IAR Embedded Workbench®

C-SPY® Debugging Guide

for the Renesas
RX Family

©IAR

UCSRX-6 SYSTEMS

2

C-SPY® Debugging Guide
for RX

COPYRIGHT NOTICE
© 2009-2015 TAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, C-RUN, C-STAT, visualSTATE,
Focus on Your Code, IAR KickStart Kit, IAR Experiment!, I-jet, I-jet Trace, I-scope,
IAR Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Electronics Corporation. RX is a
trademark of Renesas Electronics Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Sixth edition: May 2015

Part number: UCSRX-6

This guide applies to version 2.x of IAR Embedded Workbench® for the Renesas RX
family.

The C-SPY® Debugging Guide for RX replaces all debugging information in the /4R
Embedded Workbench IDE User Guide. It also replaces the C-SPY® Power Debugging
Guide for RX and the IAR C-SPY® Hardware Debugger Systems User Guide for RX.

Internal reference: Hom7.2, IJOA.

Brief contents

TaABIES ... 19
Preface ... 21
Part |. Basic debugging ... 27
The IAR C-SPY Debugger ... 29
Getting started using C-SPY ... 41
Executing your application ... 69
Variables and eXpressions ... 93
Breakpoints ... 129
MemOory and reQISTErS ... 157
Part 2. Analyzing your application 189
TPACE .o 191
ProOfiling ...t 219
Analyzing code performance ..., 233
COdE COVEIAZEoooeeee e 241
Power debugging ... e 245
Part 3. Advanced debugging ... 261
INEEITUPES ..ot 263
C-SPY MACIOS ..o eeeeiisiseseseee s 283
The C-SPY command line utility—cspybatcccooorriernn. 337

Part 4. Additional reference information ... 353

Debugger OPLIONS ...

Additional information on C-SPY drivers ...,

Contents

TABIES ... 19
Preface ... 21
Who should read this guide ... 21
Required KNOWIEAZEccceeeeiiieieieieieieeee e 21
What this guide contains ...,
Part 1. Basic debuggingc.ceceeveeeeiieieieieneneneneneneeseeeee
Part 2. Analyzing your application
Part 3. Advanced debuggingcccceevevievienieninnieeeeeeee e
Part 4. Additional reference informationc.cccecceiiicnininenn 22
Other documentation ... 23
User and reference guidesc..coceeveeeeieeeieiieniencnienencneneeeeeeeene 23
The online help SYSteMccceueieierieiiinienenieneneseseeeeceeeeeeee 24
Web sites
Document CONVENLIONS ..o e 24
Typographic CONVENTIONScceeverrerririerieieiereiene st sreeieeneeneenees 25
Naming CONVENTIONScc.eeueeuirureieieieierierieriesieseesiestesseeseeseeeeeeneeneas 25
Part |. Basic debugging ... 27
The IAR C-SPY Debugger ... 29
Introduction to C-SPY ... 29
An integrated enVIFONMENLc..coeverierireeeeieiererenenene e seereeeene 29
General C-SPY debugger featuresccccooeveverenicneneeeeeeecneenene 30
RTOS aWarenessccoceeeeeeirieieieieieienienenese s 31
Debugger cONCePLs ... 32
C-SPY and target SYSLEIMScc.eeververueeeemieieienienteieienteniesieniesiesiesienne 32
The deDUZZET ...c.eeeiiiiiie et 33
The target SYSIBIMN ...c.ecveereereriririreeiteitetetete et 33
The apPlICAtONoveviiiriieiieiieiieietetete e

C-SPY debugger systems
The ROM-mONItOr Programcccceceeeeveereeeeeerrenenereneneneeeeeenees 34

Third-party debuggers

C-SPY plugin modulescccceeverierieniiniiiieieeieeeseeiee e 34
C-SPY drivers OVErVIEW ...t 35
Differences between the C-SPY driversccccocevenvencnenencncenene 35
The IAR C-SPY Simulator ... 36
The C-SPY EI1/E20 and E2 Lite drivers ... 36
Communication overview
Hardware installationccccecevivinieieienieniinienenenencncceeceeene
The C-SPY J-Link driverccccooovviviviiiieeieeeeeeeeean 38
CommUNICAtION OVEIVIEWevirierierieriiniiniienieiieeereiesresiesiesiesieeseeneene 38
Hardware installationcccceceviviiieiiiieniiiienienicenencncceeeeeene 39
Getting started using C-SPY ... 41
Setting UP C-SPY ...t 41
Setting up for debuINgcoceevveveviiniriniererenereeeececeeeeene 41
Executing from ISccceviruiruirieieiieieteietee e 42
Using a setup macro filecoceviiiiineeniiniiieieeeeeceeseeeeeee 42
Selecting a device description filecccccevevenienienininieniennicnecnne 42
Loading plugin MOdUIEscccceeeeieieieieienieniene e 43
Starting C-SPY
Starting a debug SESSIONcc.eeeeuerueeienieieieieierierteseseste e 44
Loading executable files built outside of the IDEc.cccceeeneee. 44
Starting a debug session with source files missingccccceceevueennen. 44
Loading multiple iMagesc.ceceeveevuerienenenenenenenenceceeeeeeenees

Downloading files to external flash memory

Start debugging a running applicationcc.cceccevvverveerienieneeneennen.
Adapting for target hardware ..., 48
Modifying a device description filec..cccceeeverenenenencnceieienees 48
Initializing target hardware before C-SPY startscccccocevevinenene 49
Running example projects ..o
Running an example project
Reference information on starting C-SPY ... 51
C-SPY Debugger main Windowcccceeverereneneneneneereeeeeeneens 52

ITmMages WINAOWccoeieiiiiiiiiiicee s 57

Contents °

Get Alternative File dialog box

Download Emulator Firmware dialog boXccccvcvevieniineencenennne. 59
Operating Frequency dialog boXccccceevevinieninininincnecieicecne 59
Hardware Setup dialog box: MCUc.cccevievienenenieneneneneneeeeene 61
Hardware Setup dialog box: External Memoryccoccevceeveeneeenen. 64
External Area dialog DOXc.cccceviviiieieiiiiiiienicicncnencncceeceene 66
Executing your application ... 69
Introduction to application execution
Briefly about application eXeCutionceceeceerverierierereneneeeeeenean
Source and disassembly mode debuggingcccceeveriienienienieannen. 69
SINGLE SEPPING ..evvevverveieienienieeteeteetet ettt
StEPPING SPEEA ..ttt
Running the application ...
Highlightingooooveiiniiii e
Call stack infOrmMationcoceeerereeieierieieiereseee et
Terminal input and OULPULoceevieiriiiiiiriieierieeeeeee et 75
Debug 10ZZING ..cuvevviiieiieiiiieieeeeeee e 75
Reference information on application execution 76
Disassembly window
Call Stack WINAOWcooiiriiiiiiiiiciccrceeee e
Terminal [/O WINAOWcceeiririiieiiieieieeee s 83
Terminal I/O Log File dialog boXccccevoverienieneiniiiiinieneceenene 84
Debug Log WINAOWcoeeiriiiiiiieieicieienenesesesieseeeeeeeeeeeees 85
Log File dialog box
Report Assert dialog DOXcceevueeieriiriieriinienieseeeeeeeeeeeee e 87
Start/Stop Function Settings dialog boXccceeererierenerieninicnicnene 87
Select Label dialog DOXcccccvvueirienieinieiniieeneereeeeeeeseceeenes 90
Autostep settings dialog bOXcccueriereeriiniiniiiienieeeeeeeeeeee 91
ID Code Verification dialog BOXccceeceeverieiierieneneneneneneeeeeenes 91
Variables and eXpressions ... 93
Introduction to working with variables and expressions 93
Briefly about working with variables and expressionsc........... 93
C-SPY EXPIESSIONS ...cuviviririiriiriieiieieeitentetetetentestesresresiesieeseeseeseeneens 94

Limitations on variable information

Working with variables and expressionscccccecee.. 97
Using the windows related to variables and expressions 97
Viewing assembler variablesccccecevevieveninenenienienceieeeee 98
Getting started using data [0ggINgGcoccevveriiriiniieneenieneeeeeeen 99
Getting started using data SAMPINGc.ccceevvevveviineneniennienineeeeene 99

Reference information on working with variables and

EXPFESSIONS ...ttt ettt 100
AULO WINAOW ..o 101
Locals WINAOWc.ccoiiiiiiiiiiiieieeeeecee s 103
Watch Windowccccoiiiiiiiiiii 105
Live Watch Windowcccccciiiiiiiiiiiiiiiicceeccce 107
Statics WINAOWooiiuiiiiiiiiiciieiciecee e 109
Quick Watch WINAOWc.cooviiiiiiiiiiieiiieeiie ettt 112
Symbols WINAOWc.cocueiiiiiiiniiiiiiniieieietieeeeeee e 114
Resolve Symbol Ambiguity dialog boXc.cccceeverereneeniericncnennene 116
Data Log WINAOWooviiiiriiiiieiieieeieeeeteeterteeeee st

Data Log Summary window ...

Data Sample Setup window

Data Sample WindOWcccooveeriiiiiriiiiinieieeeeeieee st
Sampled Graphs WINAOWc..coccovevuenininininieieieccreseneneniee
Breakpoints ... 129
Introduction to setting and using breakpoints 129
Reasons for using breakpoints
Briefly about setting breakpointsccocceeceeveeneeneeriiensieneeneeneens 129
Breakpoint tyPescc.eeeeeeieieieieienierenesee ettt 130
Breakpoint 1CONScceeieieiieiieieiesiereseeetetet ettt 132
Breakpoints in the C-SPY simulatorcocceveeneinenienneniencenene 133
Breakpoints in the C-SPY hardware debugger driversc........ 133
Breakpoint consumers
Setting breakpoints ...
Various ways to set a breakpointcoceeveveeverereenienienienenenennens 135

Toggling a simple code breakpointccceceeeveenienienienienenenennens 135

Contents °

Setting breakpoints using the dialog box

Setting a data breakpoint in the Memory windowccccceceevunenne. 137
Setting breakpoints using SyStem MACIOSc.ceceeeevereveruerererenne 137
Useful breakpoint hintsccccceeereneneneninienenecteeeeenenenieneene 138
Reference information on breakpoints ..., 139
Breakpoints WindOWcccoveveneneneneneninenceeeeeeeeeverene e

Breakpoint Usage window

Code breakpoints dialog DOXccceevveriereenieenieniienieeieneeseerieeieenne 143
Hardware Code Breakpoint dialog boXc.cccceceeiecviiencncncnicnenne 144
Software Code Breakpoint dialog bOXcccceceeveieieiienenencncnenne 146
Log breakpoints dialog DOXc.cevervvervierienienieieiieeieseeseenee s 147
Data breakpoints dialog box (SIMulator)cccceceeeveevecuenenenenenne 148
Data breakpoints dialog box (C-SPY hardware debugger drivers) .. 150
Data Log breakpoints dialog boXcccceocvevienirneineniieiierieneenene 152
Immediate breakpoints dialog bOXc..coccevevvereinienienieniinininenene. 153
Enter Location dialog BOXccccoerereneneneninininecteeeeenenenieeene 154
Resolve Source Ambiguity dialog boXcccceveeveenieriieenenieneenene 156
MemOory and reGISTEIS ... 157
Introduction to monitoring memory and registers
Briefly about monitoring memory and registersc..coceeveereeuennene
C-SPY MEMOTY ZONES ...ccuveririmiiiieniienieenieenieereeieeieeeeesieesieeseeenneenee
StaCK diSPIAY ..eovviriieiieriieieeiee e
Memory access Checkingcoceevvevieiiininienineniieeeececeseene
Monitoring memory and registers ...
Defining application-specific register Sroupsc.cceceeveeveevvenuennens 161
Reference information on memory and registers 162
MEMOTY WINAOWoviiiiiiiiieiieieieietesiesteete ettt e 163
Memory Save dialog BOXccccevveeviiriieniiinienieieeeeeeste e 167
Memory Restore dialog DOXccoceeieievienieninienenenineeeeieneneene 168
Fill dialog box
RAM Monitor Setup dialog DOXcccoveevienienienienienieneenieneenene 170
Edit RAM monitor block dialog bOXccccecevererienenennenenecienene 171
Symbolic Memory WindOWccceeeeererinienieieieieieieniesieseesieee 172

Stack window

RegiSter WINAOWco.eiiiiiniiiiiiieeieeieet ettt 179

SFR Setup WiNAOW ...c..coccreiiiiiiiiiiiiiiiinriereeeeeeteeetesresresie e 181

Edit SFR dialog BOXcoceeieiiiiiiiiiinineneneneeeeceteeeeesese e 184

Memory Access Setup dialog boXcccoovevienirneniieniiienieeeee 185

Edit Memory Access dialog BOXccceeeeieinininiiiiiiiiinenencnee 187

Part 2. Analyzing your application ... 189
.. 191
Introduction to using trace ... 191
Reasons for using tracecccocevecererieierieinienieeneeeeieeeeeveeenes 191

Briefly about trace

Requirements for USING traCeccccuevuevierierenenenenieeeeeieneneenaens 192
Collecting and using trace data ... 192
Getting started With traCeccoceerviereenienerieieeeeeereeeeeeee 192
Trace data collection using breakpointscocceceeverereeeeeeneenuennens 193

Searching in trace data

Browsing through trace datacccccoceviiiiiiniiniinienesceeeeeee 194
Reference information on traceccoooovvviiiiniicnnenen, 194
Trace Settings dialog DOXcccoeveririeineriiiicirececeeee e 195
Trace WINAOW ...c..ccuevuiiiiiiiiiiiiicicnieeseeeeec e 198
Function Trace WindOWcccceceeieieieieiieiieneneneneneeeeeeeeeeene 202

Timeline window

Viewing Range dialog DOXc.ccooceeriiriiniiniiniiiicieceseeneeceene 211
Trace Start breakpoints dialog BOXccccevevererereenieniencnencnienne 212
Trace Stop breakpoints dialog DOXcoeverererienienienienienieneneene 213
Data Trace Collection breakpoints dialog boXcccccecveveeerveneennnnn. 214
Trace EXpressions Windowccccecevereneneneneneenienieneeneneneennens 214
Find in Trace dialog DOXccceeeeiieieiienienienienenceeeteteeee e 215

Find in Trace WindoWcccccveiviiiiiieeiiieniie et 216

Contents °

PrOfiling ...t 219
Introduction to the profiler ... 219
Reasons for using the profilerc.cocevevieiiiinininininninnienns 219

Briefly about the profilerc..ccccocveiivenininnnincieeceees 219

Requirements for using the profilercccceevenvenininininncncnnens 220

Using the profiler ... 221
Getting started using the profiler on function levelc..c.cco.c... 221

Analyzing the profiling datac..cccceceeveevieiineninienneeececene 222

Getting started using the profiler on instruction level 224

Selecting a time interval for profiling informationc..ccceceeeeeee. 225

Reference information on the profiler ... 226
Function Profiler Windowcc.ccccevnininininiiniiniciiieicniencnenee 227

Analyzing code performance ..., 233
Introduction to performance analysis ... 233

Reasons for using performance analysis ...

Briefly about performance analysisc..ccccoeevervenienienneenienenennene 233
Requirements for performance analysisc..coceeverenerirennienienens 234
Analyzing performance ... 234
Using performance analysisc..cccceceverieneneneneeiienienienienenenens 234
Reference information on performance analysis 234
Performance Analysis Setup dialog boXcc.ccceveeeiicieciincnencnene

Performance Analysis WindOwcccoceeieiriieiieneneneneneneeeeene

Performance Start breakpoints dialog box

Performance Stop breakpoints dialog box

COdE COVEIAZEoooeeeie e 241
Introduction to code coverage ... 241
Reasons for using code COVETagecocevveuerierierenenenenenreenieeens 241

Briefly about code COVEragecc.cocvvvevvenenenenenineeeeeeecienenes 241

Requirements and restrictions for using code coverage 241

Reference information on code coverageccccccoc..... 241

Code Coverage WindOWcccccceevevenienieniineninineneneeeeeereeeeenne 242

Power debugging ... 245

Introduction to power debugging ...
Reasons for using power debuggingccceveeveerierivenvieneeneeneens
Briefly about power debuggingcoceevevenerenenenrnenieieieieanee
Requirements and restrictions for power debugging

Optimizing your source code for power consumption 247
Waiting for device Statusccceeeeeeieienieneneneneneeeeeereneneeneens 247
Software delaysc.cceeeereeiiniinieieeeee e 247
DMA versus polled I/Ooooueviiiiiniiiiieeceeeeee e 248
Low-power mode diagnostiCsc.ccoevevvervenenenrenenieneneeeerennenne 248
CPU frequency
Detecting mistakenly unattended peripheralsccoccovceevveneennenn. 249
Peripheral units in an event-driven SyStemc.cccceveeeeerereennenne 249
Finding conflicting hardware Setupscc.cecceevevverereneneevencnennens 250
Analog INtErferenCecccovveerieriinieiiieeeeeeete et 251

Debugging in the power domain ..., 251
Displaying a power profile and analyzing the resultc..ccccceenee 252
Detecting unexpected power usage during application execution ...252
Changing the graph resolutioncc.ccceevevveneninineniecieierenenenne 253

Reference information on power debugging 253
Power Log Setup WindOWcocoovuirienienieniienieeieeieeesteseeniee s 254

Power Log window

Power graph in the Timeline Windowccccocevveeerienicncncncnennens 259

Part 3. Advanced debugging ... 261

INEEITUPES ..ot 263
Introduction to interrupts ... 263
Briefly about interrupt 10ZgIingcccceeverviiinierienienieseereeeeiene 263

Briefly about the interrupt simulation Systemc..coceeceeeeveeeennene 264

Interrupt charaCteristicseeeeeeeeieienienieieseee ettt 265

Interrupt SIMUlation SLALESc.cceveerierieenieerierieeierte et 265

C-SPY system macros for interrupt simulationcecceceeeeeenene 266

Contents °

Target-adapting the interrupt simulation Systemc..cc.cccevevuennene 267
Using the interrupt system ..., 267
Simulating a simple INTETTUPLccvevvirverrinrirrinieieieeerereree e 268
Simulating an interrupt in a multi-task systemccccceceeeeenne 269
Getting started using interrupt loggingcccceceevvecvevvenienienenenenne 270
Reference information on interrupts ... 270
Interrupt Setup dialog box
Edit Interrupt dialog BOXccceevieviiiniiiiiieiiincete e
Forced Interrupt Windowcccceevuirinininineeeeieieieiesenenienenne
Interrupt Status WindOWccceceeeevieiieiiinenieneneneneneneeeeeeeeene
Interrupt Log WindOWcocooviiniiiiiiiiiiienieeececeeeeste e
Interrupt Log Summary Windowcoccvcereeererenienenenienenennene. 280
C-SPY MACIOS .o 283
Introduction to C-SPY macrosccocceoevennrccnncnennes 283
Reasons for using C-SPY Macroscccceceevvevvevienenenenenenreenieens 283
Briefly about using C-SPY macroscceceveeneenenneenenieeieeienne 284
Briefly about setup macro functions and filesc..cccecerveeveeiennene 284
Briefly about the macro 1anguageccceecevevereniinieenienienenenene 284
Using C-SPY MACKOScccoooiiniiiiinenncnceneenee s 285
Registering C-SPY macros—an OVeIrviewcc.coceeceveeeeveneenennens 286
Executing C-SPY macros—an OVEIrVIEWcecceceeereereeruenuenuennens 286
Registering and executing using setup macros and setup files 287
Executing macros using Quick Watchcccecevveriniiniincncncncnene 287
Executing a macro by connecting it to a breakpointc.ccceue.. 288
Aborting a C-SPY macrocccceeceevveveeneenennienniennen. ...289
Reference information on the macro language290
MaACTO fUNCLIONS ..ouvenviiiiitieiieiieiteteiete ettt ettt 290
Macro variables ..o 290
MACTO PATAIMELETS ...uveuvenverirreerieiieiieaietetetentesresieebe et et eseseeneenaens 291
MACTO SEIINES ..ottt saens 291
MaCrO STALEMENLScoviviiiiiiiiiiiiiiie s 292
Formatted OULPULcc.ooverieriieieieieiciciecceneeeeete e 293

Reference information on reserved setup macro function

NAMMNIES ... 295
execUSerPreloadcooeieiiiiiiiiiiiiiicnecene 295
EXECUSETSEIUP ..vvinvineiiietietieitetieitet ettt ettt 296
eXeCUSEIPreRESetccueeuiiuiiiiiiiiicicicccccccc 296
EXECUSETRESEL ..ottt 296
execUserExit

Reference information on C-SPY system macros 297
__CanCEIAIINIEITUPLS ..cvevvirrierierieiieiieietcreesenie et 299
__CaNCEIINLEITUPE ..eovvimeiniiiiiieiietieieeiieet et 299
__ClearBreakccoieiiiiiiiiii 300

_CLOSEFILE .ot 300

EIAY et 300

__disableINterruptsccceevveevieriierierierterit et 301
__ATIVEITYPE ittt 301
__eNAbIEINIEITUPLS ...eouviiiiiiietieieeieeiietet et 302
__@VALUALE ..ottt
__fillMemory8
__fillMemory16
__fillMemory32
__isBatchMode
__10adImMAageocveviiiiiiiie e
__MEMOTYRESLOTEeeiiiiiiiiiiiieieenieeieeie ettt 307
__memorySave
__messageBoxYesCancelcocceoeieninininininieieeeeeee
__mesSageBOXYESNO ...ooviiiiiiiiciiiieeeee e
__OPENFILE it
__OTdErINEEITUPE ...oeoniiniiieiiiieieet ettt

__popSimulatorInterruptExecutingStack ...
_1€AAFIIR ..ottt
__1€AdFIIEBYLE ..ot

__readMemory8, __readMemoryByteccccooviviiniinenniinienene

[R—

__1€adMEmOTY 16 ...cc.oouiriiiiiiiiiiiiciceeeeee e

__1€adMEmMOTY32 ...ouiiiiiiieieiee ettt

Contents °

__registerMacroFile

_1eSetFIle .o
__setCodeBreakccccooeiiiiiiiiiiiii
__setDataBreakc.ccccciioiiiii e
__setDatalLogBreak
__SEtLOEBIEakccciiiiiiiii e
__setSimBreak ...
__setTraceStartBreakccccoceviiviininininininiciiieenciccce 321
__SetTraceStopBIeakccccovveieieiiiiienininiienececteececeseeee 322
__SOUTCEPOSILIONouiiiiiiiiiiiiiice s 323
_SFINd L 323
__SUDSHIING oottt 324
__targetDebug@erVersioncccceeeverenenineneneeieeeeeneneneneene 324
_BOLOWET oo 325
__EOSHING ittt 325
_LOUDPPET ettt ettt 326
__unloadlmageccccceveeeiiiienieee e 326
__writeFile
__WIIEFIIEBYLE ..otiiiiiiiiiiiieiieiieieeeeeee et 327
__writeMemory8, __writeMemoryBytecccccocevniiniriinniennnenne 328
__WIEMEMOTY 16eviiiiiiiiiiiiicicceneeecceeecteeee e 328
__WIEMEMOTY32 .eeiiiiiieiieieieeeeese ettt 329
Graphical environment for macrosccccccccccvcninnn. 329
Macro Registration window
Debugger Macros Windowc.cceverereneneneneneenteteiesieseeneennens
Macro Quicklaunch Windowcccceeeviieiiiiiiiieeniieieeceeeiee e 334
The C-SPY command line utility—cspybat ..., 337
Using C-SPY in batch mode ... 337
Starting cspybat
Outputoevereveneennene
Invocation syntax
Summary of C-SPY command line options 339
General cspybat OPHONS ccceveuerueuirierieenieieieeeerreeereseeree e 339

Options available for all C-SPY drivers

Options available for the simulator driverccccocceevievvennennennns 340
Options available for all C-SPY hardware debugger drivers 340
Options available for the J-Link driverc.ccoceoeveneneneninnennne. 340

Reference information on C-SPY command line options ...341

==debUGTILE ..o 343
==dEVICE_SCIECE ...eviiiriiiiriiiieitctetetetee sttt 344
-=diSAblE_INLEITUPLS ..eevviiiieiieiiiieeieeitert ettt 344
“=dOUDIE ..o 344
-~ doWNIoad_OnNLY ...covevieiiiiiiiiiie e 345
--drv_COMMUNICAION ..c..ovviriiriiiiieiiiiiieieiireeeteeeee e 345
--drv_mode

Sm@IAIAN ettt s
ettt
SoIIE ettt ettt sr et et

S LENGER e
—=l@AVE_TUNNING ..oviiiiiiiiiiieieeieeteee ettt 348

--log_file

--SupPress_dOWNIoadcccceoevieriinieneninieeee e e 352
S—HMEOUL . 352
-=verify_download ... 352

Contents °

Part 4. Additional reference information 353
Debugger OPLIONS ... 355
Setting debugger options ... 355
Reference information on debugger options 356

EXtra OPtONS ..ocvveviiiiieieiieeieete ettt sttt 359
Reference information on the C-SPY simulator 360
Setup options for the SIMUIALOrcceevuereiriinieieieieieieee e 360

Reference information on C-SPY hardware debugger driver

OPLIONS ..ottt 361
COMMUNICATION ..ieviiiiieiiiiiee et et e e e eraeee e e s eaeeeesssaaeeesssnnnees 361
Download
JTAG Scan Chaillooeieeveeeiieieeee et eeeee e e e e 363
Additional information on C-SPY drivers ..., 365

Reference information on C-SPY driver menus
C-SPY AFIVEF oottt ettt
SIMUIAtOr MENU ..c..ovuiiiiiiiiiiiiiiiciee e
E1/E20 EMulator MENUcccceeeueeuieuieienienienienienienieeieeeeeeieneeneennens
E2 Lite MENU ..oocvieeiieiieieeiiesieeeie ettt ettt teeereebe e eaeesaasaneenaens
J-LANK MIGIU vttt ettt

Reference information on the C-SPY simulator

Simulated Frequency dialog DOXccceeeruieieieieiieieieieiesesienee
Reference information on the C-SPY hardware debugger
AFIVEES ..o

Emulator information window

Resolving problems ...
Write failure during 10adcocoeveeieieiiiieiinnneeeeeeene
No contact with the target hardwarecccooceeverenienieenienenenenene 377
SIOW StEPPING SPEEAerveierieriieieeiiiietetesttereeteeree et 3717
INAEX e 379

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 25
2: Naming conventions used in this gUIdecccceevieiriiriieiienienienenerererese e 25
3: Driver differencescoeveriririiiiicteiecetestee ettt 35
4: Restrictions on registers and flagscccceceveveriniininininncceee e 88
5: MCU status when the user application starts executing ... 89
6: C-SPY assembler Symbols XPreSSiOnsc..ceccecveuerueruenrenrineeeeieeeeensesenenenne 95
7: Handling name conflicts between hardware registers and assembler labels 95
8: Auvailable breakpoints in C-SPY hardware debugger driversc..ccceceevenee. 133
9: C-SPY macros for breakpointsc..cecceceeiereenienieniinenenieieeereesenesesiesieeneene 137
10: Supported graphs in the Timeline WindOWc..cocevevieriinienenineneneneneee 204
11: C-SPY driver profiling SUPPOTTccoeeriieriirriiiieriente ettt 221
12: Project options for enabling the profilerc..cccovveeininininninieiieiecnenene 221
13: Project options for enabling code COVETagecocevererereeeenienienieneneniennenne 242
14: Timer INteITUPL SELLNZS woveervierierieeierieriertert et eie et et st e st setesbeesieenbeeabeennens 269
15: Examples of C-SPY macro variablesccccoveririnnncenieniencninencneeeeeee 291
16: Summary Of SYSIEIM MACTOSceueeurereierierierierienerieesteteteeeseessenresressessesseeneens 297
17: __cancellnterrupt return Valuescoceevierierienienieneenieeneeneeereeee e 299
18: __disablelnterrupts return Valuescccecueeverereneninineeeeneeieienenese e 301
19: __driverType return VAlUESccceeceeierierienienenenieneneeeeteseeeeie e 301
20: __enablelnterrupts return ValUEScoceevieeriiiienienienienieeniceieenieeie e 302
21: __evaluate Teturn ValUESc..ccceeveeieienienienieniinienieeieeceeete et

22: __isBatchMode return values

23: __loadImage return ValUesccoeeveerieeiiinieniente sttt

24: __messageBoxYesCancel return valuesc..ccccocevevevererneenienenencnenenennes 308
25: __messageBoxYesNO return Valluescccoocevevereeienienienieneniceeeieeeereieneenee 309
26: __openFile return VAlUESccccooeeiuiereriieniienienieeiteieee ettt 310
27: __readFile return ValuEscc.cccevieriirienininininieeeieteteesesreee e 312
28: __setCodeBreak return valluesoccccooeveiiiiiiiincincnieecceeeeeeeeceeeas 316
29: __setDataBreak return valuesccccoceevievieniiniinieninininiceeiceece e 317
30: __setDatalLogBreak return values

31: __setLogBreak return Valluescc.cocevererenininenieieteieeeneesesieereeie e

20

32: _
33: _
34:
35:
36:
37:
38:

__setTraceStopBreak return valuesc..cocceeeeveeieniinieninineneneeieiereiennene
__SourcePosition return VAIUEScocceveerierierieneninieeeiieteteieseesiesiesiesieeneene
__unloadImage return Valuesc..ooceeveeiieiiienienieneeieeieetese e

CSPYDAL PATAMGLETS ...vevevinrireniiieiereiiier ettt nene

Options specific to the C-SPY drivers you are using

Preface

Welcome to the C-SPY® Debugging Guide. The purpose of this guide is to help
you fully use the features in the IAR C-SPY® Debugger for debugging your
application based on the RX microcontroller.

Who should read this guide

Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features available in C-SPY.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

o The architecture and instruction set of the RX microcontroller family (refer to the
chip manufacturer's documentation)

® The C or C++ programming language
o Application development for embedded systems
o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 23.

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

Note: Some of the screenshots in this guide are taken from a similar product and not
from IAR Embedded Workbench for RX.

PART I|. BASIC DEBUGGING

® The IAR C-SPY Debugger introduces you to the C-SPY debugger and to the
concepts that are related to debugging in general and to C-SPY in particular. The
chapter also introduces the various C-SPY drivers. The chapter briefly shows the
difference in functionality that the various C-SPY drivers provide.

o Getting started using C-SPY helps you get started using C-SPY, which includes
setting up, starting, and adapting C-SPY for target hardware.

21

What this guide contains

22

C-SPY® Debugging Guide
for RX

Executing your application describes the conceptual differences between source
and disassembly mode debugging, the facilities for executing your application, and
finally, how you can handle terminal input and output.

Variables and expressions describes the syntax of the expressions and variables
used in C-SPY, as well as the limitations on variable information. The chapter also
demonstrates the various methods for monitoring variables and expressions.

Breakpoints describes the breakpoint system and the various ways to set
breakpoints.

Memory and registers shows how you can examine memory and registers.

PART 2. ANALYZING YOUR APPLICATION

Collecting and using trace data describes how you can inspect the program flow up
to a specific state using trace data.

Using the profiler describes how the profiler can help you find the functions in your
application source code where the most time is spent during execution.

Analyzing code performance describes how to use a C-SPY hardware debugger to
analyze code performance in terms of time, clock cycles, interrupts, exceptions, and
instructions.

Code coverage describes how the code coverage functionality can help you verify
whether all parts of your code have been executed, thus identifying parts which have
not been executed.

Power debugging describes techniques for power debugging and how you can use
C-SPY to find source code constructions that result in unexpected power
consumption.

PART 3. ADVANCED DEBUGGING

Interrupts contains detailed information about the C-SPY interrupt simulation
system and how to configure the simulated interrupts to make them reflect the
interrupts of your target hardware.

Using C-SPY macros describes the C-SPY macro system, its features, the purposes
of these features, and how to use them.

The C-SPY command line utility—cspybat describes how to use C-SPY in batch
mode.

PART 4. ADDITIONAL REFERENCE INFORMATION

Debugger options describes the options you must set before you start the C-SPY
debugger.

Additional information on C-SPY drivers describes menus and features provided by
the C-SPY drivers not described in any dedicated topics.

Preface __4

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

System requirements and information about how to install and register the IAR
Systems products, is available in the booklet Quick Reference (available in the
product box) and the Installation and Licensing Guide.

Getting started using IAR Embedded Workbench and the tools it provides, is
available in the guide Getting Started with IAR Embedded Workbench®.

Using the IDE for project management and building, is available in the /DE Project
Management and Building Guide for RX.

Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide for
RX.

Programming for the IAR C/C++ Compiler for RX and linking using the IAR
ILINK Linker, is available in the /AR C/C++ Development Guide for RX.
Programming for the IAR Assembler for RX, is available in the I4R Assembler
Reference Guide for RX.

Using the IAR DLIB Library, is available in the DLIB Library Reference
information, available in the online help system.

Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

Developing safety-critical applications using the MISRA C guidelines, is available
in the /AR Embedded Workbench® MISRA C:2004 Reference Guide or the IAR
Embedded Workbench® MISRA C:1998 Reference Guide.

Porting application code and projects created with a previous version of the IAR
Embedded Workbench for RX, is available in the /AR Embedded Workbench®
Migration Guide.

Migrating from an older UBROF-based product version to a newer version that uses
the ELF/DWAREF object format, is available in the guide /AR Embedded
Workbench® Migrating from UBROF to ELF/DWARF.

Migrating from the Renesas High-performance Embedded Workshop and e2studio
toolchains for RX to IAR Embedded Workbench® for RX, is available in the guide
Migrating from Renesas to IAR Embedded Workbench.

23

Document conventions

24

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

Information about project management, editing, and building in the IDE
Information about debugging using the IAR C-SPY® Debugger

Reference information about the menus, windows, and dialog boxes in the IDE
Compiler reference information

Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
FI.

WEB SITES

Recommended web sites:

The Renesas web site, www.renesas.com, that contains information and news about
the RX microcontrollers.

The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

The web site of the C standardization working group,
www.open-std.org/jtcl/sc22/wgl4.

o The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

e Finally, the Embedded C++ Technical Committee web site,

www.caravan.net/ec2plus, that contains information about the Embedded C++
standard.

Document conventions

C-SPY® Debugging Guide
for RX

When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example rx\doc, the full
path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench 7.n\rx\doc.

Preface __4

TYPOGRAPHIC CONVENTIONS
The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where £ilename represents the name of the file.

[option] An optional part of a directive, where [and] are not part of the actual
directive, but any [,], {, or } are part of the directive syntax.

{option} A mandatory part of a directive, where { and } are not part of the
actual directive, but any [,], {, or } are part of the directive syntax.

[option] An optional part of a command.

[a]b|c] An optional part of a command with alternatives.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for RX IAR Embedded Workbench®

Table 2: Naming conventions used in this guide

25

Document conventions

26

C-SPY® Debugging Guide
for RX

Brand name

Generic term

IAR Embedded Workbench® IDE for RX
IAR C-SPY® Debugger for RX

IAR C-SPY® Simulator

IAR C/C++ Compiler™ for RX

IAR Assembler™ for RX

IAR ILINK Linker™

IAR DLIB Library™

the IDE

C-SPY, the debugger
the simulator

the compiler

the assembler
ILINK, the linker
the DLIB library

Table 2: Naming conventions used in this guide (Continued)

Part |. Basic debugging

This part of the C-SPY® Debugging Guide for RX includes these chapters:

e The IAR C-SPY Debugger

e Getting started using C-SPY
e Executing your application

e Variables and expressions

e Breakpoints

o Memory and registers

N

.hmuhhhhi

7

AAARRIE

8

o~

The IAR C-SPY Debugger

e Introduction to C-SPY

e Debugger concepts

e C-SPY drivers overview

e The IAR C-SPY Simulator

e The C-SPY EI/E20 and E2 Lite drivers

e The C-SPY J-Link driver.

Introduction to C-SPY

These topics are covered:

e An integrated environment
e General C-SPY debugger features

o RTOS awareness

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR Systems compilers and assemblers, and is completely integrated in the
IDE, providing development and debugging within the same application. This will give
you possibilities such as:

e Editing while debugging. During a debug session, you can make corrections directly
in the same source code window that is used for controlling the debugging. Changes
will be included in the next project rebuild.

e Setting breakpoints at any point during the development cycle. You can inspect and
modify breakpoint definitions also when the debugger is not running, and
breakpoint definitions flow with the text as you edit. Your debug settings, such as
watch properties, window layouts, and register groups will be preserved between
your debug sessions.

All windows that are open in the Embedded Workbench workspace will stay open when

you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows are opened.

29

Introduction to C-SPY

30

C-SPY® Debugging Guide
for RX

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire toolchain, the output from the compiler and
linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you.

C-SPY offers these general features:

Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required,
for both C or C++ and assembler source code.

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function
call—inside expressions, and function calls that are part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging
C++ code, where numerous extra function calls are made, for example to object
constructors.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest.
For example, you set breakpoints to investigate whether your program logic is correct
or to investigate how and when the data changes.

Monitoring variables and expressions

For variables and expressions there is a wide choice of facilities. You can easily
monitor values of a specified set of variables and expressions, continuously or on
demand. You can also choose to monitor only local variables, static variables, etc.

Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and
debugging opportunities when you work with C++ STL containers.

Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the
program counter is. You can select any function in the call stack, and for each
function you get valid information for local variables and available registers.

Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex
sets of actions to be performed. C-SPY macros can be used on their own or in

The IAR C-SPY Debugger __o

conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY debugger features

This list shows some additional features:

Threaded execution keeps the IDE responsive while running the target application
Automatic stepping

The source browser provides easy navigation to functions, types, and variables
Extensive type recognition of variables

Configurable registers (CPU and peripherals) and memory windows

Graphical stack view with overflow detection

Support for code coverage and function level profiling

The target application can access files on the host PC using file I/O

Optional terminal I/O emulation.

RTOS AWARENESS
C-SPY supports RTOS-aware debugging.

These operating systems are currently supported:

CMX (ORTT)
FreeRTOS/OpenRTOS/SafeRTOS
Micrium uC/OS

Segger embOS.

ThreadX

RTOS plugin modules can be provided by IAR Systems, and by third-party suppliers.
Contact your software distributor or IAR Systems representative, alternatively visit the
IAR Systems web site, for information about supported RTOS modules.

A C-SPY RTOS awareness plugin module gives you a high level of control and visibility
over an application built on top of an RTOS. It displays RTOS-specific items like task
lists, queues, semaphores, mailboxes, and various RTOS system variables. Task-specific
breakpoints and task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own menu, set of windows, and buttons when a debug
session is started (provided that the RTOS is linked with the application). For
information about other RTOS awareness plugin modules, refer to the manufacturer of
the plugin module.

31

Debugger concepts

32

Debugger concepts

C-SPY® Debugging Guide
for RX

This section introduces some of the concepts and terms that are related to debugging in
general and to C-SPY in particular. This section does not contain specific information
related to C-SPY features. Instead, you will find such information in the other chapters
of this documentation. The IAR Systems user documentation uses the terms described
in this section when referring to these concepts.

These topics are covered:

C-SPY and target systems
The debugger

The target system

The application

C-SPY debugger systems
The ROM-monitor program
Third-party debuggers

C-SPY plugin modules

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.

The IAR C-SPY Debugger __o

This figure gives an overview of C-SPY and possible target systems:

— e e e e g e e e e e e — ==

Target system with application software

|
|
I Simulator I .
| s | Simulator
| |
[——

! Emulator
| d:iver —\[JTAG Target
emulator [T | hardware

3rd-party
driver

Target
| hardware

|

| |
| |
| |
| |
| |
ROM-monitor |
IAR Embedded : ' driver 7 monitor |
Workbench | C-SPY (— Target hardware |
| |
' I

|
|

|
| |
|

|
|

|
|

|
| |
|
|

= Provided by IAR Systems
|:| = Provided by IAR Systems or third-party vendors

Note: In IAR Embedded Workbench for RX, there are no ROM-monitor drivers.

THE DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

THE TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

THE APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a target-specific back end. The back end consists of two components: a processor
module—one for every microcontroller, which defines the properties of the

33

Debugger concepts

34

C-SPY® Debugging Guide
for RX

microcontroller, and a C-SPY driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides the user
interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints. Typically, there are three main types of C-SPY
drivers:

e Simulator driver

o ROM-monitor driver

e Emulator driver.

C-SPY is available with a simulator driver, and depending on your product package,
optional drivers for hardware debugger systems. For an overview of the available C-SPY

drivers and the functionality provided by each driver, see C-SPY drivers overview, page
35.

THE ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the IAR Systems toolchain as long as
the third-party debugger can read ELF/DWAREF, Intel-extended, or Motorola. For
information about which format to use with a third-party debugger, see the user
documentation supplied with that tool.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR Systems, or can be supplied by third-party vendors.
Examples of such modules are:

Code Coverage, which is integrated in the IDE.

The various C-SPY drivers for debugging using certain debug systems.

RTOS plugin modules for support for real-time OS aware debugging.

Peripheral simulation modules make C-SPY simulate peripheral units. Such plugin
modules are not provided by IAR Systems, but can be developed and distributed by
third-party suppliers.

The IAR C-SPY Debugger

o C-SPYLink that bridges IAR visualSTATE and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to
the normal C level symbolic debugging. For more information, see the
documentation provided with IAR visualSTATE.

For more information about the C-SPY SDK, contact IAR Systems.

C-SPY drivers overview

At the time of writing this guide, the IAR C-SPY Debugger for the RX microcontrollers
is available with drivers for these target systems and evaluation boards:

e Simulator
e El or E20 emulator
e E2 Lite emulator

e J-Link debug probe.

DIFFERENCES BETWEEN THE C-SPY DRIVERS

This table summarizes the key differences between the C-SPY drivers:

Feature Simulator EI E20 E2 Lite J-Link
Code breakpoints* Unlimited x X X X
Data breakpoints X X X X X
Execution in real time — X X X X
Zero memory footprint X X X X X
Simulated interrupts X — — — —
Real interrupts — X X X X
Interrupt logging x — — — —
Data logging X — — — —
Live watch X X X X X
Cycle counter X — — — —
Code coverage X X X X X
Data coverage* X — X — —
Performance analysis* — X X X X
Start/stop routines — X X X —
Profiling X X X X X
Trace X X X X X

Table 3: Driver differences

35

The IAR C-SPY Simulator

Feature Simulator EI E20 E2 Lite J-Link

Power debugging* — — — — X

Table 3: Driver differences (Continued)

* With specific requirements or restrictions, see the respective chapter in this guide.

The IAR C-SPY Simulator

The C-SPY Simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

The C-SPY Simulator supports:

Instruction-level simulation
Memory configuration and validation

Interrupt simulation

Peripheral simulation (using the C-SPY macro system in conjunction with
immediate breakpoints).

Simulating hardware instead of using a hardware debugging system means that some
limitations do not apply, but that there are other limitations instead. For example:

e You can set an unlimited number of breakpoints in the simulator.

e When you stop executing your application, time actually stops in the simulator.
When you stop application execution on a hardware debugging system, there might
still be activities in the system. For example, peripheral units might still be active
and reading from or writing to SFR ports.

o Application execution is significantly much slower in a simulator compared to when
using a hardware debugging system. However, during a debug session, this might
not necessarily be a problem.

o The simulator is not cycle accurate.

e Peripheral simulation is limited in the C-SPY Simulator and therefore the simulator
is suitable mostly for debugging code that does not interact too much with
peripheral units.

The C-SPY EI/E20 and E2 Lite drivers

C-SPY® Debugging Guide

36 for RX

C-SPY can connect to an E1, E20, or E2 Lite emulator using a C-SPY hardware
debugger driver as an interface. The C-SPY hardware debugger drivers are
automatically installed during the installation of IAR Embedded Workbench.

The IAR C-SPY Debugger __o

All RX microcontrollers have built-in, on-chip debug support. Because the hardware
debugger logic is built into the microcontroller, no ordinary ROM-monitor program or
extra specific hardware is needed to make the debugging work.

COMMUNICATION OVERVIEW

The C-SPY E1/E20 and E2 Lite drivers use USB to communicate with the emulator. The
emulator communicates with the Front-end firmware (FEFW) interface module. The
FFW interface module, in turn, communicates with the Back-end firmware (BFW)
module on the emulator.

C-SPY debugger
—€-SPY driver

ection

, > Emulatc\ \‘:
/ JTAG cabl{ -r

For more information, see the documentation supplied with the emulator.

When a debugging session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.
HARDWARE INSTALLATION

USB drivers are automatically installed during the installation of JAR Embedded
Workbench. If you need to re-install them, they are available both on the installation CD
and in the rx\drivers\Renesas\ directory in the installation directory.

37

The C-SPY J-Link driver

38

For more information about the hardware installation, see the documentation supplied
with the E1, E20, or E2 Lite emulator from Renesas. The following power-up sequence
is recommended to ensure proper communication between the target board, the
emulator, and C-SPY:

Power up the target board.

2 Start the C-SPY debugging session.

The C-SPY }-Link driver

C-SPY® Debugging Guide
for RX

Using the C-SPY J-Link driver, C-SPY can connect to the J-Link debug probe. All RX
microcontrollers have built-in, on-chip debug support. Because the hardware debugger
logic is built into the microcontroller, no ordinary ROM-monitor program or extra
specific hardware is needed to make the debugging work.

COMMUNICATION OVERVIEW

The C-SPY J-Link driver uses USB to communicate. There are two possible hardware
configurations, depending on the target board:

o If the target board has a built-in J-Link, a USB cable connects the host computer
directly to the target board.

The IAR C-SPY Debugger __o

e If you have a separate J-Link debug probe, the probe communicates with the JTAG
interface on the microcontroller as in this figure:

C-SPY debugger
—=C-SPY J-Link driver

o J-L\:robe
’ J-Link RX adapterd
/ 14-pin Eﬁ ca”M

For more information, see the documentation supplied with the J-Link debug probe or
the target board.

When a debugging session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.
HARDWARE INSTALLATION

USB drivers are automatically installed during the installation of IAR Embedded
Workbench. If you need to re-install them, they are available both on the installation CD
and in the rx\drivers\JLink\ directory in the installation directory. For more
information about the hardware installation, see the documentation supplied with the
J-Link debug probe.

The following power-up sequence is recommended to ensure proper communication
between the target board, debug probe, and C-SPY:

Power up the target board.

39

The C-SPY J-Link driver

2 Power up the J-Link debug probe.
3 Start the C-SPY debugging session.

C-SPY® Debugging Guide
40 for RX

Getting started using
C-SPY

e Setting up C-SPY

e Starting C-SPY

Adapting for target hardware

Running example projects

e Reference information on starting C-SPY

Setting up C-SPY

These tasks are covered:

Setting up for debugging
Executing from reset
Using a setup macro file

Selecting a device description file

Loading plugin modules

SETTING UP FOR DEBUGGING

Before you start C-SPY, choose Project>Options>Debugger>Setup and select the
C-SPY driver that matches your debugger system: simulator or a hardware debugger
system.

In the Category list, select the appropriate C-SPY driver and make your settings.
For information about these options, see Debugger options, page 355.

Click OK.

Choose Tools>Options to open the IDE Options dialog box:

o Select Debugger to configure the debugger behavior

e Select Stack to configure the debugger’s tracking of stack usage.

For more information about these options, see the IDE Project Management and
Building Guide for RX.

41

Setting up C-SPY

42

C-SPY® Debugging Guide
for RX

See also Adapting for target hardware, page 48.

EXECUTING FROM RESET

The Run to option—available on the Debugger>Setup page—specifies a location you
want C-SPY to run to when you start a debug session as well as after each reset. C-SPY
will place a temporary breakpoint at this location and all code up to this point is executed
before stopping at the location.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will contain the regular hardware
reset address at each reset

If no breakpoints are available when C-SPY starts, a warning message notifies you that
single stepping will be required and that this is time-consuming. You can then continue
execution in single-step mode or stop at the first instruction. If you choose to stop at the
first instruction, the debugger starts executing with the PC (program counter) at the
default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where breakpoints
are unlimited.

USING A SETUP MACRO FILE

A setup macro file is a macro file that you choose to load automatically when C-SPY
starts. You can define the setup macro file to perform actions according to your needs,
using setup macro functions and system macros. Thus, if you load a setup macro file you
can initialize C-SPY to perform actions automatically.

For more information about setup macro files and functions, see Introduction to C-SPY
macros, page 283. For an example of how to use a setup macro file, see Initializing
target hardware before C-SPY starts, page 49.

To register a setup macro file:
Before you start C-SPY, choose Project>Options>Debugger>Setup.

Select Use macro file and type the path and name of your setup macro file, for
example Setup.mac. If you do not type a filename extension, the extension mac is
assumed.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY uses device description files to handle device-specific information.

Getting started using C-SPY ___4

A default device description file is automatically used based on your project settings. If
you want to override the default file, you must select your device description file. Device
description files are provided in the rx\config directory and they have the filename
extension daf.

For more information about device description files, see Adapting for target hardware,
page 48.

To override the default device description file:
I Before you start C-SPY, choose Project>Options>Debugger>Setup.

2 Enable the use of a device description file and select a file using the Device
description file browse button.

Note: You can easily view your device description files that are used for your project.
Choose Project>Open Device Description File and select the file you want to view.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules to load and make available
during debug sessions. Plugin modules can be provided by IAR Systems, and by
third-party suppliers. Contact your software distributor or IAR Systems representative,
or visit the IAR Systems web site, for information about available modules.

For more information, see Plugins, page 358.

Starting C-SPY

When you have set up the debugger, you are ready to start a debug session.
These tasks are covered:

Starting a debug session

Loading executable files built outside of the IDE
Starting a debug session with source files missing
Loading multiple images

Downloading files to external flash memory

Start debugging a running application.

43

Starting C-SPY

44

C-SPY® Debugging Guide
for RX

STARTING A DEBUG SESSION

You can choose to start a debug session with or without loading the current executable
file.

To start C-SPY and download the current executable file, click the Download and
Debug button. Alternatively, choose Project>Download and Debug.

To start C-SPY without downloading the current executable file, click the Debug
without Downloading button. Alternatively, choose Project>Debug without
Downloading.

LOADING EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with an application that was built outside the IDE, for example
applications built on the command line. To load an externally built executable file and
to set build options you must first create a project for it in your workspace.

To create a project for an externally built file:

Choose Project>Create New Project, and specify a project name.

To add the executable file to the project, choose Project>Add Files and make sure to
choose All Files in the Files of type drop-down list. Locate the executable file.

To start the executable file, click the Download and Debug button. The project can be
reused whenever you rebuild your executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

STARTING A DEBUG SESSION WITH SOURCE FILES MISSING

Normally, when you use the AR Embedded Workbench IDE to edit source files, build
your project, and start the debug session, all required files are available and the process
works as expected.

Getting started using C-SPY ___4

However, if C-SPY cannot automatically find the source files, for example if the
application was built on another computer, the Get Alternative File dialog box is
displayed:

Get Alternative File g|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

Typically, you can use the dialog box like this:

o The source files are not available: Click If possible, don’t show this dialog again
and then click SKkip. C-SPY will assume that there simply is no source file available.
The dialog box will not appear again, and the debug session will not try to display
the source code.

e Alternative source files are available at another location: Specify an alternative
source code file, click If possible, don’t show this dialog again, and then click Use
this file. C-SPY will assume that the alternative file should be used. The dialog box
will not appear again, unless a file is needed for which there is no alternative file
specified and which cannot be located automatically.

If you restart the JAR Embedded Workbench IDE, the Get Alternative File dialog box
will be displayed again once even if you have clicked If possible, don’t show this
dialog again. This gives you an opportunity to modify your previous settings.

For more information, see Get Alternative File dialog box, page 58.

LOADING MULTIPLE IMAGES

Normally, a debuggable application consists of exactly one file that you debug.
However, you can also load additional debug files (images). This means that the
complete program consists of several images.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided

features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files.

If more than one image has been loaded, you will have access to the combined debug
information for all the loaded images. In the Images window you can choose whether
you want to have access to debug information for one image or for all images.

45

Starting C-SPY

46

C-SPY® Debugging Guide
for RX

To load additional images at C-SPY startup:

Choose Project>Options>Debugger>Images and specify up to three additional
images to be loaded. For more information, see /mages, page 357.

Start the debug session.
To load additional images at a specific moment:

Use the __loadImage system macro and execute it using either one of the methods
described in Using C-SPY macros, page 285.

To display a list of loaded images:

Choose Images from the View menu. The Images window is displayed, see Images
window, page 57.

DOWNLOADING FILES TO EXTERNAL FLASH MEMORY

Normally, your application is downloaded to internal memory. To download the main
executable file of your project to external flash memory, or any additional images that
you have specified using the procedure described in Loading multiple images, page 45,
you must configure C-SPY.

Note: Before following these instructions you must have defined external flash
definition files (USD files) for your external flash memory, using the External Flash
Definition Editor tool from Renesas Electronics Corporation. For more information, see
the documentation from Renesas.

To configure C-SPY to load files to external flash memory:
Choose C-SPY driver>Hardware Setup.

On the MCU page of the dialog box, set the Register setting option to either On-chip
ROM enabled extended mode or On-chip ROM disabled extended mode.

If you are using external RAM as working RAM, make sure that the Byte order option
is set to the same byte order as the CPU.

On the External Memory page of the dialog box, specify up to four external flash
definition files (USD files) by typing the absolute paths in the fields or by using the
browse buttons. Note that only flash memory with 4096 or fewer sectors can be
registered. If flash memory with more sectors is registered, programming cannot be
guaranteed.

Decide whether to select the Erase external flash ROM before download options for
the specified USD files. If the flash memory is not erased, addresses that are not
overwritten by the download will keep their previous contents.

Getting started using C-SPY ___4

If your flash memory device does not support the Lock command (see the
documentation from Renesas), select the Erase external flash ROM before download
options for the specified USD files.

If you are allocating a device to multiple CS areas, do not select the Erase external
flash ROM before download options for the specified USD files.

Now you are ready to download and debug, see Starting a debug session, page 44.

Note: Before downloading images to external flash memory, you must be aware of this:

o If the address ranges of multiple specified USD files overlap each other, connection
with the hardware debugger cannot be established.

e For downloading to external flash memory, only internal RAM or CS area RAM can
be used as a work area. SDRAM areas (SDCS) cannot be used as a work area.

o The work RAM area can also be used by your application, because the hardware
debugger saves and restores data in this area. Note that the work RAM area cannot
be specified either as the destination or origin of a DMA or DTC transfer, as an
address where a DTC vector table or transfer information is to be allocated, or as the
interrupt vector for a DMAC or DTC activation source.

e If your flash memory device does not support the Lock command (see the
documentation from Renesas), USD files created with the External Flash Definition
Editor tool from Renesas should be generated with the option Clear Lock Bit
selected on the USD File Creation page.

See also Hardware Setup dialog box. External Memory, page 64.

START DEBUGGING A RUNNING APPLICATION

Using an E1, E20 or E2 Lite emulator, you can start debugging a running application at
its current location, without resetting the target system.

Start debugging from the middle of execution

Choose Project>Options>Driver>Download and select the option Attach to
program, see Attach to program, page 362.

Make sure that the target board is powered by external power and disconnect the
emulator from the target board.

Choose Project>Download and Debug or click the Download and Debug toolbar
button.

47

Adapting for target hardware

48

4 When you are prompted, connect the emulator to the target board and click OK.

E1/E20 Emulator ==

0 1 Connect the emulator to the target system and click OK.

~ Your system might need some pin settings. Please read about Hot
plug-in in the hardware documentation before using this function.

5 Enter the ID code of the target MCU in the ID Code Verification dialog box.

ID Code Verification =

Enter ID Code [32 hexadecimal digits):

[(0] 3] [Cancel]

6 When the debug session starts, your application is still executing but now you can
monitor RAM and look at variables in the Live Watch window.

To stop execution, click Stop or set a breakpoint.

You can now debug your application as usual.

Adapting for target hardware

These topics are covered

o Modifying a device description file

e Initializing target hardware before C-SPY starts

MODIFYING A DEVICE DESCRIPTION FILE

C-SPY uses device description files provided with the product to handle several of the
target-specific adaptations, see Selecting a device description file, page 42. They contain
device-specific information such as:

e Memory information for device-specific memory zones, see C-SPY memory zones,
page 158.

C-SPY® Debugging Guide
for RX

Getting started using C-SPY ___4

o Definitions of memory-mapped peripheral units, device-specific CPU registers, and
groups of these.

e Definitions for device-specific interrupts, which makes it possible to simulate these
interrupts in the C-SPY simulator; see Interrupts, page 263.

o The device name and the MCU filename, used by emulators

Normally, you do not need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. Note, however,
that the format of these descriptions might be updated in future upgrades of the product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file. Reload the project to make the changes take
effect.

For information about how to load a device description file, see Selecting a device
description file, page 42.

INITIALIZING TARGET HARDWARE BEFORE C-SPY STARTS

You can use C-SPY macros to initialize target hardware before C-SPY starts. For
example, if your hardware uses external memory that must be enabled before code can
be downloaded to it, C-SPY needs a macro to perform this action before your
application can be downloaded.

I Create a new text file and define your macro function.

By using the built-in execUserPreload setup macro function, your macro function
will be executed directly after the communication with the target system is established
but before C-SPY downloads your application.

For example, a macro that enables external SDRAM could look like this:

/* Your macro function. */
enableExternal SDRAM ()
{
__message "Enabling external SDRAM\n";
__writeMemory32(...);
}

/* Setup macro determines time of execution. */
execUserPreload()
{
enableExternal SDRAM() ;
}

2 Save the file with the filename extension mac.

3 Before you start C-SPY, choose Project>Options>Debugger and click the Setup tab.

49

Running example projects

4 Select the option Use Setup file and choose the macro file you just created.

Your setup macro will now be loaded during the C-SPY startup sequence.

Running example projects

These tasks are covered:

o Running an example project

RUNNING AN EXAMPLE PROJECT

Example applications are provided with IAR Embedded Workbench. You can use these
examples to get started using the development tools from IAR Systems. You can also
use the examples as a starting point for your application project.

You can find the examples in the rx\examples directory. The examples are ready to be
used as is. They are supplied with ready-made workspace files, together with source
code files and all other related files.

To run an example project:
I Choose Help>Information Center and click EXAMPLE PROJECTS.

2 Browse to the example that matches the specific evaluation board or starter kit you are

using.
=
1 1 LLELTEETT] L LELLEETT anannn [[11L11)
Info Open Name Description
project
This example shows how
Basic LCD to use the LCD and the

touch screen controller

This example shows
: basic use of the parallel
EEDHME IO, timer and the
interrupt controller

ol f

Click the Open Project button.

3 In the dialog box that appears, choose a destination folder for your project.

C-SPY® Debugging Guide
50 for RX

Getting started using C-SPY ___4

4 The available example projects are displayed in the workspace window. Select one of
the projects, and if it is not the active project (highlighted in bold), right-click it and
choose Set As Active from the context menu.

5 To view the project settings, select the project and choose Options from the context
menu. Verify the settings for General Options>Target>Device and
Debugger>Setup>Driver. As for other settings, the project is set up to suit the target
system you selected.

For more information about the C-SPY options and how to configure C-SPY to interact
with the target board, see Debugger options, page 355.

Click OK to close the project Options dialog box.

ooe 6 To compile and link the application, choose Project>Make or click the Make button.

=—— 7 To start C-SPY, choose Project>Debug or click the Download and Debug button. If
C-SPY fails to establish contact with the target system, see Resolving problems, page
376.

#++] 8 Choose Debug>Go or click the Go button to start the application.

Click the Stop button to stop execution.

Reference information on starting C-SPY

Reference information about:

C-SPY Debugger main window, page 52

Images window, page 57

Get Alternative File dialog box, page 58

Download Emulator Firmware dialog box, page 59
Operating Frequency dialog box, page 59

Hardware Setup dialog box: MCU, page 61

Hardware Setup dialog box: External Memory, page 64

External Area dialog box, page 66
See also:

e Tools options for the debugger in the IDE Project Management and Building Guide
for RX.

51

Reference information on starting C-SPY

52

C-SPY Debugger main window

Menu bar

C-SPY® Debugging Guide
for RX

When you start a debug session, these debugger-specific items appear in the main [AR
Embedded Workbench IDE window:

e A dedicated Debug menu with commands for executing and debugging your
application

o Depending on the C-SPY driver you are using, a driver-specific menu, often
referred to as the Driver menu in this documentation. Typically, this menu contains
menu commands for opening driver-specific windows and dialog boxes.

e A special debug toolbar
o Several windows and dialog boxes specific to C-SPY.

The C-SPY main window might look different depending on which components of the
product installation you are using.

These menus are available during a debug session:

Debug

Provides commands for executing and debugging the source application. Most
of the commands are also available as icon buttons on the debug toolbar.

C-SPY driver menu

Provides commands specific to a C-SPY driver. The driver-specific menu is only
available when the driver is used. For information about the driver-specific
menu commands, see Reference information on C-SPY driver menus, page 365.

Debug menu

X

Getting started using C-SPY ___4

The Debug menu is available during a debug session. The Debug menu provides
commands for executing and debugging the source application. Most of the commands

are also available as icon buttons on the debug toolbar.

Go
Break:
Reset

F5

Stop Debugging

Chrl+Shift+D

Step Over

Step Into

Step Out

MNext Statement
Run to Cursor
Autostep...

Set Next Statement

F10
F11
Shift+F11

C++ Exceptions

Memory 3
Refresh

Macros...

Logging 3

These commands are available:

Go F5

Break

Reset

Executes from the current statement or instruction until a breakpoint or program
exit is reached.

Stops the application execution.

Resets the target processor. Click the drop-down button to access a menu with
additional commands.

Enable Run to '1abel', where l1abel typically is main. Enables and disables
the project option Run to without exiting the debug session. This menu
command is only available if you have selected Run to in the Options dialog
box.

Reset strategies, which contains a list of reset strategies supported by the C-SPY
driver you are using. This means that you can choose a different reset strategy
than the one used initially without exiting the debug session. Reset strategies are
only available if the C-SPY driver you are using supports alternate reset
strategies.

Stop Debugging (Ctrl+Shift+D)

Stops the debugging session and returns you to the project manager.

53

Reference information on starting C-SPY

54

e & B K

C-SPY® Debugging Guide
for RX

Step Over (F10)

Executes the next statement, function call, or instruction, without entering C or
C++ functions or assembler subroutines.

Step Into (F11)
Executes the next statement or instruction, or function call, entering C or C++
functions or assembler subroutines.

Step Out (Shift+F11)

Executes from the current statement up to the statement after the call to the
current function.

Next Statement

Executes directly to the next statement without stopping at individual function
calls.

Run to Cursor

Executes from the current statement or instruction up to a selected statement or
instruction.

Autostep

Displays a dialog box where you can customize and perform autostepping, see
Autostep settings dialog box, page 91.

Set Next Statement

Moves the program counter directly to where the cursor is, without executing
any source code. Note, however, that this creates an anomaly in the program
flow and might have unexpected effects.

C++ Exceptions>
Break on Throw

This menu command is not supported by your product package.

C++ Exceptions>
Break on Uncaught Exception

This menu command is not supported by your product package.

Memory>Save

Displays a dialog box where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 167.

Memory>Restore
Displays a dialog box where you can load the contents of a file in, for example
Intel-extended or Motorola s-record format to a specified memory zone, see
Memory Restore dialog box, page 168.

Getting started using C-SPY ___4

Refresh
Refreshes the contents of all debugger windows. Because window updates are
automatic, this is needed only in unusual situations, such as when target memory
is modified in ways C-SPY cannot detect. It is also useful if code that is
displayed in the Disassembly window is changed.

Macros
Displays a dialog box where you can list, register, and edit your macro files and
functions, see Using C-SPY macros, page 285.

Logging>Set Log file
Displays a dialog box where you can choose to log the contents of the Debug
Log window to a file. You can select the type and the location of the log file. You
can choose what you want to log: errors, warnings, system information, user
messages, or all of these. See Log File dialog box, page 86.

Logging>

Set Terminal I/0 Log file

Displays a dialog box where you can choose to log simulated target access
communication to a file. You can select the destination of the log file. See
Terminal 1/0 Log File dialog box, page 84

C-SPY windows
Depending on the C-SPY driver you are using, these windows specific to C-SPY are
available during a debug session:
C-SPY Debugger main window
Disassembly window
Memory window
Symbolic Memory window
Register window
Watch window
Locals window
Auto window
Live Watch window
Quick Watch window
Statics window
Call Stack window

Trace window

Function Trace window

55

Reference information on starting C-SPY

56

Timeline window
Terminal I/O window
Code Coverage window
Function Profiler window
Images window

Stack window

Symbols window.

Additional windows are available depending on which C-SPY driver you are using.

Editing in C-SPY windows

C-SPY® Debugging Guide
for RX

You can edit the contents of the Memory, Symbolic Memory, Register, Auto, Watch,
Locals, Statics, Live Watch, and Quick Watch windows.

Use these keyboard keys to edit the contents of these windows:

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.

In windows where you can edit the Expression field and in the Quick Watch window,
you can specify the number of elements to be displayed in the field by adding a
semicolon followed by an integer. For example, to display only the three first elements

of an array named myArray, or three elements in sequence starting with the element
pointed to by a pointer, write:

myArray; 3
To display three elements pointed to by myPtr, myPtr+1, and myPtr+2, write:
myPtr;3

Optionally, add a comma and another integer that specifies which element to start with.
For example, to display elements 10-14, write:

myArray;5,10
To display myPtr+10, myPtr+11l, myPtr+12, myPtr+13, and myPtr+14, write:
myPtr;5,10

Note: For pointers, there are no built-in limits on displayed element count, and no
validation of the pointer value.

Getting started using C-SPY ___4

Images window

The Images window is available from the View menu.

MName Path
<All images> [Combines debug information from all images]
project] ChDocuments and Settingsihy Documentsi| AR Embedded WorkbenchDebughExeyproject! .out

exfralmage ChDocuments and Settingsi\hy Documentst| AR Embedded WorkbenchDebughExehextralmage.out

This window lists all currently loaded images (debug files).

Normally, a source application consists of exactly one image that you debug. However,
you can also load additional images. This means that the complete debuggable unit
consists of several images.

Requirements

None; this window is always available.

Display area

C-SPY can either use debug information from all of the loaded images simultaneously,
or from one image at a time. Double-click on a row to show information only for that
image. The current choice is highlighted.

This area lists the loaded images in these columns:

Name
The name of the loaded image.

Path
The path to the loaded image.

Context menu
This context menu is available:
Show only 'projectl’
These commands are available:

Show all images
Shows debug information for all loaded debug images.

Show only image
Shows debug information for the selected debug image.

57

Reference information on starting C-SPY

Related information
For related information, see:
® Loading multiple images, page 45
o [mages, page 357
o _ loadlmage, page 306.

Get Alternative File dialog box

The Get Alternative File dialog box is displayed if C-SPY cannot automatically find
the source files to be loaded, for example if the application was built on another
computer.

Get Alternative File PZ|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

Could not find the following source file

The missing source file.

Suggested alternative

Specify an alternative file.

Use this file

After you have specified an alternative file, Use this file establishes that file as the alias
for the requested file. Note that after you have chosen this action, C-SPY will
automatically locate other source files if these files reside in a directory structure similar
to the first selected alternative file.

The next time you start a debug session, the selected alternative file will be preloaded
automatically.

Skip

C-SPY will assume that the source file is not available for this debug session.

C-SPY® Debugging Guide
58 for RX

Getting started using C-SPY ___4

If possible, don’t show this dialog again

Instead of displaying the dialog box again for a missing source file, C-SPY will use the
previously supplied response.

Related information

For related information, see Starting a debug session with source files missing, page 44.

Download Emulator Firmware dialog box

The Download Emulator Firmware dialog box is available from the C-SPY driver
menu.

Download Emulator Firmware ﬁ

Firrnvsare: file:

=

POk I Cancel I

Use this dialog box to update the firmware of your emulator if needed. The only reason
for doing this manually is if the automatically downloaded firmware is not working
correctly.

Requirements
A C-SPY hardware debugger driver.

Firmware file

Browse to the firmware file on your host computer and click OK to download it to your
emulator hardware. The emulator firmware files have the filename extension . s and are
located in subdirectories of the rx\external\ directory of your product installation.

Operating Frequency dialog box
The Operating Frequency dialog box is available from the C-SPY driver menu during
a debug session.

Operating Frequency &J
| I Cancel

Operating frequency:

12,5000 MHz

[oK

59

Reference information on starting C-SPY

Use this dialog box to inform the emulator of the operating frequency that the MCU is
running at.

Requirements
A C-SPY hardware debugger driver.

Operating frequency

Specifies the operating frequency that the MCU is running at. This value is used by the
performance analysis feature to convert cycles to time and by the J-Link Timeline
window to estimate the number of elapsed cycles.

Related information
For related information, see:

® Performance Analysis Setup dialog box, page 235

o Timeline window, page 202.

C-SPY® Debugging Guide
60 for RX

Getting started using C-SPY ___4

Hardware Setup dialog box: MCU

The Hardware Setup dialog box for the hardware debuggers is available from the
C-SPY driver menu. Before C-SPY is started for the first time in a new project, and
when you change devices, the hardware must be configured.

Hardware Setup, device: RSFSTLMG (RXTIMGR\RSFSTLMG.MCU) (=23

MCU | External Memary

MCU Communication
Mode pin setting: EXTaL frequency:) JTAG clock: 6108 MHz
[single-chip mode | 27.0000 MHz]
@ FINE baud rate: -
Eyte order: ICLE. frequency:) 1.5M bps
[Litte-endian v 1200000 Mu:
System
Fiegist ting:
égls = S‘_a g Debug the program re-wiiting the PROGRAM ROM
ISlngIe-chlp mode v]

[Debug the program re-wiiting the DATA FLASH
External memory areas:

= Emulator mode:
A Bute order BUS wi.. E dit

Trace

Power supply
Power target from the emulator (M 200ma,)

@ 33V
[Allows clock source change when wiiting intemal flash

work FAM start address (02500 bytes used): 0x1000

5.0

D ownload
Eraze flash ROM before download
[Erase data flash ROM before download

o) (o)

Use the MCU options page to make general settings that control how the emulator
operates.
Requirements

A C-SPY hardware debugger driver.

Mode pin setting
Controls the MCU operation based on the pin settings. Choose between:
o Single-chip mode
o User boot mode
e USB boot mode.

61

Reference information on starting C-SPY

Note: Not all modes are available for all devices or all hardware debuggers.

EXTAL frequency
Specify the frequency in MHz of the external clock source that supplies the target MCU.

ICLK frequency

Specify the frequency in MHz of the internal clock source.

Note: This option is not available for all devices or all hardware debuggers.

Byte order
Controls the byte order of the device. Choose between:
e Little-endian

e Big-endian.

Note: This option is not available for all devices or all hardware debuggers.

Register setting
Controls the MCU operation based on register settings. Choose between:
o Single-chip mode
o On-chip ROM enabled extended mode
o On-chip ROM disabled extended mode.

Note: Not all modes are available for all devices or all hardware debuggers.

External memory areas

Lists the defined external memory areas. To edit a memory area, select the area and click
Edit to display the External Area dialog box, see External Area dialog box, page 66.

Area

The name of the external memory area.

Byte order

Identifies whether the byte order is the same as the byte order of the MCU or
different.

BUS width
The bus width of the area: 8, 16 or 32 bits.

No external memory areas are defined if the Register setting is Single-chip mode.

C-SPY® Debugging Guide
62 for RX

Getting started using C-SPY ___4

Allow clock source change when writing internal flash

Allows the clock source to change while internal flash memory is being rewritten in the
emulator.

Work RAM start address

Specify the start address of the working RAM area for the debugger. The specified
amount of bytes, beginning with the start address you specify, is used by the emulator
firmware. The debugger uses the memory area when programming the on-chip flash
memory, so the working RAM must be within the on-chip RAM area.

Your application can also use this area (because memory data in this area will be saved
on the host computer and then restored), but do not specify any address in this area as
the origin or destination of a transfer by the DMA or DTC.

Erase flash ROM before download

Erases the (internal) flash ROM before your application is downloaded. If this option is
deselected, the flash ROM memory will not be erased by the downloading process. This
means that any addresses that are not overwritten by the downloaded image will keep
their previous contents.

Note: If multiple images are downloaded, you must deselect this option.

Erase data flash ROM before download

Communication

Erases the (internal) data flash ROM before your application is downloaded. If this
option is deselected, the data flash ROM memory will not be erased by the downloading
process. This means that any addresses that are not overwritten by the downloaded
image will keep their previous contents.

Controls the communication between the emulator and the host computer. Choose
between:

JTAG clock
Selects the JTAG interface. Choose a communication clock frequency.

FINE baud rate

Selects the FINE single wire debug interface. Choose a communication speed in
bits/second.

Note that this option is not available for all devices or all hardware debuggers.

Debug the program re-writing the PROGRAM ROM

Debugs the program which writes to the program ROM (flash memory).

63

Reference information on starting C-SPY

Debug the program re-writing the DATA FLASH

Debugs the program which writes to the data flash memory.

Emulator mode
Controls how the hardware debugger can be used. Choose between:

Trace
Makes the trace functionality of the C-SPY driver available, see Collecting and
using trace data, page 192.

RAM Monitor
Makes the RAM-monitor functionality of the C-SPY driver available, see RAM
Monitor Setup dialog box, page 170. Only available for the E20 emulator.

Power target from the emulator
Select this option and the correct voltage if you are supplying the target board with
power from the hardware debugger, and not from an external power supply.

If you select this option but connect an external power supply to the target board, the
external power supply will be used instead and these settings will be ignored.

Note: This option is not available for all devices or all hardware debuggers.

Hardware Setup dialog box: External Memory
The Hardware Setup dialog box for the hardware debuggers is available from the
C-SPY driver menu. Before C-SPY is started for the first time in a new project, and

C-SPY® Debugging Guide
64 for RX

Getting started using C-SPY ___4

when you change devices, you can specify how your application will be downloaded to
the external flash memory.

Hardware Setup, device: RSFSTIMG (RX7LMGR\RSFS7LMG.MCU) (=23

MCU | External Memary

External flash definition file

]

Address range: [] Erase extemnal flash FOM before download

External flash definition file

]

Address range: [] Erase extemnal flash FOM before download

External flash definition file

]

Address range: [] Erase extemnal flash FOM before download

External flash definition file

]

Address range: [Erase external flash ROM before download

o) (o]

Use the External Memory options page to specify how your application will be
downloaded to the external flash memory.

Using these options, you can download the main output file of your project or the
additional debug images specified on the Project>Options>Debugger>Images page to
flash memory connected to an external bus.

Requirements
A C-SPY hardware debugger driver.

External flash definition file

Specify an external flash definition file (USD file) by typing the absolute path to the file
or by using the browse button to navigate to the file. Up to four USD files can be
registered.

65

Reference information on starting C-SPY

66

Address range

For more information about USD files, see the External Flash Definition Editor
documentation on www.renesas.com.

The address range of the download defined in the specified USD file.

Erase external flash ROM before download

Erases the external flash ROM before your application is downloaded. If this option is
left deselected, the flash ROM memory will not be erased by the downloading process.
This means that any addresses that are not overwritten by the downloaded image will
keep their previous contents.

Related information

For related information, see Downloading files to external flash memory, page 46.

External Area dialog box

Requirements

Byte order

Bus width

C-SPY® Debugging Guide
for RX

The External Area dialog box is available from the Hardware Setup dialog box.

External Area

Byte order:
Same byte order az the MCU w
Bus width:
g bit v

[Ok] [Cancel]

Use this dialog box to edit a defined external memory area, see Hardware Setup dialog
box: MCU, page 61.

A C-SPY hardware debugger driver.

Controls the byte order of the memory area. Choose between:

e Same byte order as the MCU
o Different byte order from the MCU.

The bus width of the area. Choose between:

o 8 bit

Getting started using C-SPY ___4

e 16 bit
e 32 bit.

67

Reference information on starting C-SPY

C-SPY® Debugging Guide
68 for RX

Executing your application

e Introduction to application execution

e Reference information on application execution

Introduction to application execution
These topics are covered:

Briefly about application execution
Source and disassembly mode debugging
Single stepping

Stepping speed

Running the application

Highlighting

Call stack information

Terminal input and output

Debug logging

BRIEFLY ABOUT APPLICATION EXECUTION

C-SPY allows you to monitor and control the execution of your application. By
single-stepping through it, and setting breakpoints, you can examine details about the
application execution, for example the values of variables and registers. You can also use
the call stack to step back and forth in the function call chain.

The terminal I/O and debug log features let you interact with your application.

You can find commands for execution on the Debug menu and on the toolbar.

SOURCE AND DISASSEMBLY MODE DEBUGGING

C-SPY allows you to switch between source mode and disassembly mode debugging as
needed.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

69

Introduction to application execution

70

C-SPY® Debugging Guide
for RX

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control of the application code. You can open a
disassembly window which displays a mnemonic assembler listing of your application
based on actual memory contents rather than source code, and lets you execute the
application exactly one machine instruction at a time.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

SINGLE STEPPING

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just
stepping on statements.

There are several factors that can slow down the stepping speed. If you find it too slow,
see Slow stepping speed, page 377 for some tips.

The step commands
There are four step commands:

e Step Into
o Step Over
o Next Statement
e Step Out.

Using the Autostep settings dialog box, you can automate the single stepping. For more
information, see Autostep settings dialog box, page 91.

Executing your application __4

Consider this example and assume that the previous step has taken you to the £ (1)
function call (highlighted):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}
int main()

{

£(i);
value ++;

Step Into

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine g (n-1):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Step Over

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the g (n-2) function
call, which is not a statement on its own but part of the same statement as g (n-1) . Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

71

Introduction to application execution

72

C-SPY® Debugging Guide
for RX

Next Statement

The Next Statement command executes directly to the next statement, in this case
return value, allowing faster stepping:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

Step Out

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

extern int g(int);
int f(int n)
{
value = g(n-1) + g(n-2) g(n-3);
return value;

}

int main()

{

£(1i);
value ++;

}

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for C++, which tends to have many implicit function calls,
such as constructors, destructors, assignment operators, and other user-defined
operators.

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.

STEPPING SPEED

Stepping in C-SPY is normally performed using breakpoints. When performing a step
command, a breakpoint is set on the next statement and the program executes until
reaching this breakpoint. If you are debugging using a hardware debugger system, the
number of hardware breakpoints—typically used for setting a stepping breakpoint, at
least in code that is located in flash/ROM memory—is limited. If you for example, step
into a C swi tch statement, breakpoints are set on each branch, and hence, this might

Executing your application ___4

consume several hardware breakpoints. If the number of available hardware breakpoints
is exceeded, C-SPY switches into single stepping at assembly level, which can be very
slow.

For this reason, it can be helpful to keep track of how many hardware breakpoints are
used and make sure to some of them are left for stepping. For more information, see
Breakpoints in the C-SPY hardware debugger drivers, page 133 and Breakpoint
consumers, page 133.

In addition to limited hardware breakpoints, these issues might also affect stepping
speed:

e If Trace or Function profiling is enabled. This might slow down stepping because
collected Trace data is processed after each step. Note that it is not sufficient to
close the corresponding windows to disable Trace data collection. Instead, you must
disable the Enable/Disable button in both the Trace and the Function profiling
windows.

o If the Register window is open and displays SFR registers. This might slow down
stepping because all registers in the selected register group must be read from the
hardware after each step. To solve this, you can choose to view only a limited
selection of SFR register; you can choose between two alternatives. Either type
#SFR_name (Where #SFR_name reflects the name of the SFR you want to monitor)
in the Watch window, or create your own filter for displaying a limited group of
SFRs in the Register window. See Defining application-specific register groups,
page 161.

e If any of the Memory or Symbolic memory windows is open. This might slow
down stepping because the visible memory must be read after each step.

e If any of the expression related windows such as Watch, Live Watch, Locals,
Statics is open. This might slow down stepping speed because all these windows
reads memory after each step.

o If the Stack window is open and especially if the option Enable graphical stack
display and stack usage tracking option is enabled. To disable this option, choose
Tools>Options>Stack and disable it.

e If a too slow communication speed has been set up between C-SPY and the target
board/emulator you should consider to increase the speed, if possible.

RUNNING THE APPLICATION

El Go

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

73

Introduction to application execution

74

C-SPY® Debugging Guide
for RX

Run to Cursor

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the windows was last active.

Tutor.c I!EEE

void init_fib{ void |

i

int i = 45;
o root[0] = root[l] = 1;

for { i=2 ; i<MAX _FIE : i++)
{

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

CALL STACK INFORMATION

The compiler generates extensive backtrace information. This allows C-SPY to show,
without any runtime penalty, the complete function call chain at any time.

Typically, this is useful for two purposes:

e Determining in what context the current function has been called
o Tracing the origin of incorrect values in variables and in parameters, thus locating
the function in the call chain where the problem occurred.

The Call Stack window shows a list of function calls, with the current function at the
top. When you inspect a function in the call chain, the contents of all affected windows

&

Executing your application ___4

are updated to display the state of that particular call frame. This includes the editor,
Locals, Register, Watch and Disassembly windows. A function would normally not
make use of all registers, so these registers might have undefined states and be displayed
as dashes (---).

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command to execute to that function.

Assembler source code does not automatically contain any backtrace information. To
see the call chain also for your assembler modules, you can add the appropriate CFI
assembler directives to the assembler source code. For further information, see the /AR
Assembler Reference Guide for RX.

TERMINAL INPUT AND OUTPUT

Sometimes you might have to debug constructions in your application that use stdin

and stdout without an actual hardware device for input and output. The Terminal I/O
window lets you enter input to your application, and display output from it. You can also
direct terminal I/O to a file, using the Terminal 1/O Log Files dialog box.

This facility is useful in two different contexts:

e If your application uses stdin and stdout

e For producing debug trace printouts.

For more information, see Terminal 1/O window, page 83 and Terminal 1/0 Log File
dialog box, page 84.

DEBUG LOGGING

The Debug Log window displays debugger output, such as diagnostic messages,
macro-generated output, event log messages, and information about trace.

It can sometimes be convenient to log the information to a file where you can easily
inspect it. The two main advantages are:

o The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

o The file provides history about how you have controlled the execution, for instance,
which breakpoints that have been triggered etc.

75

Reference information on application execution

Reference information on application execution

Reference information about:

Disassembly window, page 77

Call Stack window, page 81

Terminal 1/0 window, page 83

Terminal 1/O Log File dialog box, page 84
Debug Log window, page 85

Log File dialog box, page 86

Report Assert dialog box, page 87

Start/Stop Function Settings dialog box, page 87
Select Label dialog box, page 90

Autostep settings dialog box, page 91

ID Code Verification dialog box, page 91.

See also Terminal I/O options in the IDE Project Management and Building Guide for
RX.

C-SPY® Debugging Guide
76 for RX

Executing your application ___4

Disassembly window

The C-SPY Disassembly window is available from the View menu.

[Go to memory address] [Select zone to display] I Toggle embedded source code
: | -
Disassembly | - =]
Disassembly |~
& 001EA o7 RET |—|
NextCounter() ;
7| DoForegroundProcess:
Code coverage & O0LEE FDE701 CALL N:NextCounter
 informarion fib = GetFib(callCount) ;
& 0O01EE AFOOEF MOV A¥, N:callCount
& 001F1 FD4502 CALL N:UFOSTR
PutFila{ fily) ;
& 001F4 EDS002 ER N:UF1CTLO
callCount = 0O;
main:
7] & 001F7 Fi5 CLEW AKX
[Current position | % 0O0IF® BFOOBF MOVW N:callCount, AX
_ InitFib() ;
& 001FE FDOEODZ2 CALL N:TCR27
& 001FE EFO03 ER S:4+0x05
_— DoForegroundProcess() ;
[Breakpeint] L]
P] :
- while {(callCount = MAX FIE)
& 00203 AFOOEF MOV A¥, N:callCount
* 00206 TCR0 XOR A, #0x80 5

This window shows the application being debugged as disassembled application code.

To change the default color of the source code in the Disassembly window:
I Choose Tools>Options>Debugger.
2 Set the default color using the Source code coloring in disassembly window option.
9 To view the corresponding assembler code for a function, you can select it in the editor

window and drag it to the Disassembly window.

Requirements

None; this window is always available.

77

Reference information on application execution

78

Toolbar

Display area

C-SPY® Debugging Guide
for RX

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 158.

Toggle Mixed-Mode

Toggles between displaying only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information

The display area shows the disassembled application code.

This area contains these graphic elements:

Green highlight Indicates the current position, that is the next assembler
instruction to be executed. To move the cursor to any line in
the Disassembly window, click the line. Alternatively, move
the cursor using the navigation keys.

Yellow highlight Indicates a position other than the current position, such as
when navigating between frames in the Call Stack window
or between items in the Trace window.

Red dot Indicates a breakpoint. Double-click in the gray left-side
margin of the window to set a breakpoint. For more
information, see Breakpoints, page 129.

Green diamond Indicates code that has been executed—that is, code
coverage.

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has
been executed.

Executing your application ___4

Context menu

This context menu is available:

Move to PC

Run ko Cursor

Code Coverage 3
Instruction Profiling 3

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)

Toggle Breakpoint {Trace Start)
Toggle Breakpoint {Trace Stop)
Enable/disable Ereakpaint

Set Mext Statement

Copy Window Contents
v Mixed-Mode

Note: The contents of this menu are dynamic, which means that the commands on the
menu depend on the C-SPY driver.

These commands are available:

Move to PC

Displays code at the current program counter location.

Run to Cursor

Executes the application from the current position up to the line containing the
Cursor.

Code Coverage

Displays a submenu that provides commands for controlling code coverage.
This command is only enabled if the driver you are using supports it.

Enable Toggles code coverage on or off.

Show Toggles the display of code coverage on or off.
Executed code is indicated by a green diamond.

Clear Clears all code coverage information.

Instruction Profiling

Displays a submenu that provides commands for controlling instruction
profiling. This command is only enabled if the driver you are using supports it.

Enable Toggles instruction profiling on or off.

Show Toggles the display of instruction profiling on or off.
For each instruction, the left-side margin displays
how many times the instruction has been executed.

79

Reference information on application execution

Clear Clears all instruction profiling information.

Toggle Breakpoint (Code)

Toggles a code breakpoint. Assembler instructions and any corresponding label
at which code breakpoints have been set are highlighted in red. For more
information, see Code breakpoints dialog box, page 143.

Toggle Breakpoint (Hardware Code)

Toggles a hardware code breakpoint. Assembler instructions and any
corresponding label at which hardware code breakpoints have been set are
highlighted in red. Note that this menu command is only available for C-SPY
hardware debugger drivers. For more information, see Hardware Code
Breakpoint dialog box, page 144.

Toggle Breakpoint (Software Code)

Toggles a software code breakpoint. Assembler instructions and any
corresponding label at which software code breakpoints have been set are
highlighted in red. Note that this menu command is only available for C-SPY
hardware debugger drivers. For more information, see Software Code
Breakpoint dialog box, page 146.

Toggle Breakpoint (Performance Start)

Toggles a performance start breakpoint. When the breakpoint is triggered, the
performance analysis starts. Note that this menu command is only available if
the C-SPY driver you are using supports performance analysis. For more
information, see Performance Start breakpoints dialog box, page 239.

Toggle Breakpoint (Performance Stop)

Toggles a performance stop breakpoint. When the breakpoint is triggered, the
performance analysis stops. Note that this menu command is only available if
the C-SPY driver you are using supports performance analysis. For more
information, see Performance Stop breakpoints dialog box, page 240.

Toggle Breakpoint (Log)

Toggles a log breakpoint for trace printouts. Assembler instructions at which log
breakpoints have been set are highlighted in red. For more information, see Log
breakpoints dialog box, page 147.

Toggle Breakpoint (Trace Start)
Toggles a Trace Start breakpoint. When the breakpoint is triggered, the trace
data collection starts. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see 7race
Start breakpoints dialog box, page 212.

C-SPY® Debugging Guide
80 for RX

Call Stack window

Executing your application ___4

Toggle Breakpoint (Trace Stop)
Toggles a Trace Stop breakpoint. When the breakpoint is triggered, the trace
data collection stops. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Stop breakpoints dialog box, page 213.

Enable/Disable Breakpoint
Enables and Disables a breakpoint. If there is more than one breakpoint at a
specific line, all those breakpoints are affected by the Enable/Disable
command.

Edit Breakpoint
Displays the breakpoint dialog box to let you edit the currently selected
breakpoint. If there is more than one breakpoint on the selected line, a submenu
is displayed that lists all available breakpoints on that line.

Set Next Statement
Sets the program counter to the address of the instruction at the insertion point.

Copy Window Contents
Copies the selected contents of the Disassembly window to the clipboard.

Mixed-Mode

Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

The Call Stack window is available from the View menu.

Call Stack (=]

T Fibonacci::next()

[
- Drestination for Step Into
'::> malin i

[_call_main + O0x2]

Jump te main from label
plus offset

This window displays the C function call stack with the current function at the top. To
inspect a function call, double-click it. C-SPY now focuses on that call frame instead.

81

Reference information on application execution

82

Requirements

Display area

Context menu

C-SPY® Debugging Guide
for RX

If the next Step Into command would step to a function call, the name of the function is
displayed in the grey bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

None; this window is always available.

Provided that the command Show Arguments is enabled, each entry in the display area
has the format:

function(values) ***
where

(values) is alist of the current values of the parameters, or empty if the function does
not take any parameters.

**x*_if visible, indicates that the function has been inlined by the compiler. For
information about function inlining, see the /AR C/C++ Development Guide for RX.

This context menu is available:
Go to Source
Show Arguments
Run to Cursor
Toggle Breakpoint (Code)
Toggle Breakpoint (Log)
Toggle Breakpoint (Trace Start)
Toggle Breakpoint (Trace Stop)
Enable/Disable Breakpoint

These commands are available:

Go to Source

Displays the selected function in the Disassembly or editor windows.

Show Arguments
Shows function arguments.

Run to Cursor
Executes until return to the function selected in the call stack.

Toggle Breakpoint (Code)
Toggles a code breakpoint.

Executing your application ___4

Toggle Breakpoint (Log)
Toggles a log breakpoint.

Toggle Breakpoint (Trace Start)
Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Toggle Breakpoint (Trace Stop)
Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Enable/Disable Breakpoint
Enables or disables the selected breakpoint

Terminal I/O window
The Terminal I/O window is available from the View menu.

Terminal I/0 =

Output: Log file: OFff

[a—

21
34
bh

Input: LCtl codes | InputMode...|

Buffer size: 1]

Use this window to enter input to your application, and display output from it.

To use this window, you must:

I Link your application with the option Include C-SPY debugging support.

C-SPY will then direct stdin, stdout and stderr to this window. If the Terminal I/O
window is closed, C-SPY will open it automatically when input is required, but not for
output.

83

Reference information on application execution

Requirements

Input

Ctrl codes

Input Mode

None; this window is always available.

Type the text that you want to input to your application.

Opens a menu for input of special characters, such as EOF (end of file) and NUL.

0:x00-0x0f »
O:x10-0:x1F »
ECF

Opens the Input Mode dialog box where you choose whether to input data from the
keyboard or from a file.

% Buffered e

" Direct ﬂl
" File

& Text

| Binary

$PROJ_DIR$AT erml Dlnput tat J

For reference information about the options available in this dialog box, see Terminal
1/0 options in IDE Project Management and Building Guide for RX.

Terminal I/O Log File dialog box

Requirements

C-SPY® Debugging Guide
84 for RX

The Terminal I/O Log File dialog box is available by choosing Debug>Logging>Set
Terminal I/O Log File.

Terminal I/0 Log File

Terminal [/0 Log File 0Ok

™ Enable Teminal 10 log file
J Cancel

Use this dialog box to select a destination log file for terminal I/O from C-SPY.

None; this dialog box is always available.

Executing your application ___4

Terminal 10 Log Files

Controls the logging of terminal I/O. To enable logging of terminal I/O to a file, select
Enable Terminal IO log file and specify a filename. The default filename extension is
log. A browse button is available for your convenience.

Debug Log window

The Debug Log window is available by choosing View>Messages.

. |

Log

Fri Feb 06 10:41:40 2004: Loaded module
Fri Felb 06 10:41:40 2004: Target reset

This window displays debugger output, such as diagnostic messages, macro-generated
output, event log messages, and information about trace. This output is only available

during a debug session. When opened, this window is, by default, grouped together with
the other message windows, see IDE Project Management and Building Guide for RX.

Double-click any rows in one of the following formats to display the corresponding
source code in the editor window:

<path> (<row>) :<message>
<path> (<row>,<column>) :<message>
Requirements

None; this window is always available.

Context menu

This context menu is available:

Copy
Select Al

Clear Al
These commands are available:

Copy
Copies the contents of the window.

Select All
Selects the contents of the window.

85

Reference information on application execution

86

Log File dialog box

Requirements

Enable Log file

Include

C-SPY® Debugging Guide
for RX

Clear All

Clears the contents of the window.

The Log File dialog box is available by choosing Debug>Logging>Set Log File.

r Log File
o Include:
¥ Enable log file
¥ Enmors ¥ “wamings
¥ Info IV User
$PROJ_DIR$ LogFile1.log J

()3 I Cancel |

Use this dialog box to log output from C-SPY to a file.

None; this dialog box is always available.

Enables or disables logging to the file.

The information printed in the file is, by default, the same as the information listed in
the Log window. Use the browse button, to override the default file and location of the
log file (the default filename extension is 1og). To change the information logged,
choose between:

Errors

C-SPY has failed to perform an operation.
Warnings
An error or omission of concern.

Info

Progress information about actions C-SPY has performed.

User

Messages from C-SPY macros, that is, your messages using the __message
statement.

Executing your application ___4

Report Assert dialog box

The Report Assert dialog box appears if you have a call to the assert function in your
application source code, and the assert condition is false. In this dialog box you can
choose how to proceed.

Report Assert Pz|

The following Failed:

File: C:\Documents and SettingsiMy DocumentsiIAR Embedded Workbenchiresolve.cpp
Line: 35

Expression Failed:

Abort |

Abort
The application stops executing and the runtime library function abort, which is part
of your application on the target system, will be called. This means that the application
itself terminates its execution.

Debug
C-SPY stops the execution of the application and returns control to you.

Ignore

The assertion is ignored and the application continues to execute.

Start/Stop Function Settings dialog box
The Start/Stop Function Settings dialog box is available from the C-SPY Driver menu.

Start/Stop Function Settings @

[~ Enable start routine.
Start routine location:

[~ Enable stop routine.

Stop routine location:

Use this dialog box to configure the emulator to execute specific routines of your
application immediately before the execution starts and/or after it halts. This is useful if

87

Reference information on application execution

you want to control your system in synchronization with starting and stopping the
execution of your application.

Requirements

One of these alternatives:

o The C-SPY E1/E20 driver
e The C-SPY E2 Lite driver.

Restrictions on using start/stop routines

Some restrictions apply:

o When the start/stop feature is enabled you cannot:

e let your application use the RAM area 0x0-0x22F. For example, change the
start address for RAM_regionl6, RAM_region24, and RAM_region32 from
0x4 to 0x230 in the linker configuration file.

o set memory or download into the program area of a start/stop routine
e set breakpoints in the program area of a start/stop routine.

e While either of the start/stop routines is running, the four bytes of memory indicated
by the interrupt stack pointer are in use by the emulator.

e In the start/stop routines, these restrictions apply to registers and flags:

Register and flag names Restrictions

ISP register When execution of a start/stop routine is ended, the register must
be returned to its value at the time the routine started.

Flag U While a specified start/stop is running, switching to user mode is
prohibited.

Flag T No interrupts are allowed during execution of a start/stop routine.

Flag PM While a start/stop routine is running, switching to user mode is
prohibited.

Table 4: Restrictions on registers and flags

o When either of the start/stop routines is running, the following does not work:
o Trace
o Breaks in execution in the start/stop routines

o RAM-monitoring. RAM-monitoring does not reflect access to memory by the
start/stop routines.

o Performance measurement. The start/stop routines are not within the scope of
performance measurement.

e Events. Event settings are invalid within the start/stop routines.

C-SPY® Debugging Guide
88 for RX

Executing your application ___4

o While either of the start/stop routines is running, non-maskable interrupts are
always disabled.

This table shows which state the MCU will be in when your application starts running
after executing a start routine:

MCU resource Status

MCU general purpose These registers are in the same state as when your application last

registers stopped, or in states determined by the settings in the Register
window. Changes made by the start routine to the contents of registers
are not reflected.

Memory in the MCU Accesses to memory after the start routine has finished executing are

space reflected.
MCU peripheral The operation of the MCU'’s peripheral functions is continued after the
functions start routine has finished executing.

Table 5: MCU status when the user application starts executing

Enable start routine

Enables the execution of a routine immediately before your application starts executing.

Start routine location

Specifies the routine to be executed immediately before your application starts
executing. Type a label or an address, or click the browse button to open the Select
Label dialog box; see Select Label dialog box, page 90.

Enable stop routine

Enables the execution of a routine immediately after your application stops executing.

Stop routine location

Specifies the routine to be executed immediately after your application stops executing.
Type a label or an address, or click the browse button to open the Select Label dialog
box; see Select Label dialog box, page 90.

89

Reference information on application execution

Select Label dialog box
The Select Label dialog box is available from the Start/Stop Function Settings dialog

box.

Select Label ==
Label Address i
main OxFFEB39C0
next_pos 0x10
Region$sTable$sBase OxFFE83B1C
Region$$Table SSLimit OxFFE83B5C
STACKSSSBase 0x314
STACKSSSLimit Ox514
StartADC 0xFFE8364C
StartTimer 0xFFE83671
Statics_Test 0xFFE&3946
SW1_debounce OxFFE831AF
SW1_handler OxFFE8327F
SW2_debounce OxFFEB31A2
SW2_handler OxFFES321E
SW3_debounce OxFFE83195
SW3_handler 0xFFE831BC
TimerADC OxFFES36AC
TimerADC_callback OxFFE&3605
TMR_Callback OxFFES37AT7
Togglel EDs OxFFE8374C
ucReplace OxFFE20000
ucstr Ox4 —

| OK | [Cancel]

Select the routine you want to be executed and click OK.

Requirements
One of these alternatives:

e The C-SPY E1/E20 driver
o The C-SPY E2 Lite driver.

C-SPY® Debugging Guide
90 for RX

Executing your application ___4

Autostep settings dialog box

Requirements

Delay

The Autostep settings dialog box is available from the Debug menu.

Autostep settings E

I Step Into [Source level] j Start I
Delay [miIIiseconds]:I‘I] Cancel |

Use this dialog box to customize autostepping.

The drop-down menu lists the available step commands.

None; this dialog box is always available.

Specify the delay between each step in milliseconds.

ID Code Verification dialog box

Enter ID Code

The ID Code Verification dialog box is displayed if the ID code programmed in the
target MCU differs from the ID code in the application that is being downloaded.

ID Code Verification [

Enter ID Code [32 hexadecimal digits):

[(0] 3] | Cancel |

If this dialog box appears, verify that you have the right to debug or download your
application to the target board.

If you have selected the option Attach to program on the
Project>Options>Driver>Download page, this dialog box will be displayed every
time you launch a debug session.

Specify the ID code of the target MCU, a sequence of 32 hexadecimal digits.

91

Reference information on application execution

C-SPY® Debugging Guide
92 for RX

Variables and expressions

e Introduction to working with variables and expressions
e Working with variables and expressions

e Reference information on working with variables and expressions

Introduction to working with variables and expressions

This section introduces different methods for looking at variables and introduces some
related concepts.

These topics are covered:

e Briefly about working with variables and expressions
o C-SPY expressions

o Limitations on variable information.

BRIEFLY ABOUT WORKING WITH VARIABLES AND
EXPRESSIONS

There are several methods for looking at variables and calculating their values:

e Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

o The Auto window displays a useful selection of variables and expressions in, or
near, the current statement. The window is automatically updated when execution
stops.

o The Locals window displays the local variables, that is, auto variables and function
parameters for the active function. The window is automatically updated when
execution stops.

o The Watch window allows you to monitor the values of C-SPY expressions and
variables. The window is automatically updated when execution stops.

o The Live Watch window repeatedly samples and displays the values of expressions
while your application is executing. Variables in the expressions must be statically
located, such as global variables.

o The Statics window displays the values of variables with static storage duration.
The window is automatically updated when execution stops.

93

Introduction to working with variables and expressions

o The Macro Quicklaunch window and the Quick Watch window give you precise
control over when to evaluate an expression.

e The Symbols window displays all symbols with a static location, that is, C/C++
functions, assembler labels, and variables with static storage duration, including
symbols from the runtime library.

e The Data Log window and the Data Log Summary window display logs of
accesses to up to four different memory locations you choose by setting data log
breakpoints. Data logging can help you locate frequently accessed data. You can
then consider whether you should place that data in more efficient memory.

o The Data Sample window displays samples for up to four different variables. You
can also display the data samples as graphs in the Sampled Graphs window. By
using data sampling, you will get an indication of the data value over a length of
time. Because it is a sampled value, data sampling is best suited for slow-changing
data.

o The Trace-related windows let you inspect the program flow up to a specific state.
For more information, see Trace, page 191.

C-SPY EXPRESSIONS

C-SPY expressions can include any type of C expression, except for calls to functions.
The following types of symbols can be used in expressions:

C/C++ symbols
Assembler symbols (register names and assembler labels)

°
°
o C-SPY macro functions
°

C-SPY macro variables.

Expressions that are built with these types of symbols are called C-SPY expressions and
there are several methods for monitoring these in C-SPY. Examples of valid C-SPY
expressions are:

i+ 3

i = 42

myVar = cVar

cVar = myVar + 2

#asm_label

#R2

#PC

my_macro_func(19)

If you have a static variable with the same name declared in several different functions,
use the notation function: : variable to specify which variable to monitor.

C-SPY® Debugging Guide
94 for RX

Variables and expressions __¢

C/C++ symbols

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions (functions can be used as symbols but
cannot be executed). C symbols can be referenced by their names. Note that C++
symbols might implicitly contain function calls which are not allowed in C-SPY
symbols and expressions.

Note: Some attributes available in C/C++, like volatile, are not fully supported by
C-SPY. For example, this line will not be accepted by C-SPY:

sizeof (unsigned char volatile __memattr *)
However, this line will be accepted:

sizeof (unsigned char __memattr *)

Assembler symbols

Assembler symbols can be assembler labels or registers, for example the program
counter, the stack pointer, or other CPU registers. If a device description file is used, all
memory-mapped peripheral units, such as I/O ports, can also be used as assembler
symbols in the same way as the CPU registers. See Modifying a device description file,
page 48.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

Example What it does
#PC++ Increments the value of the program counter.
myVar = #SP Assigns the current value of the stack pointer register to your

C-SPY variable.
myVar = #label Sets myVar to the value of an integer at the address of label.

myptr = &#label? Sets myptr to an int * pointer pointing at label7.

Table 6: C-SPY assembler symbols expressions

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes * (ASCII character 0x60). For example:

Example What it does
#PC Refers to the program counter.
PC" Refers to the assembler label PC.

Table 7: Handling name conflicts between hardware registers and assembler labels

Which processor-specific symbols are available by default can be seen in the Register
window, using the CPU Registers register group. See Register window, page 179.

95

Introduction to working with variables and expressions

96

C-SPY® Debugging Guide
for RX

C-SPY macro functions

Macro functions consist of C-SPY macro variable definitions and macro statements
which are executed when the macro is called.

For information about C-SPY macro functions and how to use them, see Briefly about
the macro language, page 284.

C-SPY macro variables

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assign both its value and type.

For information about C-SPY macro variables and how to use them, see Reference
information on the macro language, page 290.

Using sizeof
According to standard C, there are two syntactical forms of sizeof:

sizeof (type)
sizeof expr

The former is for types and the latter for expressions.

Note: In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

LIMITATIONS ON VARIABLE INFORMATION

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice, the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

Effects of optimizations

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. The optimization can affect the code so that
debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

Variables and expressions __¢

Consider this example:

myFunction ()

{
int 1 = 42;

x = computer(i); /* Here, the value of i is known to C-SPY */

}

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means that C-SPY will not be able to display the value until it is actually used. If
you try to view the value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Working with variables and expressions

These tasks are covered:

o Using the windows related to variables and expressions
o Viewing assembler variables

o Getting started using data logging

o Getting started using data sampling

USING THE WINDOWS RELATED TO VARIABLES AND
EXPRESSIONS

Where applicable, you can add, modify, and remove expressions, and change the display
format in the windows related to variables and expressions.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click the Value field and modify
its content. To remove an expression, select it and press the Delete key.

For text that is too wide to fit in a column—in any of the these windows, except the
@ Trace window—and thus is truncated, just point at the text with the mouse pointer and
tooltip information is displayed.

97

Working with variables and expressions

Right-click in any of the windows to access the context menu which contains additional
commands. Convenient drag-and-drop between windows is supported, except for in the
Locals window, Data logging windows, and the Quick Watch window where it is not
relevant.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY by default treats all data located at assembler labels as
variables of type int. However, in the Watch, Live Watch, and Quick Watch
windows, you can select a different interpretation to better suit the declaration of the
variables.

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

. f) + x Watch1
HAME main — | Expression Yalue Location Type
= asmvarl 42 0x00000080 int
PUBLIC _ iar program start asrrvard 456 0=00000084 int
astrvard 55 O0=00000088 <8-bit unsigned>

SECTION .intwec : CODE (2)
CODES2 <clickto ... Default Format

. Binary Format
__iar program start g

B main Octal Format

v Decimal Format

SECTION .text : CODE (2) Hexadecimal Format

Char Format
asmvarl: DC32 42

asmvar2: DC32 456 Show As b Asls
asmvar3: DC8 55 8-bit Signed
asmvard: DC8 10 Saveto File...
16-bit Signed
cope3z 16-bit Unsigned
= main NOE 32-bit Signed
B main 32-bit Unsigned
64-bit Signed
EID 64-bit Unsigned
float
double

Note that asmvard4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

C-SPY® Debugging Guide
98 for RX

Variables and expressions __¢

GETTING STARTED USING DATA LOGGING
To set a data log breakpoint, use one of these methods:

o In the Breakpoints window, right-click and choose New Breakpoint>Data Log to
open the breakpoints dialog box. Set a breakpoint on the memory location that you
want to collect log information for. This can be specified either as a variable or as an
address.

e Inthe Memory window, select a memory area, right-click and choose Set Data Log
Breakpoint from the context menu. A breakpoint is set on the start address of the
selection.

o In the editor window, select a variable, right-click and choose Set Data Log
Breakpoint from the context menu. The breakpoint will be set on the part of the
variable that the microcontroller can access using one instruction.

You can set up to four data log breakpoints. For more information about data log
breakpoints, see Data Log breakpoints, page 131.

Choose C-SPY driver>Data Log to open the Data Log window. Optionally, you can
also choose:

o C-SPY driver>Data Log Summary to open the Data Log Summary window

o C-SPY driver>Timeline to open the Timeline window to view the Data Log graph.

From the context menu, available in the Data Log window, choose Enable to enable
the logging.

Start executing your application program to collect the log information.

To view the data log information, look in any of the Data Log window, Data Log
Summary window, or the Data graph in the Timeline window.

If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

To disable data logging, choose Disable from the context menu in each window where
you have enabled it.

GETTING STARTED USING DATA SAMPLING

Choose C-SPY driver>Data Sample Setup to open the Data Sample Setup window.
In the Data Sample Setup window, perform these actions:

o In the Expression column, type the name of the variable for which you want to
sample data. The variable must be an integral type with a maximum size of 32 bits
and you can specify up to four variables. Make sure that the checkbox is selected for
the variable that you want to sample data.

929

Reference information on working with variables and expressions

100

o In the Sampling interval column, type the number of milliseconds to pass between
the samples.

To view the result of data sampling, you must enable it in the window in question:

o Choose C-SPY driver>Data Sample to open the Data Sample window. From the
context menu, choose Enable.

o Choose C-SPY driver>Sampled Graph to open the Sampled Graph window.
From the context menu, choose Enable.

Start executing your application program. This starts the data sampling. When the
execution stops, for example because a breakpoint is triggered, you can view the result
either in the Data Sample window or as the Data Sample graph in the Sampled
Graphs window

If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

To disable data sampling, choose Disable from the context menu in each window
where you have enabled it.

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for RX

Reference information about:

Auto window, page 101

Locals window, page 103

Watch window, page 105

Live Watch window, page 107

Statics window, page 109

Quick Watch window, page 112
Symbols window, page 114

Resolve Symbol Ambiguity dialog box, page 116
Data Log window, page 117

Data Log Summary window, page 119
Data Sample Setup window, page 120
Data Sample window, page 122

Sampled Graphs window, page 123
See also:

® Reference information on trace, page 194 for trace-related reference information

Variables and expressions __¢

® Macro Quicklaunch window, page 334

Auto window

The Auto window is available from the View menu.

Expression Walue Location Type

i 5 0x7 short

Fib[i] 0 Mermory:0xC00C unsigned int
Fik <array> hemony:0xC002 unsigned int[10]
GetFib GetFib (0xBC) unsigned int (*)...

This window displays a useful selection of variables and expressions in, or near, the
current statement. Every time execution in C-SPY stops, the values in the Auto window
are recalculated. Values that have changed since the last stop are highlighted in red.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 52.

Requirements

None; this window is always available.

101

Reference information on working with variables and expressions

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Save to File...

These commands are available:

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 98.

C-SPY® Debugging Guide
102 for RX

Variables and expressions __¢

Options
Displays the IDE Options dialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

Save to File

Saves content to a file in a tab-separated format.

Locals window
The Locals window is available from the View menu.

Expression Yalue Location Type
i 2 R7 short

This window displays the local variables and parameters for the current function. Every
time execution in C-SPY stops, the values in the window are recalculated. Values that
have changed since the last stop are highlighted in red.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 52.

Requirements

None; this window is always available.

103

Reference information on working with variables and expressions

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Save to File...

These commands are available:

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 98.

C-SPY® Debugging Guide
104 for RX

Variables and expressions __¢

Options
Displays the IDE Options dialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

Save to File

Saves content to a file in a tab-separated format.

Woatch window

The Watch window is available from the View menu.

Watch 1 =]
Expression Yalue Location Type
2 |vemory.0rEr00 [m
Fib <array> Memory : 0xFEF02 unsigned int...
] 1 Memory : 0xFEF02 unsigned int
1] 1 Memory : 0xFEF04 unsigned int
[2] 2 Memory : 0xFEFO06 unsigned int
[3 Memory : 0xFEFO& unsigned int
[4] 5 v unsigned int
[5] a unsigned int
[E] 13 unsigned int
[71 21 unsigned int
8] 34 unsigned int
[4] 55 Memory : 0xFEF14 unsigned int

Use this window to monitor the values of C-SPY expressions or variables. You can open
up to four instances of this window, where you can view, add, modify, and remove
expressions. Tree structures of arrays, structs, and unions are expandable, which means
that you can study each item of these.

Every time execution in C-SPY stops, the values in the Watch window are recalculated.
Values that have changed since the last stop are highlighted in red.

Be aware that expanding very huge arrays can cause an out-of-memory crash. To avoid
& this, expansion is automatically performed in steps of 5000 elements.

For more information about editing in C-SPY windows, see C-SPY Debugger main
window, page 52.

Requirements

None; this window is always available.

105

Reference information on working with variables and expressions

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Save to File...

These commands are available:

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 98.

C-SPY® Debugging Guide
106 for RX

Variables and expressions __¢

Options
Displays the IDE Options dialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

Save to File

Saves content to a file in a tab-separated format.

Live Watch window
The Live Watch window is available from the View menu.

Live Watch =

Expression | Yalue Location Type
Bl GetFib GetFib (0x218) unsigned int (..
L GetFib (0x218) Logical Code:0x0218 unsigned int {int)

Locals Live Watch | B

This window repeatedly samples and displays the value of expressions while your
application is executing. Variables in the expressions must be statically located, such as
global variables.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 52.
Requirements

None; this window is always available.

Display area
This area contains these columns:

Expression

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

107

Reference information on working with variables and expressions

This column is editable.

Location
The location in memory where this variable is stored.

Type
The data type of the variable.

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Save to File...

These commands are available:

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

C-SPY® Debugging Guide
108 for RX

Variables and expressions __¢

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 98.

Options
Displays the IDE Options dialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

Save to File

Saves content to a file in a tab-separated format.

Statics window

The Statics window is available from the View menu.

Statics @
“ariable Walue Location Type todule i
= f<CppTutoryf> <class:> 0=00000000 class stdictype<chary CppTutar
; <struct> 0=00000000 stuct std:ctype_base
L vptr 0=20000490 0=00000000 woid (* const™)()

f <CppTutoryf> <class:> 0x200002F4 class std:numpunct<char> CppTutar
f<CppTutoryf> <class:> 0=20000308 class stdinurm_put<char, stdio.. CppTutor
= msFib <Fibonacci\FibonaccizmsFib> <array: 0=2000032C unsigned long[100] Fibonacci
1 0=2000032C unsigned long
1 0=20000330 unsigned long
2 0=20000334 unsigned long -

This window displays the values of variables with static storage duration that you have
selected. Typically, that is variables with file scope but it can also be static variables in
functions and classes. Note that volatile declared variables with static storage
duration will not be displayed.

Every time execution in C-SPY stops, the values in the Statics window are recalculated.
Values that have changed since the last stop are highlighted in red.

Click any column header (except for Value) to sort on that column.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 52.

109

Reference information on working with variables and expressions

110

Requirements

Display area

C-SPY® Debugging Guide
for RX

To select variables to monitor:

In the window, right-click and choose Select statics from the context menu. The
window now lists all variables with static storage duration.

Either individually select the variables you want to display, or choose one of the Select
commands from the context menu.

When you have made your selections, choose Select statics from the context menu to
toggle back to normal display mode.

None; this window is always available.

This area contains these columns:

Expression

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location
The location in memory where this variable is stored.

Type
The data type of the variable.

Variables and expressions __¢

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3
Save to File...

v Select Statics
Select All
Select None
Select All in ‘Tutor'

Select None in ‘Tutor'

These commands are available:

Default Format,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Save to File
Saves the content of the Statics window to a log file.

Reference information on working with variables and expressions

112

Quick Watch window

C-SPY® Debugging Guide
for RX

Select Statics
Selects all variables with static storage duration; this command also enables all
Select commands below. Select the variables you want to monitor. When you
have made your selections, select this menu command again to toggle back to
normal display mode.

Select All
Selects all variables.

Select None
Deselects all variables.

Select All in module
Selects all variables in the selected module.

Select None in module

Deselects all variables in the selected module.

The Quick Watch window is available from the View menu and from the context menu
in the editor window.

Quick Watch =]

-

Expression Yalue Location Type
TimerStatus() 'Timer disabled® macro string

Use this window to watch the value of a variable or expression and evaluate expressions
at a specific point in time.

In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be necessary,
but for expressions with possible side effects, such as assignments and C-SPY macro
functions, it allows you to perform evaluations under controlled conditions.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 52.

To evaluate an expression:

In the editor window, right-click on the expression you want to examine and choose
Quick Watch from the context menu that appears.

Variables and expressions __¢

2 The expression will automatically appear in the Quick Watch window.
Alternatively:

3 In the Quick Watch window, type the expression you want to examine in the
Expressions text box.

g 4 Click the Recalculate button to calculate the value of the expression.
For an example, see Using C-SPY macros, page 285.

Requirements

None; this window is always available.

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Save to File...

These commands are available:

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

113

Reference information on working with variables and expressions

114

Symbols window

C-SPY® Debugging Guide
for RX

All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Structure fields

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 98.

Options
Displays the IDE Options dialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

Save to File
Saves content to a file in a tab-separated format.

The Symbols window is available from the View menu after you have enabled the
Symbols plugin module.

Symbal | Location | Full Mame |"
call_count 0x00102228 call_count
do_foreground_process 0x000003C8 do_foreground_process()

exit 0x000005E4 exit

get_fib 0x0000028C get_fib(int)

init_fibh 0x00000248 init_fib()

main 0x000003E2 mainf)

next_counter 0x000003BC next_counter()

put_fib 0x000002B8 put_fib{unsigned int)

putchar 0x00000464 putchar

root 0x00102200 root v

This window displays all symbols with a static location, that is, C/C++ functions,
assembler labels, and variables with static storage duration, including symbols from the
runtime library.

To enable the Symbols plugin module, choose Project>Options>Debugger>Select
plugins to load>Symbols.

Variables and expressions __¢

Requirements

None; this window is always available.

Display area
This area contains these columns:

Symbol
The symbol name.

Location

The memory address.

Full name

The symbol name; often the same as the contents of the Symbol column but
differs for example for C++ member functions.

Click the column headers to sort the list by symbol name, location, or full name.

Context menu

This context menu is available:

Functions
Variables
Labels

These commands are available:

Functions
Toggles the display of function symbols on or off in the list.

Variables
Toggles the display of variables on or off in the list.

Labels
Toggles the display of labels on or off in the list.

115

Reference information on working with variables and expressions

Resolve Symbol Ambiguity dialog box

The Resolve Symbol Ambiguity dialog box appears, for example, when you specify a
symbol in the Disassembly window to go to, and there are several instances of the same
symbol due to templates or function overloading.

Resolve Symbol Ambiguity

Ambiguous symbol: foo

Ok

foo[void]

fon<T: Camcel

Requirements

None; this window is always available.

Ambiguous symbol

Indicates which symbol that is ambiguous.

Please select one symbol

A list of possible matches for the ambiguous symbol. Select the one you want to use.

C-SPY® Debugging Guide
116 for RX

Data Log window

Requirements

Display area

Variables and expressions __¢

The Data Log window is available from the C-SPY driver menu.

Time | Program Counter | 11 Address 52 Address &)
. lG6Es === W 0=0000 @ 0=2004
0.160us O=FFEOOD49 = @ 0=x2000
24 .480us O0=FFEOOOBS R 0=0000 @ 0=2006
24 .720us O0=FFEOOOBF W O0=0042 @ 0=2004
24 .760us O=FFEOOOCE R 0O=0042 @ 0=2006
24 .960us O=FFEOODOE4 W O=00004444 @ 0=2000 y
FE FEfGes O=FFE00104 R 0O=0042 @ O=2004+7
79.000us — W O0=0084 @ 0=2004
100.800us O=FFEOO104 R 0=0084 @ 0=2006
101.040us O=FFEOO10E /// W 0=00CA @ 0=2004
JFE Edfus Overflow 2
136.880us 0OxFFEOOL0E~ = @ 0=2004 a3
White rows indicate Grey rows indicate

read accesses write accesses

Use this window to log accesses to up to four different memory locations or areas.

See also Getting started using data logging, page 99.

The C-SPY simulator.

Each row in the display area shows the time, the program counter, and, for every tracked
data object, its value and address in these columns:

Time
If the time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.
This column is available when you have selected Show time from the context
menu.

Cycles

The number of cycles from the start of the execution until the event. This
information is cleared at reset.

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

17

Reference information on working with variables and expressions

118

Context menu

C-SPY® Debugging Guide
for RX

This column is available when you have selected Show cycles from the context
menu.

Program Counter*

Value

Displays one of these:

An address, which is the content of the PC, that is, the address of the instruction
that performed the memory access.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

Displays the access type and the value (using the access size) for the location or
area you want to log accesses to. For example, if zero is read using a byte access
it will be displayed as 0x00, and for a long access it will be displayed as
0x00000000.

To specify what data you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 131.

Address

The actual memory address that is accessed. For example, if only a byte of a
word is accessed, only the address of the byte is displayed. The address is
calculated as base address + offset, where the base address is retrieved from the
Data Log breakpoint dialog box and the offset is retrieved from the logs. If the
log from the target system does not provide the debugger with an offset, the
offset contains + ?.

* You can double-click a line in the display area. If the value of the pc for that line is
available in the source code, the editor window displays the corresponding source code
(this does not include library source code).

Identical to the context menu of the Interrupt Log window, see Interrupt Log window,
page 277.

Variables and expressions __¢

Data Log Summary window

The Data Log Summary window is available from the C-SPY driver menu.

Data Total Accesses Read Accesses Write Accesses Unknown Accesses
tvarl 42 8 25 17

tVar2 66 17 49 8

tvar3 32 32 2] 2]

Approximative time count: 16
Overflow count: 8
Current time: 4301.52 us

Data Log Summary

This window displays a summary of data accesses to specific memory location or areas.

See also Getting started using data logging, page 99.

Requirements
The C-SPY simulator.

Display area
Each row in this area displays the type and the number of accesses to each memory
location or area in these columns:
Data

The name of the data object you have selected to log accesses to. To specify
what data object you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 131.

he current time or cycles is displayed—execution time since the start of
execution or the number of cycles. Overflow count displays the number of
overflows.

Total Accesses
The number of total accesses.
If the sum of read accesses and write accesses is less than the total accesses,
there have been a number of access logs for which the target system for some
reason did not provide valid access type information.

Read Accesses
The number of total read accesses.

Write Accesses
The number of total write accesses.

19

Reference information on working with variables and expressions

Unknown Accesses

The number of unknown accesses, in other words, accesses where the access
type is not known.
Context menu

Identical to the context menu of the Interrupt Log window, see Interrupt Log window,
page 277.

Data Sample Setup window

The Data Sample Setup window is available from the C-SPY driver menu.

Data Sample Setup @
Expression Address Size Sampling interval [ms]
¥ myVarl OxFFFFBO2A 1 18
v myVar2 OxFFFFBO04 4 48
cl OxFFFFBO2B 1 1680

Use this window to specify up to four variables to sample data for. You can view the
sampled data for the variables either in the Data Sample window or as graphs in the
Sampled Graphs window.

See also Getting started using data sampling, page 99.

Requirements

Any supported hardware debugger system.

Display area
This area contains these columns:

Expression

Type the name of the variable which must be an integral type with a maximum
size of 32 bits. Click the check box to enable or disable data sampling for the
variable.

Alternatively, drag an expression from the editor window and drop it in the
display area.

Variables in the expressions must be statically located, for example global
variables.

C-SPY® Debugging Guide
120 for RX

Variables and expressions __¢

Address
The actual memory address that is accessed. The column cells cannot be edited.
Size
The size of the variable, either 1, 2, or 4 bytes. The column cells cannot be
edited.
Sampling interval [ms]
Type the number of milliseconds to pass between the samples. The shortest

allowed interval is 10 ms and the interval you specify must be a multiple of that.

Note that the sampling time you specify is just the interval (according to the
Microsoft Windows calculations) for how often C-SPY checks with the C-SPY
driver (which in turn must check with the MCU for a value). If this takes longer
than the sampling interval you have specified, the next sampling will be omitted.
If this occurs, you might want to consider increasing the sampling time.

Context menu

This context menu is available:

Rermove

Rermove All

These commands are available:

Remove
Removes the selected variable.

Remove All
Removes all variables.

121

Reference information on working with variables and expressions

122

Data Sample window

Requirements

Display area

C-SPY® Debugging Guide
for RX

The Data Sample window is available from the C-SPY driver menu.

Data Sample @
Sampling Time myVarl myVar2 i
1168 ms R @xB8 R ©x000008ES
1178 ms R exle
1178 ms Stop
1188 ms R @x1e R ex@eeeeeDs
1198 ms R @x28
1208 ms R exle
1218 ms R @x18@ R ©x000008B8
1228 ms R @xee o

Use this window to view the result of the data sampling for the variables you have
selected in the Data Sample Setup window.

Choose Enable from the context menu to enable data sampling.

See also Getting started using data sampling, page 99.

Any supported hardware debugger system.

This area contains these columns:

Sampling Time
The time when the data sample was collected. Time starts at zero after a reset.
Every time the execution stops, a red Stop indicates when the stop occurred.

The selected expression

The column headers display the names of the variables that you selected in the
Data Sample Setup window. The column cells display the sampling values for
the variable.

There can be up to four columns of this type, one for each selected variable.

* You can double-click a row in the display area. If you have enabled the data sample
graph in the Sampled Graphs window, the selection line will be moved to reflect the
time of the row you double-clicked.

Variables and expressions __¢

Context menu

This context menu is available:
v Enable

Clear

Hexadecimal (for myVarl)
v Hexadecimal (for myVar2)

Save to Log File...

Open Setup Window

These commands are available:

Enable

Enables data sampling.
Clear

Clears the sampled data.

Hexadecimal (for var)

Toggles between displaying the values of selected variable in decimal or
hexadecimal format. The display format affects the Data Sample window and
the Sampled Graphs window.

Save to Log File
Displays a standard save dialog box.

Open setup window
Opens the Data Sample Setup window.

Sampled Graphs window

The Sampled Graphs window is available from the C-SPY driver menu.

Sampled Graphs @

R oo M e e e S

[Linear graph]7

1288ms 1488ms 1608ms 1886ms 2008ms 2208ms

< [1 | +

123

Reference information on working with variables and expressions

124

12

Requirements

C-SPY® Debugging Guide
for RX

Use this window to display graphs for up to four different variables, and where:

The graph displays how the value of the variable changes over time. The area on the
left displays the limits, or range, of the Y-axis for the variable. You can use the
context menu to change these limits. The graph is a graphical representation of the
information in the Data Sample window, see Data Sample window, page 122.

The graph can be displayed as levels, where a horizontal line—optionally
color-filled—shows the value until the next sample. Alternatively, the graph can be
linear, where a line connects consecutive samples.

A red vertical line indicates the time of application execution stops.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

To navigate in the graph, use any of these alternatives:

Right-click and choose Zoom In or Zoom Out from the context menu.
Alternatively, use the + and - keys to zoom.

Right-click in the graph and choose Navigate and the appropriate command to
move backward and forward on the graph. Alternatively, use any of the shortcut
keys: arrow keys, Home, End, and Ctrl+End.

Double-click on a sample to highlight the corresponding source code in the editor
window and in the Disassembly window.

Click on the graph and drag to select a time interval. Press Enter or right-click and
choose Zoom>Zoom to Selection from the context menu. The selection zooms in.

Hover with the mouse pointer in the graph to get detailed tooltip information for that
location.

See also Getting started using data sampling, page 99.

Any supported hardware debugger system.

Variables and expressions __¢

Context menu

This context menu is available:

MNavigate 3
v Auto Scroll
Zoom 3

Data Sample
v | Enable
Clear
myVar2:
Viewing Range...
Size 3
Style 3
v | Solid Graph
v | Show Mumerical Values

v Hexadecimal

Select Graphs 3
These commands are available:

Navigate
Commands for navigating in the graphs. Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection to the previous relevant point in the graph.
Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.
Auto Scroll
Toggles auto scrolling on or off. When on, the most recently collected data is
automatically displayed if you have executed the command Navigate>End.
Zoom
Commands for zooming the window, in other words, changing the time scale.

Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

125

Reference information on working with variables and expressions

126

C-SPY® Debugging Guide
for RX

Zoom In zooms in on the time scale. Shortcut key: +.
Zoom Out zooms out on the time scale. Shortcut key: -.

1us, 10us, 100us makes an interval of 1 microseconds, 10 microseconds, or 100
microseconds, respectively, fit the window.

1ms, 10ms, 100ms makes an interval of 1 millisecond, 10 milliseconds, or 100
milliseconds, respectively, fit the window.

1s, 10s, 100s makes an interval of 1 second, 10 seconds, or 100 seconds,
respectively, fit the window.

1k s, 10k s, 100k s makes an interval of 1,000 seconds, 10,000 seconds, or
100,000 seconds, respectively, fit the window.

1M s, 10M s, makes an interval of 1,000,000 seconds or 10,000,000 seconds,
respectively, fit the window.

Data Sample
A menu item that shows that the Data Sample-specific commands below are
available.

Open Setup window (Data Sample Graph)
Opens the Data Sample Setup window.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the Data Sample window. If no data has been sampled
for a graph, no data will appear instead of the graph.

Clear
Clears the sampled data.

Variable
The name of the variable for which the Data Sample-specific commands below
apply. This menu item is context-sensitive, which means it reflects the Data
Sample graph you selected in the Sampled Graphs window (one of up to four).
Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 211.
Size
Controls the vertical size of the graph; choose between Small, Medium, and
Large.

Variables and expressions __¢

Style
Choose how to display the graph. Choose between:
Levels, where a horizontal line—optionally color-filled—shows the value until
the next sample.
Linear, where a line connects consecutive samples.
Solid Graph

Displays the graph as a color-filled solid graph instead of as a thin line. This is
only possible if the graph is displayed as Levels.
Hexadecimal (for var)

Toggles between displaying the selected variable in decimal or hexadecimal
format. The display format affects the Data Sample window and the Sampled
Graphs window.

Show Numerical Value
Shows the numerical value of the variable, in addition to the graph.

Select Graphs
Selects which graphs to display in the Sampled Graphs window.

127

Reference information on working with variables and expressions

C-SPY® Debugging Guide
128 for RX

Breakpoints

e Introduction to setting and using breakpoints
e Setting breakpoints

e Reference information on breakpoints

Introduction to setting and using breakpoints

These topics are covered:

Reasons for using breakpoints
Briefly about setting breakpoints
Breakpoint types

Breakpoint icons

Breakpoints in the C-SPY simulator

Breakpoint consumers

REASONS FOR USING BREAKPOINTS

C-SPY® lets you set various types of breakpoints in the application you are debugging,
allowing you to stop at locations of particular interest. You can set a breakpoint at a code
location to investigate whether your program logic is correct, or to get trace printouts.
In addition to code breakpoints, and depending on what C-SPY driver you are using,
additional breakpoint types might be available. For example, you might be able to set a
data breakpoint, to investigate how and when the data changes.

You can let the execution stop under certain conditions, which you specify. You can also
let the breakpoint trigger a side effect, for instance executing a C-SPY macro function,
by transparently stopping the execution and then resuming. The macro function can be
defined to perform a wide variety of actions, for instance, simulating hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of your
application.
BRIEFLY ABOUT SETTING BREAKPOINTS

You can set breakpoints in many various ways, allowing for different levels of
interaction, precision, timing, and automation. All the breakpoints you define will
appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new

129

Introduction to setting and using breakpoints

breakpoints. The Breakpoint Usage window also lists all internally used breakpoints,
see Breakpoint consumers, page 133.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping; for more information about the precision, see Single stepping, page
70.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

Note: For most hardware debugger systems it is only possible to set breakpoints when
the application is not executing.

BREAKPOINT TYPES

Depending on the C-SPY driver you are using, C-SPY supports different types of
breakpoints.

Code breakpoints

Code breakpoints are used for code locations to investigate whether your program logic
is correct or to get trace printouts. Code breakpoints are triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop, before the
instruction is executed.

Note: When you use a C-SPY hardware debugger driver and set a breakpoint in code
without specifying the type, a hardware code breakpoint will be set as long as there are
any available. If there are no available hardware code breakpoints, a software code
breakpoint will be set.

Log breakpoints

Log breakpoints provide a convenient way to add trace printouts without having to add
any code to your application source code. Log breakpoints are triggered when an
instruction is fetched from the specified location. If you have set the breakpoint on a
specific machine instruction, the breakpoint will be triggered and the execution will
temporarily stop and print the specified message in the C-SPY Debug Log window.

Trace Start and Stop breakpoints

Trace Start and Stop breakpoints start and stop trace data collection—a convenient way
to analyze instructions between two execution points.

C-SPY® Debugging Guide
130 for RX

Breakpoints °

Data trace collection breakpoints

Data trace collection breakpoints are useful for collecting trace information from
variables that have a fixed address in memory. Trace information is collected every time
that data is accessed at the specified location. This does not stop the execution.

Data breakpoints

Data breakpoints are primarily useful for variables that have a fixed address in memory.
If you set a breakpoint on an accessible local variable, the breakpoint is set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. Data breakpoints are triggered when data is accessed at the
specified location. The execution will usually stop directly after the instruction that
accessed the data has been executed.

Data Log breakpoints

Data log breakpoints are triggered when a specified memory address is accessed. A log
entry is written in the Data Log window for each access. Data logs can also be displayed
on the Data Log graph in the Timeline window, if that window is enabled.

You can set data log breakpoints using the Breakpoints window, the Memory window,
and the editor window.

Using a single instruction, the microcontroller can only access values that are four bytes
or less. If you specify a data log breakpoint on a memory location that cannot be
accessed by one instruction, for example a double or a too large area in the Memory
window, the result might not be what you intended.

Hardware code breakpoints

Hardware code breakpoints are code breakpoints that use hardware resources. Because
memory does not have to be reprogrammed after a hardware code breakpoint has been
hit, hardware code breakpoints are preferred over software code breakpoints. However,
the number of available hardware breakpoints is limited, see Breakpoints in the C-SPY
hardware debugger drivers, page 133.

Software code breakpoints

Software code breakpoints are code breakpoints that use software resources. After a
software code breakpoint has been triggered the memory must be reprogrammed, so
software code breakpoints should if possible be used only in RAM memory or for
breakpoints that are not triggered so often.

131

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
132 for RX

Performance breakpoints

By default, performance analysis is running from when the hardware debugger starts
until it stops. Performance Start and Stop breakpoints are used for analyzing the
performance over a smaller region of code. For reference information about these
breakpoints, see Reference information on performance analysis, page 234.

Performance Start and Stop breakpoints share the same resources as hardware code
breakpoints, see Breakpoints in the C-SPY hardware debugger drivers, page 133.

Immediate breakpoints

The C-SPY Simulator lets you set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
simulated processor is about to read data from a location or immediately after it has
written data. Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the simulated processor reads from a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the simulated processor writes to a memory-mapped
location, a C-SPY macro function can act on the value that was written.

BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
varies with the type of breakpoint:

Tutor.c m |

unsigned int get_fib({ int nr |

- {
| RECinr >) s (nr <= MAX FIB) |
{
keturn { rooclnr-] 7
}

l Code breakpoint l

l Log breakpoint l

l Tooltip information l o {Log@UtiIities.c:S?.S

Memory:0x6a [Fetch] ‘
’O return { 0):

Disabled code
breakpeint

'

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options in the IDE Project Management and Building Guide for RX.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage window.

Breakpoints °

Note: The breakpoint icons might look difterent for the C-SPY driver you are using.

BREAKPOINTS IN THE C-SPY SIMULATOR

The C-SPY simulator supports all breakpoint types and you can set an unlimited amount
of breakpoints.

BREAKPOINTS IN THE C-SPY HARDWARE DEBUGGER
DRIVERS

Using the C-SPY drivers for hardware debugger systems you can set various breakpoint
types. The amount of breakpoints you can set depends on the number of hardware
breakpoints available on the target system. If no hardware breakpoints are available,
software breakpoints will be used.

This table summarizes the characteristics of breakpoints for the different target systems:

Hardware
Software
. code and Trace Data
C-SPY hardware driver code
Log breakpoints breakpoints

breakpoints
breakpoints

EI/E20/E2 Lite

using 12 hardware breakpoints* 256 Upto8F Upto8F Upto4*
J-Link
using 12 hardware breakpoints* 256 Upto8F Upto8} Upto4*

Table 8: Available breakpoints in C-SPY hardware debugger drivers
* The number of available breakpoints depends on the target system you are using.
1 These 8 breakpoint resources are shared between three types of breakpoints.

Hardware breakpoints in the RX emulators share the same resources. There is a total of
12 of these breakpoint events, divided into 8 that are triggered by a program counter
access and 4 that are triggered by a data access.

The software code breakpoints use a mechanism that writes to the memory with a BRK
instruction, and when a breakpoint is triggered the original instruction is written back to
the memory. This makes it possible to use the breakpoint for code in RAM, but if used
for code in flash memory the execution is slowed down by the need to reprogram the
memory. There are up to 256 software code breakpoints.

The debugger will first use any available hardware breakpoints before using software
breakpoints.

BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

133

Setting breakpoints

134

User breakpoints

The breakpoints you define in the breakpoint dialog box or by toggling breakpoints in
the editor window often consume one physical breakpoint each, but this can vary greatly.
Some user breakpoints consume several physical breakpoints and conversely, several
user breakpoints can share one physical breakpoint. User breakpoints are displayed in
the same way both in the Breakpoint Usage window and in the Breakpoints window,
for example Data @[R] callCount.

C-SPY itself
C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

o The debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set during a debug session. This
means that they are not visible in the Breakpoints window.

o The linker option Include C-SPY debugging support has been selected.

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.

These types of breakpoint consumers are displayed in the Breakpoint Usage window,
for example, C-SPY Terminal I/O & libsupport module.
C-SPY plugin modules

For example, modules for real-time operating systems can consume additional
breakpoints. Specifically, by default, the Stack window consumes one physical
breakpoint.

To disable the breakpoint used by the Stack window:
Choose Tools>Options>Stack.
Deselect the Stack pointer(s) not valid until program reaches: /abel option.

To disable the Stack window entirely, choose Tools>Options>Stack and make sure all
options are deselected.

Setting breakpoints

C-SPY® Debugging Guide
for RX

These tasks are covered:
® Various ways to set a breakpoint

o Toggling a simple code breakpoint

e Setting breakpoints using the dialog box
°

Setting a data breakpoint in the Memory window

Breakpoints °

e Setting breakpoints using system macros

o Useful breakpoint hints.

VARIOUS WAYS TO SET A BREAKPOINT
You can set a breakpoint in various ways:

o Toggling a simple code breakpoint.

o Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and
in the Disassembly window. The dialog boxes give you access to all breakpoint
options.

e Setting a data breakpoint on a memory area directly in the Memory window.

o Using predefined system macros for setting breakpoints, which allows automation.

The different methods offer different levels of simplicity, complexity, and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:

o Click in the gray left-side margin of the window

o Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

o Choose Edit>Toggle Breakpoint

o Right-click and choose Toggle Breakpoint from the context menu.

SETTING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

To set a new breakpoint:

I Choose View>Breakpoints to open the Breakpoints window.

135

Setting breakpoints

136

C-SPY® Debugging Guide
for RX

2 In the Breakpoints window, right-click, and choose New Breakpoint from the context

menu.

3 On the submenu, choose the breakpoint type you want to set.

Depending on the C-SPY driver you are using, different breakpoint types are available.

4 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

To modify an existing breakpoint:

I In the Breakpoints window, editor window, or in the Disassembly window, select the
breakpoint you want to modify and right-click to open the context menu.

35woid init fib(woid)
36 1
37 imt 1 = 45;
38 root[0] = root[l] = 1:

: 39

S 40 for | 1287 i<MAY FIB ; i++)
LA
L J az —

LAz)
a4
45
ol Complete
47 fnrt
48 4/ Match Brackets
49 unsi Insert Template 3
B Open HeaderfSource File
51 ii 1B |
52 Go to definition of root
& Toggle Breakpoint {Code)
54) i
55 el Toggle Breakpoint {Log)
56 | Enable/disable Ereakpaint
57 Set Data Breakpoint For 'root[i]'
53) Edit Code Breakpoint at column 15
:3 1 cek Next Statement Edit Log Breakpoint at column 7

If there are several breakpoints on the same source code line, the breakpoints will be
listed on a submenu.

2 On the context menu, choose the appropriate command.
3 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

Breakpoints °

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted in the Memory window; instead, you can see, edit,
and remove it using the Breakpoints window, which is available from the View menu.
The breakpoints you set in the Memory window will be triggered for both read and
write accesses. All breakpoints defined in this window are preserved between debug
sessions.

Note: Setting breakpoints directly in the Memeory window is only possible if the driver
you use supports this.

SETTING BREAKPOINTS USING SYSTEM MACROS

You can set breakpoints not only in the breakpoint dialog box but also by using built-in
C-SPY system macros. When you use system macros for setting breakpoints, the
breakpoint characteristics are specified as macro parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session

will be documented, and that several engineers involved in the development project can
share the macro files.

Note: If you use system macros for setting breakpoints, you can still view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros are removed when you
exit the debug session.

These breakpoint macros are available:

C-SPY macro for breakpoints Simulator EI/E20 E2 Lite J-Link
__setCodeBreak Yes Yes Yes Yes
__setDataBreak Yes — — —
__setLogBreak Yes Yes Yes Yes
__setSimBreak Yes — — —
__setTraceStartBreak Yes Yes Yes Yes
__setTraceStopBreak Yes Yes Yes Yes
__clearBreak Yes Yes Yes Yes

Table 9: C-SPY macros for breakpoints

137

Setting breakpoints

138

C-SPY® Debugging Guide
for RX

For information about each breakpoint macro, see Reference information on C-SPY
system macros, page 297.

Setting breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Using C-SPY macros, page 285.

USEFUL BREAKPOINT HINTS

Below are some useful hints related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, you might want to debug that behavior. These methods can be useful:

e Set a breakpoint on the first line of the function with a condition that is true only
when the parameter is 0. The breakpoint will then not be triggered until the
problematic situation actually occurs. The advantage of this method is that no extra
source code is needed. The drawback is that the execution speed might become
unacceptably low.

® You can use the assert macro in your problematic function, for example:

int MyFunction (int * MyPtr)
{
assert (MyPtr != 0); /* Assert macro added to your source
code. */
/* Here comes the rest of your function. */

}

The execution will break whenever the condition is true. The advantage is that the
execution speed is only very slightly affected, but the drawback is that you will get a
small extra footprint in your source code. In addition, the only way to get rid of the
execution stop is to remove the macro and rebuild your source code.

e Instead of using the assert macro, you can modify your function like this:

int MyFunction (int * MyPtr)
{

if (MyPtr == 0)

MyDummyStatement; /* Dummy statement where you set a
breakpoint. */

/* Here comes the rest of your function. */
}
You must also set a breakpoint on the extra dummy statement, so that the execution
will break whenever the condition is true. The advantage is that the execution speed
is only very slightly affected, but the drawback is that you will still get a small extra

Breakpoints °

footprint in your source code. However, in this way you can get rid of the execution
stop by just removing the breakpoint.

@ Performing a task and continuing execution

You can perform a task when a breakpoint is triggered and then automatically continue
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed. In this case, the execution
will not continue automatically.

Instead, you can set a condition which returns 0 (false). When the breakpoint is
triggered, the condition—which can be a call to a C-SPY macro that performs a task—
is evaluated and because it is not true, execution continues.

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count ()

{
my_counter += 1;
return 0;

}

To use this function as a condition for the breakpoint, type count () in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Reference information on breakpoints

Reference information about:

Breakpoints window, page 140

Breakpoint Usage window, page 142

Code breakpoints dialog box, page 143

Hardware Code Breakpoint dialog box, page 144
Software Code Breakpoint dialog box, page 146
Log breakpoints dialog box, page 147

Data breakpoints dialog box (Simulator), page 148

Data breakpoints dialog box (C-SPY hardware debugger drivers), page 150

139

Reference information on breakpoints

140

Breakpoints window

Requirements

Display area

C-SPY® Debugging Guide
for RX

Data Trace Collection breakpoints dialog box, page 214
Data Log breakpoints dialog box, page 152

Immediate breakpoints dialog box, page 153

Enter Location dialog box, page 154

Resolve Source Ambiguity dialog box, page 156.
See also:
® Reference information on C-SPY system macros, page 297

® Reference information on trace, page 194.

® Reference information on performance analysis, page 234.

The Breakpoints window is available from the View menu.

Code @ Tutar.c:46.2

This window lists all breakpoints you define.

Use this window to conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

None; this window is always available.

This area lists all breakpoints you define. For each breakpoint, information about the
breakpoint type, source file, source line, and source column is provided.

Breakpoints °

Context menu

This context menu is available:
G0 ko Source
Edi...

Delete
Disable
Enable Al
Disable Al

Mew Breakpoint ¥
These commands are available:

Go to Source
Moves the insertion point to the location of the breakpoint, if the breakpoint has
a source location. Double-click a breakpoint in the Breakpoints window to
perform the same command.

Edit
Opens the breakpoint dialog box for the breakpoint you selected.

Delete
Deletes the breakpoint. Press the Delete key to perform the same command.

Enable
Enables the breakpoint. The check box at the beginning of the line will be
selected. You can also perform the command by manually selecting the check
box. This command is only available if the breakpoint is disabled.
Disable
Disables the breakpoint. The check box at the beginning of the line will be
deselected. You can also perform this command by manually deselecting the
check box. This command is only available if the breakpoint is enabled.
Enable All
Enables all defined breakpoints.

Disable All
Disables all defined breakpoints.

New Breakpoint

Displays a submenu where you can open the breakpoint dialog box for the
available breakpoint types. All breakpoints you define using this dialog box are
preserved between debug sessions.

141

Reference information on breakpoints

142

Breakpoint Usage window

Requirements

Display area

C-SPY® Debugging Guide
for RX

The Breakpoint Usage window is available from the menu specific to the C-SPY driver
you are using.

Breakpoint Usage [%]

[Fetch
-SSP Terminal 140 & libsupport module

This window lists all breakpoints currently set in the target system, both the ones you
have defined and the ones used internally by C-SPY. The format of the items in this
window depends on the C-SPY driver you are using.

The window gives a low-level view of all breakpoints, related but not identical to the list
of breakpoints displayed in the Breakpoints window.

C-SPY uses breakpoints when stepping. Use the Breakpoint Usage window for:

o Identifying all breakpoint consumers

o Checking that the number of active breakpoints is supported by the target system

e Configuring the debugger to use the available breakpoints in a better way, if
possible.

For more information, see Breakpoints in the C-SPY hardware debugger drivers, page
133.

None; this window is always available.

For each breakpoint in the list, the address and access type are displayed. Each
breakpoint in the list can also be expanded to show its originator.

Breakpoints °

Code breakpoints dialog box

The Code breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

& Code
Break &f:
| Edit...l
— Size
&+ Auta I_I—
 Marual
— Action
Expression: I
Condition:
Expression:
' Condition true Skip count; I il
" Condition changed

This figure reflects the C-SPY simulator.

Use the Code breakpoints dialog box to set a code breakpoint.

Requirements

None; this dialog box is always available.

Break At

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 154.

Size

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto
The size will be set automatically, typically to 1.

Manual
Specity the size of the breakpoint range in the text box.

Note: This option is only available for the C-SPY simulator driver.

143

Reference information on breakpoints

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 138.

Conditions

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 94.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Hardware Code Breakpoint dialog box

The Hardware Code Breakpoint dialog box is available from the context menu in the
editor window, Breakpoints window, and in the Disassembly window.
2 Hardware Code Breakpoint

Break &t
Action
Expression:
Conditions
Expression:
(&) Condition true Skip count: 0

() Condition changed

Use the Hardware Code breakpoints dialog box to set a hardware code breakpoint.

C-SPY® Debugging Guide
144 for RX

Breakpoints °

Requirements
A C-SPY hardware debugger driver.

Break At
Specify the location of the breakpoint in the text box. Alternatively, click the Edit button
to open the Enter Location dialog box, see Enter Location dialog box, page 154.
Action
Determines whether there is an action connected to the breakpoint. Specify an
expression, for instance a C-SPY macro function, which is evaluated when the
breakpoint is triggered and the condition is true.
Conditions

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 94.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

145

Reference information on breakpoints

Software Code Breakpoint dialog box

Requirements

Break At

Action

Conditions

C-SPY® Debugging Guide
146 for RX

The Software Code Breakpoint dialog box is available from the context menu in the
editor window, Breakpoints window, and in the Disassembly window.
B Software Code Breakpoaint

Break &t
Action
Expression:
Conditions
Expression:
(&) Condition true Skip count: 0

() Condition changed

Use the Software Code Breakpoint breakpoints dialog box to set a software code
breakpoint.

Note: Because the memory must be reprogrammed after a software code breakpoint has
been triggered, software code breakpoints should if possible be used only in RAM
memory or for breakpoints that are not triggered so often.

A C-SPY hardware debugger driver.

Specify the location of the breakpoint in the text box. Alternatively, click the Edit button
to open the Enter Location dialog box, see Enter Location dialog box, page 154.

Determines whether there is an action connected to the breakpoint. Specify an
expression, for instance a C-SPY macro function, which is evaluated when the
breakpoint is triggered and the condition is true.

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 94.

Breakpoints °

Condition true
The breakpoint is triggered if the value of the expression is true.
Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Log breakpoints dialog box

The Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.
8 1o
Break &t

C:htutorsTutor.c.47.3

Meszage: C-Spy macro "'__message' style
"depth ="', call_count

Conditions
Expression:

(%) Condition true
(O Condition changed

This figure reflects the C-SPY simulator.
Use the Log breakpoints dialog box to set a log breakpoint.

Requirements

None; this dialog box is always available.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 154.

147

Reference information on breakpoints

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
" __message' style—a comma-separated list of arguments.

C-SPY macro "__message" style

Conditions

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 293.

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 94.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Data breakpoints dialog box (Simulator)

C-SPY® Debugging Guide
148 for RX

The Data breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.
’ [rata |
Break At

| [

5

—Access Type e
& Feadfwiite & buto |1—
 Read Manual
7 wirite - Action
Expression: I
r— Condition:
Expression:

% Condition true Skip count; I 0

" Condition changed

This figure reflects the C-SPY simulator.

Requirements

Break At

Access Type

Size

Action

Breakpoints °

Use the Data breakpoints dialog box to set a data breakpoint. Data breakpoints never
stop execution within a single instruction. They are recorded and reported after the
instruction is executed.

The C-SPY simulator.

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 154.

Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read

Reads from location.

Write
Werites to location.

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto
The size will automatically be based on the type of expression the breakpoint is
set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes.

Manual

Specity the size of the breakpoint range in the text box.

For data breakpoints, this can be useful if you want the breakpoint to be triggered on
accesses to data structures, such as arrays, structs, and unions.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 138.

149

150

Reference information on breakpoints

Conditions

Specify simple or complex conditions:
Expression

Specify a valid C-SPY expression, see C-SPY expressions, page 94.
Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the

breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Data breakpoints dialog box (C-SPY hardware debugger drivers)

The Data breakpoints dialog box is available from the context menu in the editor

window, Breakpoints window, the Memory window, and in the Disassembly window.
2 [rata Breakpoint

Break &t
Address Condition
O Mone
O Mask: Compare:
(® Range | Inside the range [<="Yalues <=) w
End address:
[ata Condition
Readwiite: | Flead/wiite v
Access size: | Mot specified w
Compare Condition
Compared data:
taszk: Compare: Specified value [==]

This figure reflects the C-SPY hardware debugger drivers.

C-SPY® Debugging Guide
for RX

Requirements

Break At

Breakpoints °

Use the Data breakpoints dialog box to set a data breakpoint. Data breakpoints never
stop execution within a single instruction. They are recorded and reported after the
instruction is executed.

A C-SPY hardware debugger driver.

Specify the location of the breakpoint, or the start location if you select the address
condition Range. Alternatively, click the Edit button to open the Enter Location dialog
box, see Enter Location dialog box, page 154.

Address Condition

Data Condition

Determines whether there should be a trigger condition for the address where the data
is located:

None
There is no condition for the address.

Mask
Specity an address mask and choose a Compare setting.

Compare
Specify whether the condition is that the address should be equal (Specified
value (==))ornotequal (Any other value (!=))to the mask.

Range
Uses the location in the Break At field as the start address of an address range.
Use the text box to specify whether the trigger condition applies to inside the
range or outside the range.

End address

Specity the end location if the Break At field contains the start location of an
address range. Alternatively, click the Edit button to open the Enter Location
dialog box, see Enter Location dialog box, page 154

Determines whether there should be data trigger conditions for the breakpoint:

Read/Write
Read — the breakpoint is only triggered by a read access

Write — the breakpoint is only triggered by a write access

151

Reference information on breakpoints

Read/Write — the breakpoint is triggered by all accesses.

Access size

Determines whether there should be a size—in practice, a range—of locations
where the breakpoint will trigger. Each fetch access to the specified memory
range will trigger the breakpoint. Choose between:

Auto — The access size will be set automatically.
Byte — The access size will be set to a byte.
Word — The access size will be set to a word.
Long — The access size will be set to a long.

Compared data
Set a value that the accessed data should be compared to, using decimal notation
or hexadecimal notation (prefixed by 0x).

Mask

Set a mask for the compared data.

Compare

Specity whether the condition is that the data should be equal (Specified
value (==))ornotequal (Any other value (!=))to the mask.

Data Log breakpoints dialog box

The Data Log breakpoints dialog box is available from the context menu in the
Breakpoints window.

Data Log

Break at:
myVar

Access Type
~) Readfwrite

This figure reflects the C-SPY simulator.

Use the Data Log breakpoints dialog box to set a maximum of four data log breakpoints
on memory addresses.

See also Data Log breakpoints, page 131 and Getting started using data logging, page
99.

C-SPY® Debugging Guide
152 for RX

Breakpoints °

Requirements
The C-SPY simulator

Break At

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 154.

Access Type
Selects the type of memory access that triggers the breakpoint:

Read/Write

Reads from or writes to location.

Read
Reads from location.

Write
Writes to location.

Immediate breakpoints dialog box

The Immediate breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Immediate

Trigger at:
Edit...
Access Type Action
@ Read Expression:
) Write

In the C-SPY simulator, use the Immediate breakpoints dialog box to set an immediate
breakpoint. Immediate breakpoints do not stop execution at all; they only suspend it
temporarily.

153

Reference information on breakpoints

154

Requirements

Trigger at

Access Type

Action

The C-SPY simulator.

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 154.

Selects the type of memory access that triggers the breakpoint:
Read

Reads from location.

Write
Writes to location.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 138.

Enter Location dialog box

Type

C-SPY® Debugging Guide
for RX

The Enter Location dialog box is available from the breakpoints dialog box, either
when you set a new breakpoint or when you edit a breakpoint.

Enter Location E
Type————— Expression:

' Expression I
7 Absolute address

 Souree location

()3 I Cancel |

Use the Enter Location dialog box to specify the location of the breakpoint.

Note: This dialog box looks different depending on the Type you select.

Selects the type of location to be used for the breakpoint, choose between:

Expression

A C-SPY expression, whose value evaluates to a valid code or data location.

Breakpoints °

A code location, for example the function main, is typically used for code
breakpoints.

A data location is the name of a variable and is typically used for data
breakpoints. For example, my_var refers to the location of the variable my_var,
and arr [3] refers to the location of the fourth element of the array arr. For
static variables declared with the same name in several functions, use the syntax
my_func::my_static_variable to refer to a specific variable.

For more information about C-SPY expressions, see C-SPY expressions, page
94.

Absolute address

An absolute location on the form zone: hexaddress or simply hexaddress
(for example Memory: 0x42). zone refers to C-SPY memory zones and
specifies in which memory the address belongs, see C-SPY memory zones, page
158.

Source location

A location in your C source code using the syntax:
{filename} .row.column.

filename specifies the filename and full path.
row specifies the row in which you want the breakpoint.
column specifies the column in which you want the breakpoint.

For example, {C:\src\prog.c}.22.3

sets a breakpoint on the third character position on row 22 in the source file
prog.c. Note that in quoted form, for example in a C-SPY macro, you must
instead write {C:\ \src\\prog.c}.22.3.

Note that the Source location type is usually meaningful only for code locations
in code breakpoints. Depending on the C-SPY driver you are using, Source
location might not be available for data and immediate breakpoints.

155

Reference information on breakpoints

156

Resolve Source Ambiguity dialog box

The Resolve Source Ambiguity dialog box appears, for example, when you try to set a
breakpoint on templates and the source location corresponds to more than one function.

Resolve Source Ambiguity

The zource location coresponds to multiple functions.
‘which onefz] do you mean?

woid foo(T, T #|[with T=unsigned long] Al

woid foo(T, T #|[with T=double]

Cancel

™ Automatically choose all

If you check. this item, the dialog will not be shown again
unless you re-enable it in the Tools->Dptions dialog, on
the Debugger page.

To resolve a source ambiguity, perform one of these actions:

o In the text box, select one or several of the listed locations and click Selected.

o Click AllL
All

The breakpoint will be set on all listed locations.
Selected

The breakpoint will be set on the source locations that you have selected in the text box.
Cancel

No location will be used.

Automatically choose all

Determines that whenever a specified source location corresponds to more than one
function, all locations will be used.

Note that this option can also be specified in the IDE Options dialog box, see Debugger
options in the IDE Project Management and Building Guide for RX.

C-SPY® Debugging Guide

for RX

Memory and registers

e Introduction to monitoring memory and registers
e Monitoring memory and registers

e Reference information on memory and registers

Introduction to monitoring memory and registers

These topics are covered:

e Briefly about monitoring memory and registers
o C-SPY memory zones
e Stack display

o Memory access checking

BRIEFLY ABOUT MONITORING MEMORY AND REGISTERS

C-SPY provides many windows for monitoring memory and registers, each of them
available from the View menu:

o The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Different colors are used for indicating data coverage along with
execution of your application. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. You can open several
instances of this window, to monitor different memory areas. The content of the
window can be regularly updated while your application is executing.

o The Symbolic Memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

o The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, some integrity checks of the stack can be performed to detect
and warn about problems with stack overflow. For example, the Stack window is
useful for determining the optimal size of the stack. You can open up to two instances
of this window, each showing different stacks or different display modes of the same
stack.

157

Introduction to monitoring memory and registers

C-SPY® Debugging Guide
158 for RX

o The Register window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them. Because of the large amount of registers—memory-mapped
peripheral unit registers and CPU registers—it is inconvenient to show all registers
concurrently in the Register window. Instead you can divide registers into register
groups. You can choose to load either predefined register groups or define your own
application-specific groups. You can open several instances of this window, each
showing a different register group.

o The SFR Setup window

Displays the currently defined SFRs that C-SPY has information about. If required,
you can use this window to customize aspects of the SFRs.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic memory window. The memory area where the
variable is located will appear.

Reading the value of some registers might influence the runtime behavior of your
application. For example, reading the value of a UART status register might reset a
pending bit, which leads to the lack of an interrupt that would have processed a received
byte. To prevent this from happening, make sure that the Register window containing
any such registers is closed when debugging a running application.

C-SPY MEMORY ZONES

In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. By default,
the RX architecture has one zone, Memory, which covers the whole RX memory range.
0x00000000

OxXFFFFFFFF

Default zone Memory

Memory zones are used in several contexts, most importantly in the Memeory and
Disassembly windows, and in C-SPY macros. In the windows, use the Zone box to
choose which memory zone to display.

Memory and registers __4

Device-specific zones

Memory information for device-specific zones is defined in the device description files.
When you load a device description file, additional zones that adhere to the specific
memory layout become available.

See the device description file for information about available memory zones.

If your hardware does not have the same memory layout as any of the predefined device
description files, you must define customized zones in this file to be able to view the
corresponding memory in the debugger.

For more information, see Selecting a device description file, page 42 and Modifying a
device description file, page 48.

STACK DISPLAY

The Stack window displays the contents of the stack, overflow warnings, and it has a
graphical stack bar. These can be useful in many contexts. Some examples are:

e Investigating the stack usage when assembler modules are called from C modules
and vice versa

Investigating whether the correct elements are located on the stack
Investigating whether the stack is restored properly

°
°
e Determining the optimal stack size
°

Detecting stack overflows.

For microcontrollers with multiple stacks, you can select which stack to view.

Stack usage

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xCD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can
incorrectly grow outside its bounds, and even modify memory outside the stack area,
without actually modifying any of the bytes near the stack range. Likewise, your
application might modify memory within the stack area by mistake.

The Stack window cannot detect a stack overflow when it happens, but can only detect
the signs it leaves behind. However, when the graphical stack bar is enabled, the
functionality needed to detect and warn about stack overflows is also enabled.

Note: The size and location of the stack is retrieved from the definition of the section
holding the stack, made in the linker configuration file. If you, for some reason, modify

159

Monitoring memory and registers

160

the stack initialization made in the system startup code, cstartup, you should also
change the section definition in the linker configuration file accordingly; otherwise the
Stack window cannot track the stack usage. For more information about this, see the /AR
C/C++ Development Guide for RX.

MEMORY ACCESS CHECKING

The C-SPY simulator can simulate various memory access types of the target hardware
and detectillegal accesses, for example a read access to write-only memory. If a memory
access occurs that does not agree with the access type specified for the specific memory
area, C-SPY will regard this as an illegal access. Also, a memory access to memory
which is not defined is regarded as an illegal access. The purpose of memory access
checking is to help you to identify any memory access violations.

The memory areas can either be the zones predefined in the device description file, or
memory areas based on the section information available in the debug file. In addition
to these, you can define your own memory areas. The access type can be read and write,
read-only, or write-only. You cannot map two different access types to the same memory
area. You can check for access type violation and accesses to unspecified ranges. Any
violations are logged in the Debug Log window. You can also choose to have the
execution halted.

Monitoring memory and registers

C-SPY® Debugging Guide
for RX

These tasks are covered:

o Defining application-specific register groups, page 161.

Memory and registers __4

DEFINING APPLICATION-SPECIFIC REGISTER GROUPS

Defining application-specific register groups minimizes the amount of registers
displayed in the Register window and speeds up the debugging.

Choose Tools>Options>Register Filter during a debug session.

IDE Dptions [%]
Comrmon Fonts X §
¥ Use register filter Groups:
IMyFiIter.fIt Filter Files. .. | I VI

- CPU Reqisters

: Group members:

Register Filker
erminal IjO

QK | Cancel | Apply | Help |

For information about the register filter options, see the IDE Project Management and
Building Guide for RX.

Select Use register filter and specify the filename and destination of the filter file for
your new group in the dialog box that appears.

Click New Group and specify the name of your group, for example My Timer Group.

New Group x|

IMy Timer Group

()8 I Cancel |

In the register tree view on the Register Filter page, select a register and click the
arrow button to add it to your group. Repeat this process for all registers that you want
to add to your group.

Optionally, select any registers for which you want to change the integer base, and
choose a suitable base.

When you are done, click OK. Your new group is now available in the Register
window.

161

Reference information on memory and registers

If you want to add more groups to your filter file, repeat this procedure for each group
you want to add.

Note: The registers that appear in the list of registers are retrieved from the ddf file that
is currently used. If a certain SFR that you need does not appear, you can register your
own SFRs. For more information, see SFR Setup window, page 181.

Reference information on memory and registers

Reference information about:

Memory window, page 163

Memory Save dialog box, page 167
Memory Restore dialog box, page 168

Fill dialog box, page 169

RAM Monitor Setup dialog box, page 170
Edit RAM monitor block dialog box, page 171
Symbolic Memory window, page 172

Stack window, page 175

Register window, page 179

SFR Setup window, page 181

Edit SFR dialog box, page 184

Memory Access Setup dialog box, page 185

Edit Memory Access dialog box, page 187.

C-SPY® Debugging Guide
162 for RX

Memory window

12

Requirements

Toolbar

Memory and registers __4

The Memory window is available from the View menu.

Available zones Context menu button

‘ Live update

LY

_\ \ =
- & &

oy -
000feefd £f £f £f £f £f £f £f £f

O0COfeefs ff f£ff £ff £f ff ff f£f ff
‘ 000fefo0 48 65 6c 6c 6f 20 57 6f

- Memory ~
Go to location

I —Goto

[Hello Wo
Memory

addresses i

O00fefo8 72 6c 64 21 00 00 58 Ga
000fefl0 Be 74 7a 4c 00 00 OO OO
O0COfefl® 00 OO0 OO0 OO OO OO OO OO
O0C0fef20 00 OO0 OO OO OO OO OO OO0
O00fef28 OO0 00 OO0 OO0 cd cd cd ed
| 000fef30 ed od cd ed cd ed cd ed

O00fef38 3c 01 00 ed ff £f £f ff
000fefd0

r £ff £ff £ff £f £f £f ff ff
Oo0fefd48 f£f £f ff £f ff ff ff ff
nNNfefsn ff Ff ff ff FfFf FFf Ff £F

rldly...

Data coverage
information

Mem ory contents Mem ory contents in ASCII format

This window gives an up-to-date display of a specified area of memory—a memory
zone—and allows you to edit it. You can open several instances of this window, which
is very convenient if you want to keep track of several memory or register zones, or
monitor different parts of the memory.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 52.

None; this window is always available.

The toolbar contains:

Go to

The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 158.

163

Reference information on memory and registers

164

Display area

C-SPY® Debugging Guide
for RX

Context menu button

Displays the context menu.

Update Now

Updates the content of the Memory window while your application is
executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing.

Live Update

Updates the contents of the Memory window regularly while your application
is executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing. To set
the update frequency, specify an appropriate frequency in the IDE
Options>Debugger dialog box.

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and—provided that the display mode is set to

1x Units—the memory contents in ASCII format. You can edit the contents of the
display area, both in the hexadecimal part and the ASCII part of the area.

Data coverage is displayed with these colors:

Yellow Indicates data that has been read.
Blue Indicates data that has been written
Green Indicates data that has been both read and written.

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY Simulator and the E1/E20 driver. For the E1/E20 driver, memory areas for
data coverage are configured in the RAM Monitor Setup dialog box, see RAM Monitor
Setup dialog box, page 170.

Memory and registers °

Context menu

This context menu is available:

Copy
Paste

Zone 3

v lxUnits
2x Units
4x Units
8x Units

v Little Endian
Big Endian

Data Coverage 3

Find...

Replace...

Mermory Fill...
Memory Save...

Mermory Restore...
Set Data Breakpoint

Set Data Log Breakpoint

These commands are available:

Copy, Paste

Standard editing commands.

Zone
Selects a memory zone, see C-SPY memory zones, page 158.

1x Units

Displays the memory contents as single bytes.
2x Units

Displays the memory contents as 2-byte groups.
4x Units

Displays the memory contents as 4-byte groups.
8x Units

Displays the memory contents as 8-byte groups.

Little Endian
Displays the contents in little-endian byte order.

165

Reference information on memory and registers

Big Endian

Displays the contents in big-endian byte order.

Data Coverage
Choose between:

Enable toggles data coverage on or off.
Show toggles between showing or hiding data coverage.
Clear clears all data coverage information.

These commands are only available if your C-SPY driver supports data
coverage.

Find
Displays a dialog box where you can search for text within the Memory
window; read about the Find dialog box in the IDE Project Management and
Building Guide for RX.

Replace

Displays a dialog box where you can search for a specified string and replace
each occurrence with another string; read about the Replace dialog box in the
IDE Project Management and Building Guide for RX.

Memory Fill

Displays a dialog box, where you can fill a specified area with a value, see Fill
dialog box, page 169.

Memory Save

Displays a dialog box, where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 167.

Memory Restore
Displays a dialog box, where you can load the contents of a file in Intel-hex or
Motorola s-record format to a specified memory zone, see Memory Restore
dialog box, page 168.

Set Data Breakpoint

Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog box. The
breakpoints you set in this window will be triggered for both read and write
access. For more information, see Setting a data breakpoint in the Memory
window, page 137.

C-SPY® Debugging Guide
166 for RX

Set Data Log Breakpoint

Memory and registers __4

Sets a breakpoint on the start address of a memory selection directly in the
Memory window. The breakpoint is not highlighted; you can see, edit, and
remove it in the Breakpoints dialog box. The breakpoints you set in this
window will be triggered by both read and write accesses; to change this, use the
Breakpoints window. For more information, see Data Log breakpoints, page

131 and Getting started using data logging, page 99.

Memory Save dialog box

The Memory Save dialog box is available by choosing Debug>Memory>Save or from

Requirements

Zone

Start address

End address

File format

the context menu in the Memory window.

Memory Save g|

Zone:

Start address: End address:
080 0xFF

File: Farmat:

intel-extended v

Filename:

Ciiprojectsimemory. hex E]

Use this dialog box to save the contents of a specified memory area to a file.

None; this dialog box is always available.

Selects a memory zone, see C-SPY memory zones, page 158.

Specify the start address of the memory range to be saved.

Specify the end address of the memory range to be saved.

Selects the file format to be used, which is Intel-extended by default.

167

Reference information on memory and registers

168

Filename

Save

Specify the destination file to be used; a browse button is available for your convenience.

Saves the selected range of the memory zone to the specified file.

Memory Restore dialog box

Requirements

Zone

Filename

Restore

C-SPY® Debugging Guide
for RX

The Memory Restore dialog box is available by choosing Debug>Memory>Restore
or from the context menu in the Memory window.

Memory Restore E

Zone:

= 5
Close |
Filename:

I Ciiprojectsimemary, hex e |

Use this dialog box to load the contents of a file in Intel-extended or Motorola S-record
format to a specified memory zone.

None; this dialog box is always available.

Selects a memory zone, see C-SPY memory zones, page 158.

Specify the file to be read; a browse button is available for your convenience.

Loads the contents of the specified file to the selected memory zone.

Fill dialog box

Requirements

Start address

Length

Zone

Value

Operation

Memory and registers °

The Fill dialog box is available from the context menu in the Memory window.

Start address: Length: Zone:
101D [0 |Memay x|
Walue: Operation

FF ' Copy AND

" HOR 0OR

()3 I Cancel |

Use this dialog box to fill a specified area of memory with a value.

None; this dialog box is always available.

Type the start address—in binary, octal, decimal, or hexadecimal notation.

Type the length—in binary, octal, decimal, or hexadecimal notation.

Selects a memory zone, see C-SPY memory zones, page 158.

Type the 8-bit value to be used for filling each memory location.

These are the available memory fill operations:

Copy

Value will be copied to the specified memory area.

AND

An AND operation will be performed between Value and the existing contents of

memory before writing the result to memory.

XOR

An XOR operation will be performed between Value and the existing contents of

memory before writing the result to memory.

169

Reference information on memory and registers

170

OR

An OR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

RAM Monitor Setup dialog box

The RAM Monitor Setup dialog box is available from the E1/E20 Emulator menu
when the debugger is running.

RAM Monitor Setup @

Itemz Area Size Mew...

Block[0] (RaM Monitor Dizplay] (0x00000000 - 0=000003FF 0x400
Block[1] (RaM Monitor Dizplay] (0x00000400 - 0=000007FF 0x400
Block[2] (RaM Monitor Dizplay) (0x00000200 - 0=00000BFF 0x400
Block[3] (RaM Monitor Dizplay) (0x00000C00 - 0x00000FFF 0x400

Edit...

Delate

Delete Al

0 of 4 blocks [0=0 bytes] are available.
< 1block = 0x400 bytes >

Pook I Cancel I

Use this dialog box to configure the memory areas for data coverage in the Memory
window.

Note: This dialog box is only available if the Emulator mode option in the Hardware
Setup dialog box is set to RAM Monitor.

Requirements
The C-SPY E1/E20 driver and an E20 emulator.

Display area
This area contains these columns:
Items

The memory block.

Area
The memory range.
Size

The memory size in bytes.

C-SPY® Debugging Guide
for RX

Buttons

Memory and registers °

These buttons are available:

New
Opens the New RAM monitor block dialog box, where you can specify a new
memory range, see Edit Memory Access dialog box, page 187.
You can configure up to four memory ranges to monitor.

Edit
Opens the Edit RAM monitor block dialog box, where you can edit the
selected memory area. See Edit Memory Access dialog box, page 187.

Delete
Deletes the selected memory area definition.

Delete All

Deletes all defined memory area definitions.

Edit RAM monitor block dialog box

Requirements

Start address

The Edit RAM monitor block dialog box is available from the RAM Monitor Setup
dialog box.

Edit RAM manitor block S5
Start address: End address:
(0x00000400 0x000007FF
POk | Cancel |

Use this dialog box to specify or edit a memory area to monitor using data coverage in
the Memory window for E1/E20 emulators, see RAM Monitor Setup dialog box, page
170.

The C-SPY E1/E20 driver and an E20 emulator.

Specify the start address of the memory range.

171

Reference information on memory and registers

End address

Specify the end address of the memory range. When you specify a start address this field
will automatically be filled with the end address of the memory block, but you can
modify this address.

Symbolic Memory window

&

Requirements

Toolbar

C-SPY® Debugging Guide
172 for RX

The Symbolic Memory window is available from the View menu during a debug
session.

Go ko I j IMemory j Previousl TMext |
Location | Data | ‘ariable | Walue | Tvpe | ;I
0x5C 0x0200C300
0x60 0x0002 call count 10 int
0x62 0x0001 root[0] 1 unsigned int
0x64 0x0001 root1] 1 unsigned int
0x66 0x0002 root[2] 2 unsigned int
0x68 0x0003 root3] 3 unsigned int
0x6A 0x0005 root[4] 5 unsigned int
0x6C 0x0008 root[5]] unsigned int
0x6E 0x000D rootfB] 13 unsigned int
0x70 0x0015 root[7] 21 unsigned int
0x72 0x0022 rootf8] 34 unsigned int
0x74 0x0037 root[9] 55 unsigned int
0x76 0xCDCDCDCD
Ox7A 0xCDCDCICD x|

This window displays how variables with static storage duration, typically variables
with file scope but also static variables in functions and classes, are laid out in memory.
This can be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example buffer overruns. Other areas of use
are spotting alignment holes or for understanding problems caused by buffers being
overwritten.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Symbolic Memory window.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 52.

None; this window is always available.

The toolbar contains:

Go to
The memory location or symbol you want to view.

Memory and registers °

Zone

Selects a memory zone, see C-SPY memory zones, page 158.

Previous
Highlights the previous symbol in the display area.

Next
Highlights the next symbol in the display area.

Display area
This area contains these columns:

Location
The memory address.

Data
The memory contents in hexadecimal format. The data is grouped according to
the size of the symbol. This column is editable.

Variable
The variable name; requires that the variable has a fixed memory location. Local
variables are not displayed.

Value
The value of the variable. This column is editable.

Type

The type of the variable.
There are several different ways to navigate within the memory space:

Text that is dropped in the window is interpreted as symbols
The scroll bar at the right-side of the window

°
°
o The toolbar buttons Next and Previous
°

The toolbar list box Go to can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

173

Reference information on memory and registers

Context menu

This context menu is available:

Mext Symbol
Previous Symbaol

1 Units
2x Units
¢ Units

&dd B Watch Windaw

These commands are available:

Next Symbol
Highlights the next symbol in the display area.

Previous Symbol
Highlights the previous symbol in the display area.

1x Units

Displays the memory contents as single bytes. This applies only to rows which
do not contain a variable.

2x Units

Displays the memory contents as 2-byte groups.
4x Units

Displays the memory contents as 4-byte groups.
Add to Watch window

Adds the selected symbol to the Watch window.

Default format
Displays the memory contents in the default format.

Binary format
Displays the memory contents in binary format.
Octal format

Displays the memory contents in octal format.

Decimal format

Displays the memory contents in decimal format.

Hexadecimal format
Displays the memory contents in hexadecimal format.

Char format
Displays the memory contents in char format.

C-SPY® Debugging Guide
174 for RX

Stack window

Memory and registers __4

The Stack window is available from the View menu.

[Current stack pointer] { Used memory stack, in grey ‘
I T

5 The graphic.al

[Stack view } stack bar with

S— """-——-IStack vl || toaltip

- - - information
| Locat|0n| Data Yariable Yalue | Frame \f .
[oxerFe] oxo0s .

— 1.1 +1 0x08 ————————
Cu.rrent stack ' +2 0x0000 p.mStatus i [1]__exit Unused stack
pointer +4 OxdR memory, in

+5 Ox67 light grey
+6 OxEOD '
+7 0Ox04

Requirements

Toolbar

This window is a memory window that displays the contents of the stack. In addition,
some integrity checks of the stack can be performed to detect and warn about problems
with stack overflow. For example, the Stack window is useful for determining the
optimal size of the stack.

To view the graphical stack bar:
Choose Tools>Options>Stack.
Select the option Enable graphical stack display and stack usage.

You can open up to two Stack windows, each showing a different stack—if several
stacks are available—or the same stack with different display settings.

Note: By default, this window uses one physical breakpoint. For more information, see
Breakpoint consumers, page 133.

For information about options specific to the Stack window, see the IDE Project
Management and Building Guide for RX.

None; this window is always available.

The toolbar contains:

Stack

Selects which stack to view. This applies to microcontrollers with multiple
stacks.

175

Reference information on memory and registers

176

The graphical stack bar

&

Display area

C-SPY® Debugging Guide
for RX

Displays the state of the stack graphically.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. The graphical stack bar turns red when the
stack usage exceeds a threshold that you can specity.

When the stack bar is enabled, the functionality needed to detect and warn about stack
overflows is also enabled.

Place the mouse pointer over the stack bar to get tooltip information about stack usage.

This area contains these columns:

Location
Displays the location in memory. The addresses are displayed in increasing
order. The address referenced by the stack pointer, in other words the top of the
stack, is highlighted in a green color.

Data
Displays the contents of the memory unit at the given location. From the Stack
window context menu, you can select how the data should be displayed; as a 1-,
2-, or 4-byte group of data.

Variable
Displays the name of a variable, if there is a local variable at the given location.
Variables are only displayed if they are declared locally in a function, and
located on the stack and not in registers.

Value
Displays the value of the variable that is displayed in the Variable column.

Frame

Displays the name of the function that the call frame corresponds to.

Memory and registers __4

Context menu

This context menu is available:

v Show Variables
Show Offsets
1x Units
2x Units

v dxUnits

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format

Options...

These commands are available:

Show variables

Displays separate columns named Variables, Value, and Frame in the Stack
window. Variables located at memory addresses listed in the Stack window are
displayed in these columns.

Show offsets

Displays locations in the Location column as offsets from the stack pointer.
When deselected, locations are displayed as absolute addresses.

1x Units
Displays the memory contents as single bytes.
2x Units

Displays the memory contents as 2-byte groups.

4x Units
Displays the memory contents as 4-byte groups.

177

Reference information on memory and registers

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Options

Opens the IDE Options dialog box where you can set options specific to the
Stack window, see the IDE Project Management and Building Guide for RX.

C-SPY® Debugging Guide
178 for RX

Memory and registers __4

Register window

The Register window is available from the View menu.

Register @

CPU Registers w

8P = 0x0000012C R15 = 0Ox0A592428
R1 = OxFFEOOS54C ACC = e
R2 = OxFFEOO54C ISP = 0x0000012C
R3 = Ox00000030 UsP = 0x00000000
R4 = Ox00000000 I rswW = 0x00000003
B5 = Ox0B266580 PC = OxFFEOOQ4F7
R6 = Ox07ED2230 INTB = OxFFEOOQOOO
R7T = Ox0B266638 BPC = 0xCDCDCDCD
R8 = Ox07EBFBSO0 BPSW = 0xCDCDCDCD
R9 = Ox0B26ESS8 FINTV = 0xCDCDCDCD
R10 = Ox13FDSDDB [FPSW = 0x00000100
R11 = Ox0Z4FBATE CYCLECOUNTER = 125

R12 = Ox13FDSERO CCTIMER1 = 125

R13 = Ox0A3FEDEO CCTIMER2 = 125

R14 = Ox0ASBESES CCSTEP = 125

This window gives an up-to-date display of the contents of the processor registers and
special function registers, and allows you to edit the content of some of the registers.
Optionally, you can choose to load either predefined register groups or to define your
own application-specific groups.

You can open several instances of this window, which is very convenient if you want to
keep track of different register groups.

For information about editing in C-SPY windows, see C-SPY Debugger main window,
page 52.

To enable predefined register groups:

I Select a device description file that suits your device, see Selecting a device description
file, page 42.

2 The register groups appear in the Register window, provided that they are defined in
the device description file. Note that the available register groups are also listed on the
Register Filter page.

To define application-specific register groups:

See Defining application-specific register groups, page 161.

Requirements

None; this window is always available.

179

Reference information on memory and registers

180

Toolbar

Display area

C-SPY® Debugging Guide
for RX

The toolbar contains:

CPU Registers

Selects which register group to display, by default CPU Registers. Additional
register groups are predefined in the device description files that make SFR
registers available in the register window. The device description file contains a
section that defines the special function registers and their groups. If some of
your SFRs are missing, you can register your own SFRs in a Custom group, see
SFR Setup window, page 181.

Displays registers and their values. Every time C-SPY stops, a value that has changed
since the last stop is highlighted. Some of the registers are read-only, some of the
registers are write-only (marked with w), and some of the registers are editable. To edit
the contents of an editable register, click it, and modify its value. Press Esc to cancel the
new value.

Some registers are expandable, which means that the register contains interesting bits or
subgroups of bits.

To change the display format, change the Base setting on the Register Filter
page—available by choosing Tools>Options.

SFR Setup window

Requirements

Memory and registers __4

For the C-SPY Simulator and the C-SPY hardware debugger drivers, these additional
support registers are available in the CPU Registers group:

CYCLECOUNTER Cleared when an application is started or reset and is
incremented with the number of used cycles during

execution.
CCSTEP Shows the number of used cycles during the last performed
C/C++ source or assembler step.
CCTIMERI1 and Two trip counts that can be cleared manually at any given
CCTIMER2 time. They are incremented with the number of used cycles

during execution.

The SFR Setup window is available from the Project menu.

SFR Setup =]
Name Address Zone Size Access *

+ MyOwnSFR 0x20004000 Memory 8 Read only

+ MyHideSFR 0x20004004 Memory 16 MNone
TIM2_CR1 0x40000000 Memory 32 Read/Write

c TIM2_CR2 0x40000004 Memory 32 Read only
TIM2_SMCR 0x40000008 Memory 32 Read/Write
TIM2_DIER 0x4000000C Memory 32 Read/Write
TIM2_SR 0x40000010 Memory 32 Read/Write -

This window displays the currently defined SFRs that C-SPY has information about.
You can choose to display only factory-defined or custom-defined SFRs, or both. If
required, you can use this window to customize the aspects of the SFRs. For
factory-defined SFRs (that is, retrieved from the ddf file that is currently used), you can
only customize the access type.

Any custom-defined SFRs are added to a dedicated register group called Custom, which
you can choose to display in the Register window. Your custom-defined SFRs are saved
in projectCustomSFR.sfr.

You can only add or modify SFRs when the C-SPY debugger is not running.

None; this window is always available.

181

Reference information on memory and registers

182

Display area

C-SPY® Debugging Guide
for RX

This area contains these columns:

Status
A character that signals the status of the SFR, which can be one of:

blank, a factory-defined SFR.
C, a factory-defined SFR that has been modified.
+, a custom-defined SFR.

?, an SFR that is ignored for some reason. An SFR can be ignored when a
factory-defined SFR has been modified, but the SFR is no longer available, or it
is located somewhere else or with a different size. Typically, this might happen
if you change to another device.

Name
A unique name of the SFR.

Address
The memory address of the SFR.

Zone

Selects a memory zone, see C-SPY memory zones, page 158.
Size

The size of the register, which can be any of 8, 16, 32, or 64.

Access

The access type of the register, which can be one of Read/Write, Read only,
Write only, or None.

You can click a name or an address to change the value. The hexadecimal 0x prefix for
the address can be omitted, the value you enter will still be interpreted as hexadecimal.
For example, if you enter 4567, you will get 0x4567.

You can click a column header to sort the SFRs according to the column property.
Color coding used in the display area:

o Green, which indicates that the corresponding value has changed

o Red, which indicates an ignored SFR.

Context menu

This context menu is available:

v

Show All
Show Custom SFRs only
Show Factory SFRs only

Add...

Edit...

Delete

Delete/Revert All Custom SFRs
Save Custom SFRs...

& bits
16 bits
32 bits

64 bits

Read/Write
Read only
Write only

MNone

These commands are available:

Show All

Shows all SFR.

Show Custom SFRs only

Shows all custom-defined SFRs.

Show Factory SFRs only
Shows all factory-defined SFRs retrieved from the ddf file.

Add

Edit

Memory and registers °

Displays the Edit SFR dialog box where you can add a new SFR, see Edit SFR

dialog box, page 184.

Displays the Edit SFR dialog box where you can edit an SFR, see Edit SFR

dialog box, page 184.

Delete

Delete/revert All Custom SFRs

Deletes an SFR. This command only works on custom-defined SFRs.

Deletes all custom-defined SFRs and reverts all modified factory-defined SFRs

to their factory settings.

183

Reference information on memory and registers

184

Edit SFR dialog box

Requirements

Name

Address

C-SPY® Debugging Guide
for RX

Save Custom SFRs
Opens a standard save dialog box to save all custom-defined SFRs.
8|16|32|64 bits
Selects display format for the selected SFR, which can be 8, 16, 32, or 64 bits.
Note that the display format can only be changed for custom-defined SFRs.
Read/Write|Read only|Write only|None

Selects the access type of the selected SFR, which can be Read/Write, Read
only, Write only, or None. Note that for factory-defined SFRs, the default
access type is indicated.

The Edit SFR dialog box is available from the SFR Setup window.

Edit SFR (=23
SFR
M ame:
MyOwnSFR Carcel
Address: Zone:
0400004567 Memary -
Size Access
@ 8 bits @ Read wiite
16 bitz Fiead only
32 bitz write: only
B4 bits MHone

Use this dialog box to define the SFRs.

None; this dialog box is always available.

Specify the name of the SFR that you want to add or edit.

Specify the address of the SFR that you want to add or edit. The hexadecimal 0x prefix
for the address can be omitted, the value you enter will still be interpreted as
hexadecimal. For example, if you enter 4567, you will get 0x4567.

Memory and registers __4

Zone
Selects the memory zone for the SFR you want to add or edit. The list of zones is
retrieved from the ddf file that is currently used.

Size
Selects the size of the SFR. Choose between 8, 16, 32, or 64 bits. Note that the display
format can only be changed for custom-defined SFRs.

Access

Selects the access type of the SFR. Choose between Read/Write, Read only, Write
only, or None. Note that for factory-defined SFRs, the default access type is indicated.

Memory Access Setup dialog box

The Memory Access Setup dialog box is available from the C-SPY driver menu.

Memory Access Setup _|

™ Use ranges based on

X

% Deyvice description file
Cancel

it

| Debug file segment information [anly shovwn while debugging)

Zone | Start Addr| End Addr| Accesz Type |
Memory 0x0 0x1FF R

Memory 0200 0x9FF R

Memory 01000 0«10FF R

Memory 0x1100 0«FFFF R

™ Use manual ranges
Zone | Start Addr| End Addr| Accesz Type | e

Exdit....

Delete

[elete &l

i

Memony aczess checking
Check far: Schor:
¥ Access bype violation € Log violations
¥ Access tounspeciied ranges % [Log and stop execution

This dialog box lists all defined memory areas, where each column in the list specifies
the properties of the area. In other words, the dialog box displays the memory access
setup that will be used during the simulation.

Note: If you enable both the Use ranges based on and the Use manual ranges option,
memory accesses are checked for all defined ranges.

185

Reference information on memory and registers

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 187.

Requirements
The C-SPY simulator.

Use ranges based on

Selects any of the predefined alternatives for the memory access setup. Choose between:

Device description file
Loads properties from the device description file.

Debug file segment information

Properties are based on the section information available in the debug file. This
information is only available while debugging. The advantage of using this
option, is that the simulator can catch memory accesses outside the linked
application.

Use manual ranges

Specify your own ranges manually via the Edit Memory Access dialog box. To open
this dialog box, choose New to specify a new memory range, or select a memory zone
and choose Edit to modify it. For more information, see Edit Memory Access dialog
box, page 187.

The ranges you define manually are saved between debug sessions.

Memory access checking

Check for determines what to check for;

® Access type violation

® Access to unspecified ranges
Action selects the action to be performed if an access violation occurs; choose between:

o Log violations

o Log and stop execution

Any violations are logged in the Debug Log window.

C-SPY® Debugging Guide
186 for RX

Buttons

Memory and registers °

These buttons are available:

New
Opens the Edit Memory Access dialog box, where you can specify a new
memory range and attach an access type to it, see Edit Memory Access dialog
box, page 187.

Edit
Opens the Edit Memory Access dialog box, where you can edit the selected
memory area. See Edit Memory Access dialog box, page 187.

Delete
Deletes the selected memory area definition.

Delete All

Deletes all defined memory area definitions.

Note that except for the OK and Cancel buttons, buttons are only available when the
option Use manual ranges is selected.

Edit Memory Access dialog box

Requirements

The Edit Memory Access dialog box is available from the Memory Access Setup
dialog box.

Edit Memory Access E

Zone:

I Memory - l

- Memoy range

Cancel |

Start address: End address:
Jo [1FFF
—Access lype

 Fead and write
' Fead only
© Wfrite anly

Use this dialog box to specify the memory ranges, and assign an access type to each
memory range, for which you want to detect illegal accesses during the simulation.

The C-SPY simulator.

187

Reference information on memory and registers

188

Memory range

Access type

C-SPY® Debugging Guide
for RX

Defines the memory area specific to your device:
Zone

Selects a memory zone, see C-SPY memory zones, page 158.

Start address
Specify the start address for the memory area, in hexadecimal notation.

End address
Specity the end address for the memory area, in hexadecimal notation.

Selects an access type to the memory range; choose between:
e Read and write

o Read only

o Write only.

Part 2. Analyzing your
application

This part of the C-SPY® Debugging Guide for RX includes these chapters:
e Trace

o Profiling

o Analyzing code performance

e Code coverage

e Power debugging

.hmuhhhhi

189

AAARRIE

190

Trace

e Introduction to using trace
e Collecting and using trace data

e Reference information on trace

Introduction to using trace
These topics are covered:
o Reasons for using trace
e Briefly about trace
o Requirements for using trace
See also:
o Getting started using data logging, page 99
® Power debugging, page 245
o Getting started using interrupt logging, page 270
e Profiling, page 219

REASONS FOR USING TRACE

By using trace, you can inspect the program flow up to a specific state, for instance an
application crash, and use the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have irregular symptoms and occur
sporadically.

BRIEFLY ABOUT TRACE

To use trace in C-SPY requires that your target system can generate trace data. Once
generated, C-SPY can collect it and you can visualize and analyze the data in various
windows and dialog boxes.

Depending on your target system, different types of trace data can be generated.

Trace data is a continuously collected sequence of every executed instruction for a
selected portion of the execution.

191

Collecting and using trace data

192

Trace features in C-SPY

In C-SPY, you can use the trace-related windows Trace, Function Trace, Timeline, and
Find in Trace.

Depending on your C-SPY driver, you:

o Can set various types of trace breakpoints to control the collection of trace data.
o Have access to windows such as the Power Log, Interrupt Log, Interrupt Log
Summary, Data Log, and Data Log Summary.

In addition, several other features in C-SPY also use trace data, features such as
Profiling, Code coverage, and Instruction profiling.

REQUIREMENTS FOR USING TRACE

The C-SPY simulator supports trace-related functionality, and there are no specific
requirements.

To use trace in your hardware debugger systems, you need debug components
(hardware, in some cases a debug probe, and a C-SPY driver) that all support trace. All
C-SPY hardware debugger drivers support trace.

Note: The specific set of debug components you are using (hardware, a debug probe,
and a C-SPY driver) determine which trace features in C-SPY that are supported.

Collecting and using trace data

C-SPY® Debugging Guide
for RX

These tasks are covered:
o Getting started with trace

e Trace data collection using breakpoints
e Searching in trace data

o Browsing through trace data.

GETTING STARTED WITH TRACE

For the C-SPY E20 emulator, before you start C-SPY you must choose
E1/E20 Emulator>Hardware Setup and select Trace as the Emulator mode.

Note: If you are using the C-SPY simulator, the E1 or E2 Lite emulator or the J-Link
debug probe, you do not need to perform this step.

Start C-SPY and choose C-SPY driver>Trace Settings. In the Trace Settings dialog
box that is displayed, check if you need to change any of the default settings. For more
information, see Trace Settings dialog box, page 195.

% |

Trace __4

Note: If you are using the C-SPY simulator, just start C-SPY.

Open the Trace window—available from the driver-specific menu—and click the
Activate button to enable collecting trace data.

Start the execution. When the execution stops, for example because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 198.

TRACE DATA COLLECTION USING BREAKPOINTS

A convenient way to collect trace data between two execution points is to start and stop
the data collection using dedicated breakpoints. Choose between these alternatives:

o In the editor or Disassembly window, position your insertion point, right-click, and
toggle a Trace Start or Trace Stop breakpoint from the context menu.

o In the Breakpoints window, choose Trace Start or Trace Stop.

o The C-SPY system macros __setTraceStartBreak and

__setTraceStopBreak can also be used.

For more information about these breakpoints, see Trace Start breakpoints dialog box,
page 212 and Trace Stop breakpoints dialog box, page 213, respectively.

Note: Trace information can also be collected from specified memory locations by
using data trace collection breakpoints, see Data Trace Collection breakpoints dialog
box, page 214.

SEARCHING IN TRACE DATA

When you have collected trace data, you can perform searches in the collected data to
locate the parts of your code or data that you are interested in, for example, a specific
interrupt or accesses of a specific variable.

You specify the search criteria in the Find in Trace dialog box and view the result in the
Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

To search in your trace data:

On the Trace window toolbar, click the Find button.

2 In the Find in Trace dialog box, specify your search criteria.

193

Reference information on trace

194

Typically, you can choose to search for:

e A specific piece of text, for which you can apply further search criteria
o An address range

e A combination of these, like a specific piece of text within a specific address range.
For more information about the various options, see Find in Trace dialog box, page 215.

When you have specified your search criteria, click Find. The Find in Trace window
is displayed, which means you can start analyzing the trace data. For more information,
see Find in Trace window, page 216.

BROWSING THROUGH TRACE DATA

To follow the execution history, simply look and scroll in the Trace window.
Alternatively, you can enter browse mode.

To enter browse mode, double-click an item in the Trace window, or click the Browse
toolbar button.

The selected item turns yellow and the source and disassembly windows will highlight
the corresponding location. You can now move around in the trace data using the up and
down arrow keys, or by scrolling and clicking; the source and Disassembly windows
will be updated to show the corresponding location. This is like stepping backward and
forward through the execution history.

Double-click again to leave browse mode.

Reference information on trace

C-SPY® Debugging Guide
for RX

Reference information about:

Trace Settings dialog box, page 195

Trace window, page 198

Function Trace window, page 202

Timeline window, page 202

Viewing Range dialog box, page 211

Trace Start breakpoints dialog box, page 212

Trace Stop breakpoints dialog box, page 213

Data Trace Collection breakpoints dialog box, page 214
Trace Expressions window, page 214

Find in Trace dialog box, page 215

Find in Trace window, page 216.

Trace Settings dialog box

Requirements

Trace mode

The Trace Settings dialog box is available from the C-SPY driver menu.

Trace mode: Dizplayed trace information
[Fillunti stop -

Trace autput: Freguency rati

[Trace output v]

Trace capacity:

[‘I Mbyte v] Drata trace
Trace type: [rata to collect:
[Branch+Data v] [AII data hd

Collected data accesses

[Bestart emulatar when trace buffer is ful Doata transfers
Stack operations
Shing operations
Arithmetical operations
Logical operations
Bit operations
EPU
Exceptions

[Qg J [Lancel]

Use this dialog box to configure trace generation and collection.

See also Getting started with trace, page 192.

A C-SPY hardware debugger driver.

Selects the trace collection mode. Choose between:

Fill until stop

Continues to collect trace data until the execution stops or a trace stop

breakpoint stops the collection.

Fill until full
Continues to collect trace data until the buffer is full.

Trace __4

195

Reference information on trace

196

Trace output

Trace capacity

Trace type

Controls the generation of trace data. Choose between:

CPU execution
CPU execution is given priority, meaning that some trace data might be lost.

Trace output

Generating trace data is given priority. Because the CPU execution is paused
when trace data is generated, execution speed slows down.

Do not output
No trace data is generated. The trace buffer of the MCU will be used.

Note: For the E1 and E2 Lite emulators and the J-Link debug probe, only the setting Do
not output is available.

Sets the size of the trace buffer: 1, 2, 4, 8, 16, or 32 Mbytes.

Note: This option is only available for the E20 emulator.

Selects the type of trace data that is collected. Choose between:

Branch

Collects source and destination address information on branches that occurred
during program execution.

Branch+Data
Collects branch and data access information. Only available for the RX600
architecture.

Data

Collects data information on events that occurred during program execution. For
the RX100 and RX200 architectures, only data accesses set up with data trace
collection breakpoints can be traced.

Restart emulator when trace buffer is full

C-SPY® Debugging Guide
for RX

Halts execution when the trace buffer is full and restarts the emulator after the buffer has
been read by the emulator. This option offers full trace, but might result in very large
amounts of trace data.

Note: This option is only available for the E20 emulator.

Trace __4

Display timestamp

Displays the timestamp of the collected trace data. This option is only available for the
RX600 architecture.

Frequency ratio
Selects a frequency division ratio for the timestamp counter. This option is only
available for the RX64M group of MCUs. Choose between:

No frequency division
The frequency of the timestamp counter is equal to the selected clock source
frequency.

1/16 frequency
The frequency of the timestamp counter is 1/16 of the selected clock source
frequency.

1/256 frequency
The frequency of the timestamp counter is 1/256 of the selected clock source
frequency.

1/4096 frequency

The frequency of the timestamp counter is 1/4096 of the selected clock source
frequency.

Data to collect
Selects the data trace information to collect. Choose between:

All data
Collects all data accesses.

Data trace collection breakpoints
Collects only the data accesses that are triggered by data trace collection

breakpoints.

Collected data accesses

Selects which types of memory accesses to collect and display in the Trace window.
Choose between:

Data transfers
Displays trace information collected from data transfers.

Stack operations

Displays trace information collected from stack operations.

197

Reference information on trace

String operations

Displays trace information collected from string operations.

Arithmetical operations
Displays trace information collected from arithmetical operations.

Logical operations
Displays trace information collected from logical operations.
Bit operations

Displays trace information collected from bit operations.

FPU
Displays trace information collected from FPU instructions.

Exceptions
Displays trace information collected from exceptions.

Trace window

The Trace window is available from the C-SPY driver menu.
This window displays the collected trace data.

The content of the Trace window depends on the C-SPY driver you are using.

Requirements

None; this window is always available.

Trace toolbar
The toolbar in the Trace window and in the Function Trace window contains:

m Enable/Disable

Enables and disables collecting and viewing trace data in this window. This
button is not available in the Function Trace window.

E Clear trace data

Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.
B Toggle source

Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

C-SPY® Debugging Guide
198 for RX

FI:'

Trace __4

Browse

Toggles browse mode on or off for a selected item in the Trace window, see
Browsing through trace data, page 194.

Find
Displays a dialog box where you can perform a search, see Find in Trace dialog
box, page 215.

Save
Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

Edit Settings

In the C-SPY simulator, this button is not enabled.

For the C-SPY hardware debugger drivers, this button displays the Trace
Settings dialog box, see Trace Settings dialog box, page 195.

Edit Expressions (C-SPY simulator only)

Opens the Trace Expressions window, see Trace Expressions window, page
214.

Display area (in the C-SPY simulator)

This area displays a collected sequence of executed machine instructions. In addition,
the window can display trace data for expressions.

Trace @
OX[BYSYHE & A
Cycles Trace callCount e
5064 13582 00044F JC 0x043C 5
DoForegroundProcess() ;
5065 13588 00043C LCALL DoForegrou... &
DoForegroundProcess: : Prelay:
5066 13594 0ooos3 18 Bt 5
?YBDISPATCH_FF:
5067 13597 000075 POP LDFH 5
5068 13600 000077 POP DPL 5
5069 13604 000072 PUSH ?CBANE 5 w
Trace |Trace Expressions =

This area contains these columns:

#

A serial number for each row in the trace buffer. Simplifies the navigation within
the buffer.

199

Reference information on trace

Cycles

Trace

The number of cycles elapsed to this point.

The collected sequence of executed machine instructions. Optionally, the

corresponding source code can also be displayed.

Expression

Each expression you have defined to be displayed appears in a separate column.

Each entry in the expression column displays the value after executing the

instruction on the same row. You specify the expressions for which you want to
collect trace data in the Trace Expressions window, see Trace Expressions
window, page 214.

A red-colored row indicates that the previous row and the red row are not consecutive.
This means that there is a gap in the collected trace data, for example because trace data

has been lost due to an overflow.

Display area (in the C-SPY hardware debugger drivers)

This area displays a sequence of trace data collected from the hardware debugger

system. In addition, the window can display the assembler source code for branch trace

=

data.
a . .
Trace Address Data Size Acc Type Cond Timestamp i
259 ooooo0e00 FFEB4106 LONG R MEMORY 650165
260 BCHD 1] 650173
FFEB410E RTS

261 FFEB40F2 DESTINATION 650185

__iar main call:

FFEB40F2 BSR. A main
262 00000604 FFEB40F2 LONG R MEMORY 650189
263 FFEB40C2 DESTINATION 650197
264 00000604 FFEB40F& LONG W MEMORY 650209]

1 [

This area contains these columns for the C-SPY hardware debugger drivers:

#

Trace

C-SPY® Debugging Guide
200 for RX

The frame number for trace data from the hardware debugger system. Restarts

from zero each time data is collected.

For branch trace, the assembler source code is displayed if this information
could be collected.

Trace __4

Address

Data

Size

Access

Type

Cond

The memory address where the data access occurred.

The data value that was read or written to the address.

The size of the data read or written. This can be byte, word or 1long.
The type of the memory access, R for read or w for write.

The type of the collected data, one of:

Memory — Data access

Destination — The destination address of a branch

BCND - Conditional branch information

Lost — The corresponding trace information was lost

Source — The address that was last executed before an interrupt (RX600
series) or where a branch occurred (RX100 and RX200 series)

1 indicates that the condition for executing a conditional branch instruction was
satisfied; 0 indicates that it was not satisfied.

Each row can show information on up to 15 branches.

Timestamp

The timestamp of the collected data. This column is only available for the
RX600 architecture. The timestamp counter frequency varies depending on the
RX MCU you are using:

e For RX61x and RX62x MCUs when EXTAL x 8 < or = 100 MHz, the
timestamp counter frequency is EXTAL x 8.

o For RX61x and RX62x MCUs when EXTAL x 8 > 100 MHz, the timestamp
counter frequency is EXTAL x 4.

o For RX63x and RX64x MCUs using the EXTAL pin, the timestamp counter
frequency is 1/2 the selected clock source frequency (or equal to the
selected clock source frequency if the division ratio is set to 1:1 by the
SCKCR. ICK bit).

o For RX63x and RX64x MCUs not using the EXTAL pin, the timestamp
counter frequency is equal to the selected clock source frequency. For the

201

Reference information on trace

RX64M MCUs, you can use the Frequency ratio option in the Trace
Settings dialog box to decrease this frequency.

An italicized row indicates that the previous row and the italicized row are not
consecutive. This means that there is a gap in the collected trace data, for example
because trace data has been lost due to an overflow.

Function Trace window

The Function Trace window is available from the C-SPY driver menu during a debug

session.

Function Trace @
@ [/ |

Cycles Trace rmyariable i

475 1050 O0=000000E4: PutFib{unsigned int} + 76
4176 10585 0xz00000242: DoForegroundProces=() + 22
477 1058 0=0000025C main() + 24

483 1069 0xz0000022C: DoForegroundProcess()

485 1074 0xz00000220: HextCounter()

491 1086 0xz00000232: DoForegroundProce==() + 6
494 1092 0=00000074: GetFib{int)

ED4 1109 0xz00000234: DoForegroundProces=() + 14

PO M3 P — o

Function Trace | Trace | Trace Expressions =

This window displays a subset of the trace data displayed in the Trace window. Instead
of displaying all rows, the Function Trace window only shows trace data corresponding
to calls to and returns from functions.

Requirements

None; this window is always available.

Toolbar

For information about the toolbar, see Trace window, page 198.

Display area

For information about the columns in the display area, see Trace window, page 198

Timeline window

The Timeline window is available from the C-SPY driver menu during a debug session.

C-SPY® Debugging Guide
202 for RX

Trace __4

Depending on the abilities in hardware, the debug probe, and the C-SPY driver you are
using, this window displays trace data in different graphs in relation to a common time
axis:

o Call Stack graph

e Data Log graph

e Interrupt Log graph

o Power Log graph, see Power graph in the Timeline window, page 259.

To display a graph:

Choose J-Link>Operating Frequency and specify the operating frequency of the
MCU.

If you are using the C-SPY simulator you can ignore this step.

Choose Timeline from the C-SPY driver menu to open the Timeline window.

In the Timeline window, click in the graph area and choose Enable from the context
menu to enable a specific graph.

For the Data Log graph, you need to set a Data Log breakpoint for each variable you
want a graphical representation of in the Timeline window. See Data Log breakpoints
dialog box, page 152.

Click Go on the toolbar to start executing your application. The graph appears.
To navigate in the graph, use any of these alternatives:

o Right-click and from the context menu choose Zoom In or Zoom Out.
Alternatively, use the + and - keys. The graph zooms in or out depending on which
command you used.

o Right-click in the graph and from the context menu choose Navigate and the
appropriate command to move backwards and forwards on the graph. Alternatively,
use any of the shortcut keys: arrow keys, Home, End, and Ctrl+End.

o Double-click on a sample of interest and the corresponding source code is
highlighted in the editor window and in the Disassembly window.

o Click on the graph and drag to select a time interval. Press Enter or right-click and
from the context menu choose Zoom>Zoom to Selection. The selection zooms in.

203

Reference information on trace

204

&

Requirements

C-SPY® Debugging Guide
for RX

Point in the selection with the mouse pointer to get detailed tooltip information
about the selected part of the graph:

Start time of

S 127
selection in
seconds and yﬂw
cycles T t1: 181,70 us (1817 cycles)

[12: 194:50 us (1945 cycles) The frequency that |

u
T (12 11): 1280 us (128 cycles) by | COTTesPonds tothe

‘ End of selection

in seconds and i time interval.
cycles T8 1/T; 78125 Hz —— 1= | Typically, useful for
' _ periodically
I

5s 0.00020s 0.00025s || OIS GHETE:

The time interval
of the selection

Point in the graph with the mouse pointer to get detailed tooltip information for that
location.

One of these alternatives:
o The C-SPY simulator
e J-Link driver (J-Link debug probe only—not built-in J-Link)

Depending on the abilities in hardware, the debug probe, and the C-SPY driver you are
using, the display area can be populated with different graphs:

Call Stack Interrupt Log Power Log
Target system Data Log graph

graph graph graph
C-SPY simulator X X X -
C-SPY J-Link driver -- - - X

Table 10: Supported graphs in the Timeline window

For more information about requirements related to trace data, see Requirements for
using trace, page 192.

Trace __4

Display area for the Call Stack graph
The Call Stack graph displays the sequence of calls and returns collected by trace.

Timing information

Timeline =
b =
__w| _w _w
putchar| putchar| [putchar]| [putchar]| [putchar]| 3
) |?Sprlngboa| |?Sprlngboa| |?Springboa| |?Springboa| |?Springboa|
putch [_printf 517
?Spring [printf 537 |
_Printf | [nmiHandler::??INTVEC 16 1
printf | [nmiHandler:??INTVEC 16 ;
main 87 / <
0.000022s/ ©.000024s 0.806626s 0.0000828s 6.6606630s 0.606832s

Comm

[— >

on time axis] { Selection for current graph

At the bottom of the graph you will usually find main, and above it, the functions called

frommain, and so on. The horizontal bars, which represent invocations of functions, use

four different colors:

o Medium green for normal C functions with debug information

o Light green for functions known to the debugger only through an assembler label

o Medium or light yellow for interrupt handlers, with the same distinctions as for
green.

The timing information represents the number of cycles spent in, or between, the

function invocations.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

205

Reference information on trace

206

Display area for the Data Log graph

C-SPY® Debugging Guide
for RX

The Data Log graph displays the data logs generated by trace, for up to four different
variables or address ranges specified as Data Log breakpoints.

Graph in Levels style] [Graph in Linear style]

. Y 3 &
Timeline , N

| 0x10 —— ox0n 0x10 Ox10 -

8.80398s 8.80399s 8.80400s 8.80401s 8.80402s

[

Commaon time axis]

Where:

The label area at the left end of the graph displays the variable name or the address
for which you have specified the Data Log breakpoint.

The graph itself displays how the value of the variable changes over time. The label
area also displays the limits, or range, of the Y-axis for a variable. You can use the

context menu to change these limits. The graph is a graphical representation of the
information in the Data Log window, see Data Log window, page 117.

The graph can be displayed either as a thin line between consecutive logs or as a
rectangle for every log (optionally color-filled).

A red vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system. A red question mark indicates
a log without a value.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Trace __4

Display area for the Interrupt Log graph

The Interrupt Log graph displays interrupts reported by trace or by the C-SPY simulator.
In other words, the graph provides a graphical view of the interrupt events during the
execution of your application.

Active interrupt l |Overf|ow |

Timeline |E |

— (N

e [
= i ===

2.90815s 8.000208s 8.00025s 8.00038s 8.90835s

Commaon time axis

Where:

o The label area at the left end of the graph displays the names of the interrupts.

o The graph itself shows active interrupts as a thick green horizontal bar where the
white figure indicates the time spent in the interrupt. This graph is a graphical
representation of the information in the Interrupt Log window, see Interrupt Log
window, page 277.

e If the bar is displayed without horizontal borders, there are two possible causes:

o The interrupt is reentrant and has interrupted itself. Only the innermost interrupt
will have borders.

o There are irregularities in the interrupt enter-leave sequence, probably due to
missing logs.
e If the bar is displayed without a vertical border, the missing border indicates an
approximate time for the log.
o A red vertical line indicates overflow, which means that the communication channel
failed to transmit all interrupt logs from the target system.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Selection and navigation

Click and drag to select. The selection extends vertically over all graphs, but appears
highlighted in a darker color for the selected graph. You can navigate backward and
forward in the selected graph using the left and right arrow keys. Use the Home and End

207

Reference information on trace

keys to move to the first or last relevant point, respectively. Use the navigation keys in
combination with the Shift key to extend the selection.

Context menu

This context menu is available:

MNavigate 3
v Auto Scroll
Zoom 3
Call Stack
v Enable

v | Show Timing

Go to Source
Select Graphs 3
Time Axis Unit 3

Note: The context menu contains some commands that are common to all graphs and
some commands that are specific to each graph. The figure reflects the context menu for
the Call Stack graph, which means that the menu looks slightly different for the other
graphs.

These commands are available:

Navigate (All graphs)
Commands for navigating over the graph(s); choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.
Auto Scroll (All graphs)

Toggles auto scrolling on or off. When on, the most recently collected data is
automatically displayed if you have executed the command Navigate>End.

C-SPY® Debugging Guide
208 for RX

Trace __4

Zoom (All graphs)
Commands for zooming the window, in other words, changing the time scale;
choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +.
Zoom Out zooms out on the time scale. Shortcut key: -.

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Data Log (Data Log graph)
A heading that shows that the Data Log-specific commands below are available.

Power Log (Power Log graph)
A heading that shows that the Power Log-specific commands below are
available.

Call Stack (Call Stack graph)
A heading that shows that the Call stack-specific commands below are available.

Interrupt (Interrupt Log graph)
A heading that shows that the Interrupt Log-specific commands below are
available.

Enable (All graphs)
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the Timeline window. If no trace data has been collected
for a graph, no data will appear instead of the graph.

Show Timing (Call Stack graph)

Toggles the display of the timing information on or off.

Variable (Data Log graph)

The name of the variable for which the Data Log-specific commands below
apply. This menu command is context-sensitive, which means it reflects the
Data Log graph you selected in the Timeline window (one of up to four).

209

Reference information on trace

210

C-SPY® Debugging Guide
for RX

Solid Graph (Data Log graph)
Displays the graph as a color-filled solid graph instead of as a thin line.

Viewing Range (Data, and Power Log graph)
Displays a dialog box, see Viewing Range dialog box, page 211.

Size (Data, and Power Log graph)
Determines the vertical size of the graph; choose between Small, Medium, and
Large.

Show Numerical Value (Data, and Power Log graph)
Shows the numerical value of the variable, in addition to the graph.

Go To Source (Common)
Displays the corresponding source code in an editor window, if applicable.

Open Setup Window (Power Log graph)
Opens the Power Log Setup window.

Sort by (Interrupt graph)
Sorts the entries according to their ID or name. The selected order is used in the
graph when new interrupts appear.

Select Graphs (Common)
Selects which graphs to be displayed in the Timeline window.

Time Axis Unit (Common)
Selects the unit used in the time axis; choose between Seconds and Cycles.

Profile Selection

Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling.

Viewing Range dialog box
The Viewing Range dialog box is available from the context menu that appears when
you right-click in the Power Log graph or the Data Log graph in the Timeline window.

Requirements

Range for ...

Viewing Range

Range for power:

(& Auto
O Factory
O Custom

Lowest value:

{currently 0 - 70)
(5 - 200)

Scale:

O Linear

Highest value:

Trace __4

3

(%) Logarithmic

ok | [Cancel

]

Use this dialog box to specify the value range, that is, the range for the Y-axis for the

graph.

One of these alternatives:

® The C-SPY simulator

e J-Link driver (J-Link debug probe only—not built-in J-Link)

Selects the viewing range for the displayed values:

Auto

Uses the range according to the range of the values that are actually collected,
continuously keeping track of minimum or maximum values. The currently
computed range, if any, is displayed in parentheses. The range is rounded to
reasonably even limits.

Factory

For the Data Log graph: Uses the range according to the value range of the
variable, for example 0-65535 for an unsigned 16-bit integer.

For the Power Log graph: Uses the range according to the properties of the
measuring hardware.

Custom

Use the text boxes to specify an explicit range.

211

Reference information on trace

212

Scale

Selects the scale type of the Y-axis:

e Linear

o Logarithmic.

Trace Start breakpoints dialog box

C-SPY® Debugging Guide
for RX

The Trace Start dialog box is available from the context menu that appears when you

right-click in the Breakpoints window.
New Breakpoint g|

9 Trace Start l

Trigger At:

| Ed,.

(] 8 | Cancel |

Use this dialog box to set a Trace Start breakpoint where you want to start collecting
trace data. If you want to collect trace data only for a specific range, you must also set a
Trace Stop breakpoint where you want to stop collecting data.

See also, Trace Stop breakpoints dialog box, page 213.

To set a Trace Start breakpoint:

In the editor or Disassembly window, right-click and choose Trace Start from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.
In the Breakpoints window, right-click and choose New Breakpoint>Trace Start.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

When the breakpoint is triggered, the trace data collection starts.

Trace __4

Requirements

None; this window is always available.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 154.

Trace Stop breakpoints dialog box

The Trace Stop dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

x
& Trace Stop |

Trigger At:

| Edit.. |

()8 I Cancel |

Use this dialog box to set a Trace Stop breakpoint where you want to stop collecting
trace data. If you want to collect trace data only for a specific range, you might also need
to set a Trace Start breakpoint where you want to start collecting data.

See also, Trace Start breakpoints dialog box, page 212.

To set a Trace Stop breakpoint:

I In the editor or Disassembly window, right-click and choose Trace Stop from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.
2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Stop.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection stops.

213

Reference information on trace

Requirements

None; this window is always available.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 154.

Data Trace Collection breakpoints dialog box

The Data Trace Collection breakpoints dialog box is available from the context menu
in the editor window, Breakpoints window, the Memory window, and in the
Disassembly window.

Use this dialog box to set breakpoints to collect trace data from one of the hardware
debugger drivers. Data trace collection breakpoints do not break the execution.

This dialog box is designed identically to the Data breakpoints dialog box, see Data
breakpoints dialog box (C-SPY hardware debugger drivers), page 150, for reference
information.

Requirements
A C-SPY hardware debugger driver.

Trace Expressions window

The Trace Expressions window is available from the Trace window toolbar.

Trace Expressions B
+ 3

Expression | Format

i Default

. Trace Expression

Use this window to specify, for example, a specific variable (or an expression) for which
you want to collect trace data.

Requirements
The C-SPY simulator.

C-SPY® Debugging Guide
214 for RX

Trace __4

Toolbar
The toolbar buttons change the order between the expressions:
Arrow up
Moves the selected row up.

Arrow down
Moves the selected row down.

Display area
Use the display area to specify expressions for which you want to collect trace data:

Expression
Specity any expression that you want to collect data from. You can specify any
expression that can be evaluated, such as variables and registers.

Format
Shows which display format that is used for each expression. Note that you can

change display format via the context menu.

Each row in this area will appear as an extra column in the Trace window.

Find in Trace dialog box

The Find in Trace dialog box is available by clicking the Find button on the Trace
window toolbar or by choosing Edit>Find and Replace>Find.

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

Find in Trace P§|

W' Text search
| =l
Cancel

[~ Match case
I Match whale word

™ only search in one colurnn

| I

™ Address range

Use this dialog box to specify the search criteria for advanced searches in the trace data.

215

Reference information on trace

The search results are displayed in the Find in Trace window—available by choosing
the View>Messages command, see Find in Trace window, page 216.

See also Searching in trace data, page 193.

Requirements

None; this window is always available.

Text search
Specify the string you want to search for. To specify the search criteria, choose between:

Match Case
Searches only for occurrences that exactly match the case of the specified text.
Otherwise int will also find INT and Int and so on.

Match whole word
Searches only for the string when it occurs as a separate word. Otherwise int
will also find print, sprintf and so on.

Only search in one column
Searches only in the column you selected from the drop-down list.

Address Range

Specify the address range you want to display or search. The trace data within the
address range is displayed. If you also have specified a text string in the Text search
field, the text string is searched for within the address range.

Find in Trace window

The Find in Trace window is available from the View>Messages menu. Alternatively,
it is automatically displayed when you perform a search using the Find in Trace dialog

C-SPY® Debugging Guide
216 for RX

Trace __4

box or perform a search using the Find in Trace command available from the context
menu in the editor window.

Find In Trace B

Trace

008034 CHP RS, #0 2

Find In Trace

This window displays the result of searches in the trace data. Double-click an item in the
Find in Trace window to bring up the same item in the Trace window.

Before you can view any trace data, you must specity the search criteria in the Find in
Trace dialog box, see Find in Trace dialog box, page 215.

For more information, see Searching in trace data, page 193.

Requirements

None; this window is always available.

Display area

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria.

217

Reference information on trace

C-SPY® Debugging Guide
218 for RX

Profiling

e Introduction to the profiler
e Using the profiler

e Reference information on the profiler

Introduction to the profiler

These topics are covered:

o Reasons for using the profiler
e Briefly about the profiler

o Requirements for using the profiler

REASONS FOR USING THE PROFILER

Function profiling can help you find the functions in your source code where the most
time is spent during execution. You should focus on those functions when optimizing
your code. A simple method of optimizing a function is to compile it using speed
optimization. Alternatively, you can move the data used by the function into more
efficient memory. For detailed information about efficient memory usage, see the /4R
C/C++ Development Guide for RX.

Alternatively, you can use filtered profiling, which means that you can exclude, for
example, individual functions from being profiled. To profile only a specific part of your
code, you can select a time interval—using the Timeline window—for which C-SPY
produces profiling information.

Instruction profiling can help you fine-tune your code on a very detailed level, especially
for assembler source code. Instruction profiling can also help you to understand where
your compiled C/C++ source code spends most of its time, and perhaps give insight into
how to rewrite it for better performance.

BRIEFLY ABOUT THE PROFILER

Function profiling information is displayed in the Function Profiler window, that is,
timing information for the functions in an application. Profiling must be turned on
explicitly using a button on the window’s toolbar, and will stay enabled until it is turned
off.

219

Introduction to the profiler

220

C-SPY® Debugging Guide
for RX

Instruction profiling information is displayed in the Disassembly window, that is, the
number of times each instruction has been executed.

Profiling sources

The profiler can use different mechanisms, or sources, to collect profiling information.
Depending on the available trace source features, one or more of the sources can be used
for profiling:

o Trace (calls)

The full instruction trace is analyzed to determine all function calls and returns.
When the collected instruction sequence is incomplete or discontinuous, the
profiling information is less accurate.

o Trace (flat) / Sampling

Each instruction in the full instruction trace or each PC Sample is assigned to a
corresponding function or code fragment, without regard to function calls or returns.
This is most useful when the application does not exhibit normal call/return
sequences, such as when you are using an RTOS, or when you are profiling code
which does not have full debug information.

Trace data for the E1 and E2 Lite emulators and the J-Link debug probe is very limited.
If you are using an E1 or E2 Lite emulator or a J-Link debug probe, PC sampling
provides much better profiling data than any other source.

Power sampling

Some debug probes support sampling of the power consumption of the development
board, or components on the board. Each sample is associated with a PC sample and
represents the power consumption (actually, the electrical current) for a small time
interval preceding the time of the sample. When the profiler is set to use Power
Sampling, additional columns are displayed in the Profiler window. Each power sample
is associated with a function or code fragment, just as with regular PC Sampling. Note
that this does not imply that all the energy corresponding to a sample can be attributed
to that function or code fragment. The time scales of power samples and instruction
execution are vastly different; during one power measurement, the CPU has typically
executed many thousands of instructions. Power Sampling is a statistics tool.

REQUIREMENTS FOR USING THE PROFILER
The C-SPY simulator supports the profiler; there are no specific requirements.

To use the profiler in your hardware debugger system, you need one of these setups:

e A target board with built-in J-Link or a J-Link/J-Link Ultra debug probe and a
J-Link RX adapter

Profiling °

e AnEl, E20, or an E2 Lite emulator.
This table lists the C-SPY driver profiling support:

C-SPY driver Trace (calls) Trace (flat) Sampling Power
C-SPY simulator X X — —
C-SPY EI/E20 X X X —
C-SPY E2 Lite X X X —
C-SPY J-Link X X X X

Table 11: C-SPY driver profiling support

Using the profiler

These tasks are covered:

o Getting started using the profiler on function level

e Analyzing the profiling data

o Getting started using the profiler on instruction level
e Selecting a time interval for profiling information

GETTING STARTED USING THE PROFILER ON FUNCTION
LEVEL

To display function profiling information in the Function Profiler window:

I Build your application using these options:

Category Setting
C/C++ Compiler Output>Generate debug information
Linker Output>Include debug information in output

Table 12: Project options for enabling the profiler
2 To set up the profiler for function profiling:
e If you use an E20 emulator and want to use another profiling source than PC

sampling, you must choose E1/E20 Emulator>Hardware Setup and choose Trace
as the Emulator mode.

o If you use the C-SPY simulator, an E1 or E2 Lite emulator or a J-Link debug probe,
no specific settings are required.

221

Using the profiler

222

C-SPY® Debugging Guide
for RX

When you have built your application and started C-SPY, choose C-SPY
driver>Function Profiler to open the Function Profiler window, and click the
Enable button to turn on the profiler. Alternatively, choose Enable from the context
menu that is available when you right-click in the Function Profiler window.

Start executing your application to collect the profiling information.

Profiling information is displayed in the Function Profiler window. To sort, click on
the relevant column header.

When you start a new sampling, you can click the Clear button—alternatively, use the
context menu—to clear the data.

ANALYZING THE PROFILING DATA
Here follow some examples of how to analyze the data.

The first figure shows the result of profiling using Source: Trace (calls). The profiler

follows the program flow and detects function entries and exits.

o For the InitFib function, Flat Time 231 is the time spent inside the function itself.

e For the InitFib function, Acc Time 487 is the time spent inside the function itself,
including all functions InitFib calls.

o For the InitFib/GetFib function, Acc Time 256 is the time spent inside GetFib (but
only when called from InitFib), including any functions GetFib calls.

Profiling __o

o Further down in the data, you can find the GetFib function separately and see all of
its subfunctions (in this case none).

Ol

Function Calls Flat Time FlatTime (*%6) Acc. Time Acc Time (*
= rain 1 165 3.58 4358 94.39
; DoForegroundProcess 10 3704
InitFik 1 487
PutFib 10 3174 58,78 3174 58,78
MNextCounter 10 100 2.17 100 2.17
= InitFib 1 @ 5.01 i 187 ; 10.55
e GetFib 16 (256
GetFib 26 416 9.01 118 9.01
DoForegroundProcess 10 3704 80.26

MextCounter
PutFib 10
= <Other> o 25

v Enable

98.85

Source: Trace (calls)

The second figure shows the result of profiling using Source: Trace (flat). In this case,
the profiler does not follow the program flow, instead the profiler only detects whether
the pC address is within the function scope. For incomplete trace data, the data might
contain minor errors.

223

Using the profiler

224

C-SPY® Debugging Guide
for RX

For the InitFib function, Flat Time 231 is the time (number of hits) spent inside the
function itself.

»

FCSamp... PCSamples ..

__iar_lookup_ttich
__iar_sh_stdout

CEL S
Source: Trace (flat) ’
To secure valid data when using a debug probe, make sure to use the maximum trace
buffer size and set a breakpoint in your code to stop the execution before the buffer is
full.

<ldle> 0 0.00

I <Mo function> 5 0.21
DoForegroundProcess a0 3.85
GetFib 260 11.12
InitFik 141 65.03 =
MNextCounter [s] 2.57
PutFib 230 9.84
__crain, ?main 4 0.17
_ dhwrite Enable R
__exit
__iar_close_ttio Clear
_?ar_copy_.in.itS Filtering 3
__iar_data_init3
__iar_get_ttio g

GETTING STARTED USING THE PROFILER ON INSTRUCTION
LEVEL

To display instruction profiling information in the Disassembly window:

When you have built your application and started C-SPY, choose View>Disassembly
to open the Disassembly window, and choose Instruction Profiling>Enable from the
context menu that is available when you right-click in the left-hand margin of the
Disassembly window.

Make sure that the Show command on the context menu is selected, to display the
profiling information.

Start executing your application to collect the profiling information.

When the execution stops, for instance because the program exit is reached or a
breakpoint is triggered, you can view instruction level profiling information in the
left-hand margin of the window.

Profiling °

t_12:

08005F92 EO82 SUB SP. SP. #0=8

£320 Dly = {Int32Uiarg;

08005F94 EO0S B ??D1ly100us_0

for{wolatile int i = LOOP_DLY 100US: i: i—=1:

FD1lw100us_1:

08005F96 9900 LLR R1. [SF]

08005F98 1E49 SUES R1. R1. #0=l

08005F94 9100 STR R1. [5SF]
for{volatile int i = LOOF_DLY 100US; i i—};

'Dlyl00us 2.
08005F9C 9900 LLR R1. [SFP]

0800SF9E 2900 CHP R1. #0=0

08005FAD DI1F9 BHE ??D1lyl00us_1

while(Dly——}

?Dlyl00us 0:

08005FA2 0001 HOVS R1. RO

08005FA4 1E48 SUES RO, R1. #0xl _ILI

3

For each instruction, the number of times it has been executed is displayed.

Instruction profiling attempts to use the same source as the function profiler. If the
function profiler is not on, the instruction profiler will try to use first trace and then PC
sampling as source. You can change the source to be used from the context menu that is
available in the Function Profiler window.

SELECTING A TIME INTERVAL FOR PROFILING
INFORMATION

Normally, the profiler computes its information from all PC samples it receives,
accumulating more and more information until you explicitly clear the profiling
information. However, you can choose a time interval for which the profiler computes
the PC samples. This function is supported by the the J-Link debug probe.

To select a time interval:
Choose Function Profiler from the C-SPY driver menu.

In the Function Profiler window, right-click and choose Source: Sampling from the
context menu.

Execute your application to collect samples.
Choose C-SPY driver>Timeline.

In the Timeline window, click and drag to select a time interval.

225

Reference information on the profiler

226

Interrupts

OFF

Linear 300

Current [maA]

A selected time interval l
J

—

)

U ||m|||||||||”H““”HH"H HH HHHH HH M H‘Hm
Os 0.2s 0 ds 0. 6s 0. 8s 1.0s 1.2s 1.4s

6 1In the selected time interval, right-click and choose Profile Selection from the context
menu.

The Function Profiler window now displays profiling information for the selected time
interval.

o &8 E| [l 160000.000us - 704000.000us

Function FC Samples FC Samples (%) Fower Samples Energy (%) A
GetButtons() 791 33.10 30.82 19
Dyl D0usfvoic %) 463 19.37 7 15.38 12
GLCD_SPI_TranserByte(lntd.. 353 4 3.3z 1z
memcrmp 325 4 14 .64 21
I FTN A T
GLCD_Backlight(IntdLh 108 2 677 19
GLCD_SendCmd(GLCD_Cm.. 43 i 0.a0 -
GLCD_SPI_SendBlockiplntd... 19 2 4.00 11
& GLCD_SetWindow(lnt32L, Int.. 0 1] 0.00 -
E GLCD_SetReset(Boolean) 0 0 0.00 -
'S

Ml 7 Click the Full/Time-interval profiling button to toggle the Full profiling view.

Reference information on the profiler

C-SPY® Debugging Guide

for RX

Reference information about:
® Function Profiler window, page 227
See also:

o Disassembly window, page 77

o Trace Settings dialog box, page 195.

Profiling °

Function Profiler window

The Function Profiler window is available from the C-SPY driver menu.

=
[o ol@l=]]
Function | calls | FlatTime | Flat Time (%) | Acc. Time | Acc. Time (%) |
main() 1 165 3.57 4356 54.18
FutFib{unsigned int) 10 3174 62.63 3174 68.63
MextCounter() 10 100 2.16 100 2.16
InitFib) 1 231 4.93 487 10.53
GetFih(int) 26 416 8.99 416 8.93
DoForegroundProcess() 10 270 5.84 3704 80.09
<Other> o 269 5.82 4572 98.4a5

This window displays function profiling information.

When Trace(flat) or Sampling is selected, a checkbox appears on each line in the
left-side margin of the window. Use these checkboxes to include or exclude lines from
the profiling. Excluded lines are dimmed but not removed.

Requirements

None; this window is always available.

Toolbar

The toolbar contains:

I Enable/Disable
O
Enables or disables the profiler.
ﬁl Clear
Clears all profiling data.
(=] Save

Opens a standard Save As dialog box where you can save the contents of the
window to a file, with tab-separated columns. Only non-expanded rows are
included in the list file.

Graphical view

Overlays the values in the percentage columns with a graphical bar.

Progress bar
Displays a backlog of profiling data that is still being processed. If the rate of
incoming data is higher than the rate of the profiler processing the data, a
backlog is accumulated. The progress bar indicates that the profiler is still
processing data, but also approximately how far the profiler has come in the

227

Reference information on the profiler

228

process. Note that because the profiler consumes data at a certain rate and the
target system supplies data at another rate, the amount of data remaining to be
processed can both increase and decrease. The progress bar can grow and shrink
accordingly.

1ol Time-interval mode

Display area

C-SPY® Debugging Guide
for RX

Toggles between profiling a selected time interval or full profiling. This toolbar
button is only available if PC Sampling is supported by the debug probe.

For information about which views that are supported in the C-SPY driver you
are using, see Requirements for using the profiler, page 220.

Status field

Displays the range of the selected time interval, in other words, the profiled
selection. This field is yellow when Time-interval profiling mode is enabled.
This field is only available if PC Sampling is supported by the debug probe.

For information about which views that are supported in the C-SPY driver you
are using, see Requirements for using the profiler, page 220.

The content in the display area depends on which source that is used for the profiling
information:

For the Trace (calls) source, the display area contains one line for each function
compiled with debug information enabled. When some profiling information has
been collected, it is possible to expand rows of functions that have called other
functions. The child items for a given function list all the functions that have been
called by the parent function and the corresponding statistics.

For the Sampling and Trace (flat) sources, the display area contains one line for
each C function of your application, but also lines for sections of code from the
runtime library or from other code without debug information, denoted only by the
corresponding assembler labels. Each executed pC address from trace data is treated
as a separate sample and is associated with the corresponding line in the Profiling
window. Each line contains a count of those samples.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 220.

More specifically, the display area provides information in these columns:

Function (All sources)

The name of the profiled C function.

Profiling °

For Sampling source, also sections of code from the runtime library or from
other code without debug information, denoted only by the corresponding
assembler labels, is displayed.

Calls (Trace (calls))
The number of times the function has been called.

Flat time (Trace (calls))
The time expressed as the number of executed instructions spent inside the
function.

Flat time (%) (Trace (calls))
Flat time expressed as a percentage of the total time.

Acc. time (Trace (calls))
The time expressed as the number of executed instructions spent inside the
function and everything called by the function.

Acc. time (%) (Trace (calls))
Accumulated time expressed as a percentage of the total time.

PC Samples (Trace (flat) and Sampling)

The number of PC samples associated with the function.

PC Samples (%) (Trace (flat) and Sampling)
The number of PC samples associated with the function as a percentage of the
total number of samples.

Power Samples (Power Sampling)

The number of power samples associated with that function.

Energy (%) (Power Sampling)

The accumulated value of all measurements associated with that function,
expressed as a percentage of all measurements.

Avg Current [mA] (Power Sampling)
The average measured value for all samples associated with that function.

Min Current [mA] (Power Sampling)
The minimum measured value for all samples associated with that function.

Max Current [mA] (Power Sampling)
The maximum measured value for all samples associated with that function.

229

Reference information on the profiler

Context menu
This context menu is available:
[V Ebe '
Clear

| ¥ Source: Trace (calls)

Source: Trace (flat)

Save to Log File...
The contents of this menu depend on the C-SPY driver you are using.
These commands are available:

Enable

Enables the profiler. The system will collect information also when the window
is closed.

Clear
Clears all profiling data.

Filtering

Selects which part of your code to profile. Choose between:
Check All—Excludes all lines from the profiling.
Uncheck All—Includes all lines in the profiling.
Load—Reads all excluded lines from a saved file.

Save—Saves all excluded lines to a file. Typically, this can be useful if you are
a group of engineers and want to share sets of exclusions.

These commands are only available when using one of the modes Trace(flat) or
Sampling.

Source*
Selects which source to be used for the profiling information. Choose between:

Sampling—the instruction count for instruction profiling represents the number
of samples for each instruction.

Trace (calls)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Trace (flat)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Power Sampling
Toggles power sampling information on or off.

C-SPY® Debugging Guide
230 for RX

Profiling °

Save to Log File
Saves all profiling data to a file.

* The available sources depend on the C-SPY driver you are using.

231

Reference information on the profiler

C-SPY® Debugging Guide
232 for RX

Analyzing code
performance

e Introduction to performance analysis
e Analyzing performance

e Reference information on performance analysis.

Introduction to performance analysis
These topics are covered:
o Reasons for using performance analysis
e Briefly about performance analysis

o Requirements for performance analysis.

REASONS FOR USING PERFORMANCE ANALYSIS

The performance analyzing facility of the hardware debugger can measure a number of
execution aspects to help you understand how well your application performs on the
MCU.

Because performance analysis uses the debugger’s performance measurement circuit to
measure the execution time, it does not slow down the execution of your application.
BRIEFLY ABOUT PERFORMANCE ANALYSIS

The performance analysis is capable of measuring these execution aspects:

the total time the execution takes
the total number of cycles the execution takes
the number of cycles spent processing interrupts and other exceptions

the number of executed instructions

the number of accepted interrupts and other exceptions.
The analysis can cover either the entire execution or execution between two breakpoints.

Performance analysis settings cannot be changed during the execution and the results of
the analysis are displayed in the Performance Analysis window.

233

Analyzing performance

REQUIREMENTS FOR PERFORMANCE ANALYSIS

To use performance analysis with your hardware debugger system, you need the
appropriate hardware:

e AnEl, E2 Lite, or E20 emulator

o Either a target board with built-in J-Link or a J-Link/J-Link Ultra debug probe and a
J-Link RX adapter.

The C-SPY simulator does not support performance analysis.

Analyzing performance

These tasks are covered:

o Using performance analysis.

USING PERFORMANCE ANALYSIS

Getting started analyzing code performance:

I When you have built your application and started C-SPY, choose C-SPY
driver>Performance Analysis to open the Performance Analysis window and click
the Enable button to turn on the analysis.

Click the Setup button to display the Performance Analysis Setup dialog box.
Use the Condition list box to select what to measure and close the dialog box.

Start executing your application to begin the analysis.

vi A W N

Measurements are displayed in the Performance Analysis window.

You can also choose to set performance breakpoints to measure the execution of certain
sections of code. These breakpoints will be displayed in the Performance Analysis
Setup dialog box.

X Before you start a new measurement, you can click the Clear button to clear the
J collected data. To clear just one of the counters, select it before clearing.

Reference information on performance analysis
Reference information about:
® Performance Analysis Setup dialog box, page 235
® Performance Analysis window, page 237

® Performance Start breakpoints dialog box, page 239

C-SPY® Debugging Guide
234 for RX

® Performance Stop breakpoints dialog box, page 240.

Performance Analysis Setup dialog box
The Performance Analysis Setup dialog box is available from the Performance

Requirements

Condition

Analysis window and from the C-SPY driver menu.

Performance Analysis Setup

(o |

Counter 1
Condition:

Ewent Type Address

Dizplay the cycle as a time span
[7] Measure the perfarmance only once
Counter 2

Condition:
Execution count

Ewent Type Address

Dizplay the cycle as a time span

[7] Measure the perfarmance only once

[Use B4-bit counter

[ok

] [Cancel]

Analyzing code performance __4

Use this dialog box to configure the analysis. You can configure one or two counters.
The size of the counters is 32 bits, which limits the amount of data they can collect. To
collect more data, select the Use 64-bit counter option and use just one counter.

A C-SPY hardware debugger driver.

Selects what to measure. Choose between:

Not in use
The counter is not in use.

235

Reference information on performance analysis

Execution cycle
The number of cycles that have elapsed.
Execution cycle (supervisor mode)
The number of cycles that have elapsed in supervisor mode.

Exception and interrupt cycle
The number of cycles spent processing interrupts and other exceptions.

Exception cycle

The number of cycles spent processing exceptions.

Interrupt cycle
The number of cycles spent processing interrupts.

Execution count
The number of valid instructions executed.
Exception and interrupt count
The number of accepted interrupts and other exceptions.

Exception count
The number of accepted exceptions.

Interrupt count

The number of accepted interrupts.

Display list

This list displays any performance start/stop breakpoints connected to the counter.
Information is provided in these columns:

Event
Identifies the breakpoint.

Type
The type of breakpoint: Start or Stop.

Address
The memory address where the breakpoint is placed.
For information about performance start/stop breakpoints, see Performance Start

breakpoints dialog box, page 239 and Performance Stop breakpoints dialog box, page
240.

C-SPY® Debugging Guide
236 for RX

Analyzing code performance __4

Display the cycle as a time span

Converts the number of cycles spent into time and displays the value in the Time column
of the Performance Analysis window, using the operating frequency value from the
Operating Frequency dialog box; see Operating Frequency dialog box, page 59. This
option requires that the counter Condition measures cycles.

Measure the performance only once
Specifies that the code section between two performance breakpoints is only analyzed
once, even if the execution loops. This option can only be used with performance
breakpoints.

Use 64-bit counter
Combines the two 32-bit counters to use them as a single 64-bit counter. This increases
the capacity when measuring the performance of a single address range. Only the
settings from Counter 1 are used.

Performance Analysis window
The Performance Analysis window is available from the C-SPY driver menu during a
debug session.

Performance Analysis @
(X

No Condition Tine Count

1 Execution cycle 127 . 250us 1527

2 Execution count - 933

This window displays the performance analysis.

Requirements
A C-SPY hardware debugger driver.

237

Reference information on performance analysis

238

Toolbar

Display area

C-SPY® Debugging Guide
for RX

The toolbar contains:

Enable/Disable

Clear

Setup

Enables or disables the performance analysis. Disabling the analysis does not
clear already collected data; re-enabling the analysis and running more passes
will append the new data to the previously collected data.

Clears all data in the selected row of the display area. If no row is selected, all
data is cleared.

Displays the Performance Analysis Setup dialog box where you configure the
measurement. See Performance Analysis Setup dialog box, page 235.

The display area provides information in these columns:

No

The number of the analysis counter. The numbers are 1 and 2 when a 32-bit
counter is used for both of two ranges or 1 when the two 32-bit counters are
handled as a 64-bit counter for measurement of performance in a single address
range.

Condition

Time

Count

Indicates the measurement type. See the description for the Performance
Analysis Setup dialog box, page 235.

The cumulative total of the analyzed execution.

If the measurement type in the Condition column is cycles, the time is
calculated from the operating frequency value and the value in the Count
column.

If the measurement type in the Condition column is a count, this column
displays a —.

A decimal value that indicates the number of times the measurement has been
performed. Any overflows will be indicated.

Analyzing code performance __4

Performance Start breakpoints dialog box

The Performance Start dialog box is available from the context menu that appears
when you right-click in the Breakpoints window.
2 Performance Start

Trigger At:

Use this dialog box to set performance start breakpoints.

To set a Performance Start breakpoint:

I In the editor, Breakpoints, or Disassembly window, right-click and choose one of the
two Performance Start commands from the context menu. The number of the
breakpoint, 1 or 2, connects the breakpoint to one of the two counters in the
Performance Analysis Setup dialog box.

Alternatively, to modify an existing breakpoint, select it in the Breakpoints window and
choose Edit on the context menu.

2 In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

3 When the breakpoint is triggered, the performance analysis starts.

Requirements
A C-SPY hardware debugger driver.

Trigger At

Specify the location for the breakpoint in the text box. Alternatively, click the Edit
browse button to open the Enter Location dialog box, see Enter Location dialog box,
page 154.

239

Reference information on performance analysis

240

Performance Stop breakpoints dialog box

Requirements

Trigger At

C-SPY® Debugging Guide
for RX

The Performance Stop dialog box is available from the context menu that appears when
you right-click in the Breakpoints window.
& Performance Stop

Trigger At:

Use this dialog box to set performance stop breakpoints.

To set a Performance Stop breakpoint:

In the editor, Breakpoints, or Disassembly window, right-click and choose the
Performance Stop command that corresponds to a previously defined performance
start breakpoint. The number of the breakpoint, 1 or 2, connects the breakpoint to one
of the two counters in the Performance Analysis Setup dialog box.

Alternatively, to modify an existing breakpoint, select it in the Breakpoints window and
choose Edit on the context menu.

In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

When the breakpoint is triggered, the performance analysis stops.

A C-SPY hardware debugger driver.

Specify the location for the breakpoint in the text box. Alternatively, click the Edit
browse button to open the Enter Location dialog box, see Enter Location dialog box,
page 154.

Code coverage

e Introduction to code coverage

e Reference information on code coverage.

Introduction to code coverage
These topics are covered:

o Reasons for using code coverage
e Briefly about code coverage

o Requirements and restrictions for using code coverage.

REASONS FOR USING CODE COVERAGE

The code coverage functionality is useful when you design your test procedure to verify
whether all parts of the code have been executed. It also helps you identity parts of your
code that are not reachable.

BRIEFLY ABOUT CODE COVERAGE

The Code Coverage window reports the status of the current code coverage analysis.
For every program, module, and function, the analysis shows the percentage of code that
has been executed since code coverage was turned on up to the point where the
application has stopped. In addition, all statements that have not been executed are
listed. The analysis will continue until turned off.

REQUIREMENTS AND RESTRICTIONS FOR USING CODE
COVERAGE

Code coverage is supported by the C-SPY Simulator and there are no specific
requirements or restrictions.

Reference information on code coverage
Reference information about:

o Code Coverage window, page 242.
See also Single stepping, page 70.

241

Reference information on code coverage

Code Coverage window

C-SPY® Debugging Guide

242 for RX

The Code Coverage window is available from the View menu.

[© sl[c]le & &

=% project] 91.18%
=@ Tutor 100.00%
¢ DoFaregroundProcess 100.00%
¢ NextCounter 100.00%
% main 100.00%
=% Utilities 86.96%
=@ GetFib 66.67%
< 5-13:54 addr((xDE)
4 InitFib 100.00%
=@ PutFib 84.62%
< 5-17:65 addr(IxEB)
< 5-11:66 addr(0xF0)

This window reports the status of the current code coverage analysis. For every program,
module, and function, the analysis shows the percentage of code that has been executed
since code coverage was turned on up to the point where the application has stopped. In
addition, all statements that have not been executed are listed. The analysis will continue
until turned off.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window must be refreshed because the displayed information is no
longer up to date. To update the information, use the Refresh command.

To get started using code coverage:

Before using the code coverage functionality you must build your application using
these options:

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Output>Include debug information in output

Debugger Plugins>Code Coverage

Table 13: Project options for enabling code coverage

After you have built your application and started C-SPY, choose View>Code
Coverage to open the Code Coverage window.

Click the Activate button, alternatively choose Activate from the context menu, to
switch on code coverage.

Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button to view the code
coverage information.

Code coverage ___4

Requirements
The C-SPY simulator.

Display area

The code coverage information is displayed in a tree structure, showing the program,
module, function, and statement levels. The window displays only source code that was
compiled with debug information. Thus, startup code, exit code, and library code is not
displayed in the window. Furthermore, coverage information for statements in inlined
functions is not displayed. Only the statement containing the inlined function call is
marked as executed. The plus sign and minus sign icons allow you to expand and
collapse the structure.

These icons give you an overview of the current status on all levels:

Red diamond Signifies that 0% of the modules or functions has been
executed.

Green diamond Signifies that 100% of the modules or functions has been
executed.

Red and green diamond ~ Signifies that some of the modules or functions have been
executed.

Yellow diamond Signifies a statement that has not been executed.

The percentage displayed at the end of every program, module, and function line shows
the amount of statements that has been covered so far, that is, the number of executed
statements divided with the total number of statements.

For statements that have not been executed (yellow diamond), the information displayed
is the column number range and the row number of the statement in the source window,
followed by the address of the step point:

<column_start>-<column_end>:row address.

A statement is considered to be executed when one of its instructions has been executed.
When a statement has been executed, it is removed from the window and the percentage
is increased correspondingly.

Double-clicking a statement or a function in the Code Coverage window displays that
statement or function as the current position in the editor window, which becomes the
active window. Double-clicking a module on the program level expands or collapses the
tree structure.

243

Reference information on code coverage

244

Context menu

C-SPY® Debugging Guide
for RX

= e

© 2

This context menu is available:

v Activate
Clear
Refresh
Auko-refresh
Save As...

These commands are available:

Activate

Switches code coverage on and off during execution.

Clear
Clears the code coverage information. All step points are marked as not
executed.
Refresh
Updates the code coverage information and refreshes the window. All step
points that have been executed since the last refresh are removed from the tree.
Auto-refresh

Toggles the automatic reload of code coverage information on and off. When
turned on, the code coverage information is reloaded automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As

Saves the current code coverage result in a text file.

Save session

Saves your code coverage session data to a * . dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

Power debugging

e Introduction to power debugging
e Optimizing your source code for power consumption
e Debugging in the power domain

e Reference information on power debugging.

Introduction to power debugging

These topics are covered:

e Reasons for using power debugging
e Briefly about power debugging

o Requirements and restrictions for power debugging.

REASONS FOR USING POWER DEBUGGING

Long battery lifetime is a very important factor for many embedded systems in almost
any market segment: medical, consumer electronics, home automation, etc. The power
consumption in these systems does not only depend on the hardware design, but also on
how the hardware is used. The system software controls how it is used.

For examples of when power debugging can be useful, see Optimizing your source code
for power consumption, page 247.

BRIEFLY ABOUT POWER DEBUGGING

Power debugging is based on the ability to sample the power consumption—more
precisely, the power being consumed by the CPU and the peripheral units—and
correlate each sample with the application’s instruction sequence and hence with the
source code and various events in the program execution.

Traditionally, the main software design goal has been to use as little memory as possible.
However, by correlating your application’s power consumption with its source code you
can get insight into how the software affects the power consumption, and thus how it can
be minimized.

245

Introduction to power debugging

246

C-SPY® Debugging Guide
for RX

Measuring power consumption

The debug probe measures the voltage drop across a small resistor in series with the
supply power to the device. The voltage drop is measured by a differential amplifier and
then sampled by an AD converter.

Power debugging using C-SPY

C-SPY provides an interface for configuring your power debugging and a set of
windows for viewing the power values:

The Power Setup window is where you can specify a threshold and an action to be
executed when the threshold is reached. This means that you can enable or disable
the power measurement or you can stop the application’s execution and determine
the cause of unexpected power values.

The Power Log window displays all logged power values. This window can be used
for finding peaks in the power logging and because the values are correlated with

the executed code, you can double-click on a value in the Power Log window to get
the corresponding code. The precision depends on the frequency of the samples, but
there is a good chance that you find the source code sequence that caused the peak.

The power graph in the Timeline window displays power values on a time scale.
This provides a convenient way of viewing the power consumption in relation to the
other information displayed in the window. The Timeline window is correlated to
both the Power Log window, the source code window, and the Disassembly window,
which means you are just a double-click away from the source code that
corresponds to the values you see on the timeline.

The Function Profiler window combines the function profiling with the power
logging to display the power consumption per function—power profiling. You will
get a list of values per function and also the average values together with max and
min values. Thus, you will find the regions in the application that you should focus
when optimizing for power consumption.

REQUIREMENTS AND RESTRICTIONS FOR POWER
DEBUGGING

To use the features in C-SPY for power debugging, you need a system with a
J-Link/J-Link Ultra debug probe and a J-Link RX adapter. Target boards with built-in
J-Link do not support power debugging.

Power debugging ___4

Optimizing your source code for power consumption

This section gives some examples where power debugging can be useful and thus
hopefully help you identify source code constructions that can be optimized for low
power consumption.

These topics are covered:

Waiting for device status

Software delays

DMA versus polled I/O

Low-power mode diagnostics

CPU frequency

Detecting mistakenly unattended peripherals
Peripheral units in an event-driven system

Finding conflicting hardware setups

Analog interference

WAITING FOR DEVICE STATUS

One common construction that could cause unnecessary power consumption is to use a
poll loop for waiting for a status change of, for example a peripheral device.
Constructions like this example execute without interruption until the status value
changes into the expected state.

while (USBD_GetState() < USBD_STATE_CONFIGURED) ;
while ((BASE_PMC->PMC_SR & MC_MCKRDY) != PMC_MCKRDY) ;

To minimize power consumption, rewrite polling of a device status change to use
interrupts if possible, or a timer interrupt so that the CPU can sleep between the polls.

SOFTWARE DELAYS

A software delay might be implemented as a for or while loop like for example:

i = 10000; /* A software delay */

do i--;

while (i != 0);

Such software delays will keep the CPU busy with executing instructions performing
nothing except to make the time go by. Time delays are much better implemented using
a hardware timer. The timer interrupt is set up and after that, the CPU goes down into a
low power mode until it is awakened by the interrupt.

247

Optimizing your source code for power consumption

DMA VERSUS POLLED 1/O

DMA has traditionally been used for increasing transfer speed. For MCUs there are
plenty of DMA techniques to increase flexibility, speed, and to lower power
consumption. Sometimes, CPUs can even be put into sleep mode during the DMA
transfer. Power debugging lets you experiment and see directly in the debugger what
effects these DMA techniques will have on power consumption compared to a
traditional CPU-driven polled solution.

LOW-POWER MODE DIAGNOSTICS

Many embedded applications spend most of their time waiting for something to happen:
receiving data on a serial port, watching an I/O pin change state, or waiting for a time
delay to expire. If the processor is still running at full speed when it is idle, battery life
is consumed while very little is being accomplished. So in many applications, the
microcontroller is only active during a very small amount of the total time, and by
placing it in a low-power mode during the idle time, the battery life can be extended
considerably.

A good approach is to have a task-oriented design and to use an RTOS. In a task-oriented
design, a task can be defined with the lowest priority, and it will only execute when there
is no other task that needs to be executed. This idle task is the perfect place to implement
power management. In practice, every time the idle task is activated, it sets the
microcontroller into a low-power mode. Many microprocessors and other silicon
devices have a number of different low-power modes, in which different parts of the
microcontroller can be turned off when they are not needed. The oscillator can for
example either be turned off or switched to a lower frequency. In addition, individual
peripheral units, timers, and the CPU can be stopped. The different low-power modes
have different power consumption based on which peripherals are left turned on. A
power debugging tool can be very useful when experimenting with different low-level
modes.

You can use the Function profiler in C-SPY to compare power measurements for the task
or function that sets the system in a low-power mode when different low-power modes
are used. Both the mean value and the percentage of the total power consumption can be
useful in the comparison.

CPU FREQUENCY

Power consumption in a CMOS MCU is theoretically given by the formula:
P=f* U2 * k

where £ is the clock frequency, U is the supply voltage, and k is a constant.

Power debugging lets you verify the power consumption as a factor of the clock
frequency. A system that spends very little time in sleep mode at 50 MHz is expected to

C-SPY® Debugging Guide
248 for RX

Power debugging ___4

spend 50% of the time in sleep mode when running at 100 MHz. You can use the power
data collected in C-SPY to verify the expected behavior, and if there is a non-linear
dependency on the clock frequency, make sure to choose the operating frequency that
gives the lowest power consumption.

DETECTING MISTAKENLY UNATTENDED PERIPHERALS

Peripheral units can consume much power even when they are not actively in use. If you
are designing for low power, it is important that you disable the peripheral units and not
just leave them unattended when they are not in use. But for different reasons, a
peripheral unit can be left with its power supply on; it can be a careful and correct design
decision, or it can be an inadequate design or just a mistake. If not the first case, then
more power than expected will be consumed by your application. This will be easily
revealed by the Power graph in the Timeline window. Double-clicking in the Timeline
window where the power consumption is unexpectedly high will take you to the
corresponding source code and disassembly code. In many cases, it is enough to disable
the peripheral unit when it is inactive, for example by turning off its clock which in most
cases will shut down its power consumption completely.

However, there are some cases where clock gating will not be enough. Analog
peripherals like converters or comparators can consume a substantial amount of power
even when the clock is turned off. The Timeline window will reveal that turning off the
clock was not enough and that you need to turn off the peripheral completely.

PERIPHERAL UNITS IN AN EVENT-DRIVEN SYSTEM

Consider a system where one task uses an analog comparator while executing, but the
task is suspended by a higher-priority task. Ideally, the comparator should be turned off
when the task is suspended and then turned on again once the task is resumed. This
would minimize the power being consumed during the execution of the high-priority
task.

249

Optimizing your source code for power consumption

This is a schematic diagram of the power consumption of an assumed event-driven
system where the system at the point of time t; is in an inactive mode and the current is

IO:

Power consumption

Time

v

% LR, 5} 5 4

Att,, the system is activated whereby the current rises to I; which is the system’s power
consumption in active mode when at least one peripheral device turned on, causing the
current to rise to I. At t,, the execution becomes suspended by an interrupt which is
handled with high priority. Peripheral devices that were already active are not turned off,
although the task with higher priority is not using them. Instead, more peripheral devices
are activated by the new task, resulting in an increased current I, between t, and t; where
control is handed back to the task with lower priority.

The functionality of the system could be excellent and it can be optimized in terms of
speed and code size. But also in the power domain, more optimizations can be made.
The shadowed area represents the energy that could have been saved if the peripheral
devices that are not used between t, and t; had been turned off, or if the priorities of the
two tasks had been changed.

If you use the Timeline window, you can make a closer examination and identify that

unused peripheral devices were activated and consumed power for a longer period than
necessary. Naturally, you must consider whether it is worth it to spend extra clock cycles
to turn peripheral devices on and off in a situation like in the example.

FINDING CONFLICTING HARDWARE SETUPS

To avoid floating inputs, it is a common design practice to connect unused MCU I/O
pins to ground. If your source code by mistake configures one of the grounded I/O pins
as a logical 1 output, a high current might be drained on that pin. This high unexpected
current is easily observed by reading the current value from the Power graph in the

C-SPY® Debugging Guide
250 for RX

Power debugging ___4

Timeline window. It is also possible to find the corresponding erratic initialization code
by looking at the Power graph at application startup.

A similar situation arises if an I/O pin is designed to be an input and is driven by an
external circuit, but your code incorrectly configures the input pin as output.

ANALOG INTERFERENCE

When mixing analog and digital circuits on the same board, the board layout and routing
can affect the analog noise levels. To ensure accurate sampling of low-level analog
signals, it is important to keep noise levels low. Obtaining a well-mixed signal design
requires careful hardware considerations. Your software design can also affect the
quality of the analog measurements.

Performing a lot of I/O activity at the same time as sampling analog signals causes many
digital lines to toggle state at the same time, which might introduce extra noise into the
AD converter.

Noise spike |

Umin=—3.12l)

Power debugging will help you investigate interference from digital and power supply
lines into the analog parts. Power spikes in the vicinity of AD conversions could be the
source of noise and should be investigated. All data presented in the Timeline window
is correlated to the executed code. Simply double-clicking on a suspicious power value
will bring up the corresponding C source code.

Debugging in the power domain
These tasks are covered:

e Displaying a power profile and analyzing the result
o Detecting unexpected power usage during application execution

e Changing the graph resolution.

251

Debugging in the power domain

See also:

o Timeline window, page 202

o Selecting a time interval for profiling information, page 225.

DISPLAYING A POWER PROFILE AND ANALYZING THE
RESULT
To view the power profile:

| Start the debugger.

2 Choose C-SPY driver>Power Log Setup. In the ID column, make sure to select the
alternatives for which you want to enable power logging.

Choose C-SPY driver>Timeline to open the Timeline window.

4 Right-click in the graph area and choose Enable from the context menu to enable the
power graph you want to view.

Choose C-SPY driver>Power Log to open the Power Log window.

6 Optionally, before you start executing your application you can configure the viewing
range of the Y-axis for the power graph. See Viewing Range dialog box, page 211.

7 Click Go on the toolbar to start executing your application. In the Power Log window,
all power values are displayed. In the Timeline window, you will see a graphical
representation of the power values. For information about how to navigate on the
graph, see Timeline window, page 202.

8 To analyze power consumption:

o Double-click on an interesting power value to highlight the corresponding source
code in the editor window and in the Disassembly window. The corresponding log
is highlighted in the Power Log window. For examples of when this can be useful,
see Optimizing your source code for power consumption, page 247.

e For a specific interrupt, you can see whether the power consumption is changed in
an unexpected way after the interrupt exits, for example, if the interrupt enables a
power-intensive unit and does not turn it off before exit.

e For function profiling, see Selecting a time interval for profiling information, page
225.

DETECTING UNEXPECTED POWER USAGE DURING
APPLICATION EXECUTION

To detect unexpected power consumption:

I Choose C-SPY driver>Power Log Setup to open the Power Setup window.

C-SPY® Debugging Guide
252 for RX

Power debugging ___4

2 In the Power Setup window, specify a threshold value and the appropriate action, for
example Log All and Halt CPU Above Threshold.

3 Choose C-SPY driver>Power Log to open the Power Log window. If you
continuously want to save the power values to a file, choose Choose Live Log File
from the context menu. In this case you also need to choose Enable Live Logging to.

4 Start the execution.

When the power consumption passes the threshold value, the execution will stop and
perform the action you specified.

If you saved your logged power values to a file, you can open that file in an external tool
for further analysis.
CHANGING THE GRAPH RESOLUTION

To change the resolution of a Power graph in the Timeline window:

I In the Timeline window, select the Power graph, right-click and choose Open Setup
Window to open the Power Log Setup window.

2 From the context menu in the Power Log Setup window, choose a suitable unit of
measurement.

3 In the Timeline window, select the Power graph, right-click and choose Viewing
Range from the context menu.

4 In the Viewing Range dialog box, select Custom and specify range values in the
Lowest value and the Highest value text boxes. Click OK.

5 The graph is automatically updated accordingly.

Reference information on power debugging

Reference information about:

® Power Log Setup window, page 254

® Power Log window, page 256.

® Power graph in the Timeline window, page 259.
See also:

o Trace window, page 198

o Timeline window, page 202

o Viewing Range dialog box, page 211
°

Function Profiler window, page 227.

253

Reference information on power debugging

254

Power Log Setup window

Requirements

Display area

C-SPY® Debugging Guide

for RX

The Power Log Setup window is available from the C-SPY driver menu during a debug
session.

Power Log Setup @
Sampling Frequency Max [Hz]: 200000 Wanted [Hz]: 10000 - Actual [Hz]: 200000
D MName Shunt [Chrn] Threshaold Unit Action
IT... [TrgPwr — 0 uA Log All

Use this window to configure the power measurement.

Note: To enable power logging, choose Enable from the context menu in the Power
Log window or from the context menu in the power graph in the Timeline window.

A J-Link/J-Link Ultra debug probe and a J-Link RX adapter.

This area contains these columns:

ID
A unique string that identifies the measurement channel in the probe. Select the
check box to activate the channel. If the check box is deselected, logs will not
be generated for that channel.

Name
Specity a user-defined name.

Shunt [Ohm]
This column always contains -- (two dashes).

Threshold
Specify a threshold value in the selected unit. The action you specify will be
executed when the threshold value is reached.

Unit

Selects the unit for power display. Choose between: nA, uA, mA.

Power debugging ___4

Action
Displays the selected action for the measurement channel. Choose between:
Log All
Log Above Threshold
Log Below Threshold
Log All and Halt CPU Above Threshold
Log All and Halt CPU Below Threshold

Context menu

This context menu is available:

nA
uA
W mA

Log All
Log Above Threshold
Log Below Threshold
v Log All and Halt CPU Above Threshold
Log All and Halt CPU Below Threshold

These commands are available:

nA, uA, mA
Selects the unit for the power display. These alternatives are available for
channels that measure current.

Log All
Logs all values.

Log Above Threshold
Logs all values above the threshold.

Log Below Threshold
Logs all values below the threshold.

Log All and Halt CPU Above Threshold
Logs all values. If a logged value exceeds the threshold, execution is stopped.

Log All and Halt CPU Below Threshold
Logs all values. If alogged value goes below the threshold, execution is stopped.

255

Reference information on power debugging

256

Power Log window

Requirements

Display area

C-SPY® Debugging Guide
for RX

The Power Log window is available from the C-SPY driver menu during a debug

session.
Power Log @
Time Program Counter ITrgPwr [uA] T
4= 5R2227 . 729%u= 0=x080019BS8 16463
4= 562483 64b6us 0=x080019BS8 16463
4= 562739 . 667us 0=x080019B2 16463
4= 562995 688us 0=x0B80019B4 16463
4= 563251 604us O0=x080019CC 27384
4= 5A3507 . 625us 0=x080019CC 27384 m

This window displays collected power values.

A row with only Time/Cycles and Program Counter displayed in grey denotes a logged
power value for a channel that was active during the actual collection of data but
currently is disabled in the Power Log Setup window.

Note: The number of logged power values is limited. When this limit is exceeded, the
entries at the beginning of the buffer are erased.

A J-Link/J-Link Ultra debug probe and a J-Link RX adapter.

This area contains these columns:

Time

Cycles

The time from the application reset until the event, based on the clock
frequency.

If the time is displayed in italics, the target system could not collect a correct
time, but instead had to approximate it.

This column is available when you have selected Show Time from the context
menu.

The number of cycles from the application reset until the event, based on the
operating frequency specified in the Operating Frequency dialog box, see
Operating Frequency dialog box, page 59. This information is cleared at reset.

If a cycle is displayed in italics, the target system could not collect a correct
time, but instead had to approximate it.

Power debugging ___4

This column is available when you have selected Show Cycles from the context
menu.

Program Counter
Displays one of these:

An address, which is the content of the pc, that is, the address of an instruction
close to where the power value was collected.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

Idle, the power value is logged during idle mode.

Name |unit]
The power measurement value expressed in the unit you specified in the Power
Setup window.

Context menu
This context menu is available:

| ¥ Enable
Clear
Save to Log File...
Choose Live Log File...
Enable Live Logging to ‘PowerLoglivelog’

Clear 'PowerLoglive.log

Show Time

| ¥ Show Cycles

Open Setup Window

These commands are available:

Enable
Enables the logging system, which means that power values are saved internally
within the IDE. The values are displayed in the Power Log window and in the
Power graph in the Timeline window (if enabled). The system will log
information also when the window is closed.

Clear

Clears the power values saved internally within the IDE. The values will also be
cleared when you reset the debugger, or if you change the execution frequency
in the Operating Frequency dialog box.

257

Reference information on power debugging

Save to Log File
Displays a standard file selection dialog box where you can choose the
destination file for the logged power values. This command then saves the
current content of the internal log buffer.

Choose Live Log File
Displays a standard file selection dialog box where you can choose a destination
file for the logged power values. The power values are continuously saved to that
file during execution. The content of the live log file is never automatically
cleared, the logged values are simply added at the end of the file.

Enable Live Logging to
Toggles live logging on or off. The logs are saved in the specified file.

Clear log file

Clears the content of the live log file.

Show Time
Displays the Time column in the Power Log window. This choice is also
reflected in the log files.

Show Cycles
Displays the Cycles column in the Power Log window. This choice is also
reflected in the log files.

Open Setup Window
Opens the Power Log Setup window.

The format of the log file
The log file has a tab-separated format. The entries in the log file are separated by TAB
and line feed. The logged power values are displayed in these columns:
Time/Cycles

The time from the application reset until the power value was logged.
Approx
An x in the column indicates that the power value has an approximative value
for time/cycle.
PC

The value of the program counter close to the point where the power value was
logged.

C-SPY® Debugging Guide
258 for RX

Power debugging ___4

Namelunit]
The corresponding value from the Power Log window, where Name and unit
are according to your settings in the Power Log Setup window.

Power graph in the Timeline window

The power graph in the Timeline window is available from the C-SPY driver menu
during a debug session.

Timeline @

— Daalog oFF

Linear

||||| 1. ||H|||||
o0 IIII||||nu|||| Wil it

1.665s /1.670s 1.675s 1.680s / 1.685s

[Con‘ mon time axis] { Selection for current garaph ‘

The power graph displays a graphical view of power measurement samples generated
by the debug probe or associated hardware in relation to a common time axis.

For more information about the Timeline window, how to display a graph, and the other
supported graphs, see Timeline window, page 202.

See also Requirements and restrictions for power debugging, page 246.

Requirements
A J-Link/J-Link Ultra debug probe and a J-Link RX adapter.

Display area
Where:
o The label area at the left end of the graph displays the name of the measurement
channel.

o The graph itself shows power measurement samples generated by the debug probe
or associated hardware.

o The graph can be displayed as a thin line between consecutive logs, as a rectangle
for every log (optionally color-filled), or as columns.

o The resolution of the graph can be changed.

259

Reference information on power debugging

o A red vertical line indicates overflow, which means that the communication channel
failed to transmit all interrupt logs from the target system.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

C-SPY® Debugging Guide
260 for RX

Part 3. Advanced
debugging

This part of the C-SPY® Debugging Guide for RX includes these chapters:
o Interrupts

o C-SPY macros

e The C-SPY command line utility—cspybat

.hmuhhhhi

261

AAARRIE

262

Interrupts

e Introduction to interrupts
e Using the interrupt system

e Reference information on interrupts

Introduction to interrupts

These topics are covered:

Briefly about interrupt logging

Briefly about the interrupt simulation system
Interrupt characteristics

Interrupt simulation states

C-SPY system macros for interrupt simulation

Target-adapting the interrupt simulation system
See also:
® Reference information on C-SPY system macros, page 297

® Breakpoints, page 129
o The IAR C/C++ Development Guide for RX

BRIEFLY ABOUT INTERRUPT LOGGING

Interrupt logging provides you with comprehensive information about the interrupt
events. This might be useful for example, to help you locate which interrupts you can
fine-tune to become faster. You can log entrances and exits to and from interrupts. You
can also log internal interrupt status information, such as triggered, expired, etc. In the
IDE:

e The logs are displayed in the Interrupt Log window

o A summary is available in the Interrupt Log Summary window

o The Interrupt graph in the Timeline window provides a graphical view of the
interrupt events during the execution of your application program.

Requirements for interrupt logging

Interrupt logging is supported by the C-SPY simulator.

263

Introduction to interrupts

264

C-SPY® Debugging Guide
for RX

See also Getting started using interrupt logging, page 270.

BRIEFLY ABOUT THE INTERRUPT SIMULATION SYSTEM

By simulating interrupts, you can test the logic of your interrupt service routines and

debug the interrupt handling in the target system long before any hardware is available.
If you use simulated interrupts in conjunction with C-SPY macros and breakpoints, you
can compose a complex simulation of, for instance, interrupt-driven peripheral devices.

The C-SPY Simulator includes an interrupt simulation system where you can simulate
the execution of interrupts during debugging. You can configure the interrupt simulation
system so that it resembles your hardware interrupt system.

The interrupt system has the following features:

Simulated interrupt support for the RX microcontroller
Single-occasion or periodical interrupts based on the cycle counter
Predefined interrupts for various devices

Configuration of hold time, probability, and timing variation

State information for locating timing problems

Configuration of interrupts using a dialog box or a C-SPY system macro—that is,
one interactive and one automating interface. In addition, you can instantly force an
interrupt.

o A log window that continuously displays events for each defined interrupt.
e A status window that shows the current interrupt activities.
All interrupts you define using the Interrupt Setup dialog box are preserved between

debug sessions, unless you remove them. A forced interrupt, on the other hand, exists
only until it has been serviced and is not preserved between sessions.

The interrupt simulation system is activated by default, but if not required, you can turn
off the interrupt simulation system to speed up the simulation. To turn it off, use either
the Interrupt Setup dialog box or a system macro.

Interrupts °

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, a variance, and a probability.

H H H
Activation | |_‘ |_|—| | | |
signal } I | I I
F‘meI] | | | l |
cycles
B Ton ot wt it
A A+R A+2R A+3R

*If probability is less than 100%, some interrupts may be omitted.

A = Activation time
R = Repeat interval
H =Hold time

Y =Variance

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options
probability—the probability, in percent, that the interrupt will actually appear in a
period—and variance—a time variation range as a percentage of the repeat interval.
These options make it possible to randomize the interrupt simulation. You can also
specify a hold time which describes how long the interrupt remains pending until
removed if it has not been processed. If the hold time is set to infinite, the corresponding
pending bit will be set until the interrupt is acknowledged or removed.

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that you can use for locating
timing problems in your application. The Interrupt Status window displays the
available status information. For an interrupt, these states can be displayed: /dle,
Pending, Executing, or Suspended.

265

Introduction to interrupts

266

C-SPY® Debugging Guide
for RX

Normally, a repeatable interrupt has a specified repeat interval that is longer than the
execution time. In this case, the status information at different times looks like this:

Hold time
- >
| T

| | 1
Interrupt A B | C DI E F | G H
activation | I \ - = -
signal
& | | I

——— Iq

| .
Execution time for

interrupt handler

Time Status

A Idle

B Pending
D Executing

E Idle

F Pending

G, H Executing

Note: The interrupt activation signal—also known as the pending bit—is automatically
deactivated the moment the interrupt is acknowledged by the interrupt handler.

However, if the interrupt repeat interval is shorter than the execution time, and the
interrupt is reentrant (or non-maskable), the status information at different times looks
like this:

Hold time
-
T
| |
Interrupt Br C D Er F G
activation : : L
signal | L
' Execution time for ! on time
interrupt invocation (1) !Execunon'nme or
interrupt invocation (2)
Time Status
A Idle
B Pending

C,DE Executing
FG 1st interrupt: Suspended
2nd interrupt: Executing

An execution time that is longer than the repeat interval might indicate that you should
rewrite your interrupt handler and make it faster, or that you should specify a longer
repeat interval for the interrupt simulation system.

C-SPY SYSTEM MACROS FOR INTERRUPT SIMULATION

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. If you write a macro function containing
definitions for the simulated interrupts, you can execute the functions automatically

Interrupts °

when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides these predefined system macros related to interrupts:
__enableInterrupts

__disablelInterrupts

__orderInterrupt

__cancellInterrupt

__cancelAllInterrupts

__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupts dialog box.

For more information about each macro, see Reference information on C-SPY system
macros, page 297.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using.

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To simulate device-specific interrupts, the interrupt system must have detailed
information about each available interrupt. This information is provided in the device
description files.

For information about device description files, see Selecting a device description file,
page 42.

Using the interrupt system

These tasks are covered:

o Simulating a simple interrupt

o Simulating an interrupt in a multi-task system

267

Using the interrupt system

268

C-SPY® Debugging Guide
for RX

o Getting started using interrupt logging.
See also:

o Using C-SPY macros, page 285 for details about how to use a setup file to define
simulated interrupts at C-SPY startup

o The tutorial Simulating an interrupt in the Information Center.

SIMULATING A SIMPLE INTERRUPT

This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.

To simulate and debug an interrupt:

Assume this simple application which contains an interrupt service routine for a timer,
which increments a tick variable. The main function sets the necessary status registers.
The application exits when 100 interrupts have been generated.

#include <sdtio.h>
#include "ior5£56108.h"
#include <intrinsics.h>

volatile int ticks = 0;
void main (void)
{

/* Add your timer setup code here */
__enable_interrupt () ; /* Enable interrupts */

while (ticks < 100); /* Endless loop */
printf ("Done\n") ;

}

/* Timer interrupt service routine */
#pragma vector = INT_TIMER
__interrupt void basic_timer (void)

{

ticks += 1;

}

Add your interrupt service routine to your application source code and add the file to
your project.

Choose Project>Options>Debugger>Setup to see the name and location of the
device description file that is being used. Open it to define an interrupt that C-SPY can
simulate. The device description file contains the information you need.

Build your project and start the simulator.

Interrupts °

Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. For the timer example, verify these settings:

Option Settings
Interrupt INT_TIMER
First activation 4000
Repeat interval 2000

Hold time 10
Probability (%) 100
Variance (%) 0

Table 14: Timer interrupt settings

Click OK.

Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

o Generate an interrupt when the cycle counter has passed 4000

o Continuously repeat the interrupt after approximately 2000 cycles.

To watch the interrupt in action, choose Simulator>Interrupt Log to open the
Interrupt Log window.

From the context menu, available in the Interrupt Log window, choose Enable to
enable the logging. If you restart program execution, status information about
entrances and exits to and from interrupts will now appear in the Interrupt Log window.

For information about how to get a graphical representation of the interrupts correlated
with a time axis, see Timeline window, page 202.

SIMULATING AN INTERRUPT IN A MULTI-TASK SYSTEM

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If too
many interrupts are executing simultaneously, a warning might be issued.

To simulate a normal interrupt exit:
Set a code breakpoint on the instruction that returns from the interrupt function.

Specifty the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

269

Reference information on interrupts

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

GETTING STARTED USING INTERRUPT LOGGING

I Choose C-SPY driver>Interrupt Log to open the Interrupt Log window. Optionally,
you can also choose:

o C-SPY driver>Interrupt Log Summary to open the Interrupt Log Summary
window
o C-SPY driver>Timeline to open the Timeline window and view the Interrupt
graph.
2 From the context menu in the Interrupt Log window, choose Enable to enable the
logging.
Start executing your application program to collect the log information.

4 To view the interrupt log information, look in any of the Interrupt Log, Interrupt Log
Summary, or the Interrupt graph in the Timeline window.

5 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

6 To disable interrupt logging, from the context menu in the Interrupt Log window,
toggle Enable off.

Reference information on interrupts
Reference information about:

Interrupt Setup dialog box, page 271
Edit Interrupt dialog box, page 272
Forced Interrupt window, page 274
Interrupt Status window, page 275
Interrupt Log window, page 277

Interrupt Log Summary window, page 280.

C-SPY® Debugging Guide
270 for RX

Interrupts °

Interrupt Setup dialog box

The Interrupt Setup dialog box is available by choosing Simulator>Interrupt Setup.

Interrupt Setup

Enable interrupt simulation

Intermupt [} Type Timing [cycles] 0K
MM 2 Fepeat 0+ n*2000

Edit...

Delete

% 4

This dialog box lists all defined interrupts. Use this dialog box to enable or disable the
interrupt simulation system, as well as to enable or disable individual interrupts.

Requirements
The C-SPY simulator.

Enable interrupt simulation

Enables or disables interrupt simulation. If the interrupt simulation is disabled, the
definitions remain but no interrupts are generated. Note that you can also enable and
disable installed interrupts individually by using the check box to the left of the interrupt
name in the list of installed interrupts.

Display area
This area contains these columns:

Interrupt

Lists all interrupts. Use the checkbox to enable or disable the interrupt.

ID
A unique interrupt identifier.

Type
Shows the type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt Window.

Single, a single-occasion interrupt.

271

Reference information on interrupts

272

Buttons

Repeat, a periodically occurring interrupt.
If the interrupt has been set from a C-SPY macro, the additional part (macro) is
added, for example: Repeat(macro).

Timing
The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This

means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

These buttons are available:
New

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 272.
Edit

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 272.
Delete

Removes the selected interrupt.

Delete All
Removes all interrupts.

Edit Interrupt dialog box

C-SPY® Debugging Guide
for RX

The Edit Interrupt dialog box is available from the Interrupt Setup dialog box.

Edit Interrupt g|
Interrupt:
UBRT v

Drescription:

1 0x40 UART.INTEN UART INTPEND

First activatior:

4000 Hold tirne
(&) Infinite
Fiepeat interval:
2000 o
Wariance [%]: Probability [%]:
a v 100 .

Use this dialog box to interactively fine-tune the interrupt parameters. You can add the
parameters and quickly test that the interrupt is generated according to your needs.

Interrupts °

Note: You can only edit or remove non-forced interrupts.

Requirements
The C-SPY simulator.

Interrupt

Selects the interrupt that you want to edit. The drop-down list contains all available
interrupts. Your selection will automatically update the Description box. The list
ispopulated with entries from the device description file that you have selected.

Description

A description of the selected interrupt, if available. The description is retrieved from the
selected device description file. See this file for a detailed description. For interrupts
specified using the system macro __orderInterrupt, the Description box is empty.

First activation

Specify the value of the cycle counter after which the specified type of interrupt will be
generated.

Repeat interval

Specify the periodicity of the interrupt in cycles.

Variance %

Selects a timing variation range, as a percentage of the repeat interval, in which the
interrupt might occur for a period. For example, if the repeat interval is 100 and the
variance 5%, the interrupt might occur anywhere between T=95 and T=105, to simulate
a variation in the timing.

Hold time

Specify how long, in cycles, the interrupt remains pending until removed if it has not
been processed. If you select Infinite, the corresponding pending bit will be set until the
interrupt is acknowledged or removed.

Probability %

Selects the probability, in percent, that the interrupt will actually occur within the
specified period.

273

Reference information on interrupts

274

Forced Interrupt window

Requirements

Display area

Context menu

C-SPY® Debugging Guide
for RX

The Forced Interrupt window is available from the C-SPY driver menu.

Forced Interrupt =]
Interrupt Description it
PORT 0x0C 2 P2IEFT1 P2IFG.F1 £
PORTZ 0x10 2 P2IEF2 P2IFG.PZ

Use this window to force an interrupt instantly. This is useful when you want to check
your interrupt logic and interrupt routines. Just start typing an interrupt name and focus
shifts to the first line found with that name.

The hold time for a forced interrupt is infinite, and the interrupt exists until it has been
serviced or until a reset of the debug session.

To sort the window contents, click on either the Interrupt or the Description column
header. A second click on the same column header reverses the sort order.

To force an interrupt:
Enable the interrupt simulation system, see Interrupt Setup dialog box, page 271.

Double-click the interrupt in the Forced Interrupt window, or activate by using the
Force command available on the context menu.

The C-SPY simulator.

This area lists all available interrupts and their definitions. The description field is
editable and the information is retrieved from the selected device description file. See
this file for a detailed description.

This context menu is available:

Force

This command is available:

Force
Triggers the interrupt you selected in the display area.

Interrupts °

Interrupt Status window

The Interrupt Status window is available from the C-SPY driver menu.

Interrupt Status @
Interrupt Id | Type Status Mext Time Timing [eycles]

MNRAI 2 Forced Executing — —

IRQ0 1 Repeat(macro) Suspended — —

[R1E]] 0 Repeat Idle 4345 2000 + n*2345

IRQ0 1 Repeat(macro) Idle 5020 3010 + n*2010

This window shows the status of all the currently active interrupts, in other words
interrupts that are either executing or waiting to be executed.

Requirements

The C-SPY simulator.

Display area
This area contains these columns:

Interrupt

Lists all interrupts.

ID
A unique interrupt identifier.

Type
The type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt window.
Single, a single-occasion interrupt.
Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro) is
added, for example: Repeat(macro).

Status
The state of the interrupt:

Idle, the interrupt activation signal is low (deactivated).

Pending, the interrupt activation signal is active, but the interrupt has not been
yet acknowledged by the interrupt handler.

275

Reference information on interrupts

276

C-SPY® Debugging Guide
for RX

Executing, the interrupt is currently being serviced, that is the interrupt handler
function is executing.

Suspended, the interrupt is currently suspended due to execution of an interrupt
with a higher priority.

(deleted) is added to Executing and Suspended if you have deleted a currently
active interrupt. (deleted) is removed when the interrupt has finished executing.

Next Time

The next time an idle interrupt is triggered. Once a repeatable interrupt stats
executing, a copy of the interrupt will appear with the state Idle and the next time
set. For interrupts that do not have a next time—that is pending, executing, or
suspended—the column will show --.

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

Interrupts °

Interrupt Log window
The Interrupt Log window is available from the C-SPY driver menu.

Interrupt Leg @
Time Interrupt Status Program Counter Execution Time *
189.32 us IRQTO Triggered Bx13E8 £
111.26 us IRQTO Enter Bx13F@
135.78 us IRQT1 Enter Bx1126
148.72 us IRQT1 Leave Bx1378 12.94 us
189.34 us Overflow
2087.30 us IRQTO Leave Bx1126 96.84 us
230.80 us IRQTO Triggered 9x1118
231.34 us IRQTO Enter 0x1126
240.26, us IRQTO Leave 0x1122 . 8.92 us
300.00 \us IRQT1 Enter _
371.12 i'x_ls IRQT1 Leave \ 8x1120 171.12 us -
Red indicates overflows Light-colored rows Darker rews
and italic indicates indicate entrances indicate exits
approximate values tointerrupts from interrupts

This window logs entrances to and exits from interrupts. The C-SPY simulator also logs
internal state changes.

The information is useful for debugging the interrupt handling in the target system.
When the Interrupt Log window is open, it is updated continuously at runtime.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
entries in the beginning of the buffer are erased.

For more information, see Getting started using interrupt logging, page 270.
For information about how to get a graphical view of the interrupt events during the

execution of your application, see Timeline window, page 202.

Requirements
The C-SPY simulator.

Display area
This area contains these columns:
Time

The time for the interrupt entrance, based on an internally specified clock
frequency.

277

Reference information on interrupts

This column is available when you have selected Show Time from the context
menu.

Cycles
The number of cycles from the start of the execution until the event.

This column is available when you have selected Show Cycles from the context
menu.

Interrupt
The interrupt as defined in the device description file.

Status
Shows the event status of the interrupt:

Triggered, the interrupt has passed its activation time.

Forced, the same as Triggered, but the interrupt was forced from the Forced
Interrupt window.

Enter, the interrupt is currently executing.
Leave, the interrupt has been executed.

Expired, the interrupt hold time has expired without the interrupt being
executed.

Rejected, the interrupt has been rejected because the necessary interrupt
registers were not set up to accept the interrupt.

Program Counter
The value of the program counter when the event occurred.

Execution Time/Cycles
The time spent in the interrupt, calculated using the Enter and Leave
timestamps. This includes time spent in any subroutines or other interrupts that
occurred in the specific interrupt.

C-SPY® Debugging Guide
278 for RX

Context menu

Interrupts °

This context menu is available in the Data Log window, the Data Log Summary
window, the Interrupt Log window, and in the Interrupt Log Summary window:

v

Enable
Clear

Save to Log File...

Show Time

Show Cycles

Note: The commands are the same in each window, but they only operate on the specific
window.

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to log file

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF. An X in the Approx column indicates that the timestamp is an
approximation.

Show Time

Displays the Time column in the Data Log window and in the Interrupt Log
window, respectively.

This menu command might not be available in the C-SPY driver you are using,
which means that the Time column is by default displayed in the Data Log
window.

Show Cycles

Displays the Cycles column in the Data Log window and in the Interrupt Log
window, respectively.

This menu command might not be available in the C-SPY driver you are using,
which means that the Cycles column is not supported.

279

Reference information on interrupts

Interrupt Log Summary window
The Interrupt Log Summary window is available from the C-SPY driver menu.

Interrupt Log Summary @
Interrupt Count First Time Total (Time) Total (%) Fastest Slowest in Intersal Max Interval
ADC |3 25 BElus 95 400us 17 .61 16.320us 30.120us 192 640us 1284 . 100us
RTC 4 41 700us EE . 200us 22 BB 13 . 800us 13.800us 27 .060us 2687 420us

Approximative time count. 1
COwerflow count. 1
Currenttime: 3350.080us us

This window displays a summary of logs of entrances to and exits from interrupts.
For more information, see Getting started using interrupt logging, page 270.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window, page 202.

Requirements
The C-SPY simulator.

Display area

Each row in this area displays statistics about the specific interrupt based on the log
information in these columns:

Interrupt
The type of interrupt that occurred.
Count

The number of times the interrupt occurred.

First time
The first time the interrupt was executed.

Total (Time)**
The accumulated time spent in the interrupt.

Total (%)
The time in percent of the current time.

Fastest**

The fastest execution of a single interrupt of this type.

C-SPY® Debugging Guide
280 for RX

Interrupts °

Slowest**

The slowest execution of a single interrupt of this type.

Min interval
The shortest time between two interrupts of this type.
The interval is specified as the time interval between the entry time for two
consecutive interrupts.

Max interval
The longest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

** Calculated in the same way as for the Execution time/cycles in the Interrupt Log
window.

Context menu
This context menu is available in the Data Log window, the Data Log Summary
window, the Interrupt Log window, and in the Interrupt Log Summary window:

v | Enable
Clear

Save to Log File...

v | Show Time
Show Cycles

Note: The commands are the same in each window, but they only operate on the specific
window.

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to log file

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF. An X in the Approx column indicates that the timestamp is an
approximation.

281

Reference information on interrupts

Show Time
Displays the Time column in the Data Log window and in the Interrupt Log
window, respectively.

This menu command might not be available in the C-SPY driver you are using,
which means that the Time column is by default displayed in the Data Log
window.

Show Cycles
Displays the Cycles column in the Data Log window and in the Interrupt Log
window, respectively.

This menu command might not be available in the C-SPY driver you are using,
which means that the Cycles column is not supported.

C-SPY® Debugging Guide
282 for RX

C-SPY macros

e Introduction to C-SPY macros

e Using C-SPY macros

e Reference information on the macro language

e Reference information on reserved setup macro function names
e Reference information on C-SPY system macros

e Graphical environment for macros

Introduction to C-SPY macros

These topics are covered:

o Reasons for using C-SPY macros
e Briefly about using C-SPY macros
e Briefly about setup macro functions and files

e Briefly about the macro language

REASONS FOR USING C-SPY MACROS

You can use C-SPY macros either by themselves or in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks. Some examples
where macros can be useful:

o Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

o Hardware configuring, such as initializing hardware registers.

e Feeding your application with simulated data during runtime.

o Simulating peripheral devices, see the chapter /nterrupts. This only applies if you
are using the simulator driver.

o Developing small debug utility functions.

283

Introduction to C-SPY macros

284

C-SPY® Debugging Guide
for RX

BRIEFLY ABOUT USING C-SPY MACROS
To use C-SPY macros, you should:

o Write your macro variables and functions and collect them in one or several macro
files

e Register your macros

e Execute your macros.

For registering and executing macros, there are several methods to choose between.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register or execute your macro.

BRIEFLY ABOUT SETUP MACRO FUNCTIONS AND FILES

There are some reserved setup macro function names that you can use for defining
macro functions which will be called at specific times, such as:

o Once after communication with the target system has been established but before
downloading the application software

o Once after your application software has been downloaded

o FEach time the reset command is issued

o Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register

a macro function with one of the reserved names. For instance, if you want to clear a

specific memory area before you load your application software, the macro setup

function execUserPreload should be used. This function is also suitable if you want

to initialize some CPU registers or memory-mapped peripheral units before you load
your application software.

You should define these functions in a setup macro file, which you can load before
C-SPY starts. Your macro functions will then be automatically registered each time you
start C-SPY. This is convenient if you want to automate the initialization of C-SPY, or
if you want to register multiple setup macros.

For more information about each setup macro function, see Reference information on
reserved setup macro function names, page 295.

BRIEFLY ABOUT THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are:

® Macro statements, which are similar to C statements.

® Macro functions, which you can define with or without parameters and return
values.

C-SPY macros __4

o Predefined built-in system macros, similar to C library functions, which perform
useful tasks such as opening and closing files, setting breakpoints, and defining
simulated interrupts.

® Macro variables, which can be global or local, and can be used in C-SPY
expressions.

® Macro strings, which you can manipulate using predefined system macros.

For more information about the macro language components, see Reference information
on the macro language, page 290.

Example

Consider this example of a macro function which illustrates the various components of
the macro language:

__var oldval;
CheckLatest (val)
{
if (oldval !'= wval)
{
__message "Message: Changed from ", oldval, " to ", wval, "\n";
oldval = val;
}
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

Using C-SPY macros

These tasks are covered:

Registering C-SPY macros—an overview

Executing C-SPY macros—an overview

Registering and executing using setup macros and setup files
Executing macros using Quick Watch

Executing a macro by connecting it to a breakpoint

Aborting a C-SPY macro

For more examples using C-SPY macros, see:

o The tutorial about simulating an interrupt, which you can find in the Information
Center

e I[nitializing target hardware before C-SPY starts, page 49.

285

Using C-SPY macros

286

C-SPY® Debugging Guide
for RX

REGISTERING C-SPY MACROS—AN OVERVIEW

C-SPY must know that you intend to use your defined macro functions, and thus you
must register your macros. There are various ways to register macro functions:

You can register macro functions during the C-SPY startup sequence, see
Registering and executing using setup macros and setup files, page 287.

You can register macros interactively in the Macro Registration window, see
Macro Registration window, page 330. Registered macros appear in the Debugger
Macros window, see Debugger Macros window, page 332.

You can register a file containing macro function definitions, using the system
macro __registerMacroFile. This means that you can dynamically select which
macro files to register, depending on the runtime conditions. Using the system
macro also lets you register multiple files at the same moment. For information
about the system macro, see __registerMacroFile, page 315.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register your macro.

EXECUTING C-SPY MACROS—AN OVERVIEW

There are various ways to execute macro functions:

You can execute macro functions during the C-SPY startup sequence and at other
predefined stages during the debug session by defining setup macro functions in a
setup macro file, see Registering and executing using setup macros and setup files,
page 287.

The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions. For an example, see Executing macros using Quick
Watch, page 287.

The Macro Quicklaunch window is similar to the Quick Watch window, but is
more specified on designed for C-SPY macros. See Macro Quicklaunch window,
page 334.

A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro is executed. For an example, see Executing a macro by connecting it to a
breakpoint, page 288.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to execute your macro.

C-SPY macros __4

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence. To do
this, specify a macro file which you load before starting the debug session. Your macro
functions will be automatically registered each time you start the debugger.

If you use the reserved setup macro function names to define the macro functions, you
can define exactly at which stage you want the macro function to be executed.

To define a setup macro function and load it during C-SPY startup:
Create a new text file where you can define your macro function.
For example:

execUserSetup ()
{

_ _registerMacroFile("MyMacroUtils.mac") ;
_ _registerMacroFile("MyDeviceSimulation.mac") ;

}

This macro function registers the additional macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the function
name execUserSetup, it will be executed directly after your application has been
downloaded.

Save the file using the filename extension mac.

Before you start C-SPY, choose Project>Options>Debugger>Setup. Select Use
Setup file and choose the macro file you just created.

The macros will now be registered during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window lets you dynamically choose when to execute a macro
function.

Consider this simple macro function that checks the status of a timer enable bit:

TimerStatus ()
{
if ((TimerStatreg & 0x01) != 0)/* Checks the status of reg */
return "Timer enabled"; /* C-SPY macro string used */
else
return "Timer disabled"; /* C-SPY macro string used */

287

Using C-SPY macros

288

C-SPY® Debugging Guide
for RX

Save the macro function using the filename extension mac.

To load the macro file, choose View>Macros>Macro Registration. The Macro
Registration window is displayed. Click Add and locate the file using the file browser.
The macro file appears in the list of macros in the Macro Registration window.

Select the macro you want to register and your macro will appear in the Debugger
Macros window.

Choose View>Quick Watch to open the Quick Watch window, type the macro call
TimerStatus () in the text field and press Return,

Alternatively, in the macro file editor window, select the macro function name
TimerStatus (). Right-click, and choose Quick Watch from the context menu that
appears.

Quick Watch =]
@ TimerStatus]] -
Expression Yalue Location Type
TimerStatus() 'Timer disabled® macro string

The macro will automatically be displayed in the Quick Watch window.

For more information, see Quick Watch window, page 112.

EXECUTING A MACRO BY CONNECTINGITTO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed when the
breakpoint is triggered. The advantage is that you can stop the execution at locations of
particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers change. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

To create a log macro and connect it to a breakpoint:
Assume this skeleton of a C function in your application source code:

int fact(int x)
{

}

C-SPY macros __4

2 Create a simple log macro function like this example:

logfact ()
{
__message "fact(" ,x, ")";

}
The __message statement will log messages to the Log window.
Save the macro function in a macro file, with the filename extension mac.

3 To register the macro, choose View>Macros>Macro Registration to open the Macro
Registration window and add your macro file to the list. Select the file to register it.
Your macro function will appear in the Debugger Macros window.

4 To set a code breakpoint, click the Toggle Breakpoint button on the first statement
within the function fact in your application source code. Choose View>Breakpoints
to open the Breakpoints window. Select your breakpoint in the list of breakpoints and
choose the Edit command from the context menu.

5 To connect the log macro function to the breakpoint, type the name of the macro
function, logfact (), in the Action field and click Apply. Close the dialog box.

6 Execute your application source code. When the breakpoint is triggered, the macro
function will be executed. You can see the result in the Log window.

o Note that the expression in the Action field is evaluated only when the breakpoint
causes the execution to really stop. If you want to log a value and then automatically
continue execution, you can either:

Use a Log breakpoint, see Log breakpoints dialog box, page 147

o Use the Condition field instead of the Action field. For an example, see Performing
a task and continuing execution, page 139.

7 You can easily enhance the log macro function by, for instance, using the __fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 293.

For an example where a serial port input buffer is simulated using the method of
connecting a macro to a breakpoint, see the tutorial Simulating an interrupt in the
Information Center.

ABORTING A C-SPY MACRO

To abort a C-SPY macro:
I Press Ctrl+Shift+. (period) for a short while.

2 A message that says that the macro has terminated is displayed in the Debug Log
window.

289

Reference information on the macro language

This method can be used if you suspect that something is wrong with the execution, for
example because it seems not to terminate in a reasonable time.

Reference information on the macro language
Reference information about:

Macro functions, page 290
Macro variables, page 290
Macro parameters, page 291
Macro strings, page 291

Macro statements, page 292

Formatted output, page 293.

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has this form:

macroName (parameterList)
{

macroBody

}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.
MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application. It can then
be used in a C-SPY expression, or you can assign application data—values of the
variables in your application—to it. For more information about C-SPY expressions, see
C-SPY expressions, page 94.

The syntax for defining one or more macro variables is:
__var nameList;

where nameList is a list of C-SPY variable names separated by commas.

C-SPY® Debugging Guide
290 for RX

C-SPY macros __4

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

Expression What it means
myvar = 3.5; myvar is now type double, value 3.5.
myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 15: Examples of C-SPY macro variables

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

MACRO PARAMETERS

A macro parameter is intended for parameterization of device support. The named

parameter will behave as a normal C-SPY macro variable with these differences:

o The parameter definition can have an initializer

e Values of a parameters can be set through options (either in the IDE or in cspybat).

o A value set from an option will take precedence over a value set by an initializer

e A parameter must have an initializer, be set through an option, or both. Otherwise, it
has an undefined value, and accessing it will cause a runtime error.

The syntax for defining one or more macro parameters is:

__param param|[= value, ...;]

Use the command line option --macro_param to specify a value to a parameter, see
--macro_param, page 349.

MACRO STRINGS

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello! ", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subString. The result can be a new macro string. You can

291

Reference information on the macro language

concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example s##[3]. You can get the
length of a string using sizeof (str). Note that a macro string is not
NULL-terminated.

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char []) to a macro string. For example, assume
this definition of a C string in your application:

char const *cstr = "Hello";

Then examine these macro examples:

__var str; /* A macro variable */

str = cstr /* str is now just a pointer to char */

sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */

str[l] /* 101, the ASCII code for 'e' */

str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 293.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions
expression;

For more information about C-SPY expressions, see C-SPY expressions, page 94.

Conditional statements

if (expression)
Sstatement

if (expression)
statement
else
statement

C-SPY® Debugging Guide
292 for RX

C-SPY macros __4

Loop statements

for (init_expression; cond_expression; update_expression)
statement

while (expression)
statement

do
Sstatement
while (expression);

Return statements
return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
statementl
statement2

statementN

FORMATTED OUTPUT

C-SPY provides various methods for producing formatted output:

__message argList; Prints the output to the Debug Log window.
__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

where argList is acomma-separated list of C-SPY expressions or strings, and £ileis
the result of the __openFile system macro, see _ openkFile, page 309.

293

Reference information on the macro language

294

C-SPY® Debugging Guide
for RX

To produce messages in the Debug Log window:

varl = 42;
var2 = 37;
__message "This line prints the values ", varl, " and ", var2,

" in the Log window.";

This produces this message in the Log window:

This line prints the values 42 and 37 in the Log window.
To write the output to a designated file:

__fmessage myfile, "Result is ", res, "!\n";

To produce strings:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer.".

Specifying display format of arguments

To override the default display format of a scalar argument (number or pointer) in
argList, suffix it with a : followed by a format specifier. Available specifiers are:

%b for binary scalar arguments

%0 for octal scalar arguments

%d for decimal scalar arguments

$x for hexadecimal scalar arguments
%c for character scalar arguments

These match the formats available in the Watch and Locals windows, but number
prefixes and quotes around strings and characters are not printed. Another example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

Depending on the value of the variables, this produces this message:
The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%C;

C-SPY macros __4

would produce:
65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (Ox41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the $x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

Reference information on reserved setup macro function names

There are reserved setup macro function names that you can use for defining your setup
macro functions. By using these reserved names, your function will be executed at
defined stages during execution. For more information, see Briefly about setup macro
functions and files, page 284.

Reference information about:

execUserPreload

execUserSetup

[}
[J
® execUserPreReset
® ecxecUserReset

[J

execUserExit

execUserPreload
Syntax execUserPreload
For use with All C-SPY drivers.
Description Called after communication with the target system is established but before

downloading the target application.

Implement this macro to initialize memory locations and/or registers which are vital for
loading data properly.

295

Reference information on reserved setup macro function names

execUserSetup
Syntax execUserSetup
For use with All C-SPY drivers.
Description Called once after the target application is downloaded.
Implement this macro to set up the memory map, breakpoints, interrupts, register macro
files, etc.
If you define interrupts or breakpoints in a macro file that is executed at system start
& (using execUserSetup) we strongly recommend that you also make sure that they are
removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see the tutorials in the Information Center.
The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.
execUserPreReset
Syntax execUserPreReset
For use with All C-SPY drivers.
Description Called each time just before the reset command is issued.
Implement this macro to set up any required device state.
execUserReset
Syntax execUserReset
For use with All C-SPY drivers.
Description Called each time just after the reset command is issued.

Implement this macro to set up and restore data.

C-SPY® Debugging Guide
296 for RX

C-SPY macros __4

execUserExit
Syntax execUserExit
For use with All C-SPY drivers.
Description Called once when the debug session ends.

Implement this macro to save status data etc.

Reference information on C-SPY system macros

This section gives reference information about each of the C-SPY system macros.

This table summarizes the pre-defined system macros:

Macro Description

__cancelAllInterrupts Cancels all ordered interrupts

__cancelInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

__closeFile Closes a file that was opened by __openFile

__delay Delays execution

__disableInterrupts Disables generation of interrupts

__driverType Verifies the driver type

__enableInterrupts Enables generation of interrupts

__evaluate Interprets the input string as an expression and
evaluates it.

__fillMemory8 Fills a specified memory area with a byte value.

__fillMemoryl6 Fills a specified memory area with a 2-byte value.

__fillMemory32 Fills a specified memory area with a 4-byte value.

__isBatchMode Checks if C-SPY is running in batch mode or not.

__loadImage Loads an image.

_ _memoryRestore Restores the contents of a file to a specified

memory zone

_ _memorySave Saves the contents of a specified memory area to a
file

__messageBoxYesCancel Displays a Yes/Cancel dialog box for user interaction

__messageBoxYesNo Displays a Yes/No dialog box for user interaction

Table 16: Summary of system macros

297

Reference information on C-SPY system macros

C-SPY® Debugging Guide
298 for RX

Macro Description
__openFile Opens a file for I/O operations
__orderInterrupt Generates an interrupt

__popSimulatorInterruptExecu

t

ingStack

__readFile

__readFileByte

__readMemorys8,

__readMemoryByte

__readMemoryl6

__readMemory32

__registerMacroFile

__resetFile

__setCodeBreak

_ _setDhataBreak

__setDhataLogBreak

__setLogBreak

__setSimBreak

__setTraceStartBreak

__setTraceStopBreak

__sourcePosition

__strFind

_subString

__targetDebuggerVersion

__toLower

__toString

_toUpper

__unloadImage

Informs the interrupt simulation system that an
interrupt handler has finished executing

Reads from the specified file
Reads one byte from the specified file

Reads one byte from the specified memory location

Reads two bytes from the specified memory
location

Reads four bytes from the specified memory
location

Registers macros from the specified file
Rewinds a file opened by __openFile
Sets a code breakpoint

Sets a data breakpoint

Sets a data log breakpoint

Sets a log breakpoint

Sets a simulation breakpoint

Sets a trace start breakpoint

Sets a trace stop breakpoint

Returns the file name and source location if the
current execution location corresponds to a source
location

Searches a given string for the occurrence of
another string

Extracts a substring from another string
Returns the version of the target debugger

Returns a copy of the parameter string where all the
characters have been converted to lower case

Prints strings

Returns a copy of the parameter string where all the
characters have been converted to upper case

Unloads a debug image

Table 16: Summary of system macros (Continued)

C-SPY macros __4

Macro Description

__writeFile Writes to the specified file

__writeFileByte Writes one byte to the specified file

__writeMemorys8, Writes one byte to the specified memory location

_ _writeMemoryByte

__writeMemoryl6 Writes a two-byte word to the specified memory
location

__writeMemory32 Writes a four-byte word to the specified memory
location

Table 16: Summary of system macros (Continued)

__cancelAlllnterrupts

Syntax __cancelAllInterrupts()

Return value int 0

For use with The C-SPY Simulator.

Description Cancels all ordered interrupts.
__cancellnterrupt

Syntax __cancellInterrupt (interrupt_id)

Parameters interrupt_id

The value returned by the corresponding __orderInterrupt macro call
(unsigned long).

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 17: __cancellnterrupt return values
For use with The C-SPY Simulator.

Description Cancels the specified interrupt.

299

Reference information on C-SPY system macros

__clearBreak
Syntax __clearBreak (break_id)
Parameters break _id
The value returned by any of the set breakpoint macros.
Return value int 0
For use with All C-SPY drivers.
Description Clears a user-defined breakpoint.
See also Breakpoints, page 129.
__closeFile
Syntax __closeFile(fileHandle)
Parameters fileHandle
A macro variable used as filehandle by the __openFile macro.
Return value int 0
For use with All C-SPY drivers.
Description Closes a file previously opened by __openFile.
__delay
Syntax __delay(value)
Parameters value
The number of milliseconds to delay execution.
Return value int 0
For use with All C-SPY drivers.
Description Delays execution the specified number of milliseconds.

C-SPY® Debugging Guide
300 for RX

C-SPY macros __4

__disablelnterrupts

Syntax __disableInterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 18: __disablelnterrupts return values

For use with The C-SPY Simulator.

Description Disables the generation of interrupts.
__driverType

Syntax __driverType (driver_id)

Parameters driver_id

A string corresponding to the driver you want to check for. Choose one of these:
"sim" corresponds to the simulator driver.

"emue20" corresponds to the C-SPY E1/E20 driver

"emue2lite" corresponds to the C-SPY E2 Lite driver

"jlink" corresponds to the C-SPY J-Link driver

Return value

Result Value
Successful 1
Unsuccessful 0

Table 19: __driverType return values

For use with All C-SPY drivers

Description Checks to see if the current C-SPY driver is identical to the driver type of the
driver_id parameter.

Example __driverType("sim")

If the simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

301

Reference information on C-SPY system macros

__enablelnterrupts

Syntax

Return value

For use with

Description

__evaluate

Syntax

Parameters

Return value

For use with

Description

Example

C-SPY® Debugging Guide
302 for RX

__enableInterrupts()

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 20: __enablelnterrupts return values
The C-SPY Simulator.

Enables the generation of interrupts.

__evaluate(string, valuePtr)
string
Expression string.

valuePtr

Pointer to a macro variable storing the result.

Result Value
Successful int 0
Unsuccessful int 1

Table 21: __evaluate return values
All C-SPY drivers.

This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valuePtr.

This example assumes that the variable i is defined and has the value 5:
__evaluate("i + 3", &myVar)

The macro variable myVar is assigned the value 8.

__fillMemory8

Syntax

Parameters

Return value
For use with
Description

Example

__fillMemoryl 6

Syntax

Parameters

C-SPY macros __4

__fillMemory8 (value, address, zone, length, format)

value
An integer that specifies the value.
address
An integer that specifies the memory start address.
zone
A string that specifies the memory zone, see C-SPY memory zones, page 158.
length
An integer that specifies how many bytes are affected.
format
One of these alternatives:
Copy value will be copied to the specified memory area.
AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.
OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.
XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.
int 0

All C-SPY drivers.
Fills a specified memory area with a byte value.

__fillMemory8(0x80, 0x700, "", 0x10, "OR");

__fillMemorylé6 (value, address, zone, length, format)

value

An integer that specifies the value.

303

Reference information on C-SPY system macros

Return value
For use with
Description

Example

__fillMemory32

Syntax

Parameters

C-SPY® Debugging Guide
304 for RX

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 158.

length

An integer that defines how many 2-byte entities to be affected.

format

One of these alternatives:

Copy

AND

OR

XOR

int 0

All C-SPY drivers.

value will be copied to the specified memory area.

An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.

An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.

An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.

Fills a specified memory area with a 2-byte value.

_fillMemoryl6 (0xCDCD, 0x7000, "", 0x200, "Copy"):;

__fillMemory32 (value, address, zone, length, format)

value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 158.

C-SPY macros __4

length
An integer that defines how many 4-byte entities to be affected.

format

One of these alternatives:

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value
and the existing contents of memory before writing
the result to memory.

OR An OR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

XOR An XOR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

Return value int 0

For use with All C-SPY drivers.

Description Fills a specified memory area with a 4-byte value.

Example __fillMemory32 (0x0000FFFF, 0x4000, "", 0x1000, "XOR");
__isBatchMode

Syntax __isBatchMode ()

Return value

Result Value
True int 1
False int 0

Table 22: __isBatchMode return values

For use with All C-SPY drivers.
Description This macro returns True if the debugger is running in batch mode, otherwise it returns
False.

305

Reference information on C-SPY system macros

__loadlmage
Syntax __loadImage(path, offset, debugInfoOnly)
Parameters path

A string that identifies the path to the image to download. The path must either
be absolute or use argument variables. For information about argument
variables, see the IDE Project Management and Building Guide for RX.

offset
An integer that identifies the offset to the destination address for the downloaded
image.

debugInfoOnly

A non-zero integer value if no code or data should be downloaded to the target
system, which means that C-SPY will only read the debug information from the
debug file. Or, 0 (zero) for download.

Return value
Value Result

Non-zero integer number A unique module identification.

int 0 Loading failed.

Table 23: __loadlmage return values
For use with All C-SPY drivers.

Description Loads an image (debug file).

Note: Flash loading will not be performed; using the
Project>Options>Debugger>Images options you can only download images to RAM.

Example | Your system consists of a ROM library and an application. The application is your active
project, but you have a debug file corresponding to the library. In this case you can add
this macro call in the execUserSetup macro in a C-SPY macro file, which you
associate with your project:

__loadImage (ROMfile, 0x8000, 1);

This macro call loads the debug information for the ROM library RoM£i 1e without
downloading its contents (because it is presumably already in ROM). Then you can
debug your application together with the library.

Example 2 Your system consists of a ROM library and an application, but your main concern is the
library. The library needs to be programmed into flash memory before a debug session.
While you are developing the library, the library project must be the active project in the

C-SPY® Debugging Guide
306 for RX

C-SPY macros __4

IDE. In this case you can add this macro call in the execUserSetup macro in a C-SPY
macro file, which you associate with your project:

__loadImage (ApplicationFile, 0x8000, 0);

The macro call loads the debug information for the application and downloads its
contents (presumably into RAM). Then you can debug your library together with the

application.
See also Images, page 357 and Loading multiple images, page 45.
__memoryRestore
Syntax __memoryRestore (zone, filename)
Parameters zone
A string that specifies the memory zone, see C-SPY memory zones, page 158.
filename
A string that specifies the file to be read. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide for
RX.
Return value int 0
For use with All C-SPY drivers.
Description Reads the contents of a file and saves it to the specified memory zone.
Example __memoryRestore("", "c:\\temp\\saved_memory.hex") ;
See also Memory Restore dialog box, page 168.
__memorySave
Syntax __memorySave (start, stop, format, filename)
Parameters start

A string that specifies the first location of the memory area to be saved.

stop

A string that specifies the last location of the memory area to be saved.

307

Reference information on C-SPY system macros

Return value
For use with
Description

Example

See also

format

A string that specifies the format to be used for the saved memory. Choose
between:

intel-extended
motorola
motorola-sl19
motorola-s28
motorola-s37.

filename

A string that specifies the file to write to. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide for
RX.

int 0

All C-SPY drivers.

Saves the contents of a specified memory area to a file.

__memorySave (":0x00", ":0xFF", "intel-extended",
"c:\\temp\\saved_memory.hex") ;

Memory Save dialog box, page 167.

__messageBoxYesCancel

Syntax

Parameters

Return value

C-SPY® Debugging Guide
308 for RX

_ _messageBoxYesCancel (string message, string caption)

message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Result Value

Yes 1

Table 24: __messageBoxYesCancel return values

C-SPY macros __4

Result Value
No 0

Table 24: __messageBoxYesCancel return values
For use with All C-SPY drivers.

Description Displays a Yes/Cancel dialog box when called and returns the user input. Typically, this
is useful for creating macros that require user interaction.

__messageBoxYesNo
Syntax __messageBoxYesNo (string message, string caption)
Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Return value

Result Value
Yes 1
No 0

Table 25: __messageBoxYesNo return values
For use with All C-SPY drivers.

Description Displays a Yes/No dialog box when called and returns the user input. Typically, this is
useful for creating macros that require user interaction.

__openFile
Syntax __openFile(filename, access)
Parameters filename

The file to be opened. The filename must include a path, which must either be
absolute or use argument variables. For information about argument variables,
see the IDE Project Management and Building Guide for RX.

access

The access type (string).

309

Reference information on C-SPY system macros

310

C-SPY® Debugging Guide

for RX

Return value

For use with

Description

Example

See also

These are mandatory but mutually exclusive:

"a" append, new data will be appended at the end of the open file

"r" read (by default in text mode; combine with b for binary mode: rb)
"w" write (by default in text mode; combine with b for binary mode: wb)
These are optional and mutually exclusive:

"b" binary, opens the file in binary mode

"t ASCII text, opens the file in text mode

This access type is optional:

"+ together with r, w, or a; r+ or w+ is read and write, while a+ is read and

append
Result Value
Successful The file handle
Unsuccessful An invalid file handle, which tests as False

Table 26: __openFile return values
All C-SPY drivers.

Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (* . ewp) is located. The argument to __openFile can
specify a location relative to this directory. In addition, you can use argument variables
such as $PROJ_DIRS$ and $TOOLKIT_DIRS in the path argument.

__var myFileHandle; /* The macro variable to contain */
/* the file handle */

myFileHandle = __openFile("$PROJ_DIRS\\Debug\\Exe\\test.tst",

I|r||)’.

if (myFileHandle)
{

/* successful opening */

For information about argument variables, see the IDE Project Management and
Building Guide for RX.

C-SPY macros __4

__orderinterrupt

Syntax __orderInterrupt (specification, first_activation,
repeat_interval, variance, infinite_hold_ time,
hold_time, probability)

Parameters specification

The interrupt (string). The specification can either be the full specification used
in the device description file (dd£) or only the name. In the latter case the
interrupt system will automatically get the description from the device
description file.

first_activation

The first activation time in cycles (integer)

repeat_interval

The periodicity in cycles (integer)

variance

The timing variation range in percent (integer between 0 and 100)

infinite_hold_time

1 if infinite, otherwise 0.

hold_time
The hold time (integer)

probability
The probability in percent (integer between 0 and 100)

Return value The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.
For use with The C-SPY Simulator.
Description Generates an interrupt.

Example This example generates a repeating interrupt using an infinite hold time first activated
after 4000 cycles:

__orderInterrupt("SCIO_RXIO", 4000, 2000, 0O, 1, 0, 100);

Reference information on C-SPY system macros

312

__popSimulatorinterruptExecutingStack

Syntax
Return value
For use with

Description

See also

__readFile

C-SPY® Debugging Guide

for RX

Syntax

Parameters

Return value

For use with

Description

__popSimulatorInterruptExecutingStack (void)

int 0

The C-SPY Simulator.

Informs the interrupt simulation system that an interrupt handler has finished executing,

as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

Simulating an interrupt in a multi-task system, page 269.

__readFile(fileHandle, valuePtr)

fileHandle
A macro variable used as filehandle by the __openFile macro.

valuePtr

A pointer to a variable.

Result Value
Successful 0
Unsuccessful Non-zero error number

Table 27: __readFile return values
All C-SPY drivers.

Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Only printable characters representing hexadecimal digits and white-space characters
are accepted, no other characters are allowed.

Example

__readFileByte

Syntax

Parameters

Return value
For use with
Description

Example

C-SPY macros __4

__var number;
if (__readFile(myFileHandle, &number)
{

// Do something with number

}

0)

In this example, if the file pointed to by myFileHandle contains the ASCII characters
1234 abcd 90ef, consecutive reads will assign the values 0x1234 Oxabcd 0x90ef
to the variable number.

__readFileByte(fileHandle)

fileHandle

A macro variable used as filehandle by the __openFile macro.
-1 upon error or end-of-file, otherwise a value between 0 and 255.
All C-SPY drivers.
Reads one byte from a file.

__var byte;
while ((byte = __readFileByte (myFileHandle)) != -1)
{

/* Do something with byte */

__readMemory8, __readMemoryByte

Syntax

Parameters

Return value

For use with

__readMemory8 (address, zone)
__readMemoryByte (address, zone)

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 158.
The macro returns the value from memory.

All C-SPY drivers.

313

Reference information on C-SPY system macros

Description Reads one byte from a given memory location.

Example __readMemory8 (0x0108, "");

__readMemoryl 6

Syntax __readMemoryl6 (address, zone)

Parameters address

The memory address (integer).

zone
A string that specifies the memory zone, see C-SPY memory zones, page 158.
Return value The macro returns the value from memory.
For use with All C-SPY drivers.
Description Reads a two-byte word from a given memory location.
Example __readMemoryl6 (0x0108, "");
__readMemory32
Syntax __readMemory32 (address, zone)
Parameters address
The memory address (integer).
zone
A string that specifies the memory zone, see C-SPY memory zones, page 158.
Return value The macro returns the value from memory.
For use with All C-SPY drivers.
Description Reads a four-byte word from a given memory location.
Example __readMemory32 (0x0108, "");

C-SPY® Debugging Guide
314 for RX

C-SPY macros __4

__registerMacroFile

Syntax __registerMacroFile(filename)

Parameters filename
A file containing the macros to be registered (string). The filename must include
a path, which must either be absolute or use argument variables. For information
about argument variables, see the IDE Project Management and Building Guide
for RX.

Return value int 0

For use with All C-SPY drivers.

Description Registers macros from a setup macro file. With this function you can register multiple

macro files during C-SPY startup.
Example __registerMacroFile("c:\\testdir\\macro.mac") ;
See also Using C-SPY macros, page 285.
__resetFile

Syntax __resetFile(fileHandle)

Parameters fileHandle
A macro variable used as filehandle by the __openFile macro.

Return value int 0

For use with All C-SPY drivers.

Description Rewinds a file previously opened by __openFile.

315

Reference information on C-SPY system macros

__setCodeBreak
Syntax __setCodeBreak(location, count, condition, cond_type, action)
Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 154.

count
The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 28: __setCodeBreak return values
For use with All C-SPY drivers.

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

Examples __setCodeBreak ("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode()");
This example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

See also Breakpoints, page 129.

C-SPY® Debugging Guide
316 for RX

__setDataBreak

Syntax

Parameters

Return value

For use with

Description

Example

C-SPY macros __4

__setDataBreak(location, count, condition, cond_type, access,

action)

location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
154.

count
The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).
cond_type
The condition type; either "CHANGED" or "TRUE" (string).

access

The memory access type: "R", for read, "w" for write, or "Rw" for read/write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 29: __setDataBreak return values
The C-SPY Simulator

Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

__var brk;
brk = __setDataBreak(":0x4710", 3, "d>6", "TRUE",

"W", "ActionData()");

__clearBreak (brk) ;

317

Reference information on C-SPY system macros

318

See also

__setDatalLogBreak

Syntax

Parameters

Return value

For use with

Description

Example

See also

C-SPY® Debugging Guide

for RX

Breakpoints, page 129.

__setDataLogBreak (variable, access)

variable

A string that defines the variable the breakpoint is set on, a variable of integer
type with static storage duration. The microcontroller must also be able to
access the variable with a single-instruction memory access, which means that
you can only set data log breakpoints on 8-, 16-, and 32-bit variables.

access

The memory access type: "R", for read, "w" for write, or "Rw" for read/write.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 30: __setDataLogBreak return values
The C-SPY Simulator.

Sets a data log breakpoint, that is, a breakpoint which is triggered when a specified
variable is accessed. Note that a data log breakpoint does not stop the execution, it just
generates a data log.

var brk;

brk = __setDataLogBreak ("MyVar", "R");
__clearBreak (brk) ;

Breakpoints, page 129 and Getting started using data logging, page 99.

__setLogBreak

Syntax

Parameters

Return value

For use with

Description

C-SPY macros __4

__setLogBreak (location, message, msg_type, condition,
cond_type)

location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 154.

message

The message text.

msg_type
The message type; choose between:

TEXT, the message is written word for word.

ARGS, the message is interpreted as a comma-separated list of C-SPY
expressions or strings.

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 31: __setLogBreak return values
All C-SPY drivers.

Sets a log breakpoint, that is, a breakpoint which is triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will temporarily halt and
print the specified message in the C-SPY Debug Log window.

319

Reference information on C-SPY system macros

Example __var logBpl;
__var logBp2;
logOn ()
{
logBpl = __setLogBreak ("{C:\\temp\\Utilities.c}.23.1",
"\"Entering trace zone at :\", #PC:%X", "ARGS", "1", "TRUE");
logBp2 = __setLogBreak ("{C:\\temp\\Utilities.c}.30.1",
"Leaving trace zone...", "TEXT", "1", "TRUE");
}
logOff ()
{

__clearBreak(logBpl) ;
__clearBreak (logBp2) ;

See also Formatted output, page 293 and Breakpoints, page 129.
__setSimBreak

Syntax __setSimBreak(location, access, action)

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
154.

access

The memory access type: "R" for read or "w" for write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 32: __setSimBreak return values

For use with The C-SPY Simulator.

C-SPY® Debugging Guide
320 for RX

C-SPY macros __4

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

__setTraceStartBreak
Syntax __setTraceStartBreak (location)
Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 154.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 33: __setTraceStartBreak return values
For use with The C-SPY Simulator.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is started.

321

Reference information on C-SPY system macros

Example

See also

__setTraceStopBreak

Syntax

Parameters

Return value

For use with

Description

Example

C-SPY® Debugging Guide
322 for RX

__var startTraceBp;

__var stopTraceBp;

traceOn ()
{
startTraceBp = __setTraceStartBreak
("{C:\\TEMP\\Utilities.c}.23.1");
stopTraceBp = __setTraceStopBreak

("{C:\\temp\\Utilities.c}.30.1");

traceOff ()
{

__clearBreak(startTraceBp) ;
__clearBreak (stopTraceBp) ;

Breakpoints, page 129.

__setTraceStopBreak (location)

location
A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 154.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful int 0

Table 34: __setTraceStopBreak return values
The C-SPY Simulator.

Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is stopped.

See setTraceStartBreak, page 321.

C-SPY macros __4

See also Breakpoints, page 129.
__sourcePosition

Syntax __sourcePosition(linePtr, colPtr)

Parameters linePtr

Pointer to the variable storing the line number

colPtr
Pointer to the variable storing the column number

Return value

Result Value
Successful Filename string
Unsuccessful Empty (" ") string

Table 35: __sourcePosition return values
For use with All C-SPY drivers.

Description If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind
Syntax __strFind(macroString, pattern, position)
Parameters macroString
A macro string.
pattern
The string pattern to search for
position
The position where to start the search. The first position is 0
Return value The position where the pattern was found or -1 if the string is not found.
For use with All C-SPY drivers.

323

Reference information on C-SPY system macros

Description

Example

See also

__subString

Syntax

Parameters

Return value
For use with
Description

Example

See also

This macro searches a given string (macroString) for the occurrence of another string
(pattern).

__strFind("Compiler", "pile", 0) =3
__strFind("Compiler", "foo", 0) = -1

Macro strings, page 291.

__subString(macroString, position, length)

macroString

A macro string.

position

The start position of the substring. The first position is 0.

length
The length of the substring

A substring extracted from the given macro string.
All C-SPY drivers.
This macro extracts a substring from another string (macroString).

__subString("Compiler", 0, 2)
The resulting macro string contains Co.
__subString("Compiler", 3, 4)

The resulting macro string contains pile.

Macro strings, page 291.

__targetDebuggerVersion

Syntax
Return value

For use with

C-SPY® Debugging Guide
324 for RX

__targetDebuggerVersion ()
A string that represents the version number of the C-SPY debugger processor module.

All C-SPY drivers.

C-SPY macros __4

Description This macro returns the version number of the C-SPY debugger processor module.
Example __var toolVer;
toolVer = __targetDebuggerVersion() ;
__message "The target debugger version is, ", toolVer;
__tolLower
Syntax __toLower (macroString)
Parameters macroString

A macro string.

Return value The converted macro string.
For use with All C-SPY drivers.
Description This macro returns a copy of the parameter macroString where all the characters have

been converted to lower case.

Example __toLower ("IAR")
The resulting macro string contains iar.
__toLower ("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 291.
__toString

Syntax __toString(C_string, maxlength)

Parameters C_string

Any null-terminated C string.

maxlength

The maximum length of the returned macro string.
Return value Macro string.

For use with All C-SPY drivers.

325

Reference information on C-SPY system macros

326

Description

Example

See also

__toUpper

Syntax

Parameters

Return value
For use with

Description

Example

See also

__unloadlmage

Syntax

Parameters

C-SPY® Debugging Guide
for RX

This macro is used for converting C strings (char* or char []) into macro strings.

Assuming your application contains this definition:
char const * hptr = "Hello World!";

this macro call:

__toString (hptr, 5)

would return the macro string containing Hello.

Macro strings, page 291.

__toUpper (macroString)

macroString

A macro string.
The converted string.
All C-SPY drivers.

This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

_toUpper ("string")

The resulting macro string contains STRING.

Macro strings, page 291.

__unloadImage (module_id)

module_id

An integer which represents a unique module identification, which is retrieved
as a return value from the corresponding __loadImage C-SPY macro.

C-SPY macros __4

Return value

Value Result

module_id A unique module identification (the same as the input
parameter).

int 0 The unloading failed.

Table 36: __unloadlmage return values

For use with All C-SPY drivers.

Description Unloads debug information from an already downloaded image.

See also Loading multiple images, page 45 and Images, page 357.
__writeFile

Syntax __writeFile(fileHandle, value)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value
An integer.
Return value int 0
For use with All C-SPY drivers.
Description Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __fmessage statement can do the same thing. The __writeFile macro is
provided for symmetry with __readfFile.

__writeFileByte
Syntax __writeFileByte(fileHandle, value)
Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.

327

Reference information on C-SPY system macros

Return value int 0
For use with All C-SPY drivers.
Description Writes one byte to the file £ileHandle.

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8 (value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters value
An integer.

address

The memory address (integer).

zone
A string that specifies the memory zone, see C-SPY memory zones, page 158.
Return value int 0
For use with All C-SPY drivers.
Description Writes one byte to a given memory location.
Exmnpk _ _writeMemory8 (0x2F, 0x8020, "");
__writeMemoryl 6
Syntax __writeMemoryl6 (value, address, zone)
Parameters value
An integer.
address
The memory address (integer).
zone
A string that specifies the memory zone, see C-SPY memory zones, page 158.
Return value int 0

C-SPY® Debugging Guide
328 for RX

C-SPY macros __4

For use with All C-SPY drivers.
Description Writes two bytes to a given memory location.
Example __writeMemoryl6 (0x2FFF, 0x8020, "");
__writeMemory32

Syntax __writeMemory32 (value, address, zone)
Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 158.

Return value int 0

For use with All C-SPY drivers.

Description Writes four bytes to a given memory location.
Example __writeMemory32 (0x5555FFFF, 0x8020, "");

Graphical environment for macros

Reference information about:

® Macro Registration window, page 330
® Debugger Macros window, page 332
® Macro Quicklaunch window, page 334

329

Graphical environment for macros

330

Macro Registration window

The Macro Registration window is available from the View>Macros submenu during a

debug session.

V| SetupSimple.mac
SetupAdvanced.mac

Macro Registration =]
Add Remove Remove Al Reload
File Full Path

ChtutonSetupSimple.mac
ChtutonSetupAdvanced.mac

Use this window to list, register, and edit your debugger macro files.

Double-click a macro file to open it in the editor window and edit it.

Requirements

None; this window is always available.

Display area

This area contains these columns:

File

The name of an available macro file. To register the macro file, select the check
box to the left of the filename. The name of a registered macro file appears in

bold style.
Full path

The path to the location of the added macro file.

C-SPY® Debugging Guide

for RX

C-SPY macros __4

Context menu

This context menu is available:
Add...

Remove
Rermove All

Reload
Open File

Open Debugger Macros Window

These commands are available:

Add
Opens a file browser where you can locate the macro file that you want to add
to the list. This menu command is also available as a function button at the top
of the window.

Remove

Removes the selected debugger macro file from the list. This menu command is
also available as a function button at the top of the window.

Remove All

Removes all macro files from the list. This menu command is also available as
a function button at the top of the window.

Reload

Registers the selected macro file. Typically, this is useful when you have edited
a macro file. This menu command is also available as a function button at the
top of the window.

Open File

Opens the selected macro file in the editor window.

Open Debugger Macros Window
Opens the Debugger Macros window.

331

Graphical environment for macros

Debugger Macros window
The Debugger Macros window is available from the View>Macro submenu during a

debug session.

Debugger Macros |
MName Parameters File i
Access i} SetupSimple.mac =
__cancelAllinterrupts i}

__cancellnterrupt {inf)
__clearBreak {id)
closeFile file
_delay Eval)ue) Select a macro and
_disablelnterrupts " click Fl for reference
__driverType (string) information -

Use this window to list all registered debugger macro functions, either predefined
system macros or your own. This window is useful when you edit your own macro
functions and want an overview of all available macros that you can use.

Double-clicking a macro defined in a file opens that file in the editor window.

To open a macro in the Macro Quicklaunch window, drag it from the Debugger
Macros window and drop it in the Macro Quicklaunch window.

Select a macro and press F1 to get online help information for that macro.

Requirements
None; this window is always available.

Display area
This area contains these columns:

Name
The name of the debugger macro.

Parameters
The parameters of the debugger macro.

File
For macros defined in a file, the name of the file is displayed. For predefined
system macros, -System Macro- is displayed.

C-SPY® Debugging Guide
332 forRX

C-SPY macros __4

Context menu

This context menu is available:

Open File

Add to Quicklaunch Window

User Macros
System Macros

v All Macros

Open Macro Registration Window

These commands are available:
Open File
Opens the selected debugger macro file in the editor window.

Add to Quicklaunch Window
Adds the selected macro to the Macro Quicklaunch window.

User Macros

Lists only the debugger macros that you have defined yourself.

System Macros
Lists only the predefined system macros.

All Macros

Lists all debugger macros, both predefined system macros and your own.

Open Macro Registration Window
Opens the Macro Registration window.

333

Graphical environment for macros

334

Macro Quicklaunch window

al'

Requirements

C-SPY® Debugging Guide
for RX

The Macro Quicklaunch window is available from the View menu.

= Expression Result
G testEval()
G nval Error (col 1): Unknown or ambiguous symbol. nval
G testEval2() 0
Q s2-37
G incval() 3
=
2
B
=
5
&
2
= Macro Quicklaunch B

Use this window to evaluate expressions, typically C-SPY macros.

For some devices, there are predefined C-SPY macros available with device support,
typically provided by the chip manufacturer. These macros are useful for performing
certain device-specific tasks. The macros are available in the Macro Quicklaunch
window and are easily identified by their green icon,

The Macro Quicklaunch window is similar to the Quick Watch window, but is
primarily designed for evaluating C-SPY macros. The window gives you precise control
over when to evaluate an expression.

To add an expression:
Choose one of these alternatives:

o Drag the expression to the window

e In the Expression column, type the expression you want to examine.

If the expression you add and want to evaluate is a C-SPY macro, the macro must first
be registered, see Using C-SPY macros, page 285.

To evaluate an expression:

Double-click the Recalculate icon to calculate the value of that expression.

None; this window is always available.

C-SPY macros __4

Display area
This area contains these columns:

g Recalculate icon

To evaluate the expression, double-click the icon. The latest evaluated
expression appears in bold style.

Expression

One or several expressions that you want to evaluate. Click <click to add>
to add an expression. If the return value has changed since last time, the value
will be displayed in red.

Result
Shows the return value from the expression evaluation.

Context menu

This context menu is available:

Evaluate Now
Rermove
Rermove All

These commands are available:

Evaluate Now

Evaluates the selected expression.

Remove
Removes the selected expression.

Remove All
Removes all selected expressions.

335

Graphical environment for macros

C-SPY® Debugging Guide
336 for RX

The C-SPY command line
utility—cspybat

e Summary of C-SPY command line options

e Reference information on C-SPY command line options.

Using C-SPY in batch mode

You can execute C-SPY in batch mode if you use the command line utility cspybat,
installed in the directory common\bin.

These topics are covered:

e Starting cspybat
e Output

e Invocation syntax

STARTING CSPYBAT

I To start cspybat you must first create a batch file. An easy way to do that is to use one
of the batch files that C-SPY automatically generates when you start C-SPY in the
IDE.

C-SPY generates a batch file projectname. buildconfiguration.cspy.bat every
time C-SPY is initialized. In addition, two more files are generated:

® project.buildconfiguration.general .xcl, which contains options specific
to cspybat.

® project.buildconfiguration.driver.xcl, which contains options specific to
the C-SPY driver you are using.

You can find the files in the directory $PROJ_DIR$\settings. The files contain the
same settings as the IDE, and provide hints about additional options that you can use.

2 To start cspybat, you can use this command line:

project.cspybat.bat [debugfile]

337

Using C-SPY in batch mode

338

C-SPY® Debugging Guide
for RX

Note that debugfileis optional. You can specify it if you want to use a different debug
file than the one that is used in the project.buildconfiguration.general .xcl
file.

OUTPUT

When you run cspybat, these types of output can be produced:

Terminal output from cspybat itself

All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

Terminal output from the application you are debugging

All such terminal output is directed to stdout, provided that you have used the
--plugin option. See --plugin, page 351.

Error return codes

cspybat returns status information to the host operating system that can be tested in

abatch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor DLL driver DLL debug_file

[cspybat_options] --backend driver_ options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.

Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file; available in rx\bin.

driver DLL The C-SPY driver DLL file; available in rx\bin.

debug_file The object file that you want to debug (filename extension out). See

also —debugfile, page 343.

cspybat_options The command line options that you want to pass to cspybat. Note

that these options are optional. For information about each option,
see Reference information on C-SPY command line options, page 341.

Table 37: cspybat parameters

The C-SPY command line utility—cspybat ___¢

Parameter Description

--backend Marks the beginning of the parameters to the C-SPY driver; all

options that follow will be sent to the driver. Note that this option is

mandatory.

driver_options The command line options that you want to pass to the C-SPY driver.

Note that some of these options are mandatory and some are

optional. For information about each option, see Reference information

on C-SPY command line options, page 341.

Table 37: cspybat parameters (Continued)

Summary of C-SPY command line options

Reference information about:

General cspybat options
Options available for all C-SPY drivers

Options available for the simulator driver
Options available for all C-SPY hardware debugger drivers
Options available for the J-Link driver

GENERAL CSPYBAT OPTIONS

--backend

--code_coverage_file

--cycles
--debugfile

--download_only

-f

--leave_running

—-—-macro
——macro_param

--plugin

Marks the beginning of the parameters to be sent to the
C-SPY driver (mandatory).

Enables the generation of code coverage information and
places it in a specified file.

Specifies the maximum number of cycles to run.
Specifies an alternative debug file.

Downloads a code image without starting a debug session
afterwards.

Extends the command line.

Starts the execution on the target and then exits but leaves
the target running.

Specifies a macro file to be used.
Assigns a value to a C-SPY macro parameter.

Specifies a plugin file to be used.

339

Summary of C-SPY command line options

--silent Onmits the sign-on message.

--timeout Limits the maximum allowed execution time.

OPTIONS AVAILABLE FOR ALL C-SPY DRIVERS

-B Enables batch mode (mandatory).

--core Specifies the core to be used.

-d Specifies the C-SPY driver to be used.
--double Specifies the size of the type double.
--endian Specifies the byte order for data.

--int Specifies the size of the type int.

-p Specifies the device description file to be used.

OPTIONS AVAILABLE FOR THE SIMULATOR DRIVER

--disable_interrupts Disables the interrupt simulation.

--mapu Activates memory access checking.

OPTIONS AVAILABLE FOR ALL C-SPY HARDWARE
DEBUGGER DRIVERS

--drv_communication Identifies which emulator you are using.

--drv_mode Controls the behavior of the debugger when code is
downloaded.
--log_file Creates a log file.

--suppress_download Suppresses download of the executable image.

--verify_download Verifies the executable image.
OPTIONS AVAILABLE FOR THE J-LINK DRIVER

--device_select Selects a specific device in the JTAG scan chain.

C-SPY® Debugging Guide
340 for RX

The C-SPY command line utility—cspybat ___¢

Sets the number of IR bits before the device to be
debugged.

--ir_length

Reference information on C-SPY command line options

-B
Syntax
For use with

Description

--backend

Syntax

Parameters

For use with

Description

-=Ccore

Syntax

Parameters

This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

-B
All C-SPY drivers.

Use this option to enable batch mode.

This option is not available in the IDE.

--backend {driver options}

driver options

Any option available to the C-SPY driver you are using.
cspybat (mandatory).

Use this option to send options to the C-SPY driver. All options that follow --backend
will be passed to the C-SPY driver, and will not be processed by cspybat itself.

This option is not available in the IDE.

--core {rxvl|rxv2}

rxvl | rxv2

The core you are using. This option reflects the corresponding compiler option.

341

Reference information on C-SPY command line options

For use with
Description

See also

--code_coverage_file

Syntax

Parameters

For use with

Description

See also

--cycles

Syntax

Parameters

For use with

C-SPY® Debugging Guide
342 for RX

All C-SPY drivers.
Use this option to specify the core you are using.

The IAR C/C++ Development Guide for RX for information about the cores.
To set related options, choose:

Project>Options>General Options>Target>Device

--code_coverage_file file
Note that this option must be placed before the - -backend option on the command line.

file
The name of the destination file for the code coverage information.

cspybat

Use this option to enable the generation of code coverage information. The code
coverage information will be generated after the execution has completed and you can
find it in the specified file.

Note that this option requires that the C-SPY driver you are using supports code
coverage. If you try to use this option with a C-SPY driver that does not support code
coverage, an error message will be directed to stderr.

Code coverage, page 241.

To set this option, choose View>Code Coverage, right-click and choose Save As when
the C-SPY debugger is running.

--cycles cycles

Note that this option must be placed before the - -backend option on the command line.

cycles

The number of cycles to run.

cspybat

Description

Syntax

Parameters

For use with

Description

--debugfile

Syntax

Parameters

For use with

The C-SPY command line utility—cspybat ___¢

Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.
Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

This option is not available in the IDE.

-d {emue20|emue2lite|jlink|sim}
emue20
Specifies the C-SPY E1/E20 driver.

emue2lite

Specifies the C-SPY E2 Lite driver.
jlink

Specifies the C-SPY J-Link driver.
sim

Specifies the C-SPY simulator driver.
All C-SPY drivers.

Use this option to specify the C-SPY driver to be used.

Project>Options>Debugger>Setup>Driver

--debugfile filename

filename

The name of the debug file to use.

cspybat

This option can be placed both before and after the - -backend option on the command
line.

343

Reference information on C-SPY command line options

Description

--device_select

Syntax

Parameters

For use with

Description

See also

--disable_interrupts

Syntax
For use with

Description

--double

Syntax

Parameters

C-SPY® Debugging Guide
344 for RX

Use this option to make cspybat use the specified debugfile instead of the one used in
the generated cpsybat .bat file.

This option is not available in the IDE.

--device_select=position

position

The position of the device you want to connect to.
The C-SPY J-Link driver.

If there is more than one device on the JTAG scan chain, use this option to select a
specific device.

JTAG Scan Chain, page 363.
Project>Options>J-Link RX>JTAG Scan Chain>Device position

--disable_interrupts
The C-SPY Simulator driver.

Use this option to disable the interrupt simulation.

To set this option, choose Simulator>Interrupt Setup and deselect the Enable
interrupt simulation option.

--double {3264}

32 (default)
32-bit doubles are used.

For use with

Description

See also

--download_only

Syntax

For use with

Description

--drv_communication

Syntax

Parameters

For use with

Description

Example

The C-SPY command line utility—cspybat ___¢

64
64-bit doubles are used.

All C-SPY drivers.

Use this option to select the precision used by the compiler for representing the
floating-point types double and long double.

The IAR C/C++ Development Guide for RX for more information about the size of the
type double.

Project>Options>General Options>Target>Size of type ‘double’

--download_only

Note that this option must be placed before the - -backend option on the command line.
cspybat

Use this option to download the code image without starting a debug session afterwards.
o set related option, choose:

Project>Options>Debugger>Setup and deselect Run to.

--drv_communication {USB:serial_no}

serial_no

Specifies the serial number for the USB emulator you want to use.
All C-SPY hardware debugger drivers.

If you have more than one Renesas E1, E2 Lite or E20 emulator connected, use this
option to identify which emulator you are using.

--drv_communication USB:9IM000019

Project>Options>Driver>Communication>Serial No

345

Reference information on C-SPY command line options

--drv_mode

Syntax

Parameters

For use with

Description

--endian

Syntax

Parameters

For use with

Description

C-SPY® Debugging Guide
346 for RX

--drv_mode {debugging|attach_to_program|flash|flash_and_execute}

debugging
Makes the emulator operate as a debugger. After downloading your application,
you cannot disconnect the debugger and use the target system as a stand-alone
unit.

attach_to_program

Makes the debugger continue to execute a running application at its current
location, without resetting the target system. The target system must be powered
by external power.

flash

Makes the emulator operate as a flash memory programmer. You cannot use the
emulator as a debugger in this mode.

flash_and_execute

Launches your application on the target board when the code has been
downloaded.

All C-SPY hardware debugger drivers.

Controls the behavior of the debugger when code is downloaded.

Project>Options>Driver>Download>Mode

--endian {b|1l}

b
Specifies big-endian as the default byte order for data.

1 (default)
Specifies little-endian as the default byte order for data.

All C-SPY drivers.

Use this option to specify the byte order of the generated data. (Code is always
little-endian.)

-f

See also

Syntax

Parameters

For use with

Description

Syntax

Parameters

For use with

Description

The C-SPY command line utility—cspybat ___¢

The IAR C/C++ Development Guide for RX for more information about the byte order
of data.

Project>Options>General Options>Target>Byte order

-f filename

filename

A text file that contains the commands (default filename extension xc1).
cspybat
This option can be placed both before and after the - -backend option on the command
line.
Use this option to make cspybat read command line options from the named file.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character is treated
like a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>Debugger>Extra Options.

--int {16]32)

16
The size of the data type int is 16 bits.

32 (default)
The size of the data type int is 32 bits.

All C-SPY drivers.

Use this option to select whether the compiler uses 16 or 32 bits to represent the int
data type.

347

Reference information on C-SPY command line options

See also

--ir_length
Syntax

Parameters

For use with

Description

See also

--leave_running

Syntax

For use with

Description

C-SPY® Debugging Guide
348 for RX

The IAR C/C++ Development Guide for RX for more information about the size of the
type int.

Project>Options>General Options>Target>Size of type ‘int’

--ir_length=Ilength

length

The the combined length in bits of all instruction registers before the device to
be debugged.

The C-SPY J-Link driver.

Use this option to specify the combined length in bits of all instruction registers before
the device to debugged, if one or more devices on the JTAG scan chain has a
non-standard length (the default length is 8 bits).

JTAG Scan Chain, page 363.

Project>Options>J-Link RX>JTAG Scan Chain>Preceding IR bits

--leave_running

Note that this option must be placed before the - -backend option on the command line.
cspybat

Makes cspybat start the execution on the target and then exits but leaves the target
running.

To set a related option, choose:

Project>Options>Driver>Download>Debugging mode>Attach to program

--log _file

Syntax

Parameters

For use with

Description

=-=mMacro

Syntax

Parameters

For use with

Description

See also

=--Macro_param

Syntax

Parameters

The C-SPY command line utility—cspybat ___¢

--log_file=filename

filename

The name of the log file.
Any C-SPY hardware debugger driver.

Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, detailed knowledge of the communication protocol is required.

Project>Options>Debugger>Driver>Communication Log

--macro filename

Note that this option must be placed before the - -backend option on the command line.

filename

The C-SPY macro file to be used (filename extension mac).

cspybat

Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

Briefly about using C-SPY macros, page 284.

Project>Options>Debugger>Setup>Setup macros>Use macro file

--macro_param [param=valuel]

Note that this option must be placed before the - -backend option on the command line.

param = value
paramis a parameter defined using the __param C-SPY macro construction.
value is a value.

349

Reference information on C-SPY command line options

350

For use with

Description

See also

--mapu

C-SPY® Debugging Guide

for RX

Syntax
For use with

Description

See also

Syntax

Parameters

For use with
Description

See also

cspybat

Use this option to assign av value to a C-SPY macro parameter.This option can be used
more than once on the command line.

Macro parameters, page 291.

Project>Options>Debugger>Extra Options

--mapu

The C-SPY simulator driver.

Specify this option to use the section information in the debug file for memory access
checking. During the execution, the simulator will then check for accesses to
unspecified memory ranges. If any such access is found, the C function call stack and a

message will be printed on stderr and the execution will stop.

Memory access checking, page 160.
To set related options, choose:

Simulator>Memory Access Setup

-p filename

filename

The device description file to be used.
All C-SPY drivers.
Use this option to specify the device description file to be used.

Selecting a device description file, page 42.

Project>Options>Debugger>Setup>Device description file

--plugin

Syntax

Parameters

For use with

Description

--silent

Syntax

For use with

Description

The C-SPY command line utility—cspybat ___¢

--plugin filename

Note that this option must be placed before the - -backend option on the command line.

filename

The plugin file to be used (filename extension d11).
cspybat

Certain C/C++ standard library functions, for example print £, can be supported by
C-SPY—for example, the C-SPY Terminal I/0O window—instead of by real hardware
devices. To enable such support in cspybat, a dedicated plugin module called
rxbat.dll located in the \bin directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

Note: You can use this option to include also other plugin modules, but in that case the
module must be able to work with cspybat specifically. This means that the C-SPY
plugin modules located in the common\plugin directory cannot normally be used with
cspybat.

Project>Options>Debugger>Plugins

--silent

Note that this option must be placed before the - -backend option on the command line.
cspybat

Use this option to omit the sign-on message.

This option is not available in the IDE.

351

Reference information on C-SPY command line options

--suppress_download

Syntax
For use with

Description

--timeout

Syntax

Parameters

For use with

Description

--verify_download

Syntax
For use with

Description

C-SPY® Debugging Guide
352 for RX

--suppress_download
Any C-SPY hardware debugger driver.

Use this option to suppress the downloading of the executable image to a non-volatile
type of target memory. The image corresponding to the debugged application must
already exist in the target.

If this option is combined with the option --verify_download, the debugger will read
back the executable image from memory and verify that it is identical to the debugged
application.

Project>Options>Driver>Download>Suppress download

--timeout milliseconds

Note that this option must be placed before the - -backend option on the command line.

milliseconds

The number of milliseconds before the execution stops.
cspybat

Use this option to limit the maximum allowed execution time.

This option is not available in the IDE.

--verify_download
Any C-SPY hardware debugger driver.

Use this option to verify that the downloaded code image can be read back from target
memory with the correct contents.

Project>Options>Debugger>Driver>Download>Verify download

Part 4. Additional
reference information

This part of the C-SPY® Debugging Guide for RX includes these chapters:
e Debugger options

o Additional information on C-SPY drivers

.hmuhhhhi

353

AAARRIE

354

Debugger options

e Setting debugger options
e Reference information on debugger options

e Reference information on C-SPY hardware debugger driver options

Setting debugger options

Before you start the C-SPY debugger you might need to set some options—both C-SPY
generic options and options required for the target system (C-SPY driver-specific
options).

To set debugger options in the IDE:
I Choose Project>Options to display the Options dialog box.
2 Select Debugger in the Category list.

For more information about the generic options, see Reference information on debugger
options, page 356.

3 On the Setup page, make sure to select the appropriate C-SPY driver from the Driver
drop-down list.

4 To set the driver-specific options, select the appropriate driver from the Category list.
Depending on which C-SPY driver you are using, different options are available.

C-SPY driver Available options pages

C-SPY simulator Setup options for the simulator, page 360

C-SPY EI/E20 driver or Communication, page 361
C-SPY E2 Lite driver Download, page 362
C-SPY J-Link driver Download, page 362

JTAG Scan Chain, page 363

Table 38: Options specific to the C-SPY drivers you are using
5 To restore all settings to the default factory settings, click the Factory Settings button.

6 When you have set all the required options, click OK in the Options dialog box.

355

Reference information on debugger options

Reference information on debugger options

Reference information about:

e Setup

e Images

o Extra Options
o Plugins

Setup

The Setup options select the C-SPY driver, the setup macro file, and device description
file to use, and specify which default source code location to run to.

Setup |
Driver———————————— ¥ Funto
I Simulator j Imain
— Setup macro

™ Use macra file
| L

— Device description file

™ Overide default

| L

Driver

Selects the C-SPY driver for the target system you have.

Run to

Specifies the location C-SPY runs to when the debugger starts after a reset. By default,
C-SPY runs to the main function.

To override the default location, specify the name of a different location you want
C-SPY to run to. You can specify assembler labels or whatever can be evaluated as such,
for example function names.

If the option is deselected, the program counter will contain the regular hardware reset
address at each reset.

C-SPY® Debugging Guide
356 for RX

Images

Debugger options °

Setup macros

Registers the contents of a setup macro file in the C-SPY startup sequence. Select Use
macro file and specify the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

Device description file

A default device description file is selected automatically based on your project settings.
To override the default file, select Override default and specify an alternative file. A
browse button is available for your convenience.

For information about the device description file, see Modifying a device description
file, page 48.

The Images options control the use of additional debug files to be downloaded.
Images

[Download extra image

=

i

[Download extra image

:

[Download extra image

:

Note: Flash loading will not be performed; using the Images options you can only
download images to RAM.

Download extra Images

Controls the use of additional debug files to be downloaded:

Path
Specify the debug file to be downloaded. A browse button is available for your
convenience.

Offset
Specity an integer that determines the destination address for the downloaded
debug file.

357

Reference information on debugger options

Debug info only
Makes the debugger download only debug information, and not the complete
debug file.

If you want to download more than three images, use the related C-SPY macro, see
__loadlmage, page 306.

For more information, see Loading multiple images, page 45.

Plugins

The Plugins options select the C-SPY plugin modules to be loaded and made available
during debug sessions.

Flugins

Select pluging to load:

Code Coverage

Description: |[Enables code coverage in the debugger.

Lacatian: |\common\plugins\EodeEoverage\EodeEoverage.dII

Originator: |IAF| Systems
Wersior: |4.B.D.D

Select plugins to load

Selects the plugin modules to be loaded and made available during debug sessions. The
list contains the plugin modules delivered with the product installation.

Description
Describes the plugin module.
Location
Informs about the location of the plugin module.
Generic plugin modules are stored in the common\plugins directory. Target-specific
plugin modules are stored in the rx\plugins directory.
Originator

Informs about the originator of the plugin module, which can be modules provided by
IAR Systems or by third-party vendors.

C-SPY® Debugging Guide
358 for RX

Debugger options ___4

Version

Informs about the version number.

Extra Options
The Extra Options page provides you with a command line interface to C-SPY.

r

(Cammatdlife:

Use command line options

Specify command line arguments that are not supported by the IDE to be passed to
C-SPY.

Note that it is possible to use the /args option to pass command line arguments to the
debugged application.

Syntax: /args arg0 argl ...
Multiple lines with /args are allowed, for example:
/args --logfile log.txt

/args --verbose

359

Reference information on the C-SPY simulator

If you use /args, these variables must be defined in your application:

/* __argc, the number of arguments in __argv. */
__no_init int __argc;
/* __argv, an array of pointers to strings that holds the

arguments; must be large enough to fit the number of
parameters.*/

__no_init const char * __argv[MAX_ ARGS];

/* __argvbuf, a storage area for __argv; must be large enough to
hold all command line parameters. */

__no_init __root char __argvbuf [MAX_ ARG_SIZE];

Reference information on the C-SPY simulator

Reference information about:
e Setup options for the simulator

This section gives reference information on the C-SPY simulator options.

Setup options for the simulator

The simulator Setup options control the C-SPY simulator.
Setup

Peripheral simulation
[Enable peripheral simulation

Peripheral simulation

These options set up peripheral simulation, which requires a plugin from a third-party
vendor.

C-SPY® Debugging Guide
360 for RX

Debugger options °

Reference information on C-SPY hardware debugger driver options

Reference information about:

o Communication, page 361
® Download, page 362
® JTAG Scan Chain, page 363

Communication

The Communication options determine how the E1, E2 Lite, or E20 emulator
communicates with the host computer.

Communication

[Serial No

Communication log
[Use communication log file:

SPROJ_DIRS \cspycomm log

Serial No

Selects which Renesas emulator to use, if more than one is connected to your host
computer via USB.

Communication log

Logs the communication between C-SPY and the target system to the specified log file,
which can be useful for troubleshooting purposes. The communication will be logged in
the file cspycomm. 1og located in the current working directory. If required, use the
browse button to locate a different file.

To interpret the result, detailed knowledge of the interface is required.

361

Reference information on C-SPY hardware debugger driver options

362

Download

By default, C-SPY downloads the application to RAM or flash when a debug session
starts. The Download options let you modify the behavior of the download.

D ownload

Mode
(®) Debugging mode
[&ttach to program

O Flash writing mode

[erity dovnload

[Suppress download

Debugging mode

Makes the emulator operate as a debugger. After downloading your application, you
cannot disconnect the debugger and use the target system as a stand-alone unit. In this
mode, you cannot write ID Codes (that protect the memory from being accessed) to the
flash memory.

Attach to program

Makes the debugger attach to a running application at its current location, without
resetting the target system. To avoid unexpected behavior when using this option, the
Debugger>Setup option Run to should be deselected.

For more information, see Start debugging a running application, page 47.

Flash writing mode

Makes the emulator operate as a flash memory programmer. You cannot use the
emulator as a debugger in this mode. After downloading your application, an ID Code
(that protects the memory from being accessed) is written to the flash memory.

Execute the user program after ending the debugger

Launches your application on the target board when the code has been downloaded.

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

C-SPY® Debugging Guide
for RX

Debugger options °

Suppress download

Disables the downloading of code, while preserving the present content of the flash
memory. This command is useful if you want to debug an application that already
resides in target memory.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.

JTAG Scan Chain

Only one device at a time can be debugged. If there is more than one device on the same
JTAG scan chain, you must use the J-Link RX>JTAG Scan Chain options to specify
which device to debug.

JTAG Scan Chain

JTAG scan chain with muttiple targsts

Device position: 2
Use devices with deviant instruction register lengths

Preceding IR bits: 12

JTAG scan chain with multiple targets

Informs the debugger that there is more than one device on the JTAG scan chain.

Device position

Specify the position of the device you want to debug. The first device has position 0.

Use devices with deviant instruction register lengths

Informs the debugger that the JTAG instruction register of one or more devices on the
JTAG scan chain has a non-standard length (the default length is 8 bits).

Preceding IR bits

Specify the combined length of the instruction registers of all devices that precede the
device being debugged.

363

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
364 for RX

Additional information on
C-SPY drivers

This chapter describes the additional menus and features provided by the

C-SPY® drivers. You will also find some useful hints about resolving problems.

Reference information on C-SPY driver menus

C-SPY driver

Reference information about:

o C-SPY driver, page 365

o Simulator menu, page 366

o EI/E20 Emulator menu, page 368
o FE2 Lite menu, page 370

® J-Link menu, page 372

Before you start the C-SPY debugger, you must first specify a C-SPY driver in the
Options dialog box, using the option Debugger>Setup>Driver.

When you start a debug session, a menu specific to that C-SPY driver will appear on the
menu bar, with commands specific to the driver.

When we in this guide write “choose C-SPY driver>" followed by a menu command,
C-SPY driver refers to the menu. If the feature is supported by the driver, the command
will be on the menu.

365

Reference information on C-SPY driver menus

Simulator menu
When you use the simulator driver, the Simulator menu is added to the menu bar.
Memory Access Setup..
Trace
Function Trace

Function Profiler

Data Log
Data Log Summary
Interrupt Log

Interrupt Summary
Timeline
Simulated Frequency...

v | Interrupt Setup...
Forced Interrupt

Interrupt Status

Breakpoint Usage...

Menu commands

These commands are available on the menu:

Memory Access Setup

Displays a dialog box to simulate memory access checking by specitying
memory areas with different access types, see Memory Access Setup dialog box,
page 185.

Trace

Opens a window which displays the collected trace data, see Trace window,
page 198.

Function Trace

Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 202.

Function Profiler
Opens a window which shows timing information for the functions, see
Function Profiler window, page 227.

Data Log

Opens a window which logs accesses to up to four different memory locations
or areas, see Data Log window, page 117.

C-SPY® Debugging Guide
366 for RX

Additional information on C-SPY drivers __4

Data Log Summary
Opens a window which displays a summary of data accesses to specific memory
location or areas, see Data Log Summary window, page 119.

Interrupt Log
Opens a window which displays the status of all defined interrupts, see Interrupt
Log window, page 277.

Interrupt Log Summary
Opens a window which displays a summary of the status of all defined
interrupts, see Interrupt Log Summary window, page 280.

Timeline
Opens a window which gives a graphical view of various kinds of information
on a timeline, see Timeline window, page 202.

Simulated Frequency
Opens the Simulated Frequency dialog box where you can specify the
simulator frequency used when the simulator displays time information, for
example in the log windows. Note that this does not affect the speed of the
simulator.

Interrupt Setup
Displays a dialog box where you can configure C-SPY interrupt simulation, see
Interrupt Setup dialog box, page 271.

Forced Interrupts
Opens a window from where you can instantly trigger an interrupt, see Forced
Interrupt window, page 274.

Interrupt Status
Opens a window from where you can instantly trigger an interrupt, see Interrupt
Status window, page 275.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 142.

367

Reference information on C-SPY driver menus

368

E1/E20 Emulator menu

Menu commands

C-SPY® Debugging Guide
for RX

When you are using the C-SPY E1/E20 Emulator driver, the E1/E20 Emulator menu is
added to the menu bar.

Hardware Setup...

Operating Frequency...

Trace Settings...
Trace
Function Trace

Function Profiler

Data Sample Setup
Data Sample

Sampled Graphs

Performance Analysis Setup
Performance Analysis

RAM Monitor Setup...
Start/Stop Function Settings...

Download Firmware...

Ereakpoint Usage

Emulator Information

These commands are available on the menu:

Hardware Setup
Displays a dialog box where you can configure how the emulator operates, see
Hardware Setup dialog box: MCU, page 61.

Operating Frequency
Displays a dialog box where you can inform the emulator of the operating
frequency that the MCU is running at, see Operating Frequency dialog box,
page 59.

Trace Settings
Displays a dialog box where you can configure the trace generation and
collection, see Trace Settings dialog box, page 195.

Trace

Opens a window which displays the collected trace data, see Trace window,
page 198.

Additional information on C-SPY drivers __4

Function Trace
Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 202.

Function Profiler
Opens a window which shows timing information for the functions, see
Function Profiler window, page 227.

Data Sample Setup
Opens a window where you can specify variables to sample data for, see Data
Sample Setup window, page 120.

Data Sample
Opens a window where you can view the result of the data sampling, see Data
Sample window, page 122.

Sampled Graphs
Opens a window which gives a graphical view of various kinds of sampled
information, see Data Sample window, page 122.

Performance Analysis Setup
Displays a dialog box where you can configure the code performance analysis,
see Performance Analysis Setup dialog box, page 235.

Performance Analysis
Opens a window which displays the results of the code performance analysis,
see Performance Analysis window, page 237.

RAM Monitor Setup
Displays a dialog box where you configure the memory areas for data coverage,
see RAM Monitor Setup dialog box, page 170.

Start/Stop Function Settings
Displays a dialog box where you can configure the emulator to execute specific
routines of your application immediately before the execution starts and/or after
it halts, see Start/Stop Function Settings dialog box, page 87.

Download Firmware
Displays a dialog box where you can update the firmware of your emulator if
needed, see Download Emulator Firmware dialog box, page 59.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 142.

369

Reference information on C-SPY driver menus

370

E2 Lite menu

Menu commands

C-SPY® Debugging Guide
for RX

Emulator Information

Displays a dialog box with version information about the emulator and the
emulator firmware, and related information, see Emulator information window,
page 375.

When you are using the C-SPY E2 Lite driver, the E2 Lite menu is added to the menu
bar.

Hardware Setup...

Operating Frequency...

Trace Settings...
Trace
Function Trace

Function Profiler

Data Sample Setup
Data Sample

Sampled Graphs

Performance Analysis Setup
Performance Analysis
Start/Stop Function Settings...

Download Firmware...

Ereakpoint Usage

Emulator Information

These commands are available on the menu:

Hardware Setup
Displays a dialog box where you can configure how the emulator operates, see
Hardware Setup dialog box: MCU, page 61.

Operating Frequency
Displays a dialog box where you can inform the emulator of the operating
frequency that the MCU is running at, see Operating Frequency dialog box,
page 59.

Trace Settings

Displays a dialog box where you can configure the trace generation and
collection, see Trace Settings dialog box, page 195.

Additional information on C-SPY drivers __4

Trace

Opens a window which displays the collected trace data, see Trace window,
page 198.

Function Trace
Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 202.

Function Profiler

Opens a window which shows timing information for the functions, see
Function Profiler window, page 227.

Data Sample Setup

Opens a window where you can specify variables to sample data for, see Data
Sample Setup window, page 120.

Data Sample

Opens a window where you can view the result of the data sampling, see Data
Sample window, page 122.

Sampled Graphs
Opens a window which gives a graphical view of various kinds of sampled
information, see Data Sample window, page 122.

Performance Analysis Setup

Displays a dialog box where you can configure the code performance analysis,
see Performance Analysis Setup dialog box, page 235.

Performance Analysis
Opens a window which displays the results of the code performance analysis,
see Performance Analysis window, page 237.

Start/Stop Function Settings
Displays a dialog box where you can configure the emulator to execute specific
routines of your application immediately before the execution starts and/or after
it halts, see Start/Stop Function Settings dialog box, page 87.

Download Firmware

Displays a dialog box where you can update the firmware of your emulator if
needed, see Download Emulator Firmware dialog box, page 59.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 142.

371

Reference information on C-SPY driver menus

372

Emulator Information

Displays a dialog box with version information about the emulator and the
emulator firmware, and related information, see Emulator information window,
page 375.

J-Link menu

When you are using the C-SPY J-Link driver, the J-Link menu is added to the menu bar.
Hardware Setup...
Operating Frequency...

Trace Settings...
Trace

Function Trace
Function Profiler

Power Log Setup

Power Log Window
Timeline

Data Sample Setup
Data Sample

Sampled Graphs

Performance Analysis Setup
Performance Analysis

Download Firmware...

Ereakpoint Usage

Emulator Information

Menu commands

These commands are available on the menu:

Hardware Setup

Displays a dialog box where you can configure how the emulator operates, see
Hardware Setup dialog box: MCU, page 61.

Operating Frequency
Displays a dialog box where you can inform the emulator of the operating
frequency that the MCU is running at, see Operating Frequency dialog box,
page 59.

Trace Settings

Displays a dialog box where you can configure the trace generation and
collection, see Trace Settings dialog box, page 195.

C-SPY® Debugging Guide
for RX

Additional information on C-SPY drivers __4

Trace

Opens a window which displays the collected trace data, see Trace window,
page 198.

Function Trace

Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 202.

Function Profiler

Opens a window which shows timing information for the functions, see
Function Profiler window, page 227.

Power Log Setup

Opens a window where you can configure the power measurement; see Power
Log Setup window, page 254.

Power Log

Opens a window that displays collected power values; see Power Log window,
page 256.

Timeline
Opens a window which gives a graphical view of various kinds of information
on a timeline, see Timeline window, page 202.

Data Sample Setup

Opens a window where you can specify variables to sample data for, see Data
Sample Setup window, page 120.

Data Sample

Opens a window where you can view the result of the data sampling, see Data
Sample window, page 122.

Sampled Graphs

Opens a window which gives a graphical view of various kinds of sampled
information, see Data Sample window, page 122.

Performance Analysis Setup
Displays a dialog box where you can configure the code performance analysis,
see Performance Analysis Setup dialog box, page 235.

Performance Analysis

Opens a window which displays the results of the code performance analysis,
see Performance Analysis window, page 237.

373

Reference information on the C-SPY simulator

Download Firmware

Displays a dialog box where you can update the firmware of your emulator if
needed, see Download Emulator Firmware dialog box, page 59.

Breakpoint Usage
Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 142.

Emulator Information
Displays a dialog box with version information about the emulator and the
emulator firmware, and related information, see Emulator information window,
page 375.

Reference information on the C-SPY simulator

This section gives additional reference information the C-SPY simulator, reference
information not provided elsewhere in this documentation.

Reference information about:

o Simulated Frequency dialog box, page 374

Simulated Frequency dialog box
The Simulated Frequency dialog box is available from the C-SPY driver menu.

Simulated Frequency &J
Frequency [Hz]:
000000
1 MHz Cancel

Uszed only for converting cycles to time.

L

Use this dialog box to specify the simulator frequency used when the simulator displays
time information.

Requirements
The C-SPY simulator.

Frequency

Specify the frequency in Hz.

C-SPY® Debugging Guide
374 for RX

Additional information on C-SPY drivers __4

Reference information on the C-SPY hardware debugger drivers

Reference information about:

o Emulator information window, page 375

Emulator information window

Requirements

Display area

The Emulator information window is available from the C-SPY Driver menu.

Emulator Information @
Fart Yersion
Yersion Information
FRWE2ORXE00.dII 2.00.00.028
BfwEZ0rx600.5
LEVELD 1.00.00.000
LEWEL1 2.00.00.023
Communi.dll 2.05.00.000
FPGA 0B
Communication FPGA oc

Emulator Information

Erulator Board Revision El Rew.02
UserWCC 3.26 ¥
USE Bus Power 4.96 ¥

Debug Log |Build Emulator Information x

This window displays version information about the emulator and the emulator
firmware, and related information.

A C-SPY hardware debugger driver.

This area displays version information and other information.

Version Information
Displays information about the emulator firmware DLL, the communication
DLL, and the FPGA circuit.

Emulator Information

Displays the version and revision number of the emulator hardware, the actual
voltage that the target board is powered with, and the voltage of the USB bus.

375

Resolving problems

376

Resolving problems

C-SPY® Debugging Guide
for RX

These topics are covered:

o Write failure during load
o No contact with the target hardware

o Slow stepping speed

Debugging using the C-SPY hardware debugger systems requires interaction between
many systems, independent from each other. For this reason, setting up this debug
system can be a complex task. If something goes wrong, it might be difficult to locate
the cause of the problem.

This section includes suggestions for resolving the most common problems that can
occur when debugging with the C-SPY hardware debugger systems.

For problems concerning the operation of the evaluation board, refer to the
documentation supplied with it, or contact your hardware distributor.
WRITE FAILURE DURING LOAD

There are several possible reasons for write failure during load. The most common is
that your application has been incorrectly linked:

o Check the contents of your linker configuration file and make sure that your
application has not been linked to the wrong address

o Check that you are using the correct linker configuration file.

In the IDE, the linker configuration file is automatically selected based on your choice
of device.

To choose a device:

Choose Project>Options.

Select the General Options category.

Click the Target tab.

Choose the appropriate device from the Device drop-down list.
To override the default linker configuration file:
Choose Project>Options.

Select the Linker category.

Click the Config tab.

Choose the appropriate linker configuration file in the Linker configuration file area.

Additional information on C-SPY drivers __4

NO CONTACT WITH THE TARGET HARDWARE

There are several possible reasons for C-SPY to fail to establish contact with the target
hardware. Do this:

Check the communication devices on your host computer

Verify that the cable is properly plugged in and not damaged or of the wrong type

Make sure that the evaluation board is supplied with sufficient power

Check that the correct options for communication have been specified in the IAR
Embedded Workbench IDE.

Examine the linker configuration file to make sure that the application has not been
linked to the wrong address.

SLOW STEPPING SPEED

If you find that the stepping speed is slow, these troubleshooting tips might speed up
stepping:

e If you are using a hardware debugger system, keep track of how many hardware
breakpoints that are used and make sure some of them are left for stepping.

Stepping in C-SPY is normally performed using breakpoints. When C-SPY performs
a step command, a breakpoint is set on the next statement and the application
executes until it reaches this breakpoint. If you are using a hardware debugger
system, the number of hardware breakpoints—typically used for setting a stepping
breakpoint in code that is located in flash/ROM memory—is limited. If you, for
example, step into a C switch statement, breakpoints are set on each branch; this
might consume several hardware breakpoints. If the number of available hardware
breakpoints is exceeded, C-SPY switches into single stepping on assembly level,
which can be very slow.

For more information, see Breakpoints in the C-SPY hardware debugger drivers,
page 133 and Breakpoint consumers, page 133.

e Disable trace data collection, using the Enable/Disable button in both the Trace
and the Function Profiling windows. Trace data collection might slow down
stepping because the collected trace data is processed after each step. Note that it is
not sufficient to just close the corresponding windows to disable trace data
collection.

o Choose to view only a limited selection of SFR registers. You can choose between
two alternatives. Either type #SFR_name (where SFR_name reflects the name of the
SFR you want to monitor) in the Watch window, or create your own filter for
displaying a limited group of SFRs in the Register window. Displaying many SFR
registers might slow down stepping because all registers must be read from the
hardware after each step. See Defining application-specific register groups, page

377

Resolving problems

378

C-SPY® Debugging Guide
for RX

161.

Close the Memory and Symbolic Memory windows if they are open, because the
visible memory must be read after each step and that might slow down stepping.
Close any window that displays expressions such as Watch, Live Watch, Locals,

Statics if it is open, because all these windows read memory after each step and that
might slow down stepping.

Close the Stack window if it is open. Choose Tools>Options>Stack and disable the
Enable graphical stack display and stack usage tracking option if it is enabled.

If possible, increase the communication speed between C-SPY and the target
board/emulator.

A

Abort (Report Assertoption)c..ouen... 87
absolute location, specifying for a breakpoint. 155
Access type (Edit Memory Access option) 188
Access (Edit SFRoption)o, 185
Action (Hardware Code breakpoints option). 145
Action (Software Code breakpoints option) 146
Add to Watch Window (Symbolic Memory window context
1073111 [N 174
Add (SFR Setup window context menu). 183
Address Range (Find in Trace option) 216
Address range (Hardware Setup) 66
Address (Edit SFRoption)cooen... 184
Allow clock source change when
writing internal flash (Hardware Setup) 63
Ambiguous symbol (Resolve Symbol Ambiguity option). 116
application, built outside the IDE 44
assembler labels, viewing 98
assembler source code, fine-tuning. 219
assembler symbols, using in C-SPY expressions 95
assembler variables, viewing. 98
assumptions, programming eXperience 21
Attach to program (debugger option) 362

eXample 47
Auto Scroll (Sampled Graphs window context menu) . .. 125
Auto Scroll (Timeline window context menu) 208
AUto Window 101
Autostep settings dialogbox. 91
Autostep (Debugmenu) 54
-B (C-SPY command line option). 341
--backend (C-SPY command line option) 341
backtrace information

generated by compiler L L oL 74

viewing in Call Stack window 81
batch mode, using C-SPYin.............. 337

Index °

Big Endian (Memory window context menu). 166
blocks, in C-SPY macroscoviinnn.. 293
bold style, inthisguide. 25
Break At (Hardware Code breakpoints option). 145
Break At (Software Code breakpoints option) 146
Break on Throw (Debug menu). 54
Break on Uncaught Exception (Debug menu). 54
Break (Debugmenu). L. 53
breakpoint condition, example 138-139
Breakpoint Usage window 142
Breakpoint Usage (J-Link Emulator menu). 374
Breakpoint Usage (Simulator menu). 367
breakpoints
code,examplec.c.iiiiiiiia. 316
connectinga C-SPYmacro 288
consumersof L L Ll 133
data 148
datalog ... 152
descriptionof L 129
disabling used by Stack window 134
iconsforinthe IDE 132
in Memory window 137
listingall 00 .. 142
reasons forusing 129
setting
inmemory window 137
USING SYSLEM MACTOS . « « v o v v e e eeeeeaen 137
using the dialogbox 135
single-stepping if not available. 42
toggling 135
tyPes Of oot 130
useful tips. . ..o i 138
Breakpoints dialog box
Code ..o 143
Data. ... 148
Datalogooi 152
Data Trace Collection, 214
Data (C-SPY hardware debugger drivers) 150
Hardware Codeo, 144

379

380

Immediate 153

Log oo 147
Performance Start 239
Performance Stop. i 240
Software Codet 146
Trace Start 212
Trace Stop . .« oot 213
Breakpoints window i 140
Browse (Trace toolbar) 199
Bus width (External Areaoption).................... 66
Byte order (External Area option). 66
Byte order (Hardware Setup) 62
byte order, setting in Memory window 165
C function information, in C-SPY.................... 74
C symbols, using in C-SPY expressions 95
C variables, using in C-SPY expressions 94
call chain, displaying in C-SPY 74
Call stack information.c.ivuin.... 74
Call Stack window, 81
for backtrace information. 74
Call Stack (Timeline window context menu) 209
__cancelAllInterrupts (C-SPY system macro) 299
__cancellnterrupt (C-SPY system macro). 299
Clear All (Debug Log window context menu) 86
Clear trace data (Trace toolbar). 198
Clear (Interrupt Log window context menu). 279, 281
Clear (Power Log window context menu). 257
__clearBreak (C-SPY systemmacro) 300
clock frequency, simulated 374
__closeFile (C-SPY systemmacro) 300
code
options for downloading 362
code breakpoints
OVEIVIEW . .ottt 130
toggling 135
Code Coverage windowcovuvuernen.n. 242

C-SPY® Debugging Guide
for RX

Code Coverage (Disassembly window context menu)79
--code_coverage_file (C-SPY command line option)342
code, covering execution of 242
Collected data accesses (Trace Settings option) 197
command line options. 341
typographic convention 25
command prompt icon, in this guide. 25
Communication log (debugger option) 361
communication setup, hardware drivers 361
Communication (Hardware Setup) 63
computer style, typographic convention 25
Condition (Performance Analysis option). 235
conditional statements, in C-SPY macros............. 292
context menu, in windows. 98
conventions, used inthisguide 24
Copy Window Contents (Disassembly
window contexXt menu)ouveireeneenann.. 81
Copy (Debug Log window context menu) 85
Ccopyright noticeoiuin i 2
--core (C-SPY command line option) 341
CSPYbat . .. 337
reading options fromfile (-f) 347
current position, in C-SPY Disassembly window 78
cursor, in C-SPY Disassembly window. 78
--cycles (C-SPY command line option) 342
C-SPY
batch mode, usingin 337
debugger systems, overview of 33
differences between drivers 35
environment OVerview 29
plugin modules, loading. 43
SN UP « o v vttt 41-42
starting the debugger 43
C-SPY drivers
EI/E20. ..o e 36
E2Lite. . oeete et e 36
JLinK. . oo 38
OVEIVIEW . ..ttt 35
specifying 356
BYPeS Of .« oot 34

C-SPY eXPressionsvvveen et 94
evaluating, using Macro Quicklaunch window. 334
evaluating, using Quick Watch window 112
inC-SPYmacros................ 292
Tooltip watch, using. il 93
Watch window, using o, 93

C-SPY macros
blocks. 293
conditional statements 292
C-SPY expressionsc.c.oeeeuenenennnn.. 292
examples 285

checking status of register. 287
creatingalogmacro 288
CXECULING . v vttt e et e e e e 285
connecting to a breakpoint 288
using Quick Watch 287
using setup macro and setup file............... 287
functions 96, 290
loop statementsc.coeniniii... 293
MAacro Statementsvuniunennennnnn.. 292
PATAMELETS « . o v ettt e e 291
setupmacrofile i 284
EXECULINZ. v vt vttt ettt e 287
setup macro functions 284
SUMMATY . . o vvve et e e et e e ee e 295
system macros, summary of. 297
USING « ot v ettt 283
variables. 96, 290

C-SPY options
ExtraOptions.cuviniiiiinn.. 359
Images.. ... 357
Plugins. 358
SetUP .ttt 356

C-SPYLinK. . ..ottt e 35

C-STAT for static analysis, documentation for 23

C++terminology.ovin i 24

Index °

D

-d (C-SPY command lineoption) 343
data breakpoints, OVerviewcovuen... 131
Data Coverage (Memory window context menu) 166
data coverage, in Memory window 164
data log breakpoints, overview 131
Data Log Summary window 119
Datalogwindowcoiiiiiiiiininan.. 117
Data Log (Timeline window context menu) 209
Data Sample Setup dialog box (E1/E20 Emulator menu) . 369
Data Sample Setup dialog box (E2 Lite menu)......... 371
Data Sample Setup dialog box (J-Link Emulator menu). . 373
Data Sample Setup window 120
Data Sample window 122
Data Sample (Sampled Graphs window context menu) . . 126
Data to collect (Trace Settings option) 197
data trace collection breakpoints, overview. 131
ddf (filename extension), selecting afile............... 43
Debug Logwindow., 85
Debug menu (C-SPY main window). 53
Debug the program re-writing
the DATA FLASH (Hardware Setup) 64
Debug the program re-writing
the PROGRAM ROM (Hardware Setup) 63
Debug (Report Assert option)ovuvuienenon.. 87
--debugfile (cspybatoption) 343
debugger concepts, definitionsof 32
debugger drivers

differences between 35

EI/E20. . o 36

BE2Lite. ..o 36

JLink. ..o 38

simulator 36
Debugger Macros window 332
debugger system OVerviewc...oueuna.. 33
Debugging mode (debugger option) 362
debugging projects

externally built applications. 44

381

382

loading multiple images. 45

debugging, RTOS awareness.c.covu.n.. 31
__delay (C-SPY system macro)c....... 300
Delay (Autostep Settings option) 91
Delete (Breakpoints window context menu) 141
Delete (SFR Setup window context menu) 183
Delete/revert All Custom SFRs (SFR Setup window context
10753110 [P 183
Description (Edit Interrupt option) 273
description (interrupt property).c.ooo.... 273
Device description file (debugger option) 357
device descriptionfiles 43
definitionof il 48
MEMOTY ZONES .+« e v et vt e ee et eeeeeenen 159
modifying 48
TEEISIET ZONC. « . v vt ettt e e 159
specifying interrupts 311
Device position (J-Link debugger option). 363
--device_select (C-SPY command line option) 344
Disable All (Breakpoints window context menu) 141
Disable (Breakpoints window context menu) 141
__disablelnterrupts (C-SPY system macro) 301
--disable_interrupts (C-SPY command line option) 344
Disassembly window 77
COMEXEMENU . . .ottt et e e e e 79
disclaimer. 2
Display the cycle as a time
span (Performance Analysis option)................. 237
Display timestamp (Trace Settings option) 197
DLIB
consuming breakpoints 134
documentationc.euititiiiannn 23
Naming CONVENtioN.ovuveuenenenennnnen.. 26
do (macrostatement)iuiain.n. 293
document CONVeNtioNS.o vt vnn e 24
documentation
overviewof guides. 23
overview of thisguide 21
--double (C-SPY command line option) 344
Download Firmware (E1/E20 Emulator menu). 369

C-SPY® Debugging Guide
for RX

Download Firmware (E2 Lite menu) 371
Download Firmware (J-Link Emulator menu) 374
--download_only (C-SPY command line option) 345
Driver (debugger option). 356
__driverType (C-SPY system macro) 301
--drv_communication (C-SPY command line option). . . . 345
--drv_mode (C-SPY command line option) 346
Edit Expressions (Trace toolbar). 199
Edit Interrupt dialog box. oL, 272
Edit Memory Access dialogbox.................... 187
Edit Memory Range dialogbox 184
Edit RAM monitor block dialogbox. 171
Edit Settings (Trace toolbar). 199
Edit (Breakpoints window context menu). 141
Edit (SFR Setup window context menu). 183
edition, of thisguide i 2
Embedded C++ Technical Committee 24
emulator firmware, updating. 59
Emulator mode (Hardware Setup). 64
emulator, getting information about 375
Enable All (Breakpoints window context menu). 141
Enable interrupt simulation (Interrupt Setup option). 271
Enable Log File (Log File option). 86

Enable start routine (Start/Stop Function Settings option) . 89
Enable stop routine (Start/Stop Function Settings option). . 89

Enable (Breakpoints window context menu). 141
Enable (Interrupt Log window context menu). 279, 281
Enable (Power Log window context menu) 257
Enable (Sampled Graphs window context menu) 126
Enable (Timeline window context menu) 209
__enablelnterrupts (C-SPY system macro)............ 302
Enable/Disable Breakpoint (Call

Stack window contextmenu) 83
Enable/Disable Breakpoint (Disassembly window context
3013 110 I PP 81
Enable/Disable (Trace toolbar) 198

--endian (C-SPY command line option) 346
endianness. See byte order
Enter Location dialog box. 154

Erase data flash ROM before download (Hardware Setup) . 63
Erase external flash

ROM before download (Hardware Setup).............. 66
Erase flash ROM before download (Hardware Setup). 63
__evaluate (C-SPY systemmacro) 302
Evaluate Now (Macro Quicklaunch
window contexXt menu)ouvueeniurann.nn. 335
examples
C-SPY MacroSovvvvieinieieieeenanenn.. 285
interrupts
interruptlogging oL 270
L3111 1<) o 268
macros
checking status of register. 287
creatingalogmacro L. 288
using Quick Watch 287
performing tasks and continue execution. 139
tracing incorrect function arguments 138
execUserExit (C-SPY setup macro) 297
execUserPreload (C-SPY setup macro). 295
execUserPreReset (C-SPY setup macro). 296
execUserReset (C-SPY setupmacro) 296
execUserSetup (C-SPY setup macro) 296
Execute the user program
after ending the debugger (debugger option). 362
executed code, COVeringt 242
execution history, tracing 194
expressions. See C-SPY expressions
EXTAL frequency (Hardware Setup) 62
extended command line file, for cspybat. 347
External Flash Definition Editor (Renesas tool) 46
External flash definition file (Hardware Setup). 65
external flash definition files. 46
external flash memory
downloading to 46
External memory areas (Hardware Setup). 62
external memory area, defining. 66

Index °

Extra Options, for C-SPY 359
E1/E20 Emulator (C-SPY driver), menu. 368
E1/E20 (C-SPY driver).coviii e 36

hardware installation 37
E2 Lite (C-SPY driver)o .. 36

1001C) L AN 370
-f(cspybatoption). 347
File format (Memory Save option) 167
file types

device description, specifyinginIDE 43

117216 ¢ o 42,357
filename extensions

ddf, selecting device descriptionfile 43

mac, usingmacrofile. 42
Filename (Memory Restore option) 168
Filename (Memory Save option). 168
Fill dialog boX. . ..ot o vt 169
__writeMemory8 (C-SPY system macro). 303
__writeMemory16 (C-SPY system macro)............ 303
__writeMemory32 (C-SPY system macro)............ 304
Find in Trace dialogbox. 215
Findin Tracewindow 216
Find (Memory window contextmenu) 166
Find (Trace toolbar)o .. 199
firmware (emulator), updating 59
first activation time (interrupt property)
definitionof 265
First activation (Edit Interrupt option). 273
flash memory, load library module to 306
Flash writing mode (debugger option) 362
for (macro statement), 293
Forced Interrupt window. 274
Forced Interrupts (Simulatormenu) 367
Frequency ratio (Trace Settings option) 197
Function Profiler window 227
Function Profiler (E1/E20 Emulator menu) 369

383

384

Function Profiler (E2 Litemenu) 371

Function Profiler (J-Link Emulator menu) 373
Function Profiler (Simulatormenu) 366
Function Trace window. 202
Function Trace (E1/E20 Emulator menu) 369
Function Trace (E2 Litemenu). 371
Function Trace (J-Link Emulator menu). 373
Function Trace (Simulatormenu) 366
functions

call stack informationfor. 74

C-SPY running to when starting 42,356

most time spent in, locating 219
Go to Source (Breakpoints window context menu). 141
Go to Source (Call Stack window context menu) 82
Go To Source (Timeline window context menu). 210
Go(Debugmenu)...........ooiiiiiii.. 53,73
hardware code breakpoints, overview 131
Hardware Setup dialogbox...................... 61, 64
Hardware Setup (E1/E20 Emulator menu) 368
Hardware Setup (E2 Litemenu) 370
Hardware Setup (J-Link Emulator menu) 372
hardware setup, power consumption because of 250
highlighting, in C-SPY 74
High-performance Embedded Workshop, migrating from .23
Hold time (Edit Interruptoption) 273
hold time (interrupt property), definitionof 265
ICLK frequency (Hardware Setup). 62
icons,inthisguide 25
ID Code verification, 91
if else (macro statement). 292

C-SPY® Debugging Guide
for RX

if (macro statement), 292
Ignore (Report Assertoption)ovuienen.. 87
illegal memory accesses, checking for 160
Imageswindow. 57
Images, loading multiple. 357
immediate breakpoints, overview 132
Include (Log Fileoption)t 86
Input Mode dialogbox 84
input, special characters in Terminal I/O window 84
installation directory i 24
Instruction Profiling (Disassembly window context menu). 79
--int (C-SPY command line option) 347
Intel-extended, C-SPY output format 34
interference, power consumption because of. 251
interrupt handling, power consumption during 249
Interrupt Log Summary window. 280
Interrupt Log Summary (Simulator menu) 366-367
Interrupt Log window L 277
Interrupt Log (Simulatormenu) 367
Interrupt Setup dialogbox 271
Interrupt Setup (Simulatormenu) 367
Interrupt Status window 275
interrupt system, using device description file 267
Interrupt (Edit Interrupt option) 273
Interrupt (Timeline window context menu). 209
interrupts
adapting C-SPY system for target hardware 267
simulated, introductionto 263
timer,examplet 268
USING SYStEM MACTOS . .« v v vv v e ee e e een e 266
--ir_length (C-SPY command line option) 348
__isBatchMode (C-SPY system macro) 305
italic style, inthisguide 25

1/O register. See SFR

)

JTAG scan chain with multiple targets (J-Link
debugger option). 363

J-Link (C-SPY driver). 38
hardware installation 39
111S) 1L 372

labels (assembler), viewing.c.uvna... 98

Length (Filloption)., 169

library functions
C-SPY support for using, plugin module 351
onlinehelpfor........... 24

lightbulb icon, in this guide. 25

linker options
typographic conventionoon... 25
consuming breakpoints 134

Little Endian (Memory window context menu) 165

Live Watchwindow 107

__loadImage (C-SPY systemmacro) 306

loading multiple debug files, list currently loaded. 57

loading multiple images 45

Locals windowc.oouiinininenann.. 103

log breakpoints, OVerviewcoouvueenen... 130

Log File dialogboX.o, 86

Logging>Set Log file (Debugmenu) 55

Logging>Set Terminal I/O Log file (Debug menu). 55

--log_file (C-SPY command line option) 349

loop statements, in C-SPY macros 293

low-power mode, power consumption during. 248

mac (filename extension), using amacrofile 42

--macro (C-SPY command line option) 349

macro files, specifying 42,357

Macro Quicklaunch window. 334

Macro Registration window 330

MACTO STACMENLS . . . ettt et e e eeeen e 292

macros
EXECULINE -« v v e ve ettt e e e e 285

Index °

USING «.oe et e 283
Macros (Debugmenu)c.ouvuiinenenon.. 55
--macro-param (C-SPY command line option) 349
main function, C-SPY running to when starting 42,356
--mapu (C-SPY command line option) 350
MCU operation, configuring. 61-62
MCU speed, specifying.cocovnininnnen.. 59
Measure the performance only
once (Performance Analysis option). 237
memory access checking. L. 160
Memory access checking (Memory Access Setup option) 186
Memory Access Setup dialog box. 185
Memory Access Setup (Simulator menu) 366
memory accesses, illegal. 160
Memory Fill (Memory window context menu). 166
MEMOTY MAP .« -« e ettt et et e et e eeenne 185
Memory Restore dialogbox 168
Memory Restore (Memory window context menu). 166
Memory Save dialog box 167
Memory Save (Memory window context menu). 166
Memory window.iii i 163
MEMOTY ZONES. « & ¢ ettt et et e e e e eeeeene 158

in device descriptionfile 159
__memoryRestore (C-SPY system macro) 307
__memorySave (C-SPY system macro) 307
Memory>Restore (Debugmenu) 54
Memory>Save (Debugmenu). 54
menu bar, C-SPY-specific............ 52
__messageBoxYesCancel (C-SPY system macro) 308
__messageBoxYesNo (C-SPY system macro) 309
migration

from a UBROF-based product 23

from earlier IAR compilers 23

fromRenesas HEW 23
MISRA C, documentationcouuu... 23
Mixed Mode (Disassembly window context menu) 81
Motorola, C-SPY output format 34
Move to PC (Disassembly window context menu) 79

385

386

N

Name (Edit SFRoption)oven... 184
Naming CoNventionsc..oeuueunenn.n. 25
Navigate (Sampled Graphs window context menu) 125
Navigate (Timeline window context menu) 208

New Breakpoint (Breakpoints window context menu) . . . 141
Next Statement (Debugmenu) 54
Next Symbol (Symbolic Memory window context menu) 174

o

Open Setup Window (Power Log window context menu). 258

__openFile (C-SPY system macro). 309
Operating Frequency (E1/E20 Emulator menu) 368
Operating Frequency (E2 Lite menu) 370
Operating Frequency (J-Link Emulator menu) 372
operating frequency, specifying 59
Operation (Filloption) oo, 169
operators, sizeof in C-SPY 96
optimizations, effects on variables 96
options

intheIDE L 355

onthe commandline 341, 359
Options (Stack window contextmenu) 178
__orderInterrupt (C-SPY system macro). 311
Originator (debugger option) 358
-p (C-SPY command line option) 350
parameters

tracing incorrect valuesof 74

typographic conventiono.... 25
part number, of thisguide 2
Performance Analysis Setup dialogbox 235
Performance Analysis Setup (E1/E20 menu) 369
Performance Analysis Setup (E2 Lite menu) 371
Performance Analysis Setup (J-Link Emulator menu) . . .373

C-SPY® Debugging Guide
for RX

Performance Analysis window 237
Performance Analysis (E1/E20 Emulator menu) 369
Performance Analysis (E2 Litemenu) 371
Performance Analysis (J-Link Emulator menu) 373
performance start and stop breakpoints, overview. 132
Performance Start breakpoints dialogbox 239
Performance Stop breakpoints dialog box. 240
Peripheral simulation (C-SPY simulator option). 360
peripheral units
debugging power consumption for. 245
detecting mistakenly unattended 249
detecting unattended 249
device-specific. i 49
displayed in Register window 158
in an event-driven system. 249
in C-SPY expressionsc.cueuvnen... 95
initializing using setup macros. 284
simulating 360
peripherals register. See SFR
Please select one symbol
(Resolve Symbol Ambiguity option) 116
--plugin (C-SPY command line option) 351
plugin modules (C-SPY).o o... 34
loading.v it 43
Plugins (C-SPY options).o, 358
__popSimulatorInterruptExecutingStack (C-SPY
SYSEEM MACTO). « « v v v e vttt e e et e e e en e 312
pop-up menu. See context menu
power consumption, measuring. 220, 245
Power graph in Timeline window 259
Power Log Setup (J-Link Emulator menu) 373
Power Logwindow. i 256
Power Log (J-Link Emulatormenu) 373
Power Log (Timeline window context menu) 209
power sampling. 220
Power Setup window 254
Power target from the emulator (Hardware Setup) 64
Preceding IR bits (J-Link debugger option) 363
prerequisites, programming experience. 21

Previous Symbol (Symbolic

Memory window contextmenu) 174
probability (interrupt property)c.c.ouo... 273
definitionof L L L. 265
Probability % (Edit Interrupt option) 273
Profile Selection (Timeline window context menu) 210
profiling
analyzingdata il 222
onfunctionlevel 221
oninstructionlevel. L L. 224
profiling information, on functions and instructions. 219
profiling sources
sampling i 220, 228
trace (calls) 220, 228
trace(flat), 220, 228
program execution
breaking........... i 130-131
INC-SPY ..o 69
programming eXperience.ve vttt 21
program. See application
projects, for debugging externally built applications. 44
publication date, of this guide. 2
Quick Watchwindow 112
executing C-SPY macros. ..., 287
RAM Monitor Setup dialogbox 170
RAM Monitor Setup (E1/E20 Emulator menu). 369
Range for (Viewing Range option) 211
__readFile (C-SPY systemmacro) 312
__readFileByte (C-SPY system macro) 313
__readMemoryByte (C-SPY system macro)........... 313
__readMemory8 (C-SPY system macro) 313
__readMemory16 (C-SPY system macro) 314
__readMemory32 (C-SPY system macro) 314

Index

reference information, typographic convention. 25
Refresh (Debugmenu) 55
TEISET GTOUPS « . vt ettt et e e e et 158
predefined, enabling. 179
Register setting (Hardware Setup) 62
Registerwindow, 179
registered trademarks 2
__registerMacroFile (C-SPY system macro). 315
registers, displayed in Register window 179
Remove All (Macro Quicklaunch window
CONLEXE MENU) . o\ v v et ettt e et et e e e e 335
Remove (Macro Quicklaunch window context menu) . . .335
Renesas HEW, migrating from 23
Repeat interval (Edit Interrupt option) 273
repeat interval (interrupt property), definition of. 265
Replace (Memory window context menu) 166
Report Assert dialogbox 87
Reset (Debugmenu), 53
__resetFile (C-SPY system macro). 315
Resolve Source Ambiguity dialogbox 156
Restart emulator when trace
buffer is full (Trace Settings option) 196
Restore (Memory Restore option). 168
return (macro statement)., 293
ROM-monitor, definitionof 34
RTOS awareness debugging 31
RTOS awareness (C-SPY plugin module). 31
Run to Cursor (Call Stack window context menu) 82
Run to Cursor (Debugmenu) 54
Run to Cursor (Disassembly window context menu) 79
Run to Cursor, command for executing. 74
Runto (C-SPY option), 42,356
Sampled Graphs window 123
sampling, profiling source. 220, 228

Save Custom SFRs (SFR Setup window context menu) . . 184
Save to log file (context menu command). 279, 281

—eo

387

388

Save to log file (Power Log window context menu) 258

Save (Memory Save option)c.c.ouiu.... 168
Save (Tracetoolbar) 199
Scale (Viewing Range option). 212
Select All (Debug Log window context menu) 85
Select Graphs (Sampled Graphs window context menu). . 127
Select Graphs (Timeline window context menu). 210
Select plugins to load (debugger option). 358
Serial No (E1/E20 option)c.ovuina... 361
Set Data Breakpoint (Memory window context menu) . . . 166
Set Data Log
Breakpoint (Memory window context menu) 167
Set Next Statement (Debugmenu) 54
Set Next Statement (Disassembly window context menu) . 81
__setCodeBreak (C-SPY system macro). 316
__setDataBreak (C-SPY system macro) 317
__setDatal.ogBreak (C-SPY system macro)........... 318
__setLogBreak (C-SPY system macro) 319
__setSimBreak (C-SPY system macro) 320
__setTraceStartBreak (C-SPY system macro). 321
__setTraceStopBreak (C-SPY system macro).......... 322
setup macro file, registering 42
setup macro functions. 284

reserved NAMeS. oottt e 295
Setup macros (debuggeroption) 357
Setup (C-SPY options) . ..o, 356
SFR

in Registerwindow 180

using as assembler symbols, 95
SFR Setupwindow 181
shortcut menu. See context menu
Show all images (Images window context menu) 57
Show All (SFR Setup window context menu). 183
Show Arguments (Call Stack window context menu). 82
Show Custom SFRs only (SFR Setup
Window CONtEXt MENU) . . oo vv v vt ee e 183
Show Cycles (Interrupt Log window context menu). 279, 282
Show Cycles (Power Log window context menu). 258
Show Factory SFRs only (SFR Setup
Window contexXt menu)uuueenneennnnn. 183

C-SPY® Debugging Guide
for RX

Show Numerical Value (Sampled Graphs window context

130153 110) N 127
Show Numerical Value (Timeline window context menu) 210
Show offsets (Stack window context menu) 177
Show only (Image window context menu) 57
Show Time (Interrupt Log window context menu) . . 279, 282
Show Time (Power Log window context menu) 258
Show variables (Stack window context menu) 177
--silent (C-SPY command line option) 351
Simulated Frequency dialogbox.................... 374
simulating interrupts, enabling/disabling 271
Simulatormenu. 366
simulator, introduction 36
Size (Edit SFRoption), 185
Size (Sampled Graphs window context menu) 126-127
Size (Timeline window context menu) 210
SIZEOL . ot 96
software code breakpoints, overview 131
software delay, power consumption during. 247
Solid Graph (Sampled Graphs window context menu) . . . 127
Solid Graph (Timeline window context menu) 210
__sourcePosition (C-SPY system macro) 323
special function registers (SFR)

in Register window 180

using as assembler symbols 95
stack usage, computing.l 159
Stackwindow i 175
standard C, sizeof operator in C-SPY 96
Start address (Filloption)c.on... 169
Start address (Memory Save option). 167
Start routine location (Start/Stop Function Settings option) 89
Start/Stop Function Settings dialogbox 87
static analysis

documentationfor oL ... 23
Statics Window i 109
Step Into (Debugmenu) 54
Step Into, description, 71
Step Out (Debugmenu), 54
Step Out, description.ovuiinn .. 72
Step Over (Debugmenu) 54

Index °

Step Over, description.o, 71 Toggle Breakpoint (Log) (Call

step points, definition of 70 Stack window contextmenu) 83
Stop address (Memory Save option) 167 Toggle Breakpoint (Log) (Disassembly

Stop Debugging (Debug menu). 53 window COnteXt Menu)ouvueenennnnnnn.. 80
Stop routine location (Start/Stop Function Settings option) 89 Toggle Breakpoint (Performance Start)

_ strFind (C-SPY syStem macro) 323 (Disassembly window context menu) 80
__subString (C-SPY syStem macro) 324 Toggle Breakpoint (Performance Stop)

Suppress download (debugger option) 363 (Disassembly window contextmenu) 80

--suppress_download (C-SPY command line option) 352 Toggle Breakpoint (Software Code)

Symbolic Memory window. 172 (Disassembly w.indow COMIEXLMEN) o.eeeee 80
SymbOlS WINAOW ... v e oot 114 Toggle Breakpoint (Trace Start) (Call
symbols, using in C-SPY expressions. 04 Stack window contextmenu) 83
’ Toggle Breakpoint (Trace Start) (Disassembly
window contexXt menu)ouveireeneenann.. 80
T Toggle Breakpoint (Trace Stop) (Call
Stack window contextmenu) 83

target board, actual voltage 375 Toggle Breakpoint (Trace Stop) (Disassembly
target system, definitionof 33 Window CONtEXt MENU) oo vee e ieeen . 81
__targetDebuggerVersion (C-SPY system macro) 324 Toggle source (Trace toolbar) 198
Terminal 10 Log Files (Terminal 10 Log Files option). . . . 85 __toLower (C-SPY system macro) 325
Terminal I/O Log Files dialogbox 84 tools icon, inthisguide.u... 25
Terminal /O window 75,83 __toString (C-SPY System macro) 325
terminology.ot 24 __toUpper (C-SPY system macro) 326
Text search (Find in Trace option) 216 EEACE « v o v e e e e e e e e e e e 191
Time Axis Unit (Timeline window context menu) 210 Trace capacity (Trace Settings option) 196
time interval, in Timeline window 225 Trace Expressions window 214
Timeline window 202 Trace mode (Trace Settings option) 195

powergraph............. oL 259 Trace output (Trace Settings option). 196
Timeline (J-Link Emulator menu). 373 Trace Settings dialog boxXooviiiiiio.. 195
Timeline (Simulatormenu). 367 Trace Settings (E1/E20 Emulator menu). 368
--timeout (C-SPY command line option) 352 Trace Settings (E2 Litemenu) 370
timer interrupt, example 268 Trace Settings (J-Link Emulator menu) 372
timestamp of collected data trace start and stop breakpoints, overview. 130

displaying L 201 Trace Start breakpoints dialog box 212

OPHON L0 SEL . . oo 197 Trace Stop breakpoints dialogbox 213
Toggle Breakpoint (Code) (Call Trace type (Trace Settings option) 196
Stack window context menu)o... 82 Trace Windowoouuriii i 198
Toggle Breakpoint (Code) (Disassembly trace (calls), profiling source. 220, 228
window conteXt menu)ourerenrennnn.n.. 80 Trace (emulator MOdE) . . .« v v eee e 64
Toggle Breakpoint (Hardware (Code) Trace (E1/E20 Emulator menu) 368
(Disassembly window contextmenu) 80

389

390

Trace (E2 Litemenu)uiuinin. .. 371

trace (flat), profiling source. 220, 228
Trace (J-Linkmenu) 373
Trace (Simulatormenu) 366
trace, in Timeline window. 202, 259
trademarks L L 2
Trigger (Forced Interrupt window context menu) 274
typographic conventionsveueuenen.n.. 25
Unavailable, C-SPY message 97
__unloadImage(C-SPY system macro)............... 326
USB bus, actual voltagecoovuveen... 375
USDAilesoovni 46
Use command line options (debugger option). 359
Use devices with deviant instruction register lengths (J-Link
debugger option). 363
Use Extra Images (debugger option). 357
Use manual ranges (Memory Access Setup option) 186
Use ranges based on (Memory Access Setup option) 186
Use 64-bit counter (Performance Analysis option) 237
user application, definitionof 33
Value (Fill option). 169
variables

effects of optimizations 96

information, limitationon 96

using in C-SPY expressions. 94
variance (interrupt property), definitionof 265
Variance % (Edit Interruptoption) 273
Verify download (debugger option). 362
--verify_download (C-SPY command line option) 352
version number

ofthisguide........ i 2
Viewing Range dialogbox 211

Viewing Range (Sampled Graphs window context menu) 126

C-SPY® Debugging Guide
for RX

Viewing Range (Timeline window context menu) 210
visualSTATE, C-SPY plugin module for. 35
waiting for device, power consumption during 247
warnings icon, inthisguide 25
Watchwindow 105
USIIE & vt e e et ettt et e e e e 93
web sites, recommended. 24
while (macro statement) 293
windows, specificto C-SPY 55
Work RAM start address (Hardware Setup) 63
__writeFile (C-SPY systemmacro) 327
__writeFileByte (C-SPY system macro). 327
__writeMemoryByte (C-SPY system macro) 328
__writeMemory8 (C-SPY system macro). 328
__writeMemory16 (C-SPY system macro)............ 328
__writeMemory32 (C-SPY system macro)............ 329
zone
defined in device descriptionfile 159
InC-SPY ... 158
part of an absolute address. 155
Zone (Edit SFRoption). . ..o 185
Zoom (Sampled Graphs window context menu). 125
Zoom (Timeline window context menu). 209

Symbols

__cancelAllInterrupts (C-SPY system macro) 299
__cancellnterrupt (C-SPY system macro). 299
__clearBreak (C-SPY systemmacro) 300
__closeFile (C-SPY systemmacro) 300
__delay (C-SPY syStem macro) 300
__disableInterrupts (C-SPY system macro) 301
__driverType (C-SPY system macro) 301

__enablelnterrupts (C-SPY system macro)............ 302
__evaluate (C-SPY systemmacro) 302
__fillMemory8 (C-SPY system macro). 303
__fillMemory16 (C-SPY system macro). 303
__fillMemory32 (C-SPY system macro). 304
__fmessage (C-SPY macro statement) 293
__isBatchMode (C-SPY system macro) 305
__loadImage (C-SPY systemmacro) 306
__memoryRestore (C-SPY system macro) 307
__memorySave (C-SPY system macro) 307
__message (C-SPY macro statement). 293
__messageBoxYesCancel (C-SPY system macro) 308
__messageBoxYesNo (C-SPY system macro) 309
__openFile (C-SPY system macro). 309
__orderInterrupt (C-SPY system macro). 311
__popSimulatorInterruptExecutingStack (C-SPY

SYSIEIM MACTO). + ¢ v v oe et e et et e e e e 312
__readFile (C-SPY systemmacro) 312
__readFileByte (C-SPY systemmacro) 313
__readMemoryByte (C-SPY system macro)........... 313
__readMemory8 (C-SPY system macro) 313
__readMemory16 (C-SPY system macro) 314
__readMemory32 (C-SPY system macro) 314
__registerMacroFile (C-SPY system macro). 315
__resetFile (C-SPY system macro). 315
__setCodeBreak (C-SPY system macro). 316
__setDataBreak (C-SPY system macro) 317
__setDatal.ogBreak (C-SPY system macro)........... 318
__setLogBreak (C-SPY system macro) 319
__setSimBreak (C-SPY system macro) 320
__setTraceStartBreak (C-SPY system macro). 321
__setTraceStopBreak (C-SPY system macro).......... 322
__smessage (C-SPY macro statement) 293
__sourcePosition (C-SPY system macro) 323
__strFind (C-SPY systemmacro) 323
__subString (C-SPY system macro) 324
__targetDebuggerVersion (C-SPY system macro) 324
__toLower (C-SPY system macro) 325
__toString (C-SPY systemmacro) 325
__toUpper (C-SPY systemmacro) 326

Index °

__unloadImage (C-SPY system macro)
__writeFile (C-SPY systemmacro)
__writeFileByte (C-SPY system macro).
__writeMemoryByte (C-SPY system macro)
__writeMemory8 (C-SPY system macro).
__writeMemory16 (C-SPY system macro)............
__writeMemory32 (C-SPY system macro)............
-B (C-SPY command line option).
-d (C-SPY command lineoption)
-f(cspybatoption).
-p (C-SPY command lineoption)
--backend (C-SPY command line option).............
--code_coverage_file (C-SPY command line option)
--core (C-SPY command line option)
--cycles (C-SPY command line option)
--debugfile (cspybatoption)
--device_select (C-SPY command line option)
--disable_interrupts (C-SPY command line option)
--double (C-SPY command line option)
--download_only (C-SPY command line option)
--drv_communication (C-SPY command line option). . . .
--drv_mode (C-SPY command line option)
--endian (C-SPY command line option)
--int (C-SPY command line option)
--ir_length (C-SPY command line option)
--log_file (C-SPY command line option)
--macro (C-SPY command line option)
--macro_param (C-SPY command line option).
--mapu (C-SPY command line option)
--plugin (C-SPY command line option)
--silent (C-SPY command line option)
--suppress_download (C-SPY command line option). . . .
--timeout (C-SPY command line option)
--verify_download (C-SPY command line option)

Numerics

1x Units (Symbolic Memory window context menu)
8x Units (Memory window contextmenu)

174
165

391

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	What this guide contains
	Part 1. Basic debugging
	Part 2. Analyzing your application
	Part 3. Advanced debugging
	Part 4. Additional reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Basic debugging
	The IAR C-SPY Debugger
	Introduction to C-SPY
	An integrated environment
	General C-SPY debugger features
	Additional general C-SPY debugger features

	RTOS awareness

	Debugger concepts
	C-SPY and target systems
	The debugger
	The target system
	The application
	C-SPY debugger systems
	The ROM-monitor program
	Third-party debuggers
	C-SPY plugin modules

	C-SPY drivers overview
	Differences between the C-SPY drivers

	The IAR C-SPY Simulator
	The C-SPY E1/E20 and E2 Lite drivers
	Communication overview
	Hardware installation

	The C-SPY J-Link driver
	Communication overview
	Hardware installation

	Getting started using C-SPY
	Setting up C-SPY
	Setting up for debugging
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules

	Starting C-SPY
	Starting a debug session
	Loading executable files built outside of the IDE
	Starting a debug session with source files missing
	Loading multiple images
	Downloading files to external flash memory
	Start debugging a running application

	Adapting for target hardware
	Modifying a device description file
	Initializing target hardware before C-SPY starts

	Running example projects
	Running an example project

	Reference information on starting C-SPY
	C-SPY Debugger main window
	Menu bar
	Debug menu
	C-SPY windows
	Editing in C-SPY windows

	Images window
	Requirements
	Display area
	Context menu
	Related information

	Get Alternative File dialog box
	Could not find the following source file
	Suggested alternative
	Use this file
	Skip
	If possible, don’t show this dialog again
	Related information

	Download Emulator Firmware dialog box
	Requirements
	Firmware file

	Operating Frequency dialog box
	Requirements
	Operating frequency
	Related information

	Hardware Setup dialog box: MCU
	Requirements
	Mode pin setting
	EXTAL frequency
	ICLK frequency
	Byte order
	Register setting
	External memory areas
	Allow clock source change when writing internal flash
	Work RAM start address
	Erase flash ROM before download
	Erase data flash ROM before download
	Communication
	Debug the program re-writing the PROGRAM ROM
	Debug the program re-writing the DATA FLASH
	Emulator mode
	Power target from the emulator

	Hardware Setup dialog box: External Memory
	Requirements
	External flash definition file
	Address range
	Erase external flash ROM before download
	Related information

	External Area dialog box
	Requirements
	Byte order
	Bus width

	Executing your application
	Introduction to application execution
	Briefly about application execution
	Source and disassembly mode debugging
	Single stepping
	The step commands
	Step Into
	Step Over
	Next Statement
	Step Out

	Stepping speed
	Running the application
	Go
	Run to Cursor

	Highlighting
	Call stack information
	Terminal input and output
	Debug logging

	Reference information on application execution
	Disassembly window
	Requirements
	Toolbar
	Display area
	Context menu

	Call Stack window
	Requirements
	Display area
	Context menu

	Terminal I/O window
	Requirements
	Input
	Ctrl codes
	Input Mode

	Terminal I/O Log File dialog box
	Requirements
	Terminal IO Log Files

	Debug Log window
	Requirements
	Context menu

	Log File dialog box
	Requirements
	Enable Log file
	Include

	Report Assert dialog box
	Abort
	Debug
	Ignore

	Start/Stop Function Settings dialog box
	Requirements
	Restrictions on using start/stop routines
	Enable start routine
	Start routine location
	Enable stop routine
	Stop routine location

	Select Label dialog box
	Requirements

	Autostep settings dialog box
	Requirements
	Delay

	ID Code Verification dialog box
	Enter ID Code

	Variables and expressions
	Introduction to working with variables and expressions
	Briefly about working with variables and expressions
	C-SPY expressions
	C/C++ symbols
	Assembler symbols
	C-SPY macro functions
	C-SPY macro variables
	Using sizeof

	Limitations on variable information
	Effects of optimizations

	Working with variables and expressions
	Using the windows related to variables and expressions
	Viewing assembler variables
	Getting started using data logging
	Getting started using data sampling

	Reference information on working with variables and expressions
	Auto window
	Requirements
	Context menu

	Locals window
	Requirements
	Context menu

	Watch window
	Requirements
	Context menu

	Live Watch window
	Requirements
	Display area
	Context menu

	Statics window
	Requirements
	Display area
	Context menu

	Quick Watch window
	Requirements
	Context menu

	Symbols window
	Requirements
	Display area
	Context menu

	Resolve Symbol Ambiguity dialog box
	Requirements
	Ambiguous symbol
	Please select one symbol

	Data Log window
	Requirements
	Display area
	Context menu

	Data Log Summary window
	Requirements
	Display area
	Context menu

	Data Sample Setup window
	Requirements
	Display area
	Context menu

	Data Sample window
	Requirements
	Display area
	Context menu

	Sampled Graphs window
	Requirements
	Context menu

	Breakpoints
	Introduction to setting and using breakpoints
	Reasons for using breakpoints
	Briefly about setting breakpoints
	Breakpoint types
	Code breakpoints
	Log breakpoints
	Trace Start and Stop breakpoints
	Data trace collection breakpoints
	Data breakpoints
	Data Log breakpoints
	Hardware code breakpoints
	Software code breakpoints
	Performance breakpoints
	Immediate breakpoints

	Breakpoint icons
	Breakpoints in the C-SPY simulator
	Breakpoints in the C-SPY hardware debugger drivers
	Breakpoint consumers
	User breakpoints
	C-SPY itself
	C-SPY plugin modules

	Setting breakpoints
	Various ways to set a breakpoint
	Toggling a simple code breakpoint
	Setting breakpoints using the dialog box
	Setting a data breakpoint in the Memory window
	Setting breakpoints using system macros
	Setting breakpoints at C-SPY startup using a setup macro file

	Useful breakpoint hints
	Tracing incorrect function arguments
	Performing a task and continuing execution

	Reference information on breakpoints
	Breakpoints window
	Requirements
	Display area
	Context menu

	Breakpoint Usage window
	Requirements
	Display area

	Code breakpoints dialog box
	Requirements
	Break At
	Size
	Action
	Conditions

	Hardware Code Breakpoint dialog box
	Requirements
	Break At
	Action
	Conditions

	Software Code Breakpoint dialog box
	Requirements
	Break At
	Action
	Conditions

	Log breakpoints dialog box
	Requirements
	Trigger at
	Message
	C-SPY macro "__message" style
	Conditions

	Data breakpoints dialog box (Simulator)
	Requirements
	Break At
	Access Type
	Size
	Action
	Conditions

	Data breakpoints dialog box (C-SPY hardware debugger drivers)
	Requirements
	Break At
	Address Condition
	Data Condition

	Data Log breakpoints dialog box
	Requirements
	Break At
	Access Type

	Immediate breakpoints dialog box
	Requirements
	Trigger at
	Access Type
	Action

	Enter Location dialog box
	Type

	Resolve Source Ambiguity dialog box
	All
	Selected
	Cancel
	Automatically choose all

	Memory and registers
	Introduction to monitoring memory and registers
	Briefly about monitoring memory and registers
	C-SPY memory zones
	Device-specific zones

	Stack display
	Stack usage

	Memory access checking

	Monitoring memory and registers
	Defining application-specific register groups

	Reference information on memory and registers
	Memory window
	Requirements
	Toolbar
	Display area
	Context menu

	Memory Save dialog box
	Requirements
	Zone
	Start address
	End address
	File format
	Filename
	Save

	Memory Restore dialog box
	Requirements
	Zone
	Filename
	Restore

	Fill dialog box
	Requirements
	Start address
	Length
	Zone
	Value
	Operation

	RAM Monitor Setup dialog box
	Requirements
	Display area
	Buttons

	Edit RAM monitor block dialog box
	Requirements
	Start address
	End address

	Symbolic Memory window
	Requirements
	Toolbar
	Display area
	Context menu

	Stack window
	Requirements
	Toolbar
	The graphical stack bar
	Display area
	Context menu

	Register window
	Requirements
	Toolbar
	Display area

	SFR Setup window
	Requirements
	Display area
	Context menu

	Edit SFR dialog box
	Requirements
	Name
	Address
	Zone
	Size
	Access

	Memory Access Setup dialog box
	Requirements
	Use ranges based on
	Use manual ranges
	Memory access checking
	Buttons

	Edit Memory Access dialog box
	Requirements
	Memory range
	Access type

	Part 2. Analyzing your application
	Trace
	Introduction to using trace
	Reasons for using trace
	Briefly about trace
	Trace features in C-SPY

	Requirements for using trace

	Collecting and using trace data
	Getting started with trace
	Trace data collection using breakpoints
	Searching in trace data
	Browsing through trace data

	Reference information on trace
	Trace Settings dialog box
	Requirements
	Trace mode
	Trace output
	Trace capacity
	Trace type
	Restart emulator when trace buffer is full
	Display timestamp
	Frequency ratio
	Data to collect
	Collected data accesses

	Trace window
	Requirements
	Trace toolbar
	Display area (in the C-SPY simulator)
	Display area (in the C-SPY hardware debugger drivers)

	Function Trace window
	Requirements
	Toolbar
	Display area

	Timeline window
	Requirements
	Display area for the Call Stack graph
	Display area for the Data Log graph
	Display area for the Interrupt Log graph
	Selection and navigation
	Context menu

	Viewing Range dialog box
	Requirements
	Range for ...
	Scale

	Trace Start breakpoints dialog box
	Requirements
	Trigger at

	Trace Stop breakpoints dialog box
	Requirements
	Trigger at

	Data Trace Collection breakpoints dialog box
	Requirements

	Trace Expressions window
	Requirements
	Toolbar
	Display area

	Find in Trace dialog box
	Requirements
	Text search
	Address Range

	Find in Trace window
	Requirements
	Display area

	Profiling
	Introduction to the profiler
	Reasons for using the profiler
	Briefly about the profiler
	Profiling sources
	Power sampling

	Requirements for using the profiler

	Using the profiler
	Getting started using the profiler on function level
	Analyzing the profiling data
	Getting started using the profiler on instruction level
	Selecting a time interval for profiling information

	Reference information on the profiler
	Function Profiler window
	Requirements
	Toolbar
	Display area
	Context menu

	Analyzing code performance
	Introduction to performance analysis
	Reasons for using performance analysis
	Briefly about performance analysis
	Requirements for performance analysis

	Analyzing performance
	Using performance analysis

	Reference information on performance analysis
	Performance Analysis Setup dialog box
	Requirements
	Condition
	Display list
	Display the cycle as a time span
	Measure the performance only once
	Use 64-bit counter

	Performance Analysis window
	Requirements
	Toolbar
	Display area

	Performance Start breakpoints dialog box
	Requirements
	Trigger At

	Performance Stop breakpoints dialog box
	Requirements
	Trigger At

	Code coverage
	Introduction to code coverage
	Reasons for using code coverage
	Briefly about code coverage
	Requirements and restrictions for using code coverage

	Reference information on code coverage
	Code Coverage window
	Requirements
	Display area
	Context menu

	Power debugging
	Introduction to power debugging
	Reasons for using power debugging
	Briefly about power debugging
	Measuring power consumption
	Power debugging using C-SPY

	Requirements and restrictions for power debugging

	Optimizing your source code for power consumption
	Waiting for device status
	Software delays
	DMA versus polled I/O
	Low-power mode diagnostics
	CPU frequency
	Detecting mistakenly unattended peripherals
	Peripheral units in an event-driven system
	Finding conflicting hardware setups
	Analog interference

	Debugging in the power domain
	Displaying a power profile and analyzing the result
	Detecting unexpected power usage during application execution
	Changing the graph resolution

	Reference information on power debugging
	Power Log Setup window
	Requirements
	Display area
	Context menu

	Power Log window
	Requirements
	Display area
	Context menu
	The format of the log file

	Power graph in the Timeline window
	Requirements
	Display area

	Part 3. Advanced debugging
	Interrupts
	Introduction to interrupts
	Briefly about interrupt logging
	Requirements for interrupt logging

	Briefly about the interrupt simulation system
	Interrupt characteristics
	Interrupt simulation states
	C-SPY system macros for interrupt simulation
	Target-adapting the interrupt simulation system

	Using the interrupt system
	Simulating a simple interrupt
	Simulating an interrupt in a multi-task system
	Getting started using interrupt logging

	Reference information on interrupts
	Interrupt Setup dialog box
	Requirements
	Enable interrupt simulation
	Display area
	Buttons

	Edit Interrupt dialog box
	Requirements
	Interrupt
	Description
	First activation
	Repeat interval
	Variance %
	Hold time
	Probability %

	Forced Interrupt window
	Requirements
	Display area
	Context menu

	Interrupt Status window
	Requirements
	Display area

	Interrupt Log window
	Requirements
	Display area
	Context menu

	Interrupt Log Summary window
	Requirements
	Display area
	Context menu

	C-SPY macros
	Introduction to C-SPY macros
	Reasons for using C-SPY macros
	Briefly about using C-SPY macros
	Briefly about setup macro functions and files
	Briefly about the macro language
	Example

	Using C-SPY macros
	Registering C-SPY macros—an overview
	Executing C-SPY macros—an overview
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint
	Aborting a C-SPY macro

	Reference information on the macro language
	Macro functions
	Macro variables
	Macro parameters
	Macro strings
	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output
	Specifying display format of arguments

	Reference information on reserved setup macro function names
	execUserPreload
	Syntax
	For use with
	Description

	execUserSetup
	Syntax
	For use with
	Description

	execUserPreReset
	Syntax
	For use with
	Description

	execUserReset
	Syntax
	For use with
	Description

	execUserExit
	Syntax
	For use with
	Description

	Reference information on C-SPY system macros
	_ _cancelAllInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _cancelInterrupt
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _clearBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	See also

	_ _closeFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _delay
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _disableInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _driverType
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _enableInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _evaluate
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory8
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _isBatchMode
	Syntax
	Return value
	For use with
	Description

	_ _loadImage
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example 1
	Example 2
	See also

	_ _memoryRestore
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _memorySave
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _messageBoxYesCancel
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _messageBoxYesNo
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _openFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _orderInterrupt
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _popSimulatorInterruptExecutingStack
	Syntax
	Return value
	For use with
	Description
	See also

	_ _readFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readFileByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory8, _ _readMemoryByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _registerMacroFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _resetFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _setCodeBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Examples
	See also

	_ _setDataBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setDataLogBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setLogBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setSimBreak
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _setTraceStartBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setTraceStopBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _sourcePosition
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _strFind
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _subString
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _targetDebuggerVersion
	Syntax
	Return value
	For use with
	Description
	Example

	_ _toLower
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _toString
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _toUpper
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _unloadImage
	Syntax
	Parameters
	Return value
	For use with
	Description
	See also

	_ _writeFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _writeFileByte
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _writeMemory8, _ _writeMemoryByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _writeMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _writeMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	Graphical environment for macros
	Macro Registration window
	Requirements
	Display area
	Context menu

	Debugger Macros window
	Requirements
	Display area
	Context menu

	Macro Quicklaunch window
	Requirements
	Display area
	Context menu

	The C-SPY command line utility—cspybat
	Using C-SPY in batch mode
	Starting cspybat
	Output
	Invocation syntax
	Parameters

	Summary of C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver
	Options available for all C-SPY hardware debugger drivers
	Options available for the J-Link driver

	Reference information on C-SPY command line options
	-B
	Syntax
	For use with
	Description

	--backend
	Syntax
	Parameters
	For use with
	Description

	--core
	Syntax
	Parameters
	For use with
	Description
	See also

	--code_coverage_file
	Syntax
	Parameters
	For use with
	Description
	See also

	--cycles
	Syntax
	Parameters
	For use with
	Description

	-d
	Syntax
	Parameters
	For use with
	Description

	--debugfile
	Syntax
	Parameters
	For use with
	Description

	--device_select
	Syntax
	Parameters
	For use with
	Description
	See also

	--disable_interrupts
	Syntax
	For use with
	Description

	--double
	Syntax
	Parameters
	For use with
	Description
	See also

	--download_only
	Syntax
	For use with
	Description

	--drv_communication
	Syntax
	Parameters
	For use with
	Description
	Example

	--drv_mode
	Syntax
	Parameters
	For use with
	Description

	--endian
	Syntax
	Parameters
	For use with
	Description
	See also

	-f
	Syntax
	Parameters
	For use with
	Description

	--int
	Syntax
	Parameters
	For use with
	Description
	See also

	--ir_length
	Syntax
	Parameters
	For use with
	Description
	See also

	--leave_running
	Syntax
	For use with
	Description

	--log_file
	Syntax
	Parameters
	For use with
	Description

	--macro
	Syntax
	Parameters
	For use with
	Description
	See also

	--macro_param
	Syntax
	Parameters
	For use with
	Description
	See also

	--mapu
	Syntax
	For use with
	Description
	See also

	-p
	Syntax
	Parameters
	For use with
	Description
	See also

	--plugin
	Syntax
	Parameters
	For use with
	Description

	--silent
	Syntax
	For use with
	Description

	--suppress_download
	Syntax
	For use with
	Description

	--timeout
	Syntax
	Parameters
	For use with
	Description

	--verify_download
	Syntax
	For use with
	Description

	Part 4. Additional reference information
	Debugger options
	Setting debugger options
	Reference information on debugger options
	Setup
	Driver
	Run to
	Setup macros
	Device description file

	Images
	Download extra Images

	Plugins
	Select plugins to load
	Description
	Location
	Originator
	Version

	Extra Options
	Use command line options

	Reference information on the C-SPY simulator
	Setup options for the simulator
	Peripheral simulation

	Reference information on C-SPY hardware debugger driver options
	Communication
	Serial No
	Communication log

	Download
	Debugging mode
	Attach to program
	Flash writing mode
	Execute the user program after ending the debugger
	Verify download
	Suppress download

	JTAG Scan Chain
	JTAG scan chain with multiple targets
	Device position
	Use devices with deviant instruction register lengths
	Preceding IR bits

	Additional information on C-SPY drivers
	Reference information on C-SPY driver menus
	C-SPY driver
	Simulator menu
	Menu commands

	E1/E20 Emulator menu
	Menu commands

	E2 Lite menu
	Menu commands

	J-Link menu
	Menu commands

	Reference information on the C-SPY simulator
	Simulated Frequency dialog box
	Requirements
	Frequency

	Reference information on the C-SPY hardware debugger drivers
	Emulator information window
	Requirements
	Display area

	Resolving problems
	Write failure during load
	No contact with the target hardware
	Slow stepping speed

