
 IAR Embedded Workbench®

C-STAT® Static Analysis Guide
CSTAT-4

2

 COPYRIGHT NOTICE
© 2015 IAR Systems AB and Goanna Software Pty Ltd.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, C-RUN, C-STAT, visualSTATE,
Focus on Your Code, IAR KickStart Kit, IAR Experiment!, I-jet, I-jet Trace, I-scope,
IAR Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fourth edition: October 2015

Part number: CSTAT-4

Internal reference: M19, Hom7.2, Skutt2.11, IJOA, ISUD.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

Contents
C-STAT for static analysis .. 5

Introduction to C-STAT and static analysis 5

Briefly about C-STAT and the coding rules .. 5

The checks and their documentation .. 6

Various ways to use C-STAT .. 8

Using C-STAT .. 8

Getting started analyzing using C-STAT ... 9

Generating an analysis report ... 12

Performing regression testing .. 13

Performing an analysis from the command line 14

Reference information on the graphical environment 16

Descriptions of compiler extensions for C-STAT 21

Descriptions of C-STAT options .. 23

Description of the C-STAT command line tools 30

The icstat tool ... 30

The ichecks tool ... 32

The ireport tool ... 32

C-STAT checks ... 35

Summary of checks .. 35

Descriptions of checks .. 72
AFE1_AFE2-1:1

 3

4

AFE1_AFE2-1:1

 C-STAT for static analysis
● Introduction to C-STAT and static analysis

● Using C-STAT

● Reference information on the graphical environment

● Descriptions of compiler extensions for C-STAT

● Descriptions of C-STAT options

● Description of the C-STAT command line tools

Introduction to C-STAT and static analysis
These topics are covered:

● Briefly about C-STAT and the coding rules, page 5

● The checks and their documentation, page 6

● Various ways to use C-STAT, page 8

BRIEFLY ABOUT C-STAT AND THE CODING RULES

C-STAT is a static analysis tool that tries to find deviations from specific packages of
coding rules. The various packages are:

● Stdchecks

Contains checks for rules that come from CWE and CERT, as well as checks specific
to C-STAT.

● MISRA C:2004

Contains checks for selected rules of the MISRA C:2004 standard. This standard
identifies unsafe code constructs in the C89 standard.

● MISRA C++:2008

Contains checks for selected rules of the MISRA C++:2008 standard. This standard
identifies unsafe code constructs in the 1998 C++ standard.

● MISRA C:2012

Contains checks for selected rules of the MISRA C:2012 standard. This standard
identifies unsafe code constructs in the C99 and C89 standards.
AFE1_AFE2-1:1

5

6

Introduction to C-STAT and static analysis
 Each MISRA C rule is either mandatory, required, or advisory. The checks for the
mandatory and required rules are by default on, whereas the checks for the advisory
rules are by default off. Each rule specifies an unsafe code construct. C-STAT tries to
find deviations from a rule by performing one or more checks for the rule.

Note: Some checks compute summary information per file that can be used when
analyzing other files. How this information is used depends on the order in which the
files are analyzed. This means that the exact number of messages can differ, for example
when running C-STAT in the IDE as opposed to using the command line tools.

Note: The analysis of a specific file is terminated after a time limit that you can specify.
When the time limit has been reached, the analysis will continue with the next file.

THE CHECKS AND THEIR DOCUMENTATION

A check is a programmatic way of identifying deviations from a rule. Each check has a:

● Tag, a unique formal name which is used for referring to the check. For example,
ARR-inv-index-pos.

● Default activation, which can be one of Yes or No.

● Synopsis, for example, Array access may be out of bounds, depending
on which path is executed.

● Severity level, which can be Low, Medium, or High.

In addition, the documentation for each check provides information about any
vulnerabilities it identifies and a description of the problems that can be caused by code
that fails the check, such as memory leaks, undefined or unpredictable behavior, or
program crashes. Usually, there are also two source code examples: one that illustrates
code that fails the check and generates a message, and one that illustrates code that
passes the check. For each check, there is also information about which rules in the
different coding standards that the check corresponds to.

A grid shows the severity of the problems that code that does not conform to the rule
(non-conformant code) can cause, and the level of certainty that the message reflects a
true error in the source code. The grid is divided into three zones—indicated with pale
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 colors—that reflect the risks based on the severity and certainty. The actual risk for a
specific check is indicated with a grid cell in strong color.

Here follow some example grids.

Example 1—high severity and high certainty = high risk

This grid shows a check with high severity and high certainty, which means that it very
likely indicates a true bug. While all messages should be investigated, those with a high
certainty are more likely to identify real problems in your source code.

Example 2—medium severity and high certainty = medium risk

This grid shows a check with medium severity and high certainty. A medium severity
indicates that, for the code that fails the check, there is a medium risk of causing serious
errors in your application. A high certainty means that it is very likely that the message
reflects a true positive.
AFE1_AFE2-1:1

7

8

Using C-STAT
 Example 3—low severity and medium certainty = low risk

This grid shows a check with low severity and medium certainty, which indicates that
the code probably is safe to use. That the check fails can be due to an offense in a macro,
or programmers writing safe, but unusual code.

VARIOUS WAYS TO USE C-STAT

C-STAT is an integral part of the IAR Embedded Workbench IDE:

● You specify which packages of checks to perform in the Select C-STAT Checks
dialog box.

● You perform a static analysis by choosing the appropriate commands from the
Project>C-STAT Static Analysis menu.

● You can view the result of the performed analysis in the C-STAT Messages
window.

● You can create a report in HTML format by choosing the appropriate commands
from the Project>C-STAT Static Analysis menu.

C-STAT can also be used from the command line, which is useful if you build your
project using a make file:

● ichecks.exe—use the ichecks tool to generate a manifest file that contains only
the checks that you want to perform.

● icstat.exe—use the icstat tool to perform a C-STAT static analysis on a
project, with the manifest file as input.

● ireport.exe—use the ireport tool to generate an HTML report of a previously
performed analysis.

Finally, you can use C-STAT together with the IAR Command Line Build Utility
(iarbuild.exe) for regression testing.

Using C-STAT
These tasks are covered:

● Getting started analyzing using C-STAT, page 9

● Generating an analysis report, page 12
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 ● Performing regression testing, page 13

● Performing an analysis from the command line, page 14

GETTING STARTED ANALYZING USING C-STAT

1 Before you perform a static analysis, make sure your project builds without errors. For
information about how to build a project, see the IDE Project Management and
Building Guide.

2 Choose Project>Options and select the Static Analysis category. On the C-STAT
Static Analysis page, click Select C-STAT Checks.

3 In the Select C-STAT Checks dialog box, select the packages of checks you want to
use. For example STDCHECKS.
AFE1_AFE2-1:1

9

10

Using C-STAT
 4 For each package, select groups of checks or individual checks:

For information about a specific check, select it and press F1 to open the
context-sensitive online help system.

When you have made your settings, click OK and then OK again.

5 To perform an analysis, make sure the project is active and execute one of these steps:

● To analyze your project, select the project in the Workspace window and choose
Project>C-STAT Static Analysis>Analyze Project.

● To analyze one or more individual files, select the file(s) in the Workspace window
and choose Project>C-STAT Static Analysis>Analyze File(s).

Alternatively, use the corresponding commands on the context menu in the Workspace
window instead.

Note: The next time you perform an analysis and if you have made changes to your
source code since the previous analysis, you should first clean the database to avoid
problems due to mixing old and new data in the database. Choose Project>C-STAT
Static Analysis>Clear Analysis Results.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 6 The result of the performed analysis is listed in the C-STAT Messages window.

For information about a specific check, select it and press F1 to open the
context-sensitive online help system.

For reference information, see C-STAT Messages window, page 17.

Note: If there are any problems when analyzing, the Build Log window displays
detailed information.

7 Double-click a C-STAT message to view the corresponding source code in the editor
window:

Point at a message with the mouse pointer to get tooltip information about which check
that caused the message.

8 Correct the error and click the next message in the C-STAT Messages window.
Continue until all messages have been processed.

Note: C-STAT has a predefined macro, __CSTAT__, that you can use to explicitly
include or exclude specific parts of source code from the analysis, see __CSTAT__, page
22. There are also specific C-STAT pragma directives that suppress one or more checks
for selected source lines, see Descriptions of compiler extensions for C-STAT, page 21.
AFE1_AFE2-1:1

11

12

Using C-STAT
 GENERATING AN ANALYSIS REPORT

1 Perform your analysis, see Getting started analyzing using C-STAT, page 9.

2 To generate your report:

● In the IDE, choose Project>C-STAT Static Analysis and choose either Generate
HTML Summary or Generate Full HTML Report depending on which type of
report you want to produce.

The report will be based on the latest performed analysis. If you have modified your
source code files after the latest analysis, you might want to update the analysis
before you generate the report.

● On the command line, specify your ireport options, for example like this:

ireport --db cstat.db --project project1 --output
tutor_report.html

This will generate a summary report named tutor_report.html from the
database cstat.db with project1 as an identifying name for the project. The
report can be viewed in a web browser or in the IAR Embedded Workbench IDE.

3 This is an example of a summary report:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 PERFORMING REGRESSION TESTING

Regression testing is a method for testing the whole or parts of your source code after
you have modified it, to verify that no errors have been added as a result of the
modifications.

1 After you have analyzed your project using C-STAT and possibly corrected some
errors, it can be useful to perform regression testing using the IAR Command Line
Build Utility (iarbuild.exe) located in the common\bin directory.

To clean the database from old errors, use a command line like this:

iarbuild.exe MyProject.ewp -cstat_clean Debug

To analyze all files in the project, use a command line like this:

iarbuild.exe MyProject.ewp -cstat_analyse Debug

2 C-STAT generates output information, for example:

Analyzing configuration: MyProject - Debug
Updating build tree...

Starting C-STAT analysis

Analysis completed. 164 message(s)

3 Compare the number of messages reported with the number of messages produced in
previous builds. If the number has increased, new errors have been introduced as a
result of earlier development.

4 In the IDE, open your project, perform the analysis, and locate the cause of the new
message.

Alternatively, you can create an HTML report from the command line, for example like
this:

ireport.exe --db cstat.db --project MyProject.ewp --full --output
MyProject.html

This creates a report in MyProject.html, see also Generating an analysis report, page
12.

5 Typically, you might want to repeat this process during nightly builds to continuously
control that existing code is not affected by new code.

For more information about the IAR Command Line Build Utility, see the IDE Project
Management and Building Guide.
AFE1_AFE2-1:1

13

14

Using C-STAT
 PERFORMING AN ANALYSIS FROM THE COMMAND LINE

To use C-STAT to perform an analysis from the command line, you need:

● ichecks.exe—use the ichecks tool to generate a manifest file that contains only
the checks that you want to perform.

● icstat.exe—use the icstat tool to perform a C-STAT static analysis on a
project, with the manifest file as input.

For information about the checks, see C-STAT checks, page 35.

The input to icstat consists of:

● The source files for your application, with the compiler command lines.

● The linker command line for your application.

● A file that lists the enabled checks that will be performed (or more specifically, the
tags for the checks). You create this file using the ichecks tool.

● A file where the deviations from the performed checks will be stored in a database.

For an example of how to perform a static analysis using C-STAT, follow these steps
based on two example source code files cstat1.c and ctat2.c. You can find these
files in the directory target\src.

To perform a static analysis using C-STAT:

1 Select which checks you want to perform by creating a manifest file using ichecks,
for example like this:

ichecks --default stdchecks --output checks.ch

The checks.ch file lists all the checks that you have selected, in this case, all checks
that are enabled by default for the stdchecks package (--default). The file will look
like this:

ARR-inv-index-pos
ARR-inv-index-ptr-pos
...

To modify the file on check-level, you can manually add or delete checks from the file.

2 Make sure that your project builds without errors.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 3 To analyze your application, specify your icstat commands. For example like this:

icstat --db a.db --checks checks.ch analyze -- iccxxxxx
compiler_opts cstat1.c

icstat --db a.db --checks checks.ch analyze -- iccxxxxx
compiler_opts cstat2.c

icstat --db a.db --checks checks.ch link_analyze -- ilinkxxxxx
linker_opts cstat1.o cstat2.o

Note: xxxxx should be replaced with an identifier that is unique to your IAR Embedded
Workbench product package. If your product package comes with the IAR XLINK
Linker instead of the IAR ILINK Linker, ilinkxxxxx should be xlink and the
filename extension o should be rxx, where xx is a numeric part that identifies your
product package.

In these example command lines, --db specifies a file where the resulting data base is
stored, and the --checks option specifies the checks.ch manifest file. The commands
will be executed serially.

Alternatively, if you have many source files to be analyzed and want to speed up the
analysis, you can use the command command which means that you collect all your
commands in a specific file. In this case, icstat will perform the analysis in parallel
instead. The command line would then look like this:

icstat --db a.db --checks checks.ch command commands.txt

commands.txt contains:

analyze -- iccxxxxx compiler_opts cstat1.c
analyze -- iccxxxxx compiler_opts cstat2.c
link_analyze -- ilinkxxxxx linker_opts cstat1.o cstat2.o

See the note above regarding ilinkxxxxx and the filename extensions.

Note: The next time you perform an analysis, you should first clean the database by
using the clear command to avoid problems due to mixing old and new data in the
database.
AFE1_AFE2-1:1

15

16

Reference information on the graphical environment
 4 After running icstat on the cstat1.c file, these messages are listed on the console
an stored in the database (assuming all default checks are performed):

"cstat1.c",15 Severity-High[PTR-null-fun-pos]: Function call
`f1()' is immediately dereferenced, without checking for NULL.
CERT-EXP34-C,CWE-476
 15: ! - possible_null
 15: > - Entering into f1
 7: ! - Return NULL

"cstat1.c",18 Severity-Low[RED-unused-assign]: Value assigned to
variable `ch' is never used. CERT-MSC13-C,CWE-563

Note that the first message is followed by trace information, which describes the
required execution path to trigger the deviation from the rule, including information
about assumptions made on conditional statements.

5 This message is listed for the cstat2.c file:

"cstat2.c",16 Severity-High[ARR-inv-index]: Array `arr' 1st
subscript 20 is out of bounds [0,9].
CERT-ARR33-C,CWE-119,CWE-120,CWE-121,CWE-124,CWE-126,CWE-127,CWE-
129,MISRAC++2008-5-0-16,MISRAC2012-Rule-18.1

6 Edit the source files to remove the problem and repeat the analysis.

Note: C-STAT has a built-in preprocessor symbol, __CSTAT__, that you can use to
explicitly include or exclude specific parts of source code from the analysis. There are
also specific C-STAT pragma directives that suppress one or more checks for selected
source lines, see Descriptions of compiler extensions for C-STAT, page 21.

Reference information on the graphical environment
Reference information about:

● C-STAT Messages window, page 17

● C-STAT Static Analysis options, page 19

● Select C-STAT Checks dialog box, page 20
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 C-STAT Messages window
The C-STAT Messages window is automatically displayed when you perform a
C-STAT analysis.

This window displays the result of a performed C-STAT static analysis.

See also Getting started analyzing using C-STAT, page 9.

Toolbar menu

Severity

Selects which severity level of the messages to be displayed. Choose between
All (shows all messages), Medium/High (shows messages of Medium and High
severity), or High (shows only messages of High severity).

Filter

Filters the messages so that only messages that contain the text you specify will
be listed (the filter is case-sensitive). This is useful if you want to search the
message information.

Messages

Lists the number of C-STAT messages after a performed analysis.

Progress bar

Shows the progress of the ongoing analysis.

Display area

The display area shows messages per file and linkage. The messages can be expanded
and collapsed. For each file, the number of messages and the number of C-STAT pragma
messages are displayed.

Message

Lists the C-STAT message for the check.
AFE1_AFE2-1:1

17

18

Reference information on the graphical environment
 Check

The name of the check.

Severity

The severity of the check, High, Medium, or Low.

File

The name of the file where the non-conformant code construct is found.

Line

The line number of the non-conformant code construct.

Context menu

This context menu is available:

These commands are available:

Collapse All

Collapses all file nodes in the C-STAT Messages window.

Expand All

Expands all file nodes in the C-STAT Messages window.

Copy Check Name

Copies the name of the selected check. Use the copied name in the C-STAT
Settings dialog box to search for a specific check.

Save to File

Saves the result of a performed analysis to a text file.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 C-STAT Static Analysis options
To open the C-STAT Static Analysis page, choose Project>Options and select the
Static Analysis category.

Use this page to specify options for performing a static analysis using C-STAT.

Select C-STAT Checks

Opens the Select C-STAT Checks dialog box where you can select which checks to
perform.

Import Settings

Opens a standard open dialog box to use for locating and opening an XML file that
contains the checks to perform. The content of the file will be imported and can be
modified in the Select C-STAT Checks dialog box.

Export Settings

Opens a standard save dialog box for locating and saving an XML file with your
currently selected checks.

Module timeout

Specify the number of seconds after which the analysis terminates.

Enable parallel analysis

Enables C-STAT to perform analysis in parallel.

Processes

Specify the number of processes to be used by C-STAT for performing an analysis.
AFE1_AFE2-1:1

19

20

Reference information on the graphical environment
 Select C-STAT Checks dialog box
The Select C-STAT Checks dialog box is available from the C-STAT Static Analysis
options page.

Use this dialog box to specify the checks to include during a C-STAT static analysis. You
can select packages or groups of checks, or individual checks to perform by selecting
the corresponding check boxes.

For reference information about individual checks, select a check and press F1 to open
the context-sensitive help.

Search

Type a text string to be used as a filter.

Name

Lists all packages, groups, and checks. Select the ones you want to perform.

Severity

Shows the severity for each check, which can be High, Medium, or Low.

Used

Shows how many of the checks in the package or group that will performed during a
C-STAT static analysis (only if the package or group actually is selected). The values
can be All, None, or the number of selected checks out of the total amount.

Synopsis

Gives a short description of the packages, groups, and checks.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 Descriptions of compiler extensions for C-STAT
Reference information about:

● cstat_disable, page 21 (pragma directive)

● cstat_enable, page 21 (pragma directive)

● cstat_restore, page 22 (pragma directive)

● cstat_suppress, page 22 (pragma directive)

● __CSTAT__, page 22 (predefined macro)

cstat_disable

Syntax #pragma cstat_disable="tag"[,"tag"...]

Parameters

Description Use this pragma directive to suppress the specified C-STAT check until the end of the
compilation unit or until a matching #pragma cstat_restore directive is
encountered.

Example #pragma cstat_disable = "MISRAC2012-Rule-9.1",
"MISRAC2012-Rule-10.3"
 // ...
 // Messages about rules 9.1 and 10.3 suppressed here
 // ...

See also cstat_restore, page 22

cstat_enable

Syntax #pragma cstat_enable="tag"[,"tag"...]

Parameters

Description Use this pragma directive to unsuppress the specified C-STAT check until the end of the
compilation unit, or until a matching #pragma cstat_restore directive is
encountered.

tag The tag of a C-STAT check.

tag The tag of a C-STAT check.
AFE1_AFE2-1:1

21

22

Descriptions of compiler extensions for C-STAT
 Example #pragma cstat_enable = "MISRAC2012-Rule-10.3"
 // ...
 // Messages about rule 10.3 not suppressed here
 // ...

See also cstat_restore, page 22

cstat_restore

Syntax #pragma cstat_restore="tag"[,"tag"...]

Parameters

Description Use this pragma directive to undo the effects of the most recent cstat_enable or
cstat_disable directive for the same check(s).

Example #pragma cstat_restore = "MISRAC2012-Rule-10.3"
 // ...
 // Messages about rule 10.3 suppressed here
 // ...

cstat_suppress

Syntax #pragma cstat_suppress="tag"[,"tag"...]

Parameters

Description Use this pragma directive to suppress the specified C-STAT check until the end of the
immediately following line.

__CSTAT__

Description A predefined macro that is defined when the code is processed for analysis. You can use
it to explicitly include or exclude specific parts of source code from the analysis.

Example #ifndef __CSTAT__
 /* Code here is not visible to the analysis */
#endif

tag The tag of a C-STAT check.

tag The tag of a C-STAT check.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 Descriptions of C-STAT options
The following is detailed reference information about each command line option
available for icstat, ichecks and ireport:

● --all, page 23

● --check, page 23

● --checks, page 24

● --db, page 24

● --default, page 25

● --dir, page 25

● -f, page 26

● --full, page 26

● --group, page 27

● --output, page 27

● --output, page 28

● --package, page 28

● --parallel, page 28

● --project, page 29

● --timeout, page 29

● --timeout_check, page 30

--all

Syntax --all

For use with ichecks

Description Causes ichecks to generate all checks (including non-default checks) to an output file.
When you use the output file with icstat, icstat will perform all checks.

To set related options, choose:

Project>Options>Static Analysis>C-STAT Static Analysis>Select Checks

--check

Syntax --check tag[,...]
AFE1_AFE2-1:1

23

24

Descriptions of C-STAT options
 Parameters

For use with ichecks

Description Causes icheck to generate the specified check to an output file. When you use the
output file with icstat, icstat will perform the specified check.

To set related options, choose:

Project>Options>Static Analysis>C-STAT Static Analysis>Select Checks

--checks

Syntax --checks file

Parameters

For use with icstat

Description Use this option to specify the file that contains the checks to perform. You create the file
using ichecks, see Performing an analysis from the command line, page 14.

This option is not available in the IDE.

--db

Syntax --db database

Parameters

For use with icstat, ireport

tag The tag of a specific check that you want to perform, for example
ARR-inv-index-pos. You can specify one or several tags.

file The name of the manifest file that contains the checks that
icstat will perform. See the rules for specifying a filename or
directory as parameters in the compiler documentation.

database icstat: The name of the file where the analysis result will be
stored as a database.

ireport: The name of the database file that contains the result
of a previously performed analysis.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 Description Use this option to specify the name of the database.

This option is mandatory.

This option is not available in the IDE.

--default

Syntax --default package[,...]

Parameters

For use with ichecks

Description Causes ichecks to generate all default checks for the specified package to an output
file. When you use the output file with icstat, icstat will perform the default checks.

To set related options, choose:

Project>Options>Static Analysis>C-STAT Static Analysis>Select Checks

--dir

Syntax --dir directory

Parameters

For use with ireport

Description Use this option to specify which directory the produced report will be stored in. This
option can be used in combination with the --output option. If --dir is not used, the
report is placed in the current directory.

To set this option, choose:

Project>C-STAT Static Analysis>Generate Full HTML Report

or

Project>C-STAT Static Analysis>Generate HTML Summary

package The name of package to use. Choose between: stdchecks,
miscrac2004, misrac2012, or miscrac++2008.

directory The name of the directory where the report will be stored.
AFE1_AFE2-1:1

25

26

Descriptions of C-STAT options
 -f

Syntax -f filename

Parameters See the compiler documentation for information about the rules for specifying a
filename or directory as parameters.

For use with icstat

Description Use this option to make the tool read command line options from the named file, with
the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you can use multiple lines, because the newline character is treated as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

This option is not available in the IDE.

--full

Syntax --full

For use with ireport

Description Use this option to make ireport generate a full report in HTML, which means that all
checks (suppressed and non-suppressed) are included at the end of the report.

To set this option, choose:

Project>C-STAT Static Analysis>Generate Full HTML Report
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 --group

Syntax --group group[,...]

Parameters

For use with ichecks

Description Causes ichecks to generate the specified group of checks to an output file. When you
use the output file with icstat, icstat will perform the specified group of checks.

To set related options, choose:

Project>Options>Static Analysis>C-STAT Static Analysis>Select Checks

--output

Syntax --output filename.html

Parameters

For use with ireport

Description Use this option to specify the name of the produced report. This option can be used in
combination with the --dir option.

This option is mandatory.

To set related option, choose:

Project>C-STAT Static Analysis>Generate Full HTML Report

or

Project>C-STAT Static Analysis>Generate HTML Summary

group The group of checks that you want to perform, for example ARR
for array bounds or ATH for arithmetic errors. For information
about available groups, see the Options dialog box in the IAR
Embedded Workbench IDE. You can specify one or several
groups.

filename.html The name of the file for the produced report, including the
filename extension.
AFE1_AFE2-1:1

27

28

Descriptions of C-STAT options
 --output

Syntax --output {file|–}

Parameters

For use with ichecks

Description By default, the generated output produced by ichecks is located in a file with the name
cstat_sel_checks.txt. Use this option to explicitly specify a different output
filename.

This option is not available in the IDE.

--package

Syntax --package package[,...]

Parameters

For use with ichecks

Description Causes ichecks to generate the specified package of checks to an output file. When you
use the output file with icstat, icstat will perform the specified package of checks.

To set related options, choose:

Project>Options>Static Analysis>C-STAT Static Analysis>Select Checks

--parallel

Syntax --parallel threads

Parameters

file The name of the output file.

– Directs the output to stdout.

package The package of checks that you want to perform. Choose
between: stdchecks, miscrac2004, misrac2012, or
miscrac++2008. You can specify one or several packages.

threads The maximum number of threads to use during parallel analysis.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 For use with icstat

Description Use this option to specify the maximum number of threads to use during parallel
analysis.

Note: This option might cause subsequently performed analyses to produce more or
fewer messages. This is because the summary information for the source files might
change depending on the order in which they are analyzed.

Project>Options>Static Analysis>Enable parallel analysis

--project

Syntax --project name

Parameters

For use with ireport

Description Use this option to specify a name for the project in the report.

This option is mandatory.

This option is not available in the IDE.

--timeout

Syntax --timeout seconds

Parameters

For use with icstat

Description Use this option to specify the number of seconds that the analysis of a module is allowed
to take before it terminates.

Project>Options>Static Analysis>Module timeout

name A name to identify the project in the report.

seconds The number of seconds before the analysis of a module
terminates.
AFE1_AFE2-1:1

29

30

Description of the C-STAT command line tools
 --timeout_check

Syntax --timeout_check seconds

Parameters

For use with icstat

Description Use this option to specify the number of seconds that each check is allowed to take
before the analysis terminates. This limit includes various internal operations performed
during the analysis.

Project>Options>Static Analysis>Extra Options

Description of the C-STAT command line tools
Reference information about:

● The icstat tool, page 30

● The ichecks tool, page 32

● The ireport tool, page 32

See the compiler documentation for information about generic syntax rules for options,
exit statuses, etc.

THE ICSTAT TOOL

Use the icstat tool to perform a C-STAT static analysis on a project, with a previously
produced manifest file as input. You produce the manifest file using the ichecks tool.

Invocation syntax for icstat

The invocation syntax for icstat:

icstat parameters [-- command_line]

The different parts are:

seconds The number of seconds that each check is allowed to take before
the analysis terminates.

Syntax parts Description

commands Commands that define an operation to be performed, see Summary of
icstat commands, page 31.

Table 1: icstat syntax
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis

For an example, see Performing an analysis from the command line, page 14.

Summary of icstat commands

This table summarizes the icstat commands:

For an example, see Performing an analysis from the command line, page 14.

When running icstat with the commands analyze or link_analyze, identified
deviations will be listed on stdout on the format:

Severity[check-tag]: message. Alias tags.

Summary of icstat options

This table summarizes the icstat options:

For more information, see Descriptions of C-STAT options, page 23.

options Command line options that define actions to be performed, see
Summary of icstat options, page 31. These options can be placed
anywhere on the command line, but must come before --.

command_line Compiler or linker command line for the analyze and
link_analyze commands.

Icstat commands Description

analyze Analyzes a source file. The command line must end with a
compiler invocation (--).

link_analyze Analyzes an application. The command line must end with a
linker invocation (--).

load Outputs the analysis messages from the database file.

clear Clears the database file.

commands cmd Executes the commands in the cmd file.

Table 2: icstat commands summary

Command line option Description

--checks Specifies the manifest file, which contains the checks to
perform.

--db Contains analysis information (mandatory).

-f Extends the command line.

Table 3: icstat options summary

Syntax parts Description

Table 1: icstat syntax (Continued)
AFE1_AFE2-1:1

31

32

Description of the C-STAT command line tools
 THE ICHECKS TOOL

Use the ichecks tool to generate a manifest file that contains only the checks that you
want to perform. Use this file as input to the icstat tool.

Invocation syntax for ichecks

The invocation syntax for ichecks:

ichecks options

The default name of the output file is cstat_sel_checks.txt.

For an example, see Performing an analysis from the command line, page 14.

Summary of ichecks options

This table summarizes the ichecks options:

For more information, see Descriptions of C-STAT options, page 23.

THE IREPORT TOOL

Use the ireport tool to produce an HTML report of a previous analysis performed by
C-STAT. The report presents statistics both in numbers and as tables. Two different types
of reports that can be produced:

● A summary that includes information about, for example, project-wide enabled
checks, the total amount of messages, suppressed checks (if any), messages for each
check, etc.

● A full report that contains the same information as the summary, but also
information about all suppressed and non-suppressed messages at the end of the
report. The tables can be collapsed and expanded, and the columns can be sorted.

Command line option Description

--all Generates all checks to an output file.

--check Generates a specified check to an output file.

--default Generates all default checks for a specific package to an
output file.

--group Generates a selected group of checks to an output file.

--output Specifies an output filename other than the default.

--package Generates all checks for a specific package to an output file.

Table 4: ichecks options summary
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT for static analysis
 Invocation syntax for ireport

The invocation syntax for ireport:

ireport options

For an example, see Performing an analysis from the command line, page 14.

Summary of ireport options

This table summarizes the ireport options:

For more information, see Descriptions of C-STAT options, page 23.

Command line option Description

--db Specifies the database that the report will be based on.

--dir Specifies the directory where the report will be stored.

--full Produces a full report, including information about
suppressed and non-suppressed checks.

--output Specifies the name of the produced report.

--project Specifies a name for the project.

Table 5: ireport options summary
AFE1_AFE2-1:1

33

34

Description of the C-STAT command line tools

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks
● Summary of checks

● Descriptions of checks

Summary of checks
This table summarizes the C-STAT checks

Check Synopsis

ARR-inv-index-pos An array access might be out of bounds,
depending on which path is executed.

ARR-inv-index-ptr-pos A pointer to an array is potentially used outside
the array bounds.

ARR-inv-index-ptr A pointer to an array is used outside the array
bounds.

ARR-inv-index An array access is out of bounds.

ARR-neg-index An array is accessed with a negative subscript
value.

ARR-uninit-index An array is indexed with an uninitialized variable

ATH-cmp-float Floating point comparisons using == or !=

ATH-cmp-unsign-neg An unsigned value is compared to see whether it
is negative.

ATH-cmp-unsign-pos An unsigned value is compared to see whether it
is greater than or equal to 0.

ATH-div-0-assign A variable is assigned the value 0, then used as a
divisor.

ATH-div-0-cmp-aft After a successful comparison with 0, a variable
is used as a divisor.

ATH-div-0-cmp-bef A variable used as a divisor is afterwards
compared with 0.

ATH-div-0-interval Interval analysis has found a value that is 0 and
used as a divisor.

ATH-div-0-pos Interval analysis has found an expression that
might be 0 and is used as a divisor.

Table 6: Summary of checks
AFE1_AFE2-1:1

35

36

Summary of checks

ATH-div-0-unchk-global A global variable is used as a divisor without
having been determined to be non-zero.

ATH-div-0-unchk-local A local variable is used as a divisor without
having been determined to be non-zero.

ATH-div-0-unchk-param A parameter is used as a divisor without having
been determined to be non-zero.

ATH-div-0 An expression that results in 0 is used as a
divisor.

ATH-inc-bool (C++ only) Deprecated operation on bool.

ATH-malloc-overrun The size of memory passed to malloc to allocate
overflows.

ATH-neg-check-nonneg A variable is checked for a non-negative value
after being used, instead of before.

ATH-neg-check-pos A variable is checked for a positive value after
being used, instead of before.

ATH-new-overrun (C++ only) An arithmetic overflow is caused by an
allocation using new[].

ATH-overflow-cast An expression is cast to a different type,
resulting in an overflow or underflow of its
value.

ATH-overflow An expression is implicitly converted to a
narrower type, resulting in an overflow or
underflow of its value.

ATH-shift-bounds Out of range shifts were found.

ATH-shift-neg The left-hand side of a right shift operation
might be a negative value.

ATH-sizeof-by-sizeof Multiplying sizeof by sizeof.

CAST-old-style (C++ only) Old style casts (other than void casts) are used

CATCH-object-slicing (C++

only)

Exception objects are caught by value

CATCH-xtor-bad-member (C++

only)

Exception handler in constructor or destructor
accesses non-static member variable that might
not exist.

COMMA-overload (C++ only) Overloaded comma operator

COMMENT-nested Appearances of /* inside comments

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CONST-local A local variable that is not modified after
initialization is not declared const.

CONST-member-ret (C++ only) A member function qualified as const returns
a pointer member variable.

CONST-param A function does not modify one of its
parameters.

COP-alloc-ctor (C++ only) A class member is deallocated in the class'
destructor, but not allocated in a constructor or
assignment operator.

COP-assign-op-ret (C++ only) An assignment operator of a C++ class does not
return a non-const reference to this.

COP-assign-op-self (C++ only) Assignment operator does not check for
self-assignment before allocating member
functions

COP-assign-op (C++ only) There is no assignment operator defined for a
class whose destructor deallocates memory.

COP-copy-ctor (C++ only) A class which uses dynamic memory allocation
does not have a user-defined copy constructor.

COP-dealloc-dtor (C++ only) A class member has memory allocated in a
constructor or an assignment operator, that is
not released in the destructor.

COP-dtor-throw (C++ only) An exception is thrown, or might be thrown, in
a class destructor.

COP-dtor (C++ only) A class which dynamically allocates memory in
its copy control functions does not have a
destructor.

COP-init-order (C++ only) Data members are initialized with other data
members that are in the same initialization list.

COP-init-uninit (C++ only) An initializer list reads the values of still
uninitialized members.

COP-member-uninit (C++ only) A member of a class is not initialized in one of
the class constructors.

CPU-ctor-call-virt (C++ only) A virtual member function is called in a class
constructor.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

37

38

Summary of checks

CPU-ctor-implicit (C++ only) Constructors that are callable with a single
argument of fundamental type are not declared
explicit.

CPU-delete-throw (C++ only) An exception is thrown, or might be thrown, in
an overloaded delete or delete[]
operator.

CPU-delete-void (C++ only) A pointer to void is used in delete, causing
the destructor not to be called.

CPU-dtor-call-virt (C++ only) A virtual member function is called in a class
destructor.

CPU-malloc-class (C++ only) An allocation of a class instance with
malloc() does not call a constructor.

CPU-nonvirt-dtor (C++ only) A public non-virtual destructor is defined in a
class with virtual methods.

CPU-return-ref-to-class-data

(C++ only)

Member functions return non-const handles
to members.

DECL-implicit-int An object or function of the type int is
declared or defined, but its type is not explicitly
stated.

DEFINE-hash-multiple Multiple # or ## operators in a macro
definition.

ENUM-bounds Conversions to enum that are out of range of
the enumeration.

EXP-cond-assign An assignment might be mistakenly used as the
condition for an if, for, while, or do
statement.

EXP-dangling-else An else branch might be connected to an
unexpected if statement.

EXP-loop-exit An unconditional break, continue,
return, or goto within a loop.

EXP-main-ret-int The return type of main() is not int.

EXP-null-stmt The body of an if, while, or for statement is
a null statement.

EXP-stray-semicolon Stray semicolons on the same line as other code

EXPR-const-overflow A constant unsigned integer expression
overflows.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

FPT-cmp-null The address of a function is compared with
NULL.

FPT-literal A function pointer that refers to a literal address
is dereferenced.

FPT-misuse A function pointer is used in an invalid context.

FUNC-implicit-decl Functions are used without prototyping.

FUNC-unprototyped-all Functions are declared with an empty ()
parameter list that does not form a valid
prototype.

FUNC-unprototyped-used Arguments are passed to functions without a
valid prototype.

INCLUDE-c-file A .c file includes one or more .c files.

INT-use-signed-as-unsigned-pos A negative signed integer is implicitly cast to an
unsigned integer.

INT-use-signed-as-unsigned A negative signed integer is implicitly cast to an
unsigned integer.

ITR-end-cmp-aft (C++ only) An iterator is used, then compared with end()

ITR-end-cmp-bef (C++ only) An iterator is compared with end() or
rend(), then dereferenced.

ITR-invalidated (C++ only) An iterator assigned to point into a container is
used or dereferenced even though it might be
invalidated.

ITR-mismatch-alg (C++ only) A pair of iterators passed to an STL algorithm
function point to different containers.

ITR-store (C++ only) A container's begin() or end() iterator is
stored and subsequently used.

ITR-uninit (C++ only) An iterator is dereferenced or incremented
before it is assigned to point into a container.

LIB-bsearch-overrun-pos Arguments passed to bsearch might cause it
to overrun.

LIB-bsearch-overrun Arguments passed to bsearch cause it to
overrun.

LIB-buf-size A call to a string function has a size argument
larger than the size of the target buffer.

LIB-fn-unsafe A potentially unsafe library function is used.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

39

40

Summary of checks

LIB-fread-overrun-pos A call to fread might cause a buffer overrun.

LIB-fread-overrun A call to fread causes a buffer overrun.

LIB-memchr-overrun-pos A call to memchr might cause a buffer overrun.

LIB-memchr-overrun A call to memchr causes a buffer overrun.

LIB-memcpy-overrun-pos A call to memcpy might cause the memory to
overrun.

LIB-memcpy-overrun A call to memcpy or memmove causes the
memory to overrun.

LIB-memset-overrun-pos A call to memset might cause a buffer overrun.

LIB-memset-overrun A call to memset causes a buffer overrun.

LIB-putenv putenv used to set environment variable values.

LIB-qsort-overrun-pos Arguments passed to qsort might cause it to
overrun.

LIB-qsort-overrun Arguments passed to qsort cause it to
overrun.

LIB-return-const The return value of a const standard library
function is not used.

LIB-return-error The return value for a library function that might
return an error value is not used.

LIB-return-leak The return values from one or more library
functions were not stored, returned, or passed
as a parameter.

LIB-return-neg A variable assigned using a library function that
can return -1 as an error value is subsequently
used where the value must be non-negative.

LIB-return-null A pointer is assigned using a library function that
can return NULL as an error value. This pointer
is subsequently dereferenced without checking
its value.

LIB-sprintf-overrun A call to sprintf causes a destination buffer
overrun.

LIB-std-sort-overrun-pos (C++

only)

Using std::sort might cause buffer overrun.

LIB-std-sort-overrun (C++

only)

A buffer overrun is caused by use of
std::sort.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

LIB-strcat-overrun-pos A call to strcat might cause destination buffer
overrun.

LIB-strcat-overrun A call to strcat causes a destination buffer
overrun.

LIB-strcpy-overrun-pos A call to strcpy might cause destination buffer
overrun.

LIB-strcpy-overrun A call to strcpy causes a destination buffer
overrun.

LIB-strncat-overrun-pos A call to strncat might cause a destination
buffer overrun.

LIB-strncat-overrun A call to strncat causes a destination buffer
overrun.

LIB-strncmp-overrun-pos A call to strncmp might cause a buffer
overrun.

LIB-strncmp-overrun A buffer overrun is caused by a call to
strncmp.

LIB-strncpy-overrun-pos A call to strncpy might cause a destination
buffer overrun.

LIB-strncpy-overrun A call to strncpy causes a destination buffer
overrun.

LOGIC-overload (C++ only) Overloaded && and || operators

MEM-delete-array-op (C++ only) A memory location allocated with new is
deleted with delete[]

MEM-delete-op (C++ only) A memory location allocated with new [] is
deleted with delete or free.

MEM-double-free-alias Freeing a memory location more than once.

MEM-double-free-some A memory location is freed more than once on
some paths but not on others.

MEM-double-free A memory location is freed more than once.

MEM-free-field A struct or a class field is possibly freed.

MEM-free-fptr A function pointer is deallocated.

MEM-free-no-alloc-struct A struct field is deallocated without first having
been allocated.

MEM-free-no-alloc A pointer is freed without having been allocated.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

41

42

Summary of checks

MEM-free-no-use Memory is allocated and then freed without
being used.

MEM-free-op Memory allocated with malloc deallocated
using delete.

MEM-free-struct-field A struct's field is deallocated, but is not
dynamically allocated.

MEM-free-variable-alias A stack address might be freed.

MEM-free-variable A stack address might be freed.

MEM-leak-alias Incorrect deallocation causes memory leak.

MEM-leak Incorrect deallocation causes memory leak.

MEM-malloc-arith An assignment contains both a malloc() and
pointer arithmetic on the right-hand side.

MEM-malloc-diff-type A call to malloc tries to allocate memory
based on a sizeof operator, but the
destination type of the call is of a different type.

MEM-malloc-sizeof-ptr malloc(sizeof(p)), where p is a pointer
type, is assigned to a non-pointer variable.

MEM-malloc-sizeof Allocating memory with malloc without using
sizeof.

MEM-malloc-strlen Dangerous arithmetic with strlen in
argument to malloc.

MEM-realloc-diff-type The variable that stores the result of realloc
does not match the type of the first argument.

MEM-return-free A function deallocates memory, then returns a
pointer to that memory.

MEM-return-no-assign A function that allocates memory's return value
is not stored.

MEM-stack-alias Might return address on the stack.

MEM-stack-global-alias A stack address is stored in a global pointer.

MEM-stack-global-field A stack address is stored in the field of a global
struct.

MEM-stack-global A stack address is stored in a global pointer.

MEM-stack-param-ref (C++ only) Stack address is stored via reference parameter.

MEM-stack-param A stack address is stored outside a function via a
parameter.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MEM-stack-pos Might return address on the stack.

MEM-stack-ref (C++ only) A stack object is returned from a function as a
reference.

MEM-stack Might return address on the stack.

MEM-use-free-all A pointer is used after it has been freed.

MEM-use-free-some A pointer is used after it has been freed.

PTR-arith-field Direct access to a field of a struct, using an
offset from the address of the struct.

PTR-arith-stack Pointer arithmetic applied to a pointer that
references a stack address

PTR-arith-var Invalid pointer arithmetic with an automatic
variable that is neither an array nor a pointer.

PTR-cmp-str-lit A variable is tested for equality with a string
literal.

PTR-null-assign-fun-pos Possible NULL pointer dereferenced by a
function.

PTR-null-assign-pos A pointer is assigned a value that might be
NULL, and then dereferenced.

PTR-null-assign A pointer is assigned the value NULL, then
dereferenced.

PTR-null-cmp-aft A pointer is dereferenced, then compared with
NULL.

PTR-null-cmp-bef-fun A pointer is compared with NULL, then
dereferenced by a function.

PTR-null-cmp-bef A pointer is compared with NULL, then
dereferenced.

PTR-null-fun-pos A possible NULL pointer is returned from a
function, and immediately dereferenced without
checking.

PTR-null-literal-pos A literal pointer expression (like NULL) is
dereferenced by a function call.

PTR-overload (C++ only) An & operator is overloaded.

PTR-singleton-arith-pos Pointer arithmetic might be performed on a
pointer that points to a single object.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

43

44

Summary of checks

PTR-singleton-arith Pointer arithmetic is performed on a pointer
that points to a single object.

PTR-unchk-param-some A pointer is dereferenced after being
determined not to be NULL on some paths, but
not checked on others.

PTR-unchk-param A pointer parameter is not compared to NULL

PTR-uninit-pos Possible dereference of an uninitialized or NULL
pointer.

PTR-uninit Dereference of an uninitialized or NULL pointer.

RED-case-reach A case statement within a switch statement
cannot be reached.

RED-cmp-always A comparison using ==, <, <=, >, or >= is
always true.

RED-cmp-never A comparison using ==, <, <=, >, or >= is
always false.

RED-cond-always The condition in an if, for, while, do-while, or
ternary operator will always be true.

RED-cond-const-assign A constant assignment in a conditional
expression.

RED-cond-const-expr A conditional expression with a constant value

RED-cond-const A constant value is used as the condition for a
loop or if statement.

RED-cond-never The condition in if, for, while, do-while, or
ternary operator will never be true.

RED-dead A part of the application is never executed.

RED-expr Some expressions, such as x & x and x | x,
are redundant.

RED-func-no-effect A function is declared that has no return type
and creates no side effects.

RED-local-hides-global The definition of a local variable hides a global
definition.

RED-local-hides-local The definition of a local variable hides a previous
local definition.

RED-local-hides-member (C++

only)

The definition of a local variable hides a member
of the class.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

RED-local-hides-param A variable declaration hides a parameter of the
function

RED-no-effect A statement potentially contains no side effects.

RED-self-assign In a C++ class member function, a variable is
assigned to itself.

RED-unused-assign A variable is assigned a non-trivial value that is
never used.

RED-unused-param A function parameter is declared but not used.

RED-unused-return-val There are unused function return values (other
than overloaded operators).

RED-unused-val A variable is assigned a value that is never used.

RED-unused-var-all A variable is neither read nor written for any
execution path.

RESOURCE-deref-file A pointer to a FILE object is dereferenced.

RESOURCE-double-close A file resource is closed multiple times

RESOURCE-file-no-close-all A file pointer is never closed.

RESOURCE-file-pos-neg A file handler might be negative

RESOURCE-file-use-after-close A file resource is used after it has been closed.

RESOURCE-implicit-deref-file A file pointer is implicitly dereferenced by a
library function.

RESOURCE-write-ronly-file A file opened as read-only is written to.

SIZEOF-side-effect sizeof expressions containing side effects

SPC-init-list The initalization list of an array contains side
effects.

SPC-order Expressions that depend on order of evaluation
were found.

SPC-uninit-arr-all Reads from local buffers are not preceded by
writes.

SPC-uninit-struct-field-heap A field of a dynamically allocated struct is read
before it is initialized.

SPC-uninit-struct-field A field of a local struct is read before it is
initialized.

SPC-uninit-struct A struct has one or more fields read before they
are initialized.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

45

46

Summary of checks

SPC-uninit-var-all A variable is read before it is assigned a value.

SPC-uninit-var-some A variable is read before it is assigned a value.

SPC-volatile-reads There are multiple read accesses with
volatile-qualified type within one and the same
sequence point.

SPC-volatile-writes There are multiple write accesses with
volatile-qualified type within one and the same
sequence point.

STR-trigraph Trigraphs were found in string literals.

STRUCT-signed-bit There are signed single-bit fields (excluding
anonymous fields).

SWITCH-fall-through There are non-empty switch cases not
terminated by break and without 'fallthrough'
comment.

THROW-empty (C++ only) Unsafe rethrow of exception.

THROW-main (C++ only) No default exception handler for try.

THROW-null Throw of NULL integer constant

THROW-ptr Throw of exceptions by pointer

THROW-static (C++ only) Exceptions thrown without a handler in some
call paths that lead to that point.

THROW-unhandled (C++ only) There are calls to functions explicitly declared to
throw an exception type that is not handled (or
declared as thrown) by the caller.

UNION-overlap-assign Assignments from one field of a union to
another.

UNION-type-punning Writing to a field of a union after reading from a
different field, effectively re-interpreting the bit
pattern with a different type.

MISRAC2004-1.2_a There are read accesses from local buffers that
are not preceded by write accesses.

MISRAC2004-1.2_b On all execution paths, one or more fields are
read from a struct before they are initialized.

MISRAC2004-1.2_c An expression resulting in 0 is used as a divisor.

MISRAC2004-1.2_d A variable was found that is assigned the value 0,
and then used as a divisor.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2004-1.2_e A variable is used as a divisor after a successful
comparison with 0.

MISRAC2004-1.2_f A variable used as a divisor is subsequently
compared with 0.

MISRAC2004-1.2_g A value that is determined using interval analysis
to be 0 is used as a divisor.

MISRAC2004-1.2_h An expression that might be 0 is used as a
divisor.

MISRAC2004-1.2_i A global variable is not checked against 0 before
it is used as a divisor.

MISRAC2004-1.2_j A local variable is not checked against 0 before
it is used as a divisor.

MISRAC2004-2.1 Inline assembler statements were found that are
not encapsulated in functions.

MISRAC2004-2.2 // comments were found.

MISRAC2004-2.3 /* character sequences were found inside
comments.

MISRAC2004-2.4 Code sections in comments were found, where
the comment ends in ;, {, or } characters.

MISRAC2004-4.2 Trigraphs were found in string literals.

MISRAC2004-5.2_a The definition of a local variable hides a global
definition.

MISRAC2004-5.2_b The definition of a local variable hides a previous
local definition.

MISRAC2004-5.2_c The declaration of a variable hides a parameter
of the function.

MISRAC2004-5.3 A typedef declaration was found with a name
already used for a previously declared typedef.

MISRAC2004-5.4 A class, struct, union, or enum declaration was
found that clashes with a previous declaration.

MISRAC2004-5.5 An identifier is used that might clash with
another static identifier.

MISRAC2004-6.1 Arithmetic is performed on objects of type plain
char, without an explicit signed or unsigned
qualifier.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

47

48

Summary of checks

MISRAC2004-6.3 One or more of the basic types char, int, short,
long, double, and float are used without a
typedef.

MISRAC2004-6.4 Bitfields of plain int type were found.

MISRAC2004-6.5 Signed bitfields consisting of a single bit
(excluding anonymous fields) were found.

MISRAC2004-7.1 Uses of octal integer constants were found.

MISRAC2004-8.1 Functions were found that are used despite not
having a valid prototype.

MISRAC2004-8.2 An implicit int was found in a declaration.

MISRAC2004-8.5_a A global variable is declared in a header file.

MISRAC2004-8.5_b One or more non-inlined functions are defined
in header files.

MISRAC2004-8.12 External arrays are declared without their size
being stated explicitly or defined implicitly by
initialization.

MISRAC2004-9.1_a A variable is read before it is assigned a value, on
all execution paths.

MISRAC2004-9.1_b On some execution paths, a variable is read
before it is assigned a value.

MISRAC2004-9.1_c An uninitialized or NULL pointer that is
dereferenced was found.

MISRAC2004-9.2 A non-zero array initialization was found that
does not exactly match the structure of the
array declaration.

MISRAC2004-10.1_a An expression of integer type was found that is
implicitly converted to a narrower or differently
signed underlying type.

MISRAC2004-10.1_b A complex expression of integer type was found
that is implicitly converted to a different
underlying type.

MISRAC2004-10.1_c A non-constant expression of integer type was
found that is implicitly converted to a different
underlying type in a function argument.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2004-10.1_d A non-constant expression of integer type was
found that is implicitly converted to a different
underlying type in a return expression.

MISRAC2004-10.2_a An expression of floating type was found that is
implicitly converted to a narrower underlying
type.

MISRAC2004-10.2_b An expression of floating type was found that is
implicitly converted to a narrower underlying
type.

MISRAC2004-10.2_c A non-constant expression of floating type was
found that is implicitly converted to a different
underlying type in a function argument.

MISRAC2004-10.2_d A non-constant expression of floating type was
found that is implicitly converted to a different
underlying type in a return expression.

MISRAC2004-10.3 A complex expression of integer type was found
that is cast to a wider or differently signed
underlying type.

MISRAC2004-10.4 A complex expression of floating type was found
that is cast to a wider or different underlying
type.

MISRAC2004-10.5 Detected a bitwise operation on unsigned char
or unsigned short, that are not immediately cast
to this type to ensure consistent truncation.

MISRAC2004-10.6 Constants of unsigned type were found that do
not have a U suffix.

MISRAC2004-11.1 Conversions were found between a pointer to a
function and a type other than an integral type.

MISRAC2004-11.3 A cast between a pointer type and an integral
type was found.

MISRAC2004-11.4 A pointer to object type was found that is cast
to a pointer to different object type.

MISRAC2004-11.5 Casts were found that that remove any const or
volatile qualification.

MISRAC2004-12.1 Expressions were found without parentheses,
making the operator precedence implicit instead
of explicit.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

49

50

Summary of checks

MISRAC2004-12.2_a Expressions were found that depend on the
order of evaluation.

MISRAC2004-12.2_b More than one read access with volatile-qualified
type was found within one sequence point.

MISRAC2004-12.2_c More than one modification access with
volatile-qualified type was found within one
sequence point.

MISRAC2004-12.3 Sizeof expressions were found that contain side
effects.

MISRAC2004-12.4 Right-hand operands of && or || were found that
contain side effects.

MISRAC2004-12.6_a Operands of logical operators (&&, ||, and !)
were found that are not effectively Boolean.

MISRAC2004-12.6_b Uses of arithmetic operators on Boolean
operands were found.

MISRAC2004-12.7 Applications of bitwise operators to signed
operands were found.

MISRAC2004-12.8 Shifts were found where the right-hand operand
might be negative, or too large.

MISRAC2004-12.9 Uses of unary minus on unsigned expressions
were found.

MISRAC2004-12.10 Uses of the comma operator were found.

MISRAC2004-12.11 Found a constant unsigned integer expression
that overflows.

MISRAC2004-12.12_a Found a read access to a field of a union
following a write access to a different field,
which effectively re-interprets the bit pattern
with a different type.

MISRAC2004-12.12_b An expression was found that provides access to
the bit representation of a floating-point
variable.

MISRAC2004-12.13 Uses of the increment (++) and decrement (--)
operators werew found mixed with other
operators in an expression.

MISRAC2004-13.1 Assignment operators were found in
expressions that yield a Boolean value.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2004-13.2_a Non-Boolean termination conditions were
found in do ... while statements.

MISRAC2004-13.2_b Non-boolean termination conditions were
found in for loops.

MISRAC2004-13.2_c Non-Boolean conditions were found in if
statements.

MISRAC2004-13.2_d Non-Boolean termination conditions were
found in while statements.

MISRAC2004-13.2_e Non-Boolean operands to the conditional (? :
) operator were found.

MISRAC2004-13.3 Floating-point comparisons using == or != were
found.

MISRAC2004-13.4 Floating-point values were found in the
controlling expression of a for statement.

MISRAC2004-13.5 A for loop counter variable is not initialized in
the for loop.

MISRAC2004-13.6 A for loop counter variable was found that is
modified in the body of the loop.

MISRAC2004-13.7_a A comparison using ==, <, <=, >, or >= was
found that always evaluates to true.

MISRAC2004-13.7_b A comparison using ==, <, <=, >, or >= was
found that always evaluates to false.

MISRAC2004-14.1 A part of the application is not executed on any
of the execution paths.

MISRAC2004-14.2 A statement was found that potentially contains
no side effects.

MISRAC2004-14.3 There are stray semicolons on the same line as
other code.

MISRAC2004-14.4 Uses of the goto statement were found.

MISRAC2004-14.5 Uses of the continue statement were found.

MISRAC2004-14.6 Multiple termination points were found in a
loop.

MISRAC2004-14.7 More than one point of exit was found in a
function, or an exit point before the end of the
function.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

51

52

Summary of checks

MISRAC2004-14.8_a There are missing braces in one or more do ...
while statements.

MISRAC2004-14.8_b There are missing braces in one or more for
statements.

MISRAC2004-14.8_c There are missing braces in one or more switch
statements.

MISRAC2004-14.8_d There are missing braces in one or more while
statements.

MISRAC2004-14.9 There are missing braces in one or more if,
else, or else if statements.

MISRAC2004-14.10 One or more if ... else if constructs
were found that are not terminated with an
else clause.

MISRAC2004-15.0 Switch statements were found that do not
conform to the MISRA C switch syntax.

MISRAC2004-15.1 Switch labels were found in nested blocks.

MISRAC2004-15.2 Non-empty switch cases were found that are
not terminated by a break statement.

MISRAC2004-15.3 Switch statements were found without a default
clause, or with a default clause that is not the
final clause.

MISRAC2004-15.4 A switch expression was found that represents a
value that is effectively Boolean.

MISRAC2004-15.5 Switch statements without case clauses were
found.

MISRAC2004-16.1 Functions that are defined using ellipsis (...)
notation were found.

MISRAC2004-16.2_a Functions were found that call themselves
directly.

MISRAC2004-16.2_b Functions were found that call themselves
indirectly.

MISRAC2004-16.3 Function prototypes were found that do not
give all parameters a name.

MISRAC2004-16.5 Functions were found that are declared with an
empty () parameter list that does not form a
valid prototype.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2004-16.7 A function was found that does not modify one
of its parameters.

MISRAC2004-16.8 For some execution paths, no return statement
is executed in a function with a non-void return
type.

MISRAC2004-16.9 One or more function addresses are taken
without an explicit &.

MISRAC2004-16.10 A return value for a library function that might
return an error value is not used.

MISRAC2004-17.1_a A direct access to a field of a struct was found,
that uses an offset from the address of the
struct.

MISRAC2004-17.1_b Detected pointer arithmetic applied to a pointer
that references a stack address.

MISRAC2004-17.1_c Detected invalid pointer arithmetic with an
automatic variable that is neither an array nor a
pointer.

MISRAC2004-17.4_a Pointer arithmetic that is not array indexing was
detected.

MISRAC2004-17.4_b Array indexing was detected applied to an
object defined as a pointer type.

MISRAC2004-17.5 One or more declarations of objects were found
that contain more than two levels of pointer
indirection.

MISRAC2004-17.6_a Detected the return of a stack address.

MISRAC2004-17.6_b Detected a stack address stored in a global
pointer.

MISRAC2004-17.6_c Detected a stack address stored in the field of a
global struct.

MISRAC2004-17.6_d Detected a stack address stored outside a
function via a parameter.

MISRAC2004-18.1 Structs and unions were found that are used
without being defined.

MISRAC2004-18.2 Assignments from one field of a union to
another were found.

MISRAC2004-18.4 Unions were detected.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

53

54

Summary of checks

MISRAC2004-19.2 There are illegal characters in header file names.

MISRAC2004-19.6 #undef directives were found.

MISRAC2004-19.7 Function-like macros were detected.

MISRAC2004-19.12 Multiple # or ## preprocessor operators were
found in a macro definition.

MISRAC2004-19.13 # or ## preprocessor operators were detected.

MISRAC2004-19.15 Header files were found without #include
guards.

MISRAC2004-20.1 Detected a #define or #undef of a reserved
identifier in the standard library.

MISRAC2004-20.4 Detected use of malloc, calloc, realloc, or free.

MISRAC2004-20.5 Detected use of the error indicator errno.

MISRAC2004-20.6 Detected use of the built-in function offsetof.

MISRAC2004-20.7 Detected use of setjmp.h.

MISRAC2004-20.8 Use of signal.h was detected.

MISRAC2004-20.9 Use of stdio.h was detected.

MISRAC2004-20.10 Use of the functions atof, atoi, atol, or atoll was
detected.

MISRAC2004-20.11 Use of the functions abort, exit, getenv, or
system was detected.

MISRAC2004-20.12 Use of the time.h functions was detected:
asctime, clock, ctime, difftime, gmtime,
localtime, mktime, strftime, or time.

MISRAC2012-Dir-4.3 Inline assembler statements were found that are
not encapsulated in functions.

MISRAC2012-Dir-4.4 Code sections in comments were found where
the comment ends with a ';', '{', or '}' character.

MISRAC2012-Dir-4.6_a The basic types char, int, short, long, double, and
float are used without a typedef.

MISRAC2012-Dir-4.9 Function-like macros were detected.

MISRAC2012-Dir-4.10 Header files were found without #include
guards.

MISRAC2012-Rule-1.3_a An expression resulting in 0 is used as a divisor.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2012-Rule-1.3_b A variable was found that is assigned the value 0,
and then used as a divisor.

MISRAC2012-Rule-1.3_c A variable is used as a divisor after a successful
comparison with 0.

MISRAC2012-Rule-1.3_d A variable used as a divisor is subsequently
compared with 0.

MISRAC2012-Rule-1.3_e A value that is determined using interval analysis
to be 0 is used as a divisor.

MISRAC2012-Rule-1.3_f An expression that might be 0 is used as a
divisor.

MISRAC2012-Rule-1.3_g A global variable is not checked against 0 before
it is used as a divisor.

MISRAC2012-Rule-1.3_h A local variable is not checked against 0 before
it is used as a divisor.

MISRAC2012-Rule-2.1_a A case statement within a switch statement
cannot be reached.

MISRAC2012-Rule-2.1_b A part of the application is never executed.

MISRAC2012-Rule-2.2_a A statement potentially contains no side effects.

MISRAC2012-Rule-2.2_c A variable is assigned a value that is never used.

MISRAC2012-Rule-2.7 A function parameter is declared but not used.

MISRAC2012-Rule-3.1 The character sequences /* and // were found
within a comment.

MISRAC2012-Rule-4.2 Trigraphs were found in string literals.

MISRAC2012-Rule-5.1 An external identifier was found that is not
unique for the first 31 characters, but still not
identical.

MISRAC2012-Rule-5.3_a The declaration of a local variable hides a global
declaration.

MISRAC2012-Rule-5.3_b The definition of a local variable hides a previous
local definition.

MISRAC2012-Rule-5.3_c The declaration of a variable hides a parameter
of the function.

MISRAC2012-Rule-5.4_c89 Macro names were found that are not distinct in
their first 31 characters from their macro
parameters or other macro names.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

55

56

Summary of checks

MISRAC2012-Rule-5.4_c99 Macro names were found that are not distinct in
their first 63 characters from their macro
parameters or other macro names.

MISRAC2012-Rule-5.5_c89 Non-macro identifiers were found that are not
distinct in their first 31 characters from macro
names.

MISRAC2012-Rule-5.5_c99 Non-macro identifiers were found that are not
distinct in their first 63 characters from macro
names.

MISRAC2012-Rule-5.6 A typedef with this name has already been
declared.

MISRAC2012-Rule-5.7 A class, struct, union, or enum declaration
clashes with a previous declaration.

MISRAC2012-Rule-5.8 One or more external identifier names were
found that are not unique.

MISRAC2012-Rule-6.1 Bitfields of plain int type were found.

MISRAC2012-Rule-6.2 Signed single-bit bitfields (excluding anonymous
fields) were found.

MISRAC2012-Rule-7.1 Octal integer constantsare used.

MISRAC2012-Rule-7.2 There are unsigned integer constants without a
U suffix.

MISRAC2012-Rule-7.3 The lower case character l was found used as a
suffix on numeric constants.

MISRAC2012-Rule-7.4_a A string literal was found assigned to a variable
that is not declared as constant.

MISRAC2012-Rule-7.4_b Part of a string literal was found that is modified
via the array subscript operator [].

MISRAC2012-Rule-8.1 An object or function of the type int is
declared or defined, but its type is not explicitly
stated.

MISRAC2012-Rule-8.2_a Functions are declared with an empty ()
parameter list that does not form a valid
prototype.

MISRAC2012-Rule-8.2_b Function prototypes were found with unnamed
parameters.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2012-Rule-8.10 Inline functions were found that are not
declared as static.

MISRAC2012-Rule-8.11 One or more external arrays are declared
without their size being stated explicitly or
defined implicitly by initialization.

MISRAC2012-Rule-8.14 The restrict type qualifier was found used in
function parameters.

MISRAC2012-Rule-9.1_a Possible dereference of an uninitialized or NULL
pointer.

MISRAC2012-Rule-9.1_b Reads from local buffers are not preceded by
writes.

MISRAC2012-Rule-9.1_c In all executions, a struct has one or more fields
read before they are initialized.

MISRAC2012-Rule-9.1_d A field of a local struct is read before it is
initialized.

MISRAC2012-Rule-9.1_e In all executions, a variable is read before it is
assigned a value.

MISRAC2012-Rule-9.1_f A variable is read before it is assigned a value.

MISRAC2012-Rule-9.3 Arrays were found that are partially initialized.

MISRAC2012-Rule-9.5_a Arrays, initialized with designated initializers but
with no fixed length, were found.

MISRAC2012-Rule-9.5_b Flexible array members were found initalized
with a designated initalizer.

MISRAC2012-Rule-10.1_R2 An operand was found that is not of essentially
Boolean type, despite being interpreted as a
Boolean value.

MISRAC2012-Rule-10.1_R3 An operand was found that is of essentially
Boolean type, despite being interpreted as a
numeric value.

MISRAC2012-Rule-10.1_R4 An operand was found that is of essentially
character type, despite being interpreted as a
numeric value.

MISRAC2012-Rule-10.1_R5 An operand that is of essentially enum type is
used in an arithmetic operation, because an
enum object uses an implementation-defined
integer type.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

57

58

Summary of checks

MISRAC2012-Rule-10.1_R6 Shift and bitwise operations were found
performed on operands of essentially signed
type.

MISRAC2012-Rule-10.1_R7 The right-hand operand of a shift operator is
not of essentially unsigned type.

MISRAC2012-Rule-10.1_R8 An operand of essentially unsigned typed is used
as the operand to the unary minus operator.

MISRAC2012-Rule-10.2 Expressions of essentially character type were
found used inappropriately in addition and
subtraction operations.

MISRAC2012-Rule-10.3 The value of an expression was found assigned
to an object with a narrower essential type or a
different essential type category.

MISRAC2012-Rule-10.4 In an operator in which the usual arithmetic
conversions are performed, the two operands
are not of the same essential type category.

MISRAC2012-Rule-10.6 The value of a composite expression is assigned
to an object with wider essential type.

MISRAC2012-Rule-10.7 An operator in which the usual arithmetic
conversions are performed was found, where a
composite expression is used as one of the
operands, but the other operand is of wider
essential type.

MISRAC2012-Rule-10.8 A composite expression was found whose value
is cast to a different essential type category or a
wider essential type.

MISRAC2012-Rule-11.1 Conversion between a pointer to a function and
another type were found.

MISRAC2012-Rule-11.3 A pointer to object type is cast to a pointer to a
different object type.

MISRAC2012-Rule-11.4 A cast between a pointer type and an integral
type was found.

MISRAC2012-Rule-11.7 A cast between a pointer to object and a
non-integer arithmetic type was found.

MISRAC2012-Rule-11.8 A cast that removes a const or volatile
qualification was found.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2012-Rule-11.9 An integer constant was found where the NULL
macro should be.

MISRAC2012-Rule-12.1 Implicit operator precedence was detected,
without parenthesis to make it explicit.

MISRAC2012-Rule-12.2 Out of range shifts were found

MISRAC2012-Rule-12.3 There are uses of the comma operator.

MISRAC2012-Rule-12.4 Evaluation of constant expressions lead to
unsigned integer wraparound.

MISRAC2012-Rule-13.1 The initalization list of an array contains side
effects.

MISRAC2012-Rule-13.2_a Expressions that depend on order of evaluation
were found.

MISRAC2012-Rule-13.2_b There are multiple read accesses with
volatile-qualified type within one and the same
sequence point.

MISRAC2012-Rule-13.2_c There are multiple write accesses with
volatile-qualified type within one and the same
sequence point.

MISRAC2012-Rule-13.3 The increment (++) and decrement (--)
operators are being used mixed with other
operators in an expression.

MISRAC2012-Rule-13.4_a An assignment might be mistakenly used as the
condition for an if, for, while, or do
statement.

MISRAC2012-Rule-13.4_b Assignments were found in a sub-expression.

MISRAC2012-Rule-13.5 There are right-hand operands of && or ||
operators that contain side effects.

MISRAC2012-Rule-13.6 The operand of the sizeof operator contains an
expression that has potential side effects.

MISRAC2012-Rule-14.1_a Floating-point values were found in the
controlling expression of a for statement.

MISRAC2012-Rule-14.1_b A variable of essentially float type that is used in
the loop condition, is then modified in the loop
body.

MISRAC2012-Rule-14.2 A for loop counter variable was found that is
modified in the body of the loop.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

59

60

Summary of checks

MISRAC2012-Rule-14.3_a The condition in an if, for, while, do-while, or
ternary operator will always be true.

MISRAC2012-Rule-14.3_b The condition in if, for, while, do-while, or
ternary operator will never be true.

MISRAC2012-Rule-14.4_a Non-Boolean termination conditions were
found in do ... while statements.

MISRAC2012-Rule-14.4_b Non-Boolean termination conditions were
found in for loops.

MISRAC2012-Rule-14.4_c Non-Boolean conditions were found in if
statements.

MISRAC2012-Rule-14.4_d Non-Boolean termination conditions were
found in while statements.

MISRAC2012-Rule-15.1 Uses of the goto statement were found.

MISRAC2012-Rule-15.2 A goto statement is declared after the
destination label.

MISRAC2012-Rule-15.3 The destination of a goto statement is a nested
code block.

MISRAC2012-Rule-15.4 One or more iteration statements are
terminated by more than one break or goto
statements.

MISRAC2012-Rule-15.5 One or more functions have multiple exit points
or an exit point that is not at the end of the
function.

MISRAC2012-Rule-15.6_a There are missing braces in do ... while
statements.

MISRAC2012-Rule-15.6_b There are missing braces in for statements.

MISRAC2012-Rule-15.6_c There are missing braces in if, else, or else
if statements.

MISRAC2012-Rule-15.6_d There are missing braces in switch
statements.

MISRAC2012-Rule-15.6_e There are missing braces in while statements.

MISRAC2012-Rule-15.7 If ... else if constructs that are not
terminated with an else clause were detected.

MISRAC2012-Rule-16.1 Detected switch statements that do not
conform to the MISRA C switch syntax.

MISRAC2012-Rule-16.2 Switch labels were found in nested blocks.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2012-Rule-16.3 Non-empty switch cases were found that are
not terminated by a break.

MISRAC2012-Rule-16.4 Switch statements without a default clause were
found.

MISRAC2012-Rule-16.5 A switch was found whose default label is
neither the first nor the last label of the switch.

MISRAC2012-Rule-16.6 Switch statements without case clauses were
found.

MISRAC2012-Rule-16.7 A switch expression was found that represents a
value that is effectively Boolean.

MISRAC2012-Rule-17.1 Inclusion of the stdarg header file was detected.

MISRAC2012-Rule-17.2_a There are functions that call themselves directly.

MISRAC2012-Rule-17.2_b There are functions that call themselves
indirectly.

MISRAC2012-Rule-17.3 Functions are used without prototyping.

MISRAC2012-Rule-17.4 For some execution paths, no return statement
is executed in a function with a non-void
return type.

MISRAC2012-Rule-17.6 There are array parameters with the static
keyword between the [].

MISRAC2012-Rule-17.7 There are unused function return values (other
than overloaded operators).

MISRAC2012-Rule-18.1_a An array access is out of bounds.

MISRAC2012-Rule-18.1_b An array access might be out of bounds,
depending on which path is executed.

MISRAC2012-Rule-18.1_c A pointer to an array is used outside the array
bounds.

MISRAC2012-Rule-18.1_d A pointer to an array is potentially used outside
the array bounds.

MISRAC2012-Rule-18.5 Declarations that contain more than two levels
of pointer indirection have been found.

MISRAC2012-Rule-18.6_a Might return address on the stack.

MISRAC2012-Rule-18.6_b A stack address is stored in a global pointer.

MISRAC2012-Rule-18.6_c A stack address is stored in the field of a global
struct.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

61

62

Summary of checks

MISRAC2012-Rule-18.6_d A stack address is stored outside a function via a
parameter.

MISRAC2012-Rule-18.7 Flexible array members are declared.

MISRAC2012-Rule-18.8 There are arrays declared with a variable length.

MISRAC2012-Rule-19.1 Assignments from one field of a union to
another were found.

MISRAC2012-Rule-19.2 Unions were found.

MISRAC2012-Rule-20.2 Illegal characters were found in the names of
header files.

MISRAC2012-Rule-20.4_c89 A macro was found defined with the same name
as a keyword.

MISRAC2012-Rule-20.4_c99 A macro was found defined with the same name
as a keyword.

MISRAC2012-Rule-20.5 Found occurrances of #undef.

MISRAC2012-Rule-20.10 # and ## operators were found in macro
definitions.

MISRAC2012-Rule-21.1 Detected a #define or #undef of a reserved
identifier in the standard library.

MISRAC2012-Rule-21.2 One or more library functions are being
overridden.

MISRAC2012-Rule-21.3 Uses of malloc, calloc, realloc, or free were
found.

MISRAC2012-Rule-21.4 Found uses of setjmp.h.

MISRAC2012-Rule-21.5 Uses of signal.h were found.

MISRAC2012-Rule-21.6 Uses of stdio.h were found.

MISRAC2012-Rule-21.7 Uses of atof, atoi, atol, and atoll were found.

MISRAC2012-Rule-21.8 Uses of abort, exit, getenv, and system were
found.

MISRAC2012-Rule-21.9 Uses of the library functions bsearch and qsort
in stdlib.h were found.

MISRAC2012-Rule-21.10 Use of the following time.h functions was found:
asctime, clock, ctime, difftime, gmtime,
localtime, mktime, strftime, and time.

MISRAC2012-Rule-21.11 Use of the standard header file tgmath.h was
found.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2012-Rule-22.1_a A memory leak due to incorrect deallocation
was detected.

MISRAC2012-Rule-22.1_b A file pointer is never closed.

MISRAC2012-Rule-22.2_a A memory location is freed more than once.

MISRAC2012-Rule-22.2_b Freeing a memory location more than once on
some paths but not others.

MISRAC2012-Rule-22.2_c A stack address might be freed.

MISRAC2012-Rule-22.4 A file opened as read-only is written to.

MISRAC2012-Rule-22.5_a A pointer to a FILE object is dereferenced.

MISRAC2012-Rule-22.5_b A file pointer was found that is implicitly
dereferenced by a library function.

MISRAC2012-Rule-22.6 A file pointer was found that is used after it has
been closed.

MISRAC++2008-0-1-1 A part of the application is never executed.

MISRAC++2008-0-1-2_a The condition in if, for, while, do-while
statement sequences and the ternary operator
is always met.

MISRAC++2008-0-1-2_b The condition in if, for, while, do-while
statement sequences and the ternary operator
will never be met.

MISRAC++2008-0-1-2_c A case statement within a switch statement is
unreachable.

MISRAC++2008-0-1-3 A variable is never read or written during
execution.

MISRAC++2008-0-1-4 A variable is assigned a value that is never used.

MISRAC++2008-0-1-6 A variable is assigned a value that is never used.

MISRAC++2008-0-1-7 There are unused function return values
(excluding overloaded operators)

MISRAC++2008-0-1-8 There are functions with no effect. A function
with no return type and no side effects
effectively does nothing.

MISRAC++2008-0-1-9 A part of the application is never executed.

MISRAC++2008-0-1-11 A function parameter is declared but not used.

MISRAC++2008-0-2-1 There are assignments from one field of a union
to another.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

63

64

Summary of checks

MISRAC++2008-0-3-2 The return value for a library function that might
return an error value is not used.

MISRAC++2008-2-3-1 Trigraphs were found in string literals.

MISRAC++2008-2-7-1 Detected /* inside comments

MISRAC++2008-2-7-2 Commented-out code has been detected. (To
allow comments to contain pseudo-code or
code samples, only comments that end in ;, {,
or } characters are considered to be
commented-out code.)

MISRAC++2008-2-7-3 Commented-out code has been detected. (To
allow comments to contain pseudo-code or
code samples, only comments that end in ';', '{',
or '}' characters are considered to be
commented-out code.)

MISRAC++2008-2-10-2_a The declaration of a local variable hides a global
declaration.

MISRAC++2008-2-10-2_b The declaration of a local variable hides a
previous local declaration.

MISRAC++2008-2-10-2_c The declaration of a variable hides a parameter
of the function.

MISRAC++2008-2-10-2_d (C++

only)

The declaration of a local variable hides a
member of the class.

MISRAC++2008-2-10-3 A typedef with this name has already been
declared.

MISRAC++2008-2-10-4 A class, struct, union, or enum declaration
clashes with a previous declaration.

MISRAC++2008-2-10-5 An identifier is used that might clash with
another static identifier.

MISRAC++2008-2-13-2 Octal integer constants are used.

MISRAC++2008-2-13-3 There are unsigned integer constants without a
U suffix.

MISRAC++2008-2-13-4_a Suffixes on floating-point constants are lower
case.

MISRAC++2008-2-13-4_b Suffixes on integer constants are lower case.

MISRAC++2008-3-1-1 Non-inline functions have been defined in
header files.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC++2008-3-1-3 One or more external arrays are declared
without their size being stated explicitly or
defined implicitly by initialization.

MISRAC++2008-3-9-2 There are uses of the basic types char, int, short,
long, double, and float without a typedef.

MISRAC++2008-3-9-3 An expression provides access to the
bit-representation of a floating-point variable.

MISRAC++2008-4-5-1 Arithmetic operators are used on boolean
operands.

MISRAC++2008-4-5-2 Unsafe operators are used on variables of
enumeration type.

MISRAC++2008-4-5-3 Arithmetic is performed on objects of type plain
char, without an explicit signed or unsigned
qualifier.

MISRAC++2008-5-0-1_a There are expressions that depend on the order
of evaluation.

MISRAC++2008-5-0-1_b There are more than one read access with
volatile-qualified type within a single sequence
point.

MISRAC++2008-5-0-1_c There are more than one modification access
with volatile-qualified type within a single
sequence point.

MISRAC++2008-5-0-2 Parentheses to avoid implicit operator
precedence are missing.

MISRAC++2008-5-0-3 One or more cvalue expressions have been
implicitly converted to a different underlying
type.

MISRAC++2008-5-0-4 One or more implicit integral conversions have
been found that change the signedness of the
underlying type.

MISRAC++2008-5-0-5 One or more implicit floating-integral
conversions were found.

MISRAC++2008-5-0-6 One or more implicit integral or floating-point
conversion were found that reduce the size of
the underlying type.

MISRAC++2008-5-0-7 One or more explicit floating-integral
conversions of a cvalue expression were found.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

65

66

Summary of checks

MISRAC++2008-5-0-8 One or more explicit integral or floating-point
conversions were found that increase the size of
the underlying type of a cvalue expression.

MISRAC++2008-5-0-9 One or more explicit integral conversions were
found that change the signedness of the
underlying type of a cvalue expression.

MISRAC++2008-5-0-10 A bitwise operation on unsigned char or
unsigned short was found, that was not
immediately cast to this type to ensure
consistent truncation.

MISRAC++2008-5-0-13_a Non-Boolean termination conditions were
found in do ... while statements.

MISRAC++2008-5-0-13_b Non-boolean termination conditions were
found in for loops.

MISRAC++2008-5-0-13_c Non-boolean conditions were found in if
statements.

MISRAC++2008-5-0-13_d Non-boolean termination conditions were
found in while statements.

MISRAC++2008-5-0-14 Non-boolean operands to the conditional (? :)
operator were found.

MISRAC++2008-5-0-15_a Pointer arithmetic that is not array indexing was
found.

MISRAC++2008-5-0-15_b Array indexing applied to objects not defined as
an array type was found.

MISRAC++2008-5-0-16_a Pointer arithmetic applied to a pointer that
references a stack address was found.

MISRAC++2008-5-0-16_b Invalid pointer arithmetic with an automatic
variable that is neither an array nor a pointer
was found.

MISRAC++2008-5-0-16_c An array access is out of bounds.

MISRAC++2008-5-0-16_d An array access might be out of bounds for
some execution paths.

MISRAC++2008-5-0-16_e A pointer to an array is used outside the array
bounds.

MISRAC++2008-5-0-16_f A pointer to an array might be used outside the
array bounds.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC++2008-5-0-19 Declarations that contain more than two levels
of pointer indirection have been found.

MISRAC++2008-5-0-21 Applications of bitwise operators to signed
operands were found.

MISRAC++2008-5-2-4 (C++ only) Old style casts (other than void casts) were
found.

MISRAC++2008-5-2-5 Casts that remove a const or volatile
qualification were found.

MISRAC++2008-5-2-6 A cast shall not convert a pointer to a function
to any other pointer type, including a pointer to
function type.

MISRAC++2008-5-2-7 A pointer to object type is cast to a pointer to a
different object type.

MISRAC++2008-5-2-9 A cast from a pointer type to an integral type
was found.

MISRAC++2008-5-2-10 The increment (++) and decrement (--)
operators are being used mixed with other
operators in an expression.

MISRAC++2008-5-2-11_a (C++

only)

Overloaded && and || operators were found.

MISRAC++2008-5-2-11_b (C++

only)

Overloaded comma operators were found.

MISRAC++2008-5-3-1 Operands of the logical operators (&&, ||, and !)
were found that are not of type bool.

MISRAC++2008-5-3-2_a Uses of unary minus on unsigned expressions
were found.

MISRAC++2008-5-3-2_b Uses of unary minus on unsigned expressions
were found.

MISRAC++2008-5-3-3 (C++ only) Occurances of overloaded & operators were
found.

MISRAC++2008-5-3-4 There are sizeof expressions that contain side
effects.

MISRAC++2008-5-8-1 Possible out-of-range shifts were found.

MISRAC++2008-5-14-1 There are right-hand operands of && or ||
operators that contain side effects.

MISRAC++2008-5-18-1 There are uses of the comma operator.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

67

68

Summary of checks

MISRAC++2008-5-19-1 A constant unsigned integer expression
overflows.

MISRAC++2008-6-2-1 One or more assignment operators are used in
sub-expressions.

MISRAC++2008-6-2-2 There are floating-point comparisons that use
the == or != operators.

MISRAC++2008-6-3-1_a There are missing braces in do ... while
statements.

MISRAC++2008-6-3-1_b There are missing braces in for statements.

MISRAC++2008-6-3-1_c There are missing braces in switch
statements.

MISRAC++2008-6-3-1_d There are missing braces in while statements.

MISRAC++2008-6-4-1 There are missing braces in if, else, or else
if statements.

MISRAC++2008-6-4-2 If ... else if constructs that are not
terminated with an else clause were detected.

MISRAC++2008-6-4-3 Detected switch statements that do not
conform to the MISRA C++ switch syntax.

MISRAC++2008-6-4-4 Switch labels were found in nested blocks.

MISRAC++2008-6-4-5 Non-empty switch cases were found that are
not terminated by a break.

MISRAC++2008-6-4-6 Switch statements without a default clause, or
with a default clause that is not the final clause,
were found.

MISRAC++2008-6-4-7 A switch expression was found that represents a
value that is effectively Boolean.

MISRAC++2008-6-4-8 One or more switch statements without a case
clause were found.

MISRAC++2008-6-5-1_a Floating-point values were found in the
controlling expression of a for statement.

MISRAC++2008-6-5-2 A loop counter was found that might not match
the loop condition test.

MISRAC++2008-6-5-3 A for loop counter variable was found that is
modified in the body of the loop.

MISRAC++2008-6-5-4 A potentially inconsistent loop counter
modification was found.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC++2008-6-5-6 A non-boolean variable was detected that is
modified in the loop and used as loop condition.

MISRAC++2008-6-6-1 The destination of a goto statement is a nested
code block.

MISRAC++2008-6-6-2 A goto statement is declared after the
destination label.

MISRAC++2008-6-6-4 One or more loops have more than one
termination point.

MISRAC++2008-6-6-5 One or more functions have multiple exit points
or an exit point that is not at the end of the
function.

MISRAC++2008-7-1-1 A local variable that is not modified after its
initialization is not const qualified.

MISRAC++2008-7-1-2 A parameter in a function that is not modified by
the function is not const qualified.

MISRAC++2008-7-2-1 There are conversions to enum type that are
out of range of the enumeration.

MISRAC++2008-7-4-3 There are inline assembler statements that are
not encapsulated in functions.

MISRAC++2008-7-5-1_a (C++

only)

A stack object is returned from a function as a
reference.

MISRAC++2008-7-5-1_b A function might return an address on the stack.

MISRAC++2008-7-5-2_a Detected a stack address stored in a global
pointer.

MISRAC++2008-7-5-2_b Detected a stack address in the field of a global
struct.

MISRAC++2008-7-5-2_c Detected a stack address stored in a parameter
of pointer or array type.

MISRAC++2008-7-5-2_d (C++

only)

Detected a stack address stored via a reference
parameter.

MISRAC++2008-7-5-4_a There are functions that call themselves directly.

MISRAC++2008-7-5-4_b There are functions that call themselves
indirectly.

MISRAC++2008-8-0-1 There are declarations that contain more than
one variable or constant each.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

69

70

Summary of checks

MISRAC++2008-8-4-1 There are functions defined using the ellipsis (...)
notation.

MISRAC++2008-8-4-3 For some execution paths, no return statements
are executed in functions with a non-void return
type.

MISRAC++2008-8-4-4 The addresses of one or more functions are
taken without an explicit &.

MISRAC++2008-8-5-1_a In all execution paths, variables are read before
they are assigned a value.

MISRAC++2008-8-5-1_b In some execution paths, variables might be read
before they are assigned a value.

MISRAC++2008-8-5-1_c One or more uninitialized or NULL pointers are
dereferenced.

MISRAC++2008-8-5-2 There are one or more non-zero array
initializations that do not exactly match the
structure of the array declaration.

MISRAC++2008-9-3-1 (C++ only) A member function qualified as const returns
a pointer member variable.

MISRAC++2008-9-3-2 (C++ only) Member functions return non-const handles to
members.

MISRAC++2008-9-5-1 Unions were found.

MISRAC++2008-9-6-2 Bitfields of plain int type were found.

MISRAC++2008-9-6-3 Bitfields of plain int type were found.

MISRAC++2008-9-6-4 Signed single-bit bitfields (excluding anonymous
fields) were found.

MISRAC++2008-12-1-1_a (C++

only)

A virtual member function is called in a class
constructor.

MISRAC++2008-12-1-1_b (C++

only)

A virtual member function is called in a class
destructor.

MISRAC++2008-12-1-3 (C++ only) Constructors that can be called with a single
argument of fundamental type are not declared
explicit.

MISRAC++2008-15-0-2 Throw of exceptions by pointer.

MISRAC++2008-15-1-2 Throw of NULL integer constant.

MISRAC++2008-15-1-3 (C++ only) Unsafe rethrow of exception.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC++2008-15-3-1 (C++ only) There are exceptions thrown without a handler
in some call paths that lead to that point.

MISRAC++2008-15-3-2 (C++ only) There are no default exception handlers for try.

MISRAC++2008-15-3-3 (C++ only) One or more exception handlers in a
constructor or destructor accesses a non-static
member variable that might not exist.

MISRAC++2008-15-3-4 (C++ only) There are calls to functions that are explicitly
declared to throw an exception type that are
not handled (or declared as thrown) by the
caller.

MISRAC++2008-15-3-5 (C++ only) Exception objects are caught by value, not by
reference.

MISRAC++2008-15-5-1 (C++ only) An exception is thrown, or might be thrown, in
a class destructor.

MISRAC++2008-16-0-3 Found occurrances of #undef.

MISRAC++2008-16-0-4 Definitions of function-like macros were found.

MISRAC++2008-16-2-2 (C++ only) Definitions of macros that are not include
guards were found.

MISRAC++2008-16-2-3 Header files without #include guards were
found.

MISRAC++2008-16-2-4 There are illegal characters in header file names.

MISRAC++2008-16-2-5 There are illegal characters in header file names.

MISRAC++2008-16-3-1 There are multiple # or ## operators in a
macro definition.

MISRAC++2008-16-3-2 # and ## operators were found in macro
definitions.

MISRAC++2008-17-0-1 Detected a #define or #undef of a reserved
identifier in the standard library.

MISRAC++2008-17-0-3 One or more library functions are being
overridden.

MISRAC++2008-17-0-5 Found uses of setjmp.h.

MISRAC++2008-18-0-1 (C++ only) C library includes were found.

MISRAC++2008-18-0-2 Uses of atof, atoi, atol and atoll were found.

MISRAC++2008-18-0-3 Uses of abort, exit, getenv, and system were
found.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

71

72

Descriptions of checks

Descriptions of checks
The following is detailed reference information about each check.

ARR-inv-index-pos

Synopsis An array access might be out of bounds, depending on which path is executed.

Enabled by default Yes

Severity/Certainty High/High

Full description An element of an array is accessed, but one or more of the executable paths means that
the element is outside the bounds of the array. This might corrupt data and/or crash the
application, and result in security vulnerabilities.

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

MISRAC++2008-18-0-4 Uses of time.h functions: asctime, clock, ctime,
difftime, gmtime, localtime, mktime, strftime,
and time were found.

MISRAC++2008-18-0-5 Uses of strcpy, strcmp, strcat, strchr, strspn,
strcspn, strpbrk, strrchr, strstr, strtok, or strlen
were found.

MISRAC++2008-18-2-1 Uses of the built-in function offsetof were found.

MISRAC++2008-18-4-1 Uses of malloc, calloc, realloc, or free were
found.

MISRAC++2008-18-7-1 Uses of signal.h were found.

MISRAC++2008-19-3-1 Uses of errno were found.

MISRAC++2008-27-0-1 Uses of stdio.h were found.

Check Synopsis

Table 6: Summary of checks
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C:2012 Rule-18.1

(Required) A pointer resulting from arithmetic on a pointer operand shall
address an element of the same array as that pointer operand

MISRA C++ 2008 5-0-16

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.

Code examples The following code example fails the check and will give a warning:

int cond;

int main(void)
{
 int a[7];
 int x;

 if (cond)
 x = 3;
 else
 x = 20;

 a[x] = 0; //x may be set to 20 in line 11
 //but a only has an interval of [0,6]
 return 0;
}

AFE1_AFE2-1:1

73

74

Descriptions of checks

The following code example passes the check and will not give a warning about this
issue:

int cond;

int main(void)
{
 int a[25];
 int x;

 if (cond)
 x = 3;
 else
 x = 20;

 a[x] = 0; //here, both possible values of
 //x are in the interval [0,24]
 return 0;
}

ARR-inv-index-ptr-pos

Synopsis A pointer to an array is potentially used outside the array bounds.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A pointer to an array is potentially used outside the array bounds. This might cause an
invalid memory access, and might be a serious security risk. The application might also
crash.

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CWE 121

Stack-based Buffer Overflow

CWE 122

Heap-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C:2012 Rule-18.1

(Required) A pointer resulting from arithmetic on a pointer operand shall
address an element of the same array as that pointer operand

MISRA C++ 2008 5-0-16

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.

Code examples The following code example fails the check and will give a warning:

void example(int b) {
 int arr[11];
 int *p = arr;
 int x = (b<10 ? 8 : 11);
 p[x];
}

The following code example passes the check and will not give a warning about this
issue:

void example(int b) {
 int arr[12];
 int *p = arr;
 int x = (b<10 ? 8 : 11);
 p[x];
}

AFE1_AFE2-1:1

75

76

Descriptions of checks

ARR-inv-index-ptr

Synopsis A pointer to an array is used outside the array bounds.

Enabled by default Yes

Severity/Certainty High/High

Full description A pointer to an array is used outside the array bounds. This will cause an invalid memory
access, and might be a serious security risk. The application might also crash.

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 122

Heap-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C:2012 Rule-18.1
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) A pointer resulting from arithmetic on a pointer operand shall
address an element of the same array as that pointer operand

MISRA C++ 2008 5-0-16

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int arr[10];
 int *p = arr;
 p[10];
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int arr[10];
 int *p = arr;
 p[9];
}

ARR-inv-index

Synopsis An array access is out of bounds.

Enabled by default Yes

Severity/Certainty High/High

Full description An element of an array is accessed when that element is outside the bounds of the array.
This might corrupt data and/or crash the application, and result in security
vulnerabilities.

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119
AFE1_AFE2-1:1

77

78

Descriptions of checks

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C:2012 Rule-18.1

(Required) A pointer resulting from arithmetic on a pointer operand shall
address an element of the same array as that pointer operand

MISRA C++ 2008 5-0-16

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

/* Goanna correctly detects that the array access,
 a[x - 10] is always within bounds, because 'x'
 is always in the range 10 <= x < 20, but a[x]
 is not. */

int ex(int x, int y)
{
 int a[10];

 if((x >= 0) && (x < 20)) {
 if(x < 10) {
 y = a[x];
 } else {
 y = a[x - 10];
 y = a[x];
 }
 }

 return y;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void)
{
 int a[4];

 a[3] = 0;

 return 0;
}

ARR-neg-index

Synopsis An array is accessed with a negative subscript value.

Enabled by default Yes

Severity/Certainty High/High
AFE1_AFE2-1:1

79

80

Descriptions of checks

Full description An array is accessed with a negative subscript value, causing an illegal memory access.
This might corrupt data and/or crash the application, and result in security
vulnerabilities.

Coding standards CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 127

Buffer Under-read

Code examples The following code example fails the check and will give a warning:

void foo(int n)
{
 int x[n];
 int i = 0;
 if (i == 0)
 i--;
 x[i] = 5; //i is -1 at this point
}

The following code example passes the check and will not give a warning about this
issue:

void foo(int n)
{
 int x[n];
 int i = 5;
 if (i == 0)
 i--;
 x[i] = 5; //OK, since i is 4
}

ARR-uninit-index

Synopsis An array is indexed with an uninitialized variable

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description An array is indexed with an uninitialized variable. The value of the variable is not
defined, which might cause an array overrun.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

int example(int b[20]) {
 int a;
 return b[a];
}

The following code example passes the check and will not give a warning about this
issue:

int example(int b[20]) {
 int a;
 a = 5;
 return b[a];
}

ATH-cmp-float

Synopsis Floating point comparisons using == or !=

Enabled by default Yes

Severity/Certainty Low/High

Full description A comparison for equality with a floating-point type uses the == or != operator. This
might have an unexpected result because the value of the float varies with the
environment and the operation. The comparison might be evaluated incorrectly,
especially if either of the floating-point numbers has been operated on arithmetically. In
that case, the application logic will be compromised.
AFE1_AFE2-1:1

81

82

Descriptions of checks

Coding standards CERT FLP06-C

Understand that floating-point arithmetic in C is inexact

CERT FLP35-CPP

Take granularity into account when comparing floating point values

MISRA C:2004 13.3

(Required) Floating-point expressions shall not be tested for equality or
inequality.

MISRA C++ 2008 6-2-2

(Required) Floating-point expressions shall not be directly or indirectly tested
for equality or inequality.

Code examples The following code example fails the check and will give a warning:

int main(void)
{
 float f = 3.0;
 int i = 3;

 if (f == i) //comparison of a float and an int
 ++i;

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void)
{
 int i = 60;
 char c = 60;

 if (i == c)
 ++i;

 return 0;
}

ATH-cmp-unsign-neg

Synopsis An unsigned value is compared to see whether it is negative.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Low/High

Full description A comparison is performed on an unsigned value, to see whether it is negative. This
comparison always returns false, and is redundant.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

int foo(unsigned int x)
{
 if (x < 0) //checking an unsigned for negativity
 return 1;
 else
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int foo(unsigned int x)
{
 if (x < 1) //OK - x might be 0
 return 1;
 else
 return 0;
}

ATH-cmp-unsign-pos

Synopsis An unsigned value is compared to see whether it is greater than or equal to 0.

Enabled by default Yes
AFE1_AFE2-1:1

83

84

Descriptions of checks

Severity/Certainty Low/High

Full description A comparison is performed on an unsigned value, to see whether it is greater than or
equal to 0. This comparison always returns true, and is redundant.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

int foo(unsigned int x)
{
 if (x >= 0) //checking an unsigned for negativity
 return 1;
 else
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int foo(unsigned int x)
{
 if (x > 0) //OK - x might be 0
 return 1;
 else
 return 0;
}

ATH-div-0-assign

Synopsis A variable is assigned the value 0, then used as a divisor.

Enabled by default Yes

Severity/Certainty High/High
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description A variable is assigned the value 0, then used as a divisor. This will cause a 'divide by
zero' runtime error.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int foo(void)
{
 int a = 20, b = 0, c;

 c = a / b; /* Divide by zero */

 return c;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

85

86

Descriptions of checks

int foo(void)
{
 int a = 20, b = 5, c;

 c = a / b; /* b is not 0 */

 return c;
}
int main() {
 int totallen = 0;
 int i=0;
 float tmp=1;

 for(i=1; i<10; i++){
 totallen++;
 }

 foo(2/totallen);

 return 0;
}

int foo(int x){
 return x;
}

ATH-div-0-cmp-aft

Synopsis After a successful comparison with 0, a variable is used as a divisor.

Enabled by default Yes

Severity/Certainty Medium/High

Full description A variable is successfully compared to 0, then used as a divisor. This will cause a 'divide
by zero' runtime error.

Coding standards CERT INT33-C
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
int foo(void)
{
 int a = 20;
 int p = rand();

 if (p == 0) /* p is 0 */
 a = 34 / p;

 return a;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
int foo(void)
{
 int a = 20;
 int p = rand();

 if (p != 0) /* p is not 0 */
 a = 34 / p;

 return a;
}

ATH-div-0-cmp-bef

Synopsis A variable used as a divisor is afterwards compared with 0.
AFE1_AFE2-1:1

87

88

Descriptions of checks

Enabled by default Yes

Severity/Certainty Low/High

Full description A variable is compared to 0 after it is used as a divisor, but before it is written to again.
This implies that the variable's value might be 0, and might have been for the preceding
statements. Because one of these statements is an operation that uses the variable as a
divisor (causing a 'divide by zero' runtime error), the execution can never reach the
comparison when the value is 0, making it redundant.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int foo(int p)
{
 int a = 20, b = 1;
 b = a / p;
 if (p == 0) // Checking the value of 'p' too late.
 return 0;
 return b;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int foo(int p)
{
 int a = 20, b;
 if (p == 0)
 return 0;
 b = a / p; /* Here 'p' is non-zero. */
 return b;
}

ATH-div-0-interval

Synopsis Interval analysis has found a value that is 0 and used as a divisor.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description Interval analysis has found a value that is 0 and used as a divisor. This might cause a
'divide by zero' runtime error.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

89

90

Descriptions of checks

int foo(void)
{
 int a = 1;
 a--;
 return 5 / a; /* a is 0 */
}

The following code example passes the check and will not give a warning about this
issue:

int foo(void)
{
 int a = 2;
 a--;
 return 5 / a; /* OK - a is 1 */
}

ATH-div-0-pos

Synopsis Interval analysis has found an expression that might be 0 and is used as a divisor.

Enabled by default Yes

Severity/Certainty High/Low

Full description Interval analysis has found an expression that contains 0 and is used as a divisor. This
might cause a 'divide by zero' runtime error.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

MISRA C:2012 Rule-1.3
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int main (void)

{

 int x = 2;

 int i;

 /* The second iteration leads to a division by zero*/

 for (i = 1; i < 3; i++) { x = x / (2 - i); }
/*@@ZDV-RED@@ */

 return x;

}

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a-2); // a-2 is 0
}

The following code example passes the check and will not give a warning about this
issue:

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a+2); // OK - a+2 is 4
}

ATH-div-0-unchk-global

Synopsis A global variable is used as a divisor without having been determined to be non-zero.
AFE1_AFE2-1:1

91

92

Descriptions of checks

Enabled by default Yes

Severity/Certainty Medium/Low

Full description A global variable is used as a divisor without having been determined to be non-zero.
This will cause a 'divide by zero' runtime error if the variable has a value of 0.

Coding standards CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int x;

int example() {
 return 5/x;
}

The following code example passes the check and will not give a warning about this
issue:

int x;

int example() {
 if (x != 0){
 return 5/x;
 }
}

ATH-div-0-unchk-local

Synopsis A local variable is used as a divisor without having been determined to be non-zero.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Low

Full description A local variable is used as a divisor without having been determined to be non-zero.
This will cause a 'divide by zero' runtime error if the variable has a value of 0.

Coding standards CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int rand();

int example() {
 int x = rand();
 return 5/x;
}

The following code example passes the check and will not give a warning about this
issue:

int rand();

int example() {
 int x = rand();
 if (x != 0){
 return 5/x;
 }
}

ATH-div-0-unchk-param

Synopsis A parameter is used as a divisor without having been determined to be non-zero.

Enabled by default Yes
AFE1_AFE2-1:1

93

94

Descriptions of checks

Severity/Certainty Medium/Low

Full description A parameter is used as a divisor without having been determined to be non-zero. This
will cause a 'divide by zero' runtime error if the parameter has a value of 0.

Coding standards CWE 369

Divide By Zero

Code examples The following code example fails the check and will give a warning:

int example(int x) {
 return 5/x;
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 if (x != 0){
 return 5/x;
 }
}

ATH-div-0

Synopsis An expression that results in 0 is used as a divisor.

Enabled by default Yes

Severity/Certainty High/High

Full description An expression that results in 0 is used as a divisor. This will cause a 'divide by zero'
runtime error.

Coding standards CERT INT33-C
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a-2); // a-2 is 0
}
#include <stdlib.h>

int main (void)

{
 int *p = malloc(sizeof(int));
 int x = foo (p);
 /* foo(2) returns 8, so we have a division by zero below)*/
 x = 1 / (x - 8); /*@@ZDV-RED@@ */

 return x;
}

int foo(int * p){
 return 8;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

95

96

Descriptions of checks

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a+2); // OK - a+2 is 4
}

ATH-inc-bool (C++ only)

Synopsis Deprecated operation on bool.

Enabled by default Yes

Severity/Certainty Medium/High

Full description An undefined increment or decrement operation is performed on a bool value. In older
versions of C++, Boolean values were modeled by a typedef to an integer type,
allowing increment and decrement operations. These types are deprecated in Standard
C++ and the operations no longer apply to the built-in C++ bool type.

Coding standards CWE 480

Use of Incorrect Operator

Code examples The following code example fails the check and will give a warning:

int main(void)
{
 bool x = true;
 ++x; //this operation is undefined for a bool
}

The following code example passes the check and will not give a warning about this
issue:

int main(void)
{
 int x = 0;
 ++x; //OK - x is an int
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

ATH-malloc-overrun

Synopsis The size of memory passed to malloc to allocate overflows.

Enabled by default Yes

Severity/Certainty High/Medium

Full description The size of memory passed to malloc to allocate is the result of an arithmetic overflow.
As a result, malloc will not allocate the expected amount of memory and accesses to this
memory might cause runtime errors.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
#include <limits.h>

void example(void) {
 int *b = malloc(sizeof(int)*ULONG_MAX*ULONG_MAX);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include <limits.h>

void example(void) {
 int *b = malloc(sizeof(int)*5);
}

ATH-neg-check-nonneg

Synopsis A variable is checked for a non-negative value after being used, instead of before.

Enabled by default Yes
AFE1_AFE2-1:1

97

98

Descriptions of checks

Severity/Certainty Low/High

Full description A function parameter or index is used in a context that implicitly asserts that it is not
negative, but it is not determined to be non-negative until after it is used. If the value
actually is negative when the variable is used, data might be corrupted, the application
might crash, or a security vulnerability might be exposed.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
int foo(int p)
{
 int *x = malloc(p); // p was an argument to malloc(),
 // so it is not negative

 if (p < 0)
 return 0;

 return p;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>
int foo(int p)
{
 int *x;

 if (p < 0)
 return 0;

 x = malloc(p); // OK - p is non-negative

 return p;
}
#include <stdlib.h>
int foo(int p)
{
 int *x;

 if (p < 1)
 p= 1;

 x = malloc(p); // OK - p is non-negative

 return p;
}

ATH-neg-check-pos

Synopsis A variable is checked for a positive value after being used, instead of before.

Enabled by default Yes

Severity/Certainty Low/High

Full description A function parameter or index is used in a context that implicitly asserts that it is
positive, but it is not compared to 0 until after it is used. If the value actually is negative
or 0 when the variable is used, data might be corrupted, the application might crash, or
a security vulnerability might be exposed.

Coding standards This check does not correspond to any coding standard rules.
AFE1_AFE2-1:1

99

100

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
int foo(int p)
{
 int *x = malloc(p);

 // p was an argument to malloc(), so not negative

 if (p <= 0)
 return 0;

 return p;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
int foo(int p)
{
 int *x;

 if (p < 0)
 return 0;

 x = malloc(p); // OK - p is non-negative

 return p;
}

ATH-new-overrun (C++ only)

Synopsis An arithmetic overflow is caused by an allocation using new[].

Enabled by default Yes

Severity/Certainty High/Medium

Full description The new a[n] operator performs the operation sizeof(a) * n. This might cause an
overflow, leading to an unexpected amount of memory being allocated. Dereferencing
this memory might lead to a runtime error.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <new>
#include <climits>

void example(void) {
#ifdef __LP64__
 unsigned long b = (ULONG_MAX / 4) + 1;
#else
 unsigned int b = (UINT_MAX / 4) + 1;
#endif
 int *a = new int[b];
}

The following code example passes the check and will not give a warning about this
issue:

#include <new>

void example(void) {
 int *a = new int[10];
}

ATH-overflow-cast

Synopsis An expression is cast to a different type, resulting in an overflow or underflow of its
value.

Enabled by default No

Severity/Certainty Medium/High

Full description An expression is cast to a different type, resulting in an overflow or underflow of its
value. This might be unintended and can cause logic errors. Because unexpected
behavior is much more likely than an application crash, such errors can be very hard to
find.
AFE1_AFE2-1:1

101

102

Descriptions of checks

Coding standards CERT INT31-C

Ensure that integer conversions do not result in lost or misinterpreted data

CWE 194

Unexpected Sign Extension

CWE 195

Signed to Unsigned Conversion Error

CWE 196

Unsigned to Signed Conversion Error

CWE 197

Numeric Truncation Error

CWE 680

Integer Overflow to Buffer Overflow

Code examples The following code example fails the check and will give a warning:

typedef int I;
typedef I J;

void f(){
 J x = 375;
 char c = (char)x; //overflows to 120
}

The following code example passes the check and will not give a warning about this
issue:

void f(){
 int x = 35;
 char c = (char)x;
}

ATH-overflow

Synopsis An expression is implicitly converted to a narrower type, resulting in an overflow or
underflow of its value.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/High

Full description An expression is implicitly converted to a narrower type, resulting in an overflow or
underflow of its value. This might be unintended and can cause logic errors. Because
unexpected behavior is much more likely than an application crash, such errors can be
very hard to find.

Coding standards CERT INT31-C

Ensure that integer conversions do not result in lost or misinterpreted data

CWE 194

Unexpected Sign Extension

CWE 195

Signed to Unsigned Conversion Error

CWE 196

Unsigned to Signed Conversion Error

CWE 197

Numeric Truncation Error

CWE 680

Integer Overflow to Buffer Overflow

Code examples The following code example fails the check and will give a warning:

typedef int I;
typedef I J;

void f(){
 J x = 375;
 char c = x; //overflows to 120
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

103

104

Descriptions of checks

void f(){
 int x = 35;
 char c = x;
}

ATH-shift-bounds

Synopsis Out of range shifts were found.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description The right-hand operand of a shift operator might be negative or too large. A shift
operator on an n-bit argument should only shift between 0 and n-1 bits. The behavior
here is undefined; the code might work as intended, or data could become erroneous.

Coding standards CERT INT34-C

Do not shift a negative number of bits or more bits than exist in the operand

CWE 682

Incorrect Calculation

MISRA C:2004 12.8

(Required) The right-hand operand of a shift operator shall lie between zero and
one less than the width in bits of the underlying type of the left-hand operand.

MISRA C:2012 Rule-12.2

(Required) The right hand operand of a shift operator shall lie in the range zero
to one less than the width in bits of the essential type of the left hand operand

MISRA C++ 2008 5-8-1

(Required) The right hand operand of a shift operator shall lie between zero and
one less than the width in bits of the underlying type of the left hand operand.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

unsigned int foo(unsigned long long x, unsigned int y)
{
 int shift = 65; // too big
 return 3ULL << shift;
}
unsigned int foo(unsigned int x, unsigned int y)
{
 int shift = 33; // too big
 return 3U << shift;
}

The following code example passes the check and will not give a warning about this
issue:

unsigned int foo(unsigned int x)
{
 int y = 1; // OK - this is within the correct range
 return x << y;
}
unsigned int foo(unsigned long long x)
{
 int y = 63; // ok
 return x << y;
}

ATH-shift-neg

Synopsis The left-hand side of a right shift operation might be a negative value.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description The left-hand side of a right shift operation might be a negative value. Because
performing a right shift operation on a negative number is implementation-defined, this
operation might have unexpected results.

Coding standards CWE 682

Incorrect Calculation

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

105

106

Descriptions of checks

int example(int x) {
 return -10 >> x;
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 return 10 >> x;
}

ATH-sizeof-by-sizeof

Synopsis Multiplying sizeof by sizeof.

Enabled by default Yes

Severity/Certainty Medium/High

Full description sizeof is multiplied by sizeof. This is probably a programming mistake and might
have been intended to be sizeof / sizeof. This code will not cause any errors, but
the product of two sizeof results is not a useful value, and might indicate a
misunderstanding of the intended behavior of the code.

Coding standards CWE 480

Use of Incorrect Operator

Code examples The following code example fails the check and will give a warning:

void foo(void)
{
 int x = sizeof(int) * sizeof(char); //sizeof * sizeof
}

The following code example passes the check and will not give a warning about this
issue:

void foo(void)
{
 int x = sizeof(int) * 7; //OK
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CAST-old-style (C++ only)

Synopsis Old style casts (other than void casts) are used

Enabled by default No

Severity/Certainty Medium/Medium

Full description Old style casts (other than void casts) are used. These casts override type information
about the variables or pointers being cast, which might cause portability problems. A
particular cast might for example not be valid on a system, but the compiler will perform
the cast anyway. The new style casts static_cast, const_cast, and reinterpret_cast should
be used instead because they make clear the intention of the cast. Moreover, the new
style casts can easily be searched for in source code files, unlike old style casts.

Coding standards CERT EXP05-CPP

Do not use C-style casts

MISRA C++ 2008 5-2-4

(Required) C-style casts (other than void casts) and functional notation casts
(other than explicit constructor calls) shall not be used.

Code examples The following code example fails the check and will give a warning:

int example(float b)
{
 return (int)b;
}

The following code example passes the check and will not give a warning about this
issue:

int example(float b)
{
 return static_cast<int>(b);
}

CATCH-object-slicing (C++ only)

Synopsis Exception objects are caught by value
AFE1_AFE2-1:1

107

108

Descriptions of checks

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description Class type exception objects are caught by value, leading to slicing. That is, if the
exception object is of a derived class and is caught as the base, only the base class’s
functions (including virtual functions) can be called. Moreover, any additional member
data in the derived class cannot be accessed. If the exception is instead caught by
reference, slicing does not occur.

Coding standards CERT ERR09-CPP

Throw anonymous temporaries and catch by reference

MISRA C++ 2008 15-3-5

(Required) A class type exception shall always be caught by reference.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

typedefcharchar_t;

// base class for exceptions
class ExpBase {
public:
 virtual const char_t *who () { return "base"; }
};

class ExpD1: public ExpBase {
public:
 virtual const char_t *who () { return "type 1 exception"; }
};

class ExpD2: public ExpBase {
public:
 virtual const char_t *who () { return "type 2 exception"; }
};

void example()
{
 try {
 // ...
 throw ExpD1 ();
 // ...
 throw ExpBase ();
 }
 catch (ExpBase b) { // Non-compliant - derived type objects
will be
 // caught as the base type
 b.who(); // Will always be "base"
 throw b; // The exception re-thrown is of the
base class,
 // not the original exception type
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

109

110

Descriptions of checks

typedefcharchar_t;

// base class for exceptions
class ExpBase {
public:
 virtual const char_t *who () { return "base"; }
};

class ExpD1: public ExpBase {
public:
 virtual const char_t *who () { return "type 1 exception"; }
};

class ExpD2: public ExpBase {
public:
 virtual const char_t *who () { return "type 2 exception"; }
};

void example()
{
 try {
 // ...
 throw ExpD1 ();
 // ...
 throw ExpBase ();
 }
 catch (ExpBase &b) { // Compliant – exceptions caught by
reference
 // ...
 b.who(); // "base", "type 1 exception" or "type 2
exception"
 // depending upon the type of the thrown object
 }
}

CATCH-xtor-bad-member (C++ only)

Synopsis Exception handler in constructor or destructor accesses non-static member variable that
might not exist.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Low

Full description The exception handler in a constructor or destructor accesses a non-static member
function. Such members might or might not exist at this point in
construction/destruction and accessing them might result in undefined behavior.

Coding standards MISRA C++ 2008 15-3-3

(Required) Handlers of a function-try-block implementation of a class
constructor or destructor shall not reference non-static members from this class
or its bases.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

111

112

Descriptions of checks

int throws();

class C
{
public:
 int x;
 static char c;
 C ()
 {
 x = 0;
 }

 ~C ()
 {
 try
 {
 throws();
 // Action that may raise an exception
 }
 catch (...)
 {
 if (0 == x) // Non-compliant – x may not exist at this
point
 {
 // Action dependent on value of x
 }
 }
 }
};

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

class C
{
public:
 int x;
 static char c;
 C ()
 {
 try
 {
 // Action that may raise an exception
 }
 catch (...)
 {
 if (0 == c)
 {
 // Action dependent on value of c
 }
 }
 }

 ~C ()
 {
 try
 {
 // Action that may raise an exception
 }
 catch (int i) {}
 catch (...)
 {
 if (0 == c)
 {
 // Action dependent on value of c
 }
 }
 }
};

COMMA-overload (C++ only)

Synopsis Overloaded comma operator

Enabled by default No
AFE1_AFE2-1:1

113

114

Descriptions of checks

Severity/Certainty Low/Low

Full description There are overloaded versions of the comma and logical conjunction operators. These
have the semantics of function calls whose sequence point and ordering semantics are
different from those of the built-in versions. Because it might not be clear at the point of
use that these operators are overloaded, developers might be unaware which semantics
apply.

Coding standards MISRA C++ 2008 5-2-11

(Required) The comma operator, && operator and the || operator shall not be
overloaded.

Code examples The following code example fails the check and will give a warning:

class C{
 bool x;
 bool operator,(bool other);
};

bool C::operator,(bool other){
 return x;
}

The following code example passes the check and will not give a warning about this
issue:

class C{
 int x;
 int operator+(int other);
};

int C::operator+(int other){
 return x + other;
}

COMMENT-nested

Synopsis Appearances of /* inside comments

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/High

Full description Appearances of /* inside comments. C does not support nesting of comments. This can
cause confusion when some code does not execute as expected. For example: /* A
comment, end comment marker accidentally omitted <<New Page>> initialize(X); /*
this comment is not compliant */ In this case, X will not be initialized because the code
is hidden in a comment.

Coding standards MISRA C:2004 2.3

(Required) The character sequence /* shall not be used within a comment.

MISRA C++ 2008 2-7-1

(Required) The character sequence /* shall not be used within a C-style
comment.

Code examples The following code example fails the check and will give a warning:

void example(void) {
/* This comment starts here
/* Nested comment starts here
*/

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
/* This comment starts here */
/* Nested comment starts here
*/

}

CONST-local

Synopsis A local variable that is not modified after initialization is not declared const.

Enabled by default No
AFE1_AFE2-1:1

115

116

Descriptions of checks

Severity/Certainty Low/Medium

Full description A local variable that is not modified after initialization is not declared const. Declaring
it const makes it more clear that it will not be changed and makes the compiler warn if
the application tries to write to the variable.

Coding standards MISRA C++ 2008 7-1-1

(Required) A variable which is not modified shall be const qualified.

Code examples The following code example fails the check and will give a warning:

int example(void){
 int x = 7;
 return x;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void){
 int x = 7;
 ++x;
 return x;
}

CONST-member-ret (C++ only)

Synopsis A member function qualified as const returns a pointer member variable.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A member function qualified as const returns a pointer member variable. This might
violate the semantics of the function's const qualification, as the data at that address
might be overwritten, or the memory itself might be freed. This will not be identified
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

by a compiler, because the pointer being returned is a copy even though the memory to
which it refers is vulnerable.

Coding standards MISRA C++ 2008 9-3-1

(Required) const member functions shall not return non-const pointers or
references to class-data.

Code examples The following code example fails the check and will give a warning:

class C{
 int* foo() const {
 return p;
 }
 int* p;
};

The following code example passes the check and will not give a warning about this
issue:

class C{
 int* foo() {
 return p;
 }
 int* p;
};

CONST-param

Synopsis A function does not modify one of its parameters.

Enabled by default No

Severity/Certainty Low/Medium

Full description A function does not modify one of its parameters. A parameter that is either a pointer or
a reference should be const-qualified if it is not modified by the function. That way
callers will be able to provide a const object as an argument, making the function more
inclusive. It will also cause a compile-time error if a non-const object is mistakenly
used as an argument.

Coding standards MISRA C:2004 16.7
AFE1_AFE2-1:1

117

118

Descriptions of checks

(Required) A pointer parameter in a function prototype should be declared as
pointer to const if the pointer is not used to modify the addressed object.

MISRA C++ 2008 7-1-2

(Required) A pointer or reference parameter in a function shall be declared as
pointer to const or reference to const if the corresponding object is not modified.

Code examples The following code example fails the check and will give a warning:

int example(int* x) { //x should be const
 if (*x > 5){
 return *x;
 } else {
 return 5;
 }
}

The following code example passes the check and will not give a warning about this
issue:

int example(const int* x) { //OK
 if (*x > 5){
 return *x;
 } else {
 return 5;
 }
}

COP-alloc-ctor (C++ only)

Synopsis A class member is deallocated in the class' destructor, but not allocated in a constructor
or assignment operator.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A class member is deallocated in the class' destructor but is not allocated in a constructor
or assignment operator (operator=). Even if this is intentional (and the class' pointer
attributes are allocated elsewhere) it is still dangerous, because it subverts the Resource
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Acquisition is Initialization convention, and consequently users of the class might
accidentally misuse it.

Coding standards CWE 401

Improper Release of Memory Before Removing Last Reference ('Memory
Leak')

Code examples The following code example fails the check and will give a warning:

class MyClass{
 int *p;

public:
 MyClass(){} //p is not allocated in
 //this constructor
 ~MyClass(){
 delete p;
 }
};

The following code example passes the check and will not give a warning about this
issue:

class MyClass{
 int *p;

 public:
 MyClass(){
 p = new int(0); //OK - p is allocated
 }

 ~MyClass(){
 delete p;
 }
};

COP-assign-op-ret (C++ only)

Synopsis An assignment operator of a C++ class does not return a non-const reference to this.

Enabled by default Yes
AFE1_AFE2-1:1

119

120

Descriptions of checks

Severity/Certainty Low/High

Full description An assignment operator of a C++ class is incorrectly defined. Probably it does not return
a non-const reference to the left-hand side of the assignment. This can cause
unexpected behavior in situations where the assignment is chained with others, or the
return value is used as a left-hand side argument to a subsequent assignment. A
non-const reference as the return type should be used because it is the convention; it
will not achieve any added code safety, and it makes the assignment operator more
restrictive.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

class MyClass{
 int x;
public:
 MyClass &operator=(MyClass &rhs){
 x = rhs.x;
 return rhs; // should return *this
 }
};

The following code example passes the check and will not give a warning about this
issue:

class MyClass{
 int x;
public:
 MyClass &operator=(const MyClass &rhs) {
 x = rhs.x;
 return *this; // a properly defined operator=
 }
};

COP-assign-op-self (C++ only)

Synopsis Assignment operator does not check for self-assignment before allocating member
functions
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Medium/High

Full description An assignment operator does not check for self-assignment before allocating member
functions. If self-assignment occurs in a user-defined object which uses dynamic
memory allocation, references to allocated memory will be lost if they are reassigned.
This will most likely cause a memory leak, as well as unexpected results, because the
objects referred to by any pointers are lost.

Coding standards CERT MEM42-CPP

Ensure that copy assignment operators do not damage an object that is copied to
itself

Code examples The following code example fails the check and will give a warning:

class MyClass{
 int* p;
 MyClass& operator=(const MyClass& rhs){
 p = new int(*(rhs.p)); //reference to the old
 //memory is lost
 return *this;
 }
};

The following code example passes the check and will not give a warning about this
issue:

class MyClass{
 int* p;
 MyClass& operator=(const MyClass& rhs){
 if (&rhs != this) //the pointer is not reallocated
 //if the object is assigned to itself
 p = new int(*(rhs.p));
 return *this;
 }
};
AFE1_AFE2-1:1

121

122

Descriptions of checks

COP-assign-op (C++ only)

Synopsis There is no assignment operator defined for a class whose destructor deallocates
memory.

Enabled by default Yes

Severity/Certainty Medium/High

Full description There is no assignment operator defined for a class whose destructor deallocates
memory, so the compiler's synthesized assignment operator will be created and used if
needed. This will only perform shallow copies of any pointer values, meaning that
multiple instances of a class might inadvertently contain pointers to the same memory.
Although a synthesized assignment operator might be adequate and appropriate for
classes whose members include only (non-pointer) built-in types, in a class that
dynamically allocates memory it could easily lead to unexpected behavior or attempts
to access freed memory. In that case, if a copy is made and one of the two is destroyed,
any deallocated pointers in the other will become invalid. This check should only be
selected if all of a class' copy control functions are defined in the same file.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

class MyClass{
 int* p;
public:
 ~MyClass(){
 delete p; //this class has no assignment operator
 }
};

int main(){
 MyClass *original = new MyClass;
 MyClass copy;
 copy = *original; //copy's p == original's p
 delete original; //p is deallocated; copy now has an invalid
pointer
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

class MyClass{
 int* p;

 ~MyClass(){
 delete p; //OK - the assignment operator will
 //not be synthesized
 }

 MyClass& operator=(const MyClass& rhs){
 if (this != &rhs)
 p = new int;
 return *this;
 }
};

COP-copy-ctor (C++ only)

Synopsis A class which uses dynamic memory allocation does not have a user-defined copy
constructor.

Enabled by default Yes

Severity/Certainty Medium/High

Full description A class which uses dynamic memory allocation does not have a user-defined copy
constructor, so the compiler's synthesized copy constructor will be created and used if
needed. This will only perform shallow copies of any pointer values, meaning that
multiple instances of a class might inadvertently contain pointers to the same memory.
Although a synthesized copy constructor might be adequate and appropriate for classes
whose members include only (non-pointer) built-in types, in a class that dynamically
allocates memory, it might easily lead to unexpected behavior or attempts to access freed
memory. In that case, if a copy is made and one of the two is destroyed, any deallocated
pointers in the other will become invalid. This check should only be selected if all of a
class' copy control functions are defined in the same file.

Coding standards This check does not correspond to any coding standard rules.
AFE1_AFE2-1:1

123

124

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

class MyClass{
 int *p;
 public:
 MyClass(){ //not a copy constructor
 p = new int; //one will be synthesized
 }

 ~MyClass(){
 delete p;
 }
};

int main(){
 MyClass *original = new MyClass;
 MyClass copy(*original); //copy's p == original's p
 delete original; //p is deallocated; copy now has an invalid
pointer
}

The following code example passes the check and will not give a warning about this
issue:

class MyClass{
 int *p;
 public:

 MyClass(MyClass& rhs){
 p = new int;
 *p = *(rhs.p);
 }

 ~MyClass(){
 delete p;
 }
};

COP-dealloc-dtor (C++ only)

Synopsis A class member has memory allocated in a constructor or an assignment operator, that
is not released in the destructor.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty High/Medium

Full description A class member has memory allocated to it in a constructor or assignment operator, that
is not released in the class' destructor. This will most likely cause a memory leak when
objects of this class are created and destroyed. Even if this is intentional (and the
memory is released elsewhere) it is still dangerous, because it subverts the Resource
Acquisition is Initialization convention, and consequently users of the class might not
release the memory at all.

Coding standards CWE 401

Improper Release of Memory Before Removing Last Reference ('Memory
Leak')

Code examples The following code example fails the check and will give a warning:

class MyClass{
 int *p;

public:
 MyClass() {
 p = 0;
 }

 MyClass(int i) {
 p = new int[i];
 }

 ~MyClass() {} //p not deleted here
};

int main(void){
 MyClass *cp = new MyClass(5);
 delete cp;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

125

126

Descriptions of checks

class MyClass{
 int *p;

public:
 MyClass(){
 p = 0;
 }

 MyClass(int i){
 p = new int[i];
 }

 ~MyClass(){
 if(p)
 delete[] p; //OK - p is deleted here
 }
};

int main(void){
 MyClass *cp = new MyClass(5);
 delete cp;
}

COP-dtor-throw (C++ only)

Synopsis An exception is thrown, or might be thrown, in a class destructor.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description An exception is thrown, or might be thrown, in a class destructor. When the destructor
is called, stack unwinding takes place. If an exception is thrown at this time, the
application will crash.

Coding standards CERT ERR33-CPP

Destructors must not throw exceptions

MISRA C++ 2008 15-5-1

(Required) A class destructor shall not exit with an exception.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

class E{};

class C {
 ~C() {
 if (!p){
 throw E(); //may throw an exception here
 }
 }
 int* p;
};
class E{};

void do_something();

class C {
 ~C() throw (E) { //may throw an exception
 if (!p){
 do_something();
 }
 }
 int* p;
};

The following code example passes the check and will not give a warning about this
issue:

void do_something();

class C {
 ~C() { //OK
 if (!p){
 do_something();
 }
 }
 int* p;
};

COP-dtor (C++ only)

Synopsis A class which dynamically allocates memory in its copy control functions does not have
a destructor.

Enabled by default Yes
AFE1_AFE2-1:1

127

128

Descriptions of checks

Severity/Certainty High/Medium

Full description A class which dynamically allocates memory in its copy control functions does not have
a destructor. This will most likely result in a memory leak. If memory is dynamically
allocated in the constructors or assignment operators, there must be a matching
destructor to free it. If a destructor is not defined, the compiler will synthesize one,
which will destroy any pointers but will not release their contents back to the heap. Even
if this is intentional (and the memory is released elsewhere) it is still dangerous, because
it subverts the Resource Acquisition is Initialization convention, and consequently users
of the class might not release the memory at all. This check should only be used if all
of a class' copy control functions are defined in the same file.

Coding standards CWE 401

Improper Release of Memory Before Removing Last Reference ('Memory
Leak')

Code examples The following code example fails the check and will give a warning:

class MyClass{
 int* p;

public:
 MyClass(){
 p = new int;
 }
};

The following code example passes the check and will not give a warning about this
issue:

class MyClass{
 int* p;

 public:
 MyClass(){
 p = new int;
 }

 ~MyClass(){
 delete p;
 }
};
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

COP-init-order (C++ only)

Synopsis Data members are initialized with other data members that are in the same initialization
list.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description Data members are initialized with other data members that are in the same initialization
list. This can cause confusion, and might produce incorrect output, because data
members are initialized in order of their declaration and not in the order of the
initialization list.

Coding standards CERT OOP37-CPP

Constructor initializers should be ordered correctly

CWE 456

Missing Initialization

Code examples The following code example fails the check and will give a warning:

class C{
 int x;
 int y;
 C():
 x(5),
 y(x) //Initializing using another member
 {}
};

The following code example passes the check and will not give a warning about this
issue:

class C{
 int x;
 int y;
 C():
 x(5),
 y(5) //OK
 {}
};
AFE1_AFE2-1:1

129

130

Descriptions of checks

COP-init-uninit (C++ only)

Synopsis An initializer list reads the values of still uninitialized members.

Enabled by default Yes

Severity/Certainty High/High

Full description The expressions used to initialize a class member contain other class members, that have
not yet been initialized themselves. The order in which they are initialized depends on
the order of their declarations in the class definition and not on the order in which the
members appear in the list, which might feel counter-intuitive. This might cause some
of the object's attributes to have incorrect values, leading to logic errors or an application
crash if the class handles dynamic memory.

Coding standards CWE 456

Missing Initialization

Code examples The following code example fails the check and will give a warning:

class C{
 int y;
 int x;
 C():
 x(5),
 y(x) //x has not been initialized yet,
 //as y was defined first (line 2)
 {}
};

The following code example passes the check and will not give a warning about this
issue:

class C{
 int x;
 int y;
 C():
 x(5),
 y(x) //OK - x has been initialized
 {}
};
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

COP-member-uninit (C++ only)

Synopsis A member of a class is not initialized in one of the class constructors.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A member of a class is not initialized in one of the class constructors. This might cause
unexpected or unpredictable program behavior, and can be very difficult to identify as
the cause. Because members of built-in types are not given a default initialization,
constructors must initialize all members of a class. Even if this is intentional (and the
attribute is initialized elsewhere) it is still dangerous, because it subverts the Resource
Acquisition is Initialization convention, and consequently users of the class might not
initialize the attribute. Uninitialized data can lead to incorrect program flow, and might
cause the application to crash if the class handles dynamic memory.

Coding standards CWE 456

Missing Initialization

Code examples The following code example fails the check and will give a warning:

struct S{
 int x;
 S() {} //this constructor should initialize x
};

The following code example passes the check and will not give a warning about this
issue:

struct S{
 int x;

 S(){
 x = 1; //OK - x is initialized
 }
};
struct S{
 int x;
 S() : x(1) {} //OK - x is initialized
};
AFE1_AFE2-1:1

131

132

Descriptions of checks

CPU-ctor-call-virt (C++ only)

Synopsis A virtual member function is called in a class constructor.

Enabled by default Yes

Severity/Certainty Medium/High

Full description When an instance is constructed, the virtual member function of its base class is called,
rather than the function of the actual class being constructed. This might result in the
incorrect function being called, and consequently incorrect data or uninitialized
elements.

Coding standards CERT OOP30-CPP

Do not invoke virtual functions from constructors or destructors

MISRA C++ 2008 12-1-1

(Required) An object's dynamic type shall not be used from the body of its
constructor or destructor.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <iostream>
#ifndef __embedded_cplusplus
 using namespace std;
#endif

class A {
public:
 A() { f(); } //virtual member function is called
 virtual void f() const { cout << "A::f\n"; }
};

class B: public A {
public:
 virtual void f() const { cout << "B::f\n"; }
};

int main(void) {
 B *b = new B();
 delete b;
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

#include <iostream>
#ifndef __embedded_cplusplus
 using namespace std;
#endif

class A {
public:
 A() { } //OK - contructor does not call any virtual
 //member functions
 virtual void f() const { cout << "A::f\n"; }
};

class B: public A {
public:
 virtual void f() const { cout << "B::f\n"; }
};

int main(void) {
 B *b = new B();
 delete b;
 return 0;
}

AFE1_AFE2-1:1

133

134

Descriptions of checks

CPU-ctor-implicit (C++ only)

Synopsis Constructors that are callable with a single argument of fundamental type are not
declared explicit.

Enabled by default No

Severity/Certainty Low/Medium

Full description Constructors that are callable with a single argument of fundamental type are not
declared explicit. This means that nothing prevents the constructor from being used
to implicitly convert from a fundamental type to the class type.

Coding standards CERT OOP32-CPP

Ensure that single-argument constructors are marked "explicit"

MISRA C++ 2008 12-1-3

(Required) All constructors that are callable with a single argument of
fundamental type shall be declared explicit.

Code examples The following code example fails the check and will give a warning:

class C{
 C(double x){} //should be explicit
};

The following code example passes the check and will not give a warning about this
issue:

class C{
 explicit C(double x){} //OK
};

CPU-delete-throw (C++ only)

Synopsis An exception is thrown, or might be thrown, in an overloaded delete or delete[]
operator.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description An exception is thrown, or might be thrown, in an overloaded delete or delete[]
operator. Because memory is often deallocated in a destructor, an exception that is
thrown in a delete or delete[] operator is likely to be thrown during stack
unwinding, which will cause the application to crash.

Coding standards CERT ERR38-CPP

Deallocation functions must not throw exceptions

Code examples The following code example fails the check and will give a warning:

class E{};

class C {
 void operator delete[](void* p) {
 if (!p){
 throw E(); //may throw an exception here
 }
 }
 int* p;
};
class E{};

void do_something();

class C {
 void operator delete[](void* p) throw (E) { //may throw an
exception
 if (!p){
 do_something();
 }
 }
 int* p;
};

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

135

136

Descriptions of checks

void do_something();

class C {
 void operator delete[](void* p) { //OK
 if (!p){
 do_something();
 }
 }
 int* p;
};

CPU-delete-void (C++ only)

Synopsis A pointer to void is used in delete, causing the destructor not to be called.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A pointer to void is used in delete. When delete is called on a void pointer in C++,
the object is deallocated from memory but its destructor is not called.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

void example(void *a) {
 delete a;
}

The following code example passes the check and will not give a warning about this
issue:

void example(int *a) {
 delete a;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CPU-dtor-call-virt (C++ only)

Synopsis A virtual member function is called in a class destructor.

Enabled by default Yes

Severity/Certainty Medium/High

Full description When an instance is destroyed, the virtual member function of its base class is called,
rather than the function of the actual class being destroyed. This might result in the
incorrect function being called, and consequently dynamic memory might not be
properly deallocated, or some other unwanted behavior might occur.

Coding standards CERT OOP30-CPP

Do not invoke virtual functions from constructors or destructors

MISRA C++ 2008 12-1-1

(Required) An object's dynamic type shall not be used from the body of its
constructor or destructor.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

137

138

Descriptions of checks

#include <iostream>
#ifndef __embedded_cplusplus
 using namespace std;
#endif

class A {
public:
 ~A() { f(); } //virtual member function is called
 virtual void f() const { cout << "A::f\n"; }
};

class B: public A {
public:
 virtual void f() const { cout << "B::f\n"; }
};

int main(void) {
 B *b = new B();
 delete b;
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

#include <iostream>
#ifndef __embedded_cplusplus
 using namespace std;
#endif

class A {
public:
 ~A() { } //OK - contructor does not call any virtual
 //member functions
 virtual void f() const { cout << "A::f\n"; }
};

class B: public A {
public:
 virtual void f() const { cout << "B::f\n"; }
};

int main(void) {
 B *b = new B();
 delete b;
 return 0;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CPU-malloc-class (C++ only)

Synopsis An allocation of a class instance with malloc() does not call a constructor.

Enabled by default Yes

Severity/Certainty Low/High

Full description When allocating memory for a class instance with malloc(), no class constructor is
called. Using malloc() creates an uninitialized object. To initialize the object at
allocation, use the new operator

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

class Foo {
 public:
 void setA(int val){
 a=val;
 }
 private:

int a;
};

void main(){

 Foo *fooArray;

 //malloc of class Foo
 fooArray = static_cast<Foo*>(malloc(5 * sizeof(Foo)));

 fooArray->setA(4);

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

139

140

Descriptions of checks

#include <stdlib.h>

void main(){

int *fooArray;
fooArray = static_cast<int*>(malloc(5 * sizeof(int)));
*fooArray = 4;

}

CPU-nonvirt-dtor (C++ only)

Synopsis A public non-virtual destructor is defined in a class with virtual methods.

Enabled by default Yes

Severity/Certainty Medium/High

Full description A public non-virtual destructor is defined in a class with virtual methods. Calling
delete on a pointer to any class derived from this one might call the wrong destructor.
If any class might be a base class (by having virtual methods), then its destructor should
be either be virtual or protected so that callers cannot destroy derived objects via
pointers to the base.

Coding standards CERT OOP34-CPP

Ensure the proper destructor is called for polymorphic objects

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <iostream>
#ifndef __embedded_cplusplus
 using namespace std;
#endif

class Base
{
public:
 Base() { cout<<"Constructor: Base"<<endl;}
 virtual void f(void) {}
 //non-virtual destructor:
 ~Base() { cout<<"Destructor : Base"<<endl;}
};

class Derived: public Base
{
public:
 Derived() { cout<<"Constructor: Derived"<<endl;}
 void f(void) { cout <<"Calling f()"; }
 virtual ~Derived() { cout<<"Destructor : Derived"<<endl;}
 };

int main(void)
{
 Base *Var = new Derived();
 delete Var;
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

141

142

Descriptions of checks

#include <iostream>
#ifndef __embedded_cplusplus
 using namespace std;
#endif

class Base
{
public:
 Base() { cout<<"Constructor: Base"<<endl;}
 virtual void f(void) {}
 virtual ~Base() { cout<<"Destructor : Base"<<endl;}
};

class Derived: public Base
{
public:
 Derived() { cout<<"Constructor: Derived"<<endl;}
 void f(void) { cout <<"Calling f()"; }
 ~Derived() { cout<<"Destructor : Derived"<<endl;}
 };

int main(void)
{
 Base *Var = new Derived();
 delete Var;
 return 0;
}

CPU-return-ref-to-class-data (C++ only)

Synopsis Member functions return non-const handles to members.

Enabled by default Yes

Severity/Certainty Medium/High

Full description Member functions return non-const handles to members. Implement class interfaces
with member functions to retain more control over how the object state can be modified
and to make it easier to maintain a class without affecting clients. Returning a handle to
class-data allows clients to modify the state of the object without using any interfaces.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards CERT OOP35-CPP

Do not return references to private data

MISRA C++ 2008 9-3-2

(Required) Member functions shall not return non-const handles to class-data.

Code examples The following code example fails the check and will give a warning:

class C{
 int x;
 public:
 int& foo();
 int* bar();
};

int& C::foo() {
 return x; //returns a non-const reference to x
}

int* C::bar() {
 return &x; //returns a non-const pointer to x
}

The following code example passes the check and will not give a warning about this
issue:

class C{
 int x;
 public:
 const int& foo();
 const int* bar();
};

const int& C::foo() {
 return x; //OK - returns a const reference
}

const int* C::bar() {
 return &x; //OK - returns a const pointer
}

DECL-implicit-int

Synopsis An object or function of the type int is declared or defined, but its type is not explicitly
stated.
AFE1_AFE2-1:1

143

144

Descriptions of checks

Enabled by default No

Severity/Certainty Medium/High

Full description An object or function of the type int is declared or defined, but its type is not explicitly
stated. The type of an object or function must be explicitly stated.

Coding standards CERT DCL31-C

Declare identifiers before using them

MISRA C:2004 8.2

(Required) Whenever an object or function is declared or defined, its type shall
be explicitly stated.

MISRA C:2012 Rule-8.1

(Required) Types shall be explicitly specified

Code examples The following code example fails the check and will give a warning:

void func(void)
{
 static y;
}

The following code example passes the check and will not give a warning about this
issue:

void func(void)
{
 int x;
}

DEFINE-hash-multiple

Synopsis Multiple # or ## operators in a macro definition.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Low

Full description The order of evaluation associated with both the # and ## preprocessor operators is
unspecified. Avoid this problem by having only one occurrence of either operator in any
single macro definition (i.e. one #, or one ##, or neither).

Coding standards MISRA C:2004 19.12

(Required) There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

MISRA C++ 2008 16-3-1

(Required) There shall be at most one occurrence of the # or ## operators in a
single macro definition.

Code examples The following code example fails the check and will give a warning:

#defineD(x, y, z, yz)x ## y ## z/* Non-compliant */
#define C(x, y)# x ## y/* Non-compliant */

The following code example passes the check and will not give a warning about this
issue:

#define A(x)#x/* Compliant */
#defineB(x, y)x ## y/* Compliant */

ENUM-bounds

Synopsis Conversions to enum that are out of range of the enumeration.

Enabled by default No

Severity/Certainty Medium/Medium

Full description There are conversions to enum that are out of range of the enumeration.

Coding standards MISRA C++ 2008 7-2-1
AFE1_AFE2-1:1

145

146

Descriptions of checks

(Required) An expression with enum underlying type shall only have values
corresponding to the enumerators of the enumeration.

Code examples The following code example fails the check and will give a warning:

enum ens { ONE, TWO, THREE };

void example(void)
{
 ens one = (ens)10;
}
enum ens { ONE, TWO, THREE };

int func()
{
 return 10;
}

void example(void)
{
 ens one = (ens)func();
}

The following code example passes the check and will not give a warning about this
issue:

enum ens { ONE, TWO, THREE };

int func()
{
 return 1;
}

void example(void)
{
 ens one = (ens)func();
}
enum ens { ONE, TWO, THREE };

void example(void)
{
 ens one = ONE;
 ens two = TWO;
 two = one;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

EXP-cond-assign

Synopsis An assignment might be mistakenly used as the condition for an if, for, while, or do
statement.

Enabled by default Yes

Severity/Certainty Low/High

Full description An assignment might be mistakenly used as the condition for an if, for, while, or do
statement. This condition will either always or never hold, depending on the value of the
second operand. This was most likely intended to be a comparison, not an assignment.
This might cause incorrect program flow, and possibly an infinite loop.

Coding standards CERT EXP18-C

Do not perform assignments in selection statements

CERT EXP19-CPP

Do not perform assignments in conditional expressions

CWE 481

Assigning instead of Comparing

MISRA C:2012 Rule-13.4

(Advisory) The result of an assignment operator should not be used

Code examples The following code example fails the check and will give a warning:

int example(void) {
 int x = 2;
 if (x = 3)
 return 1;
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

147

148

Descriptions of checks

int example(void) {
 int x = 2;
 if (x == 3)
 return 1;
 return 0;
}

EXP-dangling-else

Synopsis An else branch might be connected to an unexpected if statement.

Enabled by default Yes

Severity/Certainty Medium/High

Full description An else branch might be connected to an unexpected if statement. An else branch is
always connected with the closest possible if statement, but this might not always be
the intention of the programmer. By explicitly putting braces around if statements
where there might be ambiguity, you make the code more readable and your intentions
clearer.

Coding standards CWE 483

Incorrect Block Delimitation

Code examples The following code example fails the check and will give a warning:

void foo(int x, int y){
 if (x < y)
 if (x == 1)
 ++y;
 else
 ++x;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void foo(int x, int y){
 if (x < y){
 if (x == 1)
 ++y;
 }
 else
 ++x;
}

EXP-loop-exit

Synopsis An unconditional break, continue, return, or goto within a loop.

Enabled by default Yes

Severity/Certainty Low/High

Full description There is an unconditional break, goto, continue or return in a loop. This means
that some iterations of the loop will never be executed. This is most likely not the
intended behavior.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int x = 1;
 int i;

 for (i = 0; i < 10; i++) {
 x = x + 1;
 break; /* Unexpected loop exit */
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

149

150

Descriptions of checks

void example(int a) {
 int x = 1;
 int i;

 for (i = 0; i < 10; i++) {
 x = x + 1;
 if (x > a) {
 break; /* loop exit is conditional */
 }
 }
}

EXP-main-ret-int

Synopsis The return type of main() is not int.

Enabled by default No

Severity/Certainty Low/High

Full description The return type of the main function is not int. The main function is expected to return
an integer, so that the caller of the application can determine whether the application
executed successfully or failed.

Coding standards MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

void main() { }; //main does not return an int

The following code example passes the check and will not give a warning about this
issue:

int main() {return 1;} //OK - main returns an int
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

EXP-null-stmt

Synopsis The body of an if, while, or for statement is a null statement.

Enabled by default No

Severity/Certainty Low/High

Full description The body of an if, while, or for statement is a null statement. This might be
intentional (a placeholder), but because a null statement as the body is difficult to find
when debugging or reviewing code, it is good practice to use an empty block to identify
a stub body. Note that if the condition expression of a for loop has possible side-effects,
or if an if statement has a null body but carries an else clause, this check will not give
a warning.

Coding standards CERT EXP15-C

Do not place a semicolon on the same line as an if, for, or while statement

CWE 483

Incorrect Block Delimitation

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int i;
 for (i=0; i!=10; ++i); //Null statement as the
 //body of this for loop
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int i;
 for (i=0; i!=10; ++i){ //An empty block is much
 } //more readable
}

EXP-stray-semicolon

Synopsis Stray semicolons on the same line as other code
AFE1_AFE2-1:1

151

152

Descriptions of checks

Enabled by default No

Severity/Certainty Low/Low

Full description There are stray semicolons on the same line as other code. Before preprocessing, a null
statement should only be on a line by itself; it can be followed by a comment only if the
first character following the null statement is a whitespace character.

Coding standards CERT EXP15-C

Do not place a semicolon on the same line as an if, for, or while statement

MISRA C:2004 14.3

(Required) Before preprocessing, a null statement shall only occur on a line by
itself; it may be followed by a comment, provided that the first character
following the null statement is a whitespace character.

MISRA C++ 2008 6-2-3

(Required) Before preprocessing, a null statement shall only occur on a line by
itself; it may be followed by a comment, provided that the first character
following the null statement is a white-space character.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int i;
 for (i=0; i!=10; ++i); //Null statement as the
 //body of this for loop
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int i;
 for (i=0; i!=10; ++i){ //An empty block is much
 } //more readable
}

EXPR-const-overflow

Synopsis A constant unsigned integer expression overflows.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A constant unsigned integer expression overflows.

Coding standards MISRA C:2004 12.11

(Advisory) Evaluation of constant unsigned integer expressions should not lead
to wrap-around.

MISRA C++ 2008 5-19-1

(Advisory) Evaluation of constant unsigned integer expressions should not lead
to wrap-around.

Code examples The following code example fails the check and will give a warning:

void example(void) {
(0xFFFFFFFF + 1u);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
0x7FFFFFFF + 0;

}

FPT-cmp-null

Synopsis The address of a function is compared with NULL.

Enabled by default Yes

Severity/Certainty Low/High
AFE1_AFE2-1:1

153

154

Descriptions of checks

Full description The address of a function is compared with NULL. This is incorrect, because the address
of a function is never NULL. If the intention was to call the function, but the parentheses
were accidentally omitted, the application might behave unexpectedly because the
address of the function is checked, not the return value. This means that the condition
always holds, and any of the function's side-effects will not occur. If this was
intentional, it is an unnecessary comparison, because a function address will never be
NULL. If the function is declared but not defined, its address might fail to link if the
function is called.

Coding standards CWE 480

Use of Incorrect Operator

Code examples The following code example fails the check and will give a warning:

int foo() {
 return 1;
}

int main(void) {
 if (foo == 0) { /* foo, not foo() */
 return 1;
 }

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int foo() {
 return 0;
}

int main(void) {
 if (foo() == 0) { /* foo() returns an int */
 return 1;
 }

 return 0;
}

FPT-literal

Synopsis A function pointer that refers to a literal address is dereferenced.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default No

Severity/Certainty High/Medium

Full description A function pointer that refers to a literal address is dereferenced. A literal address is
always invalid as a function pointer, and dereferencing it is an illegal memory access that
might cause the application to crash.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

typedef void (*fn)(int);

void baz(int x){
 ++x;
}

void example(void) {
 fn bar = NULL;

 /* ... */

 bar(1); //ERROR
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

155

156

Descriptions of checks

#include <stdlib.h>

typedef void (*fn)(int);

void baz(int x){
 ++x;
}

void example(void) {
 fn bar = NULL;

 /* ... */

 bar = baz;
 bar(1);
}

FPT-misuse

Synopsis A function pointer is used in an invalid context.

Enabled by default Yes

Severity/Certainty Low/High

Full description A function pointer is used in an invalid context. It is an error to use a function pointer to
do anything other than calling the function being pointed to, comparing the function
pointer to another pointer using != or ==, passing the function pointer to a function,
returning the function pointer from a function, or storing the function pointer in a data
structure. Misusing a function pointer might result in erroneous behavior, and in junk
data being interpreted as instructions and being executed as such.

Coding standards CERT EXP16-C

Do not compare function pointers to constant values

CWE 480

Use of Incorrect Operator

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

/* declare a function */
int foo(int x, int y){
 return x+y;
}

#pragma diag_suppress=Pa153

int foo2(int x, int y) {

 if (foo)
 return (foo)(x,y);

 if (foo < foo2)
 return (foo)(x,y);
return 0;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

157

158

Descriptions of checks

typedef int (*fptr)(int,int);

int f_add(int x, int y){
 return x+y;

}

int f_sub(int x, int y){
 return x-y;
}

int foo(int opcode, int x, int y){

 fptr farray[2];
 farray[0] = f_add;
 farray[1] = f_sub;

 return (farray[opcode])(x,y);

}

int foo2(fptr f1, fptr f2){

 if (f1 == f2)
 return 1;
 else
 return 0;

}

FUNC-implicit-decl

Synopsis Functions are used without prototyping.

Enabled by default No

Severity/Certainty Medium/High

Full description Functions are used without prototyping. Functions must be prototyped before use.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards CERT DCL31-C

Declare identifiers before using them

MISRA C:2004 8.1

(Required) Functions shall have prototype declarations and the prototype shall
be visible at both the function definition and call.

MISRA C:2012 Rule-17.3

(Mandatory) A function shall not be declared implicitly

Code examples The following code example fails the check and will give a warning:

void func2(void)
{
 func();
}

The following code example passes the check and will not give a warning about this
issue:

void func(void);
void func2(void)
{
 func();
}

FUNC-unprototyped-all

Synopsis Functions are declared with an empty () parameter list that does not form a valid
prototype.

Enabled by default No

Severity/Certainty Medium/High

Full description Functions are declared with an empty () parameter list that does not form a valid
prototype. Functions must be prototyped before use.

Coding standards CERT DCL20-C

Always specify void even if a function accepts no arguments
AFE1_AFE2-1:1

159

160

Descriptions of checks

MISRA C:2004 16.5

(Required) Functions with no parameters shall be declared and defined with the
parameter list void.

MISRA C:2012 Rule-8.2

(Required) Function types shall be in prototype form with named parameters

Code examples The following code example fails the check and will give a warning:

void func();/* not a valid prototype in C */
void func2(void)
{
 func();
}

The following code example passes the check and will not give a warning about this
issue:

void func(void);
void func2(void)
{
 func();
}

FUNC-unprototyped-used

Synopsis Arguments are passed to functions without a valid prototype.

Enabled by default Yes

Severity/Certainty Low/Low

Full description Arguments are passed to functions without a valid prototype. This is permitted in C89,
but it is unsafe because it bypasses all type checking.

Coding standards CERT DCL20-C

Always specify void even if a function accepts no arguments

CERT DCL31-C

Declare identifiers before using them
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

void func();/* not a valid prototype in C */
void func2(void)
{
 func(77);
 func(77.0);
}

The following code example passes the check and will not give a warning about this
issue:

void func(void);
void func2(void)
{
 func();
}

INCLUDE-c-file

Synopsis A .c file includes one or more .c files.

Enabled by default No

Severity/Certainty Low/Low

Full description A C file includes one or more C files. C files shall not include other C files.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include "header.c"
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
void example(void) {}
AFE1_AFE2-1:1

161

162

Descriptions of checks

INT-use-signed-as-unsigned-pos

Synopsis A negative signed integer is implicitly cast to an unsigned integer.

Enabled by default No

Severity/Certainty Medium/Medium

Full description A negative signed integer is implicitly cast to an unsigned integer. The result of this cast
will be a large integer, and using this value might result in unexpected behavior.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

void example(int c) {
 int a = 5;
 if (c) {
 a=-10;
 }
 unsigned int b = a;
}

The following code example passes the check and will not give a warning about this
issue:

void example(int c) {
 int a = 10;
 if (c) {
 a=5;
 }
 unsigned int b = a;
}

INT-use-signed-as-unsigned

Synopsis A negative signed integer is implicitly cast to an unsigned integer.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description A negative signed integer is implicitly cast to an unsigned integer. The result of this cast
will be a large integer, and using this value might result in unexpected behavior.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int a = -10;
 unsigned int b = a;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int a = 10;
 unsigned int b = a;
}

ITR-end-cmp-aft (C++ only)

Synopsis An iterator is used, then compared with end()

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description An iterator is used, then compared with end(). Using an iterator requires that it does
not point to the end of a container. Subsequently comparing it with end() or rend()
means that it might have been invalid at the point of dereference.

Coding standards CERT ARR35-CPP
AFE1_AFE2-1:1

163

164

Descriptions of checks

Do not allow loops to iterate beyond the end of an array or container

Code examples The following code example fails the check and will give a warning:

#include <vector>
#include "iar.h"

int example(STD vector<int>& vec,
 STD vector<int>::iterator iter) {

 *iter = 4; //line 9 asserts that iter may be
 //at the end of vec

 if (iter != vec.end()) {
 return 0;
 }
 return 1;
}

The following code example passes the check and will not give a warning about this
issue:

#include <vector>
#include "iar.h"

int example(STD vector<int>& vec,
 STD vector<int>::iterator iter) {

 if (iter != vec.end()) {
 *iter = 4;
 }

 if (iter != vec.end()) {
 return 0;
 }
 return 1;
}

ITR-end-cmp-bef (C++ only)

Synopsis An iterator is compared with end() or rend(), then dereferenced.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty High/Medium

Full description An iterator is compared with end() or rend(), then dereferenced. Although it is
defined behavior for iterators to have a value of end() or rend(), dereferencing them
at these values is undefined, and will most likely result in illegal memory access,
creating a security vulnerability in the code. This error can occur if the programmer
accidentally uses the wrong comparison operator, for example == instead of !=, or if the
then- and else-clauses of an if statement have accidentally changed places.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <vector>
#include "iar.h"

int foo(){
 STD vector<int> a(5,6);
 STD vector<int>::iterator i;
 for (i = a.begin(); i != a.end(); ++i){
 ;
 }
 *i; //here, i == a.end()
}

The following code example passes the check and will not give a warning about this
issue:

#include <vector>
#include "iar.h"

int foo(){
 STD vector<int> a(5,6);
 STD vector<int>::iterator i;
 *i;
 for (i = a.begin(); i != a.end(); ++i){
 *i; //OK - i will never be a.end()
 }
}

AFE1_AFE2-1:1

165

166

Descriptions of checks

ITR-invalidated (C++ only)

Synopsis An iterator assigned to point into a container is used or dereferenced even though it
might be invalidated.

Enabled by default Yes

Severity/Certainty High/Medium

Full description An iterator is assigned to point into a container, but later modifications to that container
might have invalidated the iterator. The iterator is then used or dereferenced, which
might be undefined behavior. Like pointers, iterators must point to a valid memory
address to be used. When a container is modified by member functions such as insert
or erase, some iterators might become invalidated and therefore risky to use. Any
function that can remove elements, and some functions that add elements, might
invalidate iterators. Iterators should be reassigned into a container after modifications
are made and before they are used again, to ensure that they all point to a valid part of
the container.

Coding standards CERT ARR32-CPP

Do not use iterators invalidated by container modification

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 672

Operation on a Resource after Expiration or Release

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <vector>
#include "iar.h"

void example(){
 STD vector<int> a(5,6);
 STD vector<int>::iterator i;

 i = a.begin();
 while (i != a.end()){
 a.erase(i);
 ++i;
 }
}

The following code example passes the check and will not give a warning about this
issue:

#include <vector>
#include "iar.h"

void example(){
 STD vector<int> a(5,6);
 STD vector<int>::iterator i;

 i = a.begin();
 while (i != a.end()){
 i = a.erase(a.begin());
 }
}

ITR-mismatch-alg (C++ only)

Synopsis A pair of iterators passed to an STL algorithm function point to different containers.

Enabled by default Yes

Severity/Certainty High/Low

Full description A pair of iterators passed to an STL algorithm function point to different containers.
This can cause the application to access invalid memory, which might lead to a crash or
a security vulnerability.
AFE1_AFE2-1:1

167

168

Descriptions of checks

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <vector>
#include <algorithm>
#include "iar.h"

void example(void) {

 #ifndef __embedded_cplusplus
 using namespace std;
 #endif

 vector<int> v, w;
 for (int i=0; i!= 10; ++i){
 v.push_back(random() % 100);
 w.push_back(random() % 100);
 }

 sort(v.begin(), w.end()); //v and w are different containers
}
#include <vector>
#include <algorithm>
#include "iar.h"

#define SIZE 10

void example(void) {
 int a[SIZE], b[SIZE];
 for (int i=0; i!= SIZE; ++i){
 a[i] = random() % 100;
 b[i] = random() % 100;
 }

 STD sort(a, b+SIZE); //a and b are different arrays
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <vector>
#include <algorithm>
#include "iar.h"

void example(void) {
 STD vector<int> v;
 for (int i=0; i!= 10; ++i){
 v.push_back(random() % 100);
 }

 STD sort(v.begin(), v.end()); //OK
}

ITR-store (C++ only)

Synopsis A container's begin() or end() iterator is stored and subsequently used.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A container's begin() or end() iterator is stored and subsequently used. If the
container is modified, these iterators will become invalidated. This could result in illegal
memory access or a crash. Calling begin() and end() as these iterators are needed in
loops and comparisons will ensure that only valid iterators are used.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

169

170

Descriptions of checks

#include <vector>
#include "iar.h"

void increment_all(STD vector<int>& v) {
 STD vector<int>::iterator b = v.begin();
 STD vector<int>::iterator e = v.end();
 //Storing these iterators is dangerous and unnecessary

 for (STD vector<int>::iterator i = b; i != e; ++i){
 ++(*i);
 }
}

The following code example passes the check and will not give a warning about this
issue:

#include <vector>
#include "iar.h"

void increment_all(STD vector<int>& v) {
 for (STD vector<int>::iterator i = v.begin();
 i != v.end(); ++i){
 ++(*i); //OK
 }
}

ITR-uninit (C++ only)

Synopsis An iterator is dereferenced or incremented before it is assigned to point into a container.

Enabled by default Yes

Severity/Certainty High/Medium

Full description An iterator is dereferenced or incremented before it is assigned to point into a container.
This will result in undefined behavior if the path that uses the uninitialized interator is
executed, possibly causing illegal memory access or a crash.

Coding standards CERT EXP33-C

Do not reference uninitialized memory
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CWE 457

Use of Uninitialized Variable

Code examples The following code example fails the check and will give a warning:

#include <map>
#include "iar.h"

void example(STD map<int, int>& m, bool maybe) {
 STD map<int, int>::iterator i;

 *i; //i is uninitialized
}

The following code example passes the check and will not give a warning about this
issue:

#include <map>
#include "iar.h"

void example(STD map<int, int>& m) {
 STD map<int, int>::iterator i;

 i=m.begin(); //i is initialized
 *i;
}

LIB-bsearch-overrun-pos

Synopsis Arguments passed to bsearch might cause it to overrun.

Enabled by default No

Severity/Certainty High/Medium

Full description A buffer overrun might be caused by a call to bsearch. This is because a buffer length
being passed is greater than that of the buffer passed to either function as their first
argument

Coding standards This check does not correspond to any coding standard rules.
AFE1_AFE2-1:1

171

172

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
#include <stdio.h>

int cmp(const void *a, const void *b) {
 return a == b;
}

void example(void) {
 int *a = malloc(sizeof(int) * 10);
 int *b = malloc(sizeof(int));
 bsearch(b, a, 20, sizeof(int), &cmp);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include <stdio.h>

int cmp(const void *a, const void *b) {
 return a == b;
}

void example(void) {
 int *a = malloc(sizeof(int) * 10);
 int *b = malloc(sizeof(int));
 bsearch(b, a, 10, sizeof(int), &cmp);
}

LIB-bsearch-overrun

Synopsis Arguments passed to bsearch cause it to overrun.

Enabled by default No

Severity/Certainty High/Medium

Full description A buffer overrun is caused by a call to bsearch. This is because a buffer length being
passed is greater than that of the buffer passed to either function as their first argument.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
#include <stdio.h>

int cmp(const void *a, const void *b) {
 return a == b;
}

void example(void) {
 int *a = malloc(sizeof(int) * 10);
 int *b = malloc(sizeof(int));
 bsearch(b, a, 20, sizeof(int), &cmp);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include <stdio.h>

int cmp(const void *a, const void *b) {
 return a == b;
}

void example(void) {
 int *a = malloc(sizeof(int) * 10);
 int *b = malloc(sizeof(int));
 bsearch(b, a, 10, sizeof(int), &cmp);
}

LIB-buf-size

Synopsis A call to a string function has a size argument larger than the size of the target buffer.

Enabled by default No

Severity/Certainty High/Medium
AFE1_AFE2-1:1

173

174

Descriptions of checks

Full description A call to a string function has a size argument larger than the size of the target buffer.
This might indicate a buffer overflow or an illegal memory access, and might cause
unexpected behavior or a crash. The target buffer must be able to store the number of
elements as indicated by the size argument to the function. That is, the size argument
must not be larger than the size of the destination buffer.

Coding standards CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 122

Heap-based Buffer Overflow

Code examples There are no code examples for this check.

LIB-fn-unsafe

Synopsis A potentially unsafe library function is used.

Enabled by default No

Severity/Certainty Medium/Medium

Full description A potentially unsafe library function is used, for which there is a safer alternative. This
library function might create vulnerabilities like possible buffer overflow, because it
does not check the size of a string before copying it into memory. The problem is that
strcpy() and gets() functions are used. strncpy() should be used instead of
strcpy(), and fgets() instead of gets(), because they include an additional
argument in which the input's maximum allowed length is specified.

Coding standards CWE 242

Use of Inherently Dangerous Function
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CWE 252

Unchecked Return Value

CWE 394

Unexpected Status Code or Return Value

CWE 477

Use of Obsolete Functions

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

void example(char* buf1) {
 scanf("%s", buf1);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

void example(char* buf1, char* buf2) {
 strncpy(buf1, buf2, 5);
}

LIB-fread-overrun-pos

Synopsis A call to fread might cause a buffer overrun.

Enabled by default No

Severity/Certainty Medium/Medium

Full description A call to fread might cause an overrun due to invalid arguments. fread takes an array
as its first argument, the size of elements in the array as the second argument, and the
number of elements in that array as the third. If (size * count) is greater than the
allocated size of the array, an overrun will occur.

Coding standards This check does not correspond to any coding standard rules.
AFE1_AFE2-1:1

175

176

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>
#include <stdlib.h>

void example(int b) {
 int *a = malloc(sizeof(int) * 10);
 int c;
 if (b) {
 c = 5;
 } else {
 c = 11;
 }
 fread(a, sizeof(int), c, NULL);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>
#include <stdlib.h>

void example(int b) {
 int *a = malloc(sizeof(int) * 10);
 int c;
 if (b) {
 c = 10;
 } else {
 c = 5;
 }
 fread(a, sizeof(int), c, NULL);
}

LIB-fread-overrun

Synopsis A call to fread causes a buffer overrun.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description A call to fread causes an overrun due to invalid arguments. fread takes an array as its
first argument, the size of elements in the array as the second argument, and the number
of elements in that array as the third. If (size * count) is greater than the allocated
size of the array, an overrun will occur.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>
#include <stdlib.h>

void example(void) {
 int *a = malloc(sizeof(int) * 10);
 fread(a, sizeof(int), 11, NULL);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>
#include <stdlib.h>

void example(void) {
 int *a = malloc(sizeof(int) * 10);
 fread(a, sizeof(int), 10, NULL);
}

LIB-memchr-overrun-pos

Synopsis A call to memchr might cause a buffer overrun.

Enabled by default No

Severity/Certainty High/Medium

Full description A call to memchr might cause a buffer overrun. If memchr is called with a size greater
than the size of the allocated buffer, it will overrun and might cause a runtime error.

Coding standards This check does not correspond to any coding standard rules.
AFE1_AFE2-1:1

177

178

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(int b) {
 char *a = malloc(sizeof(char) * 20);
 int c;
 if (b) {
 c = 21;
 } else {
 c = 5;
 }
 memchr(a, 'a', c);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
 char *a = malloc(sizeof(char) * 20);
 memchr(a, 'a', 10);
}

LIB-memchr-overrun

Synopsis A call to memchr causes a buffer overrun.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A call to memchr causes a buffer overrun. If memchr is called with a size greater than
the size of the allocated buffer, it will overrun and might cause a runtime error.

Coding standards This check does not correspond to any coding standard rules.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 char *a = malloc(sizeof(char) * 20);
 memchr(a, 'a', 21);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
 char *a = malloc(sizeof(char) * 20);
 memchr(a, 'a', 10);
}

LIB-memcpy-overrun-pos

Synopsis A call to memcpy might cause the memory to overrun.

Enabled by default No

Severity/Certainty High/Medium

Full description A call to memcpy might cause the memory to overrun at either the destination or the
source address.

Coding standards CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 122

Heap-based Buffer Overflow
AFE1_AFE2-1:1

179

180

Descriptions of checks

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 805

Buffer Access with Incorrect Length Value

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void func(int b)
{
 int *p1;
 int *p2;
 if (b) {
 p1 = malloc(20);
 p2 = malloc(10);
 } else {
 p2 = malloc(20);
 p1 = malloc(10);
 }
 memcpy(p1, p2, 4);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void func()
{
 int size = 10;
 int arr[size];
 int *ptr = malloc(size * sizeof(int));
 memcpy(ptr, arr, size);
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

LIB-memcpy-overrun

Synopsis A call to memcpy or memmove causes the memory to overrun.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A call to memcpy or memmove causes the memory to overrun at either the destination or
the source address.

Coding standards CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 122

Heap-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 805

Buffer Access with Incorrect Length Value

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

181

182

Descriptions of checks

#include <stdlib.h>

void func()
{
 int size = 10;
 int arr1[10];
 int arr2[11];
 memcpy(arr2, arr1, size + 1);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void func()
{
 int size = 10;
 int arr[size];
 int *ptr = malloc(size * sizeof(int));
 memcpy(ptr, arr, size);
}

LIB-memset-overrun-pos

Synopsis A call to memset might cause a buffer overrun.

Enabled by default No

Severity/Certainty High/Medium

Full description A call to memset might cause a buffer overrun. If memset is called with a size greater
than the size of the allocated buffer, it will overrun and might cause a runtime error.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

void example(int b) {
 char *a = malloc(sizeof(char) * 20);
 int c;
 if (b) {
 c = 21;
 } else {
 c = 5;
 }
 memset(a, 'a', c);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(int b) {
 char *a = malloc(sizeof(char) * 20);
 int c;
 if (b) {
 c = 20;
 } else {
 c = 5;
 }
 memset(a, 'a', c);
}

LIB-memset-overrun

Synopsis A call to memset causes a buffer overrun.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A call to memset causes a buffer overrun. If memset is called with a size greater than
the size of the allocated buffer, it will overrun and might cause a runtime error.

Coding standards This check does not correspond to any coding standard rules.
AFE1_AFE2-1:1

183

184

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 char *a = malloc(sizeof(char) * 20);
 memset(a, 'a', 21);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
 char *a = malloc(sizeof(char) * 20);
 memset(a, 'a', 10);
}

LIB-putenv

Synopsis putenv used to set environment variable values.

Enabled by default No

Severity/Certainty Medium/Medium

Full description The POSIX function putenv() is used to set environment variable values. The putenv()
function does not create a copy of the string supplied to it as an argument; instead it
inserts a pointer to the string into the environment array. If a pointer to a buffer of
automatic storage duration is supplied as an argument to putenv(), the memory allocated
for that buffer might be overwritten when the containing function returns and stack
memory is recycled.

Coding standards CERT POS34-C

Do not call putenv() with a pointer to an automatic variable as the argument

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

int func(const char *var) {
 char env[1024];
 int retval = snprintf(env, sizeof(env),"TEST=%s", var);
 if (retval < 0 || (size_t)retval >= sizeof(env)) {
 /* Handle error */
 }

 return putenv(env);/* BUG: automatic storage is added to the
global environment */
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int func(const char *var) {
 return setenv("TEST", var, 1);
}

LIB-qsort-overrun-pos

Synopsis Arguments passed to qsort might cause it to overrun.

Enabled by default No

Severity/Certainty High/Medium

Full description A buffer overrun might be caused by a call to qsort. This is because a buffer length
being passed is greater than that of the buffer passed to either function as their first
argument.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

185

186

Descriptions of checks

#include <stdlib.h>
#include <stdio.h>

int cmp(const void *a, const void *b) {
 return a == b;
}

void example(int b) {
 int *a = malloc(sizeof(int) * 10);
 int c;
 if (b) {
 c = 3;
 } else {
 c = 20;
 }
 qsort(a, c, sizeof(int), &cmp);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include <stdio.h>

int cmp(const void *a, const void *b) {
 return a == b;
}

void example(int b) {
 int *a = malloc(sizeof(int) * 10);
 int c;
 if (b) {
 c = 3;
 } else {
 c = 2;
 }
 qsort(a, c, sizeof(int), &cmp);
}

LIB-qsort-overrun

Synopsis Arguments passed to qsort cause it to overrun.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty High/Medium

Full description A buffer overrun is caused by a call to qsort. This is because a buffer length being
passed is greater than that of the buffer passed to either function as their first argument.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
#include <stdio.h>

int cmp(const void *a, const void *b) {
 return a == b;
}

void example(void) {
 int *a = malloc(sizeof(int) * 10);
 qsort(a, 11, sizeof(int), &cmp);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include <stdio.h>

int cmp(const void *a, const void *b) {
 return a == b;
}

void example(void) {
 int *a = malloc(sizeof(int) * 10);
 qsort(a, 3, sizeof(int), &cmp);
}

LIB-return-const

Synopsis The return value of a const standard library function is not used.

Enabled by default Yes
AFE1_AFE2-1:1

187

188

Descriptions of checks

Severity/Certainty Low/Medium

Full description The return value of a const standard library function is not used. Because this function
is defined as const, the call itself has no side effects; the only yield is the return value.
If this return value is not used, the function call is redundant. These functions are
inspected: memchr(), strchr(), strpbrk(), strrchr(), strstr(), strtok(),
gmtime(), getenv(), and bsearch(). Discarding the return values of these functions
is harmless but might indicate a misunderstanding of the application logic or purpose.

Coding standards CERT EXP12-C

Do not ignore values returned by functions

CWE 252

Unchecked Return Value

CWE 394

Unexpected Status Code or Return Value

Code examples The following code example fails the check and will give a warning:

#include <string.h>

void example(void) {
 strchr("Hello", 'h'); // No effect
}

The following code example passes the check and will not give a warning about this
issue:

#include <string.h>

void example(void) {
 char* c = strchr("Hello", 'h'); //OK
}

LIB-return-error

Synopsis The return value for a library function that might return an error value is not used.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description The return value for a library function that might return an error value is not used.
Because this function might fail, the programmer should inspect the return value to find
any error values, to avoid a crash or unexpected behavior. These functions are isnpected:
malloc(), calloc(), realloc(), and mktime().

Coding standards CWE 252

Unchecked Return Value

CWE 394

Unexpected Status Code or Return Value

MISRA C:2004 16.10

(Required) If a function returns error information, then that error information
shall be tested.

MISRA C++ 2008 0-3-2

(Required) If a function generates error information, then that error information
shall be tested.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 malloc(sizeof(int)); // This function could fail,
 // and the return value is
 // not checked
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
 int *x = malloc(sizeof(int)); // OK - return value
 // is stored
}

AFE1_AFE2-1:1

189

190

Descriptions of checks

LIB-return-leak

Synopsis The return values from one or more library functions were not stored, returned, or
passed as a parameter.

Enabled by default Yes

Severity/Certainty High/High

Full description The return values from one or more library functions were not stored, returned, or
passed as a parameter. If any of these functions return a pointer to newly allocated
memory, and the return value is discarded, the memory is inaccessible and thus leaked.
These functions are inspected: malloc(), calloc(), and realloc().

Coding standards CERT MEM31-C

Free dynamically allocated memory exactly once

CWE 252

Unchecked Return Value

CWE 394

Unexpected Status Code or Return Value

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 malloc(1); //the return value of malloc is not
 // stored
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
 int* x = malloc(1); // OK - the return value of
 // malloc is being stored in x
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

LIB-return-neg

Synopsis A variable assigned using a library function that can return -1 as an error value is
subsequently used where the value must be non-negative.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A variable assigned using a library function which can return -1 as an error value is
subsequently used as a subscript or a size, both of which require the value to be
non-negative. This might cause a crash or unpredictable behavior. These functions are
inspected: ftell(), clock(), time(), mktime(), fprintf(), printf(),
sprintf(), vfprintf(), vprintf(), vsprintf(), mblen(), mbstowcs(),
mbstowc(), wcstombs(), and wctomb().

Coding standards CERT FIO04-C

Detect and handle input and output errors

CWE 252

Unchecked Return Value

CWE 394

Unexpected Status Code or Return Value

Code examples The following code example fails the check and will give a warning:

#include <time.h>
#include <stdlib.h>

void example(void) {
 time_t time = clock();
 int *block = malloc(time); // time is used in a
 // situation requiring it to be non-
 // negative, but clock() may return -1
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

191

192

Descriptions of checks

#include <time.h>
#include <stdlib.h>

void example(void) {
 time_t time = clock();
 if (time>0){
 int *block = malloc(time); // OK - time is checked
 }
}

LIB-return-null

Synopsis A pointer is assigned using a library function that can return NULL as an error value. This
pointer is subsequently dereferenced without checking its value.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A pointer is assigned using a library function that can return NULL as an error value. This
pointer is subsequently dereferenced without checking its value, which might lead to a
NULL dereference. Not inspecting the return value of any function returning a pointer
before dereferencing it, might cause a crash. These functions are inspected: malloc(),
calloc(), realloc(), memchr(), strchr(), strpbrk(), strrchr(), strstr(),
strtok(), gmtime(), getenv(), and bsearch().

Coding standards CERT FIO04-C

Detect and handle input and output errors

CWE 252

Unchecked Return Value

CWE 394

Unexpected Status Code or Return Value

CWE 690

Unchecked Return Value to NULL Pointer Dereference

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <string.h>

void example(char c) {
 char* cp = strchr("Hello", c);
 printf("%c\n", *cp); // cp is dereferenced uncon-
 // ditionally, but may be NULL
}

The following code example passes the check and will not give a warning about this
issue:

#include <string.h>

void example(char c) {
 char* cp = strchr("Hello", c);
 if (cp){
 printf("%c\n", *cp); // OK - cp checked against
 // NULL
 }
}

LIB-sprintf-overrun

Synopsis A call to sprintf causes a destination buffer overrun.

Enabled by default No

Severity/Certainty High/High

Full description A call to the sprintf function causes a destination buffer overrun.

Coding standards CERT STR31-C

Guarantee that storage for strings has sufficient space for character data and the
null terminator

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
AFE1_AFE2-1:1

193

194

Descriptions of checks

CWE 121

Stack-based Buffer Overflow

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

char buf[5];

void example(void) {
 sprintf(buf, "Hello World!\n");
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

char buf[14];

void example(void) {
 sprintf(buf, "Hello World!\n");
}

LIB-std-sort-overrun-pos (C++ only)

Synopsis Using std::sort might cause buffer overrun.

Enabled by default No

Severity/Certainty Medium/Medium

Full description Using std::sort might cause a buffer overrun. std::sort can take a pointer to an
array and a pointer to the end of the array as arguments, but if the pointer to the end of
the array actually points beyond the end of the array being sorted, a buffer overrun might
occur.

Coding standards This check does not correspond to any coding standard rules.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

#include <algorithm>
#include "iar.h"

void example(void) {
 int a[10] = {0,1,2,3,4,5,6,7,8,9};
 STD sort(a, a+11);
}

The following code example passes the check and will not give a warning about this
issue:

#include <algorithm>
#include "iar.h"

void example(void) {
 int a[10] = {0,1,2,3,4,5,6,7,8,9};
 STD sort(a, a+5);
}

LIB-std-sort-overrun (C++ only)

Synopsis A buffer overrun is caused by use of std::sort.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A buffer overrun is caused by use of std::sort. std::sort can take a pointer to an
array and a pointer to the end of the array as arguments, but if the pointer to the end of
the array actually points beyond the end of the array being sorted, a buffer overrun will
occur.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

195

196

Descriptions of checks

#include <algorithm>
#include "iar.h"

void example(void) {
 int a[10] = {0,1,2,3,4,5,6,7,8,9};
 STD sort(a, a+11);
}

The following code example passes the check and will not give a warning about this
issue:

#include <algorithm>
#include "iar.h"

void example(void) {
 int a[10] = {0,1,2,3,4,5,6,7,8,9};
 STD sort(a, a+5);
}

LIB-strcat-overrun-pos

Synopsis A call to strcat might cause destination buffer overrun.

Enabled by default No

Severity/Certainty Medium/Medium

Full description A call to the strcat function might cause a destination buffer overrun.

Coding standards CERT STR31-C

Guarantee that storage for strings has sufficient space for character data and the
null terminator

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Stack-based Buffer Overflow

Code examples The following code example fails the check and will give a warning:

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(13);
 strcpy(str2,"");
 strcat(str2,str1);
}

The following code example passes the check and will not give a warning about this
issue:

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(14);
 strcpy(str2, "");
 strcat(str2, str1);
}

LIB-strcat-overrun

Synopsis A call to strcat causes a destination buffer overrun.

Enabled by default Yes

Severity/Certainty High/High

Full description A call to the strcat function causes a destination buffer overrun.

Coding standards CERT STR31-C
AFE1_AFE2-1:1

197

198

Descriptions of checks

Guarantee that storage for strings has sufficient space for character data and the
null terminator

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

Code examples The following code example fails the check and will give a warning:

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(13);
 strcpy(str2,"");
 strcat(str2,str1);
}

The following code example passes the check and will not give a warning about this
issue:

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(14);
 strcpy(str2, "");
 strcat(str2, str1);
}

LIB-strcpy-overrun-pos

Synopsis A call to strcpy might cause destination buffer overrun.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description A call to the strcpy function might cause a destination buffer overrun.

Coding standards CERT STR31-C

Guarantee that storage for strings has sufficient space for character data and the
null terminator

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 122

Heap-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

Code examples The following code example fails the check and will give a warning:

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(13);
 strcpy(str2,str1);
}

AFE1_AFE2-1:1

199

200

Descriptions of checks

The following code example passes the check and will not give a warning about this
issue:

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(14);
 strcpy(str2,str1);
}

LIB-strcpy-overrun

Synopsis A call to strcpy causes a destination buffer overrun.

Enabled by default Yes

Severity/Certainty High/High

Full description A call to the strcpy function causes a destination buffer overrun.

Coding standards CERT STR31-C

Guarantee that storage for strings has sufficient space for character data and the
null terminator

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 122

Heap-based Buffer Overflow

CWE 124
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

Code examples The following code example fails the check and will give a warning:

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(13);
 strcpy(str2,str1);
}

The following code example passes the check and will not give a warning about this
issue:

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(14);
 strcpy(str2,str1);
}

LIB-strncat-overrun-pos

Synopsis A call to strncat might cause a destination buffer overrun.

Enabled by default No

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

201

202

Descriptions of checks

Full description Calling strncat with a destination buffer that is too small will cause a buffer overrun.
strncat takes a destination buffer as its first argument. If the remaining space of this
buffer is smaller than the number of characters to append, as determined by the position
of the null terminator in the source buffer or the size passed as the third argument to
strncat, an overflow might occur resulting in undefined behavior and runtime errors.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <string.h>
#include <stdlib.h>

void example(int d) {
 char * a = malloc(sizeof(char) * 5);
 char * b = malloc(sizeof(char) * 100);
 int c;
 if (d) {
 c = 10;
 } else {
 c = 5;
 }
 strcpy(a, "0123");
 strcpy(b, "45678901234");
 strncat(a, b, c);
}

The following code example passes the check and will not give a warning about this
issue:

#include <string.h>
#include <stdlib.h>

void example(int d) {
 char * a = malloc(sizeof(char) * 5);
 char * b = malloc(sizeof(char) * 100);
 int c;
 if (d) {
 c = 2;
 } else {
 c = 3;
 }
 strcpy(a, "0123");
 strcpy(b, "45678901234");
 strncat(b, a, c);
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

LIB-strncat-overrun

Synopsis A call to strncat causes a destination buffer overrun.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description Calling strncat with a destination buffer that is too small will cause a buffer overrun.
strncat takes a destination buffer as its first argument. If the remaining space of this
buffer is smaller than the number of characters to append, as determined by the position
of the null terminator in the source buffer or the size passed as the third argument to
strncat, an overflow might occur resulting in undefined behavior and runtime errors.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <string.h>
#include <stdlib.h>

void example(void) {
 char * a = malloc(sizeof(char)*9);
 strcpy(a, "hello");
 strncat(a, "world", 4);
}
#include <string.h>
#include <stdlib.h>

void example(void) {
 char * a = malloc(sizeof(char)*9);
 strcpy(a, "hello");
 strncat(a, "world", 6);
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

203

204

Descriptions of checks

#include <string.h>
#include <stdlib.h>

void example(void) {
 char * a = malloc(sizeof(char)*11);
 strcpy(a, "hello");
 strncat(a, "world", 6);
}
#include <string.h>
#include <stdlib.h>

void example(void) {
 char * a = malloc(sizeof(char)*11);
 strcpy(a, "hello");
 strncat(a, "world", 4);
}

LIB-strncmp-overrun-pos

Synopsis A call to strncmp might cause a buffer overrun.

Enabled by default No

Severity/Certainty High/Medium

Full description An incorrect string length passed to strncmp might cause a buffer overrun. strncmp
limits the number of characters it compares to the number passed as its third argument,
to prevent buffer overruns with non-null-terminated strings. However, if a number is
passed that is larger than the length of the two strings, and neither string is
null-terminated, it will overrun.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>
#include <string.h>

void example(int d) {
 char *a = malloc(sizeof(char) * 10);
 char *b = malloc(sizeof(char) * 10);
 int c;
 if (d) {
 c = 20;
 } else {
 c = 5;
 }
 strncmp(a, b, c);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include <string.h>

void example(int d) {
 char *a = malloc(sizeof(char) * 10);
 char *b = malloc(sizeof(char) * 10);
 int c;
 if (d) {
 c = 8;
 } else {
 c = 5;
 }
 strncmp(a, b, c);
}

LIB-strncmp-overrun

Synopsis A buffer overrun is caused by a call to strncmp.

Enabled by default Yes

Severity/Certainty High/Medium
AFE1_AFE2-1:1

205

206

Descriptions of checks

Full description A buffer overrun is caused by passing an incorrect string length to strncmp. strncmp
limits the number of characters it compares to the number passed as its third argument,
to prevent buffer overruns with non-null-terminated strings. However, if a number is
passed that is larger than the length of the two strings, and neither string is
null-terminated, it will overrun.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
#include <string.h>

void example(void) {
 char *a = malloc(sizeof(char) * 10);
 char *b = malloc(sizeof(char) * 10);
 strncmp(a, b, 20);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include <string.h>

void example(void) {
 char *a = malloc(sizeof(char) * 10);
 char *b = malloc(sizeof(char) * 10);
 strncmp(a, b, 5);
}

LIB-strncpy-overrun-pos

Synopsis A call to strncpy might cause a destination buffer overrun.

Enabled by default No

Severity/Certainty Medium/Medium

Full description A call to strncpy might cause a destination buffer overrun.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards CERT STR31-C

Guarantee that storage for strings has sufficient space for character data and the
null terminator

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 122

Heap-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 805

Buffer Access with Incorrect Length Value

Code examples The following code example fails the check and will give a warning:

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(13);
 strncpy(str2,str1,14);
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

207

208

Descriptions of checks

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(14);
 strncpy(str2, str1, 14);
}

LIB-strncpy-overrun

Synopsis A call to strncpy causes a destination buffer overrun.

Enabled by default Yes

Severity/Certainty High/High

Full description A call to strncpy causes a destination buffer overrun.

Coding standards CERT STR31-C

Guarantee that storage for strings has sufficient space for character data and the
null terminator

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 122

Heap-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 805

Buffer Access with Incorrect Length Value

Code examples The following code example fails the check and will give a warning:

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(13);
 strncpy(str2,str1,14);
}

The following code example passes the check and will not give a warning about this
issue:

#include <string.h>
#include <stdlib.h>

void example(void)
{
 char *str1 = "Hello World!\n";
 char *str2 = (char *)malloc(14);
 strncpy(str2, str1, 14);
}

LOGIC-overload (C++ only)

Synopsis Overloaded && and || operators

Enabled by default No

Severity/Certainty Low/Low
AFE1_AFE2-1:1

209

210

Descriptions of checks

Full description There are overloaded versions of the comma and logical conjunction operators with the
semantics of function calls, whose sequence point and ordering semantics are different
from those of the built- in versions. It might not be clear at the point of use that these
operators are overloaded, and which semantics that apply.

Coding standards MISRA C++ 2008 5-2-11

(Required) The comma operator, && operator and the || operator shall not be
overloaded.

Code examples The following code example fails the check and will give a warning:

class C{
 bool x;
 bool operator||(bool other);
};

bool C::operator||(bool other){
 return x || other;
}

The following code example passes the check and will not give a warning about this
issue:

class C{
 int x;
 int operator+(int other);
};

int C::operator+(int other){
 return x + other;
}

MEM-delete-array-op (C++ only)

Synopsis A memory location allocated with new is deleted with delete[]

Enabled by default Yes

Severity/Certainty High/High
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description A memory location is allocated with the new operator but deleted with the delete []
operator. Use the delete operator instead.

Coding standards CWE 762

Mismatched Memory Management Routines

Code examples The following code example fails the check and will give a warning:

int main(void)
{
 int *p = new int;
 delete[] p; //should be delete, not delete[]

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void)
{
 int *p = new int;
 delete p;

 return 0;
}

MEM-delete-op (C++ only)

Synopsis A memory location allocated with new [] is deleted with delete or free.

Enabled by default Yes

Severity/Certainty High/High

Full description A memory location allocated with the new [] operator is deleted with the delete
operator. Use the delete [] operator instead. The consequence of using delete is that
only the array element directly pointed to will be deallocated, as if it were allocated with
the singular new operator. This will most likely cause a memory leak. If free is used
AFE1_AFE2-1:1

211

212

Descriptions of checks

the resulting behavior will be undefined, because there is no guarantee that new invokes
malloc.

Coding standards CWE 762

Mismatched Memory Management Routines

Code examples The following code example fails the check and will give a warning:

int main(void)
{
 int *p = new int[10];
 delete p; //should be delete[]

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void)
{
 int *p = new int[10];
 delete [] p;

 return 0;
}

MEM-double-free-alias

Synopsis Freeing a memory location more than once.

Enabled by default Yes

Severity/Certainty High/Medium

Full description An attempt is made to free a memory location after it has already been freed. This will
most likely cause an application crash. Unlike MEM-double-free,
MEM-double-free-alias examines the location that pointers point to instead of the
pointers themselves. You might see reports for code that looks like this (example of a
linked list where each node has a pointer to an element, elem): for (; list != NULL; list
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

= list->next) { free(list->elem); } The warning is issued because there is no guarantee
that each list node's elem field is the same.

Coding standards CERT MEM31-C

Free dynamically allocated memory exactly once

CWE 415

Double Free

MISRA C:2012 Rule-22.2

(Mandatory) A block of memory shall only be freed if it was allocated by means
of a Standard Library function

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
void f(int *p) {
 free(p);
 if(p) free(p);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void)
{
 int *p=malloc(4);
 free(p);
}

MEM-double-free-some

Synopsis A memory location is freed more than once on some paths but not on others.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

213

214

Descriptions of checks

Full description There is a path through the code where a memory location is attempted to be freed after
it has already been freed earlier. This will most likely cause an application crash on this
path.

Coding standards CERT MEM31-C

Free dynamically allocated memory exactly once

CWE 415

Double Free

MISRA C:2012 Rule-22.2

(Mandatory) A block of memory shall only be freed if it was allocated by means
of a Standard Library function

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
void example(void) {
 int *ptr = (int*)malloc(sizeof(int));
 free(ptr);
 if(rand() % 2 == 0)
 {
 free(ptr);
 }
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
void example(void) {
 int *ptr = (int*)malloc(sizeof(int));
 if(rand() % 2 == 0)
 {
 free(ptr);
 }
 else
 {
 free(ptr);
 }
}

MEM-double-free

Synopsis A memory location is freed more than once.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty High/Medium

Full description An attempt is made to free a memory location after it has already been freed. This will
most likely cause an application crash.

Coding standards CERT MEM31-C

Free dynamically allocated memory exactly once

CWE 415

Double Free

MISRA C:2012 Rule-22.2

(Mandatory) A block of memory shall only be freed if it was allocated by means
of a Standard Library function

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
void f(int *p) {
 free(p);
 if(p) free(p);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void)
{
 int *p=malloc(4);
 free(p);
}

MEM-free-field

Synopsis A struct or a class field is possibly freed.

Enabled by default Yes
AFE1_AFE2-1:1

215

216

Descriptions of checks

Severity/Certainty High/High

Full description A struct or a class field is possibly freed. Fields are located in the middle of memory
objects and thus cannot be freed. Additionally, erroneously using free() on fields
might corrupt stdlib's memory bookkeeping, affecting heap memory.

Coding standards CERT MEM34-C

Only free memory allocated dynamically

CWE 590

Free of Memory not on the Heap

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

struct C{
 int x;
};

int foo(struct C c) {
 int *p = &c.x;
 free(p);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

struct C{
 int *x;
};

int foo(struct C *c) {
 int *p = (c->x);
 free(p);
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MEM-free-fptr

Synopsis A function pointer is deallocated.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A function pointer is deallocated. Function pointers are not dynamically allocated, and
should thus not be deallocated. Freeing a function pointer will result in undefined
behavior.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int id(int a) {
 return a;
}

void example(void) {
 int (*f)(int);
 f = &id;
 free((void *)f);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int id(int a) {
 return a;
}

void example(void) {
 int (*f)(int);
 f = &id;
}

AFE1_AFE2-1:1

217

218

Descriptions of checks

MEM-free-no-alloc-struct

Synopsis A struct field is deallocated without first having been allocated.

Enabled by default No

Severity/Certainty Medium/Medium

Full description A struct field is deallocated without first having been allocated. This might cause a
runtime error.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

struct test {
 int *a;
};

void example(void) {
 struct test t;
 free(t.a);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

struct test {
 int *a;
};

void example(void) {
 struct test t;
 t.a = malloc(sizeof(int));
 free(t.a);
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MEM-free-no-alloc

Synopsis A pointer is freed without having been allocated.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A pointer is freed without having been allocated.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 int *p;
 // Do stuff
 free(p);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
 int *p = malloc(sizeof(int));
 // Do something
 free(p);
}

MEM-free-no-use

Synopsis Memory is allocated and then freed without being used.

Enabled by default Yes
AFE1_AFE2-1:1

219

220

Descriptions of checks

Severity/Certainty Medium/Medium

Full description Memory is allocated and then freed without being used. This is probably unintentional
and might indicate a copy-paste error.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
void example(void) {
 int *p = malloc(sizeof(int));
 free(p);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
void example(void) {
 int *p = malloc(sizeof(int));
 *p = 1;
 free(p);
}

MEM-free-op

Synopsis Memory allocated with malloc deallocated using delete.

Enabled by default Yes

Severity/Certainty High/High

Full description Memory allocated with malloc() or calloc() is deallocated using one of the delete
operators instead of free(). This might cause a memory leak, or affect other heap
memory due to corruption of stdlib's memory bookkeeping.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards CWE 404

Improper Resource Shutdown or Release

CWE 762

Mismatched Memory Management Routines

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
void f()
{
 void *p = malloc(200);
 delete p;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
void f() {
 void *p = malloc(200);
 free(p);
}

MEM-free-struct-field

Synopsis A struct's field is deallocated, but is not dynamically allocated.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A struct's field is deallocated, but is not dynamically allocated. Regardless of whether a
struct is allocated on the stack or on the heap, all non-dynamically allocated fields will
be deallocated when the struct itself is deallocated (either through going out of scope or
calling a function like free()). Explicitly freeing such fields might cause a crash, or
corrupt surrounding memory. Incorrect use of free() might also corrupt stdlib's
memory bookkeeping, affecting heap memory allocation.

Coding standards This check does not correspond to any coding standard rules.
AFE1_AFE2-1:1

221

222

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

struct test {
 int a;
};

void example(void) {
 struct test *t;
 free((void *)t->a);
}
#include <stdlib.h>

struct test {
 int a[10];
};

void example(void) {
 struct test t;
 free(t.a);
}
#include <stdlib.h>

struct test {
 int a;
};

void example(void) {
 struct test t;
 free((void *)t.a);
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

struct test {
 int *a;
};

void example(void) {
 struct test *t;
 free(t->a);
}
#include <stdlib.h>

struct test {
 int *a;
};

void example(void) {
 struct test t;
 free(t.a);
}

MEM-free-variable-alias

Synopsis A stack address might be freed.

Enabled by default Yes

Severity/Certainty High/High

Full description A stack address might be freed. Stack variables are automatically deallocated when they
go out of scope. Consequently, explicitly freeing them might cause a crash or corrupt the
surrounding stack data. Erroneously using free() on stack memory might also corrupt
stdlib's memory bookkeeping, affecting heap memory.

Coding standards CERT MEM34-C

Only free memory allocated dynamically

CWE 590

Free of Memory not on the Heap
AFE1_AFE2-1:1

223

224

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
void example(void){
 int x=0;
 free(&x);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int *p;
 p = (int *)malloc(sizeof(int));
 free(p);
}

MEM-free-variable

Synopsis A stack address might be freed.

Enabled by default Yes

Severity/Certainty High/High

Full description A stack address might be freed. Stack variables are automatically deallocated when they
go out of scope. Consequently, explicitly freeing them might cause a crash or corrupt the
surrounding stack data. Erroneously using free() on stack memory might also corrupt
stdlib's memory bookkeeping, affecting heap memory.

Coding standards CERT MEM34-C

Only free memory allocated dynamically

CWE 590

Free of Memory not on the Heap

MISRA C:2012 Rule-22.2

(Mandatory) A block of memory shall only be freed if it was allocated by means
of a Standard Library function
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
void example(void){
 int x=0;
 free(&x);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int *p;
 p = (int *)malloc(sizeof(int));
 free(p);
}

MEM-leak-alias

Synopsis Incorrect deallocation causes memory leak.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description Memory is allocated, but then the pointer value is lost due to reassignment or its scope
ending, without a guarantee of the value being propagated or the memory being freed.
There must be no possible execution path during which the value is not freed, returned,
or passed into another function as an argument, before it is lost. This is a memory leak.
Note: If alias analysis is disabled, you must enable the non-alias version of this check,
MEM-leak.

Coding standards CERT MEM31-C

Free dynamically allocated memory exactly once

CWE 401

Improper Release of Memory Before Removing Last Reference ('Memory
Leak')

CWE 772
AFE1_AFE2-1:1

225

226

Descriptions of checks

Missing Release of Resource after Effective Lifetime

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

extern int rand();

void example(void) {
 int *ptr = malloc(sizeof(int));

 if (rand()){

 //losing reference to memory allocated
 //from the first malloc
 ptr = malloc(sizeof(int));
 }

 free(ptr);
}
#include <stdlib.h>

int main(void) {
 int *ptr = (int*)malloc(sizeof (int));
 if (rand() < 5) {
 free(ptr); // Not free() on all paths.
 }
 return 0;
}
#include <stdlib.h>

int main(void) {
 int *ptr = (int *)malloc(sizeof(int));

 ptr = NULL; //losing reference to the allocated memory

 free(ptr);

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

extern int rand();

void example(void) {
 int *ptr = malloc(sizeof(int));
 free(ptr);
}

MEM-leak

Synopsis Incorrect deallocation causes memory leak.

Enabled by default No

Severity/Certainty High/Low

Full description Memory is allocated, but then the pointer value is lost due to reassignment or its scope
ending, without a guarantee of the value being propagated or the memory being freed.
There must be no possible execution path during which the value is not freed, returned,
or passed into another function as an argument, before it is lost. This is a memory leak.

Coding standards CERT MEM31-C

Free dynamically allocated memory exactly once

CWE 401

Improper Release of Memory Before Removing Last Reference ('Memory
Leak')

CWE 772

Missing Release of Resource after Effective Lifetime

MISRA C:2012 Rule-22.1

(Required) All resources obtained dynamically by means of Standard Library
functions shall be explicitly released

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

227

228

Descriptions of checks

#include <stdlib.h>

extern int rand();

void example(void) {
 int *ptr = malloc(sizeof(int));

 if (rand()){

 //losing reference to memory allocated
 //from the first malloc
 ptr = malloc(sizeof(int));
 }

 free(ptr);
}
#include <stdlib.h>

int main(void) {
 int *ptr = (int*)malloc(sizeof (int));
 if (rand() < 5) {
 free(ptr); // Not free() on all paths.
 }
 return 0;
}
#include <stdlib.h>

int main(void) {
 int *ptr = (int *)malloc(sizeof(int));

 ptr = NULL; //losing reference to the allocated memory

 free(ptr);

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

int main(void) {
 int *ptr = (int*)malloc(sizeof(int));
 if (rand() < 5) {
 free(ptr);
 } else {
 free(ptr);
 }
 return 0;
}
#include <stdlib.h>

extern int rand();

void example(void) {
 int *ptr = malloc(sizeof(int));
 free(ptr);
}

MEM-malloc-arith

Synopsis An assignment contains both a malloc() and pointer arithmetic on the right-hand side.

Enabled by default No

Severity/Certainty High/Medium

Full description An assignment contains both a malloc() and pointer arithmetic on the right-hand side.
If this is unintentional, the start of the allocated memory block might be lost, and a
buffer overflow is possible.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

229

230

Descriptions of checks

#include <stdlib.h>

int example(void) {
 int *p;

 p = (int *)malloc(255) + 10; //pointer arithmetic

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int example(void) {
 int *p;

 p = (int *)malloc(255);

 return 0;
}

MEM-malloc-diff-type

Synopsis A call to malloc tries to allocate memory based on a sizeof operator, but the
destination type of the call is of a different type.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description This might be an error, and will result in an allocated memory chunk that does not match
the destination pointer or array. This might easily result in an invalid memory
dereference, and crash the application.

Coding standards CERT MEM35-C

Allocate sufficient memory for an object

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

int* foo(){
 return malloc(sizeof(char)*10);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

char* foo(){
 return malloc(sizeof(char)*10);
}

MEM-malloc-sizeof-ptr

Synopsis malloc(sizeof(p)), where p is a pointer type, is assigned to a non-pointer variable.

Enabled by default Yes

Severity/Certainty High/Low

Full description The argument given to malloc() is the size of a pointer, but the use of the return
address does not suggest a double-indirection pointer. Allocating memory to an int*,
for example, should use sizeof(int) rather than sizeof(int*). Otherwise, the
memory allocated might be smaller than expected, potentially leading to an application
crash or corruption of other heap memory.

Coding standards CERT EXP01-C

Do not take the size of a pointer to determine the size of the pointed-to type

CERT ARR01-C

Do not apply the sizeof operator to a pointer when taking the size of an array

CWE 467

Use of sizeof() on a Pointer Type

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

231

232

Descriptions of checks

#include <stdlib.h>
void example(void) {
 int *p = (int*)malloc(sizeof(p)); //sizeof pointer
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
void example(void) {
 int *p = (int*)malloc(sizeof(*p));
}

MEM-malloc-sizeof

Synopsis Allocating memory with malloc without using sizeof.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description Memory was allocated with malloc() but the sizeof operator might not have been
used. Using sizeof when allocating memory avoids any machine variations in the sizes
of data types, and consequently avoids under-allocating. To pass this check, assign the
address of the allocated memory to a char pointer, because sizeof(char) always
returns 1.

Coding standards CERT MEM35-C

Allocate sufficient memory for an object

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
int *x = malloc(4); //no sizeof in malloc call
free(x);

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

void example(void) {
int *x = malloc(sizeof(int));
free(x);

}

MEM-malloc-strlen

Synopsis Dangerous arithmetic with strlen in argument to malloc.

Enabled by default No

Severity/Certainty Medium/Medium

Full description Dangerous arithmetic with strlen in an argument to malloc. It is usual to allocate a
new string using malloc(strlen(s)+1), to allow for the null terminator. However, it
is easy to type malloc(strlen(s+1)) by mistake, leading to strlen returning a
length one less than the length of s, or if s is empty, exhibit undefined behavior.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
#include <string.h>

void example(char *s) {
 char *a = malloc(strlen(s+1));
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include <string.h>

void example(char *s) {
 char *a = malloc(strlen(s)+1);
}

AFE1_AFE2-1:1

233

234

Descriptions of checks

MEM-realloc-diff-type

Synopsis The variable that stores the result of realloc does not match the type of the first
argument.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description The variable that stores the result of realloc does not match the type of the first
argument. Subsequent accesses to this memory might be misaligned and cause a runtime
error.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(int *a, int new_size) {
 unsigned int *b;
 b = realloc(a, sizeof(int) * new_size);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(int *a, int new_size) {
 int *b;
 b = realloc(a, sizeof(int) * new_size);
}

MEM-return-free

Synopsis A function deallocates memory, then returns a pointer to that memory.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description A function deallocates memory, then returns a pointer to that memory. If the callee of
this function attempts to dereference the returned pointer, this will cause a runtime error.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int *example(void) {
 int *a = malloc(sizeof(int));
 free(a);
 return a;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int *example(void) {
 int *a = malloc(sizeof(int));
 return a;
}

MEM-return-no-assign

Synopsis A function that allocates memory's return value is not stored.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

235

236

Descriptions of checks

Full description A function that allocates a memory's return value is not stored. Not storing the returned
memory means that this memory cannot be tracked, and therefore deallocated. This will
result in a memory leak.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int *allocating_fn(void) {
 return malloc(sizeof(int));
}

void example(void) {
 allocating_fn();
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int *allocating_fn(void) {
 return malloc(sizeof(int));
}

void example(void) {
 int *p = allocating_fn();
}

MEM-stack-alias

Synopsis Might return address on the stack.

Enabled by default Yes

Severity/Certainty High/High
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description A local variable is defined in stack memory, then its address is potentially returned from
the function. When the function exits, its stackframe will be considered illegal memory,
and thus the address returned might be dangerous. This code and subsequent memory
accesses might appear to work, but the operations are illegal and an application crash,
or memory corruption, is very likely. To correct this problem, consider returning a copy
of the object, using a global variable, or dynamically allocating memory.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 562

Return of Stack Variable Address

MISRA C:2004 17.6

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

MISRA C++ 2008 7-5-1

(Required) A function shall not return a reference or a pointer to an automatic
variable (including parameters), defined within the function.

Code examples There are no code examples for this check.

MEM-stack-global-alias

Synopsis A stack address is stored in a global pointer.

Enabled by default Yes

Severity/Certainty High/Medium

Full description The address of a variable in stack memory is being stored in a global variable. When the
relevant scope or function ends, the memory will become unused, and the externally
stored address will point to junk data. This is particularly dangerous because the
application might appear to run normally, when it is in fact accessing illegal memory.
This might also lead to an application crash, or data changing unpredictably.

Coding standards CERT DCL30-C
AFE1_AFE2-1:1

237

238

Descriptions of checks

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C:2004 17.6

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

MISRA C++ 2008 7-5-2

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples There are no code examples for this check.

MEM-stack-global-field

Synopsis A stack address is stored in the field of a global struct.

Enabled by default Yes

Severity/Certainty High/Medium

Full description The address of a variable in stack memory is being stored in a global struct. When the
relevant scope or function ends, the memory will become unused, and the externally
stored address will point to junk data. This is particularly dangerous because the
application might appear to run normally, when it is in fact accessing illegal memory.
This might also lead to an application crash, or data changing unpredictably.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C:2004 17.6

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRA C:2012 Rule-18.6

(Required) The address of an object with automatic storage shall not be copied
to another object that persists after the first object has ceased to exist

MISRA C++ 2008 7-5-2

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:

struct S{
 int *px;
} s;

void example() {
 int i = 0;
 s.px = &i; //storing local address in global struct
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

struct S{
 int *px;
} s;

void example() {
 int i = 0;
 s.px = &i; //OK - the field is written to later
 s.px = NULL;
}

MEM-stack-global

Synopsis A stack address is stored in a global pointer.

Enabled by default Yes

Severity/Certainty High/Medium
AFE1_AFE2-1:1

239

240

Descriptions of checks

Full description The address of a variable in stack memory is being stored in a global variable. When the
relevant scope or function ends, the memory will become unused, and the externally
stored address will point to junk data. This is particularly dangerous because the
application might appear to run normally, when it is in fact accessing illegal memory.
This might also lead to an application crash, or data changing unpredictably.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C:2004 17.6

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

MISRA C:2012 Rule-18.6

(Required) The address of an object with automatic storage shall not be copied
to another object that persists after the first object has ceased to exist

MISRA C++ 2008 7-5-2

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:

int *px;
void example() {
 int i = 0;
 px = &i; // assigning the address of stack
 // variable a to the global px
}

The following code example passes the check and will not give a warning about this
issue:

void example(int *pz) {
 int x; int *px = &x;
 int *py = px; /* local variable */
 pz = px; /* parameter */
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MEM-stack-param-ref (C++ only)

Synopsis Stack address is stored via reference parameter.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A stack address is stored outside a function via a parameter of reference type. The
address of a local stack variable is assigned to a reference argument of its function.
When the function ends, this memory address will become invalid. This is particularly
dangerous because the application might appear to run normally, when it is in fact
accessing illegal memory. This might also lead to an application crash, or data changing
unpredictably.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C++ 2008 7-5-2

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:

void example(int *&pxx) {
 int x;
 pxx = &x;
}

The following code example passes the check and will not give a warning about this
issue:

void example(int *p, int *&q) {
 int x;
 int *px= &x;
 p = px; // ok, pointer
 q = p; // ok, not local
}

AFE1_AFE2-1:1

241

242

Descriptions of checks

MEM-stack-param

Synopsis A stack address is stored outside a function via a parameter.

Enabled by default Yes

Severity/Certainty High/Medium

Full description The address of a local stack variable is assigned to a location supplied by the caller via
a parameter. When the function ends, this memory address will become invalid. This is
particularly dangerous because the application might appear to run normally, when it is
in fact accessing illegal memory. This might also lead to an application crash, or data
changing unpredictably. Note that this check looks for any expression referring to the
store located by the parameter, so the assignment local[*parameter] = & local;
will trigger the check despite being OK.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C:2004 17.6

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

MISRA C:2012 Rule-18.6

(Required) The address of an object with automatic storage shall not be copied
to another object that persists after the first object has ceased to exist

MISRA C++ 2008 7-5-2

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:

void example(int **ppx) {
 int x;
 ppx[0] = &x; //local address
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

static int y = 0;
void example3(int **ppx){
 *ppx = &y; //OK - static address
}

MEM-stack-pos

Synopsis Might return address on the stack.

Enabled by default Yes

Severity/Certainty High/High

Full description A local variable is defined in stack memory, then its address is potentially returned from
the function. When the function exits, its stackframe will be considered illegal memory,
and thus the address returned might be dangerous. This code and subsequent memory
accesses might appear to work, but the operations are illegal and an application crash,
or memory corruption, is very likely. To correct this problem, consider returning a copy
of the object, using a global variable, or dynamically allocating memory.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 562

Return of Stack Variable Address

MISRA C:2004 17.6

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

MISRA C++ 2008 7-5-1

(Required) A function shall not return a reference or a pointer to an automatic
variable (including parameters), defined within the function.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

243

244

Descriptions of checks

int *example(int *a) {
 int i;
 int *p;
 if (a) {

p = a;
 } else {
 p = &i;
 }
 return p;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {}

MEM-stack-ref (C++ only)

Synopsis A stack object is returned from a function as a reference.

Enabled by default Yes

Severity/Certainty High/High

Full description A local variable is defined in stack memory, then it is returned from the function as a
reference. When the function exits, its stackframe will be considered illegal memory,
and thus the return value of the function will refer to an object that no longer exists.
Operations on the return value are illegal and an application crash, or memory
corruption, is very likely. A safe alternative is for the function to return a copy of the
object.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 562

Return of Stack Variable Address

MISRA C++ 2008 7-5-1

(Required) A function shall not return a reference or a pointer to an automatic
variable (including parameters), defined within the function.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

int& example(void) {
 int x;
 return x;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 int x;
 return x;
}

MEM-stack

Synopsis Might return address on the stack.

Enabled by default Yes

Severity/Certainty High/High

Full description A local variable is defined in stack memory, then its address is potentially returned from
the function. When the function exits, its stack frame will be considered illegal memory,
and thus the address returned might be dangerous. This code and subsequent memory
accesses might appear to work, but the operations are illegal and an application crash,
or memory corruption, is very likely. To correct this problem, consider returning a copy
of the object, using a global variable, or dynamically allocating memory.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 562

Return of Stack Variable Address

MISRA C:2004 17.6

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

MISRA C:2012 Rule-18.6
AFE1_AFE2-1:1

245

246

Descriptions of checks

(Required) The address of an object with automatic storage shall not be copied
to another object that persists after the first object has ceased to exist

MISRA C++ 2008 7-5-1

(Required) A function shall not return a reference or a pointer to an automatic
variable (including parameters), defined within the function.

Code examples The following code example fails the check and will give a warning:

int *f() {
 int x;
 return &x; //x is a local variable
}
int *example(void) {
 int a[20];
 return a; //a is a local array
}

The following code example passes the check and will not give a warning about this
issue:

int* example(void) {
 int *p,i;
 p = (int *)malloc(sizeof(int));
 return p; //OK - p is dynamically allocated

}

MEM-use-free-all

Synopsis A pointer is used after it has been freed.

Enabled by default Yes

Severity/Certainty High/High

Full description Memory is being accessed after it has been deallocated. The application might appear
to run normally, but the operation is illegal. The most likely result is a crash, but the
application might keep running with erroneous or corrupt data.

Coding standards CERT MEM30-C
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Do not access freed memory

CWE 416

Use After Free

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 int *x;

 x = (int *)malloc(sizeof(int));

 free(x);

 *x++; //x is dereferenced after it is freed
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
 int *x;

 x = (int *)malloc(sizeof(int));

 free(x);

 x = (int *)malloc(sizeof(int));

 *x++; //OK - x is reallocated
}

MEM-use-free-some

Synopsis A pointer is used after it has been freed.

Enabled by default Yes
AFE1_AFE2-1:1

247

248

Descriptions of checks

Severity/Certainty High/Low

Full description A pointer is used after it has been freed. This might cause data corruption or an
application crash.

Coding standards CERT MEM30-C

Do not access freed memory

CWE 416

Use After Free

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 int *x;

 x = (int *)malloc(sizeof(int));
 free(x);

 if (rand()) {
 x = (int *)malloc(sizeof(int));
 }
 else {
 /* x not reallocated along this path */
 }

 (*x)++;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

void example(void) {
 int *x;

 x = (int *)malloc(sizeof(int));

 free(x);

 x = (int *)malloc(sizeof(int));

 *x++;
}

PTR-arith-field

Synopsis Direct access to a field of a struct, using an offset from the address of the struct.

Enabled by default Yes

Severity/Certainty Medium/High

Full description A field of a struct is accessed directly, using an offset from the address of the struct.
Because a struct might in some cases be padded to maintain proper alignment of its
fields, it can be very dangerous to access fields using only an offset from the address of
the struct itself.

Coding standards CERT ARR37-C

Do not add or subtract an integer to a pointer to a non-array object

CWE 188

Reliance on Data/Memory Layout

MISRA C:2004 17.1

(Required) Pointer arithmetic shall only be applied to pointers that address an
array or array element.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

249

250

Descriptions of checks

struct S{
 char c;
 int x;
};

void main(void) {
 struct S s;
 *(&s.c+1) = 10;
}

The following code example passes the check and will not give a warning about this
issue:

struct S{
 char c;
 int x;
};

void example(void) {
 struct S s;
 s.x = 10;
}

PTR-arith-stack

Synopsis Pointer arithmetic applied to a pointer that references a stack address

Enabled by default Yes

Severity/Certainty Medium/High

Full description A pointer is assigned a stack-based address and then used in pointer arithmetic.

Coding standards CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

MISRA C:2004 17.1

(Required) Pointer arithmetic shall only be applied to pointers that address an
array or array element.

MISRA C++ 2008 5-0-16
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int i;
 int *p = &i;
 p++;
 *p = 0;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int i;
 int *p = &i;
 *p = 0;
}

PTR-arith-var

Synopsis Invalid pointer arithmetic with an automatic variable that is neither an array nor a
pointer.

Enabled by default Yes

Severity/Certainty Medium/High

Full description The address of an automatic variable is taken, and arithmetic is performed on it. This
should be avoided, because memory beyond the memory that was allocated for an
automatic variable is invalid, and attempting to access it can lead to an application crash.
This check handles local variables, parameters and globals, including structs.

Coding standards CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

MISRA C:2004 17.1
AFE1_AFE2-1:1

251

252

Descriptions of checks

(Required) Pointer arithmetic shall only be applied to pointers that address an
array or array element.

MISRA C++ 2008 5-0-16

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.

Code examples The following code example fails the check and will give a warning:

void example(int x) {
 *(&x+10) = 5;
}

The following code example passes the check and will not give a warning about this
issue:

void example(int *x) {
 *(x+10) = 5;
}

PTR-cmp-str-lit

Synopsis A variable is tested for equality with a string literal.

Enabled by default Yes

Severity/Certainty Low/High

Full description A variable is tested for equality with a string literal. This compares the variable with the
address of the literal, which is probably not the intended behavior. It is more likely that
the intent is to compare the contents of strings at different addresses, for example with
the strcmp() function.

Coding standards CWE 597

Use of Wrong Operator in String Comparison

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdio.h>

int main (void) {
 char *p = "String";

 if (p == "String") {
 printf("They're equal.\n");
 }

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>
#include <string.h>

int main (void) {
 char *p = "String";

 //OK - using string comparison function
 if (strcmp(p,"String") == 0) {
 printf("They're equal.\n");
 }

 return 0;
}

PTR-null-assign-fun-pos

Synopsis Possible NULL pointer dereferenced by a function.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A pointer variable is assigned NULL, either directly or as the result of a function call that
can return NULL. This pointer is then dereferenced, either directly, or by being passed to
a function that might dereference it without checking its value. This will cause an
application crash.
AFE1_AFE2-1:1

253

254

Descriptions of checks

Coding standards CERT EXP34-C

Do not dereference null pointers

CWE 476

NULL Pointer Dereference

Code examples The following code example fails the check and will give a warning:

#define NULL ((void*) 0)
void * malloc(unsigned long);

int * xmalloc(int size){

 int * res = malloc(sizeof(int)*size);
 if (res != NULL)
 return res;
 else
 return NULL;
}

void zeroout(int *xp, int i)
{
 xp[i] = 0;
}

int foo() {

 int * x;
 int i;

 x = xmalloc(45);

 // if (x)
 // return -1;

 for(i = 0; i < 45; i++)
 zeroout(x, i);

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#define NULL ((void*) 0)
void * malloc(unsigned long);

int * xmalloc(int size){

 int * res = malloc(sizeof(int)*size);
 if (res != NULL)
 return res;
 else
 return NULL;
}

void zeroout(int *xp, int i)
{
 xp[i] = 0;
}

int foo() {

 int * x;
 int i;

 x = xmalloc(45);

 if (x == NULL)
 return -1;
 else {
 for(i = 0; i < 45; i++)
 zeroout(x, i);
 }
}

PTR-null-assign-pos

Synopsis A pointer is assigned a value that might be NULL, and then dereferenced.

Enabled by default Yes

Severity/Certainty High/Low
AFE1_AFE2-1:1

255

256

Descriptions of checks

Full description A pointer is assigned a value that might be NULL, and then dereferenced. Often the
source of the potential NULL pointer is a memory allocation function like malloc(), or
a sentinel value provided in a user function.

Coding standards CERT EXP34-C

Do not dereference null pointers

CWE 476

NULL Pointer Dereference

Code examples The following code example fails the check and will give a warning:

#include <string.h>

char *
getenv(const char *name)
{
 return strcmp(name, "HOME")==0 ? "/" : NULL;
}

int
ex(void)
{
 char *p = getenv("USER");

 return *p; //p might be NULL
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int main(void)
{
 int *p = malloc(sizeof(int));

 if (p != 0) {
 *p = 4;
 }

 return (int)p;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

PTR-null-assign

Synopsis A pointer is assigned the value NULL, then dereferenced.

Enabled by default Yes

Severity/Certainty High/High

Full description A pointer is assigned the value NULL, then dereferenced. Assigning the pointer the value
NULL might have been intentional to indicate that the pointer is no longer being used,
but it is an error to subsequently dereference it, and will cause an application crash.

Coding standards CERT EXP34-C

Do not dereference null pointers

CWE 476

NULL Pointer Dereference

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int main(void) {
 int *p;

 p = NULL;

 return *p; //dereference after
 //assignment to NULL
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

257

258

Descriptions of checks

#include <stdlib.h>

int main(void) {
 int *p;

 p = NULL;

 p = (int *)1;

 return *p;
}

PTR-null-cmp-aft

Synopsis A pointer is dereferenced, then compared with NULL.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A pointer is dereferenced, then compared with NULL. Dereferencing a pointer implicitly
asserts that it is not NULL. Comparing it with NULL after this suggests that it might have
been NULL when it was dereferenced.

Coding standards CERT EXP34-C

Do not dereference null pointers

CWE 476

NULL Pointer Dereference

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

int example(void) {
 int *p;

 *p = 4; //line 8 asserts that p may be NULL

 if (p != NULL) {
 return 0;
 }

 return 1;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(int *p) {
 if (p == NULL) {
 return;
 }

 *p = 4;
}
#include <stdlib.h>

void main() {
 int y;
 int* x;
 x = malloc(sizeof(int));
 if (!x)
 return;
 y=*x;
 if (!x)
 return;
 y=*x;
 free(x);
}

PTR-null-cmp-bef-fun

Synopsis A pointer is compared with NULL, then dereferenced by a function.

Enabled by default Yes
AFE1_AFE2-1:1

259

260

Descriptions of checks

Severity/Certainty High/Low

Full description A pointer is compared with NULL, then passed as an argument to a function that might
dereference it. This might occur if the wrong comparison operator is used, for example
if == instead of !=, or if the then- and else- clauses of an if-statement are accidentally
swapped. If the function does dereference the pointer, the application will crash. If it
does not, the argument is unneeded.

Coding standards CERT EXP34-C

Do not dereference null pointers

CWE 476

NULL Pointer Dereference

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#define NULL ((void *) 0)

int baz();

int bar(int *x, int *y, int *z){

 if (x != NULL) {
 *x = 0;
 }

 if (y != NULL) {
 *y = 0;
 }

 *z = 0;

 return 0;
}

int foo(int *x, int *y, int *z) {

 if (x != NULL && y != NULL && z != NULL) {
 *x = 0;
 *y = 0;
 *z = 0;

 }
 baz();

 bar(x,y,z);

}
#define NULL ((void *) 0)

int bar(int *x){

 *x = 3;

 return 0;
}

AFE1_AFE2-1:1

261

262

Descriptions of checks

int foo(int *x) {

 if (x != NULL) {

 *x = 4;
 }

 bar(x);

}

The following code example passes the check and will not give a warning about this
issue:

#define NULL ((void *) 0)

int bar(int *x){

 if (x != NULL)
 *x = 3;

 return 0;
}

int foo(int *x) {

 if (x != NULL) {

 *x = 4;
 }

 bar(x);

}

PTR-null-cmp-bef

Synopsis A pointer is compared with NULL, then dereferenced.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty High/Low

Full description A pointer is compared with NULL, then dereferenced. This might occur if the wrong
comparison operator is used, for example if == instead of !=, or if the then- and else-
clauses of an if-statement are accidentally swapped. If the condition is evaluated and
found to be true, the application will crash.

Coding standards CERT EXP34-C

Do not dereference null pointers

CWE 476

NULL Pointer Dereference

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int example(void) {
 int *p;

 if (p == NULL) {
 *p = 4; //dereference after comparison with NULL
 }

 return 1;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int example(void) {
 int *p;

 if (p != NULL) {
 *p = 4; //OK - after comparison with non-NULL
 }

 return 1;
}

AFE1_AFE2-1:1

263

264

Descriptions of checks

PTR-null-fun-pos

Synopsis A possible NULL pointer is returned from a function, and immediately dereferenced
without checking.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A pointer that might be NULL is returned from a function, and immediately dereferenced
without checking.

Coding standards CERT EXP34-C

Do not dereference null pointers

CWE 476

NULL Pointer Dereference

Code examples The following code example fails the check and will give a warning:

#include <string.h>

char *
getenv(const char *name)
{
 return strcmp(name, "HOME")==0 ? "/" : NULL;
}

int
ex(void)
{
 return *getenv("USER"); //getenv() might return NULL
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

int main(void)
{
 int *p = malloc(sizeof(int));

 if (p != 0) {
 *p = 4;
 }

 return (int)p;
}

PTR-null-literal-pos

Synopsis A literal pointer expression (like NULL) is dereferenced by a function call.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A literal pointer expression (for example NULL) is passed as argument to a function that
might dereference it. Pointer values are generally only useful if acquired at runtime, and
thus dereferencing a literal address is usually unintentional, resulting in corrupted
memory or an application crash.

Coding standards CWE 476

NULL Pointer Dereference

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

265

266

Descriptions of checks

#define NULL ((void *) 0)

extern int sometimes;

int bar(int *x){
 if (sometimes)
 *x = 3;
 return 0;
}

int foo(int *x) {
 bar(NULL);
}
#define NULL ((void *) 0)

int bar(int *x){
 *x = 3;
 return 0;
}

int foo(int *x) {
 if (x != NULL) {
 *x = 4;
 }
 bar(NULL);
}

The following code example passes the check and will not give a warning about this
issue:

#define NULL ((void *) 0)

int bar(int *x){
 if (x != NULL)
 *x = 3;
 return 0;
}

int foo(int *x) {
 if (x != NULL) {
 *x = 4;
 }
 bar(x);
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

PTR-overload (C++ only)

Synopsis An & operator is overloaded.

Enabled by default No

Severity/Certainty Low/Low

Full description The address of an object of incomplete type is taken. Because the complete type contains
a user-declared & operator, this leads to undefined behavior.

Coding standards MISRA C++ 2008 5-3-3

(Required) The unary & operator shall not be overloaded.

Code examples The following code example fails the check and will give a warning:

class C{
 bool x;
 bool* operator&();
};

bool* C::operator&(){
 return &x;
}

The following code example passes the check and will not give a warning about this
issue:

class C{
 int x;
 int operator+(int other);
};

int C::operator+(int other){
 return x + other;
}

PTR-singleton-arith-pos

Synopsis Pointer arithmetic might be performed on a pointer that points to a single object.
AFE1_AFE2-1:1

267

268

Descriptions of checks

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description Pointer arithmetic might be performed on a pointer that points to a single object. If this
pointer is subsequently dereferenced, it could be pointing to invalid memory, causing a
runtime error.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
void example(int a) {
 int *p;
 if (a) {
 p = malloc(sizeof(int) * 10);
 } else {
 p = malloc(sizeof(int));

 }
 p = p + 1;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
void example(int a) {
 int *p;
 if (a) {
 p = malloc(sizeof(int) * 10);
 } else {
 p = malloc(sizeof(int) * 20);

 }
 p = p + 1;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

PTR-singleton-arith

Synopsis Pointer arithmetic is performed on a pointer that points to a single object.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description Pointer arithmetic is performed on a pointer that points to a single object. If this pointer
is subsequently dereferenced, it might be pointing to invalid memory, causing a runtime
error.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 int *p = malloc(sizeof(int));
 p = p + 1;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
 int *p = malloc(sizeof(int) * 10);
 p = p + 1;
}

PTR-unchk-param-some

Synopsis A pointer is dereferenced after being determined not to be NULL on some paths, but not
checked on others.

Enabled by default Yes
AFE1_AFE2-1:1

269

270

Descriptions of checks

Severity/Certainty Medium/Medium

Full description On some execution paths a pointer is determined not to be NULL before being
dereferenced, but is dereferenced on other paths without checking. Checking a pointer
value indicates that its value might be NULL. It should thus be checked on all possible
execution paths that result in a dereference.

Coding standards CWE 822

Untrusted Pointer Dereference

Code examples The following code example fails the check and will give a warning:

int deref(int *p,int q)
{
if(q)
 *p=q;
else{
 if(p == 0)
 return 0;
 else{
 *p=1;
 return 1;
 }
}
}

The following code example passes the check and will not give a warning about this
issue:

#define NULL 0

int safe_deref(int *p)
{
 if (p == NULL) {
 return 0;
 } else {
 return *p;
 }
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

PTR-unchk-param

Synopsis A pointer parameter is not compared to NULL

Enabled by default No

Severity/Certainty Low/High

Full description A function dereferences a pointer argument, without first checking that it isn't equal to
NULL. Dereferencing a NULL pointer will cause an application crash.

Coding standards CWE 822

Untrusted Pointer Dereference

Code examples The following code example fails the check and will give a warning:

int deref(int *p)
{
 return *p;
}

The following code example passes the check and will not give a warning about this
issue:

#define NULL 0

int safe_deref(int *p)
{
 if (p == NULL) {
 return 0;
 } else {
 return *p;
 }
}

PTR-uninit-pos

Synopsis Possible dereference of an uninitialized or NULL pointer.

Enabled by default Yes
AFE1_AFE2-1:1

271

272

Descriptions of checks

Severity/Certainty Low/High

Full description On some execution paths, an uninitialized pointer value is dereferenced. This might
cause memory corruption or an application crash. Pointer values must be initialized on
all execution paths that result in a dereference.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

CWE 824

Access of Uninitialized Pointer

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int *p;
 *p = 4; //p is uninitialized
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int *p,a;
 p = &a;
 *p = 4; //OK - p holds a valid address
}

PTR-uninit

Synopsis Dereference of an uninitialized or NULL pointer.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty High/Medium

Full description An uninitialized pointer value is being dereferenced. This might cause memory
corruption or an application crash. Pointer values must be initialized before being
dereferenced.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

CWE 824

Access of Uninitialized Pointer

MISRA C:2004 9.1

(Required) All automatic variables shall have been assigned a value before
being used.

MISRA C++ 2008 8-5-1

(Required) All variables shall have a defined value before they are used.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int *p;
 *p = 4; //p is uninitialized
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int *p,a;
 p = &a;
 *p = 4; //OK - p holds a valid address
}

AFE1_AFE2-1:1

273

274

Descriptions of checks

RED-case-reach

Synopsis A case statement within a switch statement cannot be reached.

Enabled by default No

Severity/Certainty Low/Medium

Full description A case statement within a switch statement cannot be reached, because the switch
statement's expression cannot have the value of the case statement's label. This often
occurs because literal values have been assigned to the switch condition. An
unreachable case statement is not unsafe as such, but might indicate a programming
error.

Coding standards CERT MSC07-C

Detect and remove dead code

MISRA C:2012 Rule-2.1

(Required) A project shall not contain unreachable code

MISRA C++ 2008 0-1-2

(Required) A project shall not contain infeasible paths.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int x = 42;

 switch(2 * x) {
 case 42 : //unreachable case, as x is 84
 ;
 default :
 ;
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
 int x = 42;

 switch(2 * x) {
 case 84 :
 ;
 default :
 ;
 }
}

RED-cmp-always

Synopsis A comparison using ==, <, <=, >, or >= is always true.

Enabled by default No

Severity/Certainty Low/Medium

Full description A comparison using ==, <, <=, >, or >= is always true, given the values of the arguments
of the comparison operator. This often occurs because literal values or macros have
been used on one or both sides of the operator. Double-check that the operands and the
code logic are correct.

Coding standards CWE 571

Expression is Always True

MISRA C:2004 13.7

(Required) Boolean operations whose results are invariant shall not be
permitted.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

275

276

Descriptions of checks

int example(void) {
 int x = 42;

 if (x == 42) { //always true
 return 0;
 }

 return 1;

}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 int x = 42;

 if (rand()) {
 x = 40;
 }

 if (x == 42) { //OK - may not be true
 return 0;
 }

 return 1;

}

RED-cmp-never

Synopsis A comparison using ==, <, <=, >, or >= is always false.

Enabled by default No

Severity/Certainty Low/Medium

Full description A comparison using ==, <, <=, >, or >= is always false, based on the values of the
arguments of the comparison operator. This often occurs because literal values or
macros have been used on one or both sides of the operator. Double-check that the
operands and the code logic are correct.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards CWE 570

Expression is Always False

MISRA C:2004 13.7

(Required) Boolean operations whose results are invariant shall not be
permitted.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 int x = 10;

 if (x < 10) { //never true
 return 1;
 }

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {

 if (x < 10) { //OK - may be true
 return 1;
 }

 return 0;
}

RED-cond-always

Synopsis The condition in an if, for, while, do-while, or ternary operator will always be true.

Enabled by default No

Severity/Certainty Medium/Medium

Full description The condition in an if, for, while, do-while, or ternary operator will always be true. This
might indicate a logical error that could result in unexpected runtime behavior.
AFE1_AFE2-1:1

277

278

Descriptions of checks

Coding standards CERT EXP17-C

Do not perform bitwise operations in conditional expressions

MISRA C:2012 Rule-14.3

(Required) Controlling expressions shall not be invariant

MISRA C++ 2008 0-1-2

(Required) A project shall not contain infeasible paths.

Code examples The following code example fails the check and will give a warning:

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && 1; x--) {
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && 1; x++) {
 }
}

RED-cond-const-assign

Synopsis A constant assignment in a conditional expression.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description An assignment of a constant to a variable is used in a conditional expression. It is most
likely an accidental use of the assignment operator (=) instead of the comparison
operator (==). The usual result of an assignment operation is the value of the right-hand
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

operand, which in this case is a constant value. This constant value is being compared
to zero in the condition, then an execution path is chosen. Any alternate paths are
unreachable because of this constant condition.

Coding standards CWE 481

Assigning instead of Comparing

CWE 570

Expression is Always False

CWE 571

Expression is Always True

Code examples The following code example fails the check and will give a warning:

int * foo(int* y, int size){
 int counter = 100;
 int * orig = y;
 while (y = 0) {
 if (counter)
 continue;
 else
 return orig;

 };
}

The following code example passes the check and will not give a warning about this
issue:

int * foo(int* y, int size){
 int counter = 100;
 int * orig = y;
 while (*y++ = 0) {
 if (++counter)
 continue;
 else
 return orig;

 };
}

RED-cond-const-expr

Synopsis A conditional expression with a constant value
AFE1_AFE2-1:1

279

280

Descriptions of checks

Enabled by default No

Severity/Certainty Low/Medium

Full description A non-trivial expression composed only of constants is used as the truth value in a
conditional expression. The condition will either always or never be true, and thus
program flow is deterministic, making the test redundant. This check assumes that
trivial conditions, such as using a const variable or literal directly, are intentional. It is
easy to see if they are indeed unintentional.

Coding standards CWE 570

Expression is Always False

CWE 571

Expression is Always True

Code examples The following code example fails the check and will give a warning:

int foo(int x){
 while (1+1){
 };
}

int foo2(int x){
 for(x = 0; 0 < 10; x++){
 };
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int foo(int x){

 while (foo(foo(3))){
 x++;
 }
 return x;
}

int foo2(int x){
 while (0){ // valid usage

 }
 return x;
}

RED-cond-const

Synopsis A constant value is used as the condition for a loop or if statement.

Enabled by default No

Severity/Certainty Low/High

Full description A constant value is used as the condition for a loop or if statement. This might be an
error. If the condition is part of a for or while loop, it will never terminate.

Coding standards CWE 570

Expression is Always False

CWE 571

Expression is Always True

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

281

282

Descriptions of checks

void example(void) {
 int x = 0;
 while (10){
 ++x;
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int x = 0;
 while (x < 10){
 ++x;
 }
}

RED-cond-never

Synopsis The condition in if, for, while, do-while, or ternary operator will never be true.

Enabled by default No

Severity/Certainty Medium/Medium

Full description The condition in an if, for, while, do-while, or ternary operator will never be true. This
might indicate a logical error that could result in unexpected runtime behavior.

Coding standards CERT EXP17-C

Do not perform bitwise operations in conditional expressions

MISRA C:2012 Rule-14.3

(Required) Controlling expressions shall not be invariant

MISRA C++ 2008 0-1-2

(Required) A project shall not contain infeasible paths.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && x >= 1; x++) {
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && x >= 0; x++) {
 }
}

RED-dead

Synopsis A part of the application is never executed.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description There are statements in the application that cannot be reached on at least some execution
paths. Dead code might indicate problems with the application's branching structure.

Coding standards CERT MSC07-C

Detect and remove dead code

CWE 561

Dead Code

MISRA C:2004 14.1

(Required) There shall be no unreachable code.

MISRA C:2012 Rule-2.1
AFE1_AFE2-1:1

283

284

Descriptions of checks

(Required) A project shall not contain unreachable code

MISRA C++ 2008 0-1-1

(Required) A project shall not contain unreachable code.

MISRA C++ 2008 0-1-9

(Required) There shall be no dead code.

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

int f(int mode) {
 switch (mode) {
 case 0:
 return 1;
 printf("Hello!"); // This line cannot execute.
 default:
 return -1;
 }
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

int f(int mode) {
 switch (mode) {
 case 0:
 printf("Hello!"); // This line can execute.
 return 1;
 default:
 return -1;
 }
}

RED-expr

Synopsis Some expressions, such as x & x and x | x, are redundant.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description Using one or more variable does not result in a change in that variable, or another
variable, or some other side-effect. Giving two identical operands to a bitwise OR
operator, for example, yields nothing, because the result is equal to the original
operands. This might indicate that one of the variables is not intended to be used where
it is used. This use of the operator is redundant.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

int example(int x) {
 return x | x;
}
int example(int x) {
 return x & x;
}
void example(int x) {
 x = x;
}

The following code example passes the check and will not give a warning about this
issue:

void example(int x) {
 x = x ^ x; //OK - x is modified
}

RED-func-no-effect

Synopsis A function is declared that has no return type and creates no side effects.

Enabled by default No

Severity/Certainty Low/Low
AFE1_AFE2-1:1

285

286

Descriptions of checks

Full description A function is declared that has no return type and creates no side effects. This function
is meaningless.

Coding standards MISRA C++ 2008 0-1-8

(Required) All functions with void return type shall have external side effect(s).

Code examples The following code example fails the check and will give a warning:

void pointless (int i, char c)
{
 int local;
 local = 0;
 local = i;
}

The following code example passes the check and will not give a warning about this
issue:

void func(int i)
{
 int p;
 p = i;
 int *ptr;
 ptr = &i;
 i = p;
 i++;
}

RED-local-hides-global

Synopsis The definition of a local variable hides a global definition.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A local variable is declared with the same name as a global variable, hiding the global
variable from this scope, from this point onwards. This might be intentional, but it is
better to use a different name for the local variable, so that a reference to the global
variable does not accidentally change or return the local value.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C:2004 5.2

(Required) Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

MISRA C:2012 Rule-5.3

(Required) An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope

MISRA C++ 2008 2-10-2

(Required) Identifiers declared in an inner scope shall not hide an identifier
declared in an outer scope.

Code examples The following code example fails the check and will give a warning:

int x;

int foo (int y){
 int x=0;
 x++;
 return x+y;

}

The following code example passes the check and will not give a warning about this
issue:

int x;

int foo (int y){

 x++;
 return x+y;

}

AFE1_AFE2-1:1

287

288

Descriptions of checks

RED-local-hides-local

Synopsis The definition of a local variable hides a previous local definition.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A local variable is declared with the same name as another local variable, hiding the
outer value from this scope, from this point onwards. This might be intentional, but it
is better to use a different name for the second variable, so that a reference to the outer
variable does not accidentally change or return the inner value.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C:2004 5.2

(Required) Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

MISRA C:2012 Rule-5.3

(Required) An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope

MISRA C++ 2008 2-10-2

(Required) Identifiers declared in an inner scope shall not hide an identifier
declared in an outer scope.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int foo(int x){

 for (int y= 0; y < 10 ; y++){

 for (int y = 0; y < 100; y ++){
 return x+y;
 }
 }
 return x;
}

int foo2(int x){
 int y = 10;

 for (int y= 0; y < 10 ; y++)
 x++;
 return x;
}

int foo3(int x){

 int y = 10;
 {
 int y = 100;
 return x + y;
 }
}

The following code example passes the check and will not give a warning about this
issue:

int foo(int x){

 for (int y=0; y < 10; y++)
 x++;
 for (int y=0; y < 10; y++)
 x++;
 return x;
}

RED-local-hides-member (C++ only)

Synopsis The definition of a local variable hides a member of the class.

Enabled by default Yes
AFE1_AFE2-1:1

289

290

Descriptions of checks

Severity/Certainty Medium/Medium

Full description A local variable is declared in a class function with the same name as a member of the
class, hiding the member from this scope, from this point onwards. This might be
intentional, but it is better to use a different name for the variable, so that a reference to
the class member does not accidentally change or return the local value.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C++ 2008 2-10-2

(Required) Identifiers declared in an inner scope shall not hide an identifier
declared in an outer scope.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

class A {
 int x;

public:

 void foo(int y){

 for(int x = 0; x < 10 ; x++){
 y++;
 }

 }

 void foo2(int y){
 int x = 0;
 x+=y;
 return;

 }

 void foo3(int y){

 {
 int x = 0;
 x+=y;
 return;
 }
 }

};

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

291

292

Descriptions of checks

class A {
int x;

};

class B{
int y;

void foo();
};

void B::foo() {
int x;

}

RED-local-hides-param

Synopsis A variable declaration hides a parameter of the function

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A local variable is declared in a function with the same name as an argument of the
function, hiding the argument from this scope, from this point onwards. This might be
intentional, but it is better to use a different name for the variable, so that a reference to
the argument does not accidentally change or return the inner value.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C:2004 5.2

(Required) Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

MISRA C:2012 Rule-5.3
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope

MISRA C++ 2008 2-10-2

(Required) Identifiers declared in an inner scope shall not hide an identifier
declared in an outer scope.

Code examples The following code example fails the check and will give a warning:

int foo(int x){

 for (int x = 0; x < 100; x++);

 return x;
}

The following code example passes the check and will not give a warning about this
issue:

int foo(int x){
 int y;

 return x;
}

RED-no-effect

Synopsis A statement potentially contains no side effects.

Enabled by default No

Severity/Certainty Low/Medium

Full description A statement expression seems to have no side-effects and is redundant. For example, 5
+ 6; will add 5 and 6, but will not use the result anywhere. Consequently the statement
has no effect on the rest of the application, and should probably be deleted.

Coding standards CERT MSC12-C

Detect and remove code that has no effect
AFE1_AFE2-1:1

293

294

Descriptions of checks

CWE 482

Comparing instead of Assigning

MISRA C:2004 14.2

(Required) All non-null statements shall either have at least one side effect
however executed, or cause control flow to change.

MISRA C:2012 Rule-2.2

(Required) There shall be no dead code

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int x = 1;
 x = 2;
 x < x;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <string>
#include "iar.h"

void f();
template<class T>
struct X {
 int x;

 int get() const {
 return x;
 }

 X(int y) :
 x(y) {}

};

typedef X<int> intX;

void example(void) {
 /* everything below has a side-effect */
 int i=0;
 f();
 (void)f();
 ++i;
 i+=1;
 i++;
 char *p = "test";
 STD string s;
 s.assign(p);
 STD string *ps = &s;
 ps -> assign(p);
 intX xx(1);
 xx.get();
 intX(1);
}

RED-self-assign

Synopsis In a C++ class member function, a variable is assigned to itself.

Enabled by default Yes
AFE1_AFE2-1:1

295

296

Descriptions of checks

Severity/Certainty Low/High

Full description In a C++ class member function, a variable is assigned to itself. This error might be
harder to identify than in an ordinary C function, because variables might be qualified
by this, and thus refer to class members.

Coding standards CWE 480

Use of Incorrect Operator

Code examples The following code example fails the check and will give a warning:

class A {
public :
 int x;
 void f(void) { this->x = x; } //self-assignment
};

int main(void) {
 A *a = new A();

 a->f();

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

class A {
public :
 int x,y;
 void f(void) { this->x = y; }
};

int main(void) {
 A *a = new A();

 a->f();

 return 0;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

RED-unused-assign

Synopsis A variable is assigned a non-trivial value that is never used.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description A variable is assigned a non-trivial value that is never used. This is not unsafe as such,
but might indicate a logical error.

Coding standards CERT MSC13-C

Detect and remove unused values

CWE 563

Unused Variable

Code examples The following code example fails the check and will give a warning:

int example(void) {
 int x;

 x = 20;

 x = 3;
 return 0;
}
#include <stdlib.h>

void ex(void) {
 int *p = 0;
 int *q = 0;
 p = malloc(sizeof(int));
 q = malloc(sizeof(int));
 p = q; //p is not used after this assignment
 return;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

297

298

Descriptions of checks

#include <stdlib.h>

int *ex(void) {
 int *p = 0;
 p = malloc(sizeof(int));
 return p; //the value is returned
}
int example(void) {
 int x;

 x = 20;

 return x;
}

RED-unused-param

Synopsis A function parameter is declared but not used.

Enabled by default No

Severity/Certainty Low/Medium

Full description A function parameter is declared but not used. This might be intentional, and is not
unsafe as such. For example, the function might need to follow a specific calling
convention, or might be a virtual C++ function that does not need as much information
from its arguments as other functions do. Make sure that it is not an error.

Coding standards CWE 563

Unused Variable

MISRA C:2012 Rule-2.7

(Advisory) There should be no unused parameters in functions

MISRA C++ 2008 0-1-11

(Required) There shall be no unused parameters (named or unnamed) in
nonvirtual functions.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int example(int x) {
 /* `x' is not used */
 return 20;
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 return x + 20;
}

RED-unused-return-val

Synopsis There are unused function return values (other than overloaded operators).

Enabled by default No

Severity/Certainty Low/Medium

Full description There are unused function return values (other than overloaded operators). This might
be an error. The return value of a function should always be used. Overloaded operators
are excluded; they should behave like the built-in operators. You can discard the return
value of a function by using a (void) cast.

Coding standards CWE 252

Unchecked Return Value

MISRA C:2012 Rule-17.7

(Required) The value returned by a function having non-void return type shall
be used

MISRA C++ 2008 0-1-7

(Required) The value returned by a function having a non-void return type that
is not an overloaded operator shall always be used.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

299

300

Descriptions of checks

int func (int para1)
{
 return para1;
}

void discarded (int para2)
{
 func(para2); // value discarded - Non-compliant
}

The following code example passes the check and will not give a warning about this
issue:

int func (int para1)
{
 return para1;
}

int not_discarded (int para2)
{
 if (func(para2) > 5){
 return 1;
 }
 return 0;
}

RED-unused-val

Synopsis A variable is assigned a value that is never used.

Enabled by default No

Severity/Certainty Low/Medium

Full description A variable is initialized or assigned a value, and then another assignment destroys that
value before it is used. This is not unsafe as such, but might indicate a logical error. This
check does not detect when a value is simply lost when the function ends.

Coding standards MISRA C:2012 Rule-2.2

(Required) There shall be no dead code
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRA C++ 2008 0-1-4

(Required) A project shall not contain non-volatile POD variables having only
one use.

MISRA C++ 2008 0-1-6

(Required) A project shall not contain instances of non-volatile variables being
given values that are never subsequently used.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 int x;

 x = 20;

 x = 3;
 return 0;
}
#include <stdlib.h>

void ex(void) {
 int *p = 0;
 int *q = 0;
 p = malloc(sizeof(int));
 q = malloc(sizeof(int));
 p = q; //p is not used after this assignment
 return;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int *ex(void) {
 int *p;
 p = malloc(sizeof(int));
 return p; //the value is returned
}
int example(void) {
 int x;

 x = 20;

 return x;
}

AFE1_AFE2-1:1

301

302

Descriptions of checks

RED-unused-var-all

Synopsis A variable is neither read nor written for any execution path.

Enabled by default Yes

Severity/Certainty Low/High

Full description A variable is neither read nor written for any execution path. Writing includes
initialization, and reading includes passing the variable as a parameter in a function call.
This is not unsafe as such, but might indicate a logical error.

Coding standards CERT MSC13-C

Detect and remove unused values

CWE 563

Unused Variable

MISRA C++ 2008 0-1-3

(Required) A project shall not contain unused variables.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 int x; //this value is not used

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 int x = 0; //OK - x is returned

 return x;
}

RESOURCE-deref-file

Synopsis A pointer to a FILE object is dereferenced.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default No

Severity/Certainty Low/Medium

Full description A pointer to a FILE object is dereferenced.

Coding standards MISRA C:2012 Rule-22.5

(Mandatory) A pointer to a FILE object shall not be dereferenced

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

void example(void) {
 FILE *pf1;
 FILE f3;

 f3 = *pf1;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

void example(void) {
 FILE *f1;
 FILE *f2;

 f1 = f2;
}

RESOURCE-double-close

Synopsis A file resource is closed multiple times

Enabled by default Yes
AFE1_AFE2-1:1

303

304

Descriptions of checks

Severity/Certainty High/Medium

Full description An open file is closed multiple times without being re-opened in between. This will
cause an application crash.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

void example(void) {
 FILE *f1;
 f1 = fopen("test_file", "w");
 fclose(f1);
 fclose(f1);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

void example(void) {
 FILE *f1;
 f1 = fopen("test_file", "w");
 fclose(f1);
}

RESOURCE-file-no-close-all

Synopsis A file pointer is never closed.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description One or more file pointers are never closed. To avoid failure caused by resource
exhaustion, all file pointers obtained dynamically by means of Standard Library
functions must be explicitly released. Releasing them as soon as possible reduces the
risk that exhaustion will occur.

Coding standards CWE 404

Improper Resource Shutdown or Release

MISRA C:2012 Rule-22.1

(Required) All resources obtained dynamically by means of Standard Library
functions shall be explicitly released

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

void example(void) {
 FILE *fp = fopen("test.txt", "c");
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

void example(void) {
 FILE *fp = fopen("test.txt", "c");
 fclose(fp);
}
#include <stdio.h>

void iCloseFilePointers(FILE *fp) {
 fclose(fp);
}

void example(void) {
 FILE *fp = fopen("text.txt", "w");
 iCloseFilePointers(fp);
}

RESOURCE-file-pos-neg

Synopsis A file handler might be negative

Enabled by default No
AFE1_AFE2-1:1

305

306

Descriptions of checks

Severity/Certainty Medium/Medium

Full description A file handler might be negative. If open() cannot open a file, it will return a negative
file descriptor. Using this file descriptor might cause a runtime error.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <fcntl.h>

void example(void) {
 int a = open("test.txt", O_WRONLY);
 write(a, "Hello", 5);
}

The following code example passes the check and will not give a warning about this
issue:

#include <fcntl.h>

void example(void) {
 int a = open("test.txt", O_WRONLY);
 if (a > 0) {
 write(a, "Hello", 5);
 }
}

RESOURCE-file-use-after-close

Synopsis A file resource is used after it has been closed.

Enabled by default Yes

Severity/Certainty High/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description A file resource is referred to after it has been closed. When a file has been closed, any
reference to it is invalid. Using this reference might cause an application crash.

Coding standards This check does not correspond to any coding standard rules.

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

void example(void) {
 FILE *f1;
 f1 = fopen("test_file", "w");
 fclose(f1);
 fprintf(f1, "Hello, World!\n");
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

void example(void) {
 FILE *f1;
 f1 = fopen("test_file", "w");
 fprintf(f1, "Hello, World!\n");
 fclose(f1);
}

RESOURCE-implicit-deref-file

Synopsis A file pointer is implicitly dereferenced by a library function.

Enabled by default No

Severity/Certainty Medium/Medium

Full description A file pointer is implicitly dereferenced by a library function.

Coding standards MISRA C:2012 Rule-22.5
AFE1_AFE2-1:1

307

308

Descriptions of checks

(Mandatory) A pointer to a FILE object shall not be dereferenced

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void example(void) {
 FILE *ptr1 = fopen("hello", "r");
 int *a;
 memcpy(ptr1, a, 10);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void example(void) {
 FILE *ptr1;
 int *a;
 memcpy(a, a, 0);
}

RESOURCE-write-ronly-file

Synopsis A file opened as read-only is written to.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description A file opened as read-only is written to. This will cause a runtime error in your
application, either silently if the file exists, or as a crash if it does not exist.

Coding standards MISRA C:2012 Rule-22.4

(Mandatory) There shall be no attempt to write to a stream which has been
opened as read-only
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>
#include <stdlib.h>

void example(void) {
 FILE *f1;
 f1 = fopen("test-file.txt", "r");
 fprintf(f1, "Hello, World!");
 fclose(f1);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>
#include <stdlib.h>

void example(void) {
 FILE *f1;
 f1 = fopen("test-file.txt", "r+");
 fprintf(f1, "Hello, World!");
 fclose(f1);
}

SIZEOF-side-effect

Synopsis sizeof expressions containing side effects

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description The sizeof operator is used on an expression that contains side effects. Because
sizeof only operates on the type of the expression, the expression itself is not
evaluated, which it probably was meant to be.

Coding standards CERT EXP06-C

Operands to the sizeof operator should not contain side effects

CERT EXP06-CPP
AFE1_AFE2-1:1

309

310

Descriptions of checks

Operands to the sizeof operator should not contain side effects

MISRA C:2004 12.3

(Required) The sizeof operator shall not be used on expressions that contain side
effects.

MISRA C++ 2008 5-3-4

(Required) Evaluation of the operand to the sizeof operator shall not contain
side effects.

Code examples The following code example fails the check and will give a warning:

void example(void) {
int i;
int size = sizeof(i++);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int i;
int size = sizeof(i);
i++;

}

SPC-init-list

Synopsis The initalization list of an array contains side effects.

Enabled by default No

Severity/Certainty Medium/Medium

Full description The initalization list of an array contains side effects.

Coding standards MISRA C:2012 Rule-13.1

(Required) Initializer lists shall not contain persistent side effects

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

volatile int v1;

extern void p (int a[2]);

int x = 10;

void example(void) {
 int a[2] = { v1, 0 };

 p((int[2]) { x++, x-- });

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int a[2] = { 1, 2 };
}

SPC-order

Synopsis Expressions that depend on order of evaluation were found.

Enabled by default Yes

Severity/Certainty Medium/High

Full description One and the same variable is changed in different parts of an expression with an
unspecified evaluation order, between two consecutive sequence points. Standard C
does not specify an evaluation order for different parts of an expression. For this reason
different compilers are free to perform their own optimizations regarding the evaluation
order. Projects containing statements that violate this check are not easily ported to
another architecture or compiler, and if they are they might be difficult to debug. Only
four operators have a guaranteed order of evaluation: logical AND (a && b) evaluates
the left operand, then the right operand only if the left is found to be true; logical OR (a
|| b) evaluates the left operand, then the right operand only if the left is found to be
false; a ternary conditional (a ? b : c) evaluates the first operand, then either the
second or the third, depending on whether the first is found to be true or false; and a
comma (a , b) evaluates its left operand before its right.
AFE1_AFE2-1:1

311

312

Descriptions of checks

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C:2004 12.2

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.

MISRA C:2012 Rule-13.2

(Required) The value of an expression and its persistent side effects shall be the
same under all permitted evaluation orders

MISRA C++ 2008 5-0-1

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.

Code examples The following code example fails the check and will give a warning:

int main(void) {
 int i = 0;

 i = i * i++; //unspecified order of operations

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int i = 0;
 int x = i;

 i++;
 x = x * i; //OK - statement is broken up

 return 0;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

SPC-uninit-arr-all

Synopsis Reads from local buffers are not preceded by writes.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A value is read from an array, without being explicitly stored in that array first. This
check determines whether at least one element of an array has been written before any
element of the array is read. If the check triggers, it generally means that an uninitialized
value is read. This might cause incorrect behavior or an application crash.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

313

314

Descriptions of checks

void example() {
 int x[20];
 x[0] = 1;
 int b = x[1]; /* bad read, x[0] was initialized but x[1] wasn't
*/
}
/* won't work until signature of memcpy is known */
#include <string.h>
void example() {
 int a[20];
 int b[20];
 memcpy(a,b,20);
}

/* read thru alias */
void example() {
 int x[20];
 int *a = x;
 int b = a[1]; /* read x thru alias a, but x not init */
}
void example() {
 int a[20];
 int b = a[1];
}
void example() {
 int x[20];
 *x = 1;
 int b = x[1]; /* bad read, x[0] was initialized but x[1] wasn't
*/
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example() {
 int x[20];
 int *p = x;
 x[0]=1;
 int k = *p; /* read thru alias */
}
void example() {
 int x[20];
 int *p = x;
 p[0]=1; /* write thru alias */
 int k = *x;
}
struct X { int e; };
void example() {
 struct X x[20];
 x->e = 1;
 { struct X b = x[0]; } /* x[0] has been initialized via x->e,
but Goanna currently doesn't have pointer alias analysis on
individual array elements */
}
void example() {
 int x[20];
 *(x+0) = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}
extern void f(int*);
void example() {
 int a[20];
 f(a);
 int b = a[1];
}
void example() {
 int a[20] =
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20};
 int b = a[1];
}
void example() {
 int x[20];
 *x = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}
/* write thru alias */
void example() {
 int x[20];
 int *a = x;
AFE1_AFE2-1:1

315

316

Descriptions of checks

 f(a); /* assumed init of x thru alias a */
 int b = x[1];
}
void example() {
 int x[20];
 x[0] = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}

SPC-uninit-struct-field-heap

Synopsis A field of a dynamically allocated struct is read before it is initialized.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A field of a dynamically allocated struct is read before it is initialized. An uninitialized
field might cause unexpected and unpredictable results. Uninitialized variables are easy
to overlook, because they seldom cause problems.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

struct st {
 int x;
 int y;
};

void example(void) {
 int a;
 struct st *str = malloc(sizeof(struct st));
 a = str->x;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

struct st {
 int x;
 int y;
};

void example(void) {
 int a;
 struct st *str = malloc(sizeof(struct st));
 str->x = 0;
 a = str->x;
}

SPC-uninit-struct-field

Synopsis A field of a local struct is read before it is initialized.

Enabled by default Yes

Severity/Certainty High/Medium

Full description A field of a local struct is read before it is initialized. An uninitialized field might cause
unexpected and unpredictable results. Uninitialized variables are easy to overlook,
because they seldom cause problems.
AFE1_AFE2-1:1

317

318

Descriptions of checks

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

Code examples The following code example fails the check and will give a warning:

struct st {
 int x;
 int y;
};

void example(void) {
 int a;
 struct st str;
 a = str.x;
}

The following code example passes the check and will not give a warning about this
issue:

struct st {
 int x;
 int y;
};

void example(void) {
 int a;
 struct st str;
 str.x = 0;
 a = str.x;
}

SPC-uninit-struct

Synopsis A struct has one or more fields read before they are initialized.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty High/Medium

Full description A struct is read from before any of its fields are initialized. Using uninitialized values
might cause unexpected results or unpredictable application behavior, particularly in the
case of pointer fields.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

Code examples The following code example fails the check and will give a warning:

struct st {
 int x;
 int y;
};

void example(void) {
 int a;
 struct st str;
 a = str.x;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

319

320

Descriptions of checks

struct st {
 int x;
 int y;
};

void example(int i) {
 int a;
 struct st str;
 str.x = i;
 a = str.x;
}

SPC-uninit-var-all

Synopsis A variable is read before it is assigned a value.

Enabled by default Yes

Severity/Certainty High/High

Full description A variable is read before it is assigned a value. Different execution paths might result in
a variable being read at different points in the execution. Because uninitialized data is
read, application behavior might be unpredictable.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

MISRA C:2004 9.1

(Required) All automatic variables shall have been assigned a value before
being used.

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

MISRA C++ 2008 8-5-1
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) All variables shall have a defined value before they are used.

Code examples The following code example fails the check and will give a warning:

int main(void) {
 int x;

 x++; //x is uninitialized

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int x = 0;

 x++;

 return 0;
}

SPC-uninit-var-some

Synopsis A variable is read before it is assigned a value.

Enabled by default Yes

Severity/Certainty High/Low

Full description A variable is read before it is assigned a value. On some execution paths, the variable
might be read before it is assigned a value. This might cause unpredictable application
behavior.

Coding standards CWE 457

Use of Uninitialized Variable

MISRA C:2004 9.1

(Required) All automatic variables shall have been assigned a value before
being used.
AFE1_AFE2-1:1

321

322

Descriptions of checks

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

MISRA C++ 2008 8-5-1

(Required) All variables shall have a defined value before they are used.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int main(void) {
 int x, y;

 if (rand()) {
 x = 0;
 }

 y = x; //x may not be initialized

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int main(void) {
 int x;

 if (rand()) {
 x = 0;
 }

 /* x never read */

 return 0;
}

SPC-volatile-reads

Synopsis There are multiple read accesses with volatile-qualified type within one and the same
sequence point.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/High

Full description There are multiple read accesses with volatile-qualified type within one and the same
sequence point. There cannot be more than one read access with volatile-qualified type
within a sequence point.

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C:2004 12.2

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.

MISRA C:2012 Rule-13.2

(Required) The value of an expression and its persistent side effects shall be the
same under all permitted evaluation orders

MISRA C++ 2008 5-0-1

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.

Code examples The following code example fails the check and will give a warning:

#include "mc2_types.h"
//#include "mc2_header.h"

void example(void) {
 uint16_t x;
 volatile uint16_t v;
 x = v + v;
}

AFE1_AFE2-1:1

323

324

Descriptions of checks

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int i = 0;
 int x = i;

 i++;
 x = x * i; //OK - statement is broken up

 return 0;
}

SPC-volatile-writes

Synopsis There are multiple write accesses with volatile-qualified type within one and the same
sequence point.

Enabled by default No

Severity/Certainty Medium/High

Full description There are multiple write accesses with volatile-qualified type within one and the same
sequence point. There cannot be more than one write access with volatile-qualified type
within a sequence point.

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C:2004 12.2

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRA C:2012 Rule-13.2

(Required) The value of an expression and its persistent side effects shall be the
same under all permitted evaluation orders

MISRA C++ 2008 5-0-1

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.

Code examples The following code example fails the check and will give a warning:

#include "mc2_types.h"
//#include "mc2_header.h"

void example(void) {
 uint16_t x;
 volatile uint16_t v, w;
 v = w = x;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdbool.h>
void InitializeArray(int *);
const int *example(void)
{

static volatile bool s_initialized = false;
static int s_array[256];

if (!s_initialized)
{

InitializeArray(s_array);
s_initialized = true;

}
return s_array;

}

STR-trigraph

Synopsis Trigraphs were found in string literals.

Enabled by default Yes
AFE1_AFE2-1:1

325

326

Descriptions of checks

Severity/Certainty Low/Medium

Full description Trigraphs were found in string literals. Trigraphs can cause confusion with other uses of
two question marks and should not be used.

Coding standards MISRA C:2004 4.2

(Required) Tri-graphs shall not be used

MISRA C:2012 Rule-4.2

(Advisory) Trigraphs should not be used

MISRA C++ 2008 2-3-1

(Required) Trigraphs shall not be used.

Code examples The following code example fails the check and will give a warning:

void func()
{
 char * str = "abc??!def";
}

The following code example passes the check and will not give a warning about this
issue:

void func()
{
 char * str = "abc??def";
}

STRUCT-signed-bit

Synopsis There are signed single-bit fields (excluding anonymous fields).

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Low

Full description There are signed single-bit fields (excluding anonymous fields). A signed bitfield should
have size at least two, because one bit is required for the sign.

Coding standards MISRA C:2004 6.5

(Required) Bitfields of signed type shall be at least 2 bits long.

MISRA C:2012 Rule-6.2

(Required) Single-bit named bit fields shall not be of a signed type

MISRA C++ 2008 9-6-4

(Required) Named bit-fields with signed integer type shall have a length of more
than one bit.

Code examples The following code example fails the check and will give a warning:

struct S
{
 signed int a : 1; // Non-compliant
};

The following code example passes the check and will not give a warning about this
issue:

struct S
{
 signed int b : 2;
 signed int : 0;
 signed int : 1;
 signed int : 2;
};

SWITCH-fall-through

Synopsis There are non-empty switch cases not terminated by break and without 'fallthrough'
comment.

Enabled by default Yes
AFE1_AFE2-1:1

327

328

Descriptions of checks

Severity/Certainty Medium/Medium

Full description There are non-empty switch cases not terminated by a break. A non-empty switch clause
should be terminated by an unconditional break statement, unless explicitly commented
as a 'fallthrough'.

Coding standards CERT MSC17-C

Finish every set of statements associated with a case label with a break statement

Code examples The following code example fails the check and will give a warning:

void example(int input) {

 while (rand()) {
 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 default:
 break;
 }
 }
}
void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 default:
 break;
 }

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 break;
 case 1:
 if (rand()) {
 break;
 }
 // fallthrough
 case 2:
 // this should also fall through
 if (!rand()) {
 return;
 }
 default:
 break;
 }

}
void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 } else {
 break;
 }
 // All paths above contain a break, therefore we do not
warn
 default:
 break;
 }

}

THROW-empty (C++ only)

Synopsis Unsafe rethrow of exception.

Enabled by default No
AFE1_AFE2-1:1

329

330

Descriptions of checks

Severity/Certainty Medium/Medium

Full description A throw statement without an argument is used outside of a catch handler where there
is no exception to rethrow. This is unsafe because a throw statement without an
argument rethrows the temporary object that represents the current exception, to allow
exception handling to be split over several handlers.

Coding standards MISRA C++ 2008 15-1-3

(Required) An empty throw (throw;) shall only be used in the
compound-statement of a catch handler.

Code examples The following code example fails the check and will give a warning:

void func()
{
 try
 {
 throw;
 }
 catch (...) {}
}

The following code example passes the check and will not give a warning about this
issue:

void func()
{
 try
 {
 throw (42);
 }
 catch (int i)
 {
 if (i > 10)
 {
 throw;
 }
 }
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

THROW-main (C++ only)

Synopsis No default exception handler for try.

Enabled by default No

Severity/Certainty Medium/Low

Full description A top level try block does not have a default exception handler that will catch
exceptions. Without this, an unhandled exception might lead to termination in an
implementation-defined manner.

Coding standards MISRA C++ 2008 15-3-2

(Advisory) There should be at least one exception handler to catch all otherwise
unhandled exceptions

Code examples The following code example fails the check and will give a warning:

int main()
{
 try
 {
 throw (42);
 }
 catch (int i)
 {
 if (i > 10)
 {
 throw;
 }
 }
 return 1;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

331

332

Descriptions of checks

int main()
{
 try
 {
 throw;
 }
 catch (...) {}
 // spacer
 try {}
 catch (int i) {}
 catch (...) {}
 return 0;
}

THROW-null

Synopsis Throw of NULL integer constant

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description throw(NULL) (equivalent to throw(0)) is never a throw of the null-pointer-constant,
which means it can only be caught by an integer handler. This might be undesired
behavior, especially if your application only has handlers for pointer-to-type exceptions.

Coding standards MISRA C++ 2008 15-1-2

(Required) NULL shall not be thrown explicitly.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

typedef intint32_t;
typedefsigned charchar_t;
#defineNULL0

void example(void)
{
 try {
 throw (NULL); // Non-compliant
 }
 catch (int32_t i) { // NULL exception handled here
 // ...
 }
 catch (const char_t *) { // Developer may expect it to be
caught here
 // ...
 }
}

The following code example passes the check and will not give a warning about this
issue:

typedef intint32_t;
typedefsigned charchar_t;
#defineNULL0

void example(void)
{
 char_t * p = NULL;
 try {
 throw (p); // Compliant
 }
 catch (int32_t i) {
 // ...
 }
 catch (const char_t *) { // Exception handled here
 // ...
 }
}

THROW-ptr

Synopsis Throw of exceptions by pointer

Enabled by default Yes
AFE1_AFE2-1:1

333

334

Descriptions of checks

Severity/Certainty Medium/Medium

Full description An exception object of pointer type is thrown and that pointer refers to a dynamically
created object. It might thus be unclear which function is responsible for destroying it,
and when. This ambiguity does not exist if the object is caught by value or reference.

Coding standards CERT ERR09-CPP

Throw anonymous temporaries and catch by reference

MISRA C++ 2008 15-0-2

(Advisory) An exception object should not have pointer type.

Code examples The following code example fails the check and will give a warning:

class Except {};

Except *new_except();

void example(void)
{
 throw new Except();
}

The following code example passes the check and will not give a warning about this
issue:

class Except {};

void example(void)
{
 throw Except();
}

THROW-static (C++ only)

Synopsis Exceptions thrown without a handler in some call paths that lead to that point.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description There are exceptions thrown without a handler in some call paths that lead to that point.
If an application throws an unhandled exception, it terminates in an
implementation-defined manner. In particular, it is implementation-defined whether the
call stack is unwound before termination, so the destructors of any automatic objects
might not be invoked. If an exception is thrown as an object of a derived class, a
compatible type might be either the derived class or any of its bases. Make sure that the
application catches all exceptions it is expected to throw.

Coding standards MISRA C++ 2008 15-3-1

(Required) Exceptions shall be raised only after start-up and before termination
of the program.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

335

336

Descriptions of checks

class C {
public:
 C () { throw (0); } // Non-compliant – thrown before main
starts
 ~C () { throw (0); } // Non-compliant – thrown after main
exits
};

C c; // An exception thrown in C's constructor or destructor
will
 // cause the program to terminate, and will not be caught
by
 // the handler in main

int main(...)
{
 try {
 // program code
 return 0;
 }
 // The following catch-all exception handler can only
 // catch exceptions thrown in the above program code
 catch (...) {
 // Handle exception
 return 0;
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

class C {
public:
 C () { } // Compliant – doesn't throw exceptions
 ~C () { } // Compliant – doesn't throw exceptions
};

C c;

int main(...)
{
 try {
 // program code
 return 0;
 }
 // The following catch-all exception handler can only
 // catch exceptions thrown in the above program code
 catch (...) {
 // Handle exception
 return 0;
 }
}

THROW-unhandled (C++ only)

Synopsis There are calls to functions explicitly declared to throw an exception type that is not
handled (or declared as thrown) by the caller.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description There are calls to functions explicitly declared to throw an exception type that is not
handled (or declared as thrown) by the caller. If an application throws an unhandled
exception, it terminates in an implementation-defined manner. In particular, it is
implementation-defined whether the call stack is unwound before termination, so the
destructors of any automatic objects might not be invoked. If an exception is thrown as
an object of a derived class, a compatible type might be either the derived class or any
of its bases. Make sure that the application catches all exceptions it is expected to throw.

Coding standards MISRA C++ 2008 15-3-4
AFE1_AFE2-1:1

337

338

Descriptions of checks

(Required) Each exception explicitly thrown in the code shall have a handler of
a compatible type in all call paths that could lead to that point.

Code examples The following code example fails the check and will give a warning:

class E1{};

void foo(int i) throw (E1) {
 if (i<0)
 throw E1();
}

int bar() {
 foo(-3);
}
class E1{};

void foo(int i) throw (E1) {
 if (i<0)
 throw E1();
}

int bar() throw (E1) { //warning about E1 because it is not
EXPLICITLY caught
 foo(-3);
}

The following code example passes the check and will not give a warning about this
issue:

class E1{};

void foo(int i) throw (E1) {
 if (i<0)
 throw E1();
}

int bar() {
 try {
 foo(-3);
 }
 catch (E1){
 }
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

UNION-overlap-assign

Synopsis Assignments from one field of a union to another.

Enabled by default Yes

Severity/Certainty High/High

Full description There are assignments from one field of a union to another. Assignments between
objects that are stored in the same physical memory causes undefined behavior.

Coding standards MISRA C:2004 18.2

(Required) An object shall not be assigned to an overlapping object.

MISRA C:2012 Rule-19.1

(Mandatory) An object shall not be assigned or copied to an overlapping object

MISRA C++ 2008 0-2-1

(Required) An object shall not be assigned to an overlapping object.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

339

340

Descriptions of checks

union cheat {
 char c[5];
 int i;
};

void example(union cheat *u)
{
 u->i = u->c[2];
}
union {
 char c[5];
 int i;
} u;

void example(void)
{
 u.i = u.c[2];
}
void example(void)
{
 union
 {
 char c[5];
 int i;
 } u;
 u.i = u.c[2];
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void)
{
 union
 {
 char c[5];
 int i;
 } u;
 int x;
 x = (int)u.c[2];
 u.i = x;
}
void example(void)
{
 struct
 {
 char c[5];
 int i;
 } u;
 u.i = u.c[2];
}
union cheat {
 char c[5];
 int i;
};

union cheat u;

void example(void)
{
 int x;
 x = (int)u.c[2];
 u.i = x;
}

UNION-type-punning

Synopsis Writing to a field of a union after reading from a different field, effectively
re-interpreting the bit pattern with a different type.

Enabled by default Yes
AFE1_AFE2-1:1

341

342

Descriptions of checks

Severity/Certainty Medium/High

Full description Writing to one field of a union and then silently reading from another field circumvents
the type system. To reinterpret bit patterns deliberately, use an explicit cast.

Coding standards CERT EXP39-C

Do not access a variable through a pointer of an incompatible type

CWE 188

Reliance on Data/Memory Layout

MISRA C:2004 12.12

(Required) The underlying bit representations of floating-point values shall not
be used.

Code examples The following code example fails the check and will give a warning:

union name {
int int_field;
float float_field;

};

void example(void) {
union name u;
u.int_field = 10;
float f = u.float_field;

}

The following code example passes the check and will not give a warning about this
issue:

union name {
int int_field;
float float_field;

};

void example(void) {
union name u;
u.int_field = 10;
float f = u.int_field;

}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2004-1.2_a

Synopsis There are read accesses from local buffers that are not preceded by write accesses.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) No reliance shall be placed on undefined or unspecified behavior. This is a
semi-equivalent initialization check for arrays, which ensures that at least one element
of the array has been written before any element is attempted to be read. A warning
generally means that you have read an uninitialized value, which might cause the
application to behave erroneously or crash.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

343

344

Descriptions of checks

void example() {
 int x[20];
 x[0] = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}
/* won't work until signature of memcpy is known */
#include <string.h>
void example() {
 int a[20];
 int b[20];
 memcpy(a,b,20);
}

/* read thru alias */
void example() {
 int x[20];
 int *a = x;
 int b = a[1]; /* read x thru alias a, but x not init */
}
void example() {
 int a[20];
 int b = a[1];
}
void example() {
 int x[20];
 *x = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example() {
 int x[20];
 int *p = x;
 x[0]=1;
 int k = *p; /* read thru alias */
}
void example() {
 int x[20];
 int *p = x;
 p[0]=1; /* write thru alias */
 int k = *x;
}
struct X { int e; };
void example() {
 struct X x[20];
 x->e = 1;
 { struct X b = x[0]; } /* x[0] has been initialized via x->e,
but Goanna currently doesn't have pointer alias analysis on
individual array elements */
}
void example() {
 int x[20];
 *(x+0) = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}
extern void f(int*);
void example() {
 int a[20];
 f(a);
 int b = a[1];
}
void example() {
 int a[20] =
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20};
 int b = a[1];
}
void example() {
 int x[20];
 *x = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}
/* write thru alias */
void example() {
 int x[20];
 int *a = x;
AFE1_AFE2-1:1

345

346

Descriptions of checks

 f(a); /* assumed init of x thru alias a */
 int b = x[1];
}
void example() {
 int x[20];
 x[0] = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}

MISRAC2004-1.2_b

Synopsis On all execution paths, one or more fields are read from a struct before they are
initialized.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) No reliance shall be placed on undefined or unspecified behavior. Using
uninitialized values might cause unexpected results or unpredictable behavior,
particularly in the case of pointer fields.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

struct st {
 int x;
 int y;
};

void example(void) {
 int a;
 struct st str;
 a = str.x;
}

The following code example passes the check and will not give a warning about this
issue:

struct st {
 int x;
 int y;
};

void example(int i) {
 int a;
 struct st str;
 str.x = i;
 a = str.x;
}

MISRAC2004-1.2_c

Synopsis An expression resulting in 0 is used as a divisor.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) No reliance shall be placed on undefined or unspecified behavior. An
expression that was determined by interval analysis to be 0, is used as a divisor. This will
cause a 'divide by zero' runtime error.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors
AFE1_AFE2-1:1

347

348

Descriptions of checks

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

Code examples The following code example fails the check and will give a warning:

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a-2); // a-2 is 0
}
#include <stdlib.h>

int main (void)

{
 int *p = malloc(sizeof(int));
 int x = foo (p);
 /* foo(2) returns 8, so we have a division by zero below)*/
 x = 1 / (x - 8); /*@@ZDV-RED@@ */

 return x;
}

int foo(int * p){
 return 8;
}

The following code example passes the check and will not give a warning about this
issue:

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a+2); // OK - a+2 is 4
}

MISRAC2004-1.2_d

Synopsis A variable was found that is assigned the value 0, and then used as a divisor.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) No reliance shall be placed on undefined or unspecified behavior. This will
cause a 'divide by zero' runtime error.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

Code examples The following code example fails the check and will give a warning:

int foo(void)
{
 int a = 20, b = 0, c;

 c = a / b; /* Divide by zero */

 return c;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

349

350

Descriptions of checks

int foo(void)
{
 int a = 20, b = 5, c;

 c = a / b; /* b is not 0 */

 return c;
}
int main() {
 int totallen = 0;
 int i=0;
 float tmp=1;

 for(i=1; i<10; i++){
 totallen++;
 }

 foo(2/totallen);

 return 0;
}

int foo(int x){
 return x;
}

MISRAC2004-1.2_e

Synopsis A variable is used as a divisor after a successful comparison with 0.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) No reliance shall be placed on undefined or unspecified behavior. A variable
is compared with 0 and then used as a divisor without being written to beforehand. This
comparison implies that the variable's value is 0 for the subsequent statements. Using it
as a divisor afterwards causes a 'divide by zero' runtime error.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
int foo(void)
{
 int a = 20;
 int p = rand();

 if (p == 0) /* p is 0 */
 a = 34 / p;

 return a;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
int foo(void)
{
 int a = 20;
 int p = rand();

 if (p != 0) /* p is not 0 */
 a = 34 / p;

 return a;
}

MISRAC2004-1.2_f

Synopsis A variable used as a divisor is subsequently compared with 0.

Enabled by default Yes
AFE1_AFE2-1:1

351

352

Descriptions of checks

Severity/Certainty Low/High

Full description (Required) No reliance shall be placed on undefined or unspecified behavior. A variable
is compared to 0 after it is used as a divisor, but before it is written to again. The
comparison implies that the variable's value might be 0, and might have been for the
preceding statements. Because the variable is used as a divisor in one of these statements
(causing a 'divide by zero' runtime error), the execution can never reach the comparison
when the value is 0, making it redundant.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

Code examples The following code example fails the check and will give a warning:

int foo(int p)
{
 int a = 20, b = 1;
 b = a / p;
 if (p == 0) // Checking the value of 'p' too late.
 return 0;
 return b;
}

The following code example passes the check and will not give a warning about this
issue:

int foo(int p)
{
 int a = 20, b;
 if (p == 0)
 return 0;
 b = a / p; /* Here 'p' is non-zero. */
 return b;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2004-1.2_g

Synopsis A value that is determined using interval analysis to be 0 is used as a divisor.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) No reliance shall be placed on undefined or unspecified behavior. A value
that is detemined using interval analysis to be 0 is used as a divisor. The division might
cause a 'divide by zero' runtime error.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

Code examples The following code example fails the check and will give a warning:

int foo(void)
{
 int a = 1;
 a--;
 return 5 / a; /* a is 0 */
}

The following code example passes the check and will not give a warning about this
issue:

int foo(void)
{
 int a = 2;
 a--;
 return 5 / a; /* OK - a is 1 */
}

AFE1_AFE2-1:1

353

354

Descriptions of checks

MISRAC2004-1.2_h

Synopsis An expression that might be 0 is used as a divisor.

Enabled by default Yes

Severity/Certainty High/Low

Full description (Required) No reliance shall be placed on undefined or unspecified behavior. An
expression, whose value is determined by interval analysis to contain 0, is used as a
divisor. This might cause a 'divide by zero' runtime error.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int main (void)

{

 int x = 2;

 int i;

 /* The second iteration leads to a division by zero*/

 for (i = 1; i < 3; i++) { x = x / (2 - i); }
/*@@ZDV-RED@@ */

 return x;

}

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a-2); // a-2 is 0
}

The following code example passes the check and will not give a warning about this
issue:

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a+2); // OK - a+2 is 4
}

MISRAC2004-1.2_i

Synopsis A global variable is not checked against 0 before it is used as a divisor.

Enabled by default Yes
AFE1_AFE2-1:1

355

356

Descriptions of checks

Severity/Certainty Medium/Low

Full description (Required) No reliance shall be placed on undefined or unspecified behavior. A global
variable is not checked to make sure it does not have a value of 0 before it is used as a
divisor. If the variable has a value of 0, a 'divide by zero' runtime error will occur.

Coding standards CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

Code examples The following code example fails the check and will give a warning:

int x;

int example() {
 return 5/x;
}

The following code example passes the check and will not give a warning about this
issue:

int x;

int example() {
 if (x != 0){
 return 5/x;
 }
}

MISRAC2004-1.2_j

Synopsis A local variable is not checked against 0 before it is used as a divisor.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Low

Full description (Required) No reliance shall be placed on undefined or unspecified behavior. A local
variable is not checked to make sure it does not have a value of 0 before it is used as a
divisor. If the variable has a value of 0, a 'divide by zero' runtime error will occur.

Coding standards CWE 369

Divide By Zero

MISRA C:2004 1.2

(Required) No reliance shall be placed on undefined or unspecified behavior.

Code examples The following code example fails the check and will give a warning:

int rand();

int example() {
 int x = rand();
 return 5/x;
}

The following code example passes the check and will not give a warning about this
issue:

int rand();

int example() {
 int x = rand();
 if (x != 0){
 return 5/x;
 }
}

MISRAC2004-2.1

Synopsis Inline assembler statements were found that are not encapsulated in functions.

Enabled by default Yes
AFE1_AFE2-1:1

357

358

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) Assembler language shall be encapsulated and isolated.

Coding standards MISRA C:2004 2.1

(Required) Assembler language shall be encapsulated and isolated.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int ffs(int x)
{
 int r;
#if 0
#ifdef CONFIG_X86_64
 /*
 * AMD64 says BSFL won't clobber the dest reg if x==0;
Intel64 says the
 * dest reg is undefined if x==0, but their CPU architect
says its
 * value is written to set it to the same as before,
except that the
 * top 32 bits will be cleared.
 *
 * We cannot do this on 32 bits because at the very least
some
 * CPUs did not behave this way.
 */
 long tmp = -1;
 asm("bsfl %1,%0"
 : "=r" (r)
 : "rm" (x), "" (tmp));
#elif defined(CONFIG_X86_CMOV)
 asm("bsfl %1,%0\n\t"
 "cmovzl %2,%0"
 : "=&r" (r) : "rm" (x), "r" (-1));
#else
 asm("bsfl %1,%0\n\t"
 "jnz 1f\n\t"
 "movl $-1,%0\n"
 "1:" : "=r" (r) : "rm" (x));
#endif
#else
 asm("");
#endif
 return r + 1;
}

The following code example passes the check and will not give a warning about this
issue:

unsigned int
bswap(unsigned int x)
{
 asm("");
 return x;
}

AFE1_AFE2-1:1

359

360

Descriptions of checks

MISRAC2004-2.2

Synopsis // comments were found.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) Source code shall only use /* ... */ style comments. // comments were found.
These comments are not permitted by C90.

Coding standards MISRA C:2004 2.2

(Required) Source code shall only use /* ... */ style comments.

Code examples The following code example fails the check and will give a warning:

void example(void) {
// an end of line comment

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
/* a terminated comment */

}

MISRAC2004-2.3

Synopsis /* character sequences were found inside comments.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) The character sequence /* shall not be used within a comment. /* character
sequences were found inside comments.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards MISRA C:2004 2.3

(Required) The character sequence /* shall not be used within a comment.

Code examples The following code example fails the check and will give a warning:

void example(void) {
/* This comment starts here
/* Nested comment starts here
*/

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
/* This comment starts here */
/* Nested comment starts here
*/

}

MISRAC2004-2.4

Synopsis Code sections in comments were found, where the comment ends in ;, {, or }
characters.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) Sections of code should not be commented out. Code sections in comments
were found, where the comment ends in ;, {, or } characters.

Coding standards MISRA C:2004 2.4

(Advisory) Sections of code should not be commented out.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

361

362

Descriptions of checks

void example(void) {
/*
int i;
*/

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
#if 0

int i;
#endif
}

MISRAC2004-4.2

Synopsis Trigraphs were found in string literals.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Tri-graphs shall not be used

Coding standards MISRA C:2004 4.2

(Required) Tri-graphs shall not be used

Code examples The following code example fails the check and will give a warning:

void func()
{
 char * str = "abc??!def";
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void func()
{
 char * str = "abc??def";
}

MISRAC2004-5.2_a

Synopsis The definition of a local variable hides a global definition.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Identifiers in an inner scope shall not use the same name as an identifier in
an outer scope, and therefore hide that identifier. The definition of a local variable hides
a global definition. If a reference to the global variable is attempted, the local value
might be changed or returned accidentally.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C:2004 5.2

(Required) Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

363

364

Descriptions of checks

int x;

int foo (int y){
 int x=0;
 x++;
 return x+y;

}

The following code example passes the check and will not give a warning about this
issue:

int x;

int foo (int y){

 x++;
 return x+y;

}

MISRAC2004-5.2_b

Synopsis The definition of a local variable hides a previous local definition.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Identifiers in an inner scope shall not use the same name as an identifier in
an outer scope, and therefore hide that identifier. The definition of a local variable hides
a previous local definition. If a reference to the outer variable is attempted, the inner
value might be changed or returned accidentally.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRA C:2004 5.2

(Required) Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

Code examples The following code example fails the check and will give a warning:

int foo(int x){

 for (int y= 0; y < 10 ; y++){

 for (int y = 0; y < 100; y ++){
 return x+y;
 }
 }
 return x;
}

int foo2(int x){
 int y = 10;

 for (int y= 0; y < 10 ; y++)
 x++;
 return x;
}

int foo3(int x){

 int y = 10;
 {
 int y = 100;
 return x + y;
 }
}

The following code example passes the check and will not give a warning about this
issue:

int foo(int x){

 for (int y=0; y < 10; y++)
 x++;
 for (int y=0; y < 10; y++)
 x++;
 return x;
}

AFE1_AFE2-1:1

365

366

Descriptions of checks

MISRAC2004-5.2_c

Synopsis The declaration of a variable hides a parameter of the function.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Identifiers in an inner scope shall not use the same name as an identifier in
an outer scope, and therefore hide that identifier. A variable declaration hides a
parameter of the function. If a reference to the argument is attempted, the inner value
might be changed or returned accidentally.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C:2004 5.2

(Required) Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

Code examples The following code example fails the check and will give a warning:

int foo(int x){

 for (int x = 0; x < 100; x++);

 return x;
}

The following code example passes the check and will not give a warning about this
issue:

int foo(int x){
 int y;

 return x;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2004-5.3

Synopsis A typedef declaration was found with a name already used for a previously declared
typedef.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A typedef name shall be a unique identifier.

Coding standards MISRA C:2004 5.3

(Required) A typedef name shall be a unique identifier.

Code examples The following code example fails the check and will give a warning:

typedef int WIDTH;
//dummy comment
void f1()
{
 WIDTH w1;
}

void f2()
{
 typedef float WIDTH;
 WIDTH w2;
 WIDTH w3;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

367

368

Descriptions of checks

namespace NS1
{
 typedef int WIDTH;
}
// f2.cc
namespace NS2
{
 typedef float WIDTH; // Compliant - NS2::WIDTH is not the same
as NS1::WIDTH
}
NS1::WIDTH w1;
NS2::WIDTH w2;

MISRAC2004-5.4

Synopsis A class, struct, union, or enum declaration was found that clashes with a previous
declaration.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A tag name shall be a unique identifier.

Coding standards MISRA C:2004 5.4

(Required) A tag name shall be a unique identifier.

Code examples The following code example fails the check and will give a warning:

void f1()
{
 class TYPE {};
}

void f2()
{
 float TYPE; // non-compliant
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

enum ENS {ONE, TWO };

void f1()
{
 class TYPE {};
}

void f4()
{
 union GRRR {
 int i;
 float f;
 };
}

MISRAC2004-5.5

Synopsis An identifier is used that might clash with another static identifier.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) No object or function identifier with static storage duration should be reused.

Coding standards MISRA C:2004 5.5

(Advisory) No object or function identifier with static storage duration should
be reused.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

369

370

Descriptions of checks

namespace NS1
{
 static int global = 0;
}

namespace NS2
{
 void fn()
 {
 int global; // Non-compliant
 }
}

The following code example passes the check and will not give a warning about this
issue:

namespace NS1
{
 int global = 0;
}

namespace NS2
{
 void f1()
 {
 int global; // Non-compliant
 }
}

void f2()
{
 static int global;
}

MISRAC2004-6.1

Synopsis Arithmetic is performed on objects of type plain char, without an explicit signed or
unsigned qualifier.

Enabled by default Yes

Severity/Certainty Low/High
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) The plain char type shall be used only for the storage and use of character
values. Arithmetic is performed on objects of type plain char, without an explicit signed
or unsigned qualifier. To ensure portability, declare such types explicitly as "signed
char" or "unsigned char".

Coding standards CERT INT07-C

Use only explicitly signed or unsigned char type for numeric values

MISRA C:2004 6.1

(Required) The plain char type shall be used only for the storage and use of
character values.

Code examples The following code example fails the check and will give a warning:

typedefsigned charINT8;
typedefunsigned charUINT8;

UINT8
toascii(INT8 c)
{
 return (UINT8)c & 0x7f;
}

int func(int x)
{
 char sc = 4;
 char *scp = ≻
 UINT8 (*fp)(INT8 c) = &toascii;

 x = x + sc;
 x *= *scp;
 return (*fp)(x);
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

371

372

Descriptions of checks

typedefsigned charINT8;
typedefunsigned charUINT8;

UINT8
toascii(INT8 c)
{
 return (UINT8)c & 0x7f;
}

int func(int x)
{
 signed char sc = 4;
 signed char *scp = ≻
 UINT8 (*fp)(INT8 c) = &toascii;

 x = x + sc;
 x *= *scp;
 return (*fp)(x);
}

MISRAC2004-6.3

Synopsis One or more of the basic types char, int, short, long, double, and float are used without
a typedef.

Enabled by default No

Severity/Certainty Low/High

Full description (Advisory) typedefs that indicate size and signedness should be used in place of the
basic types. One or more of the basic types char, int, short, long, double, and float are
used without a typedef. Best practice is to use typedefs for portability.

Coding standards MISRA C:2004 6.3

(Advisory) typedefs that indicate size and signedness should be used in place of
the basic types.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

typedef signed charSCHAR;
typedef intINT;
typedef floatFLOAT;

INT func(FLOAT f, INT *pi)
{
 INT x;
 INT (*fp)(const char *);
}

The following code example passes the check and will not give a warning about this
issue:

typedef signed charSCHAR;
typedef intINT;
typedef floatFLOAT;

INT func(FLOAT f, INT *pi)
{
 INT x;
 INT (*fp)(const SCHAR *);
}

MISRAC2004-6.4

Synopsis Bitfields of plain int type were found.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Bitfields shall only be defined to be of type unsigned int or signed int.

Coding standards MISRA C:2004 6.4

(Required) Bitfields shall only be defined to be of type unsigned int or signed
int.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

373

374

Descriptions of checks

struct bad {
int x:3;

};
enum digs { ONE, TWO, THREE, FOUR };

struct bad {
digs d:3;

};

The following code example passes the check and will not give a warning about this
issue:

struct good {
signed int x:3;

};
struct good {

unsigned int x:3;
};

MISRAC2004-6.5

Synopsis Signed bitfields consisting of a single bit (excluding anonymous fields) were found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) Bitfields of signed type shall be at least 2 bits long.

Coding standards MISRA C:2004 6.5

(Required) Bitfields of signed type shall be at least 2 bits long.

Code examples The following code example fails the check and will give a warning:

struct S
{
 signed int a : 1; // Non-compliant
};

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

struct S
{
 signed int b : 2;
 signed int : 0;
 signed int : 1;
 signed int : 2;
};

MISRAC2004-7.1

Synopsis Uses of octal integer constants were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Octal constants shall not be used. Zero is okay

Coding standards MISRA C:2004 7.1

(Required) Octal constants shall not be used. Zero is okay

Code examples The following code example fails the check and will give a warning:

void
func(void)
{
 int x = 077;
}

The following code example passes the check and will not give a warning about this
issue:

void
func(void)
{
 int x = 63;
}

AFE1_AFE2-1:1

375

376

Descriptions of checks

MISRAC2004-8.1

Synopsis Functions were found that are used despite not having a valid prototype.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) Functions shall have prototype declarations and the prototype shall be visible
at both the function definition and call.

Coding standards CERT DCL31-C

Declare identifiers before using them

MISRA C:2004 8.1

(Required) Functions shall have prototype declarations and the prototype shall
be visible at both the function definition and call.

Code examples The following code example fails the check and will give a warning:

void func2(void)
{
 func();
}

The following code example passes the check and will not give a warning about this
issue:

void func(void);
void func2(void)
{
 func();
}

MISRAC2004-8.2

Synopsis An implicit int was found in a declaration.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/High

Full description (Required) Whenever an object or function is declared or defined, its type shall be
explicitly stated.

Coding standards CERT DCL31-C

Declare identifiers before using them

MISRA C:2004 8.2

(Required) Whenever an object or function is declared or defined, its type shall
be explicitly stated.

Code examples The following code example fails the check and will give a warning:

void func(void)
{
 static y;
}

The following code example passes the check and will not give a warning about this
issue:

void func(void)
{
 int x;
}

MISRAC2004-8.5_a

Synopsis A global variable is declared in a header file.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) There shall be no definitions of objects or functions in a header file.
AFE1_AFE2-1:1

377

378

Descriptions of checks

Coding standards MISRA C:2004 8.5

(Required) There shall be no definitions of objects or functions in a header file.

Code examples The following code example fails the check and will give a warning:

/*
global_def.h contains:
int global_variable;
 */
#include "global_def.h"

The following code example passes the check and will not give a warning about this
issue:

/*
global_decl.h contains:
extern int global_variable;
*/
#include "global_decl.h"

MISRAC2004-8.5_b

Synopsis One or more non-inlined functions are defined in header files.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) There shall be no definitions of objects or functions in a header file. One or
more non-inlined functions are defined in header files. Header files should not be used
to define functions, to make it clear that only C source files contain executable code. (A
header file is any file that is included in a translation unit via the #include directive.)

Coding standards MISRA C:2004 8.5

(Required) There shall be no definitions of objects or functions in a header file.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include "definition.h"
/* Contents of definition.h:

void definition(void) {
}

*/

void example(void) {
definition();

}

The following code example passes the check and will not give a warning about this
issue:

#include "declaration.h"
/* Contents of declaration.h:

void definition(void);

*/

void example(void) {
definition();

}

MISRAC2004-8.12

Synopsis External arrays are declared without their size being stated explicitly or defined
implicitly by initialization.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) When an array is declared with external linkage, its size shall be stated
explicitly or defined implicitly by initialization.

Coding standards MISRA C:2004 8.12

(Required) When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.
AFE1_AFE2-1:1

379

380

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

extern int a[];

The following code example passes the check and will not give a warning about this
issue:

extern int a[10];
extern int b[] = { 0, 1, 2 };

MISRAC2004-9.1_a

Synopsis A variable is read before it is assigned a value, on all execution paths.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) All automatic variables shall have been assigned a value before being used.
A variable is read before it is assigned a value, on all execution paths. Different paths
might result in reading a variable at different execution points. Whichever path is
executed, uninitialized data is read, leading to unpredictable behavior.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

MISRA C:2004 9.1

(Required) All automatic variables shall have been assigned a value before
being used.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int main(void) {
 int x;

 x++; //x is uninitialized

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int x = 0;

 x++;

 return 0;
}

MISRAC2004-9.1_b

Synopsis On some execution paths, a variable is read before it is assigned a value.

Enabled by default Yes

Severity/Certainty High/Low

Full description (Required) All automatic variables shall have been assigned a value before being used.
On some execution paths, a variable might be read before it is assigned a value, causing
unpredictable behavior.

Coding standards CWE 457

Use of Uninitialized Variable

MISRA C:2004 9.1

(Required) All automatic variables shall have been assigned a value before
being used.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

381

382

Descriptions of checks

#include <stdlib.h>

int main(void) {
 int x, y;

 if (rand()) {
 x = 0;
 }

 y = x; //x may not be initialized

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int main(void) {
 int x;

 if (rand()) {
 x = 0;
 }

 /* x never read */

 return 0;
}

MISRAC2004-9.1_c

Synopsis An uninitialized or NULL pointer that is dereferenced was found.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) All automatic variables shall have been assigned a value before being used.
An uninitialized or NULL pointer that is dereferenced was found. This might cause
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

memory corruption or an application crash. Pointer values should always be initialized
before being dereferenced.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

CWE 824

Access of Uninitialized Pointer

MISRA C:2004 9.1

(Required) All automatic variables shall have been assigned a value before
being used.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int *p;
 *p = 4; //p is uninitialized
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int *p,a;
 p = &a;
 *p = 4; //OK - p holds a valid address
}

MISRAC2004-9.2

Synopsis A non-zero array initialization was found that does not exactly match the structure of the
array declaration.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

383

384

Descriptions of checks

Full description (Required) Braces shall be used to indicate and match the structure in the non-zero
initialization of arrays and structures.

Coding standards MISRA C:2004 9.2

(Required) Braces shall be used to indicate and match the structure in the
non-zero initialization of arrays and structures.

Code examples The following code example fails the check and will give a warning:

void example(void) {
int y[3][4] = { { 1, 2, 3 }, { 4, 5, 6 } };

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int y[3][2] = { { 1, 2 }, { 3, 4 }, { 5, 6 } };

}

MISRAC2004-10.1_a

Synopsis An expression of integer type was found that is implicitly converted to a narrower or
differently signed underlying type.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The value of an expression of integer type shall not be implicitly converted
to a different underlying type if: (a) it is not a conversion to a wider integer type of the
same signedness.

Coding standards MISRA C:2004 10.1

(Required) The value of an expression of integer type shall not be implicitly
converted to a different underlying type if: a. it is not a conversion to a wider
integer type of the same signedness, or b. the expression is complex, or c. the
expression is not constant and is a function argument, or d. the expression is not
constant and is a return expression.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

void example(void) {
long pc[10];
// integer narrowing from int -> short
short x = pc[5];

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int pc[10];
long x = pc[5];

}

MISRAC2004-10.1_b

Synopsis A complex expression of integer type was found that is implicitly converted to a
different underlying type.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The value of an expression of integer type shall not be implicitly converted
to a different underlying type if: (b) the expression is complex.

Coding standards MISRA C:2004 10.1

(Required) The value of an expression of integer type shall not be implicitly
converted to a different underlying type if: a. it is not a conversion to a wider
integer type of the same signedness, or b. the expression is complex, or c. the
expression is not constant and is a function argument, or d. the expression is not
constant and is a return expression.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

385

386

Descriptions of checks

void example(void) {
int pc[10];
// complex expression
long long x = pc[5] + 5;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int pc[10];
// complex expression without an implicit cast.
int x = pc[5] + 5;

}

MISRAC2004-10.1_c

Synopsis A non-constant expression of integer type was found that is implicitly converted to a
different underlying type in a function argument.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The value of an expression of integer type shall not be implicitly converted
to a different underlying type if: (c) the expression is not constant and is a function
argument.

Coding standards MISRA C:2004 10.1

(Required) The value of an expression of integer type shall not be implicitly
converted to a different underlying type if: a. it is not a conversion to a wider
integer type of the same signedness, or b. the expression is complex, or c. the
expression is not constant and is a function argument, or d. the expression is not
constant and is a return expression.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void function(long long argument);

void example(void) {
int x = 4;
function(x);

}

The following code example passes the check and will not give a warning about this
issue:

void function(long argument);

void example(void) {
function(4);

}

MISRAC2004-10.1_d

Synopsis A non-constant expression of integer type was found that is implicitly converted to a
different underlying type in a return expression.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The value of an expression of integer type shall not be implicitly converted
to a different underlying type if: (d) the expression is not constant and is a return
expression.

Coding standards MISRA C:2004 10.1

(Required) The value of an expression of integer type shall not be implicitly
converted to a different underlying type if: a. it is not a conversion to a wider
integer type of the same signedness, or b. the expression is complex, or c. the
expression is not constant and is a function argument, or d. the expression is not
constant and is a return expression.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

387

388

Descriptions of checks

long long example(void) {
int x = 4;
return x;

}

The following code example passes the check and will not give a warning about this
issue:

long example(void) {
return 4;

}

MISRAC2004-10.2_a

Synopsis An expression of floating type was found that is implicitly converted to a narrower
underlying type.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The value of an expression of floating type shall not be implicitly converted
to a different underlying type if: (a) it is not a conversion to a wider floating type.

Coding standards MISRA C:2004 10.2

(Required) The value of an expression of floating type shall not be implicitly
converted to a different underlying type if: a. it is not a conversion to a wider
floating type, or b. the expression is complex, or c. the expression is a function
argument, or d. the expression is a return expression.

Code examples The following code example fails the check and will give a warning:

#if __FLOAT_SIZE__ == __DOUBLE_SIZE__
 #error "IGNORE_TEST: double and float have same size"
#endif

void example(void) {
double pc[10];
// integer narrowing from double -> float
float x = pc[5];

}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
float pc[10];
double x = pc[5];

}

MISRAC2004-10.2_b

Synopsis An expression of floating type was found that is implicitly converted to a narrower
underlying type.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The value of an expression of floating type shall not be implicitly converted
to a different underlying type if: (b) the expression is complex.

Coding standards MISRA C:2004 10.2

(Required) The value of an expression of floating type shall not be implicitly
converted to a different underlying type if: a. it is not a conversion to a wider
floating type, or b. the expression is complex, or c. the expression is a function
argument, or d. the expression is a return expression.

Code examples The following code example fails the check and will give a warning:

#if __FLOAT_SIZE__ == __DOUBLE_SIZE__
 #error "IGNORE_TEST: double and float have same size"
#endif

void example(void) {
float pc[10];
// complex expression
double x = pc[5] + 5;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

389

390

Descriptions of checks

void example(void) {
float pc[10];
// complex expression without an implicit cast.
float x = pc[5] + 5;

}

MISRAC2004-10.2_c

Synopsis A non-constant expression of floating type was found that is implicitly converted to a
different underlying type in a function argument.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The value of an expression of floating type shall not be implicitly converted
to a different underlying type if: (c) the expression is not constant and is a function
argument.

Coding standards MISRA C:2004 10.2

(Required) The value of an expression of floating type shall not be implicitly
converted to a different underlying type if: a. it is not a conversion to a wider
floating type, or b. the expression is complex, or c. the expression is a function
argument, or d. the expression is a return expression.

Code examples The following code example fails the check and will give a warning:

#if __FLOAT_SIZE__ == __DOUBLE_SIZE__
 #error "IGNORE_TEST: double and float have same size"
#endif

void function(double argument);

void example(void) {
float x = 4;
function(x);

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void function(double argument);

void example(void) {
function(4.0);

}

MISRAC2004-10.2_d

Synopsis A non-constant expression of floating type was found that is implicitly converted to a
different underlying type in a return expression.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The value of an expression of floating type shall not be implicitly converted
to a different underlying type if: (d) the expression is not constant and is a return
expression.

Coding standards MISRA C:2004 10.2

(Required) The value of an expression of floating type shall not be implicitly
converted to a different underlying type if: a. it is not a conversion to a wider
floating type, or b. the expression is complex, or c. the expression is a function
argument, or d. the expression is a return expression.

Code examples The following code example fails the check and will give a warning:

#if __FLOAT_SIZE__ == __DOUBLE_SIZE__
 #error "IGNORE_TEST: double and float have same size"
#endif

double example(void) {
float x = 4;
return x;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

391

392

Descriptions of checks

double example(void) {
return 4.0;

}

MISRAC2004-10.3

Synopsis A complex expression of integer type was found that is cast to a wider or differently
signed underlying type.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The value of a complex expression of integer type shall only be cast to a type
that is not wider and of the same signedness as the underlying type of the expression.

Coding standards MISRA C:2004 10.3

(Required) The value of a complex expression of integer type shall only be cast
to a type that is not wider and of the same signedness as the underlying type of
the expression.

Code examples The following code example fails the check and will give a warning:

void example(void) {
int array[10];
// complex expression cannot change sign
unsigned int x = (unsigned int)(array[5] + 5);

}
void example(void) {

int s16a = 3;
int s16b = 3;

// arithmetic makes it a complex expression
long long x = (long long)(s16a + s16b);

}
void example(void) {

int array[10];
// complex expression cannot change type
float x = (float)(array[5] + 5);

}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int array[10];
// non-complex expression can change type
float x = (float)(array[5]);

}
void example(void) {

int array[10];

// A non complex expression is considered safe
long x = (long)(array[5]);

}
void example(void) {

int array[10];

// non-complex expressions can change sign
unsigned int x = (unsigned int)(array[5]);

}

MISRAC2004-10.4

Synopsis A complex expression of floating type was found that is cast to a wider or different
underlying type.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The value of a complex expression of floating type shall only be cast to a
floating type which is narrower or of the same size.

Coding standards MISRA C:2004 10.4

(Required) The value of a complex expression of floating type shall only be cast
to a floating type which is narrower or of the same size.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

393

394

Descriptions of checks

void example(void) {
float array[10];
// complex expression cannot change type
int x = (int)(array[5] + 5.0f);

}
#if __FLOAT_SIZE__ == __DOUBLE_SIZE__
 #error "IGNORE_TEST: double and float have same size"
#endif

void example(void) {
float array[10];

// arithmetic makes it a complex expression
double x = (double)(array[5] + 3.0f);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
float array[10];

// A non complex expression is considered safe
double x = (double)(array[5]);

}
void example(void) {

float array[10];
// non-complex expression can change type
int x = (int)(array[5]);

}

MISRAC2004-10.5

Synopsis Detected a bitwise operation on unsigned char or unsigned short, that are not
immediately cast to this type to ensure consistent truncation.

Enabled by default Yes

Severity/Certainty Low/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) If the bitwise operators ~ and << are applied to an operand of underlying
type unsigned char or unsigned short, the result shall be immediately cast to the
underlying type of the operand.

Coding standards MISRA C:2004 10.5

(Required) If the bitwise operators ~ and << are applied to an operand of
underlying type unsigned char or unsigned short, the result shall be immediately
cast to the underlying type of the operand.

Code examples The following code example fails the check and will give a warning:

typedef unsigned char uint8_t;
typedef unsigned short uint16_t;

void example(void) {
uint8_t port = 0x5aU;
uint8_t result_8;
uint16_t result_16;
uint16_t mode;

result_8 = (~port) >> 4;
}
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;

void example(void) {
uint8_t port = 0x5aU;
uint8_t result_8;
uint16_t result_16;
uint8_t mode;

result_16 = ((port << 4) & mode) >> 6;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

395

396

Descriptions of checks

typedef unsigned char uint8_t;
typedef unsigned short uint16_t;

void example(void) {
uint8_t port = 0x5aU;
uint8_t result_8;
uint16_t result_16;
uint16_t mode;

result_16 = ((uint16_t)((uint16_t)port << 4) & mode) >> 6;
}
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;

void example(void) {
uint8_t port = 0x5aU;
uint8_t result_8;
uint16_t result_16;
uint16_t mode;

result_8 = ((uint8_t)(~port)) >> 4;
result_16 = ((uint16_t)(~(uint16_t)port)) >> 4;

}

MISRAC2004-10.6

Synopsis Constants of unsigned type were found that do not have a U suffix.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) A U suffix shall be applied to all constants of unsigned type.

Coding standards MISRA C:2004 10.6

(Required) A U suffix shall be applied to all constants of unsigned type.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
// 2147483648 -- does not fit in 31bits
unsigned int x = 0x80000000;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
unsigned int x = 0x80000000u;

}

MISRAC2004-11.1

Synopsis Conversions were found between a pointer to a function and a type other than an integral
type.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Conversions shall not be performed between a pointer to a function and any
type other than an integral type.

Coding standards MISRA C:2004 11.1

(Required) Conversions shall not be performed between a pointer to a function
and any type other than an integral type.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {

int (*fptr)(int,int);

(int*)fptr;

}

AFE1_AFE2-1:1

397

398

Descriptions of checks

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {

int (*fptr)(int,int);

(int)fptr;

}

MISRAC2004-11.3

Synopsis A cast between a pointer type and an integral type was found.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) A cast should not be performed between a pointer type and an integral type.

Coding standards MISRA C:2004 11.3

(Advisory) A cast should not be performed between a pointer type and an
integral type.

Code examples The following code example fails the check and will give a warning:

void example(void) {

int *p;
int x;

x = (int)p;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {

int *p;
int *x;

x = p;

}

MISRAC2004-11.4

Synopsis A pointer to object type was found that is cast to a pointer to different object type.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) A cast should not be performed between a pointer to object type and a
different pointer to object type. Conversions of this type might be invalid if the new
pointer type required a stricter alignment.

Coding standards MISRA C:2004 11.4

(Advisory) A cast should not be performed between a pointer to object type and
a different pointer to object type.

Code examples The following code example fails the check and will give a warning:

typedef unsigned int uint32_t;
typedef unsigned char uint8_t;

void example(void) {
uint8_t * p1;
uint32_t * p2;
p2 = (uint32_t *)p1;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

399

400

Descriptions of checks

typedef unsigned int uint32_t;
typedef unsigned char uint8_t;

void example(void) {
uint8_t * p1;
uint8_t * p2;
p2 = (uint8_t *)p1;

}

MISRAC2004-11.5

Synopsis Casts were found that that remove any const or volatile qualification.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) A cast shall not be performed that removes any const or volatile qualification
from the type addressed by a pointer. This violates the principle of type qualification.
(This check does not look for changes to the qualification of the pointer during the cast.)

Coding standards MISRA C:2004 11.5

(Required) A cast shall not be performed that removes any const or volatile
qualification from the type addressed by a pointer.

Code examples The following code example fails the check and will give a warning:

typedef unsigned short uint16_t;

void example(void) {

uint16_t x;
const uint16_t * pci; /* pointer to const int */
uint16_t * pi; /* pointer to int */

pi = (uint16_t *)pci; // not compliant

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

typedef unsigned short uint16_t;

void example(void) {

uint16_t x;
uint16_t * const cpi = &x; /* const pointer to int */
uint16_t * pi; /* pointer to int */

pi = cpi; // compliant - no cast required

}

MISRAC2004-12.1

Synopsis Expressions were found without parentheses, making the operator precedence implicit
instead of explicit.

Enabled by default No

Severity/Certainty Medium/Medium

Full description (Advisory) Limited dependence should be placed on the C operator precedence rules in
expressions.

Coding standards MISRA C:2004 12.1

(Advisory) Limited dependence should be placed on the C operator precedence
rules in expressions.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int i;
 int j;
 int k;
 int result;

 result = i + j * k;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

401

402

Descriptions of checks

void example(void) {
 int i;
 int j;
 int k;
 int result;

 result = i + (j - k);
}

MISRAC2004-12.2_a

Synopsis Expressions were found that depend on the order of evaluation.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) The value of an expression shall be the same under any order of evaluation
that the standard permits. Expressions were found that depend on the order of evaluation
between two consecutive sequence points. This creates a problem with portability
between architectures or compilers, and with debugging ported projects. Only four
operators have a guaranteed order of evaluation: logical AND (a && b) evaluates the
left operand, then the right operand only if the left is found to be true; logical OR (a ||
b) evaluates the left operand, then the right operand only if the left is found to be false;
a ternary conditional (a ? b : c) evaluates the first operand, then either the second or
the third, depending on whether the first is found to be true or false; and a comma (a ,
b) evaluates its left operand before its right.

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C:2004 12.2
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.

Code examples The following code example fails the check and will give a warning:

int main(void) {
 int i = 0;

 i = i * i++; //unspecified order of operations

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int i = 0;
 int x = i;

 i++;
 x = x * i; //OK - statement is broken up

 return 0;
}

MISRAC2004-12.2_b

Synopsis More than one read access with volatile-qualified type was found within one sequence
point.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) The value of an expression shall be the same under any order of evaluation
that the standard permits.

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place
AFE1_AFE2-1:1

403

404

Descriptions of checks

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C:2004 12.2

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.

Code examples The following code example fails the check and will give a warning:

#include "mc2_types.h"
#include "mc2_header.h"

void example(void) {
 uint16_t x;
 volatile uint16_t v;
 x = v + v;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int i = 0;
 int x = i;

 i++;
 x = x * i; //OK - statement is broken up

 return 0;
}

MISRAC2004-12.2_c

Synopsis More than one modification access with volatile-qualified type was found within one
sequence point.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/High

Full description (Required) The value of an expression shall be the same under any order of evaluation
that the standard permits.

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C:2004 12.2

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.

Code examples The following code example fails the check and will give a warning:

#include "mc2_types.h"
#include "mc2_header.h"

void example(void) {
 uint16_t x;
 volatile uint16_t v, w;
 v = w = x;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

405

406

Descriptions of checks

#include <stdbool.h>
void InitializeArray(int *);
const int *example(void)
{

static volatile bool s_initialized = false;
static int s_array[256];

if (!s_initialized)
{

InitializeArray(s_array);
s_initialized = true;

}
return s_array;

}

MISRAC2004-12.3

Synopsis Sizeof expressions were found that contain side effects.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The sizeof operator shall not be used on expressions that contain side effects.
The sizeof operator was found used on expressions that contain side effects. This might
make it look as if the expression will be evaluated, but because sizeof only operates on
the type of the expression, the expression itself is not evaluated.

Coding standards CERT EXP06-C

Operands to the sizeof operator should not contain side effects

CERT EXP06-CPP

Operands to the sizeof operator should not contain side effects

MISRA C:2004 12.3

(Required) The sizeof operator shall not be used on expressions that contain side
effects.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
int i;
int size = sizeof(i++);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int i;
int size = sizeof(i);
i++;

}

MISRAC2004-12.4

Synopsis Right-hand operands of && or || were found that contain side effects.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The right-hand operand of a logical && or || operator shall not contain side
effects.

Coding standards CWE 768

Incorrect Short Circuit Evaluation

MISRA C:2004 12.4

(Required) The right-hand operand of a logical && or || operator shall not
contain side effects.

Code examples The following code example fails the check and will give a warning:

void example(void) {
int i;
int size = rand() && i++;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

407

408

Descriptions of checks

void example(void) {
int i;
int size = rand() && i;

}

MISRAC2004-12.6_a

Synopsis Operands of logical operators (&&, ||, and !) were found that are not effectively Boolean.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) The operands of logical operators (&&, ||, and !) should be effectively
boolean.

Coding standards MISRA C:2004 12.6

(Advisory) The operands of logical operators (&&, ||, and !) should be
effectively boolean. Expressions that are effectively boolean should not be used
as operands to operators other than (&&, ||, !, =, ==, !=, and ?:).

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void func(int * ptr)
{
 if (!ptr) {}
}
void func()
{
 if (!0) {}
}
void example(void) {

int x = 0;
int y = 1;
int a = x || y << 2;

}
void example(void) {

int x = 0;
int y = 1;
int a = 5;
(a + (x || y)) ? example() : example();

}
void example(void) {

int x = 5;
int y = 11;
if (x || y) {
}

}
void example(void) {

int d, c, b, a;

d = (c & a) && b;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

409

410

Descriptions of checks

bool test()
{
 return true;
}

void example(void) {
 if(test()) {}
}
typedef charboolean_t;/* Compliant: Boolean-by-enforcement */

void example(void)
{
 boolean_t d;
 boolean_t c = 1;
 boolean_t b = 0;
 boolean_t a = 1;

 d = (c && a) && b;

}
void func(bool * ptr)
{
 if (*ptr) {}
}
typedef intboolean_t;

void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = 0;
 if (a && (x || y)) {
 }
}
void example(void) {

int x = 0;
int y = 1;
int a = x == y;

}
#include <stdbool.h>

void example(void) {
 bool x = false;
 bool y = true;
 if (x || y) {
 }
}
typedef charboolean_t;
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = x || y;
 a ? example() : example();
}

MISRAC2004-12.6_b

Synopsis Uses of arithmetic operators on Boolean operands were found.

Enabled by default No

Severity/Certainty Low/Low

Full description (Advisory) Expressions that are effectively boolean should not be used as operands to
operators other than (&&, ||, !, =, ==, !=, and ?:).

Coding standards MISRA C:2004 12.6

(Advisory) The operands of logical operators (&&, ||, and !) should be
effectively boolean. Expressions that are effectively boolean should not be used
as operands to operators other than (&&, ||, !, =, ==, !=, and ?:).

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

411

412

Descriptions of checks

void func(bool b)
{
 bool x;
 bool y;
 y = x % b;
}
void example(void) {

int x = 0;
int y = 1;
int a = 5;
(a + (x || y)) ? example() : example();

}
void example(void) {

int x = 0;
int y = 1;
int a = (x == y) << 2;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int
isgood(int ch)
{
 return (ch & 0x80) == 0;
}

int example(int r, int f1, int f2)
{
 if (r && f1 == f2)
 return 1;
 else
 return 0;
}
bool test()
{
 return true;
}

void example(void) {
 if(test()) {}
}
typedef charboolean_t;/* Compliant: Boolean-by-enforcement */

void example(void)
{
 boolean_t d;
 boolean_t c = 1;
 boolean_t b = 0;
 boolean_t a = 1;

 d = (c && a) && b;

}
class foo {
 int val;
public:
 bool operator==(const foo &rhs) const { return val == rhs.val;
}
};

int example(bool r, const foo &f1, const foo &f2)
{
 if (r && f1 == f2)
 return 1;
 else
 return 0;
}

AFE1_AFE2-1:1

413

414

Descriptions of checks

void func(bool * ptr)
{
 if (*ptr) {}
}
void func()
{
 bool x;
 bool y;
 y = x && y;
}
typedef intboolean_t;

void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = 0;
 if (a && (x || y)) {
 }
}
void example(void) {

int x = 0;
int y = 1;
int a = x == y;

}
#include <stdbool.h>

void example(void) {
 bool x = false;
 bool y = true;
 if (x || y) {
 }
}
typedef charboolean_t;
void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = x || y;
 a ? example() : example();
}

MISRAC2004-12.7

Synopsis Applications of bitwise operators to signed operands were found.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) Bitwise operators shall not be applied to operands whose underlying type is
signed.

Coding standards CERT INT13-C

Use bitwise operators only on unsigned operands

MISRA C:2004 12.7

(Required) Bitwise operators shall not be applied to operands whose underlying
type is signed.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int x = -(1U);

 x ^ 1;
 x & 0x7F;
 ((unsigned int)x) & 0x7F;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int x = -1;
 ((unsigned int)x) ^ 1U;
 2U ^ 1U;
 ((unsigned int)x) & 0x7FU;
 ((unsigned int)x) & 0x7FU;
}

MISRAC2004-12.8

Synopsis Shifts were found where the right-hand operand might be negative, or too large.

Enabled by default Yes
AFE1_AFE2-1:1

415

416

Descriptions of checks

Severity/Certainty Medium/Medium

Full description (Required) The right-hand operand of a shift operator shall lie between zero and one less
than the width in bits of the underlying type of the left-hand operand. Shifts were found
where the right-hand operand might be negative, or too large. This check is for all
platforms. This causes undefined behavior; the code might or might not work as
intended.

Coding standards CERT INT34-C

Do not shift a negative number of bits or more bits than exist in the operand

CWE 682

Incorrect Calculation

MISRA C:2004 12.8

(Required) The right-hand operand of a shift operator shall lie between zero and
one less than the width in bits of the underlying type of the left-hand operand.

Code examples The following code example fails the check and will give a warning:

unsigned int foo(unsigned long long x, unsigned int y)
{
 int shift = 65; // too big
 return 3ULL << shift;
}
unsigned int foo(unsigned int x, unsigned int y)
{
 int shift = 33; // too big
 return 3U << shift;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

unsigned int foo(unsigned int x)
{
 int y = 1; // OK - this is within the correct range
 return x << y;
}
unsigned int foo(unsigned long long x)
{
 int y = 63; // ok
 return x << y;
}

MISRAC2004-12.9

Synopsis Uses of unary minus on unsigned expressions were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

Coding standards MISRA C:2004 12.9

(Required) The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

Code examples The following code example fails the check and will give a warning:

void example(void) {
unsigned int max = -1U;
// use max = ~0U;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int neg_one = -1;

}

AFE1_AFE2-1:1

417

418

Descriptions of checks

MISRAC2004-12.10

Synopsis Uses of the comma operator were found.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) The comma operator shall not be used.

Coding standards MISRA C:2004 12.10

(Required) The comma operator shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <string.h>

void reverse(char *string) {
int i, j;
j = strlen(string);
for (i = 0; i < j; i++, j--) {

char temp = string[i];
string[i] = string[j];
string[j] = temp;

}
}

The following code example passes the check and will not give a warning about this
issue:

#include <string.h>

void reverse(char *string) {
int i;
int length = strlen(string);
int half_length = length / 2;
for (i = 0; i < half_length; i++) {

int opposite = length - i;
char temp = string[i];
string[i] = string[opposite];
string[opposite] = temp;

}
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2004-12.11

Synopsis Found a constant unsigned integer expression that overflows.

Enabled by default No

Severity/Certainty Medium/Medium

Full description (Advisory) Evaluation of constant unsigned integer expressions should not lead to
wrap-around.

Coding standards MISRA C:2004 12.11

(Advisory) Evaluation of constant unsigned integer expressions should not lead
to wrap-around.

Code examples The following code example fails the check and will give a warning:

void example(void) {
(0xFFFFFFFF + 1u);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
0x7FFFFFFF + 0;

}

MISRAC2004-12.12_a

Synopsis Found a read access to a field of a union following a write access to a different field,
which effectively re-interprets the bit pattern with a different type.

Enabled by default Yes

Severity/Certainty Medium/High
AFE1_AFE2-1:1

419

420

Descriptions of checks

Full description (Required) The underlying bit representations of floating-point values shall not be used.
To reinterpret bit patterns deliberately, use an explicit cast.

Coding standards CERT EXP39-C

Do not access a variable through a pointer of an incompatible type

CWE 188

Reliance on Data/Memory Layout

MISRA C:2004 12.12

(Required) The underlying bit representations of floating-point values shall not
be used.

Code examples The following code example fails the check and will give a warning:

union name {
int int_field;
float float_field;

};

void example(void) {
union name u;
u.int_field = 10;
float f = u.float_field;

}

The following code example passes the check and will not give a warning about this
issue:

union name {
int int_field;
float float_field;

};

void example(void) {
union name u;
u.int_field = 10;
float f = u.int_field;

}

MISRAC2004-12.12_b

Synopsis An expression was found that provides access to the bit representation of a
floating-point variable.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The underlying bit representations of floating-point values shall not be used.

Coding standards MISRA C:2004 12.12

(Required) The underlying bit representations of floating-point values shall not
be used.

Code examples The following code example fails the check and will give a warning:

void example(float f) {
int * x = (int *)&f;
int i = *x;

}

The following code example passes the check and will not give a warning about this
issue:

void example(float f) {
int i = (int)f;

}

MISRAC2004-12.13

Synopsis Uses of the increment (++) and decrement (--) operators werew found mixed with other
operators in an expression.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) The increment (++) and decrement (--) operators should not be mixed with
other operators in an expression.

Coding standards MISRA C:2004 12.13
AFE1_AFE2-1:1

421

422

Descriptions of checks

(Advisory) The increment (++) and decrement (--) operators should not be
mixed with other operators in an expression.

Code examples The following code example fails the check and will give a warning:

void example(char *src, char *dst) {
while ((*src++ = *dst++));

}

The following code example passes the check and will not give a warning about this
issue:

void example(char *src, char *dst) {
while (*src) {

*dst = *src;
src++;
dst++;

}
}

MISRAC2004-13.1

Synopsis Assignment operators were found in expressions that yield a Boolean value.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Assignment operators shall not be used in expressions that yield a boolean
value.

Coding standards MISRA C:2004 13.1

(Required) Assignment operators shall not be used in expressions that yield a
boolean value.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
int result;
if (result = condition()) {
}

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int result = condition();
if (result) {
}

}

MISRAC2004-13.2_a

Synopsis Non-Boolean termination conditions were found in do ... while statements.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) Tests of a value against zero should be made explicit, unless the operand is
effectively boolean.

Coding standards MISRA C:2004 13.2

(Advisory) Tests of a value against zero should be made explicit, unless the
operand is effectively boolean.

Code examples The following code example fails the check and will give a warning:

typedefintint32_t;
int32_t func();

void example(void)
{
 do {
 } while (func());
}

AFE1_AFE2-1:1

423

424

Descriptions of checks

The following code example passes the check and will not give a warning about this
issue:

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 while (int *ptr = fn()) // Compliant by exception
 {}

 do
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }
 while (true); // Compliant

 while (int len = fn2()) // Compliant by exception
 {}

 if (int *p = fn()) {} // Compliant by exception
 if (int len = fn2()) {} // Complioant by exception
 if (bool flag = fn3()) {} // Compliant
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2004-13.2_b

Synopsis Non-boolean termination conditions were found in for loops.

Enabled by default No

Severity/Certainty Medium/Medium

Full description (Advisory) Tests of a value against zero should be made explicit, unless the operand is
effectively boolean.

Coding standards MISRA C:2004 13.2

(Advisory) Tests of a value against zero should be made explicit, unless the
operand is effectively boolean.

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 for (int x = 10;x;--x) {}
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

425

426

Descriptions of checks

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 for (fn(); fn3(); fn2()) // Compliant
 {}

 for (fn(); true; fn()) // Compliant
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }

 for (int len = fn2(); len < 10; len++) // Compliant
 ;
}

MISRAC2004-13.2_c

Synopsis Non-Boolean conditions were found in if statements.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Advisory) Tests of a value against zero should be made explicit, unless the operand is
effectively boolean.

Coding standards MISRA C:2004 13.2

(Advisory) Tests of a value against zero should be made explicit, unless the
operand is effectively boolean.

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 int u8;
 if (u8) {}
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

427

428

Descriptions of checks

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 while (int *ptr = fn()) // Compliant by exception
 {}

 do
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }
 while (true); // Compliant

 while (int len = fn2()) // Compliant by exception
 {}

 if (int *p = fn()) {} // Compliant by exception
 if (int len = fn2()) {} // Complioant by exception
 if (bool flag = fn3()) {} // Compliant
}

MISRAC2004-13.2_d

Synopsis Non-Boolean termination conditions were found in while statements.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Advisory) Tests of a value against zero should be made explicit, unless the operand is
effectively boolean.

Coding standards MISRA C:2004 13.2

(Advisory) Tests of a value against zero should be made explicit, unless the
operand is effectively boolean.

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 int u8;
 while (u8) {}
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

429

430

Descriptions of checks

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 while (int *ptr = fn()) // Compliant by exception
 {}

 do
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }
 while (true); // Compliant

 while (int len = fn2()) // Compliant by exception
 {}

 if (int *p = fn()) {} // Compliant by exception
 if (int len = fn2()) {} // Complioant by exception
 if (bool flag = fn3()) {} // Compliant
}

MISRAC2004-13.2_e

Synopsis Non-Boolean operands to the conditional (? :) operator were found.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Advisory) Tests of a value against zero should be made explicit, unless the operand is
effectively boolean.

Coding standards MISRA C:2004 13.2

(Advisory) Tests of a value against zero should be made explicit, unless the
operand is effectively boolean.

Code examples The following code example fails the check and will give a warning:

void example(int x) {
 int z;
 z = x ? 1 : 2; //x is an int, not a bool
}

The following code example passes the check and will not give a warning about this
issue:

void example(int x) {
 int z;
 z = x + 0 > 3 ? 1 : 2; //OK - the condition is a comparison
}
void example(bool b) {
 int x;
 x = b ? 1 : 2; //OK - b is a bool
}

MISRAC2004-13.3

Synopsis Floating-point comparisons using == or != were found.

Enabled by default Yes

Severity/Certainty Low/High
AFE1_AFE2-1:1

431

432

Descriptions of checks

Full description (Required) Floating-point expressions shall not be tested for equality or inequality.
Floating-point comparisons using == or != were found. This might be evaluated
incorrectly, especially if either of the floats have been operated on arithmetically.

Coding standards CERT FLP06-C

Understand that floating-point arithmetic in C is inexact

CERT FLP35-CPP

Take granularity into account when comparing floating point values

MISRA C:2004 13.3

(Required) Floating-point expressions shall not be tested for equality or
inequality.

Code examples The following code example fails the check and will give a warning:

int main(void)
{
 float f = 3.0;
 int i = 3;

 if (f == i) //comparison of a float and an int
 ++i;

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void)
{
 int i = 60;
 char c = 60;

 if (i == c)
 ++i;

 return 0;
}

MISRAC2004-13.4

Synopsis Floating-point values were found in the controlling expression of a for statement.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The controlling expression of a for statement shall not contain any objects of
floating type.

Coding standards MISRA C:2004 13.4

(Required) The controlling expression of a for statement shall not contain any
objects of floating type.

Code examples The following code example fails the check and will give a warning:

void example(int input, float f) {
 int i;
 for (i = 0; i < input && f < 0.1f; ++i) {
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(int input, float f) {
 int i;
 int f_condition = f < 0.1f;
 for (i = 0; i < input && f_condition; ++i) {
 f_condition = f < 0.1f;
 }
}

MISRAC2004-13.5

Synopsis A for loop counter variable is not initialized in the for loop.

Enabled by default Yes

Severity/Certainty High/Medium
AFE1_AFE2-1:1

433

434

Descriptions of checks

Full description (Required) The three expressions of a for statement shall be concerned only with loop
control. been initialized in the for loop header. When a counter is used in a loop, it
should be initialized. If not, the loop may iterate a very large number of times, or not at
all. This check will not warn about uninitialized variables that are not used as counters.

Coding standards MISRA C:2004 13.5

(Required) The three expressions of a for statement shall be concerned only with
loop control.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 int i, x = 10;

 /* 'i' used as a counter, not initialized */
 for (; i < 10; i++) {
 x++;
 }

 return x;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 int i, x = 10;

 /* 'i' initialized in loop header */
 for (i = 0; i < 10; i++) {
 x++;
 }

 return x;
}

MISRAC2004-13.6

Synopsis A for loop counter variable was found that is modified in the body of the loop.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/High

Full description (Required) Numeric variables being used within a for loop for iteration counting shall
not be modified in the body of the loop. statement) should not be assigned to in the body
of the for loop. While it's legal to modify the loop counter within the body of a for loop
(in place of a while loop), the conventional use of a for loop is to iterate over a
predetermined range, incrementing the loop counter once per iteration. Modification of
the loop counter within the for loop body is probably accidental, and could result in
erroneous behavior or an infinite loop.

Coding standards MISRA C:2004 13.6

(Required) Numeric variables being used within a for loop for iteration counting
shall not be modified in the body of the loop.

Code examples The following code example fails the check and will give a warning:

int main(void) {
 int i;

 /* i is incremented inside the loop body */
 for (i = 0; i < 10; i++) {
 i = i + 1;
 }

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int i;
 int x = 0;

 for (i = 0; i < 10; i++) {
 x = i + 1;
 }

 return 0;
}

AFE1_AFE2-1:1

435

436

Descriptions of checks

MISRAC2004-13.7_a

Synopsis A comparison using ==, <, <=, >, or >= was found that always evaluates to true.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Boolean operations whose results are invariant shall not be permitted. A
comparison using ==, <, <=, >, or >= is always true, given the values of the arguments
of the comparison operator. This often occurs because literal values or macros have
been used on one or both sides of the operator. Double-check that the operands and the
code logic are correct.

Coding standards CWE 571

Expression is Always True

MISRA C:2004 13.7

(Required) Boolean operations whose results are invariant shall not be
permitted.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 int x = 42;

 if (x == 42) { //always true
 return 0;
 }

 return 1;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int example(void) {
 int x = 42;

 if (rand()) {
 x = 40;
 }

 if (x == 42) { //OK - may not be true
 return 0;
 }

 return 1;

}

MISRAC2004-13.7_b

Synopsis A comparison using ==, <, <=, >, or >= was found that always evaluates to false.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Boolean operations whose results are invariant shall not be permitted. A
comparison using ==, <, <=, >, or >= is always false, based on the values of the
arguments of the comparison operator. This often occurs because literal values or
macros have been used on one or both sides of the operator. Double-check that the
operands and the code logic are correct.

Coding standards CWE 570

Expression is Always False

MISRA C:2004 13.7

(Required) Boolean operations whose results are invariant shall not be
permitted.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

437

438

Descriptions of checks

int example(void) {
 int x = 10;

 if (x < 10) { //never true
 return 1;
 }

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {

 if (x < 10) { //OK - may be true
 return 1;
 }

 return 0;
}

MISRAC2004-14.1

Synopsis A part of the application is not executed on any of the execution paths.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) There shall be no unreachable code. A part of the application is not executed
on any of the execution paths. This might indicate problems with the application's
branching structure.

Coding standards CERT MSC07-C

Detect and remove dead code

CWE 561

Dead Code

MISRA C:2004 14.1
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) There shall be no unreachable code.

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

int f(int mode) {
 switch (mode) {
 case 0:
 return 1;
 printf("Hello!"); // This line cannot execute.
 default:
 return -1;
 }
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

int f(int mode) {
 switch (mode) {
 case 0:
 printf("Hello!"); // This line can execute.
 return 1;
 default:
 return -1;
 }
}

MISRAC2004-14.2

Synopsis A statement was found that potentially contains no side effects.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) All non-null statements shall either have at least one side effect however
executed, or cause control flow to change.
AFE1_AFE2-1:1

439

440

Descriptions of checks

Coding standards CERT MSC12-C

Detect and remove code that has no effect

CWE 482

Comparing instead of Assigning

MISRA C:2004 14.2

(Required) All non-null statements shall either have at least one side effect
however executed, or cause control flow to change.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int x = 1;
 x = 2;
 x < x;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <string>
#include "iar.h"

void f();
template<class T>
struct X {
 int x;

 int get() const {
 return x;
 }

 X(int y) :
 x(y) {}

};

typedef X<int> intX;

void example(void) {
 /* everything below has a side-effect */
 int i=0;
 f();
 (void)f();
 ++i;
 i+=1;
 i++;
 char *p = "test";
 STD string s;
 s.assign(p);
 STD string *ps = &s;
 ps -> assign(p);
 intX xx(1);
 xx.get();
 intX(1);
}

MISRAC2004-14.3

Synopsis There are stray semicolons on the same line as other code.

Enabled by default Yes
AFE1_AFE2-1:1

441

442

Descriptions of checks

Severity/Certainty Low/Low

Full description (Required) Before preprocessing, a null statement shall only occur on a line by itself; it
may be followed by a comment, provided that the first character following the null
statement is a whitespace character. Semicolons were detected that were not the only
statement on the line.

Coding standards CERT EXP15-C

Do not place a semicolon on the same line as an if, for, or while statement

MISRA C:2004 14.3

(Required) Before preprocessing, a null statement shall only occur on a line by
itself; it may be followed by a comment, provided that the first character
following the null statement is a whitespace character.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int i;
 for (i=0; i!=10; ++i); //Null statement as the
 //body of this for loop
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int i;
 for (i=0; i!=10; ++i){ //An empty block is much
 } //more readable
}

MISRAC2004-14.4

Synopsis Uses of the goto statement were found.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) The goto statement shall not be used.

Coding standards MISRA C:2004 14.4

(Required) The goto statement shall not be used.

Code examples The following code example fails the check and will give a warning:

void example(void) {

goto testin;

testin:
printf("Reached by goto");

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

printf ("Not reached by goto");

}

MISRAC2004-14.5

Synopsis Uses of the continue statement were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The continue statement shall not be used.
AFE1_AFE2-1:1

443

444

Descriptions of checks

Coding standards MISRA C:2004 14.5

(Required) The continue statement shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

// Print the odd numbers between 0 and 99

void example(void) {
int i;
for (i = 0; i < 100; i++) {

if (i % 2 == 0) {
continue;

}
printf("%d", i);

}
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

// Print the odd numbers between 0 and 99

void example(void) {
int i;
for (i = 0; i < 100; i++) {

if (i % 2 != 0) {
printf("%d", i);

}
}

}

MISRAC2004-14.6

Synopsis Multiple termination points were found in a loop.

Enabled by default Yes

Severity/Certainty Low/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) For any iteration statement, there shall be at most one break statement used
for loop termination.

Coding standards MISRA C:2004 14.6

(Required) For any iteration statement, there shall be at most one break
statement used for loop termination.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

445

446

Descriptions of checks

void func()
{
 int x = 1;
 for (int i = 0; i < 10; i++)
 {
 if (x)
 {
 break;
 }
 else if (i)
 {
 break; // Non-compliant – second jump from loop
 }
 else
 {
 // Code
 }
 }
}
int fn(void);

void example(void) {
int i = fn();
int j;
int counter = 0;
switch (i) {

case 1:
break;

case 2:
case 3:

counter++;
if (i==3) {

break;
}
counter++;
break;

case 4:
for (j = 0; j < 10; j++) {

if (j == i) {
break;

}
if (j == counter) {

break;
}

}
counter--;
break;
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

default:
break;

}
}
int fn(int i);

void example(void) {
int counter = 0;
int i = 0;
for (i = 0; i < 100; i++) {

switch (i % 9) {
case 8:

counter++;
break;

default:
break;

}
if (fn(i)) {

break;
}
if (fn(i)) {

break;
}

}
}

int test1(int);
int test2(int);

void example(void)
{

int i = 0;
for (i = 0; i < 10; i++) {

if (test1(i)) {
break;

} else if (test2(i)) {
break;

}
}

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

447

448

Descriptions of checks

void example(void)
{

int i = 0;
for (i = 0; i < 10 && i != 9; i++) {

if (i == 9) {
break;

}
}

}
void func()
{
 int x = 1;
 for (int i = 0; i < 10; i++)
 {
 if (x)
 {
 break;
 }
 else if (i)
 {
 while (true)
 {
 if (x)
 {
 break;
 }
 do
 {
 break;
 }
 while(true);
 }
 }
 else
 {
 }
 }
}
int fn(void);

void example(void) {
int i = fn();
int j;
int counter = 0;
switch (i) {

case 1:
break;
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

case 2:
case 3:

counter++;
if (i==3) {

break;
}
counter++;
break;

case 4:
for (j = 0; j < 10; j++) {

if (j == i) {
break;

}
}
counter--;
break;

default:
break;

}
}
int fn(int i);

void example(void) {
int counter = 0;
int i = 0;
int stop = 0;
for (i = 0; i < 100 && !stop; i++) {

switch (i % 9) {
case 8:

counter++;
break;

default:
break;

}
stop = fn(i);

}
}

MISRAC2004-14.7

Synopsis More than one point of exit was found in a function, or an exit point before the end of
the function.

Enabled by default Yes
AFE1_AFE2-1:1

449

450

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) A function shall have a single point of exit at the end of the function. More
than one point of exit was found in a function, or an exit point before the end of the
function.

Coding standards MISRA C:2004 14.7

(Required) A function shall have a single point of exit at the end of the function.

Code examples The following code example fails the check and will give a warning:

extern int errno;

void example(void) {
if (errno) {

return;
}
return;

}

The following code example passes the check and will not give a warning about this
issue:

extern int errno;

void example(void) {
if (errno) {

goto end;
}

end:
{

return;
}

}

MISRAC2004-14.8_a

Synopsis There are missing braces in one or more do ... while statements.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Low

Full description (Required) The statement forming the body of a switch, while, do ... while, or for
statement shall be a compound statement.

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C:2004 14.8

(Required) The statement forming the body of a switch, while, do ... while, or
for statement shall be a compound statement.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 do
 return 0;
 while (1);
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 do {
 return 0;
 } while (1);
}

MISRAC2004-14.8_b

Synopsis There are missing braces in one or more for statements.

Enabled by default Yes
AFE1_AFE2-1:1

451

452

Descriptions of checks

Severity/Certainty Low/Low

Full description (Required) The statement forming the body of a switch, while, do ... while, or for
statement shall be a compound statement.

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C:2004 14.8

(Required) The statement forming the body of a switch, while, do ... while, or
for statement shall be a compound statement.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 for (;;)
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 for (;;){
 return 0;
 }
}

MISRAC2004-14.8_c

Synopsis There are missing braces in one or more switch statements.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Low

Full description (Required) The statement forming the body of a switch, while, do ... while, or for
statement shall be a compound statement.

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C:2004 14.8

(Required) The statement forming the body of a switch, while, do ... while, or
for statement shall be a compound statement.

Code examples The following code example fails the check and will give a warning:

void example(void) {
while(1);
for(;;);
do ;
while (0);
switch(0);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
while(1) {
}
for(;;) {
}
do {
} while (0);
switch(0) {
}

}

AFE1_AFE2-1:1

453

454

Descriptions of checks

MISRAC2004-14.8_d

Synopsis There are missing braces in one or more while statements.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The statement forming the body of a switch, while, do ... while, or for
statement shall be a compound statement.

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C:2004 14.8

(Required) The statement forming the body of a switch, while, do ... while, or
for statement shall be a compound statement.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 while (1)
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 while (1){
 return 0;
 }
}

MISRAC2004-14.9

Synopsis There are missing braces in one or more if, else, or else if statements.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) An if expression construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement or another if statement.

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C:2004 14.9

(Required) An if expression construct shall be followed by a compound
statement. The else keyword shall be followed by either a compound statement
or another if statement.

Code examples The following code example fails the check and will give a warning:

void example(void) {
if (random());
if (random());
else;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
if (random()) {
}
if (random()) {
} else {
}
if (random()) {
} else if (random()) {
}

}

AFE1_AFE2-1:1

455

456

Descriptions of checks

MISRAC2004-14.10

Synopsis One or more if ... else if constructs were found that are not terminated with an
else clause.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) All if ... else if constructs shall be terminated with an else clause.

Coding standards MISRA C:2004 14.10

(Required) All if ... else if constructs shall be terminated with an else clause.

Code examples The following code example fails the check and will give a warning:

void example(void) {
if (!rand()) {

printf("The first random number is 0");
} else if (!rand()) {

printf("The second random number is 0");
}

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
if (!rand()) {

printf("The first random number is 0");
} else if (!rand()) {

printf("The second random number is 0");
} else {

printf("Neither random number was 0");
}

}

MISRAC2004-15.0

Synopsis Switch statements were found that do not conform to the MISRA C switch syntax.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) The MISRA C switch syntax shall be used. switch-statement : switch '('
expression ')' '{' case-label-clause-list default-label-clause? '}' case-label-clause-list:
case-label case-clause? case-label-clause-list case-label case-clause? case-label: case
constant-expression ':' case-clause: statement-list? break ';' '{' declaration-list?
statement-list? break ';' '}' default-label-clause : default-label default-clause
default-label: default ':' default-clause: case-clause

Coding standards MISRA C:2004 15.0

(Required) The MISRA C switch syntax shall be used.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

457

458

Descriptions of checks

void example(void) {
switch(expr()) {

// at least one case label
case 1:

// statement list
stmt();
stmt();
// WARNING: missing break at end of statement list

default:
break; // statement list ends in a break

}

switch(expr()) {
// WARNING: missing at least one case label
default:

break; // statement list ends in a break
}

switch(expr()) {
// at least one case label
case 1:

// statement list
stmt();
stmt();
break; // statement list ends in a break

case 0:
stmt();
// WARNING: declaration list without block
int decl = 0;
int x;
// statement list
stmt();
stmt();
break; // statement list ends in a break

default:
break; // statement list ends in a break

}

switch(expr()) {
// at least one case label
case 1: {

// statement list
stmt();
// WARNING: Additional block inside of the case clause

block
{
stmt();
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

}
break;

}
default:

break; // statement list ends in a break
}

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
switch(expr()) {

// at least one case label
case 1:

// statement list (no declarations)
stmt();
stmt();
break; // statement list ends in a break

case 0: {
// one level of block is allowed
// declaration list
int decl = 0;
// statement list
stmt();
stmt();
break; // statement list ends in a break

}
case 2: // empty cases are allowed
default:

break; // statement list ends in a break
}

}

MISRAC2004-15.1

Synopsis Switch labels were found in nested blocks.

Enabled by default Yes

Severity/Certainty Low/Medium
AFE1_AFE2-1:1

459

460

Descriptions of checks

Full description (Required) A switch label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement.

Coding standards MISRA C:2004 15.1

(Required) A switch label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement.

Code examples The following code example fails the check and will give a warning:

void example(void) {

switch(rand()) {
{case 1:}
case 2:
case 3:
default:

}

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

switch(rand()) {
case 1:
case 2:
case 3:
default:

}

}

MISRAC2004-15.2

Synopsis Non-empty switch cases were found that are not terminated by a break statement.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) An unconditional break statement shall terminate every non-empty switch
clause.

Coding standards CERT MSC17-C

Finish every set of statements associated with a case label with a break statement

CWE 484

Omitted Break Statement in Switch

MISRA C:2004 15.2

(Required) An unconditional break statement shall terminate every non-empty
switch clause.

Code examples The following code example fails the check and will give a warning:

void example(int input) {

 while (rand()) {
 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 default:
 break;
 }
 }
}
void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 default:
 break;
 }

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

461

462

Descriptions of checks

void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 break;
 default:
 break;
 }

}
void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 } else {
 break;
 }
 // All paths above contain a break, therefore we do not
warn
 default:
 break;
 }

}

MISRAC2004-15.3

Synopsis Switch statements were found without a default clause, or with a default clause that is
not the final clause.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The final clause of a switch statement shall be the default clause.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards CWE 478

Missing Default Case in Switch Statement

MISRA C:2004 15.3

(Required) The final clause of a switch statement shall be the default clause.

Code examples The following code example fails the check and will give a warning:

int example(int x) {
 switch(x){
 default:
 return 2;
 break;
 case 0:
 return 0;
 break;
 }
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 switch(x){
 case 3:
 return 0;
 break;
 case 5:
 return 1;
 break;
 default:
 return 2;
 break;
 }
}

MISRAC2004-15.4

Synopsis A switch expression was found that represents a value that is effectively Boolean.

Enabled by default Yes
AFE1_AFE2-1:1

463

464

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) A switch expression shall not represent a value that is effectively boolean.

Coding standards MISRA C:2004 15.4

(Required) A switch expression shall not represent a value that is effectively
boolean.

Code examples The following code example fails the check and will give a warning:

void example(int x) {
switch(x == 0) {

case 0:
case 1:
default:

}
}

The following code example passes the check and will not give a warning about this
issue:

void example(int x) {
switch(x) {

case 1:
case 0:
default:

}
}

MISRAC2004-15.5

Synopsis Switch statements without case clauses were found.

Enabled by default Yes

Severity/Certainty Low/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) Every switch statement shall have at least one case clause.

Coding standards MISRA C:2004 15.5

(Required) Every switch statement shall have at least one case clause.

Code examples The following code example fails the check and will give a warning:

int example(int x) {
 switch(x){
 default:
 return 2;
 break;
 }
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 switch(x){
 case 3:
 return 0;
 break;
 case 5:
 return 1;
 break;
 default:
 return 2;
 break;
 }
}

MISRAC2004-16.1

Synopsis Functions that are defined using ellipsis (...) notation were found.

Enabled by default Yes

Severity/Certainty Low/High
AFE1_AFE2-1:1

465

466

Descriptions of checks

Full description (Required) Functions shall not be defined with a variable number of arguments.
Functions that are defined using ellipsis (...) notation were found. Additionally, passing
an argument with non-POD class type leads to undefined behavior. Note that the rule
specifies definitions (not declarations), to permit using existing library functions.

Coding standards MISRA C:2004 16.1

(Required) Functions shall not be defined with a variable number of arguments.

Code examples The following code example fails the check and will give a warning:

#include <stdarg.h>
int putchar(int c);

void
minprintf(const char *fmt, ...)
{
 va_list ap;
 const char *p, *s;

 va_start(ap, fmt);
 for (p = fmt; *p != '\0'; p++) {
 if (*p != '%') {
 putchar(*p);
 continue;
 }
 switch (*++p) {
 case 's':
 for (s = va_arg(ap, const char *); *s != '\0'; s++)
 putchar(*s);
 break;
 }
 }
 va_end(ap);
}

The following code example passes the check and will not give a warning about this
issue:

int puts(const char *);

void
func(void)
{
 puts("Hello, world!");
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2004-16.2_a

Synopsis Functions were found that call themselves directly.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Functions shall not call themselves, either directly or indirectly.

Coding standards MISRA C:2004 16.2

(Required) Functions shall not call themselves, either directly or indirectly.

Code examples The following code example fails the check and will give a warning:

void example(void) {
example();

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2004-16.2_b

Synopsis Functions were found that call themselves indirectly.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Functions shall not call themselves, either directly or indirectly.

Coding standards MISRA C:2004 16.2
AFE1_AFE2-1:1

467

468

Descriptions of checks

(Required) Functions shall not call themselves, either directly or indirectly.

Code examples The following code example fails the check and will give a warning:

void example(void);
void callee(void) {
 example();
}
void example(void) {
 callee();
}

The following code example passes the check and will not give a warning about this
issue:

void example(void);
void callee(void) {
 // example();
}
void example(void) {
 callee();
}

MISRAC2004-16.3

Synopsis Function prototypes were found that do not give all parameters a name.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) Identifiers shall be given for all of the parameters in a function prototype
declaration.

Coding standards MISRA C:2004 16.3

(Required) Identifiers shall be given for all of the parameters in a function
prototype declaration.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

char *strchr(const char *, int c);

void func(void)
{
 strchr("hello, world!\n", '!');
}

The following code example passes the check and will not give a warning about this
issue:

char *strchr(const char *s, int c);

void func(void)
{
 strchr("hello, world!\n", '!');
}

MISRAC2004-16.5

Synopsis Functions were found that are declared with an empty () parameter list that does not
form a valid prototype.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) Functions with no parameters shall be declared and defined with the
parameter list void.

Coding standards CERT DCL20-C

Always specify void even if a function accepts no arguments

MISRA C:2004 16.5

(Required) Functions with no parameters shall be declared and defined with the
parameter list void.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

469

470

Descriptions of checks

void func();/* not a valid prototype in C */
void func2(void)
{
 func();
}

The following code example passes the check and will not give a warning about this
issue:

void func(void);
void func2(void)
{
 func();
}

MISRAC2004-16.7

Synopsis A function was found that does not modify one of its parameters.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A pointer parameter in a function prototype should be declared as pointer to
const if the pointer is not used to modify the addressed object.

Coding standards MISRA C:2004 16.7

(Required) A pointer parameter in a function prototype should be declared as
pointer to const if the pointer is not used to modify the addressed object.

Code examples The following code example fails the check and will give a warning:

int example(int* x) { //x should be const
 if (*x > 5){
 return *x;
 } else {
 return 5;
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int example(const int* x) { //OK
 if (*x > 5){
 return *x;
 } else {
 return 5;
 }
}

MISRAC2004-16.8

Synopsis For some execution paths, no return statement is executed in a function with a non-void
return type.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) All exit paths from a function with non-void return type shall have an explicit
return statement with an expression. For some execution paths, no return statement is
executed in a function with a non-void return type. This returns an undefined value. This
is not a problem if the function is used as a void function, but if the return value is used
it will cause unpredictable behavior. This is a weaker check than the one performed by
gcc. Its check allows more aggressive coding without violating the rule. However, a rule
violation in gcc means there is no path leading to a return statement.

Coding standards CERT MSC37-C

Ensure that control never reaches the end of a non-void function

MISRA C:2004 16.8

(Required) All exit paths from a function with non-void return type shall have
an explicit return statement with an expression.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

471

472

Descriptions of checks

#include <stdio.h>

int example(void) {
 int x;

 scanf("%d",&x);

 if (x > 10) {
 return 10;
 }
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

int example(void) {
 int x;

 scanf("%d",&x);

 if (x > 10) {
 return 10;
 }

 return 0;
}

MISRAC2004-16.9

Synopsis One or more function addresses are taken without an explicit &.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

Coding standards MISRA C:2004 16.9
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) A function identifier shall only be used with either a preceding &, or
with a parenthesized parameter list, which may be empty.

Code examples The following code example fails the check and will give a warning:

void func(void);

void
example(void)
{
 void (*pf)(void) = func;
}

The following code example passes the check and will not give a warning about this
issue:

void func(void);

void
example(void)
{
 void (*pf)(void) = &func;
}

MISRAC2004-16.10

Synopsis A return value for a library function that might return an error value is not used.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) If a function returns error information, then that error information shall be
tested.

Coding standards CWE 252

Unchecked Return Value

CWE 394

Unexpected Status Code or Return Value
AFE1_AFE2-1:1

473

474

Descriptions of checks

MISRA C:2004 16.10

(Required) If a function returns error information, then that error information
shall be tested.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 malloc(sizeof(int)); // This function could fail,
 // and the return value is
 // not checked
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
 int *x = malloc(sizeof(int)); // OK - return value
 // is stored
}

MISRAC2004-17.1_a

Synopsis A direct access to a field of a struct was found, that uses an offset from the address of
the struct.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) Pointer arithmetic shall only be applied to pointers that address an array or
array element.

Coding standards CERT ARR37-C

Do not add or subtract an integer to a pointer to a non-array object

CWE 188

Reliance on Data/Memory Layout
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRA C:2004 17.1

(Required) Pointer arithmetic shall only be applied to pointers that address an
array or array element.

Code examples The following code example fails the check and will give a warning:

struct S{
 char c;
 int x;
};

void main(void) {
 struct S s;
 *(&s.c+1) = 10;
}

The following code example passes the check and will not give a warning about this
issue:

struct S{
 char c;
 int x;
};

void example(void) {
 struct S s;
 s.x = 10;
}

MISRAC2004-17.1_b

Synopsis Detected pointer arithmetic applied to a pointer that references a stack address.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) Pointer arithmetic shall only be applied to pointers that address an array or
array element.

Coding standards CWE 120
AFE1_AFE2-1:1

475

476

Descriptions of checks

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

MISRA C:2004 17.1

(Required) Pointer arithmetic shall only be applied to pointers that address an
array or array element.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int i;
 int *p = &i;
 p++;
 *p = 0;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int i;
 int *p = &i;
 *p = 0;
}

MISRAC2004-17.1_c

Synopsis Detected invalid pointer arithmetic with an automatic variable that is neither an array nor
a pointer.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) Pointer arithmetic shall only be applied to pointers that address an array or
array element. An automatic variable is taken and arithmetic is performed on it, which
might indicate an invalid memory access. Local variables, parameters, and globals,
including structs are checked.

Coding standards CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRA C:2004 17.1

(Required) Pointer arithmetic shall only be applied to pointers that address an
array or array element.

Code examples The following code example fails the check and will give a warning:

void example(int x) {
 *(&x+10) = 5;
}

The following code example passes the check and will not give a warning about this
issue:

void example(int *x) {
 *(x+10) = 5;
}

MISRAC2004-17.4_a

Synopsis Pointer arithmetic that is not array indexing was detected.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Array indexing shall be the only allowed form of pointer arithmetic.

Coding standards MISRA C:2004 17.4

(Required) Array indexing shall be the only allowed form of pointer arithmetic.

Code examples The following code example fails the check and will give a warning:

typedef int INT32;

void example(INT32 array[]) {
INT32 *pointer = array;
INT32 *end = array + 10;
for (; pointer != end; pointer += 1) {

*pointer = 0;
}

}

AFE1_AFE2-1:1

477

478

Descriptions of checks

The following code example passes the check and will not give a warning about this
issue:

typedef int INT32;

void example(INT32 array[]) {
INT32 index = 0;
INT32 end = 10;
for (; index != end; index += 1) {

array[index] = 0;
}

}

MISRAC2004-17.4_b

Synopsis Array indexing was detected applied to an object defined as a pointer type.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Array indexing shall be the only allowed form of pointer arithmetic.

Coding standards MISRA C:2004 17.4

(Required) Array indexing shall be the only allowed form of pointer arithmetic.

Code examples The following code example fails the check and will give a warning:

typedef unsigned charUINT8;
typedefunsigned intUINT;

void example(UINT8 *p, UINT size) {
UINT i;
for (i = 0; i < size; i++) {

p[i] = 0;
}

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

typedef unsigned charUINT8;
typedef unsigned intUINT;

void example(void) {
UINT8 p[10];
UINT i;
for (i = 0; i < 10; i++) {

p[i] = 0;
}

}

MISRAC2004-17.5

Synopsis One or more declarations of objects were found that contain more than two levels of
pointer indirection.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The declaration of objects should contain no more than two levels of pointer
indirection.

Coding standards MISRA C:2004 17.5

(Required) The declaration of objects should contain no more than two levels of
pointer indirection.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int ***p;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int **p;
}

AFE1_AFE2-1:1

479

480

Descriptions of checks

MISRAC2004-17.6_a

Synopsis Detected the return of a stack address.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist. Detected the
return of a stack address. This is illegal and might cause a crash or memory corruption.
Return a copy of the object instead, using a global variable, or allocate memory
dynamically.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 562

Return of Stack Variable Address

MISRA C:2004 17.6

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:

int *f() {
 int x;
 return &x; //x is a local variable
}
int *example(void) {
 int a[20];
 return a; //a is a local array
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int* example(void) {
 int *p,i;
 p = (int *)malloc(sizeof(int));
 return p; //OK - p is dynamically allocated

}

MISRAC2004-17.6_b

Synopsis Detected a stack address stored in a global pointer.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist. Detected a stack
address stored in a global pointer. The application might appear to work normally, but it
is accessing illegal memory. This might cause a crash, or data changing unpredictably.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C:2004 17.6

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:

int *px;
void example() {
 int i = 0;
 px = &i; // assigning the address of stack
 // variable a to the global px
}

AFE1_AFE2-1:1

481

482

Descriptions of checks

The following code example passes the check and will not give a warning about this
issue:

void example(int *pz) {
 int x; int *px = &x;
 int *py = px; /* local variable */
 pz = px; /* parameter */
}

MISRAC2004-17.6_c

Synopsis Detected a stack address stored in the field of a global struct.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist. Detected a stack
address stored in the field of a global struct. The application might appear to work
normally, but it is accessing illegal memory. This might cause a crash, or data changing
unpredictably.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C:2004 17.6

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

struct S{
 int *px;
} s;

void example() {
 int i = 0;
 s.px = &i; //storing local address in global struct
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

struct S{
 int *px;
} s;

void example() {
 int i = 0;
 s.px = &i; //OK - the field is written to later
 s.px = NULL;
}

MISRAC2004-17.6_d

Synopsis Detected a stack address stored outside a function via a parameter.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist. Detected a stack
address stored outside a function via a parameter. The application might appear to work
normally, but it is accessing illegal memory. This might cause a crash, or data changing
unpredictably. Known false positives: This test checks for any expression referring to
the storage located by the parameter. Thus the assignment 'local[*parameter] = & local;'
will fail the check despite being perfectly safe.

Coding standards CERT DCL30-C
AFE1_AFE2-1:1

483

484

Descriptions of checks

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C:2004 17.6

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:

void example(int **ppx) {
 int x;
 ppx[0] = &x; //local address
}

The following code example passes the check and will not give a warning about this
issue:

static int y = 0;
void example3(int **ppx){
 *ppx = &y; //OK - static address
}

MISRAC2004-18.1

Synopsis Structs and unions were found that are used without being defined.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) All structure and union types shall be complete at the end of the translation
unit.

Coding standards MISRA C:2004 18.1

(Required) All structure and union types shall be complete at the end of the
translation unit.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

struct incomplete;

void example(struct incomplete *p)
{
}

The following code example passes the check and will not give a warning about this
issue:

struct complete {
 int x;
};

void example(struct complete *p)
{
}

MISRAC2004-18.2

Synopsis Assignments from one field of a union to another were found.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) An object shall not be assigned to an overlapping object.

Coding standards MISRA C:2004 18.2

(Required) An object shall not be assigned to an overlapping object.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

485

486

Descriptions of checks

union cheat {
 char c[5];
 int i;
};

void example(union cheat *u)
{
 u->i = u->c[2];
}
union {
 char c[5];
 int i;
} u;

void example(void)
{
 u.i = u.c[2];
}
void example(void)
{
 union
 {
 char c[5];
 int i;
 } u;
 u.i = u.c[2];
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void)
{
 union
 {
 char c[5];
 int i;
 } u;
 int x;
 x = (int)u.c[2];
 u.i = x;
}
void example(void)
{
 struct
 {
 char c[5];
 int i;
 } u;
 u.i = u.c[2];
}
union cheat {
 char c[5];
 int i;
};

union cheat u;

void example(void)
{
 int x;
 x = (int)u.c[2];
 u.i = x;
}

MISRAC2004-18.4

Synopsis Unions were detected.

Enabled by default Yes

Severity/Certainty Low/Medium
AFE1_AFE2-1:1

487

488

Descriptions of checks

Full description (Required) Unions shall not be used.

Coding standards MISRA C:2004 18.4

(Required) Unions shall not be used.

Code examples The following code example fails the check and will give a warning:

union cheat {
 int i;
 float f;
};

int example(float f) {
 union cheat u;
 u.f = f;
 return u.i;
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 return x;
}

MISRAC2004-19.2

Synopsis There are illegal characters in header file names.

Enabled by default No

Severity/Certainty Low/Low

Full description (Advisory) Non-standard characters should not occur in header file names in #include
directives. ', \, /*, or // characters were found used between the " delimiters in a header
name preprocessing token.

Coding standards MISRA C:2004 19.2

(Advisory) Non-standard characters should not occur in header file names in
#include directives.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

#include "fi'le.h"/* Non-compliant */
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

#include "header.h"
void example(void) {}

MISRAC2004-19.6

Synopsis #undef directives were found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) #undef shall not be used. or meaning of a macro when it is used in the code.

Coding standards MISRA C:2004 19.6

(Required) #undef shall not be used.

Code examples The following code example fails the check and will give a warning:

#defineSYM
#undef SYM
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {}

MISRAC2004-19.7

Synopsis Function-like macros were detected.

Enabled by default No
AFE1_AFE2-1:1

489

490

Descriptions of checks

Severity/Certainty Low/Low

Full description (Advisory) A function should be used in preference to a function-like macro. robust
mechanism. This is particularly true with respect to the type checking of parameters, and
the problem of function-like macros potentially evaluating parameters multiple times.
Inline functions should be used instead.

Coding standards MISRA C:2004 19.7

(Advisory) A function should be used in preference to a function-like macro.

Code examples The following code example fails the check and will give a warning:

#defineABS(x)((x) < 0 ? -(x) : (x))

void example(void) {
 int a;
 ABS (a);
}

The following code example passes the check and will not give a warning about this
issue:

template <typename T>
inline T ABS(T x) { return x < 0 ? -x : x; }

MISRAC2004-19.12

Synopsis Multiple # or ## preprocessor operators were found in a macro definition.

Enabled by default Yes

Severity/Certainty Medium/Low

Full description (Required) There shall be at most one occurrence of the # or ## preprocessor operators
in a single macro definition. Multiple # or ## preprocessor operators were found in a
macro definition.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards MISRA C:2004 19.12

(Required) There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

Code examples The following code example fails the check and will give a warning:

#defineD(x, y, z, yz)x ## y ## z/* Non-compliant */
#define C(x, y)# x ## y/* Non-compliant */

The following code example passes the check and will not give a warning about this
issue:

#define A(x)#x/* Compliant */
#defineB(x, y)x ## y/* Compliant */

MISRAC2004-19.13

Synopsis # or ## preprocessor operators were detected.

Enabled by default No

Severity/Certainty Low/Low

Full description (Advisory) The # and ## preprocessor operators should not be used. # or ##
preprocessor operators were detected. Compilers might implement these operators
inconsistently.

Coding standards MISRA C:2004 19.13

(Advisory) The # and ## preprocessor operators should not be used.

Code examples The following code example fails the check and will give a warning:

#defineA(X,Y)X##Y/* Non-compliant */

#define A(Y)#Y/* Non-compliant */

The following code example passes the check and will not give a warning about this
issue:

#define A(x)(x)/* Compliant */
AFE1_AFE2-1:1

491

492

Descriptions of checks

MISRAC2004-19.15

Synopsis Header files were found without #include guards.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) Precautions shall be taken in order to prevent the contents of a header file
being included twice. Header files were found without #include guards. This means that
a header file can be included more than once, causing confusion or undefined behavior.

Coding standards MISRA C:2004 19.15

(Required) Precautions shall be taken in order to prevent the contents of a header
file being included twice.

Code examples The following code example fails the check and will give a warning:

#include "unguarded_header.h"
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include "header.h"/* contains #ifndef HDR #define HDR ... #endif
*/
void example(void) {}

MISRAC2004-20.1

Synopsis Detected a #define or #undef of a reserved identifier in the standard library.

Enabled by default Yes

Severity/Certainty Low/Low
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) Reserved identifiers, macros, and functions in the standard library shall not
be defined, redefined, or undefined. Detected a #define or #undef of a reserved identifier
in the standard library. Redefining, for example, reserved words and function names like
__LINE__, __FILE__, __DATE__, __TIME__, __STDC__, errno, and assert, can
cause undefined behavior.

Coding standards MISRA C:2004 20.1

(Required) Reserved identifiers, macros, and functions in the standard library
shall not be defined, redefined, or undefined.

Code examples The following code example fails the check and will give a warning:

#define__TIME__11111111/* Non-compliant */

The following code example passes the check and will not give a warning about this
issue:

#define A(x)(x)/* Compliant */

MISRAC2004-20.4

Synopsis Detected use of malloc, calloc, realloc, or free.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Dynamic heap memory allocation shall not be used.

Coding standards MISRA C:2004 20.4

(Required) Dynamic heap memory allocation shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void *example(void) {
 return malloc(100);
}

AFE1_AFE2-1:1

493

494

Descriptions of checks

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2004-20.5

Synopsis Detected use of the error indicator errno.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The error indicator errno shall not be used.

Coding standards MISRA C:2004 20.5

(Required) The error indicator errno shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <errno.h>
#include <stdlib.h>
//int errno;

int example(char buf[]) {
 int i;
 errno = 0;
 i = atoi(buf);
 return (errno == 0) ? i : 0;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2004-20.6

Synopsis Detected use of the built-in function offsetof.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The macro offsetof in the stddef.h library shall not be used.

Coding standards MISRA C:2004 20.6

(Required) The macro offsetof in the stddef.h library shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <stddef.h>
//#include <sys/stat.h>
struct stat { int st_size; };

int example(void) {
 return offsetof(struct stat, st_size);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2004-20.7

Synopsis Detected use of setjmp.h.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The setjmp macro and the longjmp function shall not be used.

Coding standards CERT ERR34-CPP
AFE1_AFE2-1:1

495

496

Descriptions of checks

Do not use longjmp

MISRA C:2004 20.7

(Required) The setjmp macro and the longjmp function shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <setjmp.h>

jmp_buf ex;

void example(void) {
 setjmp(ex);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2004-20.8

Synopsis Use of signal.h was detected.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The signal handling facilities of signal.h shall not be used.

Coding standards MISRA C:2004 20.8

(Required) The signal handling facilities of signal.h shall not be used.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <signal.h>
#include <stddef.h>

void example(void) {
 signal(SIGFPE, NULL);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2004-20.9

Synopsis Use of stdio.h was detected.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The input/output library stdio.h shall not be used in production code.

Coding standards MISRA C:2004 20.9

(Required) The input/output library stdio.h shall not be used in production code.

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

void example(void) {
 printf("Hello, world!\n");
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

AFE1_AFE2-1:1

497

498

Descriptions of checks

MISRAC2004-20.10

Synopsis Use of the functions atof, atoi, atol, or atoll was detected.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The functions atof, atoi, and atol from the library stdlib.h shall not be used.

Coding standards CERT INT06-C

Use strtol() or a related function to convert a string token to an integer

MISRA C:2004 20.10

(Required) The functions atof, atoi, and atol from the library stdlib.h shall not
be used.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int example(char buf[]) {
 return atoi(buf);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2004-20.11

Synopsis Use of the functions abort, exit, getenv, or system was detected.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) The functions abort, exit, getenv, and system from the library stdlib.h shall
not be used.

Coding standards MISRA C:2004 20.11

(Required) The functions abort, exit, getenv, and system from the library stdlib.h
shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 abort();
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2004-20.12

Synopsis Use of the time.h functions was detected: asctime, clock, ctime, difftime, gmtime,
localtime, mktime, strftime, or time.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The time handling functions of time.h shall not be used.

Coding standards MISRA C:2004 20.12

(Required) The time handling functions of time.h shall not be used.
AFE1_AFE2-1:1

499

500

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

#include <stddef.h>
#include <time.h>

time_t example(void) {
 return time(NULL);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2012-Dir-4.3

Synopsis Inline assembler statements were found that are not encapsulated in functions.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Assembly language shall be encapsulated and isolated

Coding standards MISRA C:2012 Dir-4.3

(Required) Assembly language shall be encapsulated and isolated

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int ffs(int x)
{
 int r;
#if 0
#ifdef CONFIG_X86_64
 /*
 * AMD64 says BSFL won't clobber the dest reg if x==0;
Intel64 says the
 * dest reg is undefined if x==0, but their CPU architect
says its
 * value is written to set it to the same as before,
except that the
 * top 32 bits will be cleared.
 *
 * We cannot do this on 32 bits because at the very least
some
 * CPUs did not behave this way.
 */
 long tmp = -1;
 asm("bsfl %1,%0"
 : "=r" (r)
 : "rm" (x), "" (tmp));
#elif defined(CONFIG_X86_CMOV)
 asm("bsfl %1,%0\n\t"
 "cmovzl %2,%0"
 : "=&r" (r) : "rm" (x), "r" (-1));
#else
 asm("bsfl %1,%0\n\t"
 "jnz 1f\n\t"
 "movl $-1,%0\n"
 "1:" : "=r" (r) : "rm" (x));
#endif
#else
 asm("");
#endif
 return r + 1;
}

The following code example passes the check and will not give a warning about this
issue:

unsigned int
bswap(unsigned int x)
{
 asm("");
 return x;
}

AFE1_AFE2-1:1

501

502

Descriptions of checks

MISRAC2012-Dir-4.4

Synopsis Code sections in comments were found where the comment ends with a ';', '{', or '}'
character.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) Sections of code should not be "commented out" Code sections in comments
were found where the comment ends with a ';', '{', or '}' character.

Coding standards MISRA C:2012 Dir-4.4

(Advisory) Sections of code should not be "commented out"

Code examples The following code example fails the check and will give a warning:

void example(void) {
/*
int i;
*/

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
#if 0

int i;
#endif
}

MISRAC2012-Dir-4.6_a

Synopsis The basic types char, int, short, long, double, and float are used without a typedef.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/High

Full description (Advisory) typedefs that indicate size and signedness should be used in place of the
basic numerical types The basic types char, int, short, long, double, and float are used
without a typedef. Best practice is to use typedefs for portability.

Coding standards MISRA C:2012 Dir-4.6

(Advisory) typedefs that indicate size and signedness should be used in place of
the basic numerical types

Code examples The following code example fails the check and will give a warning:

typedef signed charSCHAR;
typedef intINT;
typedef floatFLOAT;

INT func(FLOAT f, INT *pi)
{
 INT x;
 INT (*fp)(const char *);
}

The following code example passes the check and will not give a warning about this
issue:

typedef signed charSCHAR;
typedef intINT;
typedef floatFLOAT;

INT func(FLOAT f, INT *pi)
{
 INT x;
 INT (*fp)(const SCHAR *);
}

MISRAC2012-Dir-4.9

Synopsis Function-like macros were detected.

Enabled by default No
AFE1_AFE2-1:1

503

504

Descriptions of checks

Severity/Certainty Low/Low

Full description (Advisory) A function should be used in preference to a function-like macro where they
are interchangeable robust mechanism. This is particularly true with respect to the type
checking of parameters, and the problem of function-like macros potentially evaluating
parameters multiple times. Inline functions should be used instead.

Coding standards MISRA C:2012 Dir-4.9

(Advisory) A function should be used in preference to a function-like macro
where they are interchangeable

Code examples The following code example fails the check and will give a warning:

#defineABS(x)((x) < 0 ? -(x) : (x))

void example(void) {
 int a;
 ABS (a);
}

The following code example passes the check and will not give a warning about this
issue:

template <typename T>
inline T ABS(T x) { return x < 0 ? -x : x; }

MISRAC2012-Dir-4.10

Synopsis Header files were found without #include guards.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) Precautions shall be taken in order to prevent the contents of a header file
being included more than once Header files were found without #include guards. This
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

means that a header file can be included more than once, causing confusion or undefined
behavior.

Coding standards MISRA C:2012 Dir-4.10

(Required) Precautions shall be taken in order to prevent the contents of a header
file being included more than once

Code examples The following code example fails the check and will give a warning:

#include "unguarded_header.h"
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include "header.h"/* contains #ifndef HDR #define HDR ... #endif
*/
void example(void) {}

MISRAC2012-Rule-1.3_a

Synopsis An expression resulting in 0 is used as a divisor.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) There shall be no occurrence of undefined or critical unspecified behaviour
An expression that was determined by interval analysis to be 0, is used as a divisor. This
will cause a 'divide by zero' runtime error.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2012 Rule-1.3
AFE1_AFE2-1:1

505

506

Descriptions of checks

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a-2); // a-2 is 0
}
#include <stdlib.h>

int main (void)

{
 int *p = malloc(sizeof(int));
 int x = foo (p);
 /* foo(2) returns 8, so we have a division by zero below)*/
 x = 1 / (x - 8); /*@@ZDV-RED@@ */

 return x;
}

int foo(int * p){
 return 8;
}

The following code example passes the check and will not give a warning about this
issue:

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a+2); // OK - a+2 is 4
}

MISRAC2012-Rule-1.3_b

Synopsis A variable was found that is assigned the value 0, and then used as a divisor.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty High/High

Full description (Required) There shall be no occurrence of undefined or critical unspecified behavior A
variable was found that is assigned the value 0, and then used as a divisor. This will
cause a 'divide by zero' runtime error.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int foo(void)
{
 int a = 20, b = 0, c;

 c = a / b; /* Divide by zero */

 return c;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

507

508

Descriptions of checks

int foo(void)
{
 int a = 20, b = 5, c;

 c = a / b; /* b is not 0 */

 return c;
}
int main() {
 int totallen = 0;
 int i=0;
 float tmp=1;

 for(i=1; i<10; i++){
 totallen++;
 }

 foo(2/totallen);

 return 0;
}

int foo(int x){
 return x;
}

MISRAC2012-Rule-1.3_c

Synopsis A variable is used as a divisor after a successful comparison with 0.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) There shall be no occurrence of undefined or critical unspecified behavior A
variable is compared with 0 and then used as a divisor without being written to
beforehand. This comparison implies that the variable's value is 0 for the subsequent
statements. Using it as a divisor afterwards causes a 'divide by zero' runtime error.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
int foo(void)
{
 int a = 20;
 int p = rand();

 if (p == 0) /* p is 0 */
 a = 34 / p;

 return a;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
int foo(void)
{
 int a = 20;
 int p = rand();

 if (p != 0) /* p is not 0 */
 a = 34 / p;

 return a;
}

MISRAC2012-Rule-1.3_d

Synopsis A variable used as a divisor is subsequently compared with 0.

Enabled by default Yes
AFE1_AFE2-1:1

509

510

Descriptions of checks

Severity/Certainty Low/High

Full description (Required) There shall be no occurrence of undefined or critical unspecified behavior A
variable is compared to 0 after it is used as a divisor, but before it is written to again.
The comparison implies that the variable's value might be 0, and might have been for
the preceding statements. Because the variable is used as a divisor in one of these
statements (causing a 'divide by zero' runtime error), the execution can never reach the
comparison when the value is 0, making it redundant.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int foo(int p)
{
 int a = 20, b = 1;
 b = a / p;
 if (p == 0) // Checking the value of 'p' too late.
 return 0;
 return b;
}

The following code example passes the check and will not give a warning about this
issue:

int foo(int p)
{
 int a = 20, b;
 if (p == 0)
 return 0;
 b = a / p; /* Here 'p' is non-zero. */
 return b;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2012-Rule-1.3_e

Synopsis A value that is determined using interval analysis to be 0 is used as a divisor.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) There shall be no occurrence of undefined or critical unspecified behaviour
A value that is detemined using interval analysis to be 0 is used as a divisor. The division
might cause a 'divide by zero' runtime error.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int foo(void)
{
 int a = 1;
 a--;
 return 5 / a; /* a is 0 */
}

The following code example passes the check and will not give a warning about this
issue:

int foo(void)
{
 int a = 2;
 a--;
 return 5 / a; /* OK - a is 1 */
}

AFE1_AFE2-1:1

511

512

Descriptions of checks

MISRAC2012-Rule-1.3_f

Synopsis An expression that might be 0 is used as a divisor.

Enabled by default Yes

Severity/Certainty High/Low

Full description (Required) There shall be no occurrence of undefined or critical unspecified behaviour
An expression, whose value is determined by interval analysis to contain 0, is used as a
divisor. This might cause a 'divide by zero' runtime error.

Coding standards CERT INT33-C

Ensure that division and modulo operations do not result in divide-by-zero
errors

CWE 369

Divide By Zero

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int main (void)

{

 int x = 2;

 int i;

 /* The second iteration leads to a division by zero*/

 for (i = 1; i < 3; i++) { x = x / (2 - i); }
/*@@ZDV-RED@@ */

 return x;

}

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a-2); // a-2 is 0
}

The following code example passes the check and will not give a warning about this
issue:

int foo(void)
{
 int a = 3;
 a--;
 return 5 / (a+2); // OK - a+2 is 4
}

MISRAC2012-Rule-1.3_g

Synopsis A global variable is not checked against 0 before it is used as a divisor.

Enabled by default Yes
AFE1_AFE2-1:1

513

514

Descriptions of checks

Severity/Certainty Medium/Low

Full description (Required) There shall be no occurrence of undefined or critical unspecified behaviour
If the variable has a value of 0, then a `divide by zero' runtime error will occur.

Coding standards CWE 369

Divide By Zero

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int x;

int example() {
 return 5/x;
}

The following code example passes the check and will not give a warning about this
issue:

int x;

int example() {
 if (x != 0){
 return 5/x;
 }
}

MISRAC2012-Rule-1.3_h

Synopsis A local variable is not checked against 0 before it is used as a divisor.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Low

Full description (Required) There shall be no occurrence of undefined or critical unspecified behavior A
local variable is not checked to make sure it does not have a value of 0 before it is used
as a divisor. If the variable has a value of 0, a 'divide by zero' runtime error will occur.

Coding standards CWE 369

Divide By Zero

MISRA C:2012 Rule-1.3

(Required) There shall be no occurrence of undefined or critical unspecified
behaviour

Code examples The following code example fails the check and will give a warning:

int rand();

int example() {
 int x = rand();
 return 5/x;
}

The following code example passes the check and will not give a warning about this
issue:

int rand();

int example() {
 int x = rand();
 if (x != 0){
 return 5/x;
 }
}

MISRAC2012-Rule-2.1_a

Synopsis A case statement within a switch statement cannot be reached.

Enabled by default Yes
AFE1_AFE2-1:1

515

516

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) A project shall not contain unreachable code A case statement within a
switch statement cannot be reached, because the switch's expression cannot have the
value of the case's label. This often occurs because literal values have been assigned to
the switch condition. An unreachable case statement is not unsafe as such, but might
indicate a programming error.

Coding standards CERT MSC07-C

Detect and remove dead code

MISRA C:2012 Rule-2.1

(Required) A project shall not contain unreachable code

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int x = 42;

 switch(2 * x) {
 case 42 : //unreachable case, as x is 84
 ;
 default :
 ;
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int x = 42;

 switch(2 * x) {
 case 84 :
 ;
 default :
 ;
 }
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2012-Rule-2.1_b

Synopsis A part of the application is never executed.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A project shall not contain unreachable code A part of the application is
never executed. This might indicate problems with the application's branching structure.

Coding standards CERT MSC07-C

Detect and remove dead code

CWE 561

Dead Code

MISRA C:2012 Rule-2.1

(Required) A project shall not contain unreachable code

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

int f(int mode) {
 switch (mode) {
 case 0:
 return 1;
 printf("Hello!"); // This line cannot execute.
 default:
 return -1;
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

517

518

Descriptions of checks

#include <stdio.h>

int f(int mode) {
 switch (mode) {
 case 0:
 printf("Hello!"); // This line can execute.
 return 1;
 default:
 return -1;
 }
}

MISRAC2012-Rule-2.2_a

Synopsis A statement potentially contains no side effects.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) There shall be no dead code

Coding standards CERT MSC12-C

Detect and remove code that has no effect

CWE 482

Comparing instead of Assigning

MISRA C:2012 Rule-2.2

(Required) There shall be no dead code

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int x = 1;
 x = 2;
 x < x;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

#include <string>
#include "iar.h"

void f();
template<class T>
struct X {
 int x;

 int get() const {
 return x;
 }

 X(int y) :
 x(y) {}

};

typedef X<int> intX;

void example(void) {
 /* everything below has a side-effect */
 int i=0;
 f();
 (void)f();
 ++i;
 i+=1;
 i++;
 char *p = "test";
 STD string s;
 s.assign(p);
 STD string *ps = &s;
 ps -> assign(p);
 intX xx(1);
 xx.get();
 intX(1);
}

MISRAC2012-Rule-2.2_c

Synopsis A variable is assigned a value that is never used.

Enabled by default Yes
AFE1_AFE2-1:1

519

520

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) There shall be no dead code A variable is initialized or assigned a value, and
then another assignment destroys that value before it is used. This check does not detect
situations where the value is simply lost when the function ends. This is not unsafe as
such, but might indicate a logical error.

Coding standards MISRA C:2012 Rule-2.2

(Required) There shall be no dead code

Code examples The following code example fails the check and will give a warning:

int example(void) {
 int x;

 x = 20;

 x = 3;
 return 0;
}
#include <stdlib.h>

void ex(void) {
 int *p = 0;
 int *q = 0;
 p = malloc(sizeof(int));
 q = malloc(sizeof(int));
 p = q; //p is not used after this assignment
 return;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

int *ex(void) {
 int *p;
 p = malloc(sizeof(int));
 return p; //the value is returned
}
int example(void) {
 int x;

 x = 20;

 return x;
}

MISRAC2012-Rule-2.7

Synopsis A function parameter is declared but not used.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) There should be no unused parameters in functions A function parameter is
declared but not used. This might be intentional, and is not unsafe as such. For example,
the function might need to follow a specific calling convention, or might be a virtual
C++ function that does not need as much information from its arguments as other
functions do. Make sure that it is not an error.

Coding standards CWE 563

Unused Variable

MISRA C:2012 Rule-2.7

(Advisory) There should be no unused parameters in functions

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

521

522

Descriptions of checks

int example(int x) {
 /* `x' is not used */
 return 20;
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 return x + 20;
}

MISRAC2012-Rule-3.1

Synopsis The character sequences /* and // were found within a comment.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The character sequences /* and // shall not be used within a comment

Coding standards MISRA C:2012 Rule-3.1

(Required) The character sequences /* and // shall not be used within a comment

Code examples The following code example fails the check and will give a warning:

// This is /* a comment

The following code example passes the check and will not give a warning about this
issue:

// This is a comment

MISRAC2012-Rule-4.2

Synopsis Trigraphs were found in string literals.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Advisory) Trigraphs should not be used

Coding standards MISRA C:2012 Rule-4.2

(Advisory) Trigraphs should not be used

Code examples The following code example fails the check and will give a warning:

void func()
{
 char * str = "abc??!def";
}

The following code example passes the check and will not give a warning about this
issue:

void func()
{
 char * str = "abc??def";
}

MISRAC2012-Rule-5.1

Synopsis An external identifier was found that is not unique for the first 31 characters, but still not
identical.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) External identifiers shall be distinct
AFE1_AFE2-1:1

523

524

Descriptions of checks

Coding standards MISRA C:2012 Rule-5.1

(Required) External identifiers shall be distinct

Code examples The following code example fails the check and will give a warning:

int ABC;

void example (void) {

}

The following code example passes the check and will not give a warning about this
issue:

int a;

void example (void) {

}

MISRAC2012-Rule-5.3_a

Synopsis The declaration of a local variable hides a global declaration.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) An identifier declared in an inner scope shall not hide an identifier declared
in an outer scope This might be intentional. However, a different name should be used
in case a reference to the global variable is attempted, and the local value is changed or
returned accidentally.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C:2012 Rule-5.3
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope

Code examples The following code example fails the check and will give a warning:

int x;

int foo (int y){
 int x=0;
 x++;
 return x+y;

}

The following code example passes the check and will not give a warning about this
issue:

int x;

int foo (int y){

 x++;
 return x+y;

}

MISRAC2012-Rule-5.3_b

Synopsis The definition of a local variable hides a previous local definition.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) An identifier declared in an inner scope shall not hide an identifier declared
in an outer scope A local variable is declared with the same name as another local
variable, hiding the outer value from this scope, from this point onwards. This might be
intentional, but it is better to use a different name for the second variable, so that a
reference to the outer variable does not accidentally change or return the inner value.
AFE1_AFE2-1:1

525

526

Descriptions of checks

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C:2012 Rule-5.3

(Required) An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope

Code examples The following code example fails the check and will give a warning:

int foo(int x){

 for (int y= 0; y < 10 ; y++){

 for (int y = 0; y < 100; y ++){
 return x+y;
 }
 }
 return x;
}

int foo2(int x){
 int y = 10;

 for (int y= 0; y < 10 ; y++)
 x++;
 return x;
}

int foo3(int x){

 int y = 10;
 {
 int y = 100;
 return x + y;
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int foo(int x){

 for (int y=0; y < 10; y++)
 x++;
 for (int y=0; y < 10; y++)
 x++;
 return x;
}

MISRAC2012-Rule-5.3_c

Synopsis The declaration of a variable hides a parameter of the function.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) An identifier declared in an inner scope shall not hide an identifier declared
in an outer scope This might be intentional, but it is better to use a different name for
the variable, so that a reference to the argument does not accidentally change or return
the inner value.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C:2012 Rule-5.3

(Required) An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

527

528

Descriptions of checks

int foo(int x){

 for (int x = 0; x < 100; x++);

 return x;
}

The following code example passes the check and will not give a warning about this
issue:

int foo(int x){
 int y;

 return x;
}

MISRAC2012-Rule-5.4_c89

Synopsis Macro names were found that are not distinct in their first 31 characters from their macro
parameters or other macro names.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Macro identifiers shall be distinct

Coding standards MISRA C:2012 Rule-5.4

(Required) Macro identifiers shall be distinct

Code examples The following code example fails the check and will give a warning:

/* MISRA C 2012 Rule 5.4 Example */

/* 1234567890123456789012345678901*********
Characters */
#define engine_exhaust_gas_temperature_raw egt_r
#define engine_exhaust_gas_temperature_scaled egt_s /*
Non-compliant */
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

/* MISRA C 2012 Rule 5.4 Example */

/* 1234567890123456789012345678901*********
Characters */
#define engine_exhaust_gas_temp_raw egt_r
#define engine_exhaust_gas_temp_scaled egt_s /*
Compliant */

MISRAC2012-Rule-5.4_c99

Synopsis Macro names were found that are not distinct in their first 63 characters from their macro
parameters or other macro names.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Macro identifiers shall be distinct

Coding standards MISRA C:2012 Rule-5.4

(Required) Macro identifiers shall be distinct

Code examples The following code example fails the check and will give a warning:

/* MISRA C 2012 Rule 5.4 Example */

/*
123456789012345678901234567890123456789012345678901234567890123**
****** Characters */
#define
engine_exhaust_gas_temperature_blablablablablablablablablablabla_
raw egt_r
#define
engine_exhaust_gas_temperature_blablablablablablablablablablabla_
scaled egt_s /* Non-compilant */

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

529

530

Descriptions of checks

/* MISRA C 2012 Rule 5.4 Example */

/*
123456789012345678901234567890123456789012345678901234567890123**
****** Characters */
#define
engine_exhaust_gas_temperature_raw_blablablablablablablablablabla
bla egt_r
#define
engine_exhaust_gas_temperature_scaled_blablablablablablablablabla
blabla egt_s /* Compilant */

MISRAC2012-Rule-5.5_c89

Synopsis Non-macro identifiers were found that are not distinct in their first 31 characters from
macro names.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Identifiers shall be distinct from macro names

Coding standards MISRA C:2012 Rule-5.5

(Required) Identifiers shall be distinct from macro names

Code examples The following code example fails the check and will give a warning:

/* MISRA C 2012 Rule 5.5 Example */

#include "mc2_types.h"

#define Sum(x, y) ((x) + (y))

int16_t Sum;

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

/* MISRA C 2012 Rule 5.5 Example */

#include "mc2_types.h"

#define Sum(x, y) ((x) + (y))

int16_t x = Sum (1, 2);

MISRAC2012-Rule-5.5_c99

Synopsis Non-macro identifiers were found that are not distinct in their first 63 characters from
macro names.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Identifiers shall be distinct from macro names

Coding standards MISRA C:2012 Rule-5.5

(Required) Identifiers shall be distinct from macro names

Code examples The following code example fails the check and will give a warning:

/* MISRA C 2012 Rule 5.5 Example */

#include "mc2_types.h"

#define Sum(x, y) ((x) + (y))

int16_t Sum;

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

531

532

Descriptions of checks

/* MISRA C 2012 Rule 5.5 Example */

#include "mc2_types.h"

#define Sum(x, y) ((x) + (y))

int16_t x = Sum (1, 2);

MISRAC2012-Rule-5.6

Synopsis A typedef with this name has already been declared.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A typedef name shall be a unique identifier

Coding standards MISRA C:2012 Rule-5.6

(Required) A typedef name shall be a unique identifier

Code examples The following code example fails the check and will give a warning:

typedef int WIDTH;
//dummy comment
void f1()
{
 WIDTH w1;
}

void f2()
{
 typedef float WIDTH;
 WIDTH w2;
 WIDTH w3;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

namespace NS1
{
 typedef int WIDTH;
}
// f2.cc
namespace NS2
{
 typedef float WIDTH; // Compliant - NS2::WIDTH is not the same
as NS1::WIDTH
}
NS1::WIDTH w1;
NS2::WIDTH w2;

MISRAC2012-Rule-5.7

Synopsis A class, struct, union, or enum declaration clashes with a previous declaration.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A tag name shall be a unique identifier

Coding standards MISRA C:2012 Rule-5.7

(Required) A tag name shall be a unique identifier

Code examples The following code example fails the check and will give a warning:

void f1()
{
 class TYPE {};
}

void f2()
{
 float TYPE; // non-compliant
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

533

534

Descriptions of checks

enum ENS {ONE, TWO };

void f1()
{
 class TYPE {};
}

void f4()
{
 union GRRR {
 int i;
 float f;
 };
}

MISRAC2012-Rule-5.8

Synopsis One or more external identifier names were found that are not unique.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Identifiers that define objects or functions with external linkage shall be
unique

Coding standards MISRA C:2012 Rule-5.8

(Required) Identifiers that define objects or functions with external linkage shall
be unique

Code examples The following code example fails the check and will give a warning:

/* file1.c */
#include <stdint.h>
void foo (void) /* "foo" has external linkage */
{
 int16_t index; /* "index" has no linkage */
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

/* file1.c */
#include <stdint.h>
int32_t count; /* "count" has external linkage */
void foo (void) /* "foo" has external linkage */
{
 int16_t index; /* "index" has no linkage */
}

MISRAC2012-Rule-6.1

Synopsis Bitfields of plain int type were found.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Bitfields shall only be declared with an appropriate type

Coding standards MISRA C:2012 Rule-6.1

(Required) Bit-fields shall only be declared with an appropriate type

Code examples The following code example fails the check and will give a warning:

struct bad {
int x:3;

};
enum digs { ONE, TWO, THREE, FOUR };

struct bad {
digs d:3;

};

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

535

536

Descriptions of checks

struct good {
signed int x:3;

};
struct good {

unsigned int x:3;
};

MISRAC2012-Rule-6.2

Synopsis Signed single-bit bitfields (excluding anonymous fields) were found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) Single-bit named bitfields shall not be of a signed type

Coding standards MISRA C:2012 Rule-6.2

(Required) Single-bit named bit fields shall not be of a signed type

Code examples The following code example fails the check and will give a warning:

struct S
{
 signed int a : 1; // Non-compliant
};

The following code example passes the check and will not give a warning about this
issue:

struct S
{
 signed int b : 2;
 signed int : 0;
 signed int : 1;
 signed int : 2;
};

MISRAC2012-Rule-7.1

Synopsis Octal integer constantsare used.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Octal constants shall not be used

Coding standards MISRA C:2012 Rule-7.1

(Required) Octal constants shall not be used

Code examples The following code example fails the check and will give a warning:

void
func(void)
{
 int x = 077;
}

The following code example passes the check and will not give a warning about this
issue:

void
func(void)
{
 int x = 63;
}

MISRAC2012-Rule-7.2

Synopsis There are unsigned integer constants without a U suffix.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) A "u" or "U" suffix shall be applied to all integer constants that are
represented in an unsigned type
AFE1_AFE2-1:1

537

538

Descriptions of checks

Coding standards MISRA C:2012 Rule-7.2

(Required) A "u" or "U" suffix shall be applied to all integer constants that are
represented in an unsigned type

Code examples The following code example fails the check and will give a warning:

void example(void) {
// 2147483648 -- does not fit in 31bits
unsigned int x = 0x80000000;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
unsigned int x = 0x80000000u;

}

MISRAC2012-Rule-7.3

Synopsis The lower case character l was found used as a suffix on numeric constants.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The lowercase character "l" shall not be used in a literal suffix

Coding standards MISRA C:2012 Rule-7.3

(Required) The lowercase character "l" shall not be used in a literal suffix

Code examples The following code example fails the check and will give a warning:

#include "mc2_types.h"

void func()
{
 const int64_t b = 0l;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

#include "mc2_types.h"

void func()
{
 const int64_t a = 0L;
}

MISRAC2012-Rule-7.4_a

Synopsis A string literal was found assigned to a variable that is not declared as constant.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A string literal shall not be assigned to an object unless the object's type is
"pointer to const-qualified char"

Coding standards MISRA C:2012 Rule-7.4

(Required) A string literal shall not be assigned to an object unless the object's
type is "pointer to const-qualified char"

Code examples The following code example fails the check and will give a warning:

void example(void) {
 char *s = "Hello, World!";
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 const char *s = "Hello, World!";
}

AFE1_AFE2-1:1

539

540

Descriptions of checks

MISRAC2012-Rule-7.4_b

Synopsis Part of a string literal was found that is modified via the array subscript operator [].

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) A string literal shall not be assigned to an object unless the object's type is
"pointer to const-qualified char"

Coding standards MISRA C:2012 Rule-7.4

(Required) A string literal shall not be assigned to an object unless the object's
type is "pointer to const-qualified char"

Code examples The following code example fails the check and will give a warning:

void example(void) {
 "012345"[0]++;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 const char *c = "01234";
}

MISRAC2012-Rule-8.1

Synopsis An object or function of the type int is declared or defined, but its type is not explicitly
stated.

Enabled by default Yes

Severity/Certainty Medium/High
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) Types shall be explicitly specified

Coding standards CERT DCL31-C

Declare identifiers before using them

MISRA C:2012 Rule-8.1

(Required) Types shall be explicitly specified

Code examples The following code example fails the check and will give a warning:

void func(void)
{
 static y;
}

The following code example passes the check and will not give a warning about this
issue:

void func(void)
{
 int x;
}

MISRAC2012-Rule-8.2_a

Synopsis Functions are declared with an empty () parameter list that does not form a valid
prototype.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) Function types shall be in prototype form with named parameters

Coding standards CERT DCL20-C

Always specify void even if a function accepts no arguments

MISRA C:2012 Rule-8.2

(Required) Function types shall be in prototype form with named parameters
AFE1_AFE2-1:1

541

542

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

void func();/* not a valid prototype in C */
void func2(void)
{
 func();
}

The following code example passes the check and will not give a warning about this
issue:

void func(void);
void func2(void)
{
 func();
}

MISRAC2012-Rule-8.2_b

Synopsis Function prototypes were found with unnamed parameters.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) Function types shall be in prototype form with named parameters

Coding standards MISRA C:2012 Rule-8.2

(Required) Function types shall be in prototype form with named parameters

Code examples The following code example fails the check and will give a warning:

char *strchr(const char *, int c);

void func(void)
{
 strchr("hello, world!\n", '!');
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

char *strchr(const char *s, int c);

void func(void)
{
 strchr("hello, world!\n", '!');
}

MISRAC2012-Rule-8.10

Synopsis Inline functions were found that are not declared as static.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) An inline function shall be declared with the static storage class

Coding standards MISRA C:2012 Rule-8.10

(Required) An inline function shall be declared with the static storage class

Code examples The following code example fails the check and will give a warning:

inline int example(int a) {
 return a + 1;
}

The following code example passes the check and will not give a warning about this
issue:

inline static int example(int a) {
 return a + 1;
}

MISRAC2012-Rule-8.11

Synopsis One or more external arrays are declared without their size being stated explicitly or
defined implicitly by initialization.

Enabled by default No
AFE1_AFE2-1:1

543

544

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Advisory) When an array with external linkage is declared, its size should be explicitly
specified

Coding standards MISRA C:2012 Rule-8.11

(Advisory) When an array with external linkage is declared, its size should be
explicitly specified

Code examples The following code example fails the check and will give a warning:

extern int a[];

The following code example passes the check and will not give a warning about this
issue:

extern int a[10];
extern int b[] = { 0, 1, 2 };

MISRAC2012-Rule-8.14

Synopsis The restrict type qualifier was found used in function parameters.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The restrict type qualifier shall not be used

Coding standards MISRA C:2012 Rule-8.14

(Required) The restrict type qualifier shall not be used

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void * restrict p, void * restrict q, int n) {
 printf("Bad function!\n");
}

The following code example passes the check and will not give a warning about this
issue:

void example(void * p, void * q, int n) {
 printf("Bad function!\n");
}

MISRAC2012-Rule-9.1_a

Synopsis Possible dereference of an uninitialized or NULL pointer.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Mandatory) The value of an object with automatic storage duration shall not be read
before it has been set On some execution paths, an uninitialized pointer value is
dereferenced. This might cause memory corruption or an application crash. Pointer
values must be initialized on all execution paths that result in a dereference.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

CWE 824

Access of Uninitialized Pointer

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

545

546

Descriptions of checks

void example(void) {
 int *p;
 *p = 4; //p is uninitialized
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int *p,a;
 p = &a;
 *p = 4; //OK - p holds a valid address
}

MISRAC2012-Rule-9.1_b

Synopsis Reads from local buffers are not preceded by writes.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Mandatory) The value of an object with automatic storage duration shall not be read
before it has been set A value is read from an array, without being explicitly stored in
that array first. This check determines whether at least one element of an array has been
written before any element of the array is read. If the check triggers, it generally means
that an uninitialized value is read. This might cause incorrect behavior or an application
crash.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example() {
 int x[20];
 x[0] = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}
/* won't work until signature of memcpy is known */
#include <string.h>
void example() {
 int a[20];
 int b[20];
 memcpy(a,b,20);
}

/* read thru alias */
void example() {
 int x[20];
 int *a = x;
 int b = a[1]; /* read x thru alias a, but x not init */
}
void example() {
 int a[20];
 int b = a[1];
}
void example() {
 int x[20];
 *x = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

547

548

Descriptions of checks

void example() {
 int x[20];
 int *p = x;
 x[0]=1;
 int k = *p; /* read thru alias */
}
void example() {
 int x[20];
 int *p = x;
 p[0]=1; /* write thru alias */
 int k = *x;
}
struct X { int e; };
void example() {
 struct X x[20];
 x->e = 1;
 { struct X b = x[0]; } /* x[0] has been initialized via x->e,
but Goanna currently doesn't have pointer alias analysis on
individual array elements */
}
void example() {
 int x[20];
 *(x+0) = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}
extern void f(int*);
void example() {
 int a[20];
 f(a);
 int b = a[1];
}
void example() {
 int a[20] =
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20};
 int b = a[1];
}
void example() {
 int x[20];
 *x = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}
/* write thru alias */
void example() {
 int x[20];
 int *a = x;
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

 f(a); /* assumed init of x thru alias a */
 int b = x[1];
}
void example() {
 int x[20];
 x[0] = 1;
 int b = x[1]; /* bad read but check can't detect which elements
*/
}

MISRAC2012-Rule-9.1_c

Synopsis In all executions, a struct has one or more fields read before they are initialized.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Mandatory) The value of an object with automatic storage duration shall not be read
before it has been set Using uninitialized values could lead to unexpected results or
unpredictable program behavior, particularly in the case of pointer fields.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

549

550

Descriptions of checks

struct st {
 int x;
 int y;
};

void example(void) {
 int a;
 struct st str;
 a = str.x;
}

The following code example passes the check and will not give a warning about this
issue:

struct st {
 int x;
 int y;
};

void example(int i) {
 int a;
 struct st str;
 str.x = i;
 a = str.x;
}

MISRAC2012-Rule-9.1_d

Synopsis A field of a local struct is read before it is initialized.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Mandatory) The value of an object with automatic storage duration shall not be read
before it has been set

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Use of Uninitialized Variable

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

Code examples The following code example fails the check and will give a warning:

struct st {
 int x;
 int y;
};

void example(void) {
 int a;
 struct st str;
 a = str.x;
}

The following code example passes the check and will not give a warning about this
issue:

struct st {
 int x;
 int y;
};

void example(void) {
 int a;
 struct st str;
 str.x = 0;
 a = str.x;
}

MISRAC2012-Rule-9.1_e

Synopsis In all executions, a variable is read before it is assigned a value.

Enabled by default Yes

Severity/Certainty High/High
AFE1_AFE2-1:1

551

552

Descriptions of checks

Full description (Mandatory) The value of an object with automatic storage duration shall not be read
before it has been set A variable is read before it is assigned a value, on all execution
paths. Different paths might result in reading a variable at different execution points.
Whichever path is executed, uninitialized data is read, leading to unpredictable behavior.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

Code examples The following code example fails the check and will give a warning:

int main(void) {
 int x;

 x++; //x is uninitialized

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int x = 0;

 x++;

 return 0;
}

MISRAC2012-Rule-9.1_f

Synopsis A variable is read before it is assigned a value.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty High/Low

Full description (Mandatory) The value of an object with automatic storage duration shall not be read
before it has been set On some execution paths, a variable is read before it is assigned a
value. a value before it is read. This might cause unpredictable application behavior.

Coding standards CWE 457

Use of Uninitialized Variable

MISRA C:2012 Rule-9.1

(Mandatory) The value of an object with automatic storage duration shall not be
read before it has been set

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int main(void) {
 int x, y;

 if (rand()) {
 x = 0;
 }

 y = x; //x may not be initialized

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

553

554

Descriptions of checks

#include <stdlib.h>

int main(void) {
 int x;

 if (rand()) {
 x = 0;
 }

 /* x never read */

 return 0;
}

MISRAC2012-Rule-9.3

Synopsis Arrays were found that are partially initialized.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Arrays shall not be partially initialized

Coding standards MISRA C:2012 Rule-9.3

(Required) Arrays shall not be partially initialized

Code examples The following code example fails the check and will give a warning:

void example(void) {
int y[3][4] = { { 1, 2, 3 }, { 4, 5, 6 } };

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int y[3][2] = { { 1, 2 }, { 3, 4 }, { 5, 6 } };

}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2012-Rule-9.5_a

Synopsis Arrays, initialized with designated initializers but with no fixed length, were found.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Where designated initializers are used to initialize an array object the size of
the array shall be specified explicitly

Coding standards MISRA C:2012 Rule-9.5

(Required) Where designated initializers are used to initialize an array object the
size of the array shall be specified explicitly

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int a1[] = { [0] = 1 };
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int a1[10] = { [0] = 1 };
}

MISRAC2012-Rule-9.5_b

Synopsis Flexible array members were found initalized with a designated initalizer.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

555

556

Descriptions of checks

Full description (Required) Where designated initializers are used to initialize an array object the size of
the array shall be specified explicitly

Coding standards MISRA C:2012 Rule-9.5

(Required) Where designated initializers are used to initialize an array object the
size of the array shall be specified explicitly

Code examples The following code example fails the check and will give a warning:

struct A {
 int x;
 int y [];
};
struct A a1 = {1,{[1]=2}};

void example (void) {

}

The following code example passes the check and will not give a warning about this
issue:

struct A {
 int x;
 int y [2];
};
struct A a1 = {1,{[1]=2}};

void example (void) {

}

MISRAC2012-Rule-10.1_R2

Synopsis An operand was found that is not of essentially Boolean type, despite being interpreted
as a Boolean value.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) Operands shall not be of an inappropriate essential type

Coding standards MISRA C:2012 Rule-10.1

(Required) Operands shall not be of an inappropriate essential type

Code examples The following code example fails the check and will give a warning:

void func(int * ptr)
{
 if (!ptr) {}
}
void func()
{
 if (!0) {}
}
void example(void) {

int x = 0;
int y = 1;
int a = x || y << 2;

}
void example(void) {

int x = 0;
int y = 1;
int a = 5;
(a + (x || y)) ? example() : example();

}
void example(void) {

int x = 5;
int y = 11;
if (x || y) {
}

}
void example(void) {

int d, c, b, a;

d = (c & a) && b;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

557

558

Descriptions of checks

bool test()
{
 return true;
}

void example(void) {
 if(test()) {}
}
typedef charboolean_t;/* Compliant: Boolean-by-enforcement */

void example(void)
{
 boolean_t d;
 boolean_t c = 1;
 boolean_t b = 0;
 boolean_t a = 1;

 d = (c && a) && b;

}
void func(bool * ptr)
{
 if (*ptr) {}
}
typedef intboolean_t;

void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = 0;
 if (a && (x || y)) {
 }
}
void example(void) {

int x = 0;
int y = 1;
int a = x == y;

}
#include <stdbool.h>

void example(void) {
 bool x = false;
 bool y = true;
 if (x || y) {
 }
}
typedef charboolean_t;
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = x || y;
 a ? example() : example();
}

MISRAC2012-Rule-10.1_R3

Synopsis An operand was found that is of essentially Boolean type, despite being interpreted as a
numeric value.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Operands shall not be of an inappropriate essential type

Coding standards MISRA C:2012 Rule-10.1

(Required) Operands shall not be of an inappropriate essential type

Code examples The following code example fails the check and will give a warning:

void func(bool b)
{
 bool x;
 bool y;
 y = x % b;
}
void example(void) {

int x = 0;
int y = 1;
int a = 5;
(a + (x || y)) ? example() : example();

}
void example(void) {}
void example(void) {

int x = 0;
int y = 1;
int a = (x == y) << 2;

}

AFE1_AFE2-1:1

559

560

Descriptions of checks

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int
isgood(int ch)
{
 return (ch & 0x80) == 0;
}

int example(int r, int f1, int f2)
{
 if (r && f1 == f2)
 return 1;
 else
 return 0;
}
bool test()
{
 return true;
}

void example(void) {
 if(test()) {}
}
typedef charboolean_t;/* Compliant: Boolean-by-enforcement */

void example(void)
{
 boolean_t d;
 boolean_t c = 1;
 boolean_t b = 0;
 boolean_t a = 1;

 d = (c && a) && b;

}
class foo {
 int val;
public:
 bool operator==(const foo &rhs) const { return val == rhs.val;
}
};

int example(bool r, const foo &f1, const foo &f2)
{
 if (r && f1 == f2)
 return 1;
 else
 return 0;
}

AFE1_AFE2-1:1

561

562

Descriptions of checks

void func(bool * ptr)
{
 if (*ptr) {}
}
void func()
{
 bool x;
 bool y;
 y = x && y;
}
typedef intboolean_t;

void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = 0;
 if (a && (x || y)) {
 }
}
void example(void) {

int x = 0;
int y = 1;
int a = x == y;

}
#include <stdbool.h>

void example(void) {
 bool x = false;
 bool y = true;
 if (x || y) {
 }
}
typedef charboolean_t;
void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = x || y;
 a ? example() : example();
}

MISRAC2012-Rule-10.1_R4

Synopsis An operand was found that is of essentially character type, despite being interpreted as
a numeric value.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description (Required) Operands shall not be of an inappropriate essential type

Coding standards MISRA C:2012 Rule-10.1

(Required) Operands shall not be of an inappropriate essential type

Code examples The following code example fails the check and will give a warning:

void example(void) {
 char a = 'a';
 a << 1;
}
void example(void) {
 char a = 'a';
 char b = 'b';
 a & b;
}
void example(void) {
 char a = 'a';
 char b = 'b';
 char c;
 c = a * b;
}
void example(void) {
 int a[10];
 char b;
 a[b]++;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 char a = 'a';
 char b = 'b';
 char c;
 c = a + b;
}

AFE1_AFE2-1:1

563

564

Descriptions of checks

MISRAC2012-Rule-10.1_R5

Synopsis An operand that is of essentially enum type is used in an arithmetic operation, because
an enum object uses an implementation-defined integer type.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Operands shall not be of an inappropriate essential type An operand that is
of essentially enum type is used in an arithmetic operation, because an enum object uses
an implementation-defined integer type. An operation involving an enum object might
therefore yield a result with an unexpected type. Note that an enumeration constant from
an anonymous enum is of essentially signed type.

Coding standards MISRA C:2012 Rule-10.1

(Required) Operands shall not be of an inappropriate essential type

Code examples The following code example fails the check and will give a warning:

enum ens { ONE, TWO, THREE };

void func(ens b)
{
 ens x;
 bool y;
 y = x | b;
}
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {}
enum ens { ONE, TWO, THREE };

void func(ens b)
{
 ens y;
 y = b;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2012-Rule-10.1_R6

Synopsis Shift and bitwise operations were found performed on operands of essentially signed
type.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Operands shall not be of an inappropriate essential type Shift and bitwise
operations were found performed on operands of essentially signed type. The resulting
numeric value is implementation-defined.

Coding standards MISRA C:2012 Rule-10.1

(Required) Operands shall not be of an inappropriate essential type

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int x = -(1U);

 x ^ 1;
 x & 0x7F;
 ((unsigned int)x) & 0x7F;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int x = -1;
 ((unsigned int)x) ^ 1U;
 2U ^ 1U;
 ((unsigned int)x) & 0x7FU;
 ((unsigned int)x) & 0x7FU;
}

MISRAC2012-Rule-10.1_R7

Synopsis The right-hand operand of a shift operator is not of essentially unsigned type.
AFE1_AFE2-1:1

565

566

Descriptions of checks

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Operands shall not be of an inappropriate essential type The right-hand
operand of a shift operator is not of essentially unsigned type, meaning that undefined
behavior might result from a negative shift.

Coding standards MISRA C:2012 Rule-10.1

(Required) Operands shall not be of an inappropriate essential type

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int a;
 unsigned int b;
 b << a;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 unsigned int a;
 unsigned int b;
 b << a;
}

MISRAC2012-Rule-10.1_R8

Synopsis An operand of essentially unsigned typed is used as the operand to the unary minus
operator.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) Operands shall not be of an inappropriate essential type An operand of
essentially unsigned typed is used as the operand to the unary minus operator. This is
problematic because the signedness of the result is determined by the
implementation-defined size of int.

Coding standards MISRA C:2012 Rule-10.1

(Required) Operands shall not be of an inappropriate essential type

Code examples The following code example fails the check and will give a warning:

void example(void) {
unsigned int max = -1U;
// use max = ~0U;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int neg_one = -1;

}

MISRAC2012-Rule-10.2

Synopsis Expressions of essentially character type were found used inappropriately in addition
and subtraction operations.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Expressions of essentially character type shall not be used inappropriately in
addition and subtraction operations

Coding standards MISRA C:2012 Rule-10.2

(Required) Expressions of essentially character type shall not be used
inappropriately in addition and subtraction operations

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

567

568

Descriptions of checks

typedef enum test {
 one,
 two,
 three
} myEnum;

void example(void) {
 char a = 'a' - two;
}
void example(void) {
 int a = 5;
 char c = (a == 10) + '0';
}
void example(void) {
 char a = 10 - 'a';
}
void example(void) {
 char a = 'a' - (10 == 5);
}
void example(void) {
 double a = 1.00f;
 char c = 'a' - a;
}
void example(void) {
 char a = '9';
 char c = a + '0';
}
typedef enum test {
 one,
 two,
 three
} myEnum;

void example(void) {
 myEnum a = one;
 char c = a + '0';
}
void example(void) {
 double a = 1.00f;
 char c = a + '0';
}
enum {
 one,
 two,
 three
} myEnum;
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#define four 4

void example(void) {
 char c = one + '0';
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 unsigned int a = 9;
 char dig = a + '0';
}
void example(void) {
 int a = 9;
 char dig = a + '0';
}
void example(void) {
 int a = 9;
 char b = 'a' - a;
}
#include <stdint.h>

void example (void) {
 uint8_t a = 5;
 '0' + a;
}
void example(void) {
 unsigned int a = 9;
 char b = 'a' - a;
}
void example(void) {
 char a = '9';
 char b = 'a' - a;
}
#include <stdint.h>

void example (void) {
 int8_t a = 5;
 a + '0';
}

MISRAC2012-Rule-10.3

Synopsis The value of an expression was found assigned to an object with a narrower essential
type or a different essential type category.
AFE1_AFE2-1:1

569

570

Descriptions of checks

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The value of an expression shall not be assigned to an object with a narrower
essential type or of a different essential type category

Coding standards MISRA C:2012 Rule-10.3

(Required) The value of an expression shall not be assigned to an object with a
narrower essential type or of a different essential type category

Code examples The following code example fails the check and will give a warning:

void example(void) {
 char a = 'a';
 unsigned int b = 10;
 b = a;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 unsigned int a = 10;
 unsigned int b = 5;
 b = a;
}

MISRAC2012-Rule-10.4

Synopsis In an operator in which the usual arithmetic conversions are performed, the two
operands are not of the same essential type category.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) Both operands of an operator in which the usual arithmetic conversions are
performed shall have the same essential type category

Coding standards MISRA C:2012 Rule-10.4

(Required) Both operands of an operator in which the usual arithmetic
conversions are performed shall have the same essential type category

Code examples The following code example fails the check and will give a warning:

void example(void) {
 unsigned int a = 5;
 float f = 0.001f;
 a + f;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int a = 10;
 int b = 10;
 a + b;
}

MISRAC2012-Rule-10.6

Synopsis The value of a composite expression is assigned to an object with wider essential type.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The value of a composite expression shall not be assigned to an object with
wider essential type

Coding standards MISRA C:2012 Rule-10.6

(Required) The value of a composite expression shall not be assigned to an
object with wider essential type

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

571

572

Descriptions of checks

#include <stdint.h>

void example(void) {
 uint16_t a = 5;
 uint16_t b = 10;
 uint32_t c;
 c = a + b;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdint.h>

void example(void) {
 uint16_t a;
 uint16_t b;
 b = a + a;
}

MISRAC2012-Rule-10.7

Synopsis An operator in which the usual arithmetic conversions are performed was found, where
a composite expression is used as one of the operands, but the other operand is of wider
essential type.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) If a composite expression is used as one operand of an operator in which the
usual arithmetic conversions are performed then the other operand shall not have wider
essential type

Coding standards MISRA C:2012 Rule-10.7

(Required) If a composite expression is used as one operand of an operator in
which the usual arithmetic conversions are performed then the other operand
shall not have wider essential type

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

/* MISRA C 2012 Rule 10.7 Example */

#include "mc2_types.h"
#include "mc2_1000.h"

extern uint32_t u32a;
extern uint16_t u16b;

void example(void) {
 u32a * (u16a + u16b); /* Implicit conversion of (u16a +
u16b) */
}

The following code example passes the check and will not give a warning about this
issue:

/* MISRA C 2012 Rule 10.7 Example */

#include "mc2_types.h"
#include "mc2_1000.h"

extern uint32_t u32a;
extern uint16_t u16b;

void example(void) {
 u32a * u16a + u16b; /* No composite
conversion */
}

MISRAC2012-Rule-10.8

Synopsis A composite expression was found whose value is cast to a different essential type
category or a wider essential type.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The value of a composite expression shall not be cast to a different essential
type category or a wider essential type

Coding standards MISRA C:2012 Rule-10.8
AFE1_AFE2-1:1

573

574

Descriptions of checks

(Required) The value of a composite expression shall not be cast to a different
essential type category or a wider essential type

Code examples The following code example fails the check and will give a warning:

#if __FLOAT_SIZE__ == __DOUBLE_SIZE__
 #error "IGNORE_TEST: double and float have same size"
#endif

void example(void) {
float array[10];

// arithmetic makes it a complex expression
double x = (double)(array[5] + 3.0f);

}
void example(void) {

int array[10];
// complex expression cannot change sign
unsigned int x = (unsigned int)(array[5] + 5);

}
void example(void) {

int s16a = 3;
int s16b = 3;

// arithmetic makes it a complex expression
long long x = (long long)(s16a + s16b);

}
void example(void) {

int array[10];
// complex expression cannot change type
float x = (float)(array[5] + 5);

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
int array[10];
// non-complex expression can change type
float x = (float)(array[5]);

}
void example(void) {

int array[10];

// A non complex expression is considered safe
long x = (long)(array[5]);

}
void example(void) {

int array[10];

// non-complex expressions can change sign
unsigned int x = (unsigned int)(array[5]);

}
void example(void) {

float array[10];

// A non complex expression is considered safe
double x = (double)(array[5]);

}

MISRAC2012-Rule-11.1

Synopsis Conversion between a pointer to a function and another type were found.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Conversions shall not be performed between a pointer to a function and any
other type

Coding standards MISRA C:2012 Rule-11.1

(Required) Conversions shall not be performed between a pointer to a function
and any other type

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

575

576

Descriptions of checks

#include <stdlib.h>

void example(void) {

int (*fptr)(int,int);

(int*)fptr;

}

The following code example passes the check and will not give a warning about this
issue:

/* MISRA C 2012 Rule 11.1 Example */

#include "mc2_types.h"

typedef void (*fp16) (int16_t n);

typedef fp16 (*pfp16) (void);

void example(void) {
 pfp16 pfp1;

 (void) (*pfp1 ()); /* Compliant - exception 2 - cast
function
 * pointer into void
*/
}

MISRAC2012-Rule-11.3

Synopsis A pointer to object type is cast to a pointer to a different object type.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A cast shall not be performed between a pointer to object type and a pointer
to a different object type A pointer to object type is cast to a pointer to a different object
type. Conversions of this type might be invalid if the new pointer type requires a stricter
alignment.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards MISRA C:2012 Rule-11.3

(Required) A cast shall not be performed between a pointer to object type and a
pointer to a different object type

Code examples The following code example fails the check and will give a warning:

typedef unsigned int uint32_t;
typedef unsigned char uint8_t;

void example(void) {
uint8_t * p1;
uint32_t * p2;
p2 = (uint32_t *)p1;

}

The following code example passes the check and will not give a warning about this
issue:

typedef unsigned int uint32_t;
typedef unsigned char uint8_t;

void example(void) {
uint8_t * p1;
uint8_t * p2;
p2 = (uint8_t *)p1;

}

MISRAC2012-Rule-11.4

Synopsis A cast between a pointer type and an integral type was found.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) A conversion should not be performed between a pointer to object and an
integer type

Coding standards MISRA C:2012 Rule-11.4

(Advisory) A conversion should not be performed between a pointer to object
and an integer type
AFE1_AFE2-1:1

577

578

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

void example(void) {

int *p;
int x;

x = (int)p;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

int *p;
int *x;

x = p;

}

MISRAC2012-Rule-11.7

Synopsis A cast between a pointer to object and a non-integer arithmetic type was found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A cast shall not be performed between pointer to object and a non-integer
arithmetic type

Coding standards MISRA C:2012 Rule-11.7

(Required) A cast shall not be performed between pointer to object and a
non-integer arithmetic type

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

/* MISRA C 2012 Rule 11.7 Example */

#include "mc2_types.h"

int16_t *p;
float32_t f;

void example(void) {
 f = (float32_t) p; /* Non-compliant */
}

The following code example passes the check and will not give a warning about this
issue:

#include "mc2_types.h"
#include "mc2_1000.h"

void example(void) {
 int16_t *p;
 int32_t f;

 f = (int32_t) p;
}

MISRAC2012-Rule-11.8

Synopsis A cast that removes a const or volatile qualification was found.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) A cast shall not remove any const or volatile qualification from the type
pointed to by a pointer A cast that removes a const or volatile qualification was found.
This violates the principle of type qualification. Changes to the qualification of the
pointer during the cast were not checked for.

Coding standards MISRA C:2012 Rule-11.8

(Required) A cast shall not remove any const or volatile qualification from the
type pointed to by a pointer
AFE1_AFE2-1:1

579

580

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

typedef unsigned short uint16_t;

void example(void) {

uint16_t x;
const uint16_t * pci; /* pointer to const int */
uint16_t * pi; /* pointer to int */

pi = (uint16_t *)pci; // not compliant

}

The following code example passes the check and will not give a warning about this
issue:

typedef unsigned short uint16_t;

void example(void) {

uint16_t x;
uint16_t * const cpi = &x; /* const pointer to int */
uint16_t * pi; /* pointer to int */

pi = cpi; // compliant - no cast required

}

MISRAC2012-Rule-11.9

Synopsis An integer constant was found where the NULL macro should be.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The macro NULL shall be the only permitted form of integer null pointer
constant

Coding standards MISRA C:2012 Rule-11.9
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) The macro NULL shall be the only permitted form of integer null
pointer constant

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 char *a = malloc(sizeof(char) * 10);
 if (a != 0) {
 *a = 5;
 }
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
 int *a = malloc(sizeof(int) * 10);
 if (a != NULL) {
 *a = 5;
 }
}

MISRAC2012-Rule-12.1

Synopsis Implicit operator precedence was detected, without parenthesis to make it explicit.

Enabled by default No

Severity/Certainty Medium/Medium

Full description (Advisory) The precedence of operators within expressions should be made explicit

Coding standards MISRA C:2012 Rule-12.1

(Advisory) The precedence of operators within expressions should be made
explicit

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

581

582

Descriptions of checks

void example(void) {
 int i;
 int j;
 int k;
 int result;

 result = i + j * k;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int i;
 int j;
 int k;
 int result;

 result = i + (j - k);
}

MISRAC2012-Rule-12.2

Synopsis Out of range shifts were found.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The right hand operand of a shift operator shall lie in the range zero to one
less than the width in bits of the essential type of the left hand operand The right-hand
operand of a shift operator might be negative or too large. The behavior here is
undefined; the code might work as intended, or data could become erroneous.

Coding standards CERT INT34-C

Do not shift a negative number of bits or more bits than exist in the operand

CWE 682

Incorrect Calculation

MISRA C:2012 Rule-12.2
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) The right hand operand of a shift operator shall lie in the range zero
to one less than the width in bits of the essential type of the left hand operand

Code examples The following code example fails the check and will give a warning:

unsigned int foo(unsigned long long x, unsigned int y)
{
 int shift = 65; // too big
 return 3ULL << shift;
}
unsigned int foo(unsigned int x, unsigned int y)
{
 int shift = 33; // too big
 return 3U << shift;
}

The following code example passes the check and will not give a warning about this
issue:

unsigned int foo(unsigned int x)
{
 int y = 1; // OK - this is within the correct range
 return x << y;
}
unsigned int foo(unsigned long long x)
{
 int y = 63; // ok
 return x << y;
}

MISRAC2012-Rule-12.3

Synopsis There are uses of the comma operator.

Enabled by default No

Severity/Certainty Low/High

Full description (Advisory) The comma operator should not be used

Coding standards MISRA C:2012 Rule-12.3
AFE1_AFE2-1:1

583

584

Descriptions of checks

(Advisory) The comma operator should not be used

Code examples The following code example fails the check and will give a warning:

#include <string.h>

void reverse(char *string) {
int i, j;
j = strlen(string);
for (i = 0; i < j; i++, j--) {

char temp = string[i];
string[i] = string[j];
string[j] = temp;

}
}

The following code example passes the check and will not give a warning about this
issue:

#include <string.h>

void reverse(char *string) {
int i;
int length = strlen(string);
int half_length = length / 2;
for (i = 0; i < half_length; i++) {

int opposite = length - i;
char temp = string[i];
string[i] = string[opposite];
string[opposite] = temp;

}
}

MISRAC2012-Rule-12.4

Synopsis Evaluation of constant expressions lead to unsigned integer wraparound.

Enabled by default No

Severity/Certainty Low/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Advisory) Evaluation of constant expressions should not lead to unsigned integer
wrap-around

Coding standards MISRA C:2012 Rule-12.4

(Advisory) Evaluation of constant expressions should not lead to unsigned
integer wrap-around

Code examples The following code example fails the check and will give a warning:

void example(void) {
(0xFFFFFFFF + 1u);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
0x7FFFFFFF + 0;

}

MISRAC2012-Rule-13.1

Synopsis The initalization list of an array contains side effects.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Initializer lists shall not contain persistent side effects

Coding standards MISRA C:2012 Rule-13.1

(Required) Initializer lists shall not contain persistent side effects

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

585

586

Descriptions of checks

volatile int v1;

extern void p (int a[2]);

int x = 10;

void example(void) {
 int a[2] = { v1, 0 };

 p((int[2]) { x++, x-- });

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int a[2] = { 1, 2 };
}

MISRAC2012-Rule-13.2_a

Synopsis Expressions that depend on order of evaluation were found.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) The value of an expression and its persistent side effects shall be the same
under all permitted evaluation orders One and the same variable is changed in different
parts of an expression with an unspecified evaluation order, between two consecutive
sequence points. Standard C does not specify an evaluation order for different parts of
an expression. For this reason different compilers are free to perform their own
optimizations regarding the evaluation order. Projects containing statements that violate
this check are not easily ported to another architecture or compiler, and if they are they
might be difficult to debug. Only four operators have a guaranteed order of evaluation:
logical AND (a && b) evaluates the left operand, then the right operand only if the left
is found to be true; logical OR (a || b) evaluates the left operand, then the right
operand only if the left is found to be false; a ternary conditional (a ? b : c) evaluates
the first operand, then either the second or the third, depending on whether the first is
found to be true or false; and a comma (a , b) evaluates its left operand before its right.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C:2012 Rule-13.2

(Required) The value of an expression and its persistent side effects shall be the
same under all permitted evaluation orders

Code examples The following code example fails the check and will give a warning:

int main(void) {
 int i = 0;

 i = i * i++; //unspecified order of operations

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int i = 0;
 int x = i;

 i++;
 x = x * i; //OK - statement is broken up

 return 0;
}

MISRAC2012-Rule-13.2_b

Synopsis There are multiple read accesses with volatile-qualified type within one and the same
sequence point.

Enabled by default Yes
AFE1_AFE2-1:1

587

588

Descriptions of checks

Severity/Certainty Medium/High

Full description (Required) The value of an expression and its persistent side effects shall be the same
under all permitted evaluation orders

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C:2012 Rule-13.2

(Required) The value of an expression and its persistent side effects shall be the
same under all permitted evaluation orders

Code examples The following code example fails the check and will give a warning:

#include "mc2_types.h"
#include "mc2_header.h"

void example(void) {
 uint16_t x;
 volatile uint16_t v;
 x = v + v;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int i = 0;
 int x = i;

 i++;
 x = x * i; //OK - statement is broken up

 return 0;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2012-Rule-13.2_c

Synopsis There are multiple write accesses with volatile-qualified type within one and the same
sequence point.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) The value of an expression and its persistent side effects shall be the same
under all permitted evaluation orders

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C:2012 Rule-13.2

(Required) The value of an expression and its persistent side effects shall be the
same under all permitted evaluation orders

Code examples The following code example fails the check and will give a warning:

#include "mc2_types.h"
#include "mc2_header.h"

void example(void) {
 uint16_t x;
 volatile uint16_t v, w;
 v = w = x;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

589

590

Descriptions of checks

#include <stdbool.h>
void InitializeArray(int *);
const int *example(void)
{

static volatile bool s_initialized = false;
static int s_array[256];

if (!s_initialized)
{

InitializeArray(s_array);
s_initialized = true;

}
return s_array;

}

MISRAC2012-Rule-13.3

Synopsis The increment (++) and decrement (--) operators are being used mixed with other
operators in an expression.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) A full expression containing an increment (++) or decrement (--) operator
should have no other potential side effects other than that caused by the increment or
decrement operator

Coding standards MISRA C:2012 Rule-13.3

(Advisory) A full expression containing an increment (++) or decrement (--)
operator should have no other potential side effects other than that caused by the
increment or decrement operator

Code examples The following code example fails the check and will give a warning:

void example(char *src, char *dst) {
while ((*src++ = *dst++));

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(char *src, char *dst) {
while (*src) {

*dst = *src;
src++;
dst++;

}
}

MISRAC2012-Rule-13.4_a

Synopsis An assignment might be mistakenly used as the condition for an if, for, while, or do
statement.

Enabled by default No

Severity/Certainty Low/High

Full description (Advisory) The result of an assignment operator should not be used An assignment
might be mistakenly used as the condition for an if, for, while, or do statement. This
condition will either always or never hold, depending on the value of the second
operand. This was most likely intended to be a comparison, not an assignment. This
might cause incorrect program flow, and possibly an infinite loop.

Coding standards CERT EXP18-C

Do not perform assignments in selection statements

CERT EXP19-CPP

Do not perform assignments in conditional expressions

CWE 481

Assigning instead of Comparing

MISRA C:2012 Rule-13.4

(Advisory) The result of an assignment operator should not be used

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

591

592

Descriptions of checks

int example(void) {
 int x = 2;
 if (x = 3)
 return 1;
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 int x = 2;
 if (x == 3)
 return 1;
 return 0;
}

MISRAC2012-Rule-13.4_b

Synopsis Assignments were found in a sub-expression.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) The result of an assignment operator should not be used

Coding standards MISRA C:2012 Rule-13.4

(Advisory) The result of an assignment operator should not be used

Code examples The following code example fails the check and will give a warning:

void func()
{
 int x;
 int y;
 int z;
 x = y = z;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void func()
{
 int x = 2;
 int y;
 int z;
 x = y;
 x == y;
}

MISRAC2012-Rule-13.5

Synopsis There are right-hand operands of && or || operators that contain side effects.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The right hand operand of a logical && or || operator shall not contain
persistent side effects

Coding standards CWE 768

Incorrect Short Circuit Evaluation

MISRA C:2012 Rule-13.5

(Required) The right hand operand of a logical && or || operator shall not
contain persistent side effects

Code examples The following code example fails the check and will give a warning:

void example(void) {
int i;
int size = rand() && i++;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int i;
int size = rand() && i;

}

AFE1_AFE2-1:1

593

594

Descriptions of checks

MISRAC2012-Rule-13.6

Synopsis The operand of the sizeof operator contains an expression that has potential side effects.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Mandatory) The operand of the sizeof operator shall not contain any expression which
has potential side effects

Coding standards CERT EXP06-C

Operands to the sizeof operator should not contain side effects

CERT EXP06-CPP

Operands to the sizeof operator should not contain side effects

MISRA C:2012 Rule-13.6

(Mandatory) The operand of the sizeof operator shall not contain any expression
which has potential side effects

Code examples The following code example fails the check and will give a warning:

void example(void) {
int i;
int size = sizeof(i++);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int i;
int size = sizeof(i);
i++;

}

MISRAC2012-Rule-14.1_a

Synopsis Floating-point values were found in the controlling expression of a for statement.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A loop counter shall not have essentially floating type

Coding standards MISRA C:2012 Rule-14.1

(Required) A loop counter shall not have essentially floating type

Code examples The following code example fails the check and will give a warning:

void example(int input, float f) {
 int i;
 for (i = 0; i < input && f < 0.1f; ++i) {
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(int input, float f) {
 int i;
 int f_condition = f < 0.1f;
 for (i = 0; i < input && f_condition; ++i) {
 f_condition = f < 0.1f;
 }
}

MISRAC2012-Rule-14.1_b

Synopsis A variable of essentially float type that is used in the loop condition, is then modified in
the loop body.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

595

596

Descriptions of checks

Full description (Required) A loop counter shall not have essentially floating type

Coding standards MISRA C:2012 Rule-14.1

(Required) A loop counter shall not have essentially floating type

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int a = 10;
 float f = 0.001f;

 while (f < 1.00f) {
 f = f + (float) a;
 a++;
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int a = 10;
 float f = 0.001f;

 while (a < 30) {
 f = f + (float) a;
 a++;
 }
}

MISRAC2012-Rule-14.2

Synopsis A for loop counter variable was found that is modified in the body of the loop.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) A for loop shall be well-formed statement) should not be assigned to in the
body of the for loop. While it's legal to modify the loop counter within the body of a
for loop (in place of a while loop), the conventional use of a for loop is to iterate over
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

a predetermined range, incrementing the loop counter once per iteration. Modification
of the loop counter within the for loop body is probably accidental, and could result in
erroneous behavior or an infinite loop.

Coding standards MISRA C:2012 Rule-14.2

(Required) A for loop shall be well-formed

Code examples The following code example fails the check and will give a warning:

int main(void) {
 int i;

 /* i is incremented inside the loop body */
 for (i = 0; i < 10; i++) {
 i = i + 1;
 }

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int i;
 int x = 0;

 for (i = 0; i < 10; i++) {
 x = i + 1;
 }

 return 0;
}

MISRAC2012-Rule-14.3_a

Synopsis The condition in an if, for, while, do-while, or ternary operator will always be true.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

597

598

Descriptions of checks

Full description (Required) Controlling expressions shall not be invariant

Coding standards CERT EXP17-C

Do not perform bitwise operations in conditional expressions

MISRA C:2012 Rule-14.3

(Required) Controlling expressions shall not be invariant

Code examples The following code example fails the check and will give a warning:

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && 1; x--) {
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && 1; x++) {
 }
}

MISRAC2012-Rule-14.3_b

Synopsis The condition in if, for, while, do-while, or ternary operator will never be true.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Controlling expressions shall not be invariant

Coding standards CERT EXP17-C
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Do not perform bitwise operations in conditional expressions

MISRA C:2012 Rule-14.3

(Required) Controlling expressions shall not be invariant

Code examples The following code example fails the check and will give a warning:

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && x >= 1; x++) {
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && x >= 0; x++) {
 }
}

MISRAC2012-Rule-14.4_a

Synopsis Non-Boolean termination conditions were found in do ... while statements.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The controlling expression of an if statement and the controlling expression
of an iteration-statement shall have essentially Boolean type

Coding standards MISRA C:2012 Rule-14.4

(Required) The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type
AFE1_AFE2-1:1

599

600

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

typedefintint32_t;
int32_t func();

void example(void)
{
 do {
 } while (func());
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 while (int *ptr = fn()) // Compliant by exception
 {}

 do
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }
 while (true); // Compliant

 while (int len = fn2()) // Compliant by exception
 {}

 if (int *p = fn()) {} // Compliant by exception
 if (int len = fn2()) {} // Complioant by exception
 if (bool flag = fn3()) {} // Compliant
}

MISRAC2012-Rule-14.4_b

Synopsis Non-Boolean termination conditions were found in for loops.

Enabled by default Yes
AFE1_AFE2-1:1

601

602

Descriptions of checks

Severity/Certainty Medium/Medium

Full description (Required) The controlling expression of an if statement and the controlling expression
of an iteration-statement shall have essentially Boolean type

Coding standards MISRA C:2012 Rule-14.4

(Required) The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 for (int x = 10;x;--x) {}
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 for (fn(); fn3(); fn2()) // Compliant
 {}

 for (fn(); true; fn()) // Compliant
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }

 for (int len = fn2(); len < 10; len++) // Compliant
 ;
}

MISRAC2012-Rule-14.4_c

Synopsis Non-Boolean conditions were found in if statements.

Enabled by default Yes
AFE1_AFE2-1:1

603

604

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) The controlling expression of an if statement and the controlling expression
of an iteration-statement shall have essentially Boolean type

Coding standards MISRA C:2012 Rule-14.4

(Required) The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 int u8;
 if (u8) {}
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 while (int *ptr = fn()) // Compliant by exception
 {}

 do
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }
 while (true); // Compliant

 while (int len = fn2()) // Compliant by exception
 {}

 if (int *p = fn()) {} // Compliant by exception
 if (int len = fn2()) {} // Complioant by exception
 if (bool flag = fn3()) {} // Compliant
}

MISRAC2012-Rule-14.4_d

Synopsis Non-Boolean termination conditions were found in while statements.

Enabled by default Yes
AFE1_AFE2-1:1

605

606

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) The controlling expression of an if statement and the controlling expression
of an iteration-statement shall have essentially Boolean type

Coding standards MISRA C:2012 Rule-14.4

(Required) The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 int u8;
 while (u8) {}
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 while (int *ptr = fn()) // Compliant by exception
 {}

 do
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }
 while (true); // Compliant

 while (int len = fn2()) // Compliant by exception
 {}

 if (int *p = fn()) {} // Compliant by exception
 if (int len = fn2()) {} // Complioant by exception
 if (bool flag = fn3()) {} // Compliant
}

MISRAC2012-Rule-15.1

Synopsis Uses of the goto statement were found.

Enabled by default No
AFE1_AFE2-1:1

607

608

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Advisory) The goto statement should not be used

Coding standards MISRA C:2012 Rule-15.1

(Advisory) The goto statement should not be used

Code examples The following code example fails the check and will give a warning:

void example(void) {

goto testin;

testin:
printf("Reached by goto");

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

printf ("Not reached by goto");

}

MISRAC2012-Rule-15.2

Synopsis A goto statement is declared after the destination label.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The goto statement shall jump to a label declared later in the same function
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards MISRA C:2012 Rule-15.2

(Required) The goto statement shall jump to a label declared later in the same
function

Code examples The following code example fails the check and will give a warning:

void f1 ()
{
 int j = 0;
 for (j = 0; j < 10 ; ++j)
 {
L1: // Non-compliant
 j;
 }
 goto L1;
}

The following code example passes the check and will not give a warning about this
issue:

void f1 ()
{
 int j = 0;
 goto L1;
 for (j = 0; j < 10 ; ++j)
 {
 j;
 }
L1:
 return;
}

MISRAC2012-Rule-15.3

Synopsis The destination of a goto statement is a nested code block.

Enabled by default Yes

Severity/Certainty Low/Low
AFE1_AFE2-1:1

609

610

Descriptions of checks

Full description (Required) Any label referenced by a goto statement shall be declared in the same block,
or in any block enclosing the goto statement

Coding standards MISRA C:2012 Rule-15.3

(Required) Any label referenced by a goto statement shall be declared in the
same block, or in any block enclosing the goto statement

Code examples The following code example fails the check and will give a warning:

void f1 ()
{
 int j = 0;
 goto L1;
 for (;;)
 {
L1: // Non-compliant
 j;
 }
}

The following code example passes the check and will not give a warning about this
issue:

void f2()
{
 for(;;)
 {
 for(;;)
 {
 goto L1;
 }
 }
L1:
 return;
}

MISRAC2012-Rule-15.4

Synopsis One or more iteration statements are terminated by more than one break or goto
statements.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Advisory) There should be no more than one break or goto statement used to terminate
any iteration statement

Coding standards MISRA C:2012 Rule-15.4

(Advisory) There should be no more than one break or goto statement used to
terminate any iteration statement

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

611

612

Descriptions of checks

void func()
{
 int x = 1;
 for (int i = 0; i < 10; i++)
 {
 if (x)
 {
 break;
 }
 else if (i)
 {
 break; // Non-compliant – second jump from loop
 }
 else
 {
 // Code
 }
 }
}
int fn(void);

void example(void) {
int i = fn();
int j;
int counter = 0;
switch (i) {

case 1:
break;

case 2:
case 3:

counter++;
if (i==3) {

break;
}
counter++;
break;

case 4:
for (j = 0; j < 10; j++) {

if (j == i) {
break;

}
if (j == counter) {

break;
}

}
counter--;
break;
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

default:
break;

}
}
int fn(int i);

void example(void) {
int counter = 0;
int i = 0;
for (i = 0; i < 100; i++) {

switch (i % 9) {
case 8:

counter++;
break;

default:
break;

}
if (fn(i)) {

break;
}
if (fn(i)) {

break;
}

}
}

int test1(int);
int test2(int);

void example(void)
{

int i = 0;
for (i = 0; i < 10; i++) {

if (test1(i)) {
break;

} else if (test2(i)) {
break;

}
}

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

613

614

Descriptions of checks

void example(void)
{

int i = 0;
for (i = 0; i < 10 && i != 9; i++) {

if (i == 9) {
break;

}
}

}
void func()
{
 int x = 1;
 for (int i = 0; i < 10; i++)
 {
 if (x)
 {
 break;
 }
 else if (i)
 {
 while (true)
 {
 if (x)
 {
 break;
 }
 do
 {
 break;
 }
 while(true);
 }
 }
 else
 {
 }
 }
}
int fn(void);

void example(void) {
int i = fn();
int j;
int counter = 0;
switch (i) {

case 1:
break;
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

case 2:
case 3:

counter++;
if (i==3) {

break;
}
counter++;
break;

case 4:
for (j = 0; j < 10; j++) {

if (j == i) {
break;

}
}
counter--;
break;

default:
break;

}
}
int fn(int i);

void example(void) {
int counter = 0;
int i = 0;
int stop = 0;
for (i = 0; i < 100 && !stop; i++) {

switch (i % 9) {
case 8:

counter++;
break;

default:
break;

}
stop = fn(i);

}
}

MISRAC2012-Rule-15.5

Synopsis One or more functions have multiple exit points or an exit point that is not at the end of
the function.

Enabled by default No
AFE1_AFE2-1:1

615

616

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Advisory) A function should have a single point of exit at the end One or more
functions have multiple exit points or an exit point that is not at the end of the function.
This is in conflict with the IEC 61508 requirements for good programming style.

Coding standards MISRA C:2012 Rule-15.5

(Advisory) A function should have a single point of exit at the end

Code examples The following code example fails the check and will give a warning:

extern int errno;

void example(void) {
if (errno) {

return;
}
return;

}

The following code example passes the check and will not give a warning about this
issue:

extern int errno;

void example(void) {
if (errno) {

goto end;
}

end:
{

return;
}

}

MISRAC2012-Rule-15.6_a

Synopsis There are missing braces in do ... while statements.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Low

Full description (Required) The body of an iteration-statement or a selection-statement shall be
acompound-statement

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C:2012 Rule-15.6

(Required) The body of an iteration-statement or a selection-statement shall be
acompound-statement

Code examples The following code example fails the check and will give a warning:

int example(void) {
 do
 return 0;
 while (1);
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 do {
 return 0;
 } while (1);
}

MISRAC2012-Rule-15.6_b

Synopsis There are missing braces in for statements.

Enabled by default Yes
AFE1_AFE2-1:1

617

618

Descriptions of checks

Severity/Certainty Low/Low

Full description (Required) The body of an iteration-statement or a selection-statement shall be
acompound-statement

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C:2012 Rule-15.6

(Required) The body of an iteration-statement or a selection-statement shall be
acompound-statement

Code examples The following code example fails the check and will give a warning:

int example(void) {
 for (;;)
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 for (;;){
 return 0;
 }
}

MISRAC2012-Rule-15.6_c

Synopsis There are missing braces in if, else, or else if statements.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Low

Full description (Required) The body of an iteration-statement or a selection-statement shall be
acompound-statement

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C:2012 Rule-15.6

(Required) The body of an iteration-statement or a selection-statement shall be
acompound-statement

Code examples The following code example fails the check and will give a warning:

void example(void) {
if (random());
if (random());
else;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
if (random()) {
}
if (random()) {
} else {
}
if (random()) {
} else if (random()) {
}

}

MISRAC2012-Rule-15.6_d

Synopsis There are missing braces in switch statements.
AFE1_AFE2-1:1

619

620

Descriptions of checks

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The body of an iteration-statement or a selection-statement shall be
acompound-statement

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C:2012 Rule-15.6

(Required) The body of an iteration-statement or a selection-statement shall be
acompound-statement

Code examples The following code example fails the check and will give a warning:

void example(void) {
while(1);
for(;;);
do ;
while (0);
switch(0);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
while(1) {
}
for(;;) {
}
do {
} while (0);
switch(0) {
}

}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC2012-Rule-15.6_e

Synopsis There are missing braces in while statements.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The body of an iteration-statement or a selection-statement shall be a
compound-statement

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C:2012 Rule-15.6

(Required) The body of an iteration-statement or a selection-statement shall be
a compound-statement

Code examples The following code example fails the check and will give a warning:

int example(void) {
 while (1)
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 while (1){
 return 0;
 }
}

MISRAC2012-Rule-15.7

Synopsis If ... else if constructs that are not terminated with an else clause were detected.
AFE1_AFE2-1:1

621

622

Descriptions of checks

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) All if ... else if constructs shall be terminated with an else statement

Coding standards MISRA C:2012 Rule-15.7

(Required) All if ... else if constructs shall be terminated with an else statement

Code examples The following code example fails the check and will give a warning:

void example(void) {
if (!rand()) {

printf("The first random number is 0");
} else if (!rand()) {

printf("The second random number is 0");
}

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
if (!rand()) {

printf("The first random number is 0");
} else if (!rand()) {

printf("The second random number is 0");
} else {

printf("Neither random number was 0");
}

}

MISRAC2012-Rule-16.1

Synopsis Detected switch statements that do not conform to the MISRA C switch syntax.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/High

Full description (Required) All switch statements shall be well-formed switch-statement : switch '('
expression ')' '{' case-label-clause-list default-label-clause? '}' case-label-clause-list:
case-label case-clause? case-label-clause-list case-label case-clause? case-label: case
constant-expression ':' case-clause: statement-list? break ';' '{' declaration-list?
statement-list? break ';' '}' default-label-clause : default-label default-clause
default-label: default ':' default-clause: case-clause

Coding standards MISRA C:2012 Rule-16.1

(Required) All switch statements shall be well-formed

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

623

624

Descriptions of checks

void example(void) {
switch(expr()) {

// at least one case label
case 1:

// statement list
stmt();
stmt();
// WARNING: missing break at end of statement list

default:
break; // statement list ends in a break

}

switch(expr()) {
// WARNING: missing at least one case label
default:

break; // statement list ends in a break
}

switch(expr()) {
// at least one case label
case 1:

// statement list
stmt();
stmt();
break; // statement list ends in a break

case 0:
stmt();
// WARNING: declaration list without block
int decl = 0;
int x;
// statement list
stmt();
stmt();
break; // statement list ends in a break

default:
break; // statement list ends in a break

}

switch(expr()) {
// at least one case label
case 1: {

// statement list
stmt();
// WARNING: Additional block inside of the case clause

block
{
stmt();
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

}
break;

}
default:

break; // statement list ends in a break
}

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
switch(expr()) {

// at least one case label
case 1:

// statement list (no declarations)
stmt();
stmt();
break; // statement list ends in a break

case 0: {
// one level of block is allowed
// declaration list
int decl = 0;
// statement list
stmt();
stmt();
break; // statement list ends in a break

}
case 2: // empty cases are allowed
default:

break; // statement list ends in a break
}

}

MISRAC2012-Rule-16.2

Synopsis Switch labels were found in nested blocks.

Enabled by default Yes

Severity/Certainty Low/Medium
AFE1_AFE2-1:1

625

626

Descriptions of checks

Full description (Required) A switch label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement

Coding standards MISRA C:2012 Rule-16.2

(Required) A switch label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement

Code examples The following code example fails the check and will give a warning:

void example(void) {

switch(rand()) {
{case 1:}
case 2:
case 3:
default:

}

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

switch(rand()) {
case 1:
case 2:
case 3:
default:

}

}

MISRAC2012-Rule-16.3

Synopsis Non-empty switch cases were found that are not terminated by a break.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) An unconditional break statement shall terminate every switch-clause

Coding standards CERT MSC17-C

Finish every set of statements associated with a case label with a break statement

CWE 484

Omitted Break Statement in Switch

MISRA C:2012 Rule-16.3

(Required) An unconditional break statement shall terminate every
switch-clause

Code examples The following code example fails the check and will give a warning:

void example(int input) {

 while (rand()) {
 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 default:
 break;
 }
 }
}
void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 default:
 break;
 }

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

627

628

Descriptions of checks

void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 break;
 default:
 break;
 }

}
void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 } else {
 break;
 }
 // All paths above contain a break, therefore we do not
warn
 default:
 break;
 }

}

MISRAC2012-Rule-16.4

Synopsis Switch statements without a default clause were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Every switch statement shall have a default label

Coding standards CWE 478
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Missing Default Case in Switch Statement

MISRA C:2012 Rule-16.4

(Required) Every switch statement shall have a default label

Code examples The following code example fails the check and will give a warning:

int example(int x) {
 switch(x){
 }
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 switch(x){
 case 3:
 return 0;
 break;
 case 5:
 return 1;
 break;
 default:
 return 2;
 break;
 }
}

MISRAC2012-Rule-16.5

Synopsis A switch was found whose default label is neither the first nor the last label of the switch.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) A default label shall appear as either the first or the last switch label of a
switch statement

Coding standards MISRA C:2012 Rule-16.5
AFE1_AFE2-1:1

629

630

Descriptions of checks

(Required) A default label shall appear as either the first or the last switch label
of a switch statement

Code examples The following code example fails the check and will give a warning:

void test(int a) {
 switch (a) {
 case 1:
 a = 1;
 break;
 default:
 a = 10;
 break;
 case 2:
 a = 2;
 break;
 }
}

The following code example passes the check and will not give a warning about this
issue:

void test(int a) {
 switch (a) {
 case 1:
 a = 1;
 break;
 case 2:
 a = 2;
 break;
 default:
 a = 10;
 break;
 }
}

MISRAC2012-Rule-16.6

Synopsis Switch statements without case clauses were found.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) Every switch statement shall have at least two switch-clauses

Coding standards MISRA C:2012 Rule-16.6

(Required) Every switch statement shall have at least two switch-clauses

Code examples The following code example fails the check and will give a warning:

int example(int x) {
 switch(x){
 default:
 return 2;
 break;
 }
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 switch(x){
 case 3:
 return 0;
 break;
 case 5:
 return 1;
 break;
 default:
 return 2;
 break;
 }
}

MISRAC2012-Rule-16.7

Synopsis A switch expression was found that represents a value that is effectively Boolean.

Enabled by default Yes
AFE1_AFE2-1:1

631

632

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) A switch-expression shall not have essentially Boolean type

Coding standards MISRA C:2012 Rule-16.7

(Required) A switch-expression shall not have essentially Boolean type

Code examples The following code example fails the check and will give a warning:

void example(int x) {
switch(x == 0) {

case 0:
case 1:
default:

}
}

The following code example passes the check and will not give a warning about this
issue:

void example(int x) {
switch(x) {

case 1:
case 0:
default:

}
}

MISRAC2012-Rule-17.1

Synopsis Inclusion of the stdarg header file was detected.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The features of <stdarg.h> shall not be used
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards MISRA C:2012 Rule-17.1

(Required) The features of <stdarg.h> shall not be used

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
#include <stdarg.h>

void example(int a, ...) {
 va_list vl;
 va_list v2;
 int val;
 va_start(vl, a);
 va_copy(vl, v2);
 val=va_arg(vl, int);
 va_end(vl);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int example(void) {
 return EXIT_SUCCESS;
}

MISRAC2012-Rule-17.2_a

Synopsis There are functions that call themselves directly.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Functions shall not call themselves, either directly or indirectly

Coding standards MISRA C:2012 Rule-17.2

(Required) Functions shall not call themselves, either directly or indirectly
AFE1_AFE2-1:1

633

634

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

void example(void) {
example();

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2012-Rule-17.2_b

Synopsis There are functions that call themselves indirectly.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Functions shall not call themselves, either directly or indirectly

Coding standards MISRA C:2012 Rule-17.2

(Required) Functions shall not call themselves, either directly or indirectly

Code examples The following code example fails the check and will give a warning:

void example(void);
void callee(void) {
 example();
}
void example(void) {
 callee();
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void);
void callee(void) {
 // example();
}
void example(void) {
 callee();
}

MISRAC2012-Rule-17.3

Synopsis Functions are used without prototyping.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Mandatory) A function shall not be declared implicitly

Coding standards CERT DCL31-C

Declare identifiers before using them

MISRA C:2012 Rule-17.3

(Mandatory) A function shall not be declared implicitly

Code examples The following code example fails the check and will give a warning:

void func2(void)
{
 func();
}

The following code example passes the check and will not give a warning about this
issue:

void func(void);
void func2(void)
{
 func();
}

AFE1_AFE2-1:1

635

636

Descriptions of checks

MISRAC2012-Rule-17.4

Synopsis For some execution paths, no return statement is executed in a function with a non-void
return type.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Mandatory) All exit paths from a function with non-void return type shall have an
explicit return statement with an expression At least one execution path in a non-void
function is missing a return statement before the function exits. If a non-void function
has no return statement, it will return an undefined value. This is not a problem if the
function is used as a void function, but if the function return value is used it will cause
unpredictable behavior. This is a weaker check than the one performed by gcc. Its check
allows more aggressive coding without violating the rule. However, a rule violation in
gcc means there is no path leading to a return statement.

Coding standards CERT MSC37-C

Ensure that control never reaches the end of a non-void function

MISRA C:2012 Rule-17.4

(Mandatory) All exit paths from a function with non-void return type shall have
an explicit return statement with an expression

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

int example(void) {
 int x;

 scanf("%d",&x);

 if (x > 10) {
 return 10;
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdio.h>

int example(void) {
 int x;

 scanf("%d",&x);

 if (x > 10) {
 return 10;
 }

 return 0;
}

MISRAC2012-Rule-17.6

Synopsis There are array parameters with the static keyword between the [].

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Mandatory) The declaration of an array parameter shall not contain the static keyword
between the []

Coding standards MISRA C:2012 Rule-17.6

(Mandatory) The declaration of an array parameter shall not contain the static
keyword between the []

Code examples The following code example fails the check and will give a warning:

void example(int a[static 20]) {
 for (int i = 0; i < 10; i++) {
 a[i] = i;
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

637

638

Descriptions of checks

void example(int a[20]) {
 for (int i = 0; i < 10; i++) {
 a[i] = i;
 }
}

MISRAC2012-Rule-17.7

Synopsis There are unused function return values (other than overloaded operators).

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The value returned by a function having non-void return type shall be used
There are unused function return values (other than overloaded operators). This might
be an error. The return value of a function shall always be used. Overloaded operators
are excluded; they should behave like the built-in operators. You can discard the return
value of a function by using a (void) cast.

Coding standards CWE 252

Unchecked Return Value

MISRA C:2012 Rule-17.7

(Required) The value returned by a function having non-void return type shall
be used

Code examples The following code example fails the check and will give a warning:

int func (int para1)
{
 return para1;
}

void discarded (int para2)
{
 func(para2); // value discarded - Non-compliant
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

int func (int para1)
{
 return para1;
}

int not_discarded (int para2)
{
 if (func(para2) > 5){
 return 1;
 }
 return 0;
}

MISRAC2012-Rule-18.1_a

Synopsis An array access is out of bounds.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) A pointer resulting from arithmetic on a pointer operand shall address an
element of the same array as that pointer operand An element of an array is accessed
when that element is outside the bounds of the array. This might corrupt data and/or
crash the application, and result in security vulnerabilities.

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow
AFE1_AFE2-1:1

639

640

Descriptions of checks

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C:2012 Rule-18.1

(Required) A pointer resulting from arithmetic on a pointer operand shall
address an element of the same array as that pointer operand

Code examples The following code example fails the check and will give a warning:

/* Goanna correctly detects that the array access,
 a[x - 10] is always within bounds, because 'x'
 is always in the range 10 <= x < 20, but a[x]
 is not. */

int ex(int x, int y)
{
 int a[10];

 if((x >= 0) && (x < 20)) {
 if(x < 10) {
 y = a[x];
 } else {
 y = a[x - 10];
 y = a[x];
 }
 }

 return y;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int main(void)
{
 int a[4];

 a[3] = 0;

 return 0;
}

MISRAC2012-Rule-18.1_b

Synopsis An array access might be out of bounds, depending on which path is executed.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) A pointer resulting from arithmetic on a pointer operand shall address an
element of the same array as that pointer operand An element of an array is accessed,
but one or more of the executable paths means that the element is outside the bounds of
the array. This might corrupt data and/or crash the application, and result in security
vulnerabilities.

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126
AFE1_AFE2-1:1

641

642

Descriptions of checks

Buffer Over-read

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C:2012 Rule-18.1

(Required) A pointer resulting from arithmetic on a pointer operand shall
address an element of the same array as that pointer operand

Code examples The following code example fails the check and will give a warning:

int cond;

int main(void)
{
 int a[7];
 int x;

 if (cond)
 x = 3;
 else
 x = 20;

 a[x] = 0; //x may be set to 20 in line 11
 //but a only has an interval of [0,6]
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int cond;

int main(void)
{
 int a[25];
 int x;

 if (cond)
 x = 3;
 else
 x = 20;

 a[x] = 0; //here, both possible values of
 //x are in the interval [0,24]
 return 0;
}

MISRAC2012-Rule-18.1_c

Synopsis A pointer to an array is used outside the array bounds.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) A pointer resulting from arithmetic on a pointer operand shall address an
element of the same array as that pointer operand

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow
AFE1_AFE2-1:1

643

644

Descriptions of checks

CWE 122

Heap-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C:2012 Rule-18.1

(Required) A pointer resulting from arithmetic on a pointer operand shall
address an element of the same array as that pointer operand

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int arr[10];
 int *p = arr;
 p[10];
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int arr[10];
 int *p = arr;
 p[9];
}

MISRAC2012-Rule-18.1_d

Synopsis A pointer to an array is potentially used outside the array bounds.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description (Required) A pointer resulting from arithmetic on a pointer operand shall address an
element of the same array as that pointer operand

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 122

Heap-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C:2012 Rule-18.1

(Required) A pointer resulting from arithmetic on a pointer operand shall
address an element of the same array as that pointer operand

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

645

646

Descriptions of checks

void example(int b) {
 int arr[10];
 int *p = arr;
 int x = (b<10 ? 8 : 11);
 p[x];
}

The following code example passes the check and will not give a warning about this
issue:

void example(int b) {
 int arr[12];
 int *p = arr;
 int x = (b<10 ? 8 : 11);
 p[x];
}

MISRAC2012-Rule-18.5

Synopsis Declarations that contain more than two levels of pointer indirection have been found.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) Declarations should contain no more than two levels of pointer nesting

Coding standards MISRA C:2012 Rule-18.5

(Advisory) Declarations should contain no more than two levels of pointer
nesting

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int ***p;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
 int **p;
}

MISRAC2012-Rule-18.6_a

Synopsis Might return address on the stack.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) The address of an object with automatic storage shall not be copied to
another object that persists after the first object has ceased to exist. A local variable is
defined in stack memory, then its address is potentially returned from the function.
When the function exits, its stack frame will be considered illegal memory, and thus the
address returned might be dangerous. This code and subsequent memory accesses
might appear to work, but the operations are illegal and an application crash, or memory
corruption, is very likely. To correct this problem, consider returning a copy of the
object, using a global variable, or dynamically allocating memory.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 562

Return of Stack Variable Address

MISRA C:2012 Rule-18.6

(Required) The address of an object with automatic storage shall not be copied
to another object that persists after the first object has ceased to exist

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

647

648

Descriptions of checks

int *f() {
 int x;
 return &x; //x is a local variable
}
int *example(void) {
 int a[20];
 return a; //a is a local array
}

The following code example passes the check and will not give a warning about this
issue:

int* example(void) {
 int *p,i;
 p = (int *)malloc(sizeof(int));
 return p; //OK - p is dynamically allocated

}

MISRAC2012-Rule-18.6_b

Synopsis A stack address is stored in a global pointer.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) The address of an object with automatic storage shall not be copied to
another object that persists after the first object has ceased to exist The address of a
variable in stack memory is being stored in a global variable. When the relevant scope
or function ends, the memory will become unused, and the externally stored address will
point to junk data. This is particularly dangerous because the application might appear
to run normally, when it is in fact accessing illegal memory. This might also lead to an
application crash, or data changing unpredictably.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRA C:2012 Rule-18.6

(Required) The address of an object with automatic storage shall not be copied
to another object that persists after the first object has ceased to exist

Code examples The following code example fails the check and will give a warning:

int *px;
void example() {
 int i = 0;
 px = &i; // assigning the address of stack
 // variable a to the global px
}

The following code example passes the check and will not give a warning about this
issue:

void example(int *pz) {
 int x; int *px = &x;
 int *py = px; /* local variable */
 pz = px; /* parameter */
}

MISRAC2012-Rule-18.6_c

Synopsis A stack address is stored in the field of a global struct.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) The address of an object with automatic storage shall not be copied to
another object that persists after the first object has ceased to exist The address of a
variable in stack memory is being stored in a global struct. When the relevant scope or
function ends, the memory will become unused, and the externally stored address will
point to junk data. This is particularly dangerous because the application might appear
to run normally, when it is in fact accessing illegal memory. This might also lead to an
application crash, or data changing unpredictably.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations
AFE1_AFE2-1:1

649

650

Descriptions of checks

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C:2012 Rule-18.6

(Required) The address of an object with automatic storage shall not be copied
to another object that persists after the first object has ceased to exist

Code examples The following code example fails the check and will give a warning:

struct S{
 int *px;
} s;

void example() {
 int i = 0;
 s.px = &i; //storing local address in global struct
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

struct S{
 int *px;
} s;

void example() {
 int i = 0;
 s.px = &i; //OK - the field is written to later
 s.px = NULL;
}

MISRAC2012-Rule-18.6_d

Synopsis A stack address is stored outside a function via a parameter.

Enabled by default Yes

Severity/Certainty High/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) The address of an object with automatic storage shall not be copied to
another object that persists after the first object has ceased to exist The address of a local
stack variable is assigned to a location supplied by the caller via a parameter. When the
function ends, this memory address will become invalid. This is particularly dangerous
because the application might appear to run normally, when it is in fact accessing illegal
memory. This might also lead to an application crash, or data changing unpredictably.
Note that this check looks for any expression referring to the store located by the
parameter, so the assignment local[*parameter] = & local; will trigger the
check despite being OK.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C:2012 Rule-18.6

(Required) The address of an object with automatic storage shall not be copied
to another object that persists after the first object has ceased to exist

Code examples The following code example fails the check and will give a warning:

void example(int **ppx) {
 int x;
 ppx[0] = &x; //local address
}

The following code example passes the check and will not give a warning about this
issue:

static int y = 0;
void example3(int **ppx){
 *ppx = &y; //OK - static address
}

MISRAC2012-Rule-18.7

Synopsis Flexible array members are declared.

Enabled by default Yes
AFE1_AFE2-1:1

651

652

Descriptions of checks

Severity/Certainty Medium/Medium

Full description (Required) Flexible array members shall not be declared

Coding standards MISRA C:2012 Rule-18.7

(Required) Flexible array members shall not be declared

Code examples The following code example fails the check and will give a warning:

struct example {
 int size;
 int data[];
} example;

void function(void) {
 struct example *e;
}

The following code example passes the check and will not give a warning about this
issue:

struct example {
 int size;
 int data[5];
} example;

void function(void) {
 struct example *e;
}

MISRAC2012-Rule-18.8

Synopsis There are arrays declared with a variable length.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) Variable-length array types shall not be used

Coding standards MISRA C:2012 Rule-18.8

(Required) Variable-length array types shall not be used

Code examples The following code example fails the check and will give a warning:

void example(int a) {
 int arr[a];
}

The following code example passes the check and will not give a warning about this
issue:

void example(int a) {
 int arr[10];
}

MISRAC2012-Rule-19.1

Synopsis Assignments from one field of a union to another were found.

Enabled by default Yes

Severity/Certainty High/High

Full description (Mandatory) An object shall not be assigned or copied to an overlapping object

Coding standards MISRA C:2012 Rule-19.1

(Mandatory) An object shall not be assigned or copied to an overlapping object

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

653

654

Descriptions of checks

union cheat {
 char c[5];
 int i;
};

void example(union cheat *u)
{
 u->i = u->c[2];
}
union {
 char c[5];
 int i;
} u;

void example(void)
{
 u.i = u.c[2];
}
void example(void)
{
 union
 {
 char c[5];
 int i;
 } u;
 u.i = u.c[2];
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void)
{
 union
 {
 char c[5];
 int i;
 } u;
 int x;
 x = (int)u.c[2];
 u.i = x;
}
void example(void)
{
 struct
 {
 char c[5];
 int i;
 } u;
 u.i = u.c[2];
}
union cheat {
 char c[5];
 int i;
};

union cheat u;

void example(void)
{
 int x;
 x = (int)u.c[2];
 u.i = x;
}

MISRAC2012-Rule-19.2

Synopsis Unions were found.

Enabled by default No

Severity/Certainty Low/Medium
AFE1_AFE2-1:1

655

656

Descriptions of checks

Full description (Advisory) The union keyword should not be used

Coding standards MISRA C:2012 Rule-19.2

(Advisory) The union keyword should not be used

Code examples The following code example fails the check and will give a warning:

union cheat {
 int i;
 float f;
};

int example(float f) {
 union cheat u;
 u.f = f;
 return u.i;
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 return x;
}

MISRAC2012-Rule-20.2

Synopsis Illegal characters were found in the names of header files.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The ',' or characters and the /* or // character sequences shall not occur in a
header file name ', \, /*, or // characters were found used between the " delimiters in a
header name preprocessing token.

Coding standards MISRA C:2012 Rule-20.2

(Required) The ',' or \ characters and the /* or // character sequences shall not
occur in a header file name
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

#include "fi'le.h"/* Non-compliant */
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

#include "header.h"
void example(void) {}

MISRAC2012-Rule-20.4_c89

Synopsis A macro was found defined with the same name as a keyword.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) A macro shall not be defined with the same name as a keyword

Coding standards MISRA C:2012 Rule-20.4

(Required) A macro shall not be defined with the same name as a keyword

Code examples The following code example fails the check and will give a warning:

#define int some_other_type

The following code example passes the check and will not give a warning about this
issue:

#define unless(E) if (! (E)) /* Compliant */

MISRAC2012-Rule-20.4_c99

Synopsis A macro was found defined with the same name as a keyword.

Enabled by default Yes
AFE1_AFE2-1:1

657

658

Descriptions of checks

Severity/Certainty Low/Low

Full description (Required) A macro shall not be defined with the same name as a keyword

Coding standards MISRA C:2012 Rule-20.4

(Required) A macro shall not be defined with the same name as a keyword

Code examples The following code example fails the check and will give a warning:

/* The following example is compliant in C90, but not C99,
because inline is not a keyword in C90. */

/* Remove inline if compiling for C90 */
#define inline

The following code example passes the check and will not give a warning about this
issue:

#define unless(E) if (! (E)) /* Compliant */

MISRAC2012-Rule-20.5

Synopsis Found occurrances of #undef.

Enabled by default No

Severity/Certainty Low/Low

Full description (Advisory) #undef should not be used or meaning of a macro when it is used in the code.

Coding standards MISRA C:2012 Rule-20.5

(Advisory) #undef should not be used

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#defineSYM
#undef SYM
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {}

MISRAC2012-Rule-20.10

Synopsis # and ## operators were found in macro definitions.

Enabled by default No

Severity/Certainty Low/Low

Full description (Advisory) The # and ## preprocessor operators should not be used

Coding standards MISRA C:2012 Rule-20.10

(Advisory) The # and ## preprocessor operators should not be used

Code examples The following code example fails the check and will give a warning:

#defineA(X,Y)X##Y/* Non-compliant */

#define A(Y)#Y/* Non-compliant */

The following code example passes the check and will not give a warning about this
issue:

#define A(x)(x)/* Compliant */

MISRAC2012-Rule-21.1

Synopsis Detected a #define or #undef of a reserved identifier in the standard library.

Enabled by default Yes
AFE1_AFE2-1:1

659

660

Descriptions of checks

Severity/Certainty Low/Low

Full description (Required) #define and #undef shall not be used on a reserved identifier or reserved
macro name Detected a #define or #undef of a macro name that is a C/C++ reserved
identifier, C/C++ keyword, or the name of a macro, object, or function in the standard
library. Redefining or undefining reserved words and function names like __LINE__,
__FILE__, __DATE__, __TIME__, __STDC__, errno, and assert, causes undefined
behavior.

Coding standards MISRA C:2012 Rule-21.1

(Required) #define and #undef shall not be used on a reserved identifier or
reserved macro name

Code examples The following code example fails the check and will give a warning:

#define__TIME__11111111/* Non-compliant */

The following code example passes the check and will not give a warning about this
issue:

#define A(x)(x)/* Compliant */

MISRAC2012-Rule-21.2

Synopsis One or more library functions are being overridden.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A reserved identifier or macro name shall not be declared

Coding standards MISRA C:2012 Rule-21.2

(Required) A reserved identifier or macro name shall not be declared

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

extern "C" void strcpy(void);
void strcpy(void) {}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {}

MISRAC2012-Rule-21.3

Synopsis Uses of malloc, calloc, realloc, or free were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The memory allocation and deallocation functions of <stdlib.h> shall not be
used

Coding standards MISRA C:2012 Rule-21.3

(Required) The memory allocation and deallocation functions of <stdlib.h>
shall not be used

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void *example(void) {
 return malloc(100);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2012-Rule-21.4

Synopsis Found uses of setjmp.h.
AFE1_AFE2-1:1

661

662

Descriptions of checks

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The standard header file setjmp.h shall not be used

Coding standards CERT ERR34-CPP

Do not use longjmp

MISRA C:2012 Rule-21.4

(Required) The standard header file <setjmp.h> shall not be used

Code examples The following code example fails the check and will give a warning:

#include <setjmp.h>

jmp_buf ex;

void example(void) {
 setjmp(ex);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2012-Rule-21.5

Synopsis Uses of signal.h were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The standard header file signal.h shall not be used
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards MISRA C:2012 Rule-21.5

(Required) The standard header file <signal.h> shall not be used

Code examples The following code example fails the check and will give a warning:

#include <signal.h>
#include <stddef.h>

void example(void) {
 signal(SIGFPE, NULL);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2012-Rule-21.6

Synopsis Uses of stdio.h were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The Standard Library input/output functions shall not be used

Coding standards MISRA C:2012 Rule-21.6

(Required) The Standard Library input/output functions shall not be used

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

void example(void) {
 printf("Hello, world!\n");
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

663

664

Descriptions of checks

void example(void) {
}

MISRAC2012-Rule-21.7

Synopsis Uses of atof, atoi, atol, and atoll were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The atof, atoi, atol and atoll functions of stdlib.h shall not be used

Coding standards CERT INT06-C

Use strtol() or a related function to convert a string token to an integer

MISRA C:2012 Rule-21.7

(Required) The atof, atoi, atol and atoll functions of <stdlib.h> shall not be used

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int example(char buf[]) {
 return atoi(buf);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2012-Rule-21.8

Synopsis Uses of abort, exit, getenv, and system were found.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) The library functions abort, exit, getenv and system of stdlib.h shall not be
used

Coding standards MISRA C:2012 Rule-21.8

(Required) The library functions abort, exit, getenv and system of <stdlib.h>
shall not be used

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 abort();
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2012-Rule-21.9

Synopsis Uses of the library functions bsearch and qsort in stdlib.h were found.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The library functions bsearch and qsort of stdlib.h shall not be used

Coding standards MISRA C:2012 Rule-21.9

(Required) The library functions bsearch and qsort of <stdlib.h> shall not be
used
AFE1_AFE2-1:1

665

666

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int values[] = { 40, 10, 100, 90, 20, 25 };

int compare (const void * a, const void * b)
{
 return (*(int*)a - *(int*)b);
}

int main ()
{
 qsort (values, 6, sizeof(int), compare);
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int values[] = { 40, 10, 100, 90, 20, 25 };

int compare (const void * a, const void * b)
{
 return (*(int*)a - *(int*)b);
}

int main ()
{
 return 0;
}

MISRAC2012-Rule-21.10

Synopsis Use of the following time.h functions was found: asctime, clock, ctime, difftime,
gmtime, localtime, mktime, strftime, and time.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) The Standard Library time and date functions shall not be used

Coding standards MISRA C:2012 Rule-21.10

(Required) The Standard Library time and date functions shall not be used

Code examples The following code example fails the check and will give a warning:

#include <stddef.h>
#include <time.h>

time_t example(void) {
 return time(NULL);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC2012-Rule-21.11

Synopsis Use of the standard header file tgmath.h was found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The standard header file tgmath.h shall not be used

Coding standards MISRA C:2012 Rule-21.11

(Required) The standard header file <tgmath.h> shall not be used

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

667

668

Descriptions of checks

#include <tgmath.h>

float f1, f2;

void example(void) {
 f1 = sqrt(f2);
}

The following code example passes the check and will not give a warning about this
issue:

#include <math.h>

float f1, f2;

void example(void) {
 f1 = sqrt(f2);
}

MISRAC2012-Rule-22.1_a

Synopsis A memory leak due to incorrect deallocation was detected.

Enabled by default Yes

Severity/Certainty High/Low

Full description (Required) All resources obtained dynamically by means of Standard Library functions
shall be explicitly released A pointer variable was detected that is allocated but not freed,
returned, or passed as an argument on all execution paths. This might cause a memory
leak.

Coding standards CERT MEM31-C

Free dynamically allocated memory exactly once

CWE 401

Improper Release of Memory Before Removing Last Reference ('Memory
Leak')

CWE 772
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Missing Release of Resource after Effective Lifetime

MISRA C:2012 Rule-22.1

(Required) All resources obtained dynamically by means of Standard Library
functions shall be explicitly released

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

extern int rand();

void example(void) {
 int *ptr = malloc(sizeof(int));

 if (rand()){

 //losing reference to memory allocated
 //from the first malloc
 ptr = malloc(sizeof(int));
 }

 free(ptr);
}
#include <stdlib.h>

int main(void) {
 int *ptr = (int*)malloc(sizeof (int));
 if (rand() < 5) {
 free(ptr); // Not free() on all paths.
 }
 return 0;
}
#include <stdlib.h>

int main(void) {
 int *ptr = (int *)malloc(sizeof(int));

 ptr = NULL; //losing reference to the allocated memory

 free(ptr);

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

669

670

Descriptions of checks

#include <stdlib.h>

int main(void) {
 int *ptr = (int*)malloc(sizeof(int));
 if (rand() < 5) {
 free(ptr);
 } else {
 free(ptr);
 }
 return 0;
}
#include <stdlib.h>

extern int rand();

void example(void) {
 int *ptr = malloc(sizeof(int));
 free(ptr);
}

MISRAC2012-Rule-22.1_b

Synopsis A file pointer is never closed.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) All resources obtained dynamically by means of Standard Library functions
shall be explicitly released One or more file pointers are never closed. To avoid failure
caused by resource exhaustion, all file pointers obtained dynamically by means of
Standard Library functions must be explicitly released. Releasing file pointers as soon
as possible reduces the possibility that exhaustion will occur.

Coding standards CWE 404

Improper Resource Shutdown or Release

MISRA C:2012 Rule-22.1

(Required) All resources obtained dynamically by means of Standard Library
functions shall be explicitly released
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

void example(void) {
 FILE *fp = fopen("test.txt", "c");
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

void example(void) {
 FILE *fp = fopen("test.txt", "c");
 fclose(fp);
}
#include <stdio.h>

void iCloseFilePointers(FILE *fp) {
 fclose(fp);
}

void example(void) {
 FILE *fp = fopen("text.txt", "w");
 iCloseFilePointers(fp);
}

MISRAC2012-Rule-22.2_a

Synopsis A memory location is freed more than once.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Mandatory) A block of memory shall only be freed if it was allocated by means of a
Standard Library function

Coding standards CERT MEM31-C

Free dynamically allocated memory exactly once
AFE1_AFE2-1:1

671

672

Descriptions of checks

CWE 415

Double Free

MISRA C:2012 Rule-22.2

(Mandatory) A block of memory shall only be freed if it was allocated by means
of a Standard Library function

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
void f(int *p) {
 free(p);
 if(p) free(p);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void)
{
 int *p=malloc(4);
 free(p);
}

MISRAC2012-Rule-22.2_b

Synopsis Freeing a memory location more than once on some paths but not others.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Mandatory) A block of memory shall only be freed if it was allocated by means of a
Standard Library function

Coding standards CERT MEM31-C

Free dynamically allocated memory exactly once

CWE 415
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Double Free

MISRA C:2012 Rule-22.2

(Mandatory) A block of memory shall only be freed if it was allocated by means
of a Standard Library function

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
void example(void) {
 int *ptr = (int*)malloc(sizeof(int));
 free(ptr);
 if(rand() % 2 == 0)
 {
 free(ptr);
 }
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
void example(void) {
 int *ptr = (int*)malloc(sizeof(int));
 if(rand() % 2 == 0)
 {
 free(ptr);
 }
 else
 {
 free(ptr);
 }
}

MISRAC2012-Rule-22.2_c

Synopsis A stack address might be freed.

Enabled by default Yes

Severity/Certainty High/High
AFE1_AFE2-1:1

673

674

Descriptions of checks

Full description (Mandatory) A block of memory shall only be freed if it was allocated by means of a
Standard Library function A stack address might be freed. Stack variables are
automatically deallocated when they go out of scope. Consequently, explicitly freeing
them might cause a crash or corrupt the surrounding stack data. Erroneously using
free() on stack memory might also corrupt stdlib's memory bookkeeping, affecting
heap memory.

Coding standards CERT MEM34-C

Only free memory allocated dynamically

CWE 590

Free of Memory not on the Heap

MISRA C:2012 Rule-22.2

(Mandatory) A block of memory shall only be freed if it was allocated by means
of a Standard Library function

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
void example(void){
 int x=0;
 free(&x);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int *p;
 p = (int *)malloc(sizeof(int));
 free(p);
}

MISRAC2012-Rule-22.4

Synopsis A file opened as read-only is written to.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description (Mandatory) There shall be no attempt to write to a stream which has been opened as
read-only

Coding standards MISRA C:2012 Rule-22.4

(Mandatory) There shall be no attempt to write to a stream which has been
opened as read-only

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>
#include <stdlib.h>

void example(void) {
 FILE *f1;
 f1 = fopen("test-file.txt", "r");
 fprintf(f1, "Hello, World!");
 fclose(f1);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>
#include <stdlib.h>

void example(void) {
 FILE *f1;
 f1 = fopen("test-file.txt", "r+");
 fprintf(f1, "Hello, World!");
 fclose(f1);
}

MISRAC2012-Rule-22.5_a

Synopsis A pointer to a FILE object is dereferenced.

Enabled by default Yes
AFE1_AFE2-1:1

675

676

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Mandatory) A pointer to a FILE object shall not be dereferenced

Coding standards MISRA C:2012 Rule-22.5

(Mandatory) A pointer to a FILE object shall not be dereferenced

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

void example(void) {
 FILE *pf1;
 FILE f3;

 f3 = *pf1;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

void example(void) {
 FILE *f1;
 FILE *f2;

 f1 = f2;
}

MISRAC2012-Rule-22.5_b

Synopsis A file pointer was found that is implicitly dereferenced by a library function.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Mandatory) A pointer to a FILE object shall not be dereferenced

Coding standards MISRA C:2012 Rule-22.5

(Mandatory) A pointer to a FILE object shall not be dereferenced

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void example(void) {
 FILE *ptr1 = fopen("hello", "r");
 int *a;
 memcpy(ptr1, a, 10);
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void example(void) {
 FILE *ptr1;
 int *a;
 memcpy(a, a, 0);
}

MISRAC2012-Rule-22.6

Synopsis A file pointer was found that is used after it has been closed.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Mandatory) The value of a pointer to a FILE shall not be used after the associated
stream has been closed
AFE1_AFE2-1:1

677

678

Descriptions of checks

Coding standards MISRA C:2012 Rule-22.6

(Mandatory) The value of a pointer to a FILE shall not be used after the
associated stream has been closed

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

void example(void) {
 FILE *f1;
 f1 = fopen("test_file", "w");
 fclose(f1);
 fprintf(f1, "Hello, World!\n");
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

void example(void) {
 FILE *f1;
 f1 = fopen("test_file", "w");
 fprintf(f1, "Hello, World!\n");
 fclose(f1);
}

MISRAC++2008-0-1-1

Synopsis A part of the application is never executed.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A project shall not contain unreachable code. Dead code might indicate
problems with the application's branching structure.

Coding standards CERT MSC07-C

Detect and remove dead code
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CWE 561

Dead Code

MISRA C++ 2008 0-1-1

(Required) A project shall not contain unreachable code.

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

int f(int mode) {
 switch (mode) {
 case 0:
 return 1;
 printf("Hello!"); // This line cannot execute.
 default:
 return -1;
 }
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

int f(int mode) {
 switch (mode) {
 case 0:
 printf("Hello!"); // This line can execute.
 return 1;
 default:
 return -1;
 }
}

MISRAC++2008-0-1-2_a

Synopsis The condition in if, for, while, do-while statement sequences and the ternary operator is
always met.

Enabled by default Yes
AFE1_AFE2-1:1

679

680

Descriptions of checks

Severity/Certainty Medium/Medium

Full description (Required) A project shall not contain infeasible paths.

Coding standards CERT EXP17-C

Do not perform bitwise operations in conditional expressions

MISRA C++ 2008 0-1-2

(Required) A project shall not contain infeasible paths.

Code examples The following code example fails the check and will give a warning:

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && 1; x--) {
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && 1; x++) {
 }
}

MISRAC++2008-0-1-2_b

Synopsis The condition in if, for, while, do-while statement sequences and the ternary operator
will never be met.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description (Required) A project shall not contain infeasible paths.

Coding standards CERT EXP17-C

Do not perform bitwise operations in conditional expressions

MISRA C++ 2008 0-1-2

(Required) A project shall not contain infeasible paths.

Code examples The following code example fails the check and will give a warning:

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && x >= 1; x++) {
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

 int x = 5;

 for (x = 0; x < 6 && x >= 0; x++) {
 }
}

MISRAC++2008-0-1-2_c

Synopsis A case statement within a switch statement is unreachable.

Enabled by default Yes
AFE1_AFE2-1:1

681

682

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) A project shall not contain infeasible paths. The switch's expression cannot
have the value of the case's label. This might be caused by literal values having been
assigned to the switch condition. An unreachable case statement is not inherently
harmful, but might indicate problems with the application behavior.

Coding standards CERT MSC07-C

Detect and remove dead code

MISRA C++ 2008 0-1-2

(Required) A project shall not contain infeasible paths.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int x = 42;

 switch(2 * x) {
 case 42 : //unreachable case, as x is 84
 ;
 default :
 ;
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int x = 42;

 switch(2 * x) {
 case 84 :
 ;
 default :
 ;
 }
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC++2008-0-1-3

Synopsis A variable is never read or written during execution.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) A project shall not contain unused variables. Writing includes initialization,
and reading includes passing the variable as a parameter in a function call. This is not
inherently harmful, but might indicate problems with application behavior.

Coding standards CERT MSC13-C

Detect and remove unused values

CWE 563

Unused Variable

MISRA C++ 2008 0-1-3

(Required) A project shall not contain unused variables.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 int x; //this value is not used

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 int x = 0; //OK - x is returned

 return x;
}

MISRAC++2008-0-1-4

Synopsis A variable is assigned a value that is never used.
AFE1_AFE2-1:1

683

684

Descriptions of checks

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A project shall not contain non-volatile POD variables having only one use.
Execution destroys that value before it is used. This check does not detect situations
where the value is simply lost when the function ends. This is not inherently harmful,
but might indicate problems with application behavior.

Coding standards MISRA C++ 2008 0-1-4

(Required) A project shall not contain non-volatile POD variables having only
one use.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 int x;

 x = 20;

 x = 3;
 return 0;
}
#include <stdlib.h>

void ex(void) {
 int *p = 0;
 int *q = 0;
 p = (int *)malloc(sizeof(int));
 q = (int *)malloc(sizeof(int));
 p = q; //p is not used after this assignment
 return;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

int *ex(void) {
 int *p;
 p = (int *)malloc(sizeof(int));
 return p; //the value is returned
}
int example(void) {
 int x;

 x = 20;

 return x;
}

MISRAC++2008-0-1-6

Synopsis A variable is assigned a value that is never used.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A project shall not contain instances of non-volatile variables being given
values that are never subsequently used. Execution destroys that value before it is used.
This check does not detect situations where the value is simply lost when the function
ends. This is not inherently harmful, but might indicate problems with application
behavior.

Coding standards MISRA C++ 2008 0-1-6

(Required) A project shall not contain instances of non-volatile variables being
given values that are never subsequently used.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

685

686

Descriptions of checks

int example(void) {
 int x;

 x = 20;

 x = 3;
 return 0;
}
#include <stdlib.h>

void ex(void) {
 int *p = 0;
 int *q = 0;
 p = (int *)malloc(sizeof(int));
 q = (int *)malloc(sizeof(int));
 p = q; //p is not used after this assignment
 return;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int *ex(void) {
 int *p;
 p = (int *)malloc(sizeof(int));
 return p; //the value is returned
}
int example(void) {
 int x;

 x = 20;

 return x;
}

MISRAC++2008-0-1-7

Synopsis There are unused function return values (excluding overloaded operators)

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) The value returned by a function having a non-void return type that is not an
overloaded operator shall always be used. The return value of a function shall always be
used. Overloaded operators are excluded from the check, because they should behave in
the same way as built-in operators. The return value of a function might be discarded
by use of a (void) cast.

Coding standards CWE 252

Unchecked Return Value

MISRA C++ 2008 0-1-7

(Required) The value returned by a function having a non-void return type that
is not an overloaded operator shall always be used.

Code examples The following code example fails the check and will give a warning:

int func (int para1)
{
 return para1;
}

void discarded (int para2)
{
 func(para2); // value discarded - Non-compliant
}

The following code example passes the check and will not give a warning about this
issue:

int func (int para1)
{
 return para1;
}

int not_discarded (int para2)
{
 if (func(para2) > 5){
 return 1;
 }
 return 0;
}

AFE1_AFE2-1:1

687

688

Descriptions of checks

MISRAC++2008-0-1-8

Synopsis There are functions with no effect. A function with no return type and no side effects
effectively does nothing.

Enabled by default No

Severity/Certainty Low/Low

Full description (Required) All functions with void return type shall have external side effect(s).

Coding standards MISRA C++ 2008 0-1-8

(Required) All functions with void return type shall have external side effect(s).

Code examples The following code example fails the check and will give a warning:

void pointless (int i, char c)
{
 int local;
 local = 0;
 local = i;
}

The following code example passes the check and will not give a warning about this
issue:

void func(int i)
{
 int p;
 p = i;
 int *ptr;
 ptr = &i;
 i = p;
 i++;
}

MISRAC++2008-0-1-9

Synopsis A part of the application is never executed.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) There shall be no dead code. Dead code might indicate problems with the
application's branching structure.

Coding standards CERT MSC07-C

Detect and remove dead code

CWE 561

Dead Code

MISRA C++ 2008 0-1-9

(Required) There shall be no dead code.

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

int f(int mode) {
 switch (mode) {
 case 0:
 return 1;
 printf("Hello!"); // This line cannot execute.
 default:
 return -1;
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

689

690

Descriptions of checks

#include <stdio.h>

int f(int mode) {
 switch (mode) {
 case 0:
 printf("Hello!"); // This line can execute.
 return 1;
 default:
 return -1;
 }
}

MISRAC++2008-0-1-11

Synopsis A function parameter is declared but not used.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) There shall be no unused parameters (named or unnamed) in nonvirtual
functions. For example, the function might need to observe some calling protocol, or in
C++ it might be a virtual function that does not need as much information from its
arguments as related classes' equivalent functions do. Often, though, the warning
indicates a genuine error.

Coding standards CWE 563

Unused Variable

MISRA C++ 2008 0-1-11

(Required) There shall be no unused parameters (named or unnamed) in
nonvirtual functions.

Code examples The following code example fails the check and will give a warning:

int example(int x) {
 /* `x' is not used */
 return 20;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 return x + 20;
}

MISRAC++2008-0-2-1

Synopsis There are assignments from one field of a union to another.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) An object shall not be assigned to an overlapping object.

Coding standards MISRA C++ 2008 0-2-1

(Required) An object shall not be assigned to an overlapping object.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

691

692

Descriptions of checks

union cheat {
 char c[5];
 int i;
};

void example(union cheat *u)
{
 u->i = u->c[2];
}
union {
 char c[5];
 int i;
} u;

void example(void)
{
 u.i = u.c[2];
}
void example(void)
{
 union
 {
 char c[5];
 int i;
 } u;
 u.i = u.c[2];
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void)
{
 union
 {
 char c[5];
 int i;
 } u;
 int x;
 x = (int)u.c[2];
 u.i = x;
}
void example(void)
{
 struct
 {
 char c[5];
 int i;
 } u;
 u.i = u.c[2];
}
union cheat {
 char c[5];
 int i;
};

union cheat u;

void example(void)
{
 int x;
 x = (int)u.c[2];
 u.i = x;
}

MISRAC++2008-0-3-2

Synopsis The return value for a library function that might return an error value is not used.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

693

694

Descriptions of checks

Full description (Required) If a function generates error information, then that error information shall be
tested.

Coding standards CWE 252

Unchecked Return Value

CWE 394

Unexpected Status Code or Return Value

MISRA C++ 2008 0-3-2

(Required) If a function generates error information, then that error information
shall be tested.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 malloc(sizeof(int)); // This function could fail,
 // and the return value is
 // not checked
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
 int *x = (int *)malloc(sizeof(int)); // OK - return value
 // is stored
}

MISRAC++2008-2-3-1

Synopsis Trigraphs were found in string literals.

Enabled by default Yes

Severity/Certainty Low/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) Trigraphs shall not be used.

Coding standards MISRA C++ 2008 2-3-1

(Required) Trigraphs shall not be used.

Code examples The following code example fails the check and will give a warning:

void func()
{
 char * str = "abc??!def";
}

The following code example passes the check and will not give a warning about this
issue:

void func()
{
 char * str = "abc??def";
}

MISRAC++2008-2-7-1

Synopsis Detected /* inside comments

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) The character sequence /* shall not be used within a C-style comment.
Consider: /* A comment, end comment marker accidentally omitted <<New Page>>
initialize(X); /* this comment is not compliant */ In this case, X will not be initialized
because the code is hidden in a comment.

Coding standards MISRA C++ 2008 2-7-1

(Required) The character sequence /* shall not be used within a C-style
comment.
AFE1_AFE2-1:1

695

696

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

void example(void) {
/* This comment starts here
/* Nested comment starts here
*/

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
/* This comment starts here */
/* Nested comment starts here
*/

}

MISRAC++2008-2-7-2

Synopsis Commented-out code has been detected. (To allow comments to contain pseudo-code or
code samples, only comments that end in ;, {, or } characters are considered to be
commented-out code.)

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Sections of code shall not be "commented out" using C-style comments.
Code sections in comments (where the comment ends in ;, {, or } characters) have been
detected.

Coding standards MISRA C++ 2008 2-7-2

(Required) Sections of code shall not be "commented out" using C-style
comments.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
/*
int i;
*/

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
#if 0

int i;
#endif
}

MISRAC++2008-2-7-3

Synopsis Commented-out code has been detected. (To allow comments to contain pseudo-code or
code samples, only comments that end in ';', '{', or '}' characters are considered to be
commented-out code.)

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) Sections of code should not be "commented out" using C++ comments.
Code sections in comments (where the comment ends in ';', '{', or '}' characters) have
been detected.

Coding standards MISRA C++ 2008 2-7-3

(Advisory) Sections of code should not be "commented out" using C++
comments.

Code examples The following code example fails the check and will give a warning:

void example(void) {
//int i;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

697

698

Descriptions of checks

void example(void) {
#if 0

int i;
#endif
}

MISRAC++2008-2-10-2_a

Synopsis The declaration of a local variable hides a global declaration.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope. This might be intentional. However, a different name should be used in
case a reference to the global variable is attempted, and the local value is changed or
returned accidentally.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C++ 2008 2-10-2

(Required) Identifiers declared in an inner scope shall not hide an identifier
declared in an outer scope.

Code examples The following code example fails the check and will give a warning:

int x;

int foo (int y){
 int x=0;
 x++;
 return x+y;

}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

The following code example passes the check and will not give a warning about this
issue:

int x;

int foo (int y){

 x++;
 return x+y;

}

MISRAC++2008-2-10-2_b

Synopsis The declaration of a local variable hides a previous local declaration.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope. This might be intentional. However, a different name should be used in
case a reference to the outer variable is attempted, and the inner value is changed or
returned accidentally.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C++ 2008 2-10-2

(Required) Identifiers declared in an inner scope shall not hide an identifier
declared in an outer scope.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

699

700

Descriptions of checks

int foo(int x){

 for (int y= 0; y < 10 ; y++){

 for (int y = 0; y < 100; y ++){
 return x+y;
 }
 }
 return x;
}

int foo2(int x){
 int y = 10;

 for (int y= 0; y < 10 ; y++)
 x++;
 return x;
}

int foo3(int x){

 int y = 10;
 {
 int y = 100;
 return x + y;
 }
}

The following code example passes the check and will not give a warning about this
issue:

int foo(int x){

 for (int y=0; y < 10; y++)
 x++;
 for (int y=0; y < 10; y++)
 x++;
 return x;
}

MISRAC++2008-2-10-2_c

Synopsis The declaration of a variable hides a parameter of the function.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description (Required) Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope. This might be intentional. However, a different name should be used in
case a reference to the argument is attempted, and the inner value is changed or returned
accidentally.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C++ 2008 2-10-2

(Required) Identifiers declared in an inner scope shall not hide an identifier
declared in an outer scope.

Code examples The following code example fails the check and will give a warning:

int foo(int x){

 for (int x = 0; x < 100; x++);

 return x;
}

The following code example passes the check and will not give a warning about this
issue:

int foo(int x){
 int y;

 return x;
}

MISRAC++2008-2-10-2_d (C++ only)

Synopsis The declaration of a local variable hides a member of the class.

Enabled by default Yes
AFE1_AFE2-1:1

701

702

Descriptions of checks

Severity/Certainty Medium/Medium

Full description (Required) Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope. This might be intentional. However, a different name should be used in
case a reference to the class member is attempted, and the local value is changed or
returned accidentally.

Coding standards CERT DCL01-C

Do not reuse variable names in subscopes

CERT DCL01-CPP

Do not reuse variable names in subscopes

MISRA C++ 2008 2-10-2

(Required) Identifiers declared in an inner scope shall not hide an identifier
declared in an outer scope.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

class A {
 int x;

public:

 void foo(int y){

 for(int x = 0; x < 10 ; x++){
 y++;
 }

 }

 void foo2(int y){
 int x = 0;
 x+=y;
 return;

 }

 void foo3(int y){

 {
 int x = 0;
 x+=y;
 return;
 }
 }

};

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

703

704

Descriptions of checks

class A {
int x;

};

class B{
int y;

void foo();
};

void B::foo() {
int x;

}

MISRAC++2008-2-10-3

Synopsis A typedef with this name has already been declared.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A typedef name (including qualification, if any) shall be a unique identifier.

Coding standards MISRA C++ 2008 2-10-3

(Required) A typedef name (including qualification, if any) shall be a unique
identifier.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

typedef int WIDTH;
//dummy comment
void f1()
{
 WIDTH w1;
}

void f2()
{
 typedef float WIDTH;
 WIDTH w2;
 WIDTH w3;
}

The following code example passes the check and will not give a warning about this
issue:

namespace NS1
{
 typedef int WIDTH;
}
// f2.cc
namespace NS2
{
 typedef float WIDTH; // Compliant - NS2::WIDTH is not the same
as NS1::WIDTH
}
NS1::WIDTH w1;
NS2::WIDTH w2;

MISRAC++2008-2-10-4

Synopsis A class, struct, union, or enum declaration clashes with a previous declaration.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A class, union or enum name (including qualification, if any) shall be a
unique identifier.
AFE1_AFE2-1:1

705

706

Descriptions of checks

Coding standards MISRA C++ 2008 2-10-4

(Required) A class, union or enum name (including qualification, if any) shall
be a unique identifier.

Code examples The following code example fails the check and will give a warning:

void f1()
{
 class TYPE {};
}

void f2()
{
 float TYPE; // non-compliant
}

The following code example passes the check and will not give a warning about this
issue:

enum ENS {ONE, TWO };

void f1()
{
 class TYPE {};
}

void f4()
{
 union GRRR {
 int i;
 float f;
 };
}

MISRAC++2008-2-10-5

Synopsis An identifier is used that might clash with another static identifier.

Enabled by default No

Severity/Certainty Low/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Advisory) The identifier name of a non-member object or function with static storage
duration should not be reused.

Coding standards MISRA C++ 2008 2-10-5

(Advisory) The identifier name of a non-member object or function with static
storage duration should not be reused.

Code examples The following code example fails the check and will give a warning:

namespace NS1
{
 static int global = 0;
}

namespace NS2
{
 void fn()
 {
 int global; // Non-compliant
 }
}

The following code example passes the check and will not give a warning about this
issue:

namespace NS1
{
 int global = 0;
}

namespace NS2
{
 void f1()
 {
 int global; // Non-compliant
 }
}

void f2()
{
 static int global;
}

MISRAC++2008-2-13-2

Synopsis Octal integer constants are used.
AFE1_AFE2-1:1

707

708

Descriptions of checks

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Octal constants (other than zero) and octal escape sequences (other than 0)
shall not be used.

Coding standards MISRA C++ 2008 2-13-2

(Required) Octal constants (other than zero) and octal escape sequences (other
than 0) shall not be used.

Code examples The following code example fails the check and will give a warning:

void
func(void)
{
 int x = 077;
}

The following code example passes the check and will not give a warning about this
issue:

void
func(void)
{
 int x = 63;
}

MISRAC++2008-2-13-3

Synopsis There are unsigned integer constants without a U suffix.

Enabled by default Yes

Severity/Certainty Low/Low
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) A "U" suffix shall be applied to all octal or hexadecimal integer literals of
unsigned type.

Coding standards MISRA C++ 2008 2-13-3

(Required) A "U" suffix shall be applied to all octal or hexadecimal integer
literals of unsigned type.

Code examples The following code example fails the check and will give a warning:

void example(void) {
// 2147483648 -- does not fit in 31bits
unsigned int x = 0x80000000;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
unsigned int x = 0x80000000u;

}

MISRAC++2008-2-13-4_a

Synopsis Suffixes on floating-point constants are lower case.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Literal suffixes shall be upper case.

Coding standards MISRA C++ 2008 2-13-4

(Required) Literal suffixes shall be upper case.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

709

710

Descriptions of checks

#include <stdint.h>

void func()
{
 float l = 2.4l;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdint.h>

void func()
{
 uint32_t a = 0U;
 int64_t c = 0L;
 uint64_t e = 0UL;
 uint32_t g = 0x12bU;
 float i = 1.2F;
 float k = 1.2L;
}

MISRAC++2008-2-13-4_b

Synopsis Suffixes on integer constants are lower case.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Literal suffixes shall be upper case.

Coding standards CERT DCL16-C

Use 'L', not 'l', to indicate a long value

CERT DCL16-CPP

Use 'L', not 'l', to indicate a long value
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRA C++ 2008 2-13-4

(Required) Literal suffixes shall be upper case.

Code examples The following code example fails the check and will give a warning:

#include <stdint.h>

void func()
{
 uint32_t b = 0u;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdint.h>

void func()
{
 uint32_t a = 0U;
 int64_t c = 0L;
 uint64_t e = 0UL;
 uint32_t g = 0x12bU;
 float i = 1.2F;
 float k = 1.2L;
}

MISRAC++2008-3-1-1

Synopsis Non-inline functions have been defined in header files.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) It shall be possible to include any header file in multiple translation units
without violating the One Definition Rule. Header files should not be used to define
AFE1_AFE2-1:1

711

712

Descriptions of checks

functions, to make it clear that only C source files contain executable code. A header file
is any file that is included in a translation unit via the #include directive.

Coding standards MISRA C++ 2008 3-1-1

(Required) It shall be possible to include any header file in multiple translation
units without violating the One Definition Rule.

Code examples The following code example fails the check and will give a warning:

#include "definition.h"
/* Contents of definition.h:

void definition(void) {
}

*/

void example(void) {
definition();

}

The following code example passes the check and will not give a warning about this
issue:

#include "declaration.h"
/* Contents of declaration.h:

void definition(void);

*/

void example(void) {
definition();

}

MISRAC++2008-3-1-3

Synopsis One or more external arrays are declared without their size being stated explicitly or
defined implicitly by initialization.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) When an array is declared, its size shall either be stated explicitly or defined
implicitly by initialization.

Coding standards MISRA C++ 2008 3-1-3

(Required) When an array is declared, its size shall either be stated explicitly or
defined implicitly by initialization.

Code examples The following code example fails the check and will give a warning:

extern int a[];

The following code example passes the check and will not give a warning about this
issue:

extern int a[10];
extern int b[] = { 0, 1, 2 };

MISRAC++2008-3-9-2

Synopsis There are uses of the basic types char, int, short, long, double, and float without a
typedef.

Enabled by default No

Severity/Certainty Low/High

Full description (Advisory) typedefs that indicate size and signedness should be used in place of the
basic numerical types. Best practice is to use typedefs for portability.

Coding standards MISRA C++ 2008 3-9-2

(Advisory) typedefs that indicate size and signedness should be used in place of
the basic numerical types.
AFE1_AFE2-1:1

713

714

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

typedef signed charSCHAR;
typedef intINT;
typedef floatFLOAT;

INT func(FLOAT f, INT *pi)
{
 INT x;
 INT (*fp)(const char *);
}

The following code example passes the check and will not give a warning about this
issue:

typedef signed charSCHAR;
typedef intINT;
typedef floatFLOAT;

INT func(FLOAT f, INT *pi)
{
 INT x;
 INT (*fp)(const SCHAR *);
}

MISRAC++2008-3-9-3

Synopsis An expression provides access to the bit-representation of a floating-point variable.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The underlying bit representations of floating-point values shall not be used.

Coding standards MISRA C++ 2008 3-9-3

(Required) The underlying bit representations of floating-point values shall not
be used.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(float f) {
int * x = (int *)&f;
int i = *x;

}

The following code example passes the check and will not give a warning about this
issue:

void example(float f) {
int i = (int)f;

}

MISRAC++2008-4-5-1

Synopsis Arithmetic operators are used on boolean operands.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) Expressions with type bool shall not be used as operands to built-in operators
other than the assignment operator =, the logical operators &&, ||, !, the equality
operators == and !=, the unary & operator, and the conditional operator.

Coding standards MISRA C++ 2008 4-5-1

(Required) Expressions with type bool shall not be used as operands to built-in
operators other than the assignment operator =, the logical operators &&, ||, !,
the equality operators == and !=, the unary & operator, and the conditional
operator.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

715

716

Descriptions of checks

void func(bool b)
{
 bool x;
 bool y;
 y = x % b;
}
void example(void) {

int x = 0;
int y = 1;
int a = 5;
(a + (x || y)) ? example() : example();

}
void example(void) {

int x = 0;
int y = 1;
int a = (x == y) << 2;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int
isgood(int ch)
{
 return (ch & 0x80) == 0;
}

int example(int r, int f1, int f2)
{
 if (r && f1 == f2)
 return 1;
 else
 return 0;
}
bool test()
{
 return true;
}

void example(void) {
 if(test()) {}
}
typedef charboolean_t;/* Compliant: Boolean-by-enforcement */

void example(void)
{
 boolean_t d;
 boolean_t c = 1;
 boolean_t b = 0;
 boolean_t a = 1;

 d = (c && a) && b;

}
class foo {
 int val;
public:
 bool operator==(const foo &rhs) const { return val == rhs.val;
}
};

int example(bool r, const foo &f1, const foo &f2)
{
 if (r && f1 == f2)
 return 1;
 else
 return 0;
}

AFE1_AFE2-1:1

717

718

Descriptions of checks

void func(bool * ptr)
{
 if (*ptr) {}
}
void func()
{
 bool x;
 bool y;
 y = x && y;
}
typedef intboolean_t;

void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = 0;
 if (a && (x || y)) {
 }
}
void example(void) {

int x = 0;
int y = 1;
int a = x == y;

}
#include <stdbool.h>

void example(void) {
 bool x = false;
 bool y = true;
 if (x || y) {
 }
}
typedef charboolean_t;
void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = x || y;
 a ? example() : example();
}

MISRAC++2008-4-5-2

Synopsis Unsafe operators are used on variables of enumeration type.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Low

Full description (Required) Expressions with type enum shall not be used as operands to builtin
operators other than the subscript operator [], the assignment operator =, the equality
operators == and !=, the unary & operator, and the relational operators <, <=, >, >=. ==,
!=, &, [], or =. Other operators are unlikely to be meaningful (or intended).

Coding standards MISRA C++ 2008 4-5-2

(Required) Expressions with type enum shall not be used as operands to builtin
operators other than the subscript operator [], the assignment operator =, the
equality operators == and !=, the unary & operator, and the relational operators
<, <=, >, >=.

Code examples The following code example fails the check and will give a warning:

enum ens { ONE, TWO, THREE };

void func(ens b)
{
 ens x;
 bool y;
 y = x | b;
}

The following code example passes the check and will not give a warning about this
issue:

enum ens { ONE, TWO, THREE };

void func(ens b)
{
 ens y;
 y = b;
}

MISRAC++2008-4-5-3

Synopsis Arithmetic is performed on objects of type plain char, without an explicit signed or
unsigned qualifier.

Enabled by default Yes
AFE1_AFE2-1:1

719

720

Descriptions of checks

Severity/Certainty Low/High

Full description (Required) Expressions with type (plain) char and wchar_t shall not be used as operands
to built-in operators other than the assignment operator =, the equality operators == and
!=, and the unary & operator. Declare such types explicitly as "signed char" or "unsigned
char", to avoid unportable behavior.

Coding standards CERT INT07-C

Use only explicitly signed or unsigned char type for numeric values

MISRA C++ 2008 4-5-3

(Required) Expressions with type (plain) char and wchar_t shall not be used as
operands to built-in operators other than the assignment operator =, the equality
operators == and !=, and the unary & operator.

Code examples The following code example fails the check and will give a warning:

typedefsigned charINT8;
typedefunsigned charUINT8;

UINT8
toascii(INT8 c)
{
 return (UINT8)c & 0x7f;
}

int func(int x)
{
 char sc = 4;
 char *scp = ≻
 UINT8 (*fp)(INT8 c) = &toascii;

 x = x + sc;
 x *= *scp;
 return (*fp)(x);
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

typedefsigned charINT8;
typedefunsigned charUINT8;

UINT8
toascii(INT8 c)
{
 return (UINT8)c & 0x7f;
}

int func(int x)
{
 signed char sc = 4;
 signed char *scp = ≻
 UINT8 (*fp)(INT8 c) = &toascii;

 x = x + sc;
 x *= *scp;
 return (*fp)(x);
}

MISRAC++2008-5-0-1_a

Synopsis There are expressions that depend on the order of evaluation.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) The value of an expression shall be the same under any order of evaluation
that the standard permits. There is one or more expressions with an unspecified
evaluation order, between two consecutive sequence points. ANSI C does not specify
an evaluation order for different parts of an expression. For this reason different
compilers are free to perform their own optimizations regarding the evaluation order.
Projects containing statements that violate this check are not readily ported between
architectures or compilers, and their ports might prove difficult to debug. Only four
operators have a guaranteed order of evaluation: logical AND (a && b) evaluates the
left operand, then the right operand only if the left is found to be true; logical OR (a ||
b) evaluates the left operand, then the right operand only if the left is found to be false;
a ternary conditional (a ? b : c) evaluates the first operand, then either the second or
AFE1_AFE2-1:1

721

722

Descriptions of checks

the third, depending on whether the first is found to be true or false; and a comma (a ,
b) evaluates its left operand before its right.

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C++ 2008 5-0-1

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.

Code examples The following code example fails the check and will give a warning:

int main(void) {
 int i = 0;

 i = i * i++; //unspecified order of operations

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int i = 0;
 int x = i;

 i++;
 x = x * i; //OK - statement is broken up

 return 0;
}

MISRAC++2008-5-0-1_b

Synopsis There are more than one read access with volatile-qualified type within a single
sequence point.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) The value of an expression shall be the same under any order of evaluation
that the standard permits.

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C++ 2008 5-0-1

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.

Code examples The following code example fails the check and will give a warning:

#include "mc2_types.h"
#include "mc2_header.h"

void example(void) {
 uint16_t x;
 volatile uint16_t v;
 x = v + v;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

723

724

Descriptions of checks

int main(void) {
 int i = 0;
 int x = i;

 i++;
 x = x * i; //OK - statement is broken up

 return 0;
}

MISRAC++2008-5-0-1_c

Synopsis There are more than one modification access with volatile-qualified type within a single
sequence point.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) The value of an expression shall be the same under any order of evaluation
that the standard permits.

Coding standards CERT EXP10-C

Do not depend on the order of evaluation of subexpressions or the order in which
side effects take place

CERT EXP30-C

Do not depend on order of evaluation between sequence points

CWE 696

Incorrect Behavior Order

MISRA C++ 2008 5-0-1

(Required) The value of an expression shall be the same under any order of
evaluation that the standard permits.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include "mc2_types.h"
#include "mc2_header.h"

void example(void) {
 uint16_t x;
 volatile uint16_t v, w;
 v = w = x;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdbool.h>
void InitializeArray(int *);
const int *example(void)
{

static volatile bool s_initialized = false;
static int s_array[256];

if (!s_initialized)
{

InitializeArray(s_array);
s_initialized = true;

}
return s_array;

}

MISRAC++2008-5-0-2

Synopsis Parentheses to avoid implicit operator precedence are missing.

Enabled by default No

Severity/Certainty Medium/Medium

Full description (Advisory) Limited dependence should be placed on C++ operator precedence rules in
expressions.

Coding standards MISRA C++ 2008 5-0-2

(Advisory) Limited dependence should be placed on C++ operator precedence
rules in expressions.
AFE1_AFE2-1:1

725

726

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int i;
 int j;
 int k;
 int result;

 result = i + j * k;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int i;
 int j;
 int k;
 int result;

 result = i + (j - k);
}

MISRAC++2008-5-0-3

Synopsis One or more cvalue expressions have been implicitly converted to a different underlying
type.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A cvalue expression shall not be implicitly converted to a different
underlying type.

Coding standards MISRA C++ 2008 5-0-3

(Required) A cvalue expression shall not be implicitly converted to a different
underlying type.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdint.h>
void f ()
{
 int32_t s32;
 int8_t s8;
 s32 = s8 + s8; // Example 1 – Non-compliant
 // The addition operation is performed with an underlying type
of int8_t and the result
 // is converted to an underlying type of int32_t.
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdint.h>
void f ()
{
 int32_t s32;
 int8_t s8;
 s32 = static_cast < int32_t > (s8) + s8; // Example 2 -
Compliant
 // the addition is performed with an underlying type of int32_t
and therefore
 // no underlying type conversion is required.
}
#include <stdint.h>
void f ()
{
 int32_t s32;
 int8_t s8;
 s32 = s32 + s8; // Example 3 - Compliant
 // the addition is performed with an underlying type of int32_t
and therefore
 // no underlying type conversion is required.
}

MISRAC++2008-5-0-4

Synopsis One or more implicit integral conversions have been found that change the signedness
of the underlying type.

Enabled by default Yes
AFE1_AFE2-1:1

727

728

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) An implicit integral conversion shall not change the signedness of the
underlying type.

Coding standards MISRA C++ 2008 5-0-4

(Required) An implicit integral conversion shall not change the signedness of
the underlying type.

Code examples The following code example fails the check and will give a warning:

#include <stdint.h>
void f()
{
 int8_t s8;
 uint8_t u8;
 u8 = s8 + u8; // Non-compliant
}

#include <stdint.h>
void f()
{
 int8_t s8;
 uint8_t u8;
 s8 = u8; // Non-compliant
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdint.h>
void f()
{
 int8_t s8;
 uint8_t u8;
 u8 = static_cast< uint8_t > (s8) + u8; // Compliant
}

MISRAC++2008-5-0-5

Synopsis One or more implicit floating-integral conversions were found.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) There shall be no implicit floating-integral conversions.

Coding standards MISRA C++ 2008 5-0-5

(Required) There shall be no implicit floating-integral conversions.

Code examples The following code example fails the check and will give a warning:

#include "mc2_types.h"
void f()
{
 float32_t f32;
 int32_t s32;
 f32 = s32; // Non-compliant
}

#include "mc2_types.h"
void f()
{
 float32_t f32;
 int32_t s32;
 s32 = f32; // Non-compliant
}

The following code example passes the check and will not give a warning about this
issue:

#include "mc2_types.h"
void f()
{
 float32_t f32;
 int32_t s32;
 f32 = static_cast< float32_t > (s32); // Compliant
}

AFE1_AFE2-1:1

729

730

Descriptions of checks

MISRAC++2008-5-0-6

Synopsis One or more implicit integral or floating-point conversion were found that reduce the
size of the underlying type.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) An implicit integral or floating-point conversion shall not reduce the size of
the underlying type.

Coding standards MISRA C++ 2008 5-0-6

(Required) An implicit integral or floating-point conversion shall not reduce the
size of the underlying type.

Code examples The following code example fails the check and will give a warning:

#include <stdint.h>
void f ()
{
 int32_t s32;
 int16_t s16;
 s16 = s32; // Non-compliant
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdint.h>
void f ()
{
 int32_t s32;
 int16_t s16;
 s16 = static_cast< int16_t > (s32); // Compliant
}

MISRAC++2008-5-0-7

Synopsis One or more explicit floating-integral conversions of a cvalue expression were found.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) There shall be no explicit floating-integral conversions of a cvalue
expression.

Coding standards MISRA C++ 2008 5-0-7

(Required) There shall be no explicit floating-integral conversions of a cvalue
expression.

Code examples The following code example fails the check and will give a warning:

#include "mc2_types.h"
// Integral to Float
void f1 ()
{
 int16_t s16a;
 int16_t s16b;
 float32_t f32a;
 // The following performs integer division
 f32a = static_cast< float32_t > (s16a / s16b); //
Non-compliant
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

731

732

Descriptions of checks

#include "mc2_types.h"
// Integral to Float
void f1 ()
{
 int16_t s16a;
 int16_t s16b;
 int16_t s16c;
 float32_t f32a;
 // The following also performs integer division
 s16c = s16a / s16b;
 f32a = static_cast< float32_t > (s16c); // Compliant
}

#include "mc2_types.h"
// Integral to Float
void f1 ()
{
 int16_t s16a;
 int16_t s16b;
 float32_t f32a;
 // The following performs floating-point division
 f32a = static_cast< float32_t > (s16a) / s16b; // Compliant
}

MISRAC++2008-5-0-8

Synopsis One or more explicit integral or floating-point conversions were found that increase the
size of the underlying type of a cvalue expression.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) An explicit integral or floating-point conversion shall not increase the size
of the underlying type of a cvalue expression.

Coding standards MISRA C++ 2008 5-0-8

(Required) An explicit integral or floating-point conversion shall not increase
the size of the underlying type of a cvalue expression.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

#include <stdint.h>
void f ()
{
 int16_t s16;
 int32_t s32;
 s32 = static_cast< int32_t > (s16 + s16); // Non-compliant
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdint.h>
void f ()
{
 int16_t s16;
 int32_t s32;
 s32 = static_cast< int32_t > (s16) + s16 ; // Compliant
}

MISRAC++2008-5-0-9

Synopsis One or more explicit integral conversions were found that change the signedness of the
underlying type of a cvalue expression.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) An explicit integral conversion shall not change the signedness of the
underlying type of a cvalue expression.

Coding standards MISRA C++ 2008 5-0-9

(Required) An explicit integral conversion shall not change the signedness of the
underlying type of a cvalue expression.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

733

734

Descriptions of checks

#include <stdint.h>
void f ()
{
 int8_t s8;
 uint8_t u8;
 s8 = static_cast< int8_t >(u8 + u8); // Non-compliant
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdint.h>
void f ()
{
 int8_t s8;
 uint8_t u8;
 s8 = static_cast< int8_t >(u8)
 + static_cast< int8_t >(u8); // Compliant
}

MISRAC++2008-5-0-10

Synopsis A bitwise operation on unsigned char or unsigned short was found, that was not
immediately cast to this type to ensure consistent truncation.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) If the bitwise operators ~ and << are applied to an operand with an
underlying type of unsigned char or unsigned short, the result shall be immediately cast
to the underlying type of the operand.

Coding standards MISRA C++ 2008 5-0-10

(Required) If the bitwise operators ~ and << are applied to an operand with an
underlying type of unsigned char or unsigned short, the result shall be
immediately cast to the underlying type of the operand.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

typedef unsigned char uint8_t;
typedef unsigned short uint16_t;

void example(void) {
uint8_t port = 0x5aU;
uint8_t result_8;
uint16_t result_16;
uint8_t mode;

result_16 = ((port << 4) & mode) >> 6;
}
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;

void example(void) {
uint8_t port = 0x5aU;
uint8_t result_8;
uint16_t result_16;
uint16_t mode;

result_8 = (~port) >> 4;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

735

736

Descriptions of checks

typedef unsigned char uint8_t;
typedef unsigned short uint16_t;

void example(void) {
uint8_t port = 0x5aU;
uint8_t result_8;
uint16_t result_16;
uint16_t mode;

result_8 = (static_cast< uint8_t > (~port)) >> 4; //
Compliant

result_16 = (static_cast < uint16_t > (static_cast< uint16_t
> (port) << 4) & mode) >> 6; // Compliant
}
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;

void example(void) {
uint8_t port = 0x5aU;
uint8_t result_8;
uint16_t result_16;
uint16_t mode;

uint16_t port_16 = static_cast< uint16_t > (port);
 uint16_t port_shifted = static_cast< uint16_t > (port_16 << 4
);
 result_16 = (port_shifted & mode) >> 6; // Compliant
}

MISRAC++2008-5-0-13_a

Synopsis Non-Boolean termination conditions were found in do ... while statements.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The condition of an if-statement and the condition of an iteration-statement
shall have type bool.

Coding standards MISRA C++ 2008 5-0-13
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) The condition of an if-statement and the condition of an
iteration-statement shall have type bool.

Code examples The following code example fails the check and will give a warning:

typedefintint32_t;
int32_t func();

void example(void)
{
 do {
 } while (func());
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

737

738

Descriptions of checks

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 while (int *ptr = fn()) // Compliant by exception
 {}

 do
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }
 while (true); // Compliant

 while (int len = fn2()) // Compliant by exception
 {}

 if (int *p = fn()) {} // Compliant by exception
 if (int len = fn2()) {} // Complioant by exception
 if (bool flag = fn3()) {} // Compliant
}

MISRAC++2008-5-0-13_b

Synopsis Non-boolean termination conditions were found in for loops.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description (Required) The condition of an if-statement and the condition of an iteration-statement
shall have type bool.

Coding standards MISRA C++ 2008 5-0-13

(Required) The condition of an if-statement and the condition of an
iteration-statement shall have type bool.

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 for (int x = 10;x;--x) {}
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

739

740

Descriptions of checks

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 for (fn(); fn3(); fn2()) // Compliant
 {}

 for (fn(); true; fn()) // Compliant
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }

 for (int len = fn2(); len < 10; len++) // Compliant
 ;
}

MISRAC++2008-5-0-13_c

Synopsis Non-boolean conditions were found in if statements.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) The condition of an if-statement and the condition of an iteration-statement
shall have type bool.

Coding standards MISRA C++ 2008 5-0-13

(Required) The condition of an if-statement and the condition of an
iteration-statement shall have type bool.

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 int u8;
 if (u8) {}
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

741

742

Descriptions of checks

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 while (int *ptr = fn()) // Compliant by exception
 {}

 do
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }
 while (true); // Compliant

 while (int len = fn2()) // Compliant by exception
 {}

 if (int *p = fn()) {} // Compliant by exception
 if (int len = fn2()) {} // Complioant by exception
 if (bool flag = fn3()) {} // Compliant
}

MISRAC++2008-5-0-13_d

Synopsis Non-boolean termination conditions were found in while statements.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) The condition of an if-statement and the condition of an iteration-statement
shall have type bool.

Coding standards MISRA C++ 2008 5-0-13

(Required) The condition of an if-statement and the condition of an
iteration-statement shall have type bool.

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 int u8;
 while (u8) {}
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

743

744

Descriptions of checks

#include <stddef.h>

int * fn()
{
 int * ptr;
 return ptr;
}

int fn2()
{
 return 5;
}

bool fn3()
{
 return true;
}

void example(void)
{
 while (int *ptr = fn()) // Compliant by exception
 {}

 do
 {
 int *ptr = fn();
 if (NULL == ptr)
 {
 break;
 }
 }
 while (true); // Compliant

 while (int len = fn2()) // Compliant by exception
 {}

 if (int *p = fn()) {} // Compliant by exception
 if (int len = fn2()) {} // Complioant by exception
 if (bool flag = fn3()) {} // Compliant
}

MISRAC++2008-5-0-14

Synopsis Non-boolean operands to the conditional (? :) operator were found.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) The first operand of a conditional-operator shall have type bool.

Coding standards MISRA C++ 2008 5-0-14

(Required) The first operand of a conditional-operator shall have type bool.

Code examples The following code example fails the check and will give a warning:

void example(int x) {
 int z;
 z = x ? 1 : 2; //x is an int, not a bool
}

The following code example passes the check and will not give a warning about this
issue:

void example(int x) {
 int z;
 z = x + 0 > 3 ? 1 : 2; //OK - the condition is a comparison
}
void example(bool b) {
 int x;
 x = b ? 1 : 2; //OK - b is a bool
}

MISRAC++2008-5-0-15_a

Synopsis Pointer arithmetic that is not array indexing was found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Array indexing shall be the only form of pointer arithmetic.

Coding standards MISRA C++ 2008 5-0-15
AFE1_AFE2-1:1

745

746

Descriptions of checks

(Required) Array indexing shall be the only form of pointer arithmetic.

Code examples The following code example fails the check and will give a warning:

typedef int INT32;

void example(INT32 array[]) {
INT32 *pointer = array;
INT32 *end = array + 10;
for (; pointer != end; pointer += 1) {

*pointer = 0;
}

}

The following code example passes the check and will not give a warning about this
issue:

typedef int INT32;

void example(INT32 array[]) {
INT32 index = 0;
INT32 end = 10;
for (; index != end; index += 1) {

array[index] = 0;
}

}

MISRAC++2008-5-0-15_b

Synopsis Array indexing applied to objects not defined as an array type was found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Array indexing shall be the only form of pointer arithmetic.

Coding standards MISRA C++ 2008 5-0-15

(Required) Array indexing shall be the only form of pointer arithmetic.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

typedef unsigned charUINT8;
typedefunsigned intUINT;

void example(UINT8 *p, UINT size) {
UINT i;
for (i = 0; i < size; i++) {

p[i] = 0;
}

}

The following code example passes the check and will not give a warning about this
issue:

typedef unsigned charUINT8;
typedef unsigned intUINT;

void example(void) {
UINT8 p[10];
UINT i;
for (i = 0; i < 10; i++) {

p[i] = 0;
}

}

MISRAC++2008-5-0-16_a

Synopsis Pointer arithmetic applied to a pointer that references a stack address was found.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) A pointer operand and any pointer resulting from pointer arithmetic using
that operand shall both address elements of the same array.

Coding standards CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

MISRA C++ 2008 5-0-16

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.
AFE1_AFE2-1:1

747

748

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int i;
 int *p = &i;
 p++;
 *p = 0;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int i;
 int *p = &i;
 *p = 0;
}

MISRAC++2008-5-0-16_b

Synopsis Invalid pointer arithmetic with an automatic variable that is neither an array nor a pointer
was found.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) A pointer operand and any pointer resulting from pointer arithmetic using
that operand shall both address elements of the same array. This check warns when the
address of an automatic variable is taken, and arithmetic is performed on it, as this
behavior indicates that an invalid memory access attempt may occur. It handles local
variables, parameters and globals, including structs.

Coding standards CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

MISRA C++ 2008 5-0-16

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

void example(int x) {
 *(&x+10) = 5;
}

The following code example passes the check and will not give a warning about this
issue:

void example(int *x) {
 *(x+10) = 5;
}

MISRAC++2008-5-0-16_c

Synopsis An array access is out of bounds.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) A pointer operand and any pointer resulting from pointer arithmetic using
that operand shall both address elements of the same array. An array access is out of
bounds. This might corrupt data and/or crash the application, and result in security
vulnerabilities.

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')
AFE1_AFE2-1:1

749

750

Descriptions of checks

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C++ 2008 5-0-16

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.

Code examples The following code example fails the check and will give a warning:

/* Goanna correctly detects that the array access,
 a[x - 10] is always within bounds, because 'x'
 is always in the range 10 <= x < 20, but a[x]
 is not. */

int ex(int x, int y)
{
 int a[10];

 if((x >= 0) && (x < 20)) {
 if(x < 10) {
 y = a[x];
 } else {
 y = a[x - 10];
 y = a[x];
 }
 }

 return y;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int main(void)
{
 int a[4];

 a[3] = 0;

 return 0;
}

MISRAC++2008-5-0-16_d

Synopsis An array access might be out of bounds for some execution paths.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) A pointer operand and any pointer resulting from pointer arithmetic using
that operand shall both address elements of the same array. An array access might be out
of bounds for some execution paths. This might corrupt data and/or crash the
application, and result in security vulnerabilities.

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read
AFE1_AFE2-1:1

751

752

Descriptions of checks

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C++ 2008 5-0-16

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.

Code examples The following code example fails the check and will give a warning:

int cond;

int main(void)
{
 int a[7];
 int x;

 if (cond)
 x = 3;
 else
 x = 20;

 a[x] = 0; //x may be set to 20 in line 11
 //but a only has an interval of [0,6]
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int cond;

int main(void)
{
 int a[25];
 int x;

 if (cond)
 x = 3;
 else
 x = 20;

 a[x] = 0; //here, both possible values of
 //x are in the interval [0,24]
 return 0;
}

MISRAC++2008-5-0-16_e

Synopsis A pointer to an array is used outside the array bounds.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) A pointer operand and any pointer resulting from pointer arithmetic using
that operand shall both address elements of the same array.

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow
AFE1_AFE2-1:1

753

754

Descriptions of checks

CWE 122

Heap-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C++ 2008 5-0-16

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int arr[10];
 int *p = arr;
 p[10];
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int arr[10];
 int *p = arr;
 p[9];
}

MISRAC++2008-5-0-16_f

Synopsis A pointer to an array might be used outside the array bounds.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description (Required) A pointer operand and any pointer resulting from pointer arithmetic using
that operand shall both address elements of the same array.

Coding standards CERT ARR33-C

Guarantee that copies are made into storage of sufficient size

CWE 119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE 120

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE 121

Stack-based Buffer Overflow

CWE 122

Heap-based Buffer Overflow

CWE 124

Buffer Underwrite ('Buffer Underflow')

CWE 126

Buffer Over-read

CWE 127

Buffer Under-read

CWE 129

Improper Validation of Array Index

MISRA C++ 2008 5-0-16

(Required) A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

755

756

Descriptions of checks

void example(int b) {
 int arr[10];
 int *p = arr;
 int x = (b<10 ? 8 : 11);
 p[x];
}

The following code example passes the check and will not give a warning about this
issue:

void example(int b) {
 int arr[12];
 int *p = arr;
 int x = (b<10 ? 8 : 11);
 p[x];
}

MISRAC++2008-5-0-19

Synopsis Declarations that contain more than two levels of pointer indirection have been found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The declaration of objects shall contain no more than two levels of pointer
indirection.

Coding standards MISRA C++ 2008 5-0-19

(Required) The declaration of objects shall contain no more than two levels of
pointer indirection.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int ***p;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
 int **p;
}

MISRAC++2008-5-0-21

Synopsis Applications of bitwise operators to signed operands were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Bitwise operators shall only be applied to operands of unsigned underlying
type.

Coding standards CERT INT13-C

Use bitwise operators only on unsigned operands

MISRA C++ 2008 5-0-21

(Required) Bitwise operators shall only be applied to operands of unsigned
underlying type.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int x = -(1U);

 x ^ 1;
 x & 0x7F;
 ((unsigned int)x) & 0x7F;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

757

758

Descriptions of checks

void example(void) {
 int x = -1;
 ((unsigned int)x) ^ 1U;
 2U ^ 1U;
 ((unsigned int)x) & 0x7FU;
 ((unsigned int)x) & 0x7FU;
}

MISRAC++2008-5-2-4 (C++ only)

Synopsis Old style casts (other than void casts) were found.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) C-style casts (other than void casts) and functional notation casts (other than
explicit constructor calls) shall not be used. Old style casts (other than void casts) were
found. This might cause portability problems, for example if a particular cast is not be
valid on a system, but the compiler performs the cast anyway. The new style casts
static_cast, const_cast, and reinterpret_cast should be used instead because they make
clear the intention of the cast. The new style casts can also easily be searched for in
source code files, unlike old style casts.

Coding standards CERT EXP05-CPP

Do not use C-style casts

MISRA C++ 2008 5-2-4

(Required) C-style casts (other than void casts) and functional notation casts
(other than explicit constructor calls) shall not be used.

Code examples The following code example fails the check and will give a warning:

int example(float b)
{
 return (int)b;
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int example(float b)
{
 return static_cast<int>(b);
}

MISRAC++2008-5-2-5

Synopsis Casts that remove a const or volatile qualification were found.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) A cast shall not remove any const or volatile qualification from the type of a
pointer or reference. Doing so violates the principle of type qualification. This check
does not detect changes to the qualification of the pointer during the cast.

Coding standards MISRA C++ 2008 5-2-5

(Required) A cast shall not remove any const or volatile qualification from the
type of a pointer or reference.

Code examples The following code example fails the check and will give a warning:

typedef unsigned short uint16_t;

void example(void) {

uint16_t x;
const uint16_t * pci; /* pointer to const int */
uint16_t * pi; /* pointer to int */

pi = (uint16_t *)pci; // not compliant

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

759

760

Descriptions of checks

typedef unsigned short uint16_t;

void example(void) {

uint16_t x;
uint16_t * const cpi = &x; /* const pointer to int */
uint16_t * pi; /* pointer to int */

pi = cpi; // compliant - no cast required

}

MISRAC++2008-5-2-6

Synopsis A cast shall not convert a pointer to a function to any other pointer type, including a
pointer to function type.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) A cast shall not convert a pointer to a function to any other pointer type,
including a pointer to function type.

Coding standards MISRA C++ 2008 5-2-6

(Required) A cast shall not convert a pointer to a function to any other pointer
type, including a pointer to function type.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdint.h>
void f (int32_t)
{
 reinterpret_cast< void * >(&f); // Non-compliant
}

#include <stdint.h>
void f (int32_t)
{
 reinterpret_cast< void (*)() >(&f); // Non-compliant
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdint.h>
void f (int32_t)
{
 void (*fp)(int32_t) = &f;
}
 void example(void) {
 (*((volatile unsigned long*) 0xE0028004UL)) = (1UL << 10UL);
}

MISRAC++2008-5-2-7

Synopsis A pointer to object type is cast to a pointer to a different object type.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) An object with pointer type shall not be converted to an unrelated pointer
type, either directly or indirectly. A pointer to object type is cast to a pointer to a
different object type. Conversions of this type might be invalid if the new pointer type
requires a stricter alignment.

Coding standards MISRA C++ 2008 5-2-7

(Required) An object with pointer type shall not be converted to an unrelated
pointer type, either directly or indirectly.
AFE1_AFE2-1:1

761

762

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

typedef unsigned int uint32_t;
typedef unsigned char uint8_t;

void example(void) {
uint8_t * p1;
uint32_t * p2;
p2 = (uint32_t *)p1;

}

The following code example passes the check and will not give a warning about this
issue:

typedef unsigned int uint32_t;
typedef unsigned char uint8_t;

void example(void) {
uint8_t * p1;
uint8_t * p2;
p2 = (uint8_t *)p1;

}

MISRAC++2008-5-2-9

Synopsis A cast from a pointer type to an integral type was found.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) A cast should not convert a pointer type to an integral type.

Coding standards MISRA C++ 2008 5-2-9

(Advisory) A cast should not convert a pointer type to an integral type.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {

int *p;
int x;

x = (int)p;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {

int *p;
int *x;

x = p;

}

MISRAC++2008-5-2-10

Synopsis The increment (++) and decrement (--) operators are being used mixed with other
operators in an expression.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) The increment (++) and decrement (--) operators should not be mixed with
other operators in an expression.

Coding standards MISRA C++ 2008 5-2-10

(Advisory) The increment (++) and decrement (--) operators should not be
mixed with other operators in an expression.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

763

764

Descriptions of checks

void example(char *src, char *dst) {
while ((*src++ = *dst++));

}

The following code example passes the check and will not give a warning about this
issue:

void example(char *src, char *dst) {
while (*src) {

*dst = *src;
src++;
dst++;

}
}

MISRAC++2008-5-2-11_a (C++ only)

Synopsis Overloaded && and || operators were found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The comma operator, && operator and the || operator shall not be
overloaded. There are overloaded versions of the comma and logical conjunction
operators. These have the semantics of function calls whose sequence point and ordering
semantics are different from those of the built-in versions. Because it might not be clear
at the point of use that these operators are overloaded, developers might be unaware
which semantics apply.

Coding standards MISRA C++ 2008 5-2-11

(Required) The comma operator, && operator and the || operator shall not be
overloaded.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

class C{
 bool x;
 bool operator||(bool other);
};

bool C::operator||(bool other){
 return x || other;
}

The following code example passes the check and will not give a warning about this
issue:

class C{
 int x;
 int operator+(int other);
};

int C::operator+(int other){
 return x + other;
}

MISRAC++2008-5-2-11_b (C++ only)

Synopsis Overloaded comma operators were found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The comma operator, && operator and the || operator shall not be
overloaded. function calls whose sequence point and ordering semantics are different
from those of the built- in versions. It might not be obvious that these operators are
overloaded, which might cause programming errors.

Coding standards MISRA C++ 2008 5-2-11

(Required) The comma operator, && operator and the || operator shall not be
overloaded.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

765

766

Descriptions of checks

class C{
 bool x;
 bool operator,(bool other);
};

bool C::operator,(bool other){
 return x;
}

The following code example passes the check and will not give a warning about this
issue:

class C{
 int x;
 int operator+(int other);
};

int C::operator+(int other){
 return x + other;
}

MISRAC++2008-5-3-1

Synopsis Operands of the logical operators (&&, ||, and !) were found that are not of type bool.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Each operand of the ! operator, the logical && or the logical || operators shall
have type bool.

Coding standards MISRA C++ 2008 5-3-1

(Required) Each operand of the ! operator, the logical && or the logical ||
operators shall have type bool.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void func(int * ptr)
{
 if (!ptr) {}
}
void func()
{
 if (!0) {}
}
void example(void) {

int x = 0;
int y = 1;
int a = x || y << 2;

}
void example(void) {

int x = 0;
int y = 1;
int a = 5;
(a + (x || y)) ? example() : example();

}
void example(void) {

int x = 5;
int y = 11;
if (x || y) {
}

}
void example(void) {

int d, c, b, a;

d = (c & a) && b;

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

767

768

Descriptions of checks

bool test()
{
 return true;
}

void example(void) {
 if(test()) {}
}
typedef charboolean_t;/* Compliant: Boolean-by-enforcement */

void example(void)
{
 boolean_t d;
 boolean_t c = 1;
 boolean_t b = 0;
 boolean_t a = 1;

 d = (c && a) && b;

}
void func(bool * ptr)
{
 if (*ptr) {}
}
typedef intboolean_t;

void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = 0;
 if (a && (x || y)) {
 }
}
void example(void) {

int x = 0;
int y = 1;
int a = x == y;

}
#include <stdbool.h>

void example(void) {
 bool x = false;
 bool y = true;
 if (x || y) {
 }
}
typedef charboolean_t;
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
 boolean_t x = 0;
 boolean_t y = 1;
 boolean_t a = x || y;
 a ? example() : example();
}

MISRAC++2008-5-3-2_a

Synopsis Uses of unary minus on unsigned expressions were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

Coding standards MISRA C++ 2008 5-3-2

(Required) The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

Code examples The following code example fails the check and will give a warning:

void example(void) {
unsigned int max = -1U;
// use max = ~0U;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int neg_one = -1;

}

MISRAC++2008-5-3-2_b

Synopsis Uses of unary minus on unsigned expressions were found.
AFE1_AFE2-1:1

769

770

Descriptions of checks

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

Coding standards MISRA C++ 2008 5-3-2

(Required) The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

Code examples The following code example fails the check and will give a warning:

void example(void) {
unsigned int max = -1U;
// use max = ~0U;

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int neg_one = -1;

}

MISRAC++2008-5-3-3 (C++ only)

Synopsis Occurances of overloaded & operators were found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The unary & operator shall not be overloaded.

Coding standards MISRA C++ 2008 5-3-3
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) The unary & operator shall not be overloaded.

Code examples The following code example fails the check and will give a warning:

class C{
 bool x;
 bool* operator&();
};

bool* C::operator&(){
 return &x;
}

The following code example passes the check and will not give a warning about this
issue:

class C{
 int x;
 int operator+(int other);
};

int C::operator+(int other){
 return x + other;
}

MISRAC++2008-5-3-4

Synopsis There are sizeof expressions that contain side effects.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Evaluation of the operand to the sizeof operator shall not contain side effects.
There are sizeof expressions that contain side effects. This is unsafe because it is easy
to believe that the expression will be evaluated, but it will not because sizeof only
operates on the type of the expression.

Coding standards CERT EXP06-C

Operands to the sizeof operator should not contain side effects
AFE1_AFE2-1:1

771

772

Descriptions of checks

CERT EXP06-CPP

Operands to the sizeof operator should not contain side effects

MISRA C++ 2008 5-3-4

(Required) Evaluation of the operand to the sizeof operator shall not contain
side effects.

Code examples The following code example fails the check and will give a warning:

void example(void) {
int i;
int size = sizeof(i++);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int i;
int size = sizeof(i);
i++;

}

MISRAC++2008-5-8-1

Synopsis Possible out-of-range shifts were found.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) The right hand operand of a shift operator shall lie between zero and one less
than the width in bits of the underlying type of the left hand operand. Shifts were found
where the right-hand operand might be negative, or too large. This check is for all
platforms. This is undefined behaviour; the code might work as intended, or data could
become erroneous.

Coding standards CERT INT34-C

Do not shift a negative number of bits or more bits than exist in the operand
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CWE 682

Incorrect Calculation

MISRA C++ 2008 5-8-1

(Required) The right hand operand of a shift operator shall lie between zero and
one less than the width in bits of the underlying type of the left hand operand.

Code examples The following code example fails the check and will give a warning:

unsigned int foo(unsigned long long x, unsigned int y)
{
 int shift = 65; // too big
 return 3ULL << shift;
}
unsigned int foo(unsigned int x, unsigned int y)
{
 int shift = 33; // too big
 return 3U << shift;
}

The following code example passes the check and will not give a warning about this
issue:

unsigned int foo(unsigned int x)
{
 int y = 1; // OK - this is within the correct range
 return x << y;
}
unsigned int foo(unsigned long long x)
{
 int y = 63; // ok
 return x << y;
}

MISRAC++2008-5-14-1

Synopsis There are right-hand operands of && or || operators that contain side effects.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

773

774

Descriptions of checks

Full description (Required) The right hand operand of a logical && or || operator shall not contain side
effects.

Coding standards CWE 768

Incorrect Short Circuit Evaluation

MISRA C++ 2008 5-14-1

(Required) The right hand operand of a logical && or || operator shall not
contain side effects.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
int i;
int size = rand() && i++;

}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {
int i;
int size = rand() && i;

}

MISRAC++2008-5-18-1

Synopsis There are uses of the comma operator.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) The comma operator shall not be used.

Coding standards MISRA C++ 2008 5-18-1
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) The comma operator shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <string.h>

void reverse(char *string) {
int i, j;
j = strlen(string);
for (i = 0; i < j; i++, j--) {

char temp = string[i];
string[i] = string[j];
string[j] = temp;

}
}

The following code example passes the check and will not give a warning about this
issue:

#include <string.h>

void reverse(char *string) {
int i;
int length = strlen(string);
int half_length = length / 2;
for (i = 0; i < half_length; i++) {

int opposite = length - i;
char temp = string[i];
string[i] = string[opposite];
string[opposite] = temp;

}
}

MISRAC++2008-5-19-1

Synopsis A constant unsigned integer expression overflows.

Enabled by default No

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

775

776

Descriptions of checks

Full description (Advisory) Evaluation of constant unsigned integer expressions should not lead to
wrap-around.

Coding standards MISRA C++ 2008 5-19-1

(Advisory) Evaluation of constant unsigned integer expressions should not lead
to wrap-around.

Code examples The following code example fails the check and will give a warning:

void example(void) {
(0xFFFFFFFF + 1u);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
0x7FFFFFFF + 0;

}

MISRAC++2008-6-2-1

Synopsis One or more assignment operators are used in sub-expressions.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Assignment operators shall not be used in sub-expressions.

Coding standards MISRA C++ 2008 6-2-1

(Required) Assignment operators shall not be used in sub-expressions.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void func()
{
 int x;
 int y;
 int z;
 x = y = z;
}

The following code example passes the check and will not give a warning about this
issue:

void func()
{
 int x = 2;
 int y;
 int z;
 x = y;
 x == y;
}

MISRAC++2008-6-2-2

Synopsis There are floating-point comparisons that use the == or != operators.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) Floating-point expressions shall not be directly or indirectly tested for
equality or inequality. The comparison might be evaluated incorrectly, especially if
either of the floats have been operated on arithmetically. In such a case, the program
logic is compromised.

Coding standards CERT FLP06-C

Understand that floating-point arithmetic in C is inexact

CERT FLP35-CPP

Take granularity into account when comparing floating point values

MISRA C++ 2008 6-2-2
AFE1_AFE2-1:1

777

778

Descriptions of checks

(Required) Floating-point expressions shall not be directly or indirectly tested
for equality or inequality.

Code examples The following code example fails the check and will give a warning:

int main(void)
{
 float f = 3.0;
 int i = 3;

 if (f == i) //comparison of a float and an int
 ++i;

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void)
{
 int i = 60;
 char c = 60;

 if (i == c)
 ++i;

 return 0;
}

MISRAC++2008-6-3-1_a

Synopsis There are missing braces in do ... while statements.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement.

Coding standards CERT EXP19-C
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C++ 2008 6-3-1

(Required) The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 do
 return 0;
 while (1);
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 do {
 return 0;
 } while (1);
}

MISRAC++2008-6-3-1_b

Synopsis There are missing braces in for statements.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement.

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483
AFE1_AFE2-1:1

779

780

Descriptions of checks

Incorrect Block Delimitation

MISRA C++ 2008 6-3-1

(Required) The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 for (;;)
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 for (;;){
 return 0;
 }
}

MISRAC++2008-6-3-1_c

Synopsis There are missing braces in switch statements.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement.

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C++ 2008 6-3-1
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement.

Code examples The following code example fails the check and will give a warning:

void example(void) {
while(1);
for(;;);
do ;
while (0);
switch(0);

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
while(1) {
}
for(;;) {
}
do {
} while (0);
switch(0) {
}

}

MISRAC++2008-6-3-1_d

Synopsis There are missing braces in while statements.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement.

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483
AFE1_AFE2-1:1

781

782

Descriptions of checks

Incorrect Block Delimitation

MISRA C++ 2008 6-3-1

(Required) The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement.

Code examples The following code example fails the check and will give a warning:

int example(void) {
 while (1)
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 while (1){
 return 0;
 }
}

MISRAC++2008-6-4-1

Synopsis There are missing braces in if, else, or else if statements.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) An if (condition) construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement, or another if statement.

Coding standards CERT EXP19-C

Use braces for the body of an if, for, or while statement

CWE 483

Incorrect Block Delimitation

MISRA C++ 2008 6-4-1
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) An if (condition) construct shall be followed by a compound
statement. The else keyword shall be followed by either a compound statement,
or another if statement.

Code examples The following code example fails the check and will give a warning:

#include "iar.h"

void example(void) {
if (random());
if (random());
else;

}

The following code example passes the check and will not give a warning about this
issue:

#include "iar.h"

void example(void) {
if (random()) {
}
if (random()) {
} else {
}
if (random()) {
} else if (random()) {
}

}

MISRAC++2008-6-4-2

Synopsis If ... else if constructs that are not terminated with an else clause were detected.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) All if ... else if constructs shall be terminated with an else clause.

Coding standards MISRA C++ 2008 6-4-2
AFE1_AFE2-1:1

783

784

Descriptions of checks

(Required) All if ... else if constructs shall be terminated with an else clause.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>
#include <stdio.h>

void example(void) {
if (!rand()) {

printf("The first random number is 0");
} else if (!rand()) {

printf("The second random number is 0");
}

}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include <stdio.h>

void example(void) {
if (!rand()) {

printf("The first random number is 0");
} else if (!rand()) {

printf("The second random number is 0");
} else {

printf("Neither random number was 0");
}

}

MISRAC++2008-6-4-3

Synopsis Detected switch statements that do not conform to the MISRA C++ switch syntax.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) A switch statement shall be a well-formed switch statement.
switch-statement : switch '(' expression ')' '{' case-label-clause-list
default-label-clause? '}' case-label-clause-list: case-label case-clause?
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

case-label-clause-list case-label case-clause? case-label: case constant-expression ':'
case-clause: statement-list? break ';' '{' declaration-list? statement-list? break ';' '}'
default-label-clause : default-label default-clause default-label: default ':'
default-clause: case-clause

Coding standards MISRA C++ 2008 6-4-3

(Required) A switch statement shall be a well-formed switch statement.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

785

786

Descriptions of checks

int expr();
void stmt();
void example(void) {

switch(expr()) {
// at least one case label
case 1:

// statement list
stmt();
stmt();
// WARNING: missing break at end of statement list

default:
break; // statement list ends in a break

}

switch(expr()) {
// WARNING: missing at least one case label
default:

break; // statement list ends in a break
}

switch(expr()) {
// at least one case label
case 1:

// statement list
stmt();
stmt();
break; // statement list ends in a break

case 0:
stmt();
// WARNING: declaration list without block
int decl = 0;
int x;
// statement list
stmt();
stmt();
break; // statement list ends in a break

default:
break; // statement list ends in a break

}

switch(expr()) {
// at least one case label
case 1: {

// statement list
stmt();
// WARNING: Additional block inside of the case clause

block
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

{
stmt();
}
break;

}
default:

break; // statement list ends in a break
}

}

The following code example passes the check and will not give a warning about this
issue:

int expr();
void stmt();
void example(void) {

switch(expr()) {
// at least one case label
case 1:

// statement list (no declarations)
stmt();
stmt();
break; // statement list ends in a break

case 0: {
// one level of block is allowed
// declaration list
int decl = 0;
// statement list
stmt();
stmt();
break; // statement list ends in a break

}
case 2: // empty cases are allowed
default:

break; // statement list ends in a break
}

}

MISRAC++2008-6-4-4

Synopsis Switch labels were found in nested blocks.

Enabled by default Yes
AFE1_AFE2-1:1

787

788

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) A switch-label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement.

Coding standards MISRA C++ 2008 6-4-4

(Required) A switch-label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {

switch(rand()) {
{case 1:}
case 2:
case 3:
default:

}

}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

void example(void) {

switch(rand()) {
case 1:
case 2:
case 3:
default:

}

}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC++2008-6-4-5

Synopsis Non-empty switch cases were found that are not terminated by a break.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) An unconditional throw or break statement shall terminate every non-empty
switch-clause.

Coding standards CERT MSC17-C

Finish every set of statements associated with a case label with a break statement

CWE 484

Omitted Break Statement in Switch

MISRA C++ 2008 6-4-5

(Required) An unconditional throw or break statement shall terminate every
non-empty switch-clause.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

789

790

Descriptions of checks

#include <stdlib.h>

void example(int input) {

 while (rand()) {
 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 default:
 break;
 }
 }
}
#include <stdlib.h>

void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 default:
 break;
 }

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 }
 break;
 default:
 break;
 }

}
#include <stdlib.h>

void example(int input) {

 switch(input) {
 case 0:
 if (rand()) {
 break;
 } else {
 break;
 }
 // All paths above contain a break, therefore we do not
warn
 default:
 break;
 }

}

MISRAC++2008-6-4-6

Synopsis Switch statements without a default clause, or with a default clause that is not the final
clause, were found.

Enabled by default Yes

Severity/Certainty Low/Medium
AFE1_AFE2-1:1

791

792

Descriptions of checks

Full description (Required) The final clause of a switch statement shall be the default-clause.

Coding standards CWE 478

Missing Default Case in Switch Statement

MISRA C++ 2008 6-4-6

(Required) The final clause of a switch statement shall be the default-clause.

Code examples The following code example fails the check and will give a warning:

int example(int x) {
 switch(x){
 default:
 return 2;
 break;
 case 0:
 return 0;
 break;
 }
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 switch(x){
 case 3:
 return 0;
 break;
 case 5:
 return 1;
 break;
 default:
 return 2;
 break;
 }
}

MISRAC++2008-6-4-7

Synopsis A switch expression was found that represents a value that is effectively Boolean.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) The condition of a switch statement shall not have bool type.

Coding standards MISRA C++ 2008 6-4-7

(Required) The condition of a switch statement shall not have bool type.

Code examples The following code example fails the check and will give a warning:

void example(int x) {
switch(x == 0) {

case 0:
case 1:
default:

}
}

The following code example passes the check and will not give a warning about this
issue:

void example(int x) {
switch(x) {

case 1:
case 0:
default:

}
}

MISRAC++2008-6-4-8

Synopsis One or more switch statements without a case clause were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Every switch statement shall have at least one case-clause.
AFE1_AFE2-1:1

793

794

Descriptions of checks

Coding standards MISRA C++ 2008 6-4-8

(Required) Every switch statement shall have at least one case-clause.

Code examples The following code example fails the check and will give a warning:

int example(int x) {
 switch(x){
 default:
 return 2;
 break;
 }
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 switch(x){
 case 3:
 return 0;
 break;
 case 5:
 return 1;
 break;
 default:
 return 2;
 break;
 }
}

MISRAC++2008-6-5-1_a

Synopsis Floating-point values were found in the controlling expression of a for statement.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A for loop shall contain a single loop-counter which shall not have floating
type.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards MISRA C++ 2008 6-5-1

(Required) A for loop shall contain a single loop-counter which shall not have
floating type.

Code examples The following code example fails the check and will give a warning:

void example(int input, float f) {
 int i;
 for (i = 0; i < input && f < 0.1f; ++i) {
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(int input, float f) {
 int i;
 int f_condition = f < 0.1f;
 for (i = 0; i < input && f_condition; ++i) {
 f_condition = f < 0.1f;
 }
}

MISRAC++2008-6-5-2

Synopsis A loop counter was found that might not match the loop condition test.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) If loop-counter is not modified by -- or ++, then, within condition, the
loop-counter shall only be used as an operand to <=, <, > or >=.

Coding standards CERT MSC21-C

Use robust loop termination conditions

CERT MSC21-CPP

Use inequality to terminate a loop whose counter changes by more than one

MISRA C++ 2008 6-5-2
AFE1_AFE2-1:1

795

796

Descriptions of checks

(Required) If loop-counter is not modified by -- or ++, then, within condition,
the loop-counter shall only be used as an operand to <=, <, > or >=.

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 for(int i = 0; i != 10; i += 2) {}
}

The following code example passes the check and will not give a warning about this
issue:

void example(void)
{
 for(int i = 0; i != 10; i++) {}
}
void example(void)
{
 for(int i = 0; i <= 10; i+= 2) {}
}

MISRAC++2008-6-5-3

Synopsis A for loop counter variable was found that is modified in the body of the loop.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) The loop-counter shall not be modified within condition or statement.
statement) should not be assigned to in the body of the for loop. While it's legal to
modify the loop counter within the body of a for loop (in place of a while loop), the
conventional use of a for loop is to iterate over a predetermined range, incrementing the
loop counter once per iteration. Modification of the loop counter within the for loop
body is probably accidental, and could result in erroneous behavior or an infinite loop.

Coding standards MISRA C++ 2008 6-5-3

(Required) The loop-counter shall not be modified within condition or
statement.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Code examples The following code example fails the check and will give a warning:

int main(void) {
 int i;

 /* i is incremented inside the loop body */
 for (i = 0; i < 10; i++) {
 i = i + 1;
 }

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int i;
 int x = 0;

 for (i = 0; i < 10; i++) {
 x = i + 1;
 }

 return 0;
}

MISRAC++2008-6-5-4

Synopsis A potentially inconsistent loop counter modification was found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The loop-counter shall be modified by one of: --, ++, -=n, or +=n; where n
remains constant for the duration of the loop.

Coding standards MISRA C++ 2008 6-5-4

(Required) The loop-counter shall be modified by one of: --, ++, -=n, or +=n;
where n remains constant for the duration of the loop.
AFE1_AFE2-1:1

797

798

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 int i;
 for(i = 0; i != 10; i= i * i) {}
}
int func(int x)
{
 return x + 1;
}

void example(void)
{
 for(int i = 0; i != 10; i+= func(i)) {}
}

The following code example passes the check and will not give a warning about this
issue:

int func()
{
 return 1;
}

void example(void)
{
 for(int i = 0; i != 10; i+= func()) {}
}
void example(void)
{
 bool b;
 for(int i = 0; i != 10 || b; i-=2) {}
}

MISRAC++2008-6-5-6

Synopsis A non-boolean variable was detected that is modified in the loop and used as loop
condition.

Enabled by default Yes

Severity/Certainty Low/Low
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) A loop-control-variable other than the loop-counter which is modified in
statement shall have type bool.

Coding standards MISRA C++ 2008 6-5-6

(Required) A loop-control-variable other than the loop-counter which is
modified in statement shall have type bool.

Code examples The following code example fails the check and will give a warning:

void example(void)
{
 int j;
 for (int i = 0; i < 10 || j > 5; ++i)
 {
 j = i;
 }
}

The following code example passes the check and will not give a warning about this
issue:

void example(void)
{
 bool found = false;
 for (int i = 0; i < 10 || found; ++i)
 {
 found = (i + 1) % 9;
 }
}

MISRAC++2008-6-6-1

Synopsis The destination of a goto statement is a nested code block.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) Any label referenced by a goto statement shall be declared in the same block,
or in a block enclosing the goto statement.
AFE1_AFE2-1:1

799

800

Descriptions of checks

Coding standards MISRA C++ 2008 6-6-1

(Required) Any label referenced by a goto statement shall be declared in the
same block, or in a block enclosing the goto statement.

Code examples The following code example fails the check and will give a warning:

void f1 ()
{
 int j = 0;
 goto L1;
 for (;;)
 {
L1: // Non-compliant
 j;
 }
}

The following code example passes the check and will not give a warning about this
issue:

void f2()
{
 for(;;)
 {
 for(;;)
 {
 goto L1;
 }
 }
L1:
 return;
}

MISRAC++2008-6-6-2

Synopsis A goto statement is declared after the destination label.

Enabled by default Yes

Severity/Certainty Low/Low
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) The goto statement shall jump to a label declared later in the same function
body.

Coding standards MISRA C++ 2008 6-6-2

(Required) The goto statement shall jump to a label declared later in the same
function body.

Code examples The following code example fails the check and will give a warning:

void f1 ()
{
 int j = 0;
 for (j = 0; j < 10 ; ++j)
 {
L1: // Non-compliant
 j;
 }
 goto L1;
}

The following code example passes the check and will not give a warning about this
issue:

void f1 ()
{
 int j = 0;
 goto L1;
 for (j = 0; j < 10 ; ++j)
 {
 j;
 }
L1:
 return;
}

MISRAC++2008-6-6-4

Synopsis One or more loops have more than one termination point.

Enabled by default Yes
AFE1_AFE2-1:1

801

802

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) For any iteration statement there shall be no more than one break or goto
statement used for loop termination.

Coding standards MISRA C++ 2008 6-6-4

(Required) For any iteration statement there shall be no more than one break or
goto statement used for loop termination.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void func()
{
 int x = 1;
 for (int i = 0; i < 10; i++)
 {
 if (x)
 {
 break;
 }
 else if (i)
 {
 break; // Non-compliant – second jump from loop
 }
 else
 {
 // Code
 }
 }
}
int fn(void);

void example(void) {
int i = fn();
int j;
int counter = 0;
switch (i) {

case 1:
break;

case 2:
case 3:

counter++;
if (i==3) {

break;
}
counter++;
break;

case 4:
for (j = 0; j < 10; j++) {

if (j == i) {
break;

}
if (j == counter) {

break;
}

}
counter--;
break;
AFE1_AFE2-1:1

803

804

Descriptions of checks

default:
break;

}
}
int fn(int i);

void example(void) {
int counter = 0;
int i = 0;
for (i = 0; i < 100; i++) {

switch (i % 9) {
case 8:

counter++;
break;

default:
break;

}
if (fn(i)) {

break;
}
if (fn(i)) {

break;
}

}
}

int test1(int);
int test2(int);

void example(void)
{

int i = 0;
for (i = 0; i < 10; i++) {

if (test1(i)) {
break;

} else if (test2(i)) {
break;

}
}

}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void)
{

int i = 0;
for (i = 0; i < 10 && i != 9; i++) {

if (i == 9) {
break;

}
}

}
void func()
{
 int x = 1;
 for (int i = 0; i < 10; i++)
 {
 if (x)
 {
 break;
 }
 else if (i)
 {
 while (true)
 {
 if (x)
 {
 break;
 }
 do
 {
 break;
 }
 while(true);
 }
 }
 else
 {
 }
 }
}
int fn(void);

void example(void) {
int i = fn();
int j;
int counter = 0;
switch (i) {

case 1:
break;
AFE1_AFE2-1:1

805

806

Descriptions of checks

case 2:
case 3:

counter++;
if (i==3) {

break;
}
counter++;
break;

case 4:
for (j = 0; j < 10; j++) {

if (j == i) {
break;

}
}
counter--;
break;

default:
break;

}
}
int fn(int i);

void example(void) {
int counter = 0;
int i = 0;
int stop = 0;
for (i = 0; i < 100 && !stop; i++) {

switch (i % 9) {
case 8:

counter++;
break;

default:
break;

}
stop = fn(i);

}
}

MISRAC++2008-6-6-5

Synopsis One or more functions have multiple exit points or an exit point that is not at the end of
the function.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) A function shall have a single point of exit at the end of the function. One or
more functions have multiple exit points or an exit point that is not at the end of the
function. This is in conflict with the IEC 61508 requirements for good programming
style.

Coding standards MISRA C++ 2008 6-6-5

(Required) A function shall have a single point of exit at the end of the function.

Code examples The following code example fails the check and will give a warning:

extern int errno;

void example(void) {
if (errno) {

return;
}
return;

}

The following code example passes the check and will not give a warning about this
issue:

extern int errno;

void example(void) {
if (errno) {

goto end;
}

end:
{

return;
}

}

MISRAC++2008-7-1-1

Synopsis A local variable that is not modified after its initialization is not const qualified.

Enabled by default Yes
AFE1_AFE2-1:1

807

808

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) A variable which is not modified shall be const qualified.

Coding standards MISRA C++ 2008 7-1-1

(Required) A variable which is not modified shall be const qualified.

Code examples The following code example fails the check and will give a warning:

int example(void){
 int x = 7;
 return x;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void){
 int x = 7;
 ++x;
 return x;
}

MISRAC++2008-7-1-2

Synopsis A parameter in a function that is not modified by the function is not const qualified.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) A pointer or reference parameter in a function shall be declared as pointer to
const or reference to const if the corresponding object is not modified.

Coding standards MISRA C++ 2008 7-1-2
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) A pointer or reference parameter in a function shall be declared as
pointer to const or reference to const if the corresponding object is not modified.

Code examples The following code example fails the check and will give a warning:

int example(int* x) { //x should be const
 if (*x > 5){
 return *x;
 } else {
 return 5;
 }
}

The following code example passes the check and will not give a warning about this
issue:

int example(const int* x) { //OK
 if (*x > 5){
 return *x;
 } else {
 return 5;
 }
}

MISRAC++2008-7-2-1

Synopsis There are conversions to enum type that are out of range of the enumeration.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) An expression with enum underlying type shall only have values
corresponding to the enumerators of the enumeration.

Coding standards MISRA C++ 2008 7-2-1

(Required) An expression with enum underlying type shall only have values
corresponding to the enumerators of the enumeration.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

809

810

Descriptions of checks

enum ens { ONE, TWO, THREE };

void example(void)
{
 ens one = (ens)10;
}
enum ens { ONE, TWO, THREE };

int func()
{
 return 10;
}

void example(void)
{
 ens one = (ens)func();
}

The following code example passes the check and will not give a warning about this
issue:

enum ens { ONE, TWO, THREE };

int func()
{
 return 1;
}

void example(void)
{
 ens one = (ens)func();
}
enum ens { ONE, TWO, THREE };

void example(void)
{
 ens one = ONE;
 ens two = TWO;
 two = one;
}

MISRAC++2008-7-4-3

Synopsis There are inline assembler statements that are not encapsulated in functions.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) Assembler language shall be encapsulated and isolated.

Coding standards MISRA C++ 2008 7-4-3

(Required) Assembly language shall be encapsulated and isolated.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

811

812

Descriptions of checks

int ffs(int x)
{
 int r;
#if 0
#ifdef CONFIG_X86_64
 /*
 * AMD64 says BSFL won't clobber the dest reg if x==0;
Intel64 says the
 * dest reg is undefined if x==0, but their CPU architect
says its
 * value is written to set it to the same as before,
except that the
 * top 32 bits will be cleared.
 *
 * We cannot do this on 32 bits because at the very least
some
 * CPUs did not behave this way.
 */
 long tmp = -1;
 asm("bsfl %1,%0"
 : "=r" (r)
 : "rm" (x), "" (tmp));
#elif defined(CONFIG_X86_CMOV)
 asm("bsfl %1,%0\n\t"
 "cmovzl %2,%0"
 : "=&r" (r) : "rm" (x), "r" (-1));
#else
 asm("bsfl %1,%0\n\t"
 "jnz 1f\n\t"
 "movl $-1,%0\n"
 "1:" : "=r" (r) : "rm" (x));
#endif
#else
 asm("");
#endif
 return r + 1;
}

The following code example passes the check and will not give a warning about this
issue:

unsigned int
bswap(unsigned int x)
{
 asm("");
 return x;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC++2008-7-5-1_a (C++ only)

Synopsis A stack object is returned from a function as a reference.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) A function shall not return a reference or a pointer to an automatic variable
(including parameters), defined within the function. Operations on the return value are
illegal and might cause an application crash or memory corruption. A safe alternative
is for the function to return a copy of the object.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 562

Return of Stack Variable Address

MISRA C++ 2008 7-5-1

(Required) A function shall not return a reference or a pointer to an automatic
variable (including parameters), defined within the function.

Code examples The following code example fails the check and will give a warning:

int& example(void) {
 int x;
 return x;
}

The following code example passes the check and will not give a warning about this
issue:

int example(void) {
 int x;
 return x;
}

AFE1_AFE2-1:1

813

814

Descriptions of checks

MISRAC++2008-7-5-1_b

Synopsis A function might return an address on the stack.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) A function shall not return a reference or a pointer to an automatic variable
(including parameters), defined within the function. Depending on the circumstances,
this code and subsequent memory accesses might appear to work, but the operations are
illegal and might cause an application crash or memory corruption. Returning a copy of
the object, using a global variable, or dynamically allocating memory, are possible
alternatives.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 562

Return of Stack Variable Address

MISRA C++ 2008 7-5-1

(Required) A function shall not return a reference or a pointer to an automatic
variable (including parameters), defined within the function.

Code examples The following code example fails the check and will give a warning:

int *f() {
 int x;
 return &x; //x is a local variable
}
int *example(void) {
 int a[20];
 return a; //a is a local array
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

#include <stdlib.h>

int* example(void) {
 int *p,i;
 p = (int *)malloc(sizeof(int));
 return p; //OK - p is dynamically allocated

}

MISRAC++2008-7-5-2_a

Synopsis Detected a stack address stored in a global pointer.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist. The application
might appear to work normally, but it is in fact accessing illegal memory. This might also
cause the application to crash, or change data unpredictably.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C++ 2008 7-5-2

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:

int *px;
void example() {
 int i = 0;
 px = &i; // assigning the address of stack
 // variable a to the global px
}

AFE1_AFE2-1:1

815

816

Descriptions of checks

The following code example passes the check and will not give a warning about this
issue:

void example(int *pz) {
 int x; int *px = &x;
 int *py = px; /* local variable */
 pz = px; /* parameter */
}

MISRAC++2008-7-5-2_b

Synopsis Detected a stack address in the field of a global struct.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist. The application
might appear to work normally, but it is in fact accessing illegal memory. This might also
cause the application to crash, or change data unpredictably.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C++ 2008 7-5-2

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

struct S{
 int *px;
} s;

void example() {
 int i = 0;
 s.px = &i; //storing local address in global struct
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

struct S{
 int *px;
} s;

void example() {
 int i = 0;
 s.px = &i; //OK - the field is written to later
 s.px = NULL;
}

MISRAC++2008-7-5-2_c

Synopsis Detected a stack address stored in a parameter of pointer or array type.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist. The application
might appear to work normally, but it is in fact accessing illegal memory. This might also
cause the application to crash, or change data unpredictably. Known false positives:
This test checks for any expression referring to the storage located by the parameter, so
the assignment 'local[*parameter] = & local;' generates a warning.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations
AFE1_AFE2-1:1

817

818

Descriptions of checks

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C++ 2008 7-5-2

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:

void example(int **ppx) {
 int x;
 ppx[0] = &x; //local address
}

The following code example passes the check and will not give a warning about this
issue:

static int y = 0;
void example3(int **ppx){
 *ppx = &y; //OK - static address
}

MISRAC++2008-7-5-2_d (C++ only)

Synopsis Detected a stack address stored via a reference parameter.

Enabled by default Yes

Severity/Certainty High/Medium

Full description (Required) The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist. The address of
a local stack variable was found assigned to a parameter of reference type. When the
function ends, this address becomes invalid. The application might appear to work
normally, but it is in fact accessing illegal memory. This might also cause the application
to crash, or change data unpredictably.

Coding standards CERT DCL30-C

Declare objects with appropriate storage durations
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

CWE 466

Return of Pointer Value Outside of Expected Range

MISRA C++ 2008 7-5-2

(Required) The address of an object with automatic storage shall not be assigned
to another object that may persist after the first object has ceased to exist.

Code examples The following code example fails the check and will give a warning:

void example(int *&pxx) {
 int x;
 pxx = &x;
}

The following code example passes the check and will not give a warning about this
issue:

void example(int *p, int *&q) {
 int x;
 int *px= &x;
 p = px; // ok, pointer
 q = p; // ok, not local
}

MISRAC++2008-7-5-4_a

Synopsis There are functions that call themselves directly.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) Functions should not call themselves, either directly or indirectly.

Coding standards MISRA C++ 2008 7-5-4

(Advisory) Functions should not call themselves, either directly or indirectly.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

819

820

Descriptions of checks

void example(void) {
example();

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC++2008-7-5-4_b

Synopsis There are functions that call themselves indirectly.

Enabled by default No

Severity/Certainty Low/Medium

Full description (Advisory) Functions should not call themselves, either directly or indirectly.

Coding standards MISRA C++ 2008 7-5-4

(Advisory) Functions should not call themselves, either directly or indirectly.

Code examples The following code example fails the check and will give a warning:

void example(void);
void callee(void) {
 example();
}
void example(void) {
 callee();
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void);
void callee(void) {
 // example();
}
void example(void) {
 callee();
}

MISRAC++2008-8-0-1

Synopsis There are declarations that contain more than one variable or constant each.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) An init-declarator-list or a member-declarator-list shall consist of a single
init-declarator or member-declarator respectively.

Coding standards MISRA C++ 2008 8-0-1

(Required) An init-declarator-list or a member-declarator-list shall consist of a
single init-declarator or member-declarator respectively.

Code examples The following code example fails the check and will give a warning:

int foo(){
 int a,b,c;
}

The following code example passes the check and will not give a warning about this
issue:

int foo(){
 int a; int b; int c;
}

MISRAC++2008-8-4-1

Synopsis There are functions defined using the ellipsis (...) notation.
AFE1_AFE2-1:1

821

822

Descriptions of checks

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) Functions shall not be defined using the ellipsis notation. Additionally,
passing an argument with non-POD class type leads to undefined behavior. Note that
the rule specifies 'defined' (and not 'declared') so the use of existing library functions is
allowed.

Coding standards MISRA C++ 2008 8-4-1

(Required) Functions shall not be defined using the ellipsis notation.

Code examples The following code example fails the check and will give a warning:

#include <stdarg.h>
int putchar(int c);

void
minprintf(const char *fmt, ...)
{
 va_list ap;
 const char *p, *s;

 va_start(ap, fmt);
 for (p = fmt; *p != '\0'; p++) {
 if (*p != '%') {
 putchar(*p);
 continue;
 }
 switch (*++p) {
 case 's':
 for (s = va_arg(ap, const char *); *s != '\0'; s++)
 putchar(*s);
 break;
 }
 }
 va_end(ap);
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

int puts(const char *);

void
func(void)
{
 puts("Hello, world!");
}

MISRAC++2008-8-4-3

Synopsis For some execution paths, no return statements are executed in functions with a
non-void return type.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) All exit paths from a function with non-void return type shall have an explicit
return statement with an expression. At least one execution path in at least one non-void
function does not contain a return statement before it exits. Non-void functions without
a return statement return an undefined value. This is not a problem if the function is used
as a void function, but if the function return value is used, it causes unpredictable
behavior. This is a weaker check than the one performed by gcc. Its check allows more
aggressive coding without violating the rule. However, a rule violation in gcc means
there is no path leading to a return statement. non-void return type.

Coding standards CERT MSC37-C

Ensure that control never reaches the end of a non-void function

MISRA C++ 2008 8-4-3

(Required) All exit paths from a function with non-void return type shall have
an explicit return statement with an expression.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

823

824

Descriptions of checks

#include <stdio.h>

int example(void) {
 int x;

 scanf("%d",&x);

 if (x > 10) {
 return 10;
 }
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdio.h>

int example(void) {
 int x;

 scanf("%d",&x);

 if (x > 10) {
 return 10;
 }

 return 0;
}

MISRAC++2008-8-4-4

Synopsis The addresses of one or more functions are taken without an explicit &.

Enabled by default Yes

Severity/Certainty Low/High

Full description (Required) A function identifier shall either be used to call the function or it shall be
preceded by &.

Coding standards MISRA C++ 2008 8-4-4
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) A function identifier shall either be used to call the function or it
shall be preceded by &.

Code examples The following code example fails the check and will give a warning:

void func(void);

void
example(void)
{
 void (*pf)(void) = func;
}

The following code example passes the check and will not give a warning about this
issue:

void func(void);

void
example(void)
{
 void (*pf)(void) = &func;
}

MISRAC++2008-8-5-1_a

Synopsis In all execution paths, variables are read before they are assigned a value.

Enabled by default Yes

Severity/Certainty High/High

Full description (Required) All variables shall have a defined value before they are used. A variable is
read before it is assigned a value, on all execution paths. Different paths might result in
reading a variable at different execution points. Whichever path is executed,
uninitialized data is read, leading to unpredictable behavior.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457
AFE1_AFE2-1:1

825

826

Descriptions of checks

Use of Uninitialized Variable

MISRA C++ 2008 8-5-1

(Required) All variables shall have a defined value before they are used.

Code examples The following code example fails the check and will give a warning:

int main(void) {
 int x;

 x++; //x is uninitialized

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

int main(void) {
 int x = 0;

 x++;

 return 0;
}

MISRAC++2008-8-5-1_b

Synopsis In some execution paths, variables might be read before they are assigned a value.

Enabled by default Yes

Severity/Certainty High/Low

Full description (Required) All variables shall have a defined value before they are used. There might be
some execution paths where the variable is assigned a value before it is read. That
causes unpredictable behavior.

Coding standards CWE 457

Use of Uninitialized Variable
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRA C++ 2008 8-5-1

(Required) All variables shall have a defined value before they are used.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int main(void) {
 int x, y;

 if (rand()) {
 x = 0;
 }

 y = x; //x may not be initialized

 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>

int main(void) {
 int x;

 if (rand()) {
 x = 0;
 }

 /* x never read */

 return 0;
}

MISRAC++2008-8-5-1_c

Synopsis One or more uninitialized or NULL pointers are dereferenced.

Enabled by default Yes
AFE1_AFE2-1:1

827

828

Descriptions of checks

Severity/Certainty High/Medium

Full description (Required) All variables shall have a defined value before they are used. One or more
uninitialized or NULL pointers are dereferenced, causing memory corruption or a crash.
Pointer values must be initialized before being dereferenced.

Coding standards CERT EXP33-C

Do not reference uninitialized memory

CWE 457

Use of Uninitialized Variable

CWE 824

Access of Uninitialized Pointer

MISRA C++ 2008 8-5-1

(Required) All variables shall have a defined value before they are used.

Code examples The following code example fails the check and will give a warning:

void example(void) {
 int *p;
 *p = 4; //p is uninitialized
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
 int *p,a;
 p = &a;
 *p = 4; //OK - p holds a valid address
}

MISRAC++2008-8-5-2

Synopsis There are one or more non-zero array initializations that do not exactly match the
structure of the array declaration.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description (Required) Braces shall be used to indicate and match the structure in the nonzero
initialization of arrays and structures.

Coding standards MISRA C++ 2008 8-5-2

(Required) Braces shall be used to indicate and match the structure in the
nonzero initialization of arrays and structures.

Code examples The following code example fails the check and will give a warning:

void example(void) {
int y[3][4] = { { 1, 2, 3 }, { 4, 5, 6 } };

}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
int y[3][2] = { { 1, 2 }, { 3, 4 }, { 5, 6 } };

}

MISRAC++2008-9-3-1 (C++ only)

Synopsis A member function qualified as const returns a pointer member variable.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) const member functions shall not return non-const pointers or references to
class-data. A member function qualified as const returns a pointer member variable. A
compiler will not notice this, because the pointer being returned is a copy, even though
the memory it refers to is vulnerable.

Coding standards MISRA C++ 2008 9-3-1
AFE1_AFE2-1:1

829

830

Descriptions of checks

(Required) const member functions shall not return non-const pointers or
references to class-data.

Code examples The following code example fails the check and will give a warning:

class C{
 int* foo() const {
 return p;
 }
 int* p;
};

The following code example passes the check and will not give a warning about this
issue:

class C{
 int* foo() {
 return p;
 }
 int* p;
};

MISRAC++2008-9-3-2 (C++ only)

Synopsis Member functions return non-const handles to members.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) Member functions shall not return non-const handles to class-data. Member
functions return non-const handles to members. Implement class interfaces with
member functions to retain more control over how the object state can be modified and
to make it easier to maintain a class without affecting clients. Returning a handle to
class-data allows clients to modify the state of the object without using any interfaces.

Coding standards CERT OOP35-CPP

Do not return references to private data

MISRA C++ 2008 9-3-2
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) Member functions shall not return non-const handles to class-data.

Code examples The following code example fails the check and will give a warning:

class C{
 int x;
 public:
 int& foo();
 int* bar();
};

int& C::foo() {
 return x; //returns a non-const reference to x
}

int* C::bar() {
 return &x; //returns a non-const pointer to x
}

The following code example passes the check and will not give a warning about this
issue:

class C{
 int x;
 public:
 const int& foo();
 const int* bar();
};

const int& C::foo() {
 return x; //OK - returns a const reference
}

const int* C::bar() {
 return &x; //OK - returns a const pointer
}

MISRAC++2008-9-5-1

Synopsis Unions were found.

Enabled by default Yes
AFE1_AFE2-1:1

831

832

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) Unions shall not be used.

Coding standards MISRA C++ 2008 9-5-1

(Required) Unions shall not be used.

Code examples The following code example fails the check and will give a warning:

union cheat {
 int i;
 float f;
};

int example(float f) {
 union cheat u;
 u.f = f;
 return u.i;
}

The following code example passes the check and will not give a warning about this
issue:

int example(int x) {
 return x;
}

MISRAC++2008-9-6-2

Synopsis Bitfields of plain int type were found.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Bit-fields shall be either bool type or an explicitly unsigned or signed
integral type.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards MISRA C++ 2008 9-6-2

(Required) Bit-fields shall be either bool type or an explicitly unsigned or signed
integral type.

Code examples The following code example fails the check and will give a warning:

struct bad {
int x:3;

};
#error "IGNORE_TEST: enum's are ok!"

enum digs { ONE, TWO, THREE, FOUR };

struct bad {
digs d:3;

};

The following code example passes the check and will not give a warning about this
issue:

struct good {
signed int x:3;

};
struct good {

unsigned int x:3;
};

MISRAC++2008-9-6-3

Synopsis Bitfields of plain int type were found.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Bit-fields shall not have enum type.

Coding standards MISRA C++ 2008 9-6-3

(Required) Bit-fields shall not have enum type.
AFE1_AFE2-1:1

833

834

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

enum digs { ONE, TWO, THREE, FOUR };

struct bad {
digs d:3;

};

The following code example passes the check and will not give a warning about this
issue:

struct good {
signed int x:3;

};
struct good {

unsigned int x:3;
};

MISRAC++2008-9-6-4

Synopsis Signed single-bit bitfields (excluding anonymous fields) were found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) Named bit-fields with signed integer type shall have a length of more than
one bit.

Coding standards MISRA C++ 2008 9-6-4

(Required) Named bit-fields with signed integer type shall have a length of more
than one bit.

Code examples The following code example fails the check and will give a warning:

struct S
{
 signed int a : 1; // Non-compliant
};

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

struct S
{
 signed int b : 2;
 signed int : 0;
 signed int : 1;
 signed int : 2;
};

MISRAC++2008-12-1-1_a (C++ only)

Synopsis A virtual member function is called in a class constructor.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) An object's dynamic type shall not be used from the body of its constructor
or destructor. When an instance is constructed, the virtual member function of its base
class is called, rather than the function of the actual class being constructed. This might
result in an incorrect function being called, and consequently erroneous data or
uninitialized elements.

Coding standards CERT OOP30-CPP

Do not invoke virtual functions from constructors or destructors

MISRA C++ 2008 12-1-1

(Required) An object's dynamic type shall not be used from the body of its
constructor or destructor.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

835

836

Descriptions of checks

#include <iostream>
#ifndef __embedded_cplusplus
 using namespace std;
#endif

class A {
public:
 A() { f(); } //virtual member function is called
 virtual void f() const { cout << "A::f\n"; }
};

class B: public A {
public:
 virtual void f() const { cout << "B::f\n"; }
};

int main(void) {
 B *b = new B();
 delete b;
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

#include <iostream>
#ifndef __embedded_cplusplus
 using namespace std;
#endif

class A {
public:
 A() { } //OK - contructor does not call any virtual
 //member functions
 virtual void f() const { cout << "A::f\n"; }
};

class B: public A {
public:
 virtual void f() const { cout << "B::f\n"; }
};

int main(void) {
 B *b = new B();
 delete b;
 return 0;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC++2008-12-1-1_b (C++ only)

Synopsis A virtual member function is called in a class destructor.

Enabled by default Yes

Severity/Certainty Medium/High

Full description (Required) An object's dynamic type shall not be used from the body of its constructor
or destructor. When an instance is destructed, the virtual member function of its base
class is called, rather than the function of the actual class being destructed. This might
result in an incorrect function being called, and consequently dynamic memory might
not be properly deallocated, or some other unwanted behavior might occur.

Coding standards CERT OOP30-CPP

Do not invoke virtual functions from constructors or destructors

MISRA C++ 2008 12-1-1

(Required) An object's dynamic type shall not be used from the body of its
constructor or destructor.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

837

838

Descriptions of checks

#include <iostream>
#ifndef __embedded_cplusplus
 using namespace std;
#endif

class A {
public:
 ~A() { f(); } //virtual member function is called
 virtual void f() const { cout << "A::f\n"; }
};

class B: public A {
public:
 virtual void f() const { cout << "B::f\n"; }
};

int main(void) {
 B *b = new B();
 delete b;
 return 0;
}

The following code example passes the check and will not give a warning about this
issue:

#include <iostream>
#ifndef __embedded_cplusplus
 using namespace std;
#endif

class A {
public:
 ~A() { } //OK - contructor does not call any virtual
 //member functions
 virtual void f() const { cout << "A::f\n"; }
};

class B: public A {
public:
 virtual void f() const { cout << "B::f\n"; }
};

int main(void) {
 B *b = new B();
 delete b;
 return 0;
}

AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

MISRAC++2008-12-1-3 (C++ only)

Synopsis Constructors that can be called with a single argument of fundamental type are not
declared explicit.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) All constructors that are callable with a single argument of fundamental type
shall be declared explicit. Constructors that are callable with a single argument of
fundamental type are not declared explicit. This means that nothing prevents the
constructor from being used to implicitly convert from a fundamental type to the class
type.

Coding standards CERT OOP32-CPP

Ensure that single-argument constructors are marked "explicit"

MISRA C++ 2008 12-1-3

(Required) All constructors that are callable with a single argument of
fundamental type shall be declared explicit.

Code examples The following code example fails the check and will give a warning:

class C{
 C(double x){} //should be explicit
};

The following code example passes the check and will not give a warning about this
issue:

class C{
 explicit C(double x){} //OK
};

MISRAC++2008-15-0-2

Synopsis Throw of exceptions by pointer.

Enabled by default No
AFE1_AFE2-1:1

839

840

Descriptions of checks

Severity/Certainty Medium/Medium

Full description (Advisory) An exception object should not have pointer type. An exception object of
pointer type is thrown and that pointer refers to a dynamically created object. It might
thus be unclear which function is responsible for destroying it, and when. This
ambiguity does not exist if the object is caught by value or reference.

Coding standards CERT ERR09-CPP

Throw anonymous temporaries and catch by reference

MISRA C++ 2008 15-0-2

(Advisory) An exception object should not have pointer type.

Code examples The following code example fails the check and will give a warning:

class Except {};

Except *new_except();

void example(void)
{
 throw new Except();
}

The following code example passes the check and will not give a warning about this
issue:

class Except {};

void example(void)
{
 throw Except();
}

MISRAC++2008-15-1-2

Synopsis Throw of NULL integer constant.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description (Required) NULL shall not be thrown explicitly. throw(NULL) (equivalent to
throw(0)) is never a throw of the null-pointer-constant, which means it can only be
caught by an integer handler. This might be undesired behavior, especially if your
application only has handlers for pointer-to-type exceptions.

Coding standards MISRA C++ 2008 15-1-2

(Required) NULL shall not be thrown explicitly.

Code examples The following code example fails the check and will give a warning:

typedef intint32_t;
typedefsigned charchar_t;
#defineNULL0

void example(void)
{
 try {
 throw (NULL); // Non-compliant
 }
 catch (int32_t i) { // NULL exception handled here
 // ...
 }
 catch (const char_t *) { // Developer may expect it to be
caught here
 // ...
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

841

842

Descriptions of checks

typedef intint32_t;
typedefsigned charchar_t;
#defineNULL0

void example(void)
{
 char_t * p = NULL;
 try {
 throw (p); // Compliant
 }
 catch (int32_t i) {
 // ...
 }
 catch (const char_t *) { // Exception handled here
 // ...
 }
}

MISRAC++2008-15-1-3 (C++ only)

Synopsis Unsafe rethrow of exception.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) An empty throw (throw;) shall only be used in the compound-statement of a
catch handler.

Coding standards MISRA C++ 2008 15-1-3

(Required) An empty throw (throw;) shall only be used in the
compound-statement of a catch handler.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void func()
{
 try
 {
 throw;
 }
 catch (...) {}
}

The following code example passes the check and will not give a warning about this
issue:

void func()
{
 try
 {
 throw (42);
 }
 catch (int i)
 {
 if (i > 10)
 {
 throw;
 }
 }
}

MISRAC++2008-15-3-1 (C++ only)

Synopsis There are exceptions thrown without a handler in some call paths that lead to that point.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) Exceptions shall be raised only after start-up and before termination of the
program. There are exceptions thrown without a handler in some call paths that lead to
that point. It is implementation-defined whether the call stack is unwound before
termination, so the destructors of any automatic objects might or might not be invoked.
If an exception is thrown as an object of a derived class, a compatible type might be
either the derived class or any of its bases.
AFE1_AFE2-1:1

843

844

Descriptions of checks

Coding standards MISRA C++ 2008 15-3-1

(Required) Exceptions shall be raised only after start-up and before termination
of the program.

Code examples The following code example fails the check and will give a warning:

class C {
public:
 C () { throw (0); } // Non-compliant – thrown before main
starts
 ~C () { throw (0); } // Non-compliant – thrown after main
exits
};

C c; // An exception thrown in C's constructor or destructor
will
 // cause the program to terminate, and will not be caught
by
 // the handler in main

int main(...)
{
 try {
 // program code
 return 0;
 }
 // The following catch-all exception handler can only
 // catch exceptions thrown in the above program code
 catch (...) {
 // Handle exception
 return 0;
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

class C {
public:
 C () { } // Compliant – doesn't throw exceptions
 ~C () { } // Compliant – doesn't throw exceptions
};

C c;

int main(...)
{
 try {
 // program code
 return 0;
 }
 // The following catch-all exception handler can only
 // catch exceptions thrown in the above program code
 catch (...) {
 // Handle exception
 return 0;
 }
}

MISRAC++2008-15-3-2 (C++ only)

Synopsis There are no default exception handlers for try.

Enabled by default No

Severity/Certainty Medium/Low

Full description (Advisory) There should be at least one exception handler to catch all otherwise
unhandled exceptions

Coding standards MISRA C++ 2008 15-3-2

(Advisory) There should be at least one exception handler to catch all otherwise
unhandled exceptions

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

845

846

Descriptions of checks

int main()
{
 try
 {
 throw (42);
 }
 catch (int i)
 {
 if (i > 10)
 {
 throw;
 }
 }
 return 1;
}

The following code example passes the check and will not give a warning about this
issue:

int main()
{
 try
 {
 throw;
 }
 catch (...) {}
 // spacer
 try {}
 catch (int i) {}
 catch (...) {}
 return 0;
}

MISRAC++2008-15-3-3 (C++ only)

Synopsis One or more exception handlers in a constructor or destructor accesses a non-static
member variable that might not exist.

Enabled by default Yes

Severity/Certainty Medium/Low
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) Handlers of a function-try-block implementation of a class constructor or
destructor shall not reference non-static members from this class or its bases.

Coding standards MISRA C++ 2008 15-3-3

(Required) Handlers of a function-try-block implementation of a class
constructor or destructor shall not reference non-static members from this class
or its bases.

Code examples The following code example fails the check and will give a warning:

int throws();

class C
{
public:
 int x;
 static char c;
 C ()
 {
 x = 0;
 }

 ~C ()
 {
 try
 {
 throws();
 // Action that may raise an exception
 }
 catch (...)
 {
 if (0 == x) // Non-compliant – x may not exist at this
point
 {
 // Action dependent on value of x
 }
 }
 }
};

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

847

848

Descriptions of checks

class C
{
public:
 int x;
 static char c;
 C ()
 {
 try
 {
 // Action that may raise an exception
 }
 catch (...)
 {
 if (0 == c)
 {
 // Action dependent on value of c
 }
 }
 }

 ~C ()
 {
 try
 {
 // Action that may raise an exception
 }
 catch (int i) {}
 catch (...)
 {
 if (0 == c)
 {
 // Action dependent on value of c
 }
 }
 }
};

MISRAC++2008-15-3-4 (C++ only)

Synopsis There are calls to functions that are explicitly declared to throw an exception type that
are not handled (or declared as thrown) by the caller.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Medium/Medium

Full description (Required) Each exception explicitly thrown in the code shall have a handler of a
compatible type in all call paths that could lead to that point. There are calls to functions
that are explicitly declared to throw an exception type that are not handled (or declared
as thrown) by the caller. It is implementation-defined whether the call stack is unwound
before termination, so the destructors of any automatic objects might or might not be
invoked. If an exception is thrown as an object of a derived class, a compatible type may
be either the derived class or any of its bases.

Coding standards MISRA C++ 2008 15-3-4

(Required) Each exception explicitly thrown in the code shall have a handler of
a compatible type in all call paths that could lead to that point.

Code examples The following code example fails the check and will give a warning:

class E1{};

void foo(int i) throw (E1) {
 if (i<0)
 throw E1();
}

int bar() {
 foo(-3);
}
class E1{};

void foo(int i) throw (E1) {
 if (i<0)
 throw E1();
}

int bar() throw (E1) { //warning about E1 because it is not
EXPLICITLY caught
 foo(-3);
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

849

850

Descriptions of checks

class E1{};

void foo(int i) throw (E1) {
 if (i<0)
 throw E1();
}

int bar() {
 try {
 foo(-3);
 }
 catch (E1){
 }
}

MISRAC++2008-15-3-5 (C++ only)

Synopsis Exception objects are caught by value, not by reference.

Enabled by default Yes

Severity/Certainty Medium/Medium

Full description (Required) A class type exception shall always be caught by reference. Class type
exception objects are caught by value, leading to slicing. That is, if the exception object
is of a derived class and is caught as the base, only the base class’s functions (including
virtual functions) can be called. Moreover, any additional member data in the derived
class cannot be accessed. If the exception is instead caught by reference, slicing does
not occur.

Coding standards CERT ERR09-CPP

Throw anonymous temporaries and catch by reference

MISRA C++ 2008 15-3-5

(Required) A class type exception shall always be caught by reference.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

typedefcharchar_t;

// base class for exceptions
class ExpBase {
public:
 virtual const char_t *who () { return "base"; }
};

class ExpD1: public ExpBase {
public:
 virtual const char_t *who () { return "type 1 exception"; }
};

class ExpD2: public ExpBase {
public:
 virtual const char_t *who () { return "type 2 exception"; }
};

void example()
{
 try {
 // ...
 throw ExpD1 ();
 // ...
 throw ExpBase ();
 }
 catch (ExpBase b) { // Non-compliant - derived type objects
will be
 // caught as the base type
 b.who(); // Will always be "base"
 throw b; // The exception re-thrown is of the
base class,
 // not the original exception type
 }
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

851

852

Descriptions of checks

typedefcharchar_t;

// base class for exceptions
class ExpBase {
public:
 virtual const char_t *who () { return "base"; }
};

class ExpD1: public ExpBase {
public:
 virtual const char_t *who () { return "type 1 exception"; }
};

class ExpD2: public ExpBase {
public:
 virtual const char_t *who () { return "type 2 exception"; }
};

void example()
{
 try {
 // ...
 throw ExpD1 ();
 // ...
 throw ExpBase ();
 }
 catch (ExpBase &b) { // Compliant – exceptions caught by
reference
 // ...
 b.who(); // "base", "type 1 exception" or "type 2
exception"
 // depending upon the type of the thrown object
 }
}

MISRAC++2008-15-5-1 (C++ only)

Synopsis An exception is thrown, or might be thrown, in a class destructor.

Enabled by default Yes

Severity/Certainty Medium/Medium
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Full description (Required) A class destructor shall not exit with an exception.

Coding standards CERT ERR33-CPP

Destructors must not throw exceptions

MISRA C++ 2008 15-5-1

(Required) A class destructor shall not exit with an exception.

Code examples The following code example fails the check and will give a warning:

class E{};

class C {
 ~C() {
 if (!p){
 throw E(); //may throw an exception here
 }
 }
 int* p;
};
class E{};

void do_something();

class C {
 ~C() throw (E) { //may throw an exception
 if (!p){
 do_something();
 }
 }
 int* p;
};

The following code example passes the check and will not give a warning about this
issue:

void do_something();

class C {
 ~C() { //OK
 if (!p){
 do_something();
 }
 }
 int* p;
};
AFE1_AFE2-1:1

853

854

Descriptions of checks

MISRAC++2008-16-0-3

Synopsis Found occurrances of #undef.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) #undef shall not be used. or meaning of a macro when it is used in the code.

Coding standards MISRA C++ 2008 16-0-3

(Required) #undef shall not be used.

Code examples The following code example fails the check and will give a warning:

#defineSYM
#undef SYM
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {}

MISRAC++2008-16-0-4

Synopsis Definitions of function-like macros were found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) Function-like macros shall not be defined. robust mechanism. This is
particularly true with respect to the type checking of parameters, and the problem of
function-like macros potentially evaluating parameters multiple times. Use inline
functions instead.
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Coding standards MISRA C++ 2008 16-0-4

(Required) Function-like macros shall not be defined.

Code examples The following code example fails the check and will give a warning:

#defineABS(x)((x) < 0 ? -(x) : (x))

void example(void) {
 int a;
 ABS (a);
}

The following code example passes the check and will not give a warning about this
issue:

template <typename T>
inline T ABS(T x) { return x < 0 ? -x : x; }

MISRAC++2008-16-2-2 (C++ only)

Synopsis Definitions of macros that are not include guards were found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) C++ macros shall only be used for: include guards, type qualifiers, or storage
class specifiers. functions and constant declarations.

Coding standards MISRA C++ 2008 16-2-2

(Required) C++ macros shall only be used for: include guards, type qualifiers,
or storage class specifiers.

Code examples The following code example fails the check and will give a warning:

#defineX(Y)(Y)// Non-compliant

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

855

856

Descriptions of checks

#include "header.h"/* contains #ifndef HDR #define HDR ... #endif
*/
void example(void) {}

MISRAC++2008-16-2-3

Synopsis Header files without #include guards were found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) Include guards shall be provided. Header files were found without #include
guards. This means that a header file can be included more than once, causing confusion
or undefined behavior.

Coding standards MISRA C++ 2008 16-2-3

(Required) Include guards shall be provided.

Code examples The following code example fails the check and will give a warning:

#include "unguarded_header.h"
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

#include <stdlib.h>
#include "header.h"/* contains #ifndef HDR #define HDR ... #endif
*/
void example(void) {}

MISRAC++2008-16-2-4

Synopsis There are illegal characters in header file names.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Low

Full description (Required) The ', ", /* or // characters shall not occur in a header file name. ', ", /*, or //
characters are used between the " delimiters in a header name preprocessing token.

Coding standards MISRA C++ 2008 16-2-4

(Required) The ', ", /* or // characters shall not occur in a header file name.

Code examples The following code example fails the check and will give a warning:

#include "fi'le.h"/* Non-compliant */
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

#include "header.h"
void example(void) {}

MISRAC++2008-16-2-5

Synopsis There are illegal characters in header file names.

Enabled by default No

Severity/Certainty Low/Low

Full description (Advisory) The backslash character should not occur in a header file name. Backslash
characters are used between the " delimiters in a header name preprocessing token.

Coding standards MISRA C++ 2008 16-2-5

(Advisory) The backslash character should not occur in a header file name.

Code examples The following code example fails the check and will give a warning:

#include "fi\\le.h"/* Non-compliant */
AFE1_AFE2-1:1

857

858

Descriptions of checks

The following code example passes the check and will not give a warning about this
issue:

#include "header.h"
void example(void) {}

MISRAC++2008-16-3-1

Synopsis There are multiple # or ## operators in a macro definition.

Enabled by default Yes

Severity/Certainty Medium/Low

Full description (Required) There shall be at most one occurrence of the # or ## operators in a single
macro definition. There are multiple # or ## operators in a macro definition.

Coding standards MISRA C++ 2008 16-3-1

(Required) There shall be at most one occurrence of the # or ## operators in a
single macro definition.

Code examples The following code example fails the check and will give a warning:

#defineD(x, y, z, yz)x ## y ## z/* Non-compliant */
#define C(x, y)# x ## y/* Non-compliant */

The following code example passes the check and will not give a warning about this
issue:

#define A(x)#x/* Compliant */
#defineB(x, y)x ## y/* Compliant */

MISRAC++2008-16-3-2

Synopsis # and ## operators were found in macro definitions.

Enabled by default No
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Low

Full description (Advisory) The # and ## operators should not be used.

Coding standards MISRA C++ 2008 16-3-2

(Advisory) The # and ## operators should not be used.

Code examples The following code example fails the check and will give a warning:

#defineA(X,Y)X##Y/* Non-compliant */

#define A(Y)#Y/* Non-compliant */

The following code example passes the check and will not give a warning about this
issue:

#define A(x)(x)/* Compliant */

MISRAC++2008-17-0-1

Synopsis Detected a #define or #undef of a reserved identifier in the standard library.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) Reserved identifiers, macros and functions in the standard library shall not
be defined, redefined or undefined. Detected a #define or #undef of a macro name that
is a C/C++ reserved identifier, C/C++ keyword, or the name of a macro, object, or
function in the standard library. Redefining or undefining reserved words and function
names like __LINE__, __FILE__, __DATE__, __TIME__, __STDC__, errno, and
assert, causes undefined behavior.

Coding standards MISRA C++ 2008 17-0-1

(Required) Reserved identifiers, macros and functions in the standard library
shall not be defined, redefined or undefined.
AFE1_AFE2-1:1

859

860

Descriptions of checks

Code examples The following code example fails the check and will give a warning:

#define__TIME__11111111/* Non-compliant */

The following code example passes the check and will not give a warning about this
issue:

#define A(x)(x)/* Compliant */

MISRAC++2008-17-0-3

Synopsis One or more library functions are being overridden.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The names of standard library functions shall not be overridden.

Coding standards MISRA C++ 2008 17-0-3

(Required) The names of standard library functions shall not be overridden.

Code examples The following code example fails the check and will give a warning:

extern "C" void strcpy(void);
void strcpy(void) {}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {}

MISRAC++2008-17-0-5

Synopsis Found uses of setjmp.h.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) The setjmp macro and the longjmp function shall not be used.

Coding standards CERT ERR34-CPP

Do not use longjmp

MISRA C++ 2008 17-0-5

(Required) The setjmp macro and the longjmp function shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <setjmp.h>

jmp_buf ex;

void example(void) {
 setjmp(ex);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC++2008-18-0-1 (C++ only)

Synopsis C library includes were found.

Enabled by default Yes

Severity/Certainty Low/Low

Full description (Required) The C library shall not be used. Includes of the C version of the standard
library were found. You should only use the C++ version.
AFE1_AFE2-1:1

861

862

Descriptions of checks

Coding standards MISRA C++ 2008 18-0-1

(Required) The C library shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>
void example(void) {}

The following code example passes the check and will not give a warning about this
issue:

#include <cstdio>
void example(void) {}

MISRAC++2008-18-0-2

Synopsis Uses of atof, atoi, atol and atoll were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The library functions atof, atoi and atol from library cstdlib shall not be used.

Coding standards CERT INT06-C

Use strtol() or a related function to convert a string token to an integer

MISRA C++ 2008 18-0-2

(Required) The library functions atof, atoi and atol from library <cstdlib> shall
not be used.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

int example(char buf[]) {
 return atoi(buf);
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
}

MISRAC++2008-18-0-3

Synopsis Uses of abort, exit, getenv, and system were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The library functions abort, exit, getenv and system from library cstdlib shall
not be used.

Coding standards MISRA C++ 2008 18-0-3

(Required) The library functions abort, exit, getenv and system from library
<cstdlib> shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void example(void) {
 abort();
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC++2008-18-0-4

Synopsis Uses of time.h functions: asctime, clock, ctime, difftime, gmtime, localtime, mktime,
strftime, and time were found.

Enabled by default Yes
AFE1_AFE2-1:1

863

864

Descriptions of checks

Severity/Certainty Low/Medium

Full description (Required) The time handling functions of library ctime shall not be used.

Coding standards MISRA C++ 2008 18-0-4

(Required) The time handling functions of library <ctime> shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <stddef.h>
#include <time.h>

time_t example(void) {
 return time(NULL);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC++2008-18-0-5

Synopsis Uses of strcpy, strcmp, strcat, strchr, strspn, strcspn, strpbrk, strrchr, strstr, strtok, or
strlen were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The unbounded functions of library <cstring> shall not be used. within the
<cstring> library can read or write beyond the end of a buffer, resulting in undefined
behavior. Ideally, a safe string handling library should be used.

Coding standards MISRA C++ 2008 18-0-5
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

(Required) The unbounded functions of library <cstring> shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <string.h>

void example(void) {
 char buf[100];
 strcpy(buf, "Hello, world!\n");
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC++2008-18-2-1

Synopsis Uses of the built-in function offsetof were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The macro offsetof shall not be used.

Coding standards MISRA C++ 2008 18-2-1

(Required) The macro offsetof shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <stddef.h>
//#include <sys/stat.h>
struct stat { int st_size; };
int example(void) {
 return offsetof(struct stat, st_size);
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

865

866

Descriptions of checks

void example(void) {
}

MISRAC++2008-18-4-1

Synopsis Uses of malloc, calloc, realloc, or free were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) Dynamic heap memory allocation shall not be used.

Coding standards MISRA C++ 2008 18-4-1

(Required) Dynamic heap memory allocation shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <stdlib.h>

void *example(void) {
 return malloc(100);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC++2008-18-7-1

Synopsis Uses of signal.h were found.

Enabled by default Yes
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

Severity/Certainty Low/Medium

Full description (Required) The signal handling facilities of csignal shall not be used.

Coding standards MISRA C++ 2008 18-7-1

(Required) The signal handling facilities of <csignal> shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <signal.h>
#include <stddef.h>

void example(void) {
 signal(SIGFPE, NULL);
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC++2008-19-3-1

Synopsis Uses of errno were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The error indicator errno shall not be used.

Coding standards MISRA C++ 2008 19-3-1

(Required) The error indicator errno shall not be used.

Code examples The following code example fails the check and will give a warning:
AFE1_AFE2-1:1

867

868

Descriptions of checks

#include <errno.h>
#include <stdlib.h>
//int errno;

int example(char buf[]) {
 int i;
 errno = 0;
 i = atoi(buf);
 return (errno == 0) ? i : 0;
}

The following code example passes the check and will not give a warning about this
issue:

void example(void) {
}

MISRAC++2008-27-0-1

Synopsis Uses of stdio.h were found.

Enabled by default Yes

Severity/Certainty Low/Medium

Full description (Required) The stream input/output library cstdio shall not be used.

Coding standards MISRA C++ 2008 27-0-1

(Required) The stream input/output library <cstdio> shall not be used.

Code examples The following code example fails the check and will give a warning:

#include <stdio.h>

void example(void) {
 printf("Hello, world!\n");
}

The following code example passes the check and will not give a warning about this
issue:
AFE1_AFE2-1:1

C-STAT® Static Analysis Guide

C-STAT checks

void example(void) {
}

AFE1_AFE2-1:1

869

	Contents
	C-STAT for static analysis
	Introduction to C-STAT and static analysis
	Briefly about C-STAT and the coding rules
	The checks and their documentation
	Various ways to use C-STAT

	Using C-STAT
	Getting started analyzing using C-STAT
	Generating an analysis report
	Performing regression testing
	Performing an analysis from the command line

	Reference information on the graphical environment
	C-STAT Messages window
	C-STAT Static Analysis options
	Select C-STAT Checks dialog box

	Descriptions of compiler extensions for C-STAT
	cstat_disable
	cstat_enable
	cstat_restore
	cstat_suppress
	_ _CSTAT_ _

	Descriptions of C-STAT options
	--all
	--check
	--checks
	--db
	--default
	--dir
	-f
	--full
	--group
	--output
	--output
	--package
	--parallel
	--project
	--timeout
	--timeout_check

	Description of the C-STAT command line tools
	The icstat tool
	The ichecks tool
	The ireport tool

	C-STAT checks
	Summary of checks
	Descriptions of checks
	ARR-inv-index-pos
	ARR-inv-index-ptr-pos
	ARR-inv-index-ptr
	ARR-inv-index
	ARR-neg-index
	ARR-uninit-index
	ATH-cmp-float
	ATH-cmp-unsign-neg
	ATH-cmp-unsign-pos
	ATH-div-0-assign
	ATH-div-0-cmp-aft
	ATH-div-0-cmp-bef
	ATH-div-0-interval
	ATH-div-0-pos
	ATH-div-0-unchk-global
	ATH-div-0-unchk-local
	ATH-div-0-unchk-param
	ATH-div-0
	ATH-inc-bool (C++ only)
	ATH-malloc-overrun
	ATH-neg-check-nonneg
	ATH-neg-check-pos
	ATH-new-overrun (C++ only)
	ATH-overflow-cast
	ATH-overflow
	ATH-shift-bounds
	ATH-shift-neg
	ATH-sizeof-by-sizeof
	CAST-old-style (C++ only)
	CATCH-object-slicing (C++ only)
	CATCH-xtor-bad-member (C++ only)
	COMMA-overload (C++ only)
	COMMENT-nested
	CONST-local
	CONST-member-ret (C++ only)
	CONST-param
	COP-alloc-ctor (C++ only)
	COP-assign-op-ret (C++ only)
	COP-assign-op-self (C++ only)
	COP-assign-op (C++ only)
	COP-copy-ctor (C++ only)
	COP-dealloc-dtor (C++ only)
	COP-dtor-throw (C++ only)
	COP-dtor (C++ only)
	COP-init-order (C++ only)
	COP-init-uninit (C++ only)
	COP-member-uninit (C++ only)
	CPU-ctor-call-virt (C++ only)
	CPU-ctor-implicit (C++ only)
	CPU-delete-throw (C++ only)
	CPU-delete-void (C++ only)
	CPU-dtor-call-virt (C++ only)
	CPU-malloc-class (C++ only)
	CPU-nonvirt-dtor (C++ only)
	CPU-return-ref-to-class-data (C++ only)
	DECL-implicit-int
	DEFINE-hash-multiple
	ENUM-bounds
	EXP-cond-assign
	EXP-dangling-else
	EXP-loop-exit
	EXP-main-ret-int
	EXP-null-stmt
	EXP-stray-semicolon
	EXPR-const-overflow
	FPT-cmp-null
	FPT-literal
	FPT-misuse
	FUNC-implicit-decl
	FUNC-unprototyped-all
	FUNC-unprototyped-used
	INCLUDE-c-file
	INT-use-signed-as-unsigned-pos
	INT-use-signed-as-unsigned
	ITR-end-cmp-aft (C++ only)
	ITR-end-cmp-bef (C++ only)
	ITR-invalidated (C++ only)
	ITR-mismatch-alg (C++ only)
	ITR-store (C++ only)
	ITR-uninit (C++ only)
	LIB-bsearch-overrun-pos
	LIB-bsearch-overrun
	LIB-buf-size
	LIB-fn-unsafe
	LIB-fread-overrun-pos
	LIB-fread-overrun
	LIB-memchr-overrun-pos
	LIB-memchr-overrun
	LIB-memcpy-overrun-pos
	LIB-memcpy-overrun
	LIB-memset-overrun-pos
	LIB-memset-overrun
	LIB-putenv
	LIB-qsort-overrun-pos
	LIB-qsort-overrun
	LIB-return-const
	LIB-return-error
	LIB-return-leak
	LIB-return-neg
	LIB-return-null
	LIB-sprintf-overrun
	LIB-std-sort-overrun-pos (C++ only)
	LIB-std-sort-overrun (C++ only)
	LIB-strcat-overrun-pos
	LIB-strcat-overrun
	LIB-strcpy-overrun-pos
	LIB-strcpy-overrun
	LIB-strncat-overrun-pos
	LIB-strncat-overrun
	LIB-strncmp-overrun-pos
	LIB-strncmp-overrun
	LIB-strncpy-overrun-pos
	LIB-strncpy-overrun
	LOGIC-overload (C++ only)
	MEM-delete-array-op (C++ only)
	MEM-delete-op (C++ only)
	MEM-double-free-alias
	MEM-double-free-some
	MEM-double-free
	MEM-free-field
	MEM-free-fptr
	MEM-free-no-alloc-struct
	MEM-free-no-alloc
	MEM-free-no-use
	MEM-free-op
	MEM-free-struct-field
	MEM-free-variable-alias
	MEM-free-variable
	MEM-leak-alias
	MEM-leak
	MEM-malloc-arith
	MEM-malloc-diff-type
	MEM-malloc-sizeof-ptr
	MEM-malloc-sizeof
	MEM-malloc-strlen
	MEM-realloc-diff-type
	MEM-return-free
	MEM-return-no-assign
	MEM-stack-alias
	MEM-stack-global-alias
	MEM-stack-global-field
	MEM-stack-global
	MEM-stack-param-ref (C++ only)
	MEM-stack-param
	MEM-stack-pos
	MEM-stack-ref (C++ only)
	MEM-stack
	MEM-use-free-all
	MEM-use-free-some
	PTR-arith-field
	PTR-arith-stack
	PTR-arith-var
	PTR-cmp-str-lit
	PTR-null-assign-fun-pos
	PTR-null-assign-pos
	PTR-null-assign
	PTR-null-cmp-aft
	PTR-null-cmp-bef-fun
	PTR-null-cmp-bef
	PTR-null-fun-pos
	PTR-null-literal-pos
	PTR-overload (C++ only)
	PTR-singleton-arith-pos
	PTR-singleton-arith
	PTR-unchk-param-some
	PTR-unchk-param
	PTR-uninit-pos
	PTR-uninit
	RED-case-reach
	RED-cmp-always
	RED-cmp-never
	RED-cond-always
	RED-cond-const-assign
	RED-cond-const-expr
	RED-cond-const
	RED-cond-never
	RED-dead
	RED-expr
	RED-func-no-effect
	RED-local-hides-global
	RED-local-hides-local
	RED-local-hides-member (C++ only)
	RED-local-hides-param
	RED-no-effect
	RED-self-assign
	RED-unused-assign
	RED-unused-param
	RED-unused-return-val
	RED-unused-val
	RED-unused-var-all
	RESOURCE-deref-file
	RESOURCE-double-close
	RESOURCE-file-no-close-all
	RESOURCE-file-pos-neg
	RESOURCE-file-use-after-close
	RESOURCE-implicit-deref-file
	RESOURCE-write-ronly-file
	SIZEOF-side-effect
	SPC-init-list
	SPC-order
	SPC-uninit-arr-all
	SPC-uninit-struct-field-heap
	SPC-uninit-struct-field
	SPC-uninit-struct
	SPC-uninit-var-all
	SPC-uninit-var-some
	SPC-volatile-reads
	SPC-volatile-writes
	STR-trigraph
	STRUCT-signed-bit
	SWITCH-fall-through
	THROW-empty (C++ only)
	THROW-main (C++ only)
	THROW-null
	THROW-ptr
	THROW-static (C++ only)
	THROW-unhandled (C++ only)
	UNION-overlap-assign
	UNION-type-punning
	MISRAC2004-1.2_a
	MISRAC2004-1.2_b
	MISRAC2004-1.2_c
	MISRAC2004-1.2_d
	MISRAC2004-1.2_e
	MISRAC2004-1.2_f
	MISRAC2004-1.2_g
	MISRAC2004-1.2_h
	MISRAC2004-1.2_i
	MISRAC2004-1.2_j
	MISRAC2004-2.1
	MISRAC2004-2.2
	MISRAC2004-2.3
	MISRAC2004-2.4
	MISRAC2004-4.2
	MISRAC2004-5.2_a
	MISRAC2004-5.2_b
	MISRAC2004-5.2_c
	MISRAC2004-5.3
	MISRAC2004-5.4
	MISRAC2004-5.5
	MISRAC2004-6.1
	MISRAC2004-6.3
	MISRAC2004-6.4
	MISRAC2004-6.5
	MISRAC2004-7.1
	MISRAC2004-8.1
	MISRAC2004-8.2
	MISRAC2004-8.5_a
	MISRAC2004-8.5_b
	MISRAC2004-8.12
	MISRAC2004-9.1_a
	MISRAC2004-9.1_b
	MISRAC2004-9.1_c
	MISRAC2004-9.2
	MISRAC2004-10.1_a
	MISRAC2004-10.1_b
	MISRAC2004-10.1_c
	MISRAC2004-10.1_d
	MISRAC2004-10.2_a
	MISRAC2004-10.2_b
	MISRAC2004-10.2_c
	MISRAC2004-10.2_d
	MISRAC2004-10.3
	MISRAC2004-10.4
	MISRAC2004-10.5
	MISRAC2004-10.6
	MISRAC2004-11.1
	MISRAC2004-11.3
	MISRAC2004-11.4
	MISRAC2004-11.5
	MISRAC2004-12.1
	MISRAC2004-12.2_a
	MISRAC2004-12.2_b
	MISRAC2004-12.2_c
	MISRAC2004-12.3
	MISRAC2004-12.4
	MISRAC2004-12.6_a
	MISRAC2004-12.6_b
	MISRAC2004-12.7
	MISRAC2004-12.8
	MISRAC2004-12.9
	MISRAC2004-12.10
	MISRAC2004-12.11
	MISRAC2004-12.12_a
	MISRAC2004-12.12_b
	MISRAC2004-12.13
	MISRAC2004-13.1
	MISRAC2004-13.2_a
	MISRAC2004-13.2_b
	MISRAC2004-13.2_c
	MISRAC2004-13.2_d
	MISRAC2004-13.2_e
	MISRAC2004-13.3
	MISRAC2004-13.4
	MISRAC2004-13.5
	MISRAC2004-13.6
	MISRAC2004-13.7_a
	MISRAC2004-13.7_b
	MISRAC2004-14.1
	MISRAC2004-14.2
	MISRAC2004-14.3
	MISRAC2004-14.4
	MISRAC2004-14.5
	MISRAC2004-14.6
	MISRAC2004-14.7
	MISRAC2004-14.8_a
	MISRAC2004-14.8_b
	MISRAC2004-14.8_c
	MISRAC2004-14.8_d
	MISRAC2004-14.9
	MISRAC2004-14.10
	MISRAC2004-15.0
	MISRAC2004-15.1
	MISRAC2004-15.2
	MISRAC2004-15.3
	MISRAC2004-15.4
	MISRAC2004-15.5
	MISRAC2004-16.1
	MISRAC2004-16.2_a
	MISRAC2004-16.2_b
	MISRAC2004-16.3
	MISRAC2004-16.5
	MISRAC2004-16.7
	MISRAC2004-16.8
	MISRAC2004-16.9
	MISRAC2004-16.10
	MISRAC2004-17.1_a
	MISRAC2004-17.1_b
	MISRAC2004-17.1_c
	MISRAC2004-17.4_a
	MISRAC2004-17.4_b
	MISRAC2004-17.5
	MISRAC2004-17.6_a
	MISRAC2004-17.6_b
	MISRAC2004-17.6_c
	MISRAC2004-17.6_d
	MISRAC2004-18.1
	MISRAC2004-18.2
	MISRAC2004-18.4
	MISRAC2004-19.2
	MISRAC2004-19.6
	MISRAC2004-19.7
	MISRAC2004-19.12
	MISRAC2004-19.13
	MISRAC2004-19.15
	MISRAC2004-20.1
	MISRAC2004-20.4
	MISRAC2004-20.5
	MISRAC2004-20.6
	MISRAC2004-20.7
	MISRAC2004-20.8
	MISRAC2004-20.9
	MISRAC2004-20.10
	MISRAC2004-20.11
	MISRAC2004-20.12
	MISRAC2012-Dir-4.3
	MISRAC2012-Dir-4.4
	MISRAC2012-Dir-4.6_a
	MISRAC2012-Dir-4.9
	MISRAC2012-Dir-4.10
	MISRAC2012-Rule-1.3_a
	MISRAC2012-Rule-1.3_b
	MISRAC2012-Rule-1.3_c
	MISRAC2012-Rule-1.3_d
	MISRAC2012-Rule-1.3_e
	MISRAC2012-Rule-1.3_f
	MISRAC2012-Rule-1.3_g
	MISRAC2012-Rule-1.3_h
	MISRAC2012-Rule-2.1_a
	MISRAC2012-Rule-2.1_b
	MISRAC2012-Rule-2.2_a
	MISRAC2012-Rule-2.2_c
	MISRAC2012-Rule-2.7
	MISRAC2012-Rule-3.1
	MISRAC2012-Rule-4.2
	MISRAC2012-Rule-5.1
	MISRAC2012-Rule-5.3_a
	MISRAC2012-Rule-5.3_b
	MISRAC2012-Rule-5.3_c
	MISRAC2012-Rule-5.4_c89
	MISRAC2012-Rule-5.4_c99
	MISRAC2012-Rule-5.5_c89
	MISRAC2012-Rule-5.5_c99
	MISRAC2012-Rule-5.6
	MISRAC2012-Rule-5.7
	MISRAC2012-Rule-5.8
	MISRAC2012-Rule-6.1
	MISRAC2012-Rule-6.2
	MISRAC2012-Rule-7.1
	MISRAC2012-Rule-7.2
	MISRAC2012-Rule-7.3
	MISRAC2012-Rule-7.4_a
	MISRAC2012-Rule-7.4_b
	MISRAC2012-Rule-8.1
	MISRAC2012-Rule-8.2_a
	MISRAC2012-Rule-8.2_b
	MISRAC2012-Rule-8.10
	MISRAC2012-Rule-8.11
	MISRAC2012-Rule-8.14
	MISRAC2012-Rule-9.1_a
	MISRAC2012-Rule-9.1_b
	MISRAC2012-Rule-9.1_c
	MISRAC2012-Rule-9.1_d
	MISRAC2012-Rule-9.1_e
	MISRAC2012-Rule-9.1_f
	MISRAC2012-Rule-9.3
	MISRAC2012-Rule-9.5_a
	MISRAC2012-Rule-9.5_b
	MISRAC2012-Rule-10.1_R2
	MISRAC2012-Rule-10.1_R3
	MISRAC2012-Rule-10.1_R4
	MISRAC2012-Rule-10.1_R5
	MISRAC2012-Rule-10.1_R6
	MISRAC2012-Rule-10.1_R7
	MISRAC2012-Rule-10.1_R8
	MISRAC2012-Rule-10.2
	MISRAC2012-Rule-10.3
	MISRAC2012-Rule-10.4
	MISRAC2012-Rule-10.6
	MISRAC2012-Rule-10.7
	MISRAC2012-Rule-10.8
	MISRAC2012-Rule-11.1
	MISRAC2012-Rule-11.3
	MISRAC2012-Rule-11.4
	MISRAC2012-Rule-11.7
	MISRAC2012-Rule-11.8
	MISRAC2012-Rule-11.9
	MISRAC2012-Rule-12.1
	MISRAC2012-Rule-12.2
	MISRAC2012-Rule-12.3
	MISRAC2012-Rule-12.4
	MISRAC2012-Rule-13.1
	MISRAC2012-Rule-13.2_a
	MISRAC2012-Rule-13.2_b
	MISRAC2012-Rule-13.2_c
	MISRAC2012-Rule-13.3
	MISRAC2012-Rule-13.4_a
	MISRAC2012-Rule-13.4_b
	MISRAC2012-Rule-13.5
	MISRAC2012-Rule-13.6
	MISRAC2012-Rule-14.1_a
	MISRAC2012-Rule-14.1_b
	MISRAC2012-Rule-14.2
	MISRAC2012-Rule-14.3_a
	MISRAC2012-Rule-14.3_b
	MISRAC2012-Rule-14.4_a
	MISRAC2012-Rule-14.4_b
	MISRAC2012-Rule-14.4_c
	MISRAC2012-Rule-14.4_d
	MISRAC2012-Rule-15.1
	MISRAC2012-Rule-15.2
	MISRAC2012-Rule-15.3
	MISRAC2012-Rule-15.4
	MISRAC2012-Rule-15.5
	MISRAC2012-Rule-15.6_a
	MISRAC2012-Rule-15.6_b
	MISRAC2012-Rule-15.6_c
	MISRAC2012-Rule-15.6_d
	MISRAC2012-Rule-15.6_e
	MISRAC2012-Rule-15.7
	MISRAC2012-Rule-16.1
	MISRAC2012-Rule-16.2
	MISRAC2012-Rule-16.3
	MISRAC2012-Rule-16.4
	MISRAC2012-Rule-16.5
	MISRAC2012-Rule-16.6
	MISRAC2012-Rule-16.7
	MISRAC2012-Rule-17.1
	MISRAC2012-Rule-17.2_a
	MISRAC2012-Rule-17.2_b
	MISRAC2012-Rule-17.3
	MISRAC2012-Rule-17.4
	MISRAC2012-Rule-17.6
	MISRAC2012-Rule-17.7
	MISRAC2012-Rule-18.1_a
	MISRAC2012-Rule-18.1_b
	MISRAC2012-Rule-18.1_c
	MISRAC2012-Rule-18.1_d
	MISRAC2012-Rule-18.5
	MISRAC2012-Rule-18.6_a
	MISRAC2012-Rule-18.6_b
	MISRAC2012-Rule-18.6_c
	MISRAC2012-Rule-18.6_d
	MISRAC2012-Rule-18.7
	MISRAC2012-Rule-18.8
	MISRAC2012-Rule-19.1
	MISRAC2012-Rule-19.2
	MISRAC2012-Rule-20.2
	MISRAC2012-Rule-20.4_c89
	MISRAC2012-Rule-20.4_c99
	MISRAC2012-Rule-20.5
	MISRAC2012-Rule-20.10
	MISRAC2012-Rule-21.1
	MISRAC2012-Rule-21.2
	MISRAC2012-Rule-21.3
	MISRAC2012-Rule-21.4
	MISRAC2012-Rule-21.5
	MISRAC2012-Rule-21.6
	MISRAC2012-Rule-21.7
	MISRAC2012-Rule-21.8
	MISRAC2012-Rule-21.9
	MISRAC2012-Rule-21.10
	MISRAC2012-Rule-21.11
	MISRAC2012-Rule-22.1_a
	MISRAC2012-Rule-22.1_b
	MISRAC2012-Rule-22.2_a
	MISRAC2012-Rule-22.2_b
	MISRAC2012-Rule-22.2_c
	MISRAC2012-Rule-22.4
	MISRAC2012-Rule-22.5_a
	MISRAC2012-Rule-22.5_b
	MISRAC2012-Rule-22.6
	MISRAC++2008-0-1-1
	MISRAC++2008-0-1-2_a
	MISRAC++2008-0-1-2_b
	MISRAC++2008-0-1-2_c
	MISRAC++2008-0-1-3
	MISRAC++2008-0-1-4
	MISRAC++2008-0-1-6
	MISRAC++2008-0-1-7
	MISRAC++2008-0-1-8
	MISRAC++2008-0-1-9
	MISRAC++2008-0-1-11
	MISRAC++2008-0-2-1
	MISRAC++2008-0-3-2
	MISRAC++2008-2-3-1
	MISRAC++2008-2-7-1
	MISRAC++2008-2-7-2
	MISRAC++2008-2-7-3
	MISRAC++2008-2-10-2_a
	MISRAC++2008-2-10-2_b
	MISRAC++2008-2-10-2_c
	MISRAC++2008-2-10-2_d (C++ only)
	MISRAC++2008-2-10-3
	MISRAC++2008-2-10-4
	MISRAC++2008-2-10-5
	MISRAC++2008-2-13-2
	MISRAC++2008-2-13-3
	MISRAC++2008-2-13-4_a
	MISRAC++2008-2-13-4_b
	MISRAC++2008-3-1-1
	MISRAC++2008-3-1-3
	MISRAC++2008-3-9-2
	MISRAC++2008-3-9-3
	MISRAC++2008-4-5-1
	MISRAC++2008-4-5-2
	MISRAC++2008-4-5-3
	MISRAC++2008-5-0-1_a
	MISRAC++2008-5-0-1_b
	MISRAC++2008-5-0-1_c
	MISRAC++2008-5-0-2
	MISRAC++2008-5-0-3
	MISRAC++2008-5-0-4
	MISRAC++2008-5-0-5
	MISRAC++2008-5-0-6
	MISRAC++2008-5-0-7
	MISRAC++2008-5-0-8
	MISRAC++2008-5-0-9
	MISRAC++2008-5-0-10
	MISRAC++2008-5-0-13_a
	MISRAC++2008-5-0-13_b
	MISRAC++2008-5-0-13_c
	MISRAC++2008-5-0-13_d
	MISRAC++2008-5-0-14
	MISRAC++2008-5-0-15_a
	MISRAC++2008-5-0-15_b
	MISRAC++2008-5-0-16_a
	MISRAC++2008-5-0-16_b
	MISRAC++2008-5-0-16_c
	MISRAC++2008-5-0-16_d
	MISRAC++2008-5-0-16_e
	MISRAC++2008-5-0-16_f
	MISRAC++2008-5-0-19
	MISRAC++2008-5-0-21
	MISRAC++2008-5-2-4 (C++ only)
	MISRAC++2008-5-2-5
	MISRAC++2008-5-2-6
	MISRAC++2008-5-2-7
	MISRAC++2008-5-2-9
	MISRAC++2008-5-2-10
	MISRAC++2008-5-2-11_a (C++ only)
	MISRAC++2008-5-2-11_b (C++ only)
	MISRAC++2008-5-3-1
	MISRAC++2008-5-3-2_a
	MISRAC++2008-5-3-2_b
	MISRAC++2008-5-3-3 (C++ only)
	MISRAC++2008-5-3-4
	MISRAC++2008-5-8-1
	MISRAC++2008-5-14-1
	MISRAC++2008-5-18-1
	MISRAC++2008-5-19-1
	MISRAC++2008-6-2-1
	MISRAC++2008-6-2-2
	MISRAC++2008-6-3-1_a
	MISRAC++2008-6-3-1_b
	MISRAC++2008-6-3-1_c
	MISRAC++2008-6-3-1_d
	MISRAC++2008-6-4-1
	MISRAC++2008-6-4-2
	MISRAC++2008-6-4-3
	MISRAC++2008-6-4-4
	MISRAC++2008-6-4-5
	MISRAC++2008-6-4-6
	MISRAC++2008-6-4-7
	MISRAC++2008-6-4-8
	MISRAC++2008-6-5-1_a
	MISRAC++2008-6-5-2
	MISRAC++2008-6-5-3
	MISRAC++2008-6-5-4
	MISRAC++2008-6-5-6
	MISRAC++2008-6-6-1
	MISRAC++2008-6-6-2
	MISRAC++2008-6-6-4
	MISRAC++2008-6-6-5
	MISRAC++2008-7-1-1
	MISRAC++2008-7-1-2
	MISRAC++2008-7-2-1
	MISRAC++2008-7-4-3
	MISRAC++2008-7-5-1_a (C++ only)
	MISRAC++2008-7-5-1_b
	MISRAC++2008-7-5-2_a
	MISRAC++2008-7-5-2_b
	MISRAC++2008-7-5-2_c
	MISRAC++2008-7-5-2_d (C++ only)
	MISRAC++2008-7-5-4_a
	MISRAC++2008-7-5-4_b
	MISRAC++2008-8-0-1
	MISRAC++2008-8-4-1
	MISRAC++2008-8-4-3
	MISRAC++2008-8-4-4
	MISRAC++2008-8-5-1_a
	MISRAC++2008-8-5-1_b
	MISRAC++2008-8-5-1_c
	MISRAC++2008-8-5-2
	MISRAC++2008-9-3-1 (C++ only)
	MISRAC++2008-9-3-2 (C++ only)
	MISRAC++2008-9-5-1
	MISRAC++2008-9-6-2
	MISRAC++2008-9-6-3
	MISRAC++2008-9-6-4
	MISRAC++2008-12-1-1_a (C++ only)
	MISRAC++2008-12-1-1_b (C++ only)
	MISRAC++2008-12-1-3 (C++ only)
	MISRAC++2008-15-0-2
	MISRAC++2008-15-1-2
	MISRAC++2008-15-1-3 (C++ only)
	MISRAC++2008-15-3-1 (C++ only)
	MISRAC++2008-15-3-2 (C++ only)
	MISRAC++2008-15-3-3 (C++ only)
	MISRAC++2008-15-3-4 (C++ only)
	MISRAC++2008-15-3-5 (C++ only)
	MISRAC++2008-15-5-1 (C++ only)
	MISRAC++2008-16-0-3
	MISRAC++2008-16-0-4
	MISRAC++2008-16-2-2 (C++ only)
	MISRAC++2008-16-2-3
	MISRAC++2008-16-2-4
	MISRAC++2008-16-2-5
	MISRAC++2008-16-3-1
	MISRAC++2008-16-3-2
	MISRAC++2008-17-0-1
	MISRAC++2008-17-0-3
	MISRAC++2008-17-0-5
	MISRAC++2008-18-0-1 (C++ only)
	MISRAC++2008-18-0-2
	MISRAC++2008-18-0-3
	MISRAC++2008-18-0-4
	MISRAC++2008-18-0-5
	MISRAC++2008-18-2-1
	MISRAC++2008-18-4-1
	MISRAC++2008-18-7-1
	MISRAC++2008-19-3-1
	MISRAC++2008-27-0-1

