 358

A\

Value (Advanced Trigger breakpoints option). 141
Value (Fill option).ovvn i 159
variables
effects of optimizations 82
information, limitationon 82
using in C-SPY expressions. 80
variance (interrupt property), definitionof 241
Variance % (Edit Interrupt option) 249
--veevoltage (C-SPY command line option) 358
Verify download (debugger option). 369
--verify_all (C-SPY command line option). 358
version number, of this guide 2
Viewing Range dialogbox 193
Viewing Range (Sampled Graphs window context menu) 111
Viewing Range (Timeline window context menu) 191
virtual breakpoints, configuring 371
visualSTATE, C-SPY plugin module for............... 36
waiting for device, power consumption during 216
warnings icon, inthisguide 26
Watchwindow 90
USING oottt e 79
web sites, recommended. 25
while (macro statement) 289
windows, specificto C-SPY 52
With I/O emulation modules (linker option), using. 71
__writeFile (C-SPY systemmacro) 327
__writeFileByte (C-SPY system macro).............. 327
__writeMemoryByte (C-SPY system macro) 328
__writeMemory8 (C-SPY system macro)............. 328
__writeMemory16 (C-SPY system macro)............ 328
__writeMemory32 (C-SPY system macro)............ 329

Z

zone
defined in device descriptionfile 149
inC-SPY ... 148
part of an absolute address. 143
Zone (Edit SFRoption). 172
Zoom (Sampled Graphs window context menu). 110
Zoom (Timeline window context menu). 190

Symbols

__cancelAlllnterrupts (C-SPY system macro) 295
__cancellnterrupt (C-SPY system macro). 296
__clearBreak (C-SPY systemmacro) 296
__closeFile (C-SPY systemmacro) 297
__delay (C-SPY system macro) 297
__disablelnterrupts (C-SPY system macro) 297
__driverType (C-SPY systemmacro) 298
__enablelnterrupts (C-SPY system macro)............ 298
__evaluate (C-SPY systemmacro) 299
__fillMemory8 (C-SPY system macro). 299
__fillMemory16 (C-SPY system macro). 300
__fillMemory32 (C-SPY system macro). 301
__fmessage (C-SPY macro statement) 289
__isBatchMode (C-SPY system macro) 302
__loadImage (C-SPY systemmacro) 302
__memoryRestore (C-SPY system macro) 304
__memorySave (C-SPY system macro) 304
__message (C-SPY macro statement). 289
__messageBoxYesNo (C-SPY system macro) 305
__openFile (C-SPY system macro). 306
__orderInterrupt (C-SPY system macro). 307
__popSimulatorInterruptExecutingStack (C-SPY

SYSIEIM MACTO). .+ ¢ vt ev et ettt et e e e e eeeenes 308
__readFile (C-SPY systemmacro) 308
__readFileByte (C-SPY systemmacro) 309
__readMemoryByte (C-SPY system macro)........... 309
__readMemory8 (C-SPY system macro) 309

Index °

__readMemory16 (C-SPY system macro) 310
__readMemory32 (C-SPY system macro) 310
__registerMacroFile (C-SPY system macro). 311
__resetFile (C-SPY system macro). 311
__setAdvancedTriggerBreak (C-SPY system macro)312
__setCodeBreak (C-SPY system macro). 313
__setConditionalBreak (C-SPY system macro) 314
__setDataBreak (C-SPY systemmacro) 315
__setDatal.ogBreak (C-SPY system macro)........... 317
__setLogBreak (C-SPY system macro) 318
__setRangeBreak (C-SPY system macro). 319
__setSimBreak (C-SPY system macro) 320
__setTraceStartBreak (C-SPY system macro). 321
__setTraceStopBreak (C-SPY system macro). 322
__smessage (C-SPY macro statement) 289
__sourcePosition (C-SPY system macro) 323
__strFind (C-SPY system macro) 323
__subString (C-SPY system macro) 324
__targetDebuggerVersion (C-SPY system macro) 324
__toLower (C-SPY system macro) 325
__toString (C-SPY systemmacro) 325
__toUpper (C-SPY system macro) 326
__unloadlmage (C-SPY system macro) 326
__writeFile (C-SPY systemmacro) 327
__writeFileByte (C-SPY system macro). 327
__writeMemoryByte (C-SPY system macro) 328
__writeMemory8 (C-SPY system macro). 328
__writeMemory16 (C-SPY system macro)............ 328
__writeMemory32 (C-SPY system macro)............ 329
-d (C-SPY command line option) 344
-f(cspybatoption). i 349
-p (C-SPY command line option) 354

--allow_access_to_BSL (C-SPY command line option) . . 341
--allow_locked_flash_access

(C-SPY command line option) 342
--attach (C-SPY command line option). 342
--backend (C-SPY command line option) 342
--code_coverage_file (C-SPY command line option)343
--connection (C-SPY command line option). 343
--cycles (C-SPY command line option) 344

397

398

--debugfile (cspybatoption) 345
--derivative (C-SPY command line option). 345
--disable_interrupts (C-SPY command line option) 346
--disable_memory_cache (C-SPY command line option) . 346
--download_only (C-SPY command line option) 346
--eem (C-SPY command line option) 346
--erase_exclude (C-SPY command line option) 347
--erase_ip_protected (C-SPY command line option). 348
--erase_main (C-SPY command line option) 348
--erase_main_and_info (C-SPY command line option) .. 348
--erase_retain_file (C-SPY command line option) 348
--erase_retain_target (C-SPY command line option)349
--hardware_multiplier (C-SPY command line option) . . .350
--hwmult_type (C-SPY command line option) 350
--jtag_speed (C-SPY command line option) 351
--Iptl (C-SPY command line option) 352
--Ipt2 (C-SPY command line option) 352
--Ipt3 (C-SPY command line option) 352
--macro (C-SPY command line option) 352
--macro_param (C-SPY command line option). 353
--mapu (C-SPY command line option) 353
--odd_word_check (C-SPY command line option). 353
--plugin (C-SPY command line option) 354
--port (C-SPY command line option) 355
--protocol (C-SPY command line option) 355
--settlingtime (C-SPY command line option) 356
--set_exit_breakpoint (C-SPY command line option) 356

--set_getchar_breakpoint (C-SPY command line option) . 356
--set_putchar_breakpoint (C-SPY command line option) . 356

--silent (C-SPY command line option) 357
--timeout (C-SPY command line option) 357
--use_emulated_breakpoints

(C-SPY command line option) 357
--use_virtual_breakpoints (C-SPY command line option). 358
--vcevoltage (C-SPY command line option) 358
--verify_all (C-SPY command line option). 358

C-SPY Debugging Guide
for MSP430

Numerics

1x Units (Symbolic Memory window context menu) 162

8x Units (Memory window context menu)

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Basic debugging
	Part 2. Analyzing your application
	Part 3. Advanced debugging
	Part 4. Additional reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Basic debugging
	The IAR C-SPY Debugger
	Introduction to C-SPY
	An integrated environment
	General C-SPY debugger features
	Additional general C-SPY debugger features

	RTOS awareness

	Debugger concepts
	C-SPY and target systems
	The debugger
	The target system
	The application
	C-SPY debugger systems
	The ROM-monitor program
	Third-party debuggers
	C-SPY plugin modules

	C-SPY drivers overview
	Differences between the C-SPY drivers

	The IAR C-SPY Simulator
	The C-SPY hardware debugger drivers
	Features
	Communication overview
	Hardware installation

	Getting started using C-SPY
	Setting up C-SPY
	Setting up for debugging
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules

	Starting C-SPY
	Starting a debug session
	Loading executable files built outside of the IDE
	Starting a debug session with source files missing
	Loading multiple images

	Adapting for target hardware
	Modifying a device description file
	Initializing target hardware before C-SPY starts
	Using predefined C-SPY macros for device support

	Running example projects
	Running an example project

	Reference information on starting C-SPY
	C-SPY Debugger main window
	Menu bar
	Debug menu
	C-SPY windows
	Editing in C-SPY windows

	Images window
	Requirements
	Display area
	Context menu
	Related information

	Get Alternative File dialog box
	Could not find the following source file
	Suggested alternative
	Use this file
	Skip
	If possible, don’t show this dialog again
	Related information

	Device Information window
	Requirements

	Executing your application
	Introduction to application execution
	Briefly about application execution
	Source and disassembly mode debugging
	Single stepping
	The step commands
	Step Into
	Step Over
	Next Statement
	Step Out
	Single-stepping and flash memory in the C-SPY FET Debugger

	Stepping speed
	Running the application
	Go
	Run to Cursor

	Highlighting
	Call stack information
	Terminal input and output
	Debug logging

	Reference information on application execution
	Disassembly window
	Requirements
	Toolbar
	Display area
	Context menu

	Call Stack window
	Requirements
	Display area
	Context menu

	Terminal I/O window
	Requirements
	Input
	Ctrl codes
	Input Mode

	Terminal I/O Log File dialog box
	Requirements
	Terminal IO Log Files

	LCD window
	Requirements
	Toolbar

	LCD Settings dialog box
	Requirements
	LCD configuration file
	LCD control register address

	Debug Log window
	Requirements
	Context menu

	Log File dialog box
	Requirements
	Enable Log file
	Include

	Report Assert dialog box
	Abort
	Debug
	Ignore

	Autostep settings dialog box
	Requirements
	Delay

	Variables and expressions
	Introduction to working with variables and expressions
	Briefly about working with variables and expressions
	C-SPY expressions
	C/C++ symbols
	Assembler symbols
	C-SPY macro functions
	C-SPY macro variables
	Using sizeof

	Limitations on variable information
	Effects of optimizations

	Working with variables and expressions
	Using the windows related to variables and expressions
	Viewing assembler variables
	Getting started using data logging
	Getting started using data sampling

	Reference information on working with variables and expressions
	Auto window
	Requirements
	Context menu

	Locals window
	Requirements
	Context menu

	Watch window
	Requirements
	Context menu

	Live Watch window
	Requirements
	Display area
	Context menu

	Statics window
	Requirements
	Display area
	Context menu

	Quick Watch window
	Requirements
	Context menu

	Symbols window
	Requirements
	Display area
	Context menu

	Resolve Symbol Ambiguity dialog box
	Requirements
	Ambiguous symbol
	Please select one symbol

	Data Log window
	Requirements
	Display area
	Context menu

	Data Log Summary window
	Requirements
	Display area
	Context menu

	Data Sample Setup window
	Requirements
	Display area
	Context menu

	Data Sample window
	Requirements
	Display area
	Context menu

	Sampled Graphs window
	Requirements
	Context menu

	Breakpoints
	Introduction to setting and using breakpoints
	Reasons for using breakpoints
	Briefly about setting breakpoints
	Breakpoint types
	Code breakpoints
	Log breakpoints
	Trace Start and Stop breakpoints
	Data breakpoints
	Data Log breakpoints
	Immediate breakpoints
	Range breakpoints
	Advanced trigger breakpoints
	Conditional breakpoints

	Breakpoint icons
	Breakpoints in the C-SPY simulator
	Breakpoints in the C-SPY hardware Debugger driver
	Hardware breakpoints
	Software breakpoints

	Breakpoint consumers
	User breakpoints
	C-SPY itself
	C-SPY plugin modules

	Setting breakpoints
	Various ways to set a breakpoint
	Toggling a simple code breakpoint
	Setting breakpoints using the dialog box
	Setting a data breakpoint in the Memory window
	Setting breakpoints using system macros
	Setting breakpoints at C-SPY startup using a setup macro file

	Useful breakpoint hints
	Tracing incorrect function arguments
	Performing a task and continuing execution
	Using breakpoints when programming flash memory

	Reference information on breakpoints
	Breakpoints window
	Requirements
	Display area
	Context menu

	Breakpoint Usage window
	Requirements
	Display area

	Code breakpoints dialog box
	Requirements
	Break At
	Size
	Action
	Conditions

	Log breakpoints dialog box
	Requirements
	Trigger at
	Message
	C-SPY macro "__message" style
	Conditions

	Data breakpoints dialog box
	Requirements
	Break At
	Access Type
	Size
	Action
	Conditions

	Data Log breakpoints dialog box
	Requirements
	Variable
	Access Type

	Immediate breakpoints dialog box
	Requirements
	Trigger at
	Access Type
	Action

	Range breakpoints dialog box
	Requirements
	Start value
	Range delimiter
	Type
	Access type
	Action
	Action when

	Conditional breakpoints dialog box
	Requirements
	Break At
	Type
	Operator
	Access
	Mask
	Condition
	Action

	Advanced Trigger breakpoints dialog box
	Requirements
	Break At
	Type
	Operator
	Mask
	Value
	Access type
	Action

	Enter Location dialog box
	Type

	Breakpoint combiner dialog box
	Requirements

	Resolve Source Ambiguity dialog box
	All
	Selected
	Cancel
	Automatically choose all

	Memory and registers
	Introduction to monitoring memory and registers
	Briefly about monitoring memory and registers
	C-SPY memory zones
	Device-specific zones

	Stack display
	Stack usage

	Memory access checking

	Monitoring memory and registers
	Defining application-specific register groups

	Reference information on memory and registers
	Memory window
	Requirements
	Toolbar
	Display area
	Context menu

	Memory Save dialog box
	Requirements
	Zone
	Start address
	End address
	File format
	Filename
	Save

	Memory Restore dialog box
	Requirements
	Zone
	Filename
	Restore

	Fill dialog box
	Requirements
	Start address
	Length
	Zone
	Value
	Operation

	Symbolic Memory window
	Requirements
	Toolbar
	Display area
	Context menu

	Stack window
	Requirements
	Toolbar
	The graphical stack bar
	Display area
	Context menu

	Register window
	Requirements
	Toolbar
	Display area

	SFR Setup window
	Requirements
	Display area
	Context menu

	Edit SFR dialog box
	Requirements
	Name
	Address
	Zone
	Size
	Access

	Memory Access Setup dialog box
	Requirements
	Use ranges based on
	Use manual ranges
	Memory access checking
	Buttons

	Edit Memory Access dialog box
	Requirements
	Memory range
	Access type

	Memory Dump dialog box
	Requirements
	Dump File Name
	Start Address
	Dump Length
	Add address information
	Append register contents
	Format

	Part 2. Analyzing your application
	Trace
	Introduction to using trace
	Reasons for using trace
	Briefly about trace
	Trace features in C-SPY

	Requirements for using trace

	Collecting and using trace data
	Getting started with trace
	Trace data collection using breakpoints
	Searching in trace data
	Browsing through trace data

	Reference information on trace
	Trace window
	Requirements
	Trace toolbar
	Display area

	Function Trace window
	Requirements
	Toolbar
	Display area

	Timeline window
	Requirements
	Display area for the Call Stack Graph
	Display area for the Data Log graph
	Display area for the Interrupt Log graph
	Selection and navigation
	Context menu

	Viewing Range dialog box
	Requirements
	Range for ...
	Scale

	Trace Start breakpoints dialog box
	Requirements
	Trigger at

	Trace Stop breakpoints dialog box
	Requirements
	Trigger at

	Trace Expressions window
	Requirements
	Toolbar
	Display area

	Find in Trace dialog box
	Requirements
	Text search
	Address Range

	Find in Trace window
	Requirements
	Display area

	Profiling
	Introduction to the profiler
	Reasons for using the profiler
	Briefly about the profiler
	Profiling sources
	Power sampling

	Requirements for using the profiler

	Using the profiler
	Getting started using the profiler on function level
	Analyzing the profiling data
	Getting started using the profiler on instruction level

	Reference information on the profiler
	Function Profiler window
	Requirements
	Toolbar
	Display area
	Context menu

	Code coverage
	Introduction to code coverage
	Reasons for using code coverage
	Briefly about code coverage
	Requirements and restrictions for using code coverage

	Reference information on code coverage
	Code Coverage window
	Requirements
	Display area
	Context menu

	Power debugging
	Introduction to power debugging
	Reasons for using power debugging
	Briefly about power debugging
	Measuring power consumption
	Power debugging using C-SPY

	Requirements and restrictions for power debugging

	Optimizing your source code for power consumption
	Waiting for device status
	Software delays
	DMA versus polled I/O
	Low-power mode diagnostics
	CPU frequency
	Detecting mistakenly unattended peripherals
	Peripheral units in an event-driven system
	Finding conflicting hardware setups
	Analog interference

	Debugging in the power domain
	Displaying a power profile and analyzing the result
	Detecting unexpected power usage during application execution
	Measuring low power currents
	Changing the graph resolution

	Reference information on power debugging
	Power Log Setup window
	Requirements
	Display area
	Context menu

	Power Log window
	Requirements
	Display area
	Context menu
	The format of the log file

	Power graph in the Timeline window
	Requirements
	Display area

	State Log window
	Requirements
	Display area
	Context menu

	State Log Summary window
	Requirements
	Display area
	Context menu

	State Log graph in the Timeline window
	Requirements
	Display area

	Part 3. Advanced debugging
	Interrupts
	Introduction to interrupts
	Briefly about interrupt logging
	Requirements for interrupt logging

	Briefly about the interrupt simulation system
	Interrupt characteristics
	Interrupt simulation states
	C-SPY system macros for interrupt simulation
	Target-adapting the interrupt simulation system

	Using the interrupt system
	Simulating a simple interrupt
	Simulating an interrupt in a multi-task system
	Getting started using interrupt logging

	Reference information on interrupts
	Interrupt Setup dialog box
	Requirements
	Enable interrupt simulation
	Display area
	Buttons

	Edit Interrupt dialog box
	Requirements
	Interrupt
	Description
	First activation
	Repeat interval
	Variance %
	Hold time
	Probability %

	Forced Interrupt window
	Requirements
	Display area
	Context menu

	Interrupt Status window
	Requirements
	Display area

	Interrupt Log window
	Display area
	Context menu

	Interrupt Log Summary window
	Requirements
	Display area
	Context menu

	The advanced cycle counter
	Introduction to the advanced cycle counter
	Reasons for using the advanced cycle counter
	Briefly about the advanced cycle counter
	Requirements for using the advanced cycle counter

	Using the cycle counter applications
	Counting all CPU cycles
	Measuring the DMA load versus the CPU load
	Profiling a specific part of your application
	Measuring the Trigger hits
	Measuring the number of CPU cycles for a task

	Reference information on the advanced cycle counter
	Advanced Cycle Counter Control window
	Requirements
	Applications
	Cycle counter values
	Mode
	Start
	Stop
	Clear
	Combinations of start, stop, and clear reactions
	Reaction trigger 1, Reaction trigger 2
	Reset Counter 0/1

	State storage
	Introduction to state storage
	Reasons for using state storage
	Briefly about state storage
	Requirements

	Using state storage
	Setting up state storage
	Example

	Reference information on state storage
	State Storage Control window
	Requirements
	Enable state storage
	Buffer wrap around
	Reset
	Trigger action
	Storage action on
	State storage triggers

	State Storage window
	Requirements
	Toolbar
	Display area

	The sequencer
	Introduction to the sequencer
	Reasons for using the sequencer
	Briefly about the sequencer
	Requirements for using the sequencer

	Using the sequencer
	Setting up the sequencer (simple setup)
	Setting up the sequencer (advanced setup)
	Using the sequencer to locate a problem

	Reference information on the sequencer
	Sequencer Control window
	Requirements
	Enable Sequencer
	Action
	Current state
	Reset Trigger
	Reset States
	Advanced
	State 0–3

	C-SPY macros
	Introduction to C-SPY macros
	Reasons for using C-SPY macros
	Briefly about using C-SPY macros
	Briefly about setup macro functions and files
	Briefly about the macro language
	Example

	Using C-SPY macros
	Registering C-SPY macros—an overview
	Executing C-SPY macros—an overview
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint
	Aborting a C-SPY macro

	Reference information on the macro language
	Macro functions
	Macro variables
	Macro parameters
	Macro strings
	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output
	Specifying display format of arguments

	Reference information on reserved setup macro function names
	execUserPreload
	Syntax
	For use with
	Description

	execUserExecutionStarted
	Syntax
	For use with
	Description

	execUserExecutionStopped
	Syntax
	For use with
	Description

	execUserSetup
	Syntax
	For use with
	Description

	execUserPreReset
	Syntax
	For use with
	Description

	execUserReset
	Syntax
	For use with
	Description

	execUserExit
	Syntax
	For use with
	Description

	Reference information on C-SPY system macros
	_ _cancelAllInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _cancelInterrupt
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _clearBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	See also

	_ _closeFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _delay
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _disableInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _driverType
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _enableInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _evaluate
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory8
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _isBatchMode
	Syntax
	Return value
	For use with
	Description

	_ _loadImage
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example 1
	Example 2
	See also

	_ _memoryRestore
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _memorySave
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _messageBoxYesNo
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _openFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _orderInterrupt
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _popSimulatorInterruptExecutingStack
	Syntax
	Return value
	For use with
	Description
	See also

	_ _readFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readFileByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory8, _ _readMemoryByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _registerMacroFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _resetFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _setAdvancedTriggerBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setCodeBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Examples
	See also

	_ _setConditionalBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setDataBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setDataLogBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setLogBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setRangeBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setSimBreak
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _setTraceStartBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setTraceStopBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _sourcePosition
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _strFind
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _subString
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _targetDebuggerVersion
	Syntax
	Return value
	For use with
	Description
	Example

	_ _toLower
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _toString
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _toUpper
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _unloadImage
	Syntax
	Parameters
	Return value
	For use with
	Description
	See also

	_ _writeFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _writeFileByte
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _writeMemory8, _ _writeMemoryByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _writeMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _writeMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	Graphical environment for macros
	Macro Registration window
	Requirements
	Display area
	Context menu

	Debugger Macros window
	Requirements
	Display area
	Context menu

	Macro Quicklaunch window
	Requirements
	Display area
	Context menu

	The C-SPY command line utility—cspybat
	Using C-SPY in batch mode
	Starting cspybat
	Output
	Invocation syntax
	Parameters

	Summary of C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver
	Options available for the C-SPY FET Debugger driver

	Reference information on C-SPY command line options
	--allow_access_to_BSL
	Syntax
	For use with
	Description

	--allow_locked_flash_access
	Syntax
	For use with
	Description

	--attach
	Syntax
	For use with
	Description

	--backend
	Syntax
	Parameters
	For use with
	Description

	--connection
	Syntax
	Parameters
	For use with
	Description

	--core
	Syntax
	Parameters
	For use with
	Description
	See also

	--code_coverage_file
	Syntax
	Parameters
	For use with
	Description
	See also

	--cycles
	Syntax
	Parameters
	For use with
	Description

	-d
	Syntax
	Parameters
	For use with
	Description

	--debugfile
	Syntax
	Parameters
	For use with
	Description

	--derivative
	Syntax
	Parameters
	For use with
	Description

	--disable_interrupts
	Syntax
	For use with
	Description

	--disable_memory_cache
	Syntax
	For use with
	Description

	--downloadonly
	Syntax
	For use with
	Description

	--eem
	Syntax
	Parameters
	For use with
	Description

	--erase_exclude
	Syntax
	Parameters
	For use with
	Description
	Example

	--erase_ip_protected
	Syntax
	For use with
	Description

	--erase_main
	Syntax
	For use with
	Description

	--erase_main_and_info
	Syntax
	For use with
	Description

	--erase_retain_file
	Syntax
	For use with
	Description

	--erase_retain_target
	Syntax
	For use with
	Description

	-f
	Syntax
	Parameters
	For use with
	Description

	--hardware_multiplier
	Syntax
	Parameters
	For use with
	Description

	--hwmult_type
	Syntax
	Parameters
	For use with
	Description

	--jtag_speed
	Syntax
	Parameters
	For use with
	Description

	--leave_running
	Syntax
	For use with
	Description

	--lptx
	Syntax
	For use with
	Description

	--macro
	Syntax
	Parameters
	For use with
	Description
	See also

	--macro_param
	Syntax
	Parameters
	For use with
	Description
	See also

	--mapu
	Syntax
	For use with
	Description
	See also

	--odd_word_check
	Syntax
	For use with
	Description

	-p
	Syntax
	Parameters
	For use with
	Description
	See also

	--plugin
	Syntax
	Parameters
	For use with
	Description

	--port
	Syntax
	Parameters
	For use with
	Description

	--protocol
	Syntax
	Parameters
	For use with
	Description

	--set_exit_breakpoint
	Syntax
	For use with
	Description

	--set_getchar_breakpoint
	Syntax
	For use with
	Description

	--set_putchar_breakpoint
	Syntax
	For use with
	Description

	--settlingtime
	Syntax
	For use with
	Description

	--silent
	Syntax
	For use with
	Description

	--timeout
	Syntax
	Parameters
	For use with
	Description

	--use_emulated_breakpoints
	Syntax
	For use with
	Description

	--use_virtual_breakpoints
	Syntax
	For use with
	Description

	--vccvoltage
	Syntax
	For use with
	Description

	--verify_all
	Syntax
	For use with
	Description

	Part 4. Additional reference information
	Debugger options
	Setting debugger options
	Reference information on debugger options
	Setup
	Driver
	Run to
	Setup macros
	Device description file

	Images
	Download extra Images

	Plugins
	Select plugins to load
	Description
	Location
	Originator
	Version

	Extra Options
	Use command line options

	Reference information on the C-SPY simulator
	Setup options for the simulator
	Peripheral simulation
	Check for word access on odd address

	Reference information on C-SPY hardware debugger driver options
	Setup for FET Debugger
	Connection
	Debug protocol
	Attach to running target
	Disable memory cache
	Jtag speed
	Target VCC
	Enable ULP/LPMx.5 debug

	Download
	Verify download
	Allow erase/write access to locked flash memory
	Allow erase/write access to BSL flash memory
	External code download
	Erase main memory
	Erase main and Information memory
	Retain unchanged memory
	Erase main and Information memory inc. IP PROTECTED area
	JTAG password

	Breakpoints
	Use software breakpoints
	System breakpoints on
	Reserve breakpoints for Data Sample

	Additional information on C-SPY drivers
	Reference information on C-SPY driver menus
	C-SPY driver
	Simulator menu
	Menu commands

	Emulator menu
	Menu commands

	Reference information on the C-SPY FET Debugger driver
	General Clock Control dialog box
	Requirements

	Extended Clock Control dialog box
	Requirements

	Resolving problems
	The device port pins do not work
	Write failure during load
	No contact with the target hardware
	Slow stepping speed

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
	Symbols
	Numerics

