
CSCR16CHW-2

IAR C-SPY® Nexus
Debugger Systems

User Guide

for National Semiconductor’s
CR16C Microcontroller Family

CSCR16CHW-2

CSCR16CHW-2

COPYRIGHT NOTICE
Copyright © 2001–2011 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

National Semiconductor is a registered trademark of National Semiconductor
Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Second edition: February 2011

Part number: CSCR16CHW-2

This guide applies to version 3.x of IAR Embedded Workbench® for National
Semiconductor’s CR16C microprocessor family.

Internal reference: Too6.0, IMAE.

CSCR16CHW-2

iii

Contents
Preface ... ix

Who should read this guide .. ix

How to use this guide .. ix

What this guide contains ... x

Other documentation ... x

Document conventions .. x

Typographic conventions ..xi

Naming conventions ...xi

Introduction to C-SPY® Nexus debugger systems 1

The C-SPY hardware debugger systems .. 1

Differences between the Nexus debugger and the simulator 2

Getting started .. 3

Running the demo program .. 3

Mixing CR16C and SC14 source code ... 4

Integrating SC14 co-processor code .. 4

The DIP integration project .. 4

 C-SPY® Nexus debugger-specific debugging 7

Setting options for debugging using the C-SPY Nexus
debugger ... 7

CR16C Nexus ... 8

SC14 Nexus ... 9

Download ... 9

Extra Options ... 10

The Nexus menu ... 11

Cache registers ... 11

Disable co-processor FREEZE_REG .. 12

Using the trace system ... 12

The Trace window ... 13

Trace Window Settings .. 15

The Find In Trace window ... 17

CSCR16CHW-2

iv
IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

The Find in Trace dialog box ... 17

Using breakpoints ... 19

Hardware and software breakpoints ... 19

Range breakpoints .. 20

Start Point breakpoints ... 24

Stop Point breakpoints ... 25

Breakpoint Usage dialog box ... 26

Real-time code profiling .. 26

Resolving problems .. 27

Write failure during load .. 28

No contact with the target hardware .. 28

Using flash loaders ... 29

Introduction to the flash loader ... 29

Reference information on the flash loader 31

Index ... 35

CSCR16CHW-2

ix

Preface
Welcome to the IAR C-SPY® Nexus Debugger Systems for CR16C User Guide. The
purpose of this guide is to provide you with detailed reference information
that can help you use the features in the IAR C-SPY® Hardware Debugger
Systems for CR16C.

Who should read this guide
You should read this guide if you want to get the most out of the features in the C-SPY
hardware debugger systems. In addition, you should have working knowledge of:

● The C or C++ programming language

● Application development for embedded systems

● The architecture and instruction set of the CR16C microprocessor (refer to the chip
manufacturer's documentation)

● The operating system of your host machine.

This guide also assumes that you already have working knowledge of the target system
you are using, as well as some working knowledge of the IAR C-SPY Debugger. For a
quick introduction to the IAR C-SPY Debugger, see the tutorials available in the IAR
Embedded Workbench® IDE User Guide.

How to use this guide
This guide describes the C-SPY interface to the target system you are using; this guide
does not describe the general features available in the IAR C-SPY debugger or the
hardware target system. To take full advantage of the whole debugger system, you must
read this guide in combination with:

● The IAR Embedded Workbench® IDE User Guide which describes the general
features available in the C-SPY debugger

● The documentation supplied with the target system you are using.

Note that additional features might have been added to the software after the IAR
C-SPY® Nexus Debugger Systems for CR16C User Guide was printed. The release
notes cscr16cx.htm, and cssc14x.htm contain the latest information.

CSCR16CHW-2

x

What this guide contains

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

● Introduction to C-SPY® Nexus debugger systems introduces you to the C-SPY
Nexus debugger. The chapter briefly shows the difference in functionality provided
by the different debugger systems.

● C-SPY® Nexus debugger-specific debugging describes the additional options,
menus, and features specific to the C-SPY Nexus debugger.

● Using flash loaders describes the flash loader, what it is and how to use it.

Other documentation
The complete set of IAR development tools for the CR16C microprocessor are
described in a series of guides. These guides can be found in the cr16c\doc directory
or reached from the Help menu.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books.

Recommended web sites:

● The National Semiconductor web site, www.national.com, contains information
and news about the CR16C microprocessors.

● The SiTel Semiconductor web site, www.sitelsemi.com, contains information about
the SC14 co-processor.

● The IAR Systems web site, www.iar.com, holds application notes and other
product information.

Document conventions
When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example cr16c\doc, the
full path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench 6.n\cr16c\doc.

CSCR16CHW-2

Preface

xi

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a command.

a|b|c Alternatives in a command.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

Brand name Generic term

IAR Embedded Workbench® for CR16C IAR Embedded Workbench®

IAR Embedded Workbench® IDE for CR16C the IDE

IAR C-SPY® Debugger for CR16C C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for CR16C the compiler

Table 2: Naming conventions used in this guide

CSCR16CHW-2

xii

Document conventions

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

IAR Assembler™ for CR16C the assembler

IAR XLINK™ Linker XLINK, the linker

IAR XAR Library builder™ the library builder

IAR XLIB Librarian™ the librarian

IAR DLIB Library™ the DLIB library

IAR CLIB Library™ the CLIB library

Brand name Generic term

Table 2: Naming conventions used in this guide (Continued)

CSCR16CHW-2

1

Introduction to C-SPY®
Nexus debugger systems
This chapter introduces you to the C-SPY Nexus debugger systems and to
how they differ from the C-SPY Simulator.

The C-SPY hardware debugger systems
The CR16C microcontrollers have on-chip debug support for the Nexus 5001 standard
for debugger interfaces. Because the hardware debugger kernel is built into the
microprocessor, no ordinary ROM-monitor program or extra specific hardware is
needed to make the debugging work. It is also possible to use the debugger on your own
hardware design.

C-SPY consists of both a general part which provides a basic set of C-SPY features, and
a driver. The C-SPY driver is the part that provides communication with and control of
the target system. The driver also provides a user interface—special menus, windows,
and dialog boxes—to the functions provided by the target system, for instance special
breakpoints. This driver is automatically installed during the installation of IAR
Embedded Workbench.

There are two C-SPY Nexus drivers to choose between, one for the CR16C
microprocessor and, depending on which IAR product package you are using, one for
the SC14 co-processor.

CSCR16CHW-2

2

The C-SPY hardware debugger systems

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

The C-SPY Nexus drivers use the USB port to communicate with the interface module,
and the interface module communicates with the JTAG interface on the chip. The
connections and cables that are used on different evaluation boards might differ.

Figure 1: C-SPY CR16C Nexus communication overview

DIFFERENCES BETWEEN THE NEXUS DEBUGGER AND THE
SIMULATOR

This table summarizes the key differences between the Nexus and simulator drivers:

Feature Simulator CR16C Nexus SC14 Nexus

OP-fetch x x x

Data breakpoints x x

Execution in real time x x

Zero memory footprint x

Simulated interrupts x

Real interrupts x x

Cycle counter x x1

Code coverage x

Table 3: Driver differences

Host computer

C-SPY
Debugger

C-SPY driver

Interface

JTAG

Target board

CPU

module

On-chip
emulation

Memory

USB cable

CSCR16CHW-2

Introduction to C-SPY® Nexus debugger systems

3

1 In the SC14 Nexus debugger, the cycle counter is supported during single stepping. You can then
view the value of the cycle counter in the Register window.
2 Requires software breakpoints.
3 Requires a device with CR16CPlus support.
4 Trace is available only if your hardware supports it.

Getting started
This section demonstrates a demo application that flashes the LED on the SC14480
board. The application is built and downloaded to the target system, and then executed.

There is a demo workspace file supplied with the C-SPY Nexus debugger, LED.eww.
This workspace contains only one project, and the files are provided in the directory
cr16c\src\examples\LED.

RUNNING THE DEMO PROGRAM

1 In the IAR Embedded Workbench IDE, choose File>Open Workspace to open the
workspace file LED.eww.

2 Select the Debug build configuration from the drop-down list at the top of the
workspace window.

3 Choose Project>Options. In addition to the factory settings, verify that these settings
are used:

For more information about the C-SPY Nexus options, see Setting options for
debugging using the C-SPY Nexus debugger, page 7.

Profiling x x2

Real-time code profiling x x3

Trace x x4

Feature Simulator CR16C Nexus SC14 Nexus

Table 3: Driver differences (Continued)

Category Page Option/Setting

General Options Target Co-processor variant: SC14480 - DIP

C/C++ Compiler Output Generate debug information

C/C++ Compiler Preprocessor Defined symbols: SC14480

Linker Config Linker command file: Override default:
lnk14480_ram.xcl.

Debugger Setup Driver: CR16C Nexus driver
Device description: Override default: iosc14480.ddf

Table 4: Project options for Nexus example

CSCR16CHW-2

4

Mixing CR16C and SC14 source code

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

Click OK to close the Options dialog box.

4 Choose Project>Make to compile and link the source code.

5 Start C-SPY by clicking the Download and Debug button or by choosing
Project>Download and Debug. C-SPY will download the application to the target
system.

6 In C-SPY, choose Debug>Go or click the Go button to start the program. The LED
should flash.

7 Click the Stop button to stop the execution.

Mixing CR16C and SC14 source code
This section demonstrates how code for the SC14 Dedicated Instruction Processor (DIP)
co-processor and CR16C can be integrated using the IAR Embedded Workbench IDE
and how to run the code on the target hardware.

INTEGRATING SC14 CO-PROCESSOR CODE

This project contains both CR16C and DIP program source code. When running this
code, it will produce a sweeping square-waveform on one of the output pins. The output
pin is controlled by the DIP, while the CR16C will control the width of the cycle, by
patching in the DIP code.

The CR16C program will start by copying the DIP program code from CR16C memory
into the sequencer RAM. The program could also be linked directly to the sequencer
area, but because it cannot be programmed into this location, there is little use for this,
other than when debugging the DIP code.

When the application is loaded, the DIP execution is started and the CR16C goes into
an idle, infinite loop.

The CR16C code also contains an interrupt service routine for DIP interrupts. This
interrupt will be triggered from the DIP code, which is also in an infinite loop, toggling
PD1 pin on the PD port.

When both targets are loaded and running, there will be two loops: one running on
CR16C and one on the DIP.

THE DIP INTEGRATION PROJECT

1 In the IAR Embedded Workbench IDE, choose File>Open Workspace to open the
workspace file cr16c\src\examples\DipInteg.eww.

CSCR16CHW-2

Introduction to C-SPY® Nexus debugger systems

5

2 Select the Debug build configuration from the drop-down list at the top of the
workspace window.

The main function in dip_int.c will first initialize and start the DIP and then loop
forever. When the interrupt instruction is executed by the DIP, the CR16C Dip_Isr
interrupt service routine will be executed. This will patch the WNT instruction and change
the length of the wait-cycle to produce the sweeping square-waveform on the PD1 pin.

The defined start address SEQUENCER_RAM_START and the labels WAIT_H and WAIT_L
are used when patching the DIP program.

Because the DIP loop generates an interrupt, the CR16C DIP interrupt service routine
will eventually be executed. When executed, this service routine will redefine
instructions in the DIP, thus generating a sweeping square-waveform on the PD1 pin.

3 Before you build the project, make sure to use the following settings:

4 Check that the hardware is connected and powered.

5 Choose Project>Download and Debug to start C-SPY. Alternatively, click the
Download and Debug button.

The project should now compile and link automatically before downloading. Before
starting the execution, connect a logging device such as an oscilloscope or a logic
analyzer to the output pin PD1 to watch the waveform. You can also open the Live Watch
window and drag the labels WAIT_H and WAIT_L to it so that you can watch the patched
instruction.

Now start the execution by selecting Go. You can now see from the sweeping
square-waveform on the logging device, or in the Live Watch window, how the memory
contents in the DIP RAM area changes over time.

Category Page Option

General Options Target Data model: Large

General Options Target Co-processor variant: SC14480 - DIP

C/C++ Compiler Preprocessor Defined symbols: SC14480

SC14 Assembler Preprocessor Defined symbols: SC14480

Linker Config Linker command file: Override default:
lnk14480_ram.xcl.

Debugger Setup Driver: CR16C Nexus
Device description: Override default: iosc14480.ddf

Table 5: Options for project 6

CSCR16CHW-2

6

Mixing CR16C and SC14 source code

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

CSCR16CHW-2

7

 C-SPY® Nexus
debugger-specific
debugging
This chapter describes the additional options, menus, and features specific to
the C-SPY Nexus debugger. The chapter contains the following sections:

● Setting options for debugging using the C-SPY Nexus debugger

● The Nexus menu

● Using the trace system

● Using breakpoints

● Real-time code profiling

● Resolving problems.

Setting options for debugging using the C-SPY Nexus debugger
Before you start the C-SPY Nexus debugger you must set some options for the debugger
system—both C-SPY generic options and options required for the hardware system
(C-SPY driver-specific options). Follow this procedure:

1 To open the Options dialog box, choose Project>Options.

2 To set C-SPY generic options and select a C-SPY driver:

● Select Debugger from the Category list

● On the Setup page, select the appropriate C-SPY driver from the Driver list.

For information about the settings Setup macros, Run to, and Device descriptions, as
well as for information about the pages Extra Options and Plugins, see the IAR
Embedded Workbench® IDE User Guide.

3 To set the driver-specific options, select the appropriate driver from the Category list.
Choose either CR16C Nexus or SC14 Nexus. Depending on which C-SPY driver you
are using, different sets of available option pages appear.

CSCR16CHW-2

8

Setting options for debugging using the C-SPY Nexus debugger

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

For details about each page, see:

● CR16C Nexus, page 8

● SC14 Nexus, page 9

● Download, page 9

● Extra Options, page 10.

4 When you have set all the required options, click OK in the Options dialog box.

CR16C NEXUS

The CR16C Nexus driver options control the CR16C Nexus driver interface.

The only hardware connection supported is the OneWire USB dongle.

Figure 2: CR16C Nexus driver options

Use software breakpoints

By default, all used breakpoint types use hardware breakpoints that are supported by the
CR16C on-chip debug module. If the number of available hardware breakpoints is not
sufficient for your needs, select the Use software breakpoints option. In this case,
software breakpoints will be used for all code breakpoints, and all hardware breakpoints
will be available for use by data and range breakpoints. For additional information, see
Hardware and software breakpoints, page 19.

CSCR16CHW-2

C-SPY® Nexus debugger-specific debugging

9

SC14 NEXUS

The SC14 Nexus driver options control the SC14 Nexus driver interface.

The only hardware connection type supported is the OneWire USB dongle.

Figure 3: SC14 Nexus driver options

DOWNLOAD

By default, C-SPY downloads the application into RAM or flash when a debug session
starts. The Download options lets you control the download.

Figure 4: C-SPY Download options

Verify download

Use this option to verify that the downloaded code image can be read back from target
memory with the correct contents.

CSCR16CHW-2

10

Setting options for debugging using the C-SPY Nexus debugger

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

Suppress download

Use this option to debug an application that already resides in target memory. When this
option is selected, the code download is disabled, while preserving the present content
of the flash.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
program.

EXTRA OPTIONS

The Extra Options page provides you with a command line interface to C-SPY.

Figure 5: Extra Options page for C-SPY command line options

Use command line options

Additional command line arguments (not supported by the GUI) for C-SPY can be
specified here. Currently there are no such command line arguments.

CSCR16CHW-2

C-SPY® Nexus debugger-specific debugging

11

The Nexus menu
When the C-SPY Nexus Debugger is used, a new menu becomes available—the Nexus
menu.

Figure 6: The Nexus menu

The following commands are available on the menu:

CACHE REGISTERS

During a debug session, when for instance the Register window is open, all processor
registers are read every time the execution is halted.

Menu command Description

Cache Registers Enables the register cache in the debugger, see Cache registers,
page 11.

Real-Time Code Profiling Displays the Real-Time Code Profiling window, see Real-time
code profiling, page 26.

Disable Co-processor
FREEZE_REG

Disables the FREEZE_REG register on the co-processor, see
Disable co-processor FREEZE_REG, page 12.

Leave Target Running When selected, the debugger will not stop the target applica-
tion when the debug session closes.

Trace Window Displays the Trace window, see The Trace window, page 13.

Log Watchpoints Reports any pending watchpoints to the Debug Log window,
but the timing and number of reported watchpoints may not be
accurate. For information about watchpoints, see Action, page
22. Because the CR16C microprocessor only supports Nexus
Class I, watchpoint support is not required.
This menu command is only available in the C-SPY CR16C
Nexus Debugger.

Breakpoint Usage Opens the Breakpoint Usage dialog box, see Breakpoint Usage
dialog box, page 26.

Table 6: The Nexus menu

CSCR16CHW-2

12

Using the trace system

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

When communicating with real hardware it is sometimes more efficient to read all
processor registers at the same time instead of issuing a read command for every single
register.

In those cases it is possible to use a register cache in the debugger, which is enabled by
choosing Nexus>Cache Registers. This means that the first read of any CPU register
will read all registers and put the values in a cache within C-SPY. Subsequent readings
of other CPU registers or modification of register values will then use the cache. When
a Step/Go command is given, all values in the cache will be written to the hardware.

We recommend that the cache system is used when the CPU Register window is open
during a debug session or when watching many register variables. In other cases the
cache should be disabled to limit the register read/write overhead.

The execution speed is depending on the application as well as the usage of a register
cache.

Note: This function is only available in the C-SPY CR16C Nexus Debugger.

DISABLE CO-PROCESSOR FREEZE_REG

The option Disable co-processor FREEZE_REG disables the FREEZE_REG register
on the co-processor. When using this command, the co-processor will be left running
even when a breakpoint is reached.

For instance, when a breakpoint is reached and triggered, not only the CR16C
microprocessor but also the running co-processor will be halted. This is sometimes
unwanted behavior; for instance when debugging a SC14xxx device with an attached
radio frequency unit, a stop of the co-processor could damage this unit.

This command can only be used when running a SC14xxx device, and using the CR16C
Nexus driver, and thus is not available for other devices.

Using the trace system
In C-SPY, a data trace is generated from memory reads and writes. An event trace is
generated from occurred events, such as bus events, DIP, DSP, or external events.
Instruction trace is generated when single-stepping is performed or at a diverted
program flow, for instance at the instructions BRANCH, JUMP, or RETURN.

For more detailed information about using the common features in the trace system, see
the IAR Embedded Workbench® IDE User Guide.

CSCR16CHW-2

C-SPY® Nexus debugger-specific debugging

13

THE TRACE WINDOW

The Trace window—available from the Nexus menu—displays a recorded sequence of
executed machine instructions, events, and data reads and writes.

Figure 7: The Trace window

C-SPY generates trace information based on the location of the program counter.

The Trace toolbar

The Trace toolbar at the top of the Trace window and in the Function trace window
provides these toolbar buttons:

Toolbar button Description

Enable/Disable Enables and disables tracing. This button is not available in the
Function trace window.

Clear trace data Clears the trace buffer. Both the Trace window and the Function
trace window are cleared.

Toggle Source Toggles the Trace column between showing only disassembly or
disassembly together with corresponding source code.

Browse Toggles browse mode on and off for a selected item in the Trace
window. For more information about browse mode, see the IAR
Embedded Workbench® IDE User Guide.

Find Opens the Find In Trace dialog box where you can perform a
search; see The Find in Trace dialog box, page 17.

Save Opens a standard Save dialog box where you can save the
recorded trace information to a text file, with tab-separated col-
umns.

Table 7: The Trace toolbar commands

CSCR16CHW-2

14

Using the trace system

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

The display area

The display area displays trace information in these columns:

Edit Settings Opens the Trace Window Settings dialog box, see Trace Window
Settings, page 15. This button is enabled only when you are using
the Nexus debugger.

Trace window column Description

Trace The recorded sequence of executed machine instructions. Option-
ally, the corresponding source code can also be displayed. If instruc-
tion trace is not available, this column is blank.

Type The type of trace record received from the trace hardware. For
more information, see the documentation from your hardware
manufacturer.

Info Generic information pertaining to the trace, such as the memory
zone for data trace, the instruction count since the latest instruc-
tion trace record for instruction trace and triggers and timer for
event trace.

Address The address of the data trace.

Data The data value of the data trace.

Table 8: Trace window columns

Toolbar button Description

Table 7: The Trace toolbar commands (Continued)

CSCR16CHW-2

C-SPY® Nexus debugger-specific debugging

15

TRACE WINDOW SETTINGS

Click the Edit settings button in the Trace window to open the Trace Window Settings
dialog box.

Trace types

Use the Trace types options to choose the trace type you want to use.

Option Description

Instructions Enables instruction trace

Data Enables data trace

Instruction Events Enables instruction timing events trace

Data Events Enables data timing events trace

Bus Events Enables bus events trace

DSP Events Enables DSP events trace

DIP Events Enables DIP events trace

External Events Enables external events trace

Table 9: Trace window settings: Trace types

CSCR16CHW-2

16

Using the trace system

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

Trace addresses

Use the Trace addresses text fields to set the addresses and sizes of the trace memory
windows.

Trace conditions

Use the Trace conditions options to set the conditions for the trace based on the trace
condition pins and the trace addresses.

Use the drop-down menu Trace condition pins to choose the logical expression
configuration for the trace condition pins.

Option Description

Start 0 The start address of the trace memory window 0

Length 0 The size of the trace memory window 0

Start 1 The start address of the trace memory window 1

Length 1 The size of the trace memory window 1

Table 10: Trace window settings: Trace addresses

Trace if Description

condition is true AND
address is within ranges

Traces if the condition for the trace condition pins is true and the
trace address is within ranges. Both of the conditions must be
fulfilled.

condition is true OR
address is within ranges

Traces if the condition for the trace condition pins is true or the
trace address is within ranges. Only one of the conditions must be
fulfilled.

Table 11: Trace window settings: Trace conditions

Option Description

Ignore trace condition pins The settings of the trace condition pins are ignored.

P2[2] or P2[5] Pin P2[2] or pin P2[5] must be true.

P2[2] nor P2[5] Pin P2[2] and pin P2[5] must be false.

P2[2] and P2[5] Pin P2[2] and pin P2[5] must be true.

P2[2] nand P2[5] Pin P2[2] and pin P2[5] cannot both be true.

P2[2] xor P2[5] Either pin P2[2] or pin P2[5] must be true, but not both.

P2[2] xnor P2[5] Both pin P2[2] and pin P2[5] must be either true or false.

Table 12: Trace window settings: Trace Condition Pins

CSCR16CHW-2

C-SPY® Nexus debugger-specific debugging

17

Trace buffer

Use the Trace buffer options to set options related to the trace buffer. Buffer size is the
size of the trace buffer. A trace buffer is the memory buffer containing the trace data.

Trace mode controls the behavior of the trace once the trace buffer is full.

THE FIND IN TRACE WINDOW

The Find In Trace window—available from the View>Messages menu—displays the
result of searches in the trace data.

Figure 8: The Find In Trace window

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria. Double-click an
item in the Find in Trace window to bring up the same item in the Trace window.

You specify the search criteria in the Find In Trace dialog box. For information about
how to open this dialog box, see The Find in Trace dialog box, page 17.

THE FIND IN TRACE DIALOG BOX

Use the Find in Trace dialog box—available by choosing Edit>Find and
Replace>Find or from the Trace window toolbar—to specify the search criteria for
advanced searches in the trace data. Note that the Edit>Find and Replace>Find
command is context-dependent. It displays the Find in Trace dialog box if the Trace

Option Description

One shot The trace stops once the trace buffer is full.

Cyclic The trace continues, and when the buffer is full it wraps around.

Table 13: Trace window settings: Trace Buffer options

CSCR16CHW-2

18

Using the trace system

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

window is the current window or the Find dialog box if the editor window is the current
window.

Figure 9: The Find in Trace dialog box

The search results are displayed in the Find In Trace window—available by choosing
the View>Messages command, see The Find In Trace window, page 17.

In the Find in Trace dialog box, you specify the search criteria with the following
settings:

Text search

A text field where you type the string you want to search for. Use these options to
fine-tune the search:

Address Range

Use the text fields to specify an address range. The trace data within the address range
is displayed. If you also have specified a text string in the Text search field, the text
string is searched for within the address range.

Match Case Searches only for occurrences that exactly match the case of the speci-
fied text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word. Other-
wise int will also find print, sprintf and so on.

Only search in one
column

Searches only in the column you selected from the drop-down menu.

CSCR16CHW-2

C-SPY® Nexus debugger-specific debugging

19

Using breakpoints
The C-SPY CR16C Nexus Debugger provides a wide and flexible choice of
breakpoints; you can set:

● Code, data, and range breakpoints

For more information, see Range breakpoints, page 20, and the IAR Embedded
Workbench® IDE User Guide.

● Start points and stop points, which are triggers for real-time code profiling.

For more information, see Start Point breakpoints, page 24, and Stop Point
breakpoints, page 25.

● Watchpoints, which when triggered display a message in the Debug Log window
without stopping the application execution.

When a breakpoint has been reached, execution will normally be halted. If you do
not want to stop the execution when a breakpoint is triggered, define it as a
watchpoint by selecting the action Watch on the Range page in the Breakpoints
dialog box, see Action, page 22. Then choose Nexus>Log Watchpoints to log your
watchpoints, see The Nexus menu, page 11.

For information about the different methods for setting breakpoints, the generic
facilities for monitoring breakpoints, and the different breakpoint consumers, see the
IAR Embedded Workbench® IDE User Guide.

See also the Breakpoint Usage dialog box, page 26.

HARDWARE AND SOFTWARE BREAKPOINTS

When you set a breakpoint, trigger, or watchpoint, the physical breakpoint used on the
target can be one of two types, hardware and software. Which type is used depends on
several factors.

With the CR16C Nexus driver, and for data and range breakpoints, hardware
breakpoints will be used. For code breakpoints, software breakpoints will be used if they
are enabled, otherwise hardware breakpoints will be used.

To use software breakpoints for code breakpoints, choose Project>Options>CR16C
and select the option Use software breakpoints. By doing so, all hardware breakpoints
will be available for use by data and range breakpoints.

With the SC14 Nexus driver, there are no hardware breakpoints available. However,
there is an unlimited number of software breakpoints. This means that you can only set
code breakpoints.

CSCR16CHW-2

20

Using breakpoints

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

The table below summarizes the characteristics of hardware and software breakpoints:

1 CR16C only.
2 When software breakpoints are disabled.
3 With CR16CPlus, the number of hardware breakpoints is 16.

Hardware breakpoints

Hardware breakpoints are supported by the CR16C Nexus debug module located on the
chip. The number of available breakpoints is 8 (16 on devices with CR16CPlus support).
Data and range breakpoints require one or more hardware breakpoints.

Software breakpoints

Software breakpoints can only be used for code breakpoints and only when the program
is located in read/write memory. When enabled, this option will cause the breakpoints
to be implemented by a temporary substitution of the actual instruction with the EXCP
BP instruction. Before resuming execution, the original instruction will be restored. This
will generate execution time overhead when running an application.

RANGE BREAKPOINTS

A range breakpoint can be set either as a range or as a single location break. The
breakpoint will be detected when the specified memory access within the range is made.
Range breakpoints are only available in the CR16C Nexus driver.

Type Category Number Execution overhead

Hardware1 Code2, Data, Range,
Watchpoints,
Start/Stop points

83 No

Software Code Unlimited Yes

Table 14: Hardware and software breakpoints in Nexus debugger

CSCR16CHW-2

C-SPY® Nexus debugger-specific debugging

21

Range breakpoints can be set by using the New Breakpoint dialog box, which is
available from the Breakpoints window context menu.

Figure 10: The Range breakpoints dialog box

Start location

Specify the location of the breakpoint in the Start location text box. Alternatively, click
the Edit browse button to open the Enter Location dialog box.You can choose between
these locations and their possible settings:

Location type Description/Examples

Expression Any expression that evaluates to a valid address, such as a function or
variable name. For example, my_var refers to the location of the vari-
able my_var, and arr[3] refers to the third element of the array arr.

Absolute Address An absolute location on the form zone:hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory:0x42.
If you enter a combination of a zone and address that is not valid, C-SPY
will indicate the mismatch.

Table 15: Location types

CSCR16CHW-2

22

Using breakpoints

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

Type

The following table shows the available types of range breakpoints:

Action

The following types of actions for range breakpoints are available:

Access

Specifies the type of memory access guarded by the breakpoint:

Source Location A location in the C source code using the syntax:
{file path}.row.column. File specifies the filename and full path.
Row specifies the row in which you want the breakpoint. Column specifies
the column in which you want the breakpoint. Note that the Source
Location type is usually meaningful only for code breakpoints.
For example, {C:\IAR Systems\xxx\Utilities.c}.22.3
sets a breakpoint on the third character position on line 22 in the source
file Utilities.c.

Type Break when

Code Breakpoint is set as code access

Data Breakpoint is set as data access

Table 16: Range breakpoint categories

Action Description

Break When the breakpoint is detected, execution will be halted.

Watch When the breakpoint is detected, execution will continue. This is
referred to as a watchpoint. Watchpoints are logged, if the command
Log Watchpoints—available on the Nexus menu—is selected.
The Watch option can also be used in conjunction with the EVTO
option if an external signal/trigger is needed, without stopping the execu-
tion.

Table 17: Range breakpoint types

Type Description

Read/Write Read or write from location

Read Read from location

Table 18: Range breakpoint memory access types

Location type Description/Examples

Table 15: Location types (Continued)

CSCR16CHW-2

C-SPY® Nexus debugger-specific debugging

23

EVTO

Selecting EVTO will set the Event Out (EVTO) pin on the CR16C when the breakpoint
is detected. This can be used to trigger external hardware such as measuring equipment.

Note: There is only one EVTO pin, and enabling the EVTO toggle on more than one
breakpoint will set the EVTO pin on the first breakpoint detected.

Address mask

Using the mask will set the 0–3 least significant bits in the address as indifferent. This
can be used to minimize the number of used breakpoints because setting a range
breakpoint on one address (only consuming one hardware breakpoint) and masking all
three least significant bits will cover a larger range.

Example

Setting a single-range break on address 0x1000 and selecting an address mask of two
bits will guard 0x1000–0x1003. Setting a single-range break on address 0x1004 with
an address mask of two bits will cover the range 0x1000–0x1004. The actual range
depends on the address that the mask is used on.

Using Address Mask on a range breakpoint will make both the start and end address
masked.

Write Write to location

Type Description

Table 18: Range breakpoint memory access types

CSCR16CHW-2

24

Using breakpoints

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

START POINT BREAKPOINTS

Start points for real-time code profiling (see Real-time code profiling, page 26) can be
set by using the Start Point dialog box, which is available from the Breakpoints window
context menu.

Figure 11: Start Point breakpoints dialog box

Start At

Specify the location of the breakpoint in the Start At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box. For information about the
locations and their possible settings, see Start location, page 21.

CSCR16CHW-2

C-SPY® Nexus debugger-specific debugging

25

STOP POINT BREAKPOINTS

Stop points for real-time code profiling (see Real-time code profiling, page 26) can be
set by using the Stop Point dialog box, which is available from the Breakpoints window
context menu.

Figure 12: The Stop Point dialog box

Stop At

Specify the location of the stop point in the Stop At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box. For information about the
locations and their possible settings, see Start location, page 21.

CSCR16CHW-2

26

Real-time code profiling

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from the driver-specific menu—lists all
active breakpoints.

Figure 13: The Breakpoint Usage dialog box

In addition to listing all breakpoints that you have defined, this dialog box also lists the
internal breakpoints that the debugger is using.

For each breakpoint in the list the address and access type are shown. Each breakpoint
in the list can also be expanded to show its originator.

For more information, see the IAR Embedded Workbench® IDE User Guide.

Real-time code profiling
Real-time code profiling is only available on devices with CR16CPlus support. It
provides you with information about the number of clock cycles executed within a code
range.

To set up the profiling, follow these steps:

1 In the editor window or the Disassembly window, click to place the insertion point
where you want the profiled code range to start in the source code. Right-click to bring
up the context menu and choose Toggle Breakpoint (StartPoint).

2 In the editor or the Disassembly window, navigate to the location where you want the
profiled code range to end and click to place the insertion point. Then right-click and
choose Toggle Breakpoint (StopPoint). Now you have specified the code range to be
monitored.

Note: To set the start point and the stop point for the profiling, you can also choose
Edit>Breakpoints to open the Breakpoints dialog box. See Start Point breakpoints,
page 24 and Stop Point breakpoints, page 25.

CSCR16CHW-2

C-SPY® Nexus debugger-specific debugging

27

3 Choose Nexus>Real-time Code Profiling to open the Real-Time Code Profiling
window. Click Initialize to enable the profiling.

Figure 14: Real-Time Code Profiling window

The Real-Time Code Profiling window displays the following information:

Resolving problems
Debugging using the C-SPY hardware debugger systems requires interaction between
many systems, independent from each other. For this reason, setting up this debug
system can be a complex task. If something goes wrong, it might at first be difficult to
locate the cause of the problem.

This section includes suggestions for resolving the most common problems that can
occur when debugging with the C-SPY hardware debugger systems.

For problems concerning the operation of the evaluation board, refer to the
documentation supplied with it, or contact your hardware distributor.

Type Description

Status Indicates whether the profiling is enabled and running or not.

Inside range cycles The number of executed clock cycles within the specified range.

Outside range cycles The number of executed clock cycles outside of the specified range.

Max cycles The maximum number of executed cycles between the starting and stop-
ping points. This value is used for worst case evaluation.

Min cycles The minimum number of executed cycles between the starting and stop-
ping points. This value is used for best case evaluation.

Execution counter The number of times the profiling range has been executed.

Table 19: Real-time code profiling information

CSCR16CHW-2

28

Resolving problems

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

WRITE FAILURE DURING LOAD

There are several possible reasons for write failure during load. The most common is
that your application has been incorrectly linked:

● Check the contents of your linker command file and make sure that your application
has not been linked to the wrong address.

● Check that you are using correct linker command file.

To override the default linker command file:

● Choose Project>Options
● Select the Linker category

● Click the Config tab

● Choose the appropriate linker command file in the Linker command file area.

NO CONTACT WITH THE TARGET HARDWARE

There are several possible reasons for C-SPY to fail to establish contact with the target
hardware.

● Check the communication devices on your host computer

● Verify that the cable is properly plugged in and not damaged or of the wrong type

● Verify that the target chip is properly mounted on the evaluation board

● Make sure that the evaluation board is supplied with sufficient power

● Check that the correct options for communication have been specified in the IAR
Embedded Workbench; see Communication options, page 10

● Examine the linker command file to make sure that your application has not been
linked to the wrong address.

CSCR16CHW-2

29

Using flash loaders
This chapter describes the flash loader, what it is and how to use it. More
specifically, this means:

● Introduction to the flash loader

● Reference information on the flash loader.

Introduction to the flash loader
This section introduces the flash loader.

These topics are covered:

● Briefly about the flash loader

● Setting up the flash loader(s)

● The flash loading mechanism

● Build considerations.

BRIEFLY ABOUT THE FLASH LOADER

A flash loader is an agent that is downloaded to the target. It fetches your application
from the debugger and programs it into flash memory. The flash loader uses the file I/O
mechanism to read the application program from the host. You can select one or several
flash loaders, where each flash loader loads a selected part of your application. This
means that you can use different flash loaders for loading different parts of your
application.

A set of flash loaders for various microcontrollers is provided with IAR Embedded
Workbench for CR16C. The flash loader API, documentation, and several
implementation examples are available to make it possible for you to implement your
own flash loader.

SETTING UP THE FLASH LOADER(S)

To use a flash loader for downloading your application:

1 Choose Project>Options.

2 Choose the Debugger category and click the Download tab.

CSCR16CHW-2

30

Introduction to the flash loader

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

3 Select the Use Flash loader(s) option. A default flash loader configured for the device
you have specified will be used. The configuration is specified in a preconfigured
board file.

4 To override the default flash loader or to modify the behavior of the default flash loader
to suit your board, select the Override default .board file option, and Edit to open the
Flash Loader Configuration dialog box. A copy of the *.board file will be created
in your project directory and the path to the *.board file will be updated accordingly.

5 The Flash Loader Overview dialog box lists all currently configured flash loaders;
see Flash Loader Overview dialog box, page 31. You can either select a flash loader or
open the Flash Loader Configuration dialog box.

In the Flash Loader Configuration dialog box, you can configure the download. For
reference information about the various flash loader options, see Flash Loader
Configuration dialog box, page 33.

THE FLASH LOADING MECHANISM

When the Use flash loader(s) option is selected and one or several flash loaders have
been configured, these steps are performed when the debug session starts:

1 C-SPY downloads the flash loader into target RAM.

2 C-SPY starts execution of the flash loader.

3 The flash loader programs the application code into flash memory.

4 The flash loader terminates.

5 C-SPY switches context to the user application.

Steps 2 to 4 are performed for each memory range of the application.

The steps 1 to 4 are performed for each selected flash loader.

BUILD CONSIDERATIONS

When you build an application that will be downloaded to flash, special consideration
is needed. Two output files must be generated. The first is the usual UBROF file (d45)
that provides the debugger with debug and symbol information. The second file is a
simple-code file (filename extension sim) that will be opened and read by the flash
loader when it downloads the application to flash memory.

The simple-code file must have the same path and name as the UBROF file except for
the filename extension.

To create the extra output file, choose Project>Options and select the Linker category.
Select the Allow C-SPY-specific extra output file option. On the Extra Output page,
select the Generate extra output file option. Choose the simple-code output format

CSCR16CHW-2

Using flash loaders

31

and the format variant None. Do not override the default output file. For reference
information about these options, see the IAR Embedded Workbench® IDE User Guide.

Reference information on the flash loader
This section gives reference information about these windows and dialog boxes:

● Flash Loader Overview dialog box, page 31

● Flash Loader Configuration dialog box, page 33.

Flash Loader Overview dialog box
The Flash Loader Overview dialog box is available from the Debugger>Download
page.

Figure 15: Flash Loader Overview dialog box

This dialog box lists all defined flash loaders. If you have selected a device on the
General Options>Target page for which there is a flash loader, this flash loader is by
default listed in the Flash Loader Overview dialog box.

The display area

Each row in the display area shows how you have set up one flash loader for flashing a
specific part of memory:

Range The part of your application to be programmed by the
selected flash loader.

Offset/Address The start of the memory where your application will be
flashed. If the address is preceded with a, the address is
absolute. Otherwise, it is a relative offset to the start of the
memory.

CSCR16CHW-2

32

Reference information on the flash loader

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

Click on the column headers to sort the list by range, offset/addrses, etc.

Function buttons

These function buttons are available:

Loader Path The path to the flash loader *.flash file to be used (*.out
for old-style flash loaders).

Extra Parameters List of extra parameters that will be passed to the flash loader.

OK The selected flash loader(s) will be used for downloading
your application to memory.

Cancel Standard cancel.

New Displays a dialog box where you can specify what flash
loader to use; see Flash Loader Configuration dialog box,
page 33.

Edit Displays a dialog box where you can modify the settings for
the selected flash loader; see Flash Loader Configuration
dialog box, page 33.

Delete Deletes the selected flash loader configuration.

CSCR16CHW-2

Using flash loaders

33

Flash Loader Configuration dialog box
The Flash Loader Configuration dialog box is available from the Flash Loader
Overview dialog box.

Figure 16: Flash Loader Configuration dialog box

Use the Flash Loader Configuration dialog box to configure the download to suit your
board. A copy of the default board file will be created in your project directory.

Memory range

Specify the part of your application to be downloaded to flash memory. Choose
between:

Relocate

Overrides the default flash base address, that is relocate the location of the application
in memory. This means that you can flash your application to a different location from
where it was linked. Choose between:

All The whole application is downloaded using this flash loader.

Start/End Specify the start and the end of the memory area for which part of
the application will be downloaded.

Offset A numeric value for a relative offset. This offset will be added to
the addresses in the application file.

CSCR16CHW-2

34

Reference information on the flash loader

IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

You can use these numeric formats:

The default base address used for writing the first byte—the lowest address—to flash is
specified in the linker configuration file used for your application. However, it can
sometimes be necessary to override the flash base address and start at a different location
in the address space. This can, for example, be necessary for devices that remap the
location of the flash memory.

Flash loader path

Use the text box to specify the path to the flash loader file (*.flash) to be used by your
board configuration.

Extra parameters

Some flash loaders define their own set of specific options. Use this text box to specify
options to control the flash loader. For information about available flash loader options,
see the Parameter descriptions field.

Parameter descriptions

The Parameter descriptions field displays a description of the extra parameters
specified in the Extra parameters text box.

Absolute address A numeric value for an absolute base address where the
application will be flashed. The lowest address in the application
will be placed on this address. Note that you can only use one
flash loader for your application when you specify an absolute
address.

123456 Decimal numbers.

0x123456 Hexadecimal numbers

0123456 Octal numbers

CSCR16CHW-2

Index

35

A
assumptions, programming experience ix

B
bold style, in this guide . xi
Breakpoint Usage dialog box (Simulator menu) 26
breakpoints

hardware . 19–20
range (Nexus Debugger) . 20
software . 20
Start Point (Nexus Debugger) . 24
Stop Point (Nexus Debugger) . 25

C
code profiling, in real time . 26
command line options

typographic convention . xi
command prompt icon, in this guide xi
computer style, typographic convention xi
conventions, used in this guide . x
CR16CPlus

extra hardware breakpoints . 20
real-time code profiling . 26

C-SPY
differences between drivers . 2
hardware debugger systems . 1

C-SPY menus, Nexus . 11
C-SPY options

Nexus options . 8–9
Use software breakpoints . 8

C-SPY options, Download . 9
C++ terminology. x

D
dialog boxes

range breakpoints dialog box (Edit menu) 20
Start Point breakpoints dialog box (Edit menu) 24
Stop Point breakpoints dialog box (Edit menu) 25

document conventions. x
documentation

other documentation . x
this guide . ix

Download (C-SPY options) . 9

E
Extra Options, for C-SPY driver . 10

F
Find in Trace dialog box . 17
Find in Trace window . 17
flash loader

specifying the path to . 34
using . 29

Flash Loader Overview dialog box 31

H
hardware breakpoints . 19–20

I
icons, in this guide . xi
italic style, in this guide . xi

L
lightbulb icon, in this guide. xi

Index

CSCR16CHW-2

36
IAR C-SPY® Nexus Debugger Systems for CR16C
User Guide

M
menus, Nexus . 11

N
naming conventions . xi
Nexus Debugger

options . 8–9
using . 3

Nexus Debugger options, Use software breakpoints 8
Nexus menu . 11

O
options

hardware debugger systems . 7
options, C-SPY Nexus . 8–9

P
parameters

list of passed to the flash loader 32
specify to control flash loader . 34

parameters, typographic convention xi
prerequisites, programming experience. ix
profiling, real-time code . 26
programming experience. ix

R
range breakpoints dialog box (Edit menu) 20
real-time code profiling. 26
reference information, typographic convention. xi

S
SC14 DIP co-processors, tutorial . 4

software breakpoints . 20
Start Point breakpoints dialog box (Edit menu) 24
Stop Point breakpoints dialog box (Edit menu). 25
Suppress download (C-SPY option) 10

T
terminology. x
toolbar, Trace . 13
tools icon, in this guide . xi
Trace window . 13

toolbar . 13
Trace Window Settings . 15
typographic conventions . xi

U
Use software breakpoints (C-SPY option) 8
Use software breakpoints (Nexus Debugger option) 8

V
Verify download (C-SPY option) . 9

W
warnings icon, in this guide . xi

	Contents
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Document conventions
	Typographic conventions
	Naming conventions

	Introduction to C-SPY® Nexus debugger systems
	The C-SPY hardware debugger systems
	Differences between the Nexus debugger and the simulator

	Getting started
	Running the demo program

	Mixing CR16C and SC14 source code
	Integrating SC14 co-processor code
	The DIP integration project

	C-SPY® Nexus debugger-specific debugging
	Setting options for debugging using the C-SPY Nexus debugger
	CR16C Nexus
	Use software breakpoints

	SC14 Nexus
	Download
	Verify download
	Suppress download

	Extra Options
	Use command line options

	The Nexus menu
	Cache registers
	Disable co-processor FREEZE_REG

	Using the trace system
	The Trace window
	The Trace toolbar
	The display area

	Trace Window Settings
	Trace types
	Trace addresses
	Trace conditions
	Trace buffer

	The Find In Trace window
	The Find in Trace dialog box
	Text search
	Address Range

	Using breakpoints
	Hardware and software breakpoints
	Hardware breakpoints
	Software breakpoints

	Range breakpoints
	Start location
	Type
	Action
	Access
	EVTO
	Address mask

	Start Point breakpoints
	Start At

	Stop Point breakpoints
	Stop At

	Breakpoint Usage dialog box

	Real-time code profiling
	Resolving problems
	Write failure during load
	No contact with the target hardware

	Using flash loaders
	Introduction to the flash loader
	Reference information on the flash loader
	Flash Loader Overview dialog box
	Flash Loader Configuration dialog box

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

