IAR Embedded Workbench®

IDE Project Management and Building Guide

for the

CR16C Microprocessor Family
-

o

©IAR

UIDECR [6C-2 SYSTEMS

2

COPYRIGHT NOTICE
© 2013-2015 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, C-RUN, C-STAT, visual STATE,
Focus on Your Code, IAR KickStart Kit, IAR Experiment!, I-jet, I-jet Trace, I-scope,
IAR Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Second edition: October 2015

Part number: UIDECR16C-2

This guide applies to version 3.x of IAR Embedded Workbench® for the CR16C
microprocessor family.

Internal reference: M18, Hom7.2.8, IJOA.

IDE Project Management and Building Guide

for CR16C

Brief contents

TABIES ... 13
Preface ... 15
Part |. Project management and building ... 21
The development environmMent ... 23
Project management ... 77
BUilding Projects ... 105
EAiting ..o 121
Part 2. Reference information ... 163
Installed files ... 165
MenU referenCe ... 171
GeNEral OPLIONSoooiivieiicreiii et 189
ComPIiler OPLIONS ... sssseeneons 197
SC14 assembler OptioNns ... 213
CRI16C assembler OPLioNs ... 221
Custom build OPLIONS ... 229
Build actions OPLioNS ... 231
LINKEr OPLIONS ... 233
Library builder options ... 249
GIOSSANY ..o 251

IDE Project Management and Building Guide
4 for CR16C

Contents

TABIES ... 13
Preface ... 15
Who should read this guide ... 15
Required KNOWIEAZEccceeeeiiieieieieieieeee e 15
How to use this guide ..., 15
What this guide contains ...
Part 1. Project management and building ...
Part 2. Reference informationc..ceccevevvevieienienicncncninencneenees
Other documentation ... 17
User and reference gUidescccooveeeeereeieienienienienienieseseeeeeeieneas 17
The online help SYStemcccecveiiierieriinenenenineneseceeeeeeeeee 18
WED SIEES ..neeniiniiiietieieeieeie ettt ettt 18
Document cONVENLIONSc.ooooiiiiiiiireeee e 19
Typographic CONVENTIONScceeverreririeriereiereierienenieseereeeeneeneenees 19
Naming CONVENTIONScoueeueruiruieieieieteniertenteneeneeseeseeeseeseeseeeeeeneenees 20
Part |. Project management and building ... 21
The development environmMent ... 23
Introduction to the IAR Embedded Workbench IDE 23
Briefly about the IDE and the build toolchainc..ccocceveeneennennee. 23
Tools for analyzing and checking your applicationc.cccceceeueeeee 24
An extensible and modular environmentc.cceceecevererienieeeneenne. 24
Organizing the windows on the SCreenc..ccceeveeveriencceneeneennen. 25
Using and customizing the IDE ..., 25
Running the IDE ...cc.coiiiiiiiiiiccceeee e 26
Organizing WinAOWSccccoveerueerieriienienienieenieeneeese e siee st seeenieeeeas 26
Specifying tool OPLIONSc.coceveruirerieieieieierienenesenere e 26
Recognizing filename eXtensionsccoevverereerereneneneneereeeeeennes 27
Getting started using external analyzerscccceceeveeneenennicnneennen. 27

Invoking external tools from the Tools menucccccocviinian. 30

Adding command line commands to the Tools menu

Using an external €ditorc.ccoveerierierieeienieeienreseese e
Reference informationon the IDEcococoovinniinnn, 33
IAR Embedded Workbench IDE windowcccceceevenenenencnnenen. 35
Tool OUtPUt WINAOW ...oeviiiiiiiiieiiiieeieeieete et 38
Common FONnts OPiONSc.coerereririeieieieierenenesesene et eeeneene 39

Key Bindings options

Language OPLONScocveevierieriienierieeieete sttt 41
Editor OPHIONSccveieriiniiieniiniteiecieececetetetere sttt 42
Configure Auto Indent dialog BOXcccceeevereniriniininiciceeecene 46
External EitOr OPtONSooovevieriiiieieeieeeeiceeeste e 47
Editor Setup Files Optionsccccceceeveeienienienienenenenenenecieeeeeeneene 48
Editor Colors and FOnts Optionscecceceeeeeeienenenenenenenencenees 49
MESSAZES OPLIONS ...eeueeeniiiniienieeieeiie sttt et ettt e eane s siee e e 50
Project OPLONScveveriiririiniiritetcteteteet ettt 52
External AnalyZers OPtionsc.ccocceveeeeeeirereeienieneneneneneeeereeneen 54

External Analyzer dialog box
Source Code Control options
DebUZZEr OPLIONS ...ouvieeieiieiieiieiieieteieete ettt
StACK OPLIONS ..evviiiiiieiiieieeie ettt ettt ettt st s nae s
Register FIlter OPtionScoccoeevirireeieieieieieneneneseneneeieeeeeeeene
Terminal I[/O OPLONSccuevvevuiriiriieiiiieiieteteeee e

Configure Tools dialog BOXcccceveriruieieieieieieeresese e

Configure Viewers dialog box

Edit Viewer Extensions dialog boXc.ccceveveirenincneincncncnnenenn 69
Filename Extensions dialog boXcccccvevevienienenniienenienieneeneene 70
Filename Extension Overrides dialog boXccccccevenericnienineceennne 71
Edit Filename Extensions dialog bOXc.ccccevererenenencneneneneenee. 72

Argument variables

Configure Custom Argument Variables dialog boxccceeveuennee 74

Project management ... 77
Introduction to managing projects ..., 77
Briefly about managing projectsceceeceeeeeeeerieneneneseneneeeeeeneas 77

IDE Project Management and Building Guide
6 for CR16C

Contents °

How projects are organized

Interacting with version control SyStemscccceveveveereeneeneeneene 82
Managing Projects ... e 83
Creating and managing WOTrKSPaCESceceeeeeeruerierenerieneneeeeneens 83
Viewing the WOTKSPACEcccuevvevieriinieeniienitenieeieeie et 85
Interacting with SCC-compatible SYStemsccccceveverererereeeenene 86
Interacting with Subversion
Reference information on managing projects 88
WOrkspace WINAOWcccoceeeeiiieieiieniinienicnienenene e 89
Create New Project dialog bOXc.cccceveveeeeieiieiieieninenencnceeeene 93
Configurations for project dialog boXcccceeveeverviiiiniieniinieneeene 94
New Configuration dialog bOXcccccceeerirenienienienienieneneceeeeeeeene 95
Add Project Connection dialog boXc.ccoceverererenenenceieieieennes 96
Version Control System menu for SCCcccooveiviiviineineencnenee. 96
Select Source Code Control Provider dialog boXc..cccecceeveeeicnnee 98
Check In Files dialog DOXccoevieviiniininininineneneneneneceeeeeeene 99
Check Out Files dialog BOXc.coceriirienieneiiiiienieeieneescerieeieene 100
Source code control states
Version Control System menu for SUbversioncc.ccccevevenuennene 101
SUDVETSION STAESooviviiiiiiiiiiiiiicii e 102
BUildINg ProjeCcts ... eeennn 105
Introduction to building projectsc..ccccocovininininnins 105
Briefly about building @ projectceceeeeeeevievenenienienieneeneenieneens 105
Extending the toolchaineceecieieiienienienenereneseneeeeteeeeeene 105
Building @ Project ... 106
Setting project options using the Options dialog boXccccecevuene 107
Building yOUr PrOJECtceeevierieieiierierienieeeeieeteie ettt 110
Correcting errors found during buildcocovviviininniniiniene 111
Using pre- and post-build actionsccceevevererenenneeneenencnennens 111
Building multiple configurations in a batchcccecevceeveiiiencnennne 112
Building from the command linec.cccocevviiniiiniinineiniieiee 112
Adding an external too]cccceoeeeeieieniiiiinenneee e 113

8

Reference information on building ... 114

Options dialog DOXcovveriiiriiiiiiiieiierteneeeee et 115
Build WindOWcccooiiiiiiiiiiiii e 116
Batch Build dialog BOXcoceeieieieieiininincneneceeteecceeee 117
Edit Batch Build dialog DOXcccceeviiviirieiiiiniinienieenceieeeeeeeee 118
Editing ..o 121
Introduction to the IAR Embedded Workbench editor 121
Briefly about the editorcccceceevievininininininrecceceee 121
Briefly about source browse informationcoceeceveeeceeiienienennens 122
Customizing the editor environmentcceceeveereerieenierseeneennennes 122
Editing afile ...
Indenting text automaticallyc..cccceceverenieninienieniiieeeneene
Matching brackets and parentheses
Splitting the editor window into panesc..cececeeeeeveruenrenenenenne 124
Drag@ing teXL «..ceuuerueruerereriieeeiietietete ettt ettt et 124
COde fOlAING ..cuveeeviiiiriiiieiete et 124
WOrd COMPIELIONocveeueeeeriieiieiiiieicieiesereeeeee et 125
Code COMPLELION ...oveiiiirieriieiieieiietetee ettt ettt 125
Parameter hint
Using and adding code templatesccecueeveverenenieneneneeneeniennens 126
SYNLAX COLOTING ..euververiiriirieniieieteieterteie sttt ettt et see e 128
Adding bOOKMATKSoviiriiiiiiniieiiiieeiertecesceeee et 128
Using and customizing editor commands and shortcut keys 128
Displaying status informationcccececeeveevevenennincceneseeneeenes 129
Programming assistance ... 129
Navigating to @ funCtioncccceeeeeeeieieieiencreseseneee e 129
Finding a definition or declarations of a symbolc.ccccceveeuenee 130
Finding references to a Symbolcccceevievveinienienienieneeieeieeiene 130
Finding function calls for a selected functionc.cceceeeeeverecncnnene 130

IDE Project Management and Building Guide
for CR16C

Switching between source and header files

Displaying source browse informationcccceceeveevenenenenenene

TexXt SEATCRING ..c.vevvieviiiieiieiieieieeeeee e

Accessing online help for reference informationcc.cccevueuenene 131

Contents °

Reference information on the editor ... 132
Editor WINAOWcccccieiiiiiiiiiiiiicicieneeecececcee et
Find dialog DOX ..c..coceiieiiiiiiiiiiiiiieeeeeeee e
Find in Files WindOWcccccoviirinininininineneneeececeeecseeieeene
Replace dialog DOXcocueriiriiniiiiiiieiieeeceeceeeste e
Find in Files dialog BOXcccccceveerieniinieniniinininineecneeceeeeeeeenne
Replace in Files dialog box
Incremental Search dialog boXcoceevieviinieniiiiiiiieieeeee 148
Declarations Windowcc.cccceeeeueruiniinenrinineeieiererensenreneneneenne 149
Ambiguous Definitions Windowc..cccceceeererereenienieneenencnennens 150
References Windowccecveiirienieniiniininineninenccicieecreseseen 151
Source Browser Windowc..cocceevirininininieieicieieienenenienienne 152
Resolve File Ambiguity dialog bOXccccecevvererieienienienencnenenene 156
Call Graph WinAOWc..covueiviiiiiiiieniertenieeeeie ettt 156
Template dialog DOXoceevveiiriiniininininneecceee e 157
Editor shortcut key SUMmMArycccceceeceeieiienenenieneneneneeeeieeene 158
Part 2. Reference information ... 163
Installed files ... 165
Directory StruCtUre ...
ROOE AITECLOTY ..veiiiiiiiieiieieeeee et
The cr16C dirECLOTY ...cvivvirviniieiieiieiieiieiietetete sttt
The common directory
The install-info dir€Ctoryccccoeveerieriinieriinieeeeie et 167
File €YPES ... s 167
MenU referenCe ... 171
MENUS ..ot

Edit menu

VIEW IMENU ...voiiviiiiieeeiiicetee ettt ettt e e e et e e eteeeetaeeeaaeeeareeeareeeanaeas 177
Project MENUcccoviriiiiieieieieeee ettt 180
TOOIS MENU ..ottt et 184

Window menu

HEIp MENU ..oeeiiiiiiiiie e
GENEral OPLIONS ..o 189
Description of general options ... 189
Target OPLIONS ...eevverviruierierieieeiieiteterete ettt saenae e
OULPUL ettt ettt et ettt sae e b e beeaeeaee
Library Configuration
Library OPtionsSccccoerereririiieiieteteientereresreeree et
StACK/HEAD ..ottt
MISRA C oottt
COMPIlEr OPLIONS ... 197
Description of compiler options ..., 197
Multi-file COmMPIlationcccceeeveeieienienieneneneneeeeeee e 197
Language 1 ..o 198
LanGUaZE 2 ...ccoooviririiniiniieeeietcteetet e 201
OPLMIZALIONS ..evveuveierierierieeieetetetetertete et ebee et eare st s esteseeseenee 202
OULPUL ..ttt ettt ettt sb bbbttt et e st e b e besbesee e 204
LASE e 205

PIEPIOCESSOT ..ueiueiiiiiiieiieieeieeitee ettt 206
DIAZNOSLICS ...euiniiieieieeiesteete ettt sttt 208
MISRA C ottt ettt 209

EXIra OPIONS ...cvevviriiriieiiniieieeiieiietetetesteseste ettt 210

Edit Include Directories dialog bOXc.ccecevvererienienienienenienieniennens 210
SC14 assembler OptioNnsS ... eeseeeseenenns 213
Description of assembler optionscccocooenincninninns 213
LanGUAZE ...covevveiieiieiiiiietctctctctetetcteere ettt 213
GENDSP ..o 214

OULPUL .ttt ettt ettt et st e st e st e b e nbeebeenne 215

LUSE ettt et 216
PrePIOCESSOT ..ueiuiiiiiiiiieiietceieetete ettt 218

Diagnostics
EXUra OPLONS ..cveoveviiriiriirieriiitetetetetetest ettt esne e 220

IDE Project Management and Building Guide
for CR16C

Contents °

CRI16C assembler Options ... 221
Description of assembler options ... 221
LangUAZE ..c..oovveeiieiieieeeee e e 221

PrePrOCESSOLoviiiiiiieiiiieeteee ettt sttt 224
DIAZNOSHICS ...eviuvenriririeiinteniteitee ettt st es ettt 226
EXIra OPIONS ...cvevviriiriieiieiieeeiieitet ettt 227
Custom build OPLiIONS ... 229
Description of custom build options ... 229
Custom Tool Configurationc..cceceereereeneenennensieeienreneeseees 229
Build actions OPLioNS ... 231
Description of build actions options
Build Actions Configurationcc.ceceeeeieievienenenienienieneneeieeens
Linker OPLIONS ... 233
Description of linker optionsc.ccococoiiiiincc 233
CONTIG ettt sttt 234
OULPUL ettt ettt bbbttt et sa et sae e 236
EXIra OULPUL ..oeeniiiiiiiieiieeeeeeteeeeesee ettt 238
LIASE o 239
O et e 241
HACTING ..o s 242
DIAZNOSLICS .eevvveeieieeiieierieeteete ettt ettt sttt e 243
Checksum
EXIra OPtIONS ...cvevieriiniieiiniieeeiieitetetetestesesie sttt 247
Library builder options ... 249
Description of library builder options ... 249
OULPUL .ttt ettt sttt et st e st e st e b e sbeebeenne 250
GIOSSANY ..o 251
INAEX e 267

IDE Project Management and Building Guide
12 for CR16C

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 19
2: Naming conventions used in this gUIdecccceevieiriiriieiienienienenerererese e 20
3: Argument Variablescccocviviiiiiiiiiiic et 72
4: iarbuild.exe command lin€ OPLONSceeeuerierierienieniniinieeiieteteesesiesee e 112
5: Editor shortcut keys for insertion point Navigationceceeeeeveereeriereenienenenne. 158
6: Editor shortcut keys for selecting teXtcccuevuerverereninininieeeeeieierrceseeenes 159
7: Editor shortcut keys for SCrollingcoceeeveeceieniininininieeeeeceesesenee 159
8: Miscellaneous editor ShOTtCUt KEYSccoveveueieuinieinieiiiieerieeece e 159
9: Additional Scintilla ShOTtCUL KEYScoverueeiiiiiniiiiniiiinieecieccenenene e 160
10: The crl6c directory

11: The cOmMMmMON AITECLOTYveviirieriieriieniieieetee ettt ettt e eane s 167
120 FALE LYPES ittt ettt s 167

IDE Project Management and Building Guide
14 for CR16C

Preface

e Who should read this guide

o How to use this guide

What this guide contains
e Other documentation

e Document conventions

Who should read this guide

Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features and tools available in the IDE.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

o The architecture and instruction set of the CR16C microprocessor family (refer to
the chip manufacturer's documentation)

o The C or C++ programming language
o Application development for embedded systems
o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 17.

How to use this guide

Each chapter in this guide covers a specific fopic area. In many chapters, information is
typically divided in different sections based on information types:

o Concepts, which describes the topic and gives overviews of features related to the
topic area. Any requirements or restrictions are also listed. Read this section to learn
about the topic area.

o Tasks, which lists useful tasks related to the topic area. For many of the tasks, you

can also find step-by-step descriptions. Read this section for information about
required tasks as well as for information about how to perform certain tasks.

What this guide contains

® Reference information, which gives reference information related to the topic area.
Read this section for information about certain GUI components. You can easily
access this type of information for a certain component in the IDE by pressing F1.

If you are new to using IAR Embedded Workbench, we suggest that you first read the

guide Getting Started with IAR Embedded Workbench® for an overview of the tools and
the features that the IDE offers. The tutorials, which you can find in the IAR Information
Center, will help you get started using IAR Embedded Workbench.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR Systems user documentation.

What this guide contains

This is a brief outline and summary of the chapters in this guide.

PART I|. PROJECT MANAGEMENT AND BUILDING
This section describes the process of editing and building your application:

® The development environment introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for
customizing the environment to meet your requirements.

® Project management describes how you can create workspaces with multiple
projects, build configurations, groups, source files, and options that help you handle
different versions of your applications.

® Building projects discusses the process of building your application.

e [Editing contains detailed descriptions of the IAR Embedded Workbench editor, how
to use it, and the facilities related to its usage. The final section also contains
information about how to integrate an external editor of your choice.

PART 2. REFERENCE INFORMATION

o [nstalled files describes the directory structure and the types of files it contains.

® Menu reference contains detailed reference information about menus and menu
commands.

o General options specifies the target, output, library, and MISRA C options.

o Compiler options specifies compiler options for language, optimizations, code,
output, list file, preprocessor, diagnostics, and MISRA C.

o CRI6C assembler options describes the CR16C assembler options for language,
output, list, preprocessor, and diagnostics.

IDE Project Management and Building Guide
16 for CR16C

Preface __4

o SCI14 assembler options describes the SC14 assembler options for language, output,
list, preprocessor, and diagnostics.

o Custom build options describes the options available for custom tool configuration.

® Build actions options describes the options available for pre-build and post-build
actions.

e Linker options describes the options for setting up for linking.

o Library builder options describes the options for building a library.

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the [AR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

o System requirements and information about how to install and register the IAR
Systems products, is available in the booklet Quick Reference (available in the
product box) and the Installation and Licensing Guide.

o Getting started using IAR Embedded Workbench and the tools it provides, is
available in the guide Getting Started with IAR Embedded Workbench®.

o Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide.

o Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide.

o Programming for the IAR C/C++ Compiler for CR16C, is available in the /4R
C/C++ Compiler Reference Guide for CRI16C.

o Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, is available in the /AR Linker and Library Tools Reference Guide.

o Programming for the IAR Assembler for CR16C, is available in the CR16C IAR
Assembler Reference Guide.

o Programming for the IAR Assembler for SC14, is available in the SC14 IAR
Assembler Reference Guide.

o Using the IAR DLIB Library, is available in the DLIB Library Reference
information, available in the online help system.

o Using the IAR CLIB Library, is available in the /AR C Library Functions Reference
Guide, available in the online help system.

Other documentation

o Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

o Developing safety-critical applications using the MISRA C guidelines, is available
in the /AR Embedded Workbench® MISRA C:2004 Reference Guide or the IAR
Embedded Workbench® MISRA C:1998 Reference Guide.

e Porting application code and projects created with a previous version of the AR
Embedded Workbench for CR16C, is available in the JAR Embedded Workbench®
Migration Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

Information about project management, editing, and building in the IDE
Information about debugging using the IAR C-SPY® Debugger
Reference information about the menus, windows, and dialog boxes in the IDE

Compiler reference information

Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1. Note that if you select a function name in the editor window and press F1 while
using the CLIB library, you will get reference information for the DLIB library.

WEB SITES
Recommended web sites:

o The Chip manufacturer’s web site.

o The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

o The web site of the C standardization working group,
www.open-std.org/jtcl/sc22/wgl4.

o The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

o Finally, the Embedded C++ Technical Committee web site,

www.caravan.net/ec2plus, that contains information about the Embedded C++
standard.

IDE Project Management and Building Guide
18 for CR16C

Preface __4

Document conventions

When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example cr16c\doc, the
full path to the location is assumed, for example ¢: \Program Files\IAR
Systems\Embedded Workbench 7.n\crl6c\doc.

TYPOGRAPHIC CONVENTIONS

The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
 Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where £ilename represents the name of the file.

[option] An optional part of a directive, where [and] are not part of the actual
directive, butany [,], {, or } are part of the directive syntax.

{option} A mandatory part of a directive, where { and } are not part of the
actual directive, butany [,], {, or } are part of the directive syntax.

[option] An optional part of a command.

[a]b|c] An optional part of a command with alternatives.

{a|b]|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

Document conventions

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for CR16C IAR Embedded Workbench®
IAR Embedded Workbench® IDE for CR16C the IDE

IAR C-SPY® Debugger for CR16C C-SPY, the debugger
IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for CR16C the compiler

IAR Assembler™ for CR16C the assembler

IAR XLINK Linker™ XLINK, the linker
IAR XAR Library Builder™ the library builder
IAR XLIB Librarian™ the librarian

IAR DLIB Library™ the DLIB library
IAR CLIB Library™ the CLIB library

Table 2: Naming conventions used in this guide

IDE Project Management and Building Guide
20 for CR16C

Part 1. Project
management and building

This part contains these chapters:
e The development environment
e Project management

o Building projects

o Editing.

.hmuhhhhi

N

AAARRIE

2

o~

The development
environment

e Introduction to the IAR Embedded Workbench IDE
e Using and customizing the IDE

e Reference information on the IDE.

Introduction to the IAR Embedded Workbench IDE

These topics are covered:

e Briefly about the IDE and the build toolchain
e Tools for analyzing and checking your application
® An extensible and modular environment.

o Organizing the windows on the screen.

BRIEFLY ABOUT THE IDE AND THE BUILD TOOLCHAIN

The IDE is the environment where all tools needed to build your application—the build
toolchain—are integrated: a C/C++ compiler, C/C++ libraries, an assembler, a linker,
library tools, an editor, a project manager with Make utility, and the IAR C-SPY®
Debugger. The tools used specifically for building your source code are referred to as
the build tools.

The toolchain that comes with your product package supports a specific microcontroller.
However, the IDE can simultaneously contain multiple toolchains for various
microcontrollers. This means that if you have IAR Embedded Workbench installed for
several microcontrollers, you can choose which microcontroller to develop for.

Note: The compiler, assembler, and linker and library tools can also be run from a
command line environment, if you want to use them as external tools in an already
established project environment.

23

Introduction to the IAR Embedded Workbench IDE

TOOLS FOR ANALYZING AND CHECKING YOUR
APPLICATION

IAR Embedded Workbench comes with various types of support for analyzing and
finding errors in your application, such as:

o Compiler and linker errors, warnings, and remarks

All diagnostic messages are issued as complete, self-explanatory messages. Errors
reveal syntax or semantic errors, warnings indicate potential problems, and remarks
(default off) indicate deviations from the standard. Double-click a message and the
corresponding source code construction is highlighted in the editor window. For
more information, see the /AR C/C++ Compiler Reference Guide for CR16C.

o C-STAT for static analysis

C-STAT is a static analysis tool that tries to find deviations from specific sets of rules,
where each rule specifies an unsafe source construct. The rules come from various

institutes, like MISRA (MISRA C:2004, MISRA C++:2008, and MISRA C:2012),
CWE, and CERT. For information about how to use C-STAT and the rules, see the

C-STAT® Static Analysis Guide.

e MISRA C:1998 and 2004

In addition to the MISRA checks in C-STAT, the IDE provides compiler checks for
MISRA C:1998 and 2004. For more information, see the /AR Embedded
Workbench® MISRA C:2004 Reference Guide or the IAR Embedded Workbench®
MISRA C:1998 Reference Guide.

o C-SPY debugging features such as, Profiling, Code Coverage, Trace, and Power
debugging
For more information, see the C-SPY® Debugging Guide.

AN EXTENSIBLE AND MODULAR ENVIRONMENT

Although the IDE provides all the features required for your project, you can also
integrate other tools. For example, you can:

o Use the Custom Build mechanism to add other tools to the toolchain, see Extending
the toolchain, page 105.

o Add IAR visualSTATE to the toolchain, which means that you can add state
machine diagrams directly to your project in the IDE.

o Use a version control system to keep track of different versions of your source code.
The IDE can identify and access any third-party version control system that
conforms to the SCC interface published by Microsoft. The IDE can also attach to
files in a Subversion working copy.

o Add an external analyzer, for example a lint tool, of your choice to be used on whole
projects, groups of files, or an individual file of your project. Typically, you might

IDE Project Management and Building Guide
24 for CR16C

The development environment ___¢

want to perform a static code analysis on your source code, using the same settings
and set of source code files as when you compile. See Getting started using external
analyzers, page 27.

o Add external tools to the Tools menu, for convenient access from within the IDE.
For this reason, the menu might look different depending on which tools you have
preconfigured to appear as menu commands.

o Configure custom argument variables, which typically can be useful if you install a
third-party product and want to specify its include directory. Custom argument
variables can also be used for simplifying references to files that you want to be part
of your project.

ORGANIZING THE WINDOWS ON THE SCREEN

In the IDE, each window that you open has a default location, which depends on other
currently open windows. You can position the windows and arrange a layout according
to your preferences. Each window can be either docked or floating.

You can dock each window at specific places, and organize them in fab groups. If you
rearrange the size of one docked window, the sizes of any other docked windows are
adjusted accordingly. You can also make a window floating, which means it is always
on top of other windows. The location and size of a floating window does not affect
other currently open windows. You can move a floating window to any place on your
screen, also outside of the AR Embedded Workbench IDE main window.

Each time you open a previously saved workspace, the same windows are open, and they
have the same sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved.
In addition to the information saved for the workspace, information about all open
debugger-specific windows is also saved.

Note: The editor window is always docked. When you open the editor window, its
placement is decided automatically depending on other currently open windows. For
more information about how to work with the editor window, see Introduction to the IAR
Embedded Workbench editor, page 121.

Using and customizing the IDE

These tasks are covered:
e Running the IDE

o Organizing windows

o Specifying tool options
°

Recognizing filename extensions

25

Using and customizing the IDE

o Getting started using external analyzers

e Invoking external tools from the Tools menu

o Adding command line commands to the Tools menu

o Using an external editor.

See also Extending the toolchain, page 105.

For more information about customizations related to C-SPY, see the C-SPY®
Debugging Guide.

RUNNING THE IDE

Click the Start button on the Windows taskbar and choose All Programs>IAR
Systems>IAR Embedded Workbench for CR16C>IAR Embedded Workbench.

The file TarIdePm. exe is located in the common\bin directory under your IAR
Systems installation, in case you want to start the program from the command line or
from within Windows Explorer.

Double-clicking the workspace filename

The workspace file has the filename extension eww. If you double-click a workspace
filename, the IDE starts.

If you have several versions of IAR Embedded Workbench installed, the workspace file
is opened by the most recently used version of your IAR Embedded Workbench that
uses that file type, regardless of which version the project file was created in.
ORGANIZING WINDOWS

To place a window as a separate window, drag it next to another open window.

To place a window in the same tab group as another open window, drag the window you
want to locate and drop it in the middle of the other window.

To make a window floating, double-click on the window’s title bar.

The status bar, located at the bottom of the IAR Embedded Workbench IDE main
window, contains useful help about how to arrange windows.

SPECIFYING TOOL OPTIONS

You can find commands for customizing the IDE on the Tools menu.

IDE Project Management and Building Guide
26 for CR16C

The development environment ___¢

To display the IDE Options dialog box, choose Tools>Options to get access to a wide
variety of options:

- Common Fonts
- Key Bindings Tab size:
- Language
= Editor Indert size
; Extemal. Editor Tab Key
Setup Files I
: Inse:
i.. Colors and Fonts -
- Messages 9 Inde
[=I- Project
: Show r
i External Analyzers @)
- Source Code Control - Pt
- Debugger @ Col
- Stack Flle Enc
Defa

Select a category to the left in the dialog box and you have access to the options to the
right.

For more information about the various options for customizing the IDE, see Tools
menu, page 184.
RECOGNIZING FILENAME EXTENSIONS

In the IDE, you can increase the number of recognized filename extensions. By default,
each tool in the build toolchain accepts a set of standard filename extensions. Also, if
you have source files with a different filename extension, you can modify the set of
accepted filename extensions.

To get access to the necessary commands, choose Tools>Filename Extensions.

See Filename Extensions dialog box, page 70.

To override the default filename extension from the command line, include an explicit
extension when you specify a filename.

GETTING STARTED USING EXTERNAL ANALYZERS

I To add an external analyzer to the Project menu, choose Tools>Options to open the
IDE Options dialog box and select the Project>External Analyzers page.

2 To configure the invocation, click Add to open the External Analyzer dialog box.

27

Using and customizing the IDE

Marme: Analyzer 1

Fath: C>Program Files [x86]\MypdnalyzerT oolhbnalyzer C]

Arguments: -nc $FILE_PATH$ $COMPILER_ARGS$

Output matching patterns

Location: $FILE_NAME$:$LINE_MUMBER$ -
‘Warning: [¥ijwarningl?-i): -
Emar: [Fi)error?-i): -

[(] 3][Cancel]

Specify the details required for the analyzer you want to be able to invoke.

Use Output matching patterns to specify (or choose from a list) three regular
expressions for identifying warning and error messages and to find references to source
file locations.

Click OK when you have finished.
For more information about this dialog box, see External Analyzer dialog box, page 56.

3 In the IDE Options dialog box, click OK.

IDE Project Management and Building Guide
28 for CR16C

The development environment ___¢

4 Choose Project>Analyze Project and select the analyzer that you want to run,
alternatively choose Analyze File(s) to run the analyzer on individual files.

1 Workbench 1D

or [Ploject Tools Window Help

Add Files...

Add Group...

Import File List...

Add Project Connection...

3 Edit Configurations...

bBatch build...

Analyze Project
Analyze File(s)

Q.
]

Stop Build

Download and Debug
Debug without Downloading
Make & Restart Debugger
Restart Debugger

Download

SFR Setup
Open Device File

CTRL+BREAK

CTRL+D

CTRL+R
CTRL+SKIFT+R

3

E V2 B B @ P €
Tutor.c | Utilities. ¢ | Utlities.h

% . 4l

ives you all the

hardy
Analyzer1 1
Analyzer 2
Analyzer 3

Each of the regular expressions that you specified will be applied on each line of output
from the external analyzer. Output from the analyzer is listed in the Build Log window.
You can double-click any line that matches the Location regular expression you

specified in the External Analyzer dialog box to jump to the corresponding location in

the editor window.

Note: If you want to stop the analysis before it is finished, click the Stop Build button.

29

Using and customizing the IDE

INVOKING EXTERNAL TOOLS FROM THE TOOLS MENU

I To add an external tool to the menu, for example Notepad, choose Tools>Configure
Tools to open the Configure Tools dialog box.

Configure Tools

Menu Content:
(]
Cancel
Mew
Delete
Menu Text:
|&N otepad
Command:
|E:\W’INDDWS\n0tepad.exe Browse... |
Argument:

Initial Directary:

™ Redirect to Dutput Window

I~ Prompt for Command Line

Tool Available:

|Always j

2 Fill in the text fields according to the screenshot.
For more information about this dialog box, see Configure Tools dialog box, page 66.

3 After you have entered the appropriate information and clicked OK, the menu
command you have specified is displayed on the Tools menu.

Options...

Filename Extensions...
Configure Viewers...
Configure Custom Argument Variables...

Configure Tools...

MNotepad

Note: You cannot use the Configure Tools dialog box to extend the toolchain in the
IDE. If you intend to add an external tool to the standard build toolchain, see Extending
the toolchain, page 105.

IDE Project Management and Building Guide
30 for CR16C

The development environment ___¢

ADDING COMMAND LINE COMMANDS TO THE TOOLS MENU

Command line commands and calls to batch files must be run from a command shell.
You can add command line commands to the Tools menu and execute them from there.

To add a command, for example Backup, to the Tools menu to make a copy of the entire
project directory to a network drive:

Choose Tools>Configure Tools to open the Configure Tools dialog box.
Type or browse to the cmd.exe command shell in the Command text box.

Type the command line command or batch file name in the Argument text box, for
example:

/C copy c:\project*.* F:

Alternatively, use an argument variable to allow relocatable paths:

/C copy $PROJ_DIRS*.* F:

The argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /c option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

USING AN EXTERNAL EDITOR

The External Editor options—available by choosing Tools>Options>Editor—Ilet you
specify an external editor of your choice.

Note: While you are debugging using C-SPY, C-SPY will not use the external editor for
displaying the current debug state. Instead, the built-in editor will be used.

To specify an external editor of your choice:
Select the option Use External Editor.
An external editor can be called in one of two ways, using the Type drop-down menu:

o Command Line calls the external editor by passing command line parameters.

o DDE calls the external editor by using DDE (Windows Dynamic Data Exchange).

If you use the command line, specity the command to pass to the editor, that is, the
name of the editor and its path, for instance:

C:\Windows\NOTEPAD.EXE

31

Using and customizing the IDE

To send an argument to the external editor, type the argument in the Arguments field.
For example, type SFILE_PATHS to start the editor with the active file (in editor, project,
or messages windows).

IDE Dptions [%]

- Cormmon Fonts
Key Bindings ™ Use External Editor

Editor Type: ICommand Line

[k

Editar: I

- Colors and Fonts
- Messages

- Project

- Source Code Control
- Debugger

- Stack

- Register Filker

- Terminal IjQ

Arguments: I

QK I Cancel | Apply | Help |

Note: Options for Register Filter and Terminal I/O are only available when the C-SPY
debugger is running.

4 1If you use DDE, specify the editor’s DDE service name in the Service field. In the
Command field, specify a sequence of command strings to send to the editor.

The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.

The command strings should be entered as:

DDE-Topic CommandStringl
DDE-Topic CommandStringZ2

IDE Project Management and Building Guide
32 for CR16C

The development environment ___¢

as in this example, which applies to Codewright®:

IDE Dptions [%]

¢+ Common Fanks

¥ Use External Editor

i Key Bindings
Type: IDDE j

Sohp Fies Edior [CACW3Zien3Zere J
-Colors and Fonts Service: IEodewright

- Messages

- Project Command: |System BufEditFile $FILE_PATH$

- Source Code Contral $FILE_PATH$ MovToline $CUR_LINES

- Debugger

- Stack
- Register Filker
- Terminal IjQ

QK I Cancel | Apply | Help |

The command strings used in this example will open the external editor with a dedicated
file activated. The cursor will be located on the current line as defined in the context
from where the file is open, for instance when searching for a string in a file, or when
double-clicking an error message in the Message window.

5 Click OK.

When you double-click a filename in the Workspace window, the file is opened by the
external editor.

Variables can be used in the arguments. For more information about the argument
variables that are available, see Argument variables, page 72.

Reference information on the IDE

Reference information about:

IAR Embedded Workbench IDE window, page 35
Tool Output window, page 38

Common Fonts options, page 39

Key Bindings options, page 40

Language options, page 41

Editor options, page 42

Configure Auto Indent dialog box, page 46
External Editor options, page 47

Editor Setup Files options, page 48

33

Reference information on the IDE

Editor Colors and Fonts options, page 49
Messages options, page 50

Project options, page 52

External Analyzers options, page 54

External Analyzer dialog box, page 56

Source Code Control options, page 58
Debugger options, page 59

Stack options, page 61

Register Filter options, page 63

Terminal 1/O options, page 65

Configure Tools dialog box, page 66
Configure Viewers dialog box, page 68

Edit Viewer Extensions dialog box, page 69
Filename Extensions dialog box, page 70
Filename Extension Overrides dialog box, page 71
Edit Filename Extensions dialog box, page 72

Argument variables, page 72

Configure Custom Argument Variables dialog box, page 74

IDE Project Management and Building Guide
34 for CR16C

The development environment ___¢

IAR Embedded Workbench IDE window
The main window of the IDE is displayed when you launch the IDE.

— & tutorials - AR Embedded Workbench IDE =N ECR =<
IMenu bar I File Edit View Project Simulator Tools Window Help
[Toolbar DRSS | - wmEe e W e L
— | S * | Tutor.c |Utiities.c Moo
project] - Debug 4 /* Increase the 'callCount’ variable. #/ =
Filas PP /* Get and print the assosciated Fibonacci number. #/
il void DoForegroundProcess (void)
B2 Biutarials 1
afproject! -De... | v | | unsigned int £ib;
utorc NextCounter();
—_— | Utilities.c £ib = GetFib(callCount);
Workspace | b®Coutput PutFib(fib);
: @ Fproject2 - Debug v 1
window L@ Fprojecti-Debug v
P projectd-Debug v /# Main program. */
L= Fprojects-Debug /% Prints the Fibonacci saquence. #/
Frutor_library -De... » void main(void)
1
callCount = 07
. InitFib();
Editor |
window while (callCount < MAX_FIB)
L [=
DoForegroundProcess () ;
1
1
el I ERR] P e—r— b
x
Messages o
Updating build tree...
— Tutor.c
Message I Utilities.c
windows Linking
Tatal number of errars: 0
Total number of warnings: 0 -
ol I v
2 Buid [Debug Log | Findin Files x
ISK’“US bar 1 _ Ready Errors 0, Warnings 0 Ln4, Col 33 System
The figure shows the window and its default layout.
Menu bar

The menu bar contains:

File
Commands for opening source and project files, saving and printing, and exiting
from the IDE.

Edit
Commands for editing and searching in editor windows and for enabling and
disabling breakpoints in C-SPY.

View

Commands for opening windows and controlling which toolbars to display.

35

Reference information on the IDE

36

Toolbar

Project
Commands for adding files to a project, creating groups, and running the IAR
Systems tools on the current project.

Simulator
Commands specific for the C-SPY simulator. This menu is only available when
you have selected the simulator driver in the Options dialog box.

C-SPY hardware driver
Commands specific for the C-SPY hardware debugger driver you are using, in
other words, the C-SPY driver that you have selected in the Options dialog box.
For some IAR Embedded Workbench products, the name of the menu reflects
the name of the C-SPY driver you are using and for others, the name of the menu
is Emulator.

Tools

User-configurable menu to which you can add tools for use with the IDE.

Window

Commands for manipulating the IDE windows and changing their arrangement
on the screen.

Help
Commands that provide help about the IDE.

For more information about each menu, see Menus, page 171.

The IDE toolbar—available from the View menu—provides buttons for the most useful
commands on the IDE menus, and a text box for typing a string to do a quick search.

For a description of any button, point to it with the mouse pointer. When a command is
not available, the corresponding toolbar button is dimmed, and you will not be able to
click it.

IDE Project Management and Building Guide

for CR16C

The development environment ___¢

This figure shows the menu commands corresponding to each of the toolbar buttons:

N BEEImer: l | Brink || CEED | [Quick Search text box l | Replace | [Mavigate Forwardeackward]
|E |Undo | | Find Next | | [Tosele Bookmark l |Make | [Togge i l
Dg£ﬁ|§| I|I | -3 | %%3!| && |B°'nér4: !/f_'/i?/
Previous/N ex | | Stop Build | —
|Save All | |Cut | |Redo | |Fi“d | t Bookmark . — \?iiiﬁt ‘
/ |)y D load
Open | |Paste | [Find Previous] |(30 To | |Con'D|Ie | ancéwlir;e?ug

Note: When you start C-SPY, the Download and Debug button will change to a Make
and Debug button ¢¥ and the Debug without Downloading will change to a Restart
Debugger button ¢ .

Status bar

The status bar at the bottom of the window can be enabled from the View menu.

x

— [Errors 0, Warnings 0 [tn 124, Col 19 [System [CaP [nUmM [ove [BEES

The status bar displays:

e Source browser progress information
The number of errors and warnings generated during a build

The position of the insertion point in the editor window. When you edit, the status
bar shows the current line and column number containing the insertion point.

The character encoding
The state of the modifier keys Caps Lock, Num Lock, and Overwrite.

e If your product package is available in more languages than English, a flag in the
corner shows the language version you are using. Click the flag to change the
language. The change will take force the next time you launch the IDE.

37

Reference information on the IDE

Tool Output window

The Tool Output window is available by choosing View>Messages>Tool Output.

=

Output |

This window displays any messages output by user-defined tools in the Tools menu,
provided that you have selected the option Redirect to Output Window in the
Configure Tools dialog box; see Configure Tools dialog box, page 66. When opened,
this window is, by default, grouped together with the other message windows.

Context menu

This context menu is available:

Copy
Select Al

Clear Al

These commands are available:
Copy

Copies the contents of the window.
Select All

Selects the contents of the window.

Clear All

Deletes the contents of the window.

IDE Project Management and Building Guide
38 for CR16C

The development environment ___¢

Common Fonts options
The Common Fonts options are available by choosing Tools>Options.

IDE Dptions [%]

II'I'II'|'||:| Fonts — Fined ‘Width Font
Key Bindings - i
Editar Fant... I IEouner, zize =10

Messages
Project — Proportional width Fant

Source Code Contral —
Debugger Font... | IMS Sans Serf, size = 10

Register Filker
i Terminal IfO

QK | Cancel | Apply | Help |

Use this page to configure the fonts used for all project windows except the editor
windows.

For information about how to change the font in the editor windows, see Editor Colors

and Fonts options, page 49.

Fixed Width Font

Selects which font to use in the Disassembly, Register, and Memory windows.

Proportional Width Font

Selects which font to use in all windows except the Disassembly, Register, Memory,
and editor windows.

39

Reference information on the IDE

Key Bindings options

The Key Bindings options are available by choosing Tools>Options.

IDE Dptions [%]

Comrmon Fonts

Menu: IFiIe 'l
Messages Command | Frimary | Alias -
Prai tg Mew document CTRL+M
rale Mew workspace
Source Code Contral Open CTRL+0
Debugger Open Workspace e
Stack. Header/Source File CTRL+5K...
Register Filker Cloge
. Save Workspace
Terminal 1fO Claca Winrd enace LI

Prezz shortcut key: Frimary Aliaz

I St Al

[lear | [lear | HesetAIIl

QK I Cancel | Apply | Help |

Use this page to customize the shortcut keys used for the IDE menu commands.

Menu

Selects the menu to be edited. Any currently defined shortcut keys for the selected menu
are listed below the Menu drop-down list.

List of commands

Selects the menu command you want to configure your own shortcut keys for, from this
list of all commands available on the selected menu.

Press shortcut key

Type the key combination you want to use as shortcut key for the selected command.
You cannot set or add a shortcut if it is already used by another command.

Primary
Choose to:

Set
Saves the key combination in the Press shortcut key field as a shortcut for the
selected command in the list.

Clear

Removes the listed primary key combination as a shortcut for the selected
command in the list.

IDE Project Management and Building Guide
40 for CR16C

The development environment ___¢

The new shortcut will be displayed next to the command on the menu.

Choose to:

Add

Saves the key combination in the Press shortcut key field as an alias—a hidden
shortcut—for the selected command in the list.

Clear

Removes the listed alias key combination as a shortcut for the selected
command in the list.

The new shortcut will be not displayed next to the command on the menu.

Reset All

Reverts the shortcuts for all commands to the factory settings.

Language options
The Language options are available by choosing Tools>Options.

X

IDE Options

Comrmon Fonts
Key Bindings
Language
Editar
Messages After changing to a different language,
you must restart the application.

Language

¥

Project

Source Code Contral
Debugger

Stack.

QK | Cancel | | Help |

Use this page to specify the language to be used in windows, menus, dialog boxes, etc.

41

Reference information on the IDE

42

Language

Selects the language to be used. The available languages depend on your product
package, English (United States) and Japanese.

Note: If you have installed IAR Embedded Workbench for several different toolchains
in the same directory, the IDE might be in mixed languages if the toolchains are
available in different languages.

Editor options

The Editor options are available by choosing Tools>Options.

IDE Options [= |

Common Fonts

Key Bindings Tab size: 8 Syntax highlighting

Language [¥] Auto indent

Editor Indent size: 2

Eﬂe.ssages Tab Key Function: Show line numbers

t -
relee () Insert tab Scan for changed files
Source Code Control -
Debugger @) Indent with spaces Show bookmarks
Show fold margin
Stack Show right margin
o [Enable virtual space
© Pinting edge [7] Remove trailing blanks I
@ Columns: 80 9
Auto code completion and parameter hints I
File Encoding Show source browser tooltips
Default character encoding: [Show line break characters
(System =
Auto-detect character encoding
. EOL characters: | PC hd
! [ok][Cancel Apply Help

- — —

Use this page to configure the editor.

For more information about the editor, see Editing, page 121.

Tab size

Specify the width of a tab character, in terms of character spaces.

Indent size

Specify the number of spaces to be used when tabulating with an indentation.

IDE Project Management and Building Guide
for CR16C

The development environment ___¢

Tab Key Function

Controls what happens when you press the Tab key. Choose between:

Insert tab
Inserts a tab character when the Tab key is pressed.

Indent with spaces
Inserts an indentation (space characters) when the Tab key is pressed.

Show right margin

Displays the area of the editor window outside the right margin as a light gray field. If
this option is selected, you can set the width of the text area between the left margin and
the right margin. Choose to set the width based on:

Printing edge
Bases the width on the printable area, which is taken from the general printer
settings.

Columns
Bases the width on the number of columns.

File Encoding

Controls file encoding. Choose between:

Default character encoding

Selects the character encoding to be used by default for new files. Choose
between:

System (uses the Windows settings)
Western European

UTF-8

Japanese (Shift-JIS)

Chinese Simplified (GB2312)
Korean (Unified Hangul Code)
Arabic

Baltic

Central European

Greek

Hebrew

43

Reference information on the IDE

44

Russian
Thai
Vietnamese

Note that if you have specified a character encoding from the editor window
context menu, that encoding will override this setting for the specific document.
Auto-detect character encoding
Detects automatically which character encoding that should be used when you
open an existing document.
EOL characters
Selects which line break character to use when editor documents are saved.
Choose between:
PC (default), Windows and DOS end of line characters.
Unix, UNIX end of line characters.

Preserve, the same end of line character as the file had when it was opened,
either PC or UNIX. If both types or neither type are present in the opened file,
PC end of line characters are used.

Syntax highlighting

Auto indent

Makes the editor display the syntax of C or C++ applications in different text styles.

For more information about syntax highlighting, see Editor Colors and Fonts options,
page 49 and Syntax coloring, page 128.

Makes the editor indent the new line automatically when you press Return. For C/C++
source files, click the Configure button to configure the automatic indentation; see
Configure Auto Indent dialog box, page 46. For all other text files, the new line will have
the same indentation as the previous line.

Show line numbers

Makes the editor display line numbers in the editor window.

Scan for changed files

Makes the editor reload files that have been modified by another tool.

If a file is open in the IDE, and the same file has concurrently been modified by another
tool, the file will be automatically reloaded in the IDE. However, if you already started
to edit the file, you will be prompted before the file is reloaded.

IDE Project Management and Building Guide

for CR16C

The development environment ___¢

Show bookmarks

Makes the editor display a column on the left side in the editor window, with icons for
compiler errors and warnings, Find in Files results, user bookmarks, and breakpoints.

Show fold margin

Makes the editor display the fold margin in the left side of the editor window. For more
information, see Code folding, page 124.

Enable virtual space

Allows the insertion point to move outside the text area.

Remove trailing blanks

Removes trailing blanks from files when they are saved to disk. Trailing blanks are blank
spaces between the last non-blank character and the end of line character.

Auto code completion and parameter hints

Enables code completion and parameter hints. For more information, see Editing a file,
page 122.

Show source browser tooltips

Toggles the display of detailed information about the identifier that the cursor currently
hovers over.

Show line break characters

Toggles the display of carriage return and line feed characters in the editor window.

45

Reference information on the IDE

46

Configure Auto Indent dialog box

The Configure Auto Indent dialog box is available from the IDE Options dialog box.

Configure Auto Indent [%]
Sample code
(Opening Brace () int fiint x)
o al i
] switch (%)
Body (b) al| {
|2 c case 0O:
] return 1;
Label {c) c defanlt:
ID—] EEetuUrn X:
+
+
[8]4 I Cancel |

Use this dialog box to configure the editor’s automatic indentation of C/C++ source
code.

For more information about indentation, see /ndenting text automatically, page 123.
To open the Configure Auto Indent dialog box:

I Choose Tools>Options.

2 Open the Editor page.

3 Select the Auto indent option and click the Configure button.

Opening Brace (a)

Specify the number of spaces used for indenting an opening brace.

Body (b)
Specify the number of additional spaces used for indenting code after an opening brace,
or a statement that continues onto a second line.

Label (c)

Specify the number of additional spaces used for indenting a label, including case labels.

Sample code

This area reflects the settings made in the text boxes for indentation. All indentations are
relative to the preceding line, statement, or other syntactic structures.

IDE Project Management and Building Guide

for CR16C

The development environment ___¢

External Editor options
The External Editor options are available by choosing Tools>Options.

IDE Dptions [%]

- Cormmon Fonts
Key Bindings [V Use External Editor

Editor Type: |DDE

L L

Editor: |c:\cw32\cw32.exe

- Colors and Fonts Service: IEodewright

- Messages

- Project Command: |System BufEditFile $FILE_PATH$

- Source Code Contral $FILE_PATH$ MovToline $CUR_LINES
- Debugger

- Stack
- Register Filker
- Terminal IjQ

QK I Cancel | Apply | Help

Use this page to specify an external editor of your choice.

Note: The contents of this dialog box depends on the setting of the Type option.

See also Using an external editor, page 31.

Use External Editor

Enables the use of an external editor.

Type
Selects the type of interface. Choose between:
e Command Line
o DDE (Windows Dynamic Data Exchange).
Editor
Specify the filename and path of your external editor. A browse button is available for
your convenience.
Arguments

Specify any arguments to be passed to the editor. This is only applicable if you have
selected Command Line as the interface type.

47

Reference information on the IDE

48

Service

Command

Specity the DDE service name used by the editor. This is only applicable if you have
selected DDE as the interface type.

The service name depends on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.

Specify a sequence of command strings to be passed to the editor. The command strings
should be typed as:

DDE-Topic CommandStringl
DDE-Topic CommandString2

This is only applicable if you have selected DDE as the interface type.

The command strings depend on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.

Note: You can use variables in arguments, see Argument variables, page 72.

Editor Setup Files options

The Editor Setup Files options are available by choosing Tools>Options.

IDE Dptions [%]

Comrmon Fonts

™ Use Custom Keyword File

| |

V¥ Use Code Templates
Iation [atatlAR Embedded Workbench\CodeT emplates.tat |

B C

- Messages

- Project

- Source Code Control
- Debugger

- Stack

- Register Filker

- Terminal IjQ

QK I Cancel | Apply Help

Use this page to specify setup files for the editor.

Use Custom Keyword File

Specify a text file containing keywords that you want the editor to highlight. For
information about syntax coloring, see Syntax coloring, page 128.

IDE Project Management and Building Guide

for CR16C

The development environment ___¢

Use Code Templates

Specify a text file with code templates that you can use for inserting frequently used
code in your source file. For information about using code templates, see Using and
adding code templates, page 126.

Editor Colors and Fonts options
The Editor Colors and Fonts options are available by choosing Tools>Options.

IDE Options
.. Common Fonts Editor Font
- Key Bindings Fort... Courier New, size = 9
- Language
[=I- Editor
- External Editor Syrtax Coloring
- Setup Files Defautt = Color

Strings Type Style:
Me.ssages Char .
- Project Preprocessor
- Source Code Control Number

C++ comment Sample

- Debugger Commert
.. Stack User keyword i

Background Color

[ok][cancel || pply Help

Use this page to specity the colors and fonts used for text in the editor windows. The
keywords controlling syntax highlighting for assembler and C or C++ source code are
specified in the files syntax_icc.cfgand syntax_asm. c£fg, respectively. These files
are located in the cr16c\config directory.

Editor Font

Click the Font button to open the standard Font dialog box where you can choose the
font and its size to be used in editor windows.

49

Reference information on the IDE

Syntax Coloring
Selects a syntax element in the list and sets the color and style for it:

Color

Lists colors to choose from. Choose Custom from the list to define your own
color.

Type Style
Select Normal, Bold, or Italic style for the selected element.

Sample
Displays the current appearance of the selected element.

Background Color
Click to set the background color of the editor window.

Note: The User keyword syntax element refers to the keywords that you have listed in
the custom keyword file; see Editor Setup Files options, page 48.

Messages options
The Messages options are available by choosing Tools>Options.

IDE Options 53
Comrmon Fonts
Key Bindings Show build messages: Wiarnings -
Language Log n file
+|- Editor
- ™ Log build messages in file
Project {+
Source Code Contral -
Debugger

Stack. J

. Some dialog boxes can be suppressed by selecting a "Don't show
Enable)l Dialogs again' check box. Click "Enable All Dialogs" to enable all
suppreszed dialog boxes again.

QK | Cancel | | Help

Use this page to configure the amount of output in the Build messages window.

IDE Project Management and Building Guide
50 for CR16C

The development environment ___¢

Show build messages
Selects the amount of output to display in the Build messages window. Choose between:

All
Shows all messages, including compiler and linker information.

Warnings
Shows warnings and errors.

Errors
Shows errors only.

Log in file

Select the Log build messages in file option to write build messages to a log file.
Choose between:

Append to end of file
Appends the messages at the end of the specified file.
Overwrite old file

Replaces the contents in the file you specity.

Type the filename you want to use in the text box. A browse button is available for your
convenience.

Enable All Dialogs

Enables all dialog boxes you have suppressed by selecting a Don’t show again check
box, for example:

IAR Embedded Workbench IDE E

] E This will kerminate the debug session,
-

Ok I Cancel |

" Don't show again

51

Reference information on the IDE

Project options
The Project options are available by choosing Tools>Options.

IDE Options

Common Fonts

Key Bindi
o Stop build operation on:
Language
Editor Save editor windows before building:
Messages
Proi Save workspace and projects before
[l building:
Source Code Control kS bk e
Debugger
""" tack [] Reload last workspacs at startup

Play a sound after build operations

(Generate browse information

[No source browser and build status updates when the IDE is not the foreground process
Enable project connections

[Enable paraliel build Processes: |2

oKk | [Cancel |

Use this page to set options for the Make and Build commands.

Stop build operation on
Selects when the build operation should stop. Choose between:
Never
Never stops.
Warnings
Stops on warnings and errors.

Errors
Stops on errors.

Save editor windows before building

Selects when the editor windows should be saved before a build operation. Choose
between:

Never
Never saves.

IDE Project Management and Building Guide
52 for CR16C

The development environment ___¢

Ask
Prompts before saving.

Always
Always saves before Make or Build.

Save workspace and projects before building
Selects when a workspace and included projects should be saved before a build
operation. Choose between:

Never
Never saves.

Ask
Prompts before saving.

Always
Always saves before Make or Build.

Make before debugging
Selects when a Make operation should be performed as you start a debug session.
Choose between:

Never
Never performs a Make operation before a debug session.

Ask
Prompts before performing a Make operation.

Always

Always performs a Make operation before a debug session.

Reload last workspace at startup

Loads the last active workspace automatically the next time you start the IAR Embedded
Workbench IDE.

Play a sound after build operations

Plays a sound when the build operations are finished.

Generate browse information

Enables the use of the Source Browser window, see Source Browser window, page 152.

53

Reference information on the IDE

No source browser and build status updates when the IDE is not the foreground process
Halts the source browser when the IDE is not the foreground process. This also means
that the build status is no longer updated in the Workspace window. This option is
useful for example, if you are using a laptop and want to reduce power consumption.

Enable project connections
Enables the support for setting up live project connections, see Add Project Connection
dialog box, page 96.

Enable parallel build

Enables the support for parallel build. The compiler runs in several parallel processes to
better use the available cores in the CPU. In the Processes text box, specify the number

of processes you want to use. Using all available cores might result in a less responsive
IDE.

External Analyzers options

The External Analyzers options are available by choosing Tools>Options.

- Common Fonts
- Key Bindings Analyzers:
.. Language Analyzer 1 Move Up

. Analyzer 2
[+ Editor Analyzer 3

. Messages Move Down
[=I- Project

- Source Code Control
- Debugger
- Stack

Use this page to add an external analyzer to the standard build toolchain.

For more information, see Getting started using external analyzers, page 27.

IDE Project Management and Building Guide
54 for CR16C

The development environment ___¢

Analyzers

Lists the external analyzers that you have added to the standard build toolchain.

Move Up

Moves the analyzer you have selected in the list one step up. This order is reflected on
the Project menu.

Move Down

Moves the analyzer you have selected in the list one step down. This order is reflected
on the Project menu.

Add
Displays the External Analyzer dialog box where you can add a new analyzer to the
toolchain and configure the invocation of the analyzer.

Delete
Deletes the selected analyzer from the list of analyzers.

Edit

Displays the External Analyzer dialog box where you can edit the invocation details of
the selected analyzer.

55

Reference information on the IDE

External Analyzer dialog box

The External Analyzer dialog box is available by choosing
Tools>Options>Project>External Analyzers.

Marme: Analyzer 1

Fath: C>Program Files [x86]\MypdnalyzerT oolhbnalyzer C]

Arguments: -nc $FILE_PATH$ $COMPILER_ARGS$

Output matching patterns
Location: $FILE_NAME$:$LINE_MUMBER$
‘Warning: [¥ijwarningl?-i):

Errar: [Fi)erran] -]:

[(] 3 J[Cancel]

Use this dialog box to configure the invocation of the external analyzer that you want to
add to the standard build toolchain.

For more information, see Getting started using external analyzers, page 27.

Name

Specify the name of the external analyzer. Note that the name must be unique.

IDE Project Management and Building Guide
56 for CR16C

The development environment ___¢

Path

Specify the path to the analyzer’s executable file. A browse button is available for your
convenience.

Arguments

Specify the arguments that you want to pass to the analyzer. Note that you can use
argument variables for specifying the arguments, see Argument variables, page 72.

Location

Specify a regular expression used for finding source file locations. The regular
expression is applied to each output line which will appear as text in the Build Log
window. You can double-click a line that matches the regular expression you specify.

You can use the argument variables $FILE_NAMES, SLINE_NUMBERS, and
$COLUMN_NUMBERS to identify a filename, line number, and column number,
respectively. Choose one of the predefined expressions:

\"?$FILE_NAMES$\"?:$SLINE_NUMBERS$
Will, for example, match a location of the form file.c:17.

\"?$FILE_NAMES$\"? +SLINE_NUMBERS$
Will, for example, match a location of the form file.c17.

\"?$FILE_NAMES$\"?

Will, for example, match a location of the form file.c.

Alternatively, you can specify your own expression. For example, the regular expression
Msg: SFILE_NAMES$ @ SLINE_NUMBERS, when applied to the output string
Msg:MySourceFile.c @ 32, will identify the file as MySourceFile.c, and the line
number as 32.

Warning
Any output line that matches this expression is tagged with the warning symbol.
For example, the expression (?i)warning (?-1i) : will identify any line that contains

the string warning: (regardless of case) as a warning.

Error

Any output line that matches this expression is tagged with the error symbol. Errors have
precedence over warnings.

57

Reference information on the IDE

For example, the expression (?1i)error (?-1) : will identify any line that contains the
string error: (regardless of case) as an error.

Source Code Control options
The Source Code Control options are available by choosing Tools>Options.

IDE Dptions [%]

- Cormmon Fonts
Key Bindings
Editar

™ Keep items checked out when checking in

Save editor windows befare perfarming IAIways vl

source code contral commands:

Register Filker
----- Terminal IjC

QK I Cancel | Apply | Help |

Use this page to configure the interaction between an IAR Embedded Workbench
project and an SCC project.

Keep items checked out when checking in
Determines the default setting for the option Keep Checked Out in the Check In Files
dialog box; see Check In Files dialog box, page 99.

Save editor windows before performing source code control commands

Determines whether editor windows should be saved before you perform any source
code control commands. Choose between:

Never
Never saves editor windows before performing any source code control
commands.

Ask
Prompts before performing any source code control commands.

Always
Always saves editor windows before performing any source code control
commands.

IDE Project Management and Building Guide
58 for CR16C

The development environment ___¢

Debugger options

The Debugger options are available by choosing Tools>Options.

IDE Options (=23

When source resolves to multiple function instances

[Automatically choose all instances

Source code color in disassembly window

o

Step into functions STL container expansion

@ All functions

Depth: 10
() Functions with source only

Update intervals {miliseconds) Default integer format
Memory window: 1000

Window classification by background color

[OK] [Cancel Apply Help

Use this page to configure the debugger environment.

When source resolves to multiple function instances

Some source code corresponds to multiple code instances, for example template code.
When specifying a source location in such code, for example when setting a source
breakpoint, you can make C-SPY act on all instances or a subset of instances. Use the
Automatically choose all instances option to let C-SPY act on all instances without
asking first.

Source code color in disassembly window
Click the Color button to select the color for source code in the Disassembly window.
To define your own color, choose Custom from the list.

Step into functions
Controls the behavior of the Step Into command. Choose between:

All functions
Makes the debugger step into all functions.

59

Reference information on the IDE

60

Functions with source only

Makes the debugger step only into functions for which the source code is
known. This helps you avoid stepping into library functions or entering
disassembly mode debugging.

STL container expansion

Specify how many elements that are shown initially when a container value is expanded
in, for example, the Watch window.

Update intervals

Specify how often the contents of the Live Watch window and the Memory window
are updated.

These text boxes are only available if the C-SPY driver you are using has access to the
target system memory while executing your application.

Default integer format

Selects the default integer format in the Watch, Locals, and related windows.

Window classification by background color

Toggles background colors in some C-SPY windows on or off. Colors are used for
differentiating types of windows; for example, all interrupt-related windows have one
background color, and all watch-related windows have another color, etc.

IDE Project Management and Building Guide

for CR16C

The development environment ___¢

Stack options

The Stack options are available by choosing Tools>Options or from the context menu
in the Memory window.

IDE Dptions [%]

Comrmon Fonts
Kev Bindings ¥ Enable graphical stack display and stack usage tracking

Editar I 90 % stack usage threshold
Messages X

Project [V ‘wam when exceeding stack threshold
Source Code Control [V ‘wam when stack pointer is out of bounds

Debugger [V Stack pointer(z] not valid until program reaches:

Register Filker Imaln
----- Terminal IO W amings
’7 & Log

" Log and alert

I~ Limit stack display to B2 bytes

QK I Cancel | Apply | Help

Use this page to set options specific to the Stack window.

Enable graphical stack display and stack usage tracking

Enables the graphical stack bar available at the top of the Stack window. It also enables
detection of stack overflows. For more information about the stack bar and the
information it provides, see the C-SPY® Debugging Guide.

% stack usage threshold

Specify the percentage of stack usage above which C-SPY should issue a warning for
stack overflow.

Warn when exceeding stack threshold

Makes C-SPY issue a warning when the stack usage exceeds the threshold specified in
the % stack usage threshold option.

Warn when stack pointer is out of bounds

Makes C-SPY issue a warning when the stack pointer is outside the stack memory range.

Stack pointer(s) not valid until program reaches

Specify a location in your application code from where you want the stack display and
verification to occur. The Stack window will not display any information about stack
usage until execution has reached this location.

61

Reference information on the IDE

62

Warnings

By default, C-SPY will not track the stack usage before the main function. If your
application does not have a main function, for example, if it is an assembler-only
project, you should specify your own start label. If this option is selected, after each reset
C-SPY keeps a breakpoint on the given location until it is reached.

Typically, the stack pointer is set up in the system initialization code cstartup, but not
necessarily from the very first instruction. Select this option to avoid incorrect warnings
or misleading stack display for this part of the application.

Selects where warnings should be issued. Choose between:
Log
Warnings are issued in the Debug Log window.

Log and alert
Warnings are issued in the Debug Log window and as alert dialog boxes.

Limit stack display to

Limits the amount of memory displayed in the Stack window by specifying a number
of bytes, counting from the stack pointer. This can be useful if you have a big stack or
if you are only interested in the topmost part of the stack. Using this option can improve
the Stack window performance, especially if reading memory from the target system is
slow. By default, the Stack window shows the whole stack, or in other words, from the
stack pointer to the bottom of the stack. If the debugger cannot determine the memory
range for the stack, the byte limit is used even if the option is not selected.

Note: The Stack window does not affect the execution performance of your application,
but it might read a large amount of data to update the displayed information when the
execution stops.

IDE Project Management and Building Guide

for CR16C

The development environment ___¢

Register Filter options
The Register Filter options are available by choosing Tools>Options when C-SPY is

running.
IDE Options [= |
- Common Fonts
Key Bindings Use register fitter Groups:
.. Language MyFilter fit Filter Files...] [M)GmupOfFilters ']
e.ssages .- RO b Group members:
[#- Project . R1 R0
- Source Code Control .. R2 = Ri
- Debugger -R3 =
.. Stack - R4
- Register Filter RS B
— ase
. Terminal /O RE
- R Ovemide
.- R8
-R9 Bin
.- R10 Oct
-~ R11 Dec
- R12 -
..SP © Hex
LR Float
a |—'%- v Double

Use this page to define your own filters for application-specific register groups or to edit
predefined filters. The register groups can then be viewed in the Register window.

Defining application-specific register groups minimizes the amount of registers
displayed in the Register window and speeds up the debugging.

For more information about register groups, see the C-SPY® Debugging Guide.

To define application-specific register groups:
I Choose Tools>Options>Register Filter.

2 Select Use register filter and specify the filename and destination of the filter file for
your new group in the dialog box that appears.

3 Click New Group and specify the name of your group, for example My Timer Group.

New Group

IMy Timer Group

()8 I Cancel |

63

Reference information on the IDE

64

4

In the register tree view on the Register Filter page, select a register and click the
arrow button to add it to your group. Repeat this process for all registers that you want
to add to your group.

Optionally, select any registers for which you want to change the integer base, and
choose a suitable base.

When you are done, click OK. Your new group is now available in the Register
window.

If you want to add more groups to your filter file, repeat this procedure for each group
you want to add.

Use register filter

Filter Files

Groups

New Group

Group members

Base

Enables the use of register filters.

Displays a dialog box where you can select or create a new filter file. The file will be
created in the same directory as your active project.

Lists all available register groups in the filter file, alternatively displays the new register
group.

Click to create a new register group.

Shows the registers in the group currently selected in the Groups drop-down list.

To add registers to the group, select the registers you want to add in the list of all
available registers to the left and move them using the arrow button.

To remove registers from the group, select the registers you want to remove and move
them using the arrow button.

Overrides the default base. Note that it is only possible to override to £1oat if the size
of the register is 32 bits, and to double if the size of the register is 64 bits.

IDE Project Management and Building Guide

for CR16C

The development environment ___¢

Terminal I/O options
The Terminal I/O options are available by choosing Tools>Options when C-SPY is

running.
IDE Dptions [%]
- Cormmon Fonts
o — Input mode
Key Bindings Py
Editor + Feyboard
Messages % Buffered
Project " Direct
Source Code Control E
Debugger File
Stack & Text
Reqister Filker | Binary
minal L0 [(PROI_DIR$TemiDinput st |

Input echaing
’7|7 Log file [~ Teminal /0 windaw ‘

[~ Show target reset in Terminal 10 window
QK I Cancel | Apply | Help |

Use this page to configure the C-SPY terminal I/O functionality.

Input mode

Controls how the terminal I/O input is read.

Keyboard Makes the input characters be read from the keyboard. Choose between:
Buffered: Buffers input characters.
Direct: Does not buffer input characters.
File Makes the input characters be read from a file. Choose between:
Text: Reads input characters from a text file.
Binary: Reads input characters from a binary file.

A browse button is available for locating the input file.

Input echoing

Determines whether to echo the input characters and where to echo them. The choices
are:

o Log file. Requires that you have enabled the option Debug>Logging>Enable log
file.

e Terminal I/O window.

65

Reference information on the IDE

Show target reset in Terminal 1/O window

Displays a message in the C-SPY Terminal I/0O window when the target resets.

Configure Tools dialog box

The Configure Tools dialog box is available from the Tools menu.

Configure Tools

Menu Content:
(]
Cancel
Mew
Delete
Menu Text:
|&N otepad
Command:
|E:\W’INDDWS\n0tepad.exe Browse... |
Argument:

Initial Directary:

™ Redirect to Dutput Window

I~ Prompt for Command Line

Tool Available:

|Always j
Use this dialog box to specity a tool of your choice to add to the Tools menu, for
example Notepad:
Options...

Filename Extensions...
Configure Viewers...
Configure Custom Argument Variables...

Configure Tools...

Note: If you intend to add an external tool to the standard build toolchain, see Extending
the toolchain, page 105.

You can use variables in the arguments, which allows you to set up useful tools such as
interfacing to a command line revision control system, or running an external tool on the
selected file.

IDE Project Management and Building Guide
66 for CR16C

The development environment ___¢

Adding a command line command or batch file to the Tools menu:

I Type or browse to the cmd. exe command shell in the Command text box.

2 Type the command line command or batch file name in the Argument text box as:
/C name
where name is the name of the command or batch file you want to run.

The /C option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

For an example, see Adding command line commands to the Tools menu, page 31.

New

Creates a stub for a new menu command for you to configure using this dialog box.

Delete

Removes the command selected in the Menu Content list.

Menu Content

Lists all menu commands that you have defined.

Menu Text
Specify the name of the menu command. If you add the & sign anywhere in the name,
the following letter, N in this example, will appear as the mnemonic key for this
command. The text you specify will be reflected in the Menu Content list.
Command
Specify the tool and its path, to be run when you choose the command from the menu.
A browse button is available for your convenience.
Argument

Optional: Specify an argument for the command.

Initial Directory

Specify an initial working directory for the tool.

Redirect to Output window

Makes the IDE send any console output from the tool to the Tool Output page in the
message window. Tools that are launched with this option cannot receive any user input,
for instance input from the keyboard.

67

Reference information on the IDE

68

Tools that require user input or make special assumptions regarding the console that they
execute in, will not work at all if launched with this option.

Prompt for Command Line

Makes the IDE prompt for the command line argument when the command is chosen
from the Tools menu.

Tool Available
Specifies in which context the tool should be available. Choose between:
o Always
o When debugging
o When not debugging.

Configure Viewers dialog box
The Configure Viewers dialog box is available from the Tools menu.

Configure Yiewers [%]
Extensions | Ackion | Ok
Explorer Default
.htm Explorer Default Cancel

Mg

Edit...

Remave

g

This dialog box lists overrides to the default associations between the document formats
that IAR Embedded Workbench can handle and viewer applications.

Display area
This area contains these columns:

Extensions

Explicitly defined filename extensions of document formats that AR
Embedded Workbench can handle.

Action
The viewer application that is used for opening the document type. Explorer
Default means that the default application associated with the specified type in
Windows Explorer is used.

IDE Project Management and Building Guide
for CR16C

New

Edit

Delete

The development environment ___¢

Displays the Edit Viewer Extensions dialog box; see Edit Viewer Extensions dialog
box, page 69.

Displays the Edit Viewer Extensions dialog box; see Edit Viewer Extensions dialog
box, page 69.

Removes the association between the selected filename extensions and the viewer
application.

Edit Viewer Extensions dialog box

The Edit Viewer Extensions dialog box is available from the Configure Viewers

dialog box.
Edit Yiewer Extensions [%]
File name extensians:
| bl
Cancel |
Action

€ Buile-in text editor
& st file explorer associations

 Command line

| |

Use this dialog box to specify how to open a new document type or edit the setting for
an existing document type.

File name extensions

Action

Specify the filename extension for the document type—including the separating
period (.).

Selects how to open documents with the filename extension specified in the Filename
extensions text box. Choose between:

Built-in text editor

Opens all documents of the specified type with the IAR Embedded Workbench
text editor.

69

Reference information on the IDE

Use file explorer associations
Opens all documents of the specified type with the default application
associated with the specified type in Windows Explorer.

Command line

Opens all documents of the specified type with the viewer application you type
or browse your way to. You can give any command line options you would like
to the tool.

Filename Extensions dialog box
The Filename Extensions dialog box is available from the Tools menu.

Taol chain

Cancel
Edit...

Use this dialog box to customize the filename extensions recognized by the build tools.
This is useful if you have many source files with different filename extensions.

qu

Toolchain
Lists the toolchains for which you have an IAR Embedded Workbench installed on your
host computer. Select the toolchain you want to customize filename extensions for.
Note the * character which indicates user-defined overrides. If there is no * character,
factory settings are used.

Edit

Displays the Filename Extension Overrides dialog box; see Filename Extension
Overrides dialog box, page 71.

IDE Project Management and Building Guide
70 for CR16C

The development environment ___¢

Filename Extension Overrides dialog box

The Filename Extension Overrides dialog box is available from the Filename
Extensions dialog box.

Filename Extension Overrides

Tool Factory Setting Override QK
C/C++ Com... <Maone

Azzembler <Maone
Output Con.... <Mones

Browse Info... <Maone

Linker <Maone
Library Builder <Mones

Browse Info... <Maone

This dialog box lists filename extensions recognized by the build tools.

Display area
This area contains these columns:

Tool
The available tools in the build chain.

Factory Setting
The filename extensions recognized by default by the build tool.

Override

The filename extensions recognized by the build tool if there are overrides to the
default setting.

Edit

Displays the Edit Filename Extensions dialog box for the selected tool.

71

Reference information on the IDE

72

Edit Filename Extensions dialog box

Factory setting

Override

Argument variables

The Edit File Extensions dialog box is available from the Filename Extension
Overrides dialog box.

Edit Filename Extensions

Factaory setting

I.c:;.c:c:;.c:pp QK I
¥ Overide Cancel |
I.c;.cc;.cpp

This dialog box lists the filename extensions recognized by the IDE and lets you add
new filename extensions.

Lists the filename extensions recognized by default.

Specify the filename extensions you want to be recognized. Extensions can be separated
by commas or semicolons, and should include the leading period.

You can use argument variables for paths and arguments, for example when you specify
include paths in the Options dialog box or whenever there is a need for a macro-like
expansion that depends on the current context, for example in arguments to tools. You
can use a wide range of predefined argument variables as well as create your own, see
Configure Custom Argument Variables dialog box, page 74. These are the predefined
argument variables:

Variable Description

SCOMPILER_ARGSS All compiler options except for the filename that is used when
compiling using the compiler. Note that this argument variable is
restricted to the Arguments text box in the External Analyzer

dialog box.

$CONFIG_NAMES The name of the current build configuration, for example Debug or
Release.

SCUR_DIRS Current directory

SCUR_LINES Current line

SDATES Today’s date

Table 3: Argument variables

IDE Project Management and Building Guide

for CR16C

The development environment ___¢

Variable Description

SEW_DIRS Top directory of IAR Embedded Workbench, for example
c:\program files\iar systems\embedded workbench
6.n

SEXE_DIRS Directory for executable output

$FILE_BNAMES
$FILE_BPATHS
$FILE_DIRS
$FILE_FNAMES
$FILE_PATHS
SLIST_DIRS
$OBJ_DIRS
$PROJ_DIRS
$PROJ_FNAMES
$PROJ_PATHS
$TARGET_DIRS
$TARGET_BNAMES$
$TARGET_BPATHS
$TARGET_FNAMES
$TARGET_PATHS
$TOOLKIT_DIRS

SUSER_NAMES

$_ENVVAR_S

SMY_CUSTOM_VARS

Filename without extension

Full path without extension

Directory of active file, no filename

Filename of active file without path

Full path of active file (in Editor; Project, or Message window)
Directory for list output

Directory for object output

Project directory

Project filename without path

Full path of project file

Directory of primary output file

Filename without path of primary output file and without extension
Full path of primary output file without extension

Filename without path of primary output file

Full path of primary output file

Directory of the active product, for example c: \program
files\iar systems\embedded workbench 7.n\crlé6c

Your host login name

The Windows environment variable ENVVAR. Any name within $_
and _s will be expanded to that system environment variable.

Your own argument variable, see Configure Custom Argument Variables
dialog box, page 74. Any name within $ and $ will be expanded to the
value you have defined.

Table 3: Argument variables (Continued)

Argument variables can also be used on some pages in the IDE Options dialog box, see

Tools menu, page 184.

73

Reference information on the IDE

Configure Custom Argument Variables dialog box

A

The Configure Custom Argument Variables dialog box is available from the Tools
menu.

7| Configure Custom Argument Variables @

Workspace | Global

(=l (55 Prod A v1.6 {global) Enable Group
A_ROOT DIR = di'prod_A_L.6
A_INCLUDE_DIR = d:\prod_A_1.6%nc

=57 Prod A v2.0 (global)

A_ROOT_DIR = d:\prod_A_2.0 Add Variable...

A_INCLUDE_DIR = d:\prod_A_2.0\inc
=[] Prod B Evaluation

B_ROOT_DIR = d:\prod_B Delete

B_LIB_DIR = d:\prod_B\libs

Expand,/Collapse Al

[Hide disabled groups

[OK][Cancel]

Use this dialog box to define and edit your own custom argument variables. Typically,
this can be useful if you install a third-party product and want to specify its include
directory by using argument variables. Custom argument variables can also be used for
simplifying references to files that you want to be part of your project.

Custom argument variables have one of two different scopes:

o Workspace-local variables, which are associated with a specific workspace and can
only be seen by the workspace that was loaded when the variables were created.

o Global variables, which are available for use in all workspaces
You can organize your variables in named groups.

Note that when you rely on custom argument variables in the build tool settings, some
of the information needed for a project to build properly might now be in a
.custom_argvars file. You should therefore consider version-controlling your custom
argument file, and whether to document the need for using these variables.

Workspace and Global tabs

Click the tab with the scope you want for your variable:
Workspace
o Both global and workspace-local variables are visible in the display area.

o Only workspace-local variables can be edited or removed.

IDE Project Management and Building Guide

74 for CR16C

The development environment ___¢

o Groups of variables as well as individual variables can be added or imported
to the local level.

o Workspace-local variables are stored in the file
workspace_name.custom_argvars in the same directory as the
workspace file workspace_name. eww.

Global
o Only variables that are defined as global are visible in the display area.
e All variables can be edited or removed.

o Groups of variables as well as individual variables can be added or imported
to the global level.

o Global variables are stored in the file global . custom_argvars in the
same directory as the global IAR Embedded Workbench configuration file

TarIdePm.ini.

Expand/Collapse All

Expands or collapses the view of the variables.

Hide disabled groups

Hides all groups of variables that you previously have disabled.

Enable Group / Disable Group

Enables or disables a group of variables that you have selected. The result differs
depending on which tab you have open:

o The Workspace tab: Enabling or disabling groups will only affect the current
workspace.

o The Global tab: Enabling will only affect newly created workspaces. These will
inherit the current global state as the default for the workspace.

Note: You cannot use a variable that is part of a disabled group.

New Group
Opens the New Group dialog box where you can specify a name for a new group. When
you click OK, the group is created and appears in the list of custom argument variables.
Add Variable

Opens the Add Variables dialog box where you can specify a name and value of a new
variable to the group you have selected. When you click OK, the variable is created and
appears in the list of custom argument variables.

75

Reference information on the IDE

76

Edit Variable

Delete

Import

Note that you can also add variables by importing previously defined variables. See
Import below.

Opens the Edit Variables dialog box where you can edit the name and value of a
selected variable. When you click OK, the variable is created and appears in the list of
custom argument variables.

Deletes the selected group or variable.

Opens a file browser where you can locate a workspace_name.custom_argvars file.
The file can contain variables already defined and associated with another workspace or
be a file created when installing a third-party product.

IDE Project Management and Building Guide

for CR16C

Project management

e Introduction to managing projects
e Managing projects

e Reference information on managing projects.

Introduction to managing projects
These topics are covered:
e Briefly about managing projects
o How projects are organized

e Interacting with version control systems.

BRIEFLY ABOUT MANAGING PROJECTS

In a large-scale development project, with hundreds of files, you must be able to
organize the files in a structure that is easily navigated and maintained by perhaps
several engineers.

The IDE comes with functions that will help you stay in control of all project modules,
for example, C or C++ source code files, assembler files, include files, and other related

77

Introduction to managing projects

modules. You create workspaces and let them contain one or several projects. Files can
be organized in file groups, and options can be set on all levels—project, group, or file.

Frolec

Files

Files

Tk

Files

.

Changes are tracked so that a request for rebuild will retranslate all required modules,
making sure that no executable files contain out-of-date modules.

These are some additional features of the IDE:

e Project templates to create a project that can be built and executed for a smooth
development startup

Hierarchical project representation

Source browser with an hierarchical symbol presentation

Options can be set globally, on groups of source files, or on individual source files

The Make command automatically detects changes and performs only the required
operations

e Project connection to set up a connection between IAR Embedded Workbench and
an external tool

o Text-based project files
Custom Build utility to expand the standard toolchain in an easy way

Command line build with the project file as input.

IDE Project Management and Building Guide
78 for CR16C

Project management °

Navigating between project files

There are two main different ways to navigate your project files: using the workspace
window or the Source Browser window. The Workspace window displays an
hierarchical view of the source files, dependency files, and output files and how they are
logically grouped. The Source Browser window, on the other hand, displays
information about the build configuration that is currently active in the workspace
window. For that configuration, the Source Browser window displays a hierarchical
view of all globally defined symbols, such as variables, functions, and type definitions.
For classes, information about any base classes is also displayed.

For more information about source browsing, see Briefly about source browse
information, page 122.

HOW PROJECTS ARE ORGANIZED

The IDE allows you to organize projects in an hierarchical tree structure showing the
logical structure at a glance.

The IDE has been designed to suit the way that software development projects are
typically organized. For example, perhaps you need to develop related versions of an
application for different versions of the target hardware, and you might also want to
include debugging routines into the early versions, but not in the final application.

Versions of your applications for different target hardware will often have source files
in common, and you might want to be able to maintain only one unique copy of these
files, so that improvements are automatically carried through to each version of the
application. Perhaps you also have source files that differ between different versions of
the application, such as those dealing with hardware-dependent aspects of the
application.

In the following sections, the various levels of the hierarchy are described.

Projects and workspaces
Typically you create one or several projects, where each project can contain either:

e Source code files, which you can use for producing your embedded application or a
library. For an example where a library project has been combined with an
application project, see the example about creating and using libraries in the
tutorials.

e An externally built executable file that you want to load in C-SPY. For information
about how to load executable files built outside of the IDE, see the C-SPY®
Debugging Guide.

If you have several related projects, you can access and work with them simultaneously.
To achieve this, you can organize related projects in workspaces.

79

Introduction to managing projects

Each workspace you define can contain one or more projects, and each project must be
part of at least one workspace.

Consider this example: two related applications—for instance A and B—are developed,
requiring one development team each (team A and B). Because the two applications are
related, they can share parts of the source code between them. The following project
model can be applied:

o Three projects—one for each application, and one for the common source code

o Two workspaces—one for team A and one for team B.

Collecting the common sources in a library project (compiled but not linked object code)

is both convenient and efficient, to avoid having to compile it unnecessarily. This figure
illustrates this example:

=

Project for application A Project for application B

Utility
library

Library project for
common sources

Workspace for team A Om Workspace for team B Om
Project for application A Project for application B
Project for utility library Project for utility library

Projects and build configurations

Often, you need to build several versions of your project, for example, for different
debug solutions that require different settings for the linker and debugger. Another
example is when you need a separately built executable file with special debug output
for execution trace, etc. IAR Embedded Workbench lets you define multiple build
configurations for each project. In a simple case, you might need just two, called Debug
and Release, where the only differences are the options used for optimization, debug
information, and output format. In the Release configuration, the preprocessor symbol
NDEBUG is defined, which means the application will not contain any asserts.

IDE Project Management and Building Guide
80 for CR16C

Project management °

Additional build configurations might be useful, for instance, if you intend to use the
application on different target devices. The application is the same, but hardware-related
parts of the code differ. Thus, depending on which target device you intend to build for,
you can exclude some source files from the build configuration. These build
configurations might fulfill these requirements for Project A:

Project A - Device 1:Release
Project A - Device 1:Debug

°
°
e Project A - Device 2:Release
°

Project A - Device 2:Debug

Groups

Normally, projects contain hundreds of files that are logically related. You can define
each project to contain one or more groups, in which you can collect related source files.
You can also define multiple levels of subgroups to achieve a logical hierarchy. By
default, each group is present in all build configurations of the project, but you can also
specify a group to be excluded from a particular build configuration.

Source files and their paths

Source files can be located directly under the project node or in a hierarchy of groups.
The latter is convenient if the amount of files makes the project difficult to survey. By
default, each file is present in all build configurations of the project, but you can also
specify a file to be excluded from a particular build configuration.

Only the files that are part of a build configuration will actually be built and linked into
the output code.

Once a project has been successfully built, all include files and output files are displayed
in the structure below the source file that included or generated them.

Note: The settings for a build configuration can affect which include files that are used
during the compilation of a source file. This means that the set of include files associated
with the source file after compilation can differ between the build configurations.

The IDE supports relative source file paths to a certain degree, for:

o Project files

Paths to files part of the project file are relative if they are located on the same drive.
The path is relative either to $SPROJ_DIRS or $EW_DIRS. The argument variable
$EW_DIRS is only used if the path refers to a file located in a subdirectory of
$EW_DIRS and the distance from $EW_DIRS is shorter than the distance from
$PROJ_DIRS.

81

Introduction to managing projects

Paths to files that are part of the project file are absolute if the files are located on
different drives.

o Workspace files

For files located on the same drive as the workspace file, the path is relative to
$PROJ_DIRS.

For files located on another drive than the workspace file, the path is absolute.
o Debug files

If your debug image file contains debug information, any paths in the file that refer
to source files are absolute.

Drag and drop

You can easily drag individual source files and project files from Windows Explorer to
the Workspace window. Source files dropped on a group are added to that group.
Source files dropped outside the project tree—on the Workspace window
background—are added to the active project.

INTERACTING WITH VERSION CONTROL SYSTEMS
The IAR Embedded Workbench IDE can identify and access any:

o Installed third-party version control system that conforms to the Source Code
Control (SCC) interface published by Microsoft corporation, see Interacting with
SCC-compatible systems, page 86.

o Files that are in a Subversion (SVN) working copy, see Interacting with Subversion,
page 87.

From within the IDE you can connect an IAR Embedded Workbench project to an
external SCC or SVN project, and perform some of the most commonly used operations.

To connect your IAR Embedded Workbench project to a version control system, you
should be familiar with the version control client application you are using. Note that
some of the windows and dialog boxes that appear when you work with version control
in the IDE originate from the version control system and are not described in the
documentation from IAR Systems. For information about details in the client
application, refer to the documentation supplied with that application.

Note: Different version control systems use very different terminology even for some of
the most basic concepts involved. You must keep this in mind when you read the
descriptions of the interaction between the IDE and the version control system.

IDE Project Management and Building Guide
82 for CR16C

Project management __¢

Managing projects
These tasks are covered:
o Creating and managing workspaces
o Viewing the workspace
o Interacting with SCC-compatible systems

e Interacting with Subversion.

CREATING AND MANAGING WORKSPACES

This is a description of the overall procedure for creating the workspace, projects,
groups, files, and build configurations. For a detailed step-by-step example, see
Creating an application project in the tutorials.

83

Managing projects

84

The steps involved for creating and managing a workspace and its contents are:

Create a
workspace

Create
groups

Add files
to the
project

Remove items from
a project

Note: You do not have to use the same toolchain for the new build configuration as for
other build configurations in the same project and it might not be necessary for you to

Add projects to the
workspace

Create new build
configurations
Exlude groups and files

from a build configuration

An empty Workspace window appears,
where you collect your projects, groups,
and files.

You can base a new project on a
template project with preconfigured
settings. Template projects are available
for C/C++ applications, assembler
applications, and library projects.

A group of files can be added either to
the project’s top node or to another
group within the project.

A file can be added either to the
project’s top node or to a group within
the project.

By default, each project you add has two
build configurations called Debug and

Release. You can base a new configuration
on one of these.

The icon that indicates the excluded
group or file will change to white in the
Workspace window.

perform all of these steps and not in this order.

The File menu provides commands for creating workspaces. The Project menu
provides commands for creating projects, adding files to a project, creating groups,
specifying project options, and running the IAR Systems development tools on the

current projects.

IDE Project Management and Building Guide
for CR16C

Project management °

VIEWING THE WORKSPACE

The Workspace window is where you access your projects and files during the
application development.

To choose which project you want to view, click its tab at the bottom of the Workspace
window.

Workspace =]
I Debug -
Files

s ~ Choosea build FP
projet i i

a Tumhc::)nﬂgurauc?n

| L3 0utput

| — B Tutarh

| L— [Utilities Choose the |
Ltilities.c projectto |
L@ [0uput be displayed |

Overview ”ﬁc_ﬂ- project2 |_ R

For each file that has been built, an output folder icon appears, containing generated
files, such as object files and list files. The latter is generated only if the list file option
is enabled. The output folder related to the project node contains generated files related
to the whole project, such as the executable file and the linker map file (if the list file
option is enabled).

Also, any included header files will appear, showing dependencies at a glance.

To display the project with a different build configuration, choose that build
configuration from the drop-down list at the top of the Workspace window.

The project and build configuration you have selected are displayed highlighted in the
Workspace window. It is the project and build configuration that you select from the
drop-down list that are built when you build your application.

To display an overview of all projects in the workspace, click the Overview tab at the
bottom of the Workspace window.

85

Managing projects

86

An overview of all project members is displayed.

|pr0iect1 - Debug j
Files i]
B Etutarials

= & project] - Debug * v

| = @ Tutorc *

| F= @ utiities.c

| @0 0utput Current

@ project2-Debu selection in the |
@ project3-Debu configuration
(= @ projectd - Debu drop-down list |
(P projects - Debu., —
Ftutar_library - Debug v

F

Owerview | project] | project? | project M

The current selection in the Build Configuration drop-down list is also highlighted
when an overview of the workspace is displayed.

INTERACTING WITH SCC-COMPATIBLE SYSTEMS

In any SCC-compatible system, you use a client application to maintain a central
archive. In this archive you keep the working copies of the files of your project. The
version control integration in IAR Embedded Workbench allows you to conveniently
perform some of the most common version control operations directly from within the
IDE. However, several tasks must still be performed in the client application.

To connect an IAR Embedded Workbench project to an SCC system:
In the Microsoft SCC-compatible client application, set up an SCC project.

In the IDE, connect your application project to the SCC project.

Setting up an SCC project in the SCC client application

Use your SCC client tools to set up a working directory for the files in your AR
Embedded Workbench project that you want to control using your SCC system. The
files can be placed in one or more nested subdirectories, all located under a common
root. Specifically, all source files must reside in the same directory as the ewp project
file, or in subdirectories of this directory.

For information about the steps involved, refer to the documentation supplied with the
SCC client application.

To connect application projects to the SCC project

In the Workspace window, select the project for which you have created an SCC
project.

IDE Project Management and Building Guide

for CR16C

Project management __¢

2 From the Project menu, choose Version Control System>Connect Project To SCC
Project. This command is also available from the context menu that appears when you
right-click in the Workspace window.

Note: The commands on the Source Code Control submenu are available when you
have successfully connected your application project to your SCC project.

3 If you have SCC-compatible systems from different vendors installed, you will be
prompted to choose which system you want to connect to.

4 An SCC-specific dialog box will appear where you can navigate to the SCC project
that you have set up.

For more information about the commands available for accessing the SCC system, see
Version Control System menu for SCC, page 96.

Viewing the SCC states

When your AR Embedded Workbench project has been connected to the SCC project,
a column that contains status information for version control will appear in the
Workspace window. Different icons are displayed depending on the state.

There are also icons for some combinations of these states. Note that the interpretation
of these states depends on the SCC client application you are using. For more
information about the icons and the different states they represent, see Source code
control states, page 100.

Configuring the interaction between the IDE and SCC

To configure the interaction between the IDE and SCC, choose Tools>Options and
click the Source Code Control tab. For more information about the available
commands, see Source Code Control options, page 58.

INTERACTING WITH SUBVERSION

The version control integration in JAR Embedded Workbench allows you to
conveniently perform some of the most common Subversion operations directly from
within the IDE, using the client applications svn.exe and TortoiseProc.exe.

To connect an IAR Embedded Workbench project to a Subversion system:
I In the Subversion client application, set up a Subversion working copy.
2 In the IDE, connect your application project to the Subversion working copy.

To set up a Subversion working copy:

I To use the Subversion integration in the IDE, make sure that svn . exe and
TortoiseProc.exe are in your path.

87

Reference information on managing projects

2 Check out a working copy from a Subversion repository.

The files that constitute your project do not have to come from the same working copy;
all files in the project are treated individually. However, note that TortoiseProc.exe
does not allow you to simultaneously, for example, check in files coming from different
repositories.

To connect application projects to the Subversion working copy:

I In the Workspace window, select the project for which you have created a Subversion
working copy.

2 From the Project menu, choose Version Control System>Connect Project to
Subversion. This command is also available from the context menu that appears when
you right-click in the Workspace window.

For more information about the commands available for accessing the Subversion
working copy, see Version Control System menu for Subversion, page 101.

Viewing the Subversion states

When your IAR Embedded Workbench project has been connected to the Subversion
working copy, a column that contains status information for version control will appear
in the Workspace window. Various icons are displayed, where each icon reflects the
Subversion state, see Subversion states, page 102.

Reference information on managing projects
Reference information about:

Workspace window, page 89

Create New Project dialog box, page 93

Configurations for project dialog box, page 94

New Configuration dialog box, page 95

Add Project Connection dialog box, page 96

Version Control System menu for SCC, page 96

Select Source Code Control Provider dialog box, page 98
Check In Files dialog box, page 99

Check Out Files dialog box, page 100

Source code control states, page 100

Version Control System menu for Subversion, page 101

Subversion states, page 102.

IDE Project Management and Building Guide
88 for CR16C

Project management °

See also:

Source Code Control options, page 58.

Workspace window

The Workspace window is available from the View menu.

Column that contains
informatien abeout
option overrides I

Configuration i [project] - Debug N\ —
drop-down menu -

Column that contains
build status infermation

| Column that contains

_ Files
- =) & source code control
lWorkspace } I—E;‘.E' project! - Debug v | status infarmation
S |- [Tutar.c .
@ [Utilities.c

M “moutut

Current = @ project? - Debug
project (F projectd - Debug
' = @ projectd - Debug

(F projects - Debug
(Ftutar_library - Debug

Indicates that the file
will be rebuilt the next
time the project is built

LR SR S S

Tabs for choosing
workspace dispaly |

| Overview project] | proiect2| projectd |_ O

Use this window to access your projects and files during the application development.

Drop-down list

At the top of the window there is a drop-down list where you can choose a build
configuration to display in the window for a specific project.

The display area

This area contains four columns.

The Files column displays the name of the current workspace and a tree representation
of the projects, groups and files included in the workspace. One or more of these icons
are displayed:

Workspace
ﬁ Project

89

Reference information on managing projects

Project with multi-file compilation

Group of files

Group excluded from the build

Group of files, part of multi-file compilation

Group of files, part of multi-file compilation, but excluded from the build

Object file or library

A0 [DE

I
i
3

Assembler source file
C source file

C++ source file

A 2|

Source file excluded from the build

Header file

Text file

St HTML text file

Control file, for example the linker configuration file

IDE internal file
Other file
& o The column that contains status information about option overrides can have one of
P three icons for each level in the project:

Blank There are no settings/overrides for this file/group.

Black check mark There are local settings/overrides for this file/group.

Red check mark There are local settings/overrides for this file/group, but they are
either identical to the inherited settings or they are ignored
because you use multi-file compilation, which means that the
overrides are not needed.

3Fs The column that contains build status information can have one of three icons for each
ol

file in the project:

Blank The file will not be rebuilt next time the project is built.

Red star The file will be rebuilt next time the project is built.

IDE Project Management and Building Guide
90 for CR16C

Context menu

Project management °

Gearwheel The file is being rebuilt.

The column contains status information about version control. For information about the
various icons, see:

e Source code control states, page 100

o Subversion states, page 102.

Use the tabs at the bottom of the window to choose which project to display.
Alternatively, you can choose to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see
the Introduction to managing projects, page 77.

This context menu is available:
Options...

Make
Compile
Rebuild All

Clean

C-STAT Static Analysis 3
Stop Build

Add 2

Remove

Rename...
Version Control System 3

Open Containing Folder...

File Properties...

Set as Active

These commands are available:

Options
Displays a dialog box where you can set options for each build tool, for the
selected item in the Workspace window. You can set options for the entire
project, for a group of files, or for an individual file. See Setting project options
using the Options dialog box, page 107.

Make

Brings the current target up to date by compiling, assembling, and linking only
the files that have changed since the last build.

91

Reference information on managing projects

Compile
Compiles or assembles the currently active file as appropriate. You can choose
the file either by selecting it in the Workspace window, or by selecting the
editor window containing the file you want to compile.

Rebuild All
Recompiles and relinks all files in the selected build configuration.

Clean

Deletes intermediate files.

C-STAT Static Analysis>Analyze Project
Makes C-STAT analyze the selected project. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Analyze File(s)
Makes C-STAT analyze the selected file(s). For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Clear Analysis Results
Makes C-STAT clear the analysis information for previously performed
analyses. For more information about C-STAT, see the C-STAT® Static Analysis
Guide.

C-STAT Static Analysis>Generate HTML Summary
Shows a standard Save As dialog box where you can select the destination for a
report summary in HTML and then create it. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Generate Full HTML Report

Shows a standard Save As dialog box where you can select the destination for a
full report in HTML and create it. For more information about C-STAT, see the
C-STAT® Static Analysis Guide.

Stop Build
Stops the current build operation.

Add>Add Files
Displays a dialog box where you can add files to the project.

Add>Add filename

Adds the indicated file to the project. This command is only available if there is
an open file in the editor.

IDE Project Management and Building Guide

92 for CR16C

Project management __¢

Add>Add Group
Displays the Add Group dialog box where you can add new groups to the
project. For more information about groups, see Groups, page 81.
Remove
Removes selected items from the Workspace window.

Rename
Displays the Rename Group dialog box where you can rename a group. For
more information about groups, see Groups, page 81.

Version Control System
Opens a submenu with commands for source code control, see Version Control
System menu for SCC, page 96.

Open Containing Folder
Opens the File Explorer that displays the directory where the selected file
resides.

File Properties
Displays a standard File Properties dialog box for the selected file.

Set as Active

Sets the selected project in the overview display to be the active project. It is the
active project that will be built when the Make command is executed.

Create New Project dialog box

The Create New Project dialog box is available from the Project menu.

Toal chair: ICPUNAME j

Project templates:

Description:

Creates an empty project.

()3 I Cancel

93

Reference information on managing projects

Use this dialog box to create a new project based on a template project. Template
projects are available for C/C++ applications, assembler applications, and library
projects. You can also create your own template projects.

Tool chain

Selects the target to build for. If you have several versions of IAR Embedded Workbench
for different targets installed on your host computer, the drop-down list might contain
some or all of these targets.

Project templates

Select a template to base the new project on, from this list of available template projects.

Description

A description of the currently selected template.

Configurations for project dialog box

The Configurations for project dialog box is available by choosing Project>Edit
Configurations.

Configurations for "Project1™
Configurations:

Release |
Remove |

Use this dialog box to define new build configurations for the selected project; either
entirely new, or based on a previous project.

Configurations

Lists existing configurations, which can be used as templates for new configurations.

New
Displays a dialog box where you can define new build configurations, see New
Configuration dialog box, page 95.

Remove

Removes the configuration that is selected in the Configurations list.

IDE Project Management and Building Guide
94 for CR16C

Project management __¢

New Configuration dialog box
The New Configuration dialog box is available by clicking New in the Configurations

for project dialog box.

M ame: ok |
I Cancel |

Tool chain:

|cPUNAME 4|

Based on configuration:
I [ebug j

& Debug

Factory settings
’7 " Felease

Use this dialog box to define new build configurations; either entirely new, or based on
any currently defined configuration.

Name

Type the name of the build configuration.

Tool chain

Specify the target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the drop-down list
might contain some or all of these targets.

Based on configuration

Selects a currently defined build configuration to base the new configuration on. The
new configuration will inherit the project settings and information about the factory
settings from the old configuration. If you select None, the new configuration will be
based strictly on the factory settings.

Factory settings

Select the default factory settings that you want to apply to your new build
configuration. These factory settings will be used by your project if you click the
Factory Settings button in the Options dialog box.

Choose between:

Debug Factory settings suitable for a debug build configuration.

Release Factory settings suitable for a release build configuration.

95

Reference information on managing projects

Add Project Connection dialog box

The Add Project Connection dialog box is available from the Project menu.

Add Project Connection ﬁ

Cannect using: | Processor Expert ~ |

[(] 8]| Cancel |

Use this dialog box to set up a project connection between IAR Embedded Workbench
and an external tool. This can, for example, be useful if you want IAR Embedded
Workbench to build source code files provided by the external tool. The source files will
automatically be added to your project. If the set of files changes, the new set of files
will automatically be used when the project is built in IAR Embedded Workbench.

To disable support for this, see Project options, page 52.

Connect using

Chooses the external tool that you want to set up a connection with.

oK

Displays a dialog box where you specify the connection.

Version Control System menu for SCC

The Version Control System submenu is available from the Project menu and from the
context menu in the Workspace window.

This is the menu for SCC-compatible systems:

Check In...

Check Qut. ..
Undo Checkout
et Lakest Yersion
Compare. ..
History...
Properties...

Refresh

Copneck Project to SCC Project, ..

Disconnect Project from SCC Project...

Note: The contents of the Version Control System submenu reflect the version control
system in use, either an SCC-compatible system or Subversion.

For more information about interacting with an external version control system, see
Interacting with version control systems, page 82.

IDE Project Management and Building Guide
96 for CR16C

Menu commands

Project management °

These commands are available for SCC:

Check In

Displays the Check In Files dialog box where you can check in the selected
files; see Check In Files dialog box, page 99. Any changes you have made in the
files will be stored in the archive. This command is enabled when currently
checked-out files are selected in the Workspace window.

Check Out
Checks out the selected file or files. Depending on the SCC (Source Code
Control) system you are using, a dialog box might appear; see Check Out Files
dialog box, page 100. This means you get a local copy of the file(s), which you
can edit. This command is enabled when currently checked-in files are selected
in the Workspace window.

Undo Checkout
Reverts the selected files to the latest archived version; the files are no longer
checked out. Any changes you have made to the files will be lost. This command
is enabled when currently checked-out files are selected in the Workspace
window.

Get Latest Version
Replaces the selected files with the latest archived version.

Compare
Displays—in an SCC-specific window—the differences between the local
version and the most recent archived version.

History
Displays SCC-specific information about the revision history of the selected
file.

Properties
Displays information available in the version control system for the selected file.

Refresh

Updates the version control system display status for all the files that are part of
the project. This command is always enabled for all projects under version
control.

97

Reference information on managing projects

Connect Project to SCC Project

Displays a dialog box, which originates from the SCC client application, to let
you create a connection between the selected IAR Embedded Workbench
project and an SCC project; the IAR Embedded Workbench project will then be
an SCC-controlled project. After creating this connection, a special column that
contains status information will appear in the Workspace window.

Disconnect Project from SCC Project

Removes the connection between the selected IAR Embedded Workbench
project and an SCC project; your project will no longer be an SCC-controlled
project. The column in the Workspace window that contains SCC status
information will no longer be visible for that project.

Select Source Code Control Provider dialog box

The Select Source Code Control Provider dialog box is displayed if several SCC
systems from different vendors are available.

Select Source Code Control Provider E

[Micrasaft Yisual Sourcesate

Use this dialog box to choose the SCC system you want to use.

IDE Project Management and Building Guide
98 for CR16C

Project management __¢

Check In Files dialog box

Comment

The Check In Files dialog box is available by choosing the Project>Source Code
Control>Check In command, alternatively available from the Workspace window
context menu.

Check In Files E

Comment

K

Cancel

Ik

Advanced. .,
™ Keep checked out

Files

C:hprojectshtutor\Utilities. o

Specify a comment—typically a description of your changes—that will be stored in the
archive together with the file revision. This text box is only enabled if the SCC system
supports adding comments at check in.

Keep checked out

Advanced

Files

Specifies that the files will continue to be checked out after they have been checked in.
Typically, this is useful if you want to make your modifications available to other
members in your project team, without stopping your own work with the file.

Displays a dialog box, originating from the SCC client application, that contains
advanced options. This button is only available if the SCC system supports setting
advanced options at check in.

Lists the files that will be checked in. The list will contain all files that were selected in
the Workspace window when the Check In Files dialog box was opened.

929

Reference information on managing projects

Check Out Files dialog box

The Check Out Files dialog box is available by choosing the Project>Source Code

Control>Check Out command, alternatively available from the Workspace window
context menu. However, this dialog box is only available if the SCC system supports

adding comments at check out or advanced options.

Check Dut Files E

Comment

K

Cancel

Advanced. .,

Ik

Files
C:hprojectshtutor\Utilities. o

Comment
Specify a comment—typically the reason why the file is checked out—that will be
placed in the archive together with the file revision. This text box is only enabled if the
SCC system supports the adding of comments at check out.

Advanced
Displays a dialog box, originating from the SCC client application, that contains
advanced options. This button is only available if the SCC system supports setting
advanced options at check out.

Files

Lists files that will be checked out. The list will contain all files that were selected in the
Workspace window when the Check Out Files dialog box was opened.

Source code control states

Each source code-controlled file can be in one of several states.

D (blank) Checked out to you. The file is editable.

IDE Project Management and Building Guide
100 for CRI16C

Project management __¢

(checkmark) Checked out to you. The file is editable and you
have modified the file.

(gray padlock) Checked in. In many SCC systems this means that
the file is write-protected.

(gray padlock) Checked in. A new version is available in the

archive.

[(red padlock) Checked out exclusively to another user. In many
SCC systems, this means that you cannot check out
the file.

& (red padlock) Checked out exclusively to another user. A new

version is available in the archive. In many SCC
systems, this means that you cannot check out the
file.

Note: The source code control in the IAR Embedded Workbench IDE depends on the
information provided by the SCC system. If the SCC system provides incorrect or
incomplete information about the states, the IDE might display incorrect symbols.

Version Control System menu for Subversion

The Version Control System submenu is available from the Project menu and from the
context menu in the Workspace window.

This is the menu for Subversion:

Comrait...

Revert...
Update. ..
Diff...

Log...
Properties...

Refresh

Note: The contents of the Version Control System submenu reflect the version control
system in use, either an SCC-compatible system or Subversion.

For more information about interacting with an external version control system, see
Interacting with version control systems, page 82.

101

Reference information on managing projects

102

Menu commands

Subversion states

These commands are available for Subversion:

Commit

Displays Tortoise’s Commit dialog box for the selected file(s).

Add
Displays Tortoise’s Add dialog box for the selected file(s).

Revert
Displays Tortoise’s Revert dialog box for the selected file(s).

Update

Opens Tortoise’s Update window for the selected file(s).
Diff

Opens Tortoise’s Diff window for the selected file(s).
Log

Opens Tortoise’s Log window for the selected file(s).

Properties
Displays information available in the version control system for the selected file.

Refresh

Updates the version control system display status for all files that are part of the
project. This command is always enabled for all projects under the version
control system.

Connect Project to SVN Project

Checks whether svn . exe and TortoiseProc.exe are in the path and then
enables the connection between the IAR Embedded Workbench project and an
existing checked-out working copy. After this connection has been created, a
special column that contains status information appears in the Workspace
window. Note that you must check out the source files from outside the IDE.

Disconnect Project from SVN Project

Removes the connection between the selected IAR Embedded Workbench
project and Subversion. The column in the Workspace window that contains
SVN status information will no longer be visible for that project.

Each Subversion-controlled file can be in one of several states.

IDE Project Management and Building Guide

for CR16C

Project management °

(blue A) A Added.

(red C) Conflicted.

(red D) Deleted.

(redD) T Ignored.

(blank) D Not modified.

(red M) @ Modified.

(red R) @ Replaced.

(gray X) K An unversioned directory created by an external definition.
(gray question Item is not under version control.

mark) 7

(black exclamation Item is missing—removed by a non-SVN command—or
mark) (] incomplete.

(red tilde) ., Item obstructed by an item of a different type.

Note: The version control system in the JAR Embedded Workbench IDE depends on the
information provided by Subversion. If Subversion provides incorrect or incomplete
information about the states, the IDE might display incorrect symbols.

103

Reference information on managing projects

IDE Project Management and Building Guide
104 for CRI6C

Building projects
e Introduction to building projects
e Building a project

e Reference information on building.

Introduction to building projects

These topics are covered:

e Briefly about building a project

o Extending the toolchain.

BRIEFLY ABOUT BUILDING A PROJECT
The build process consists of these steps:

e Setting project options
e Building the project, either an application project or a library project

o Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This
gives you the possibility to perform several builds in one operation. If necessary, you can
also specity pre-build and post-build actions.

In addition to using the IAR Embedded Workbench IDE to build projects, you can also
use the command line utility iarbuild.exe.

For examples of building application and library projects, see the tutorials in the
Information Center. For more information about building library projects, see the JAR
C/C++ Compiler Reference Guide for CR16C.

EXTENDING THE TOOLCHAIN

IAR Embedded Workbench provides a feature—Custom Build—which lets you extend
the standard toolchain. This feature is used for executing external tools (not provided by
IAR Systems). You can make these tools execute each time specific files in your project
have changed.

If you specify custom build options on the Custom tool configuration page, the build
commands treat the external tool and its associated files in the same way as the standard
tools within the IAR Embedded Workbench IDE and their associated files. The relation

105

Building a project

106

between the external tool and its input files and generated output files is similar to the
relation between the C/C++ Compiler, c files, h files, and r45 files. For more
information about available custom build options, see Custom build options, page 229.

You specify filename extensions of the files used as input to the external tool. If the input
file has changed since you last built your project, the external tool is executed; just as
the compiler executes if a c file has changed. In the same way, any changes in additional
input files (for instance include files) are detected.

You must specify the name of the external tool. You can also specify any necessary
command line options needed by the external tool, and the name of the output files
generated by the external tool. Note that you can use argument variables for some of the
file information.

You can specify custom build options to any level in the project tree. The options you
specify are inherited by any sublevel in the project tree.

Tools that can be added to the toolchain

Some examples of external tools, or types of tools, that you can add to the IAR
Embedded Workbench toolchain are:
e Tools that generate files from a specification, such as Lex and YACC

e Tools that convert binary files—for example files that contain bitmap images or
audio data—to a table of data in an assembler or C source file. This data can then be
compiled and linked together with the rest of your application.

For more information, see Adding an external tool, page 113.

Building a project

These tasks are covered:

Setting project options using the Options dialog box
Building your project

Correcting errors found during build

Using pre- and post-build actions

Building multiple configurations in a batch

Building from the command line

Adding an external tool.

IDE Project Management and Building Guide

for CR16C

Building projects °

SETTING PROJECT OPTIONS USING THE OPTIONS DIALOG
BOX

I Before you can set project options, choose a build configuration.

&tu{oﬁals - IAR Embedded Workbench IDI

File Edit View Project Simi

L— [Utilities.h
Utilities.c
L@ [Output

THE SOFTWA

Choose a build configuration
D@ & . J
L SERE * | Tutor.c Uﬁliﬁes.c|
o e—— Y
2 Copyright
Release | 3
B project] - Debug v 4 Permission
I—EJ [E Tutar.c . 5 purpose ¥i
| =03 0utput 5
| — B Tutarh 7
| 8
9
a

#
#
#
#
* copyright
#
#
#
#

-

By default, the IDE creates two build configurations when a project is created—Debug
and Release. Every build configuration has its own project settings, which are
independent of the other configurations.

For example, a configuration that is used for debugging would not be highly optimized,
and would produce output that suits the debugging. Conversely, a configuration for

building the final application would be highly optimized, and produce output that suits
a flash or PROM programmer.

107

Building a project

2 Decide which level you want to set the options on: the entire project, groups of files, or

for an individual file. Select that level in the Workspace window (in this example, the
project level) and choose Options from the context menu to display the Options dialog
box.

£ tl..ltorials - IAR Embedded Workbench ID!

File Edit View Project Simulator Tools Window Help

DwdHd | S| % 2R o -
U ST * | tutor.c

Debug - 1 7%

Eiles g B 2 ZCopyrigh‘.; (c

[=l&|projectl - Debug vl

b2 B Tutor.c Options... L\\,

| @0 output

| [Tutorh Make

| L [utilities h Compile

Utilifies.c Rebuild Al

L@ [Output -

Clean | I

Note: There is one important restriction on setting options. If you set an option on group
or file level (group or file level override), no options on higher levels that operate on files
will affect that group or file.

The Options dialog box provides options for the build tools—a category for each build
tool.

-
Options for node "project M

Build tool categories)
Category: —

General Options Pages with opticns for each category I

C/C++ Compiler

Output Converter | | | Target | Output | Library Configuration | Library Options | MISRAC:200(« | »
Custom Build
Build Actions
Linker
Debugger
Simulatar

Processor—

Options in the General Options, Linker, and Debugger categories can only be set on
project level because they affect the entire build configuration, and cannot be set for
individual groups and files. However, the options in the other categories can be set for
the project, a group of files, or an individual file.

IDE Project Management and Building Guide

108 for CRI6C

Building projects °

4 Select a category from the Category list to select which building tool to set options for.
Which tools that are available in the Category list depends on which tools are included
in your product. When you select a category, one or more pages containing options for
that component are displayed.

5 Click the tab that corresponds to the type of options you want to view or change. Make
the appropriate settings. Some hints:

o To override project level settings, select the required item—for instance a specific
group of files or an individual file—and select the option Override inherited
settings.

-

% tutorials - IAR Embedded Workbench IDE

File Edit View 1. Sel hei h indow Help
. Select the item that = -
] ¥ [
D E you want to override | i S ¥z (5o /%.& B
Waorkspace settings for, right-click, 2. Select Override inherited
project] - Debug ~ and choose Options .:_II:/* settings and then make your
— from the context menu : <. Special settings, for example
Files opyright : ; S
3 4 choosing a higher optimization
B Bltutorials — |evel
= (F project -Dek_.. v Options for node "pr.
| Tutore 7| |
i . [] Exclude fram build
O Output Category: [¥] Owverride inherited settings F

(F projectz - Debug

Static Analysis

v
= G project3-Debug » 1 . :
P projectd-Debug v 1 RChEd“”g
i i P C/c-++ Compiler | r——
gpro!eggC'\SSbDem : d Custom Build | Language 1 | Language 2 I Code | Optimizations | Qutput
= (F projects - Debug

Fiutar_library-De.. » 1

1] B

1 Level Enabled transformations:

1] Mone 7| Common subexpress

The new settings will affect all members of that group, that is, files and any groups
of files. Your local overrides are indicated with a checkmark in a separate column in
the Workspace window.

109

Building a project

110

o Use the Extra Options page to specify options that are only available as command
line options and not in the IDE.

Options for node "projectl”

Category: Factory Setting

General Options [T] Multifile Compilation

Static Analysis Dizeard Unused Publics
Runtime Checking

| Diagnostics | MISRAC:2004 | MISRAC:1918 | Bxtra Options |

Assembler
Output Converter [¥] Use command line options
Custom Bild Command line options: (one per line)
Build Actions
Lirker -no_static_destruction
b -no_typedefs_in_diagnostics

Debuager —pending_instantiations

Simulator

o To restore all settings to the default factory settings, click the Factory Settings
button, which is available for all categories except General Options and Custom
Build. Note that two sets of factory settings are available: Debug and Release.
Which one that is used depends on your build configuration; see New Configuration
dialog box, page 95.

e If you add a source file with a non-recognized filename extension to your project,
you cannot set options on that source file. However, you can add support for
additional filename extensions. For more information, see Filename Extensions
dialog box, page 70.

BUILDING YOUR PROJECT

You can build your project either as an application project or a library project.

You have access to the build commands both from the Project menu and from the
context menu that appears if you right-click an item in the Workspace window.

To build your project as an application project, choose one of the three build commands
Make, Compile, and Rebuild All. They will run in the background, so you can continue
editing or working with the IDE while your project is being built.

To build your project as a library project, choose Project>Options>General
Options>Output>Output file>Library before you build your project. Then, Linker is
replaced by Library Builder in the Category list in the options dialog box, and the
result of the build will be a library. For an example, see the tutorials.

For more information, see Project menu, page 180.

IDE Project Management and Building Guide

for CR16C

Building projects °

CORRECTING ERRORS FOUND DURING BUILD
Error messages are displayed in the Build messages window.

To specify the level of output to the Build message window:
Choose Tools>Options to open the IDE Options dialog box.

Click the Messages tab and select the level of output in the Show build messages
drop-down list.

Alternatively, you can right-click in the Build Messages window and select Options
from the context menu.

If your source code contains errors, you can jump directly to the correct position in the
appropriate source file by double-clicking the error message in the error listing in the
Build window, or selecting the error and pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the
project, you can directly start debugging the resulting code at the source level.

For more information about the Build messages window, see Build window, page 116.

USING PRE- AND POST-BUILD ACTIONS

If necessary, you can specify pre-build and post-build actions that you want to occur
before or after the build. The Build Actions options in the Options dialog
box—available from the Project menu—Iet you specify the actions required.

For more information about the Build Actions options, see Build actions options, page
231.
Using pre-build actions for time stamping

You can use pre-build actions to embed a time stamp for the build in the resulting binary
file. Follow these steps:

Create a dedicated time stamp file, for example, timestamp.c and add it to your
project.

In this source file, use the preprocessor macros __TIME _ and __DATE__ to initialize
a string variable.

Choose Project>Options>Build Actions to open the Build Actions dialog box.
In the Pre-build command line text field, specify for example this pre-build action:
cmd /c "del "$OBJ_DIRS\timestamp.o""

This command removes the timestamp .o object file.

Building a project

112

Alternatively, you can use the open source command line utility touch for this purpose
or any other suitable utility that updates the modification time of the source file. For
example:

"touch $PROJ_DIRS$\timestamp.c"

If the project is not entirely up-to-date, the next time you use the Make command, the
pre-build action will be invoked before the regular build process. Then the regular build
process must always recompile t imestamp . c and the correct timestamp will end up in
the binary file.

If the project already is up-to-date, the pre-build action will not be invoked. This means
that nothing is built, and the binary file still contains the timestamp for when it was last
built.

BUILDING MULTIPLE CONFIGURATIONS IN A BATCH

Use the batch build feature when you want to build more than one configuration at once.
A batch is an ordered list of build configurations. The Batch Build dialog
box—available from the Project menu—Iets you create, modify, and build batches of
configurations.

For workspaces that contain several configurations, it is convenient to define one or
more different batches. Instead of building the entire workspace, you can build only the
appropriate build configurations, for instance Release or Debug configurations.

For more information about the Batch Build dialog box, see Batch Build dialog box,
page 117.

BUILDING FROM THE COMMAND LINE

To build the project from the command line, use the IAR Command Line Build Utility
(iarbuild.exe) located in the common\bin directory. Typically, this can be useful for
automating your testing for continuous integration.

As input you use the project file, and the invocation syntax is:

iarbuild project.ewp [-clean|-build|-make] configuration|*
[-log errors|warnings|info|alll] [-parallel number][-varfile
argvarfile]

These are the possible parameters:

Parameter Description
project.ewp Your IAR Embedded Workbench project file.
-clean Removes any intermediate and output files.

Table 4: iarbuild.exe command line options

IDE Project Management and Building Guide

for CR16C

Building projects °

Parameter Description
-build Rebuilds and relinks all files in the current build configuration.
-make Brings the current build configuration up to date by compiling,

configuration|*

--cstat_analyze

--cstat_clean

-log errors
-log warnings

-log info

-log all

-parallel
number

-varfile
argvarfile

assembling, and linking only the files that have changed since the last
build.

configuration, the name of the configuration you want to
build, which can either be one of the predefined
configurations Debug or Release, or a name that you define
yourself. For more information about build configurations,
see Projects and build configurations, page 80.

* (wild card character), the -clean, -build, and -make
commands will a process all configurations defined in the
project.

Analyzes the project using C-STAT and generates information about the

number of messages. For more information, see the C-STAT® Static

Analysis Guide.

Cleans the C-STAT message database for the project. For more
information, see the C-STAT® Static Analysis Guide.

Displays build error messages.
Displays build warning and error messages.

Displays build warning and error messages, and messages issued by the
#pragma message preprocessor directive.

Displays all messages generated from the build, for example compiler
sign-on information and the full command line.

Specifies the number of parallel processes to run the compiler in to
make better use of the cores in the CPU.

Makes custom argument variables defined in a workspace scope
available to the build engine by specifying the file to use.

Table 4: iarbuild.exe command line options (Continued)

If you run the application from a command shell without specifying a project file, you
will get a sign-on message describing available parameters and their syntax.

ADDING AN EXTERNAL TOOL

The following example demonstrates how to add the tool Flex to the toolchain. The
same procedure can be used also for other tools.

In the example, Flex takes the file myFile.lex as input. The two files myFile.c and
myFile.h are generated as output.

Add the file you want to work with to your project, for example myFile. lex.

113

Reference information on building

2 Select this file in the Workspace window and choose Project>Options. Select
Custom Build from the list of categories.

3 In the Filename extensions field, type the filename extension . 1ex. Remember to
specify the leading period (.).

4 In the Command line field, type the command line for executing the external tool, for
example

flex $FILE_PATHS -o$FILE_BNAMES.c
During the build process, this command line is expanded to:
flex myFile.lex -omyFile.c

Note the usage of argument variables. Note specifically the use of SFILE_BNAMES
which gives the base name of the input file, in this example appended with the c
extension to provide a C source file in the same directory as the input file foo . 1ex. For
more information about these variables, see Argument variables, page 72.

5 In the Output files field, describe the output files that are relevant for the build. In this
example, the tool Flex would generate two files—one source file and one header file.
The text in the Output files text box for these two files would look like this:

SFILE_BPATHS.C
SFILE_BPATHS.h

6 If the external tool uses any additional files during the build, these should be added in
the Additional input files field, for instance:

STOOLKIT_DIRS\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer
be the same and the need for a rebuild is detected.

Click OK.

8 To build your application, choose Project>Make.

Reference information on building

Reference information about:

Options dialog box, page 115
Build window, page 116
Batch Build dialog box, page 117

°
°
°
® Edit Batch Build dialog box, page 118.

IDE Project Management and Building Guide
114 for CRI6C

Building projects °

Options dialog box

The Options dialog box is available from the Project menu.

X

Options

Category:

| CiC++ Compiler

Assembler

Qutput Converter Target Output | Library Configuration | Library Options Stack.-"HeaD] iy
Customn Build]

Build Actions Output file

Linker (* Executable

Debugger " Library

Emulator

Sirnulator

Output directories
Executables/libraries:
|Debug\E we

Object files:
|DebugtObi

List files:
| DebugtList

(] 8 | Cancel |

Use this dialog box to specify your project settings.

See also Setting project options using the Options dialog box, page 107.

Category

Selects the build tool you want to set options for. The available categories will depend
on the tools installed in your IAR Embedded Workbench IDE, and will typically
include:

General options

Static Analysis, see the C-STAT® Static Analysis Guide for more information about
these options

Assembler
Custom build, options for extending the toolchain
Build Actions, options for pre-build and post-build actions

Linker, available for application projects but not for library projects

Library builder, available for library projects but not for application projects

115

Reference information on building

116

Factory Settings

Build window

Context menu

e Debugger
e Simulator

o C-SPY hardware drivers, options specific to additional hardware debuggers.

Selecting a category displays one or more pages of options for that component of the
IDE.

Restores all settings to the default factory settings. Note that this option is not available
for all categories.

The Build window is available by choosing View>Messages.

| Messages | File | Line |
Tutar.c
A\ Warming[Pe0b4]: declaration does not declare amahing CAProgram File. ATutarc 17
Q Error[Pe0z0]: identifier "call_count" is undefined CAProgram File. \Tutorc 24
Q Error[Pe0z0]: identifier "call_count" is undefined CAProgram File. \Tutorc 35
Q Error[Pe0z0]: identifier "call_count" is undefined CAProgram File. \Tutorc 45
Dane. 3 errors). 1 warning(s)

This window displays the messages generated when building a build configuration.
When opened, the window is, by default, grouped together with the other message
windows. Double-click a message in the Build window to open the appropriate file for
editing, with the insertion point at the correct position.

This context menu is available:

Gy
Select Al

Clear Al

Options. ..
These commands are available:

Copy
Copies the contents of the window.

Select All
Selects the contents of the window.

IDE Project Management and Building Guide

for CR16C

Batch Build dialog box

Batches

Build

New

Building projects °

Clear All

Deletes the contents of the window.

Options
Opens the Messages page of the IDE options dialog box. On this page you can
set options related to messages; see Messages options, page 50.

The Batch Build dialog box is available by choosing Project>Batch build.

Batch Build [%]
Batches:

Mew

Femove

Edit...

Cloze

Cancel

e Ll

— Build

Make || Glean || Rebuida |

This dialog box lists all defined batches of build configurations. For more information,
see Building multiple configurations in a batch, page 112.

Select the batch you want to build from this list of currently defined batches of build
configurations.

Give the build command you want to execute:

® Make
o Clean
o Rebuild All

Displays the Edit Batch Build dialog box, where you can define new batches of build
configurations; see Edit Batch Build dialog box, page 118.

17

Reference information on building

Remove

Removes the selected batch.

Edit
Displays the Edit Batch Build dialog box, where you can edit existing batches of build
configurations.

Edit Batch Build dialog box
The Edit Batch Build dialog box is available from the Batch Build dialog box.

Edit Batch Build [%]
—Name
Awailable configurations Configurations to build [drag to order]

project] - Debug
project] - Release
project? - Debug
project? - Release

Lk

L4+

()3 I Cancel |

Use this dialog box to create new batches of build configurations, and edit already
existing batches.

Name

Type a name for a batch that you are creating, or change the existing name (if you wish)
for a batch that you are editing.

Available configurations

Select the configurations you want to move to be included in the batch you are creating
or editing, from this list of all build configurations that belong to the workspace.

To move a build configuration from the Available configurations list to the
Configurations to build list, use the arrow buttons.

IDE Project Management and Building Guide
118 for CRI16C

Building projects °

Configurations to build

Lists the build configurations that will be included in the batch you are creating or
editing. Drag the build configurations up and down to set the order between the
configurations.

19

Reference information on building

IDE Project Management and Building Guide
120 for CR16C

[] [)
Editing
e Introduction to the IAR Embedded Workbench editor
o Editing a file

e Programming assistance

e Reference information on the editor.

Introduction to the IAR Embedded Workbench editor

These topics are covered:

e Briefly about the editor
e Briefly about source browse information
o Customizing the editor environment.

For information about how to use an external editor in the IAR Embedded Workbench
IDE, see Using an external editor, page 31.

BRIEFLY ABOUT THE EDITOR

The integrated text editor allows you to edit multiple files in parallel, and provides both
basic editing features and functions specific to software development, like:

Automatic word and code completion

Automatic line indentation and block indentation

Parenthesis and bracket matching

Function navigation within source files

Context-sensitive help system that can display reference information for DLIB
library functions and language extensions

Text styles and color that identify the syntax of C or C++ programs and assembler
directives

Powerful search and replace commands, including multi-file search
Direct jump to context from error listing
Multibyte character support

Parameter hints

Bookmarks

121

Editing a file

122

o Unlimited undo and redo for each window.

BRIEFLY ABOUT SOURCE BROWSE INFORMATION

Optionally, source browse information is continuously generated in the background.
This information is used by many different features useful as programming assistance,
for example:

o Source Browser window
o Go to definition or declaration
e Find all references

e Find all calls to or from a function, where the result is presented as a call graph.

The source browse information is updated when a file in the project is saved. When you
save an edited source file, or when you open a new project, there will be a short delay
before the information is up-to-date. During the update, progress information is

displayed in the Source Browser window title and in the status bar.
]
x

Updating browse information |
| Tl =

Note: If you want the generation of source browse information to halt when you change
focus from the IAR Embedded Workbench IDE to another program, make sure to enable
the No source browser and build status updates when the IDE is not the foreground
process option.

CUSTOMIZING THE EDITOR ENVIRONMENT

The IDE editor can be configured on the IDE Options pages Editor and Editor>Colors
and Fonts. Choose Tools>Options to access the pages.

For information about these pages, see Tools menu, page 184.

Editing a file

The editor window is where you write, view, and modify your source code.
These tasks are covered:

Indenting text automatically
Matching brackets and parentheses
Splitting the editor window into panes
Dragging text

Code folding

IDE Project Management and Building Guide

for CR16C

Editing °

Word completion

Code completion

Parameter hint

Using and adding code templates
Syntax coloring

Adding bookmarks

Using and customizing editor commands and shortcut keys

Displaying status information.
See also:

® Programming assistance, page 129

e Using an external editor, page 31.

INDENTING TEXT AUTOMATICALLY

The text editor can perform various kinds of indentation. For assembler source files and
plain text files, the editor automatically indents a line to match the previous line.

To indent several lines, select the lines and press the Tab key.
To move a whole block of lines back to the left again, press Shift+Tab.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++
source code. This is performed whenever you:

e Press the Return key
e Type any of the special characters {, }, :, and #

o Have selected one or several lines, and choose the Edit>Auto Indent command.
To enable or disable the indentation:

Choose Tools>Options and select Editor.

Select or deselect the Auto indent option.

To customize the C/C++ automatic indentation, click the Configure button.

For more information, see Configure Auto Indent dialog box, page 46.

MATCHING BRACKETS AND PARENTHESES

To highlight matching parentheses with a light gray color, place the insertion point next

to a parenthesis:
void NextCounter (void)

{
callCount += 1;
i

123

Editing a file

124

The highlight remains in place as long as the insertion point is located next to the
parenthesis.

To select all text between the brackets surrounding the insertion point, choose
Edit>Match Brackets. Every time you choose Match Brackets (grow) or Match
Brackets (shrink) after that, the selection will increase or shrink, respectively, to the
next hierarchic pair of brackets.

Note: Both of these functions—automatic matching of corresponding parentheses and
selection of text between brackets—apply to (), [1, {}, and <> (requires Match All
Brackets).

SPLITTING THE EDITOR WINDOW INTO PANES

You can split the editor window horizontally or vertically into multiple panes, to look at
different parts of the same source file at once, or to move text between two different
panes.

To split a window into panes (horizontally or vertically), use the Window>Split
command.

Alternatively, to split the window vertically, double-click the splitter bar, or drag it to the
middle of the window.
f) v %

—1

To revert to a single pane, double-click the splitter control or drag it back to the end of
the scroll bar.

DRAGGING TEXT

To move text within an editor window or to copy between editor windows, select the text
and drag it to the new location.

CODE FOLDING

Sections of code can be hidden and displayed using code folding.

To collapse or expand groups of lines, click on the fold points in the fold margin:

struct MyStruct

{
int a;
int by
bi

The fold point positions are based on the hierarchical structure of the document
contents, for example, brace characters in C/C++ or the element hierarchy of an XML

IDE Project Management and Building Guide

for CR16C

Editing °

file. The Toggle All Folds command (Ctrl+Alt+F) can be used for expanding (or
collapsing) all folds in the current document. The command is available from the Edit
menu and from the context menu in the editor window. You can enable or disable the
fold margin from Tools>Options>Editor.

WORD COMPLETION

Word completion attempts to complete the word that you have started to type, basing the
assumption on the contents of the rest of your document.

To make the editor complete the word that you have started to type, press
Ctrl+Alt+Space or choose Complete Word from the context menu. If the suggestion is
incorrect, repeat the command to get new suggestions.

CODE COMPLETION

To make the editor show a list of symbols that are available in a class, type ., ->, 0or : :
after a class or object name:

-

struct MyStruct
[=h
int a;
int by
-

m

int function (wvoid)
[=h

struct MyStruct myStruct;

myStruct I

b

When you place the cursor anywhere else but after ., ->, or :, the context menu lists all
symbols available in the active translation unit.

Click on a symbol name in the list or choose it with the arrow keys and press return to
insert it at the current insertion point.

PARAMETER HINT

To make the editor suggest function parameters as tooltip information, start typing the
first parenthesis after a function name.

125

Editing a file

126

When there are several overloaded versions of a function, you can choose which one to
use by clicking the arrows in the tooltip (Ctrl+Up/Down). To insert the parameters as
text, press Ctrl+Enter:

int overlcad(char c);

int overlecad(short 3);
int overlead(int i);

int function (void)
{
cverlcadd
P1/3@ int overload(char cj |

USING AND ADDING CODE TEMPLATES

Code templates are a method of conveniently inserting frequently used source code
sequences, for example for loops and i £ statements. The code templates are defined in
a plain text file. By default, a few example templates are provided. In addition, you can
easily add your own code templates.

To set up the use of code templates:
Choose Tools>Options>Editor>Setup Files.

Select or deselect the Use Code Templates option.
By default, code templates are enabled.
In the text field, specify which template file you want to use:

o The default template file

The original template file CodeTemplates. txt is located in the common\config
directory of your product installation. The first time you use IAR Embedded
Workbench, the original template file is copied to a directory for local settings, and
this is the file that is used by default if code templates are enabled.

e Your own template file

Note that before you can choose your own template file, you must first have created
one. To create your own template file, choose Edit>Code Templates>Edit
Templates. Add your code templates and save the file with a new name. The syntax
for defining templates is described in the default template file.

o A template file that uses correct language

When you start the IAR Embedded Workbench IDE for the very first time, you are
asked to select a language version. This only applies if you are using an IDE that is
available in other languages than English.

Selecting a language creates a corresponding language version of the default code
template file in the Application Data\IAR Embedded Workbench subdirectory
of the current Windows user (for example CodeTemplates.ENU. txt for English

IDE Project Management and Building Guide

for CR16C

Editing °

and CodeTemplates.JPN. txt for Japanese). The default code template file does
not change automatically if you change the language version of the IDE afterwards.

A browse button is available for your convenience.

Note that if the code template file you want to select is not in the browsed directory
(which is the case when you have selected a different language version), you must:
e Delete the filename in the Use Code Templates text box.

o Deselect the Use Code Templates option and click OK.

o Restart the JAR Embedded Workbench IDE.

o Choose Tools>Options>Editor>Setup Files again.

The default code template file for the selected language version of the IDE should
now be displayed in the Use Code Templates text box. Select the checkbox to enable
the template.

To insert a code template into your source code:

I In the editor window, right-click where you want the template to be inserted and
choose Insert Template (Ctrl+Alt+V).

2 Choose a code template from the menu that appears.

1 vold main (void)
2 {
3
4

! Copy

Faste

| i3 ‘

Complete Word
Complete Code
Parameter Hint
Match Brackets

Insert Template Staktement

Corporate 3 far

Open HeaderfSource File

Edit Templates
5o ko definition B

5o ko declaration

Find all references

If the code template requires any type of field input, as in the for loop example which
needs an end value and a count variable, an input dialog box appears.

127

Editing a file

128

SYNTAX COLORING

If the Tools>Options>Editor>Syntax highlighting option is enabled, the IAR
Embedded Workbench editor automatically recognizes the syntax of different parts of
source code, for example:

o C and C++ keywords

e C and C++ comments

o Assembler directives and comments

e Preprocessor directives

e Strings.
The different parts of source code are displayed in different text styles.

To change these styles, choose Tools>Options, and use the Editor>Colors and Fonts
options. For more information, see Editor Colors and Fonts options, page 49.

To define your own set of keywords that should be syntax-colored
automatically:

In a text file, list all the keywords that you want to be automatically syntax-colored.
Separate each keyword with either a space or a new line.

Choose Tools>Options and select Editor>Setup Files.

Select the Use Custom Keyword File option and specify your newly created text file.
A browse button is available for your convenience.

Select Editor>Colors and Fonts and choose User Keyword from the Syntax
Coloring list. Specify the font, color, and type style of your choice. For more
information, see Editor Colors and Fonts options, page 49.

In the editor window, type any of the keywords you listed in your keyword file; see how
the keyword is colored according to your specification.

ADDING BOOKMARKS

Use the Edit>Navigate>Toggle Bookmark command to add and remove bookmarks.
To switch between the marked locations, choose Edit>Navigate>Navigate Next
Bookmark or Navigate Previous Bookmark.

USING AND CUSTOMIZING EDITOR COMMANDS AND
SHORTCUT KEYS

The Edit menu provides commands for editing and searching in editor windows, for
instance, unlimited undo/redo. You can also find some of these commands on the
context menu that appears when you right-click in the editor window. For more
information about each command, see Edit menu, page 173.

IDE Project Management and Building Guide

for CR16C

Editing °

There are also editor shortcut keys for:

e moving the insertion point
e scrolling text

e selecting text.

For more information about these shortcut keys, see Editor shortcut key summary, page
158.

To change the default shortcut key bindings, choose Tools>Options, and click the Key
Bindings tab. For more information, see Key Bindings options, page 40.

DISPLAYING STATUS INFORMATION

The status bar is available by choosing View>Status Bar. For more information, see
1IAR Embedded Workbench IDE window, page 35.

Programming assistance
There are several features in the editor that assist you during your software development.
This section describes various tasks related to using the editor.

These tasks are covered:

Navigating to a function

Finding a definition or declarations of a symbol
Finding references to a symbol

Finding function calls for a selected function
Switching between source and header files
Displaying source browse information

Text searching

Accessing online help for reference information.

The current position of the insertion point is added to the insertion point history by

@ actions like Go to definition and clicking on the result for the Find in Files command.
You can jump in the history either forward or backward by using the Navigate Forward
fir. and Navigate Backward g buttons (or by pressing Alt + Right Arrow or Alt +
Left Arrow). T

NAVIGATING TO A FUNCTION

_F[] Click the Go to function button in the top-right corner of the editor window to list all
functions defined in the source file displayed in the window. You can then choose to

129

Programming assistance

navigate directly to one of the functions by clicking it in the list. Note that the list is
refreshed when you save the file.

FINDING A DEFINITION OR DECLARATIONS OF A SYMBOL

To see the definition or declaration of a global symbol or a function, you can use these
alternative methods:

o In the editor window, right-click on a symbol and choose the Go to definition or Go
to declaration command from the context menu that appears. If more than one
declaration is found, the declarations are listed in the Declarations window from
where you can navigate to a specific declaration.

o In the Source Browser window, double-click on a symbol to view the definition
o In the Source Browser window, right-click on a symbol, or function, and choose
the Go to definition command from the context menu that appears

The definition of the symbol or function is displayed in the editor window.

FINDING REFERENCES TO A SYMBOL

To find all references for a specific symbol, select the symbol in the editor window,
right-click and choose Find All References from the context menu. All found
references are displayed in the References window.

You can now navigate between the references.

FINDING FUNCTION CALLS FOR A SELECTED FUNCTION

To find all calls to or from a function, select the function in the editor window or in the
Source Browser window, right-click and choose either Find All Calls to or Find All
Calls from from the context menu. The result is displayed in the Call Graph window.

You can navigate between the function calls.

SWITCHING BETWEEN SOURCE AND HEADER FILES

If the insertion point is located on an #include line, you can choose the Open
"header.h" command from the context menu, which opens the header file in an editor
window. You can also choose the command Open Header/Source File, which opens
the header or source file with a corresponding filename to the current file, or activates it
if it is already open. This command is available if the insertion point is located on any
line except an #include line.

DISPLAYING SOURCE BROWSE INFORMATION

I To open the Source Browser window, choose View>Source Browser>Source
Browser.

IDE Project Management and Building Guide
130 for CRI16C

Editing °

The Source Browser window is, by default, docked with the Workspace window.
Source browse information is displayed for the active build configuration.

Note that you can choose a file filter and a type filter from the context menu that appears
when you right-click in the top pane of the window.

To display browse information in the Source Browser window, choose
Tools>Options>Project and select the option Generate browse information.

TEXT SEARCHING
There are several standard search functions available in the editor:

Quick search text box
Find dialog box
Replace dialog box
Find in Files dialog box

Replace in Files dialog box

Incremental Search dialog box.
To use the Quick search text box on the toolbar:
Type the text you want to search for and press Enter.

Press Esc to stop the search. This is a quick method of searching for text in the active
editor window.

To use the Find, Replace, Find in Files, Replace in Files, and Incremental
Search functions:

Before you use the search commands, choose Tools>Options>Editor and make sure
the Show bookmarks option is selected.

Choose the appropriate search command from the Edit menu. For more information
about each search function, see Edit menu, page 173.

To remove the blue flag icons that have appeared in the left-hand margin, right-click in
the Find in Files window and choose Clear All from the context menu.
ACCESSING ONLINE HELP FOR REFERENCE INFORMATION

When you need to know the syntax of a library function, extended keyword, intrinsic
function, etc, type the name and select it in the editor window and press F1. The
documentation for the item appears in a help window.

131

Reference information on the editor

132

Reference information on the editor

Reference information about:

Editor window, page 133

Find dialog box, page 141

Find in Files window, page 142

Replace dialog box, page 143

Find in Files dialog box, page 144
Replace in Files dialog box, page 146
Incremental Search dialog box, page 148
Declarations window, page 149
Ambiguous Definitions window, page 150
References window, page 151

Source Browser window, page 152
Resolve File Ambiguity dialog box, page 156
Call Graph window, page 156

Template dialog box, page 157

Editor shortcut key summary, page 158.

IDE Project Management and Building Guide

for CR16C

Editing °

Editor window

The editor window is opened when you open or create a text file in the IDE.

Drop-down menu
that lists all open files

Go e function

N v x
‘ Window tabs }> Tutor.c utitIE.C|
a3 /* Initislizes MAX FIB Fibonacci numbers. */ f
34 void InitFib(veid)
35 { P
38 short 1 = 457 I Splitter control
Breakpo'”t ‘@ 37 Fib[0] = Fib[1] = 1; R
icon 38
39 for (i = 2; 1 < MAX FIB; i++)
10 |
41 |~ Fib[i] = GetFib(i) + GetFib(i-1);
- 3
Bracket :f:s_ T
n‘atchmg |
45 /* Returns the Fibonacci number 'n'. #/
48 unsigned int GetFik({int n) £
o 47 {
Find in files 48 if ({n > 0) s5 (n <= MAX FIB))
icon 19 [
50 return (Fik[n-1]):
51 1
52 else
B— 53 I
Bookmark [54 return 0;
E— 55 1
56 b1
1 [l 1 - [

Four columns for icons, line numbers, Right margin that indicates limit of printing area
code folding, and for selecting entire lines .

You can open one or several text files, either from the File menu, or by double-clicking
them in the Workspace window. All open files are available from the drop-down menu
at the upper right corner of the editor window. Several editor windows can be open at
the same time.

Source code files and HTML files are displayed in editor windows. From an open
HTML document, hyperlinks to HTML files work like in an ordinary web browser. A
link to an eww workspace file opens the workspace in the IDE, and closes any currently
open workspace and the open HTML document.

When you want to print a source file, it can be useful to enable the option Show line
numbers—available by choosing Tools>Options>Editor.

The editor window is always docked, and its size and position depend on other currently
open windows.

133

Reference information on the editor

For more information about using the editor, see Editing a file, page 122 and
Programming assistance, page 129.

Relative source file paths
The IDE has partial support for relative source file paths.
If a source file is located in the project file directory or in any subdirectory of the project

file directory, the IDE uses a path relative to the project file when accessing the source
file.

Window tabs, tab groups, and tab context menu

The name of the open file is displayed on the tab. If you open several files, they are

organized in a tab group. Click the tab for the file that you want to display. If a file has
been modified after it was last saved, an asterisk appears on the tab after the filename,
for example Utilities.c *.If afile is read-only, a padlock icon is visible on the tab.

The tab’s tooltip shows the full path and a remark if the file is not a member of the active
project.
A context menu appears if you right-click on a tab in the editor window.

Save CppTutor.cpp
Close

Close All But This

Close All to the Right
Open Containing Folder...
File Properties...

These commands are available:

Save file
Saves the file.

Close
Closes the file.

Close All But This
Closes all tabs except the current tab.

Close All to the Right
Closes all tabs to the right of the current tab.

Open Containing Folder

Opens the File Explorer that displays the directory where the selected file
resides.

IDE Project Management and Building Guide
134 for CRI6C

Editing °

File Properties
Displays a standard file properties dialog box.

Multiple editor windows and splitter controls

You can have one or several editor windows open at the same time. The commands on
the Window menu allow you to split the editor window into panes and to open multiple
editor windows. There are also commands for moving files between editor windows.

To split the editor window vertically into multiple panes, you can also use the splitter
controls.

For more information about each command on the Window menu, see the /DE Project
Management and Building Guide.

Go to function

F[] Click the Go to function button in the top right-hand corner of the editor window to list
all functions of the C or C++ editor window.

DoForegroundProcess(void)
MextCounter{void)
maingvoid)

Click the function that you want to show in the editor window.

135

Reference information on the editor

Context menu

This context menu is available:
Cut
Copy
Paste

Complete Word
Complete Code
Parameter Hint
Match Brackets
Toggle All Folds
Insert Template 3

Open Header/Source File

Go to Definition of 'main’
Go to Declaration of 'main’
Find All References to 'main’
Find All Calls to 'main’

Find All Calls from 'main’
Find in Trace

Toggle Breakpoint (Code)

Toggle Breakpoint (Log)

Toggle Breakpoint (Trace Start)
Toggle Breakpoint (Trace Stop)
Enable/disable Breakpoint

Set Data Breakpoint for 'main’

Set Data Log Breakpoint for 'main’

Set Mext Statement

Quick Watch
Add to Watch

Move to PC
Run to Cursor

Character Encoding 3

Options...

The contents of this menu depend on whether the debugger is started or not, and on the
C-SPY driver you are using. Typically, additional breakpoint types might be available
on this menu. For information about available breakpoints, see the C-SPY® Debugging
Guide.

IDE Project Management and Building Guide
136 for CRI6C

Editing °

These commands are available:

Cut, Copy, Paste
Standard window commands.

Complete Word

Attempts to complete the word you have begun to type, basing the guess on the
contents of the rest of the editor document.

Complete Code

Shows a list of symbols that are available in a class, when you place the insertion
point after ., ->, or : : and when these characters are preceded by a class or
object name. For more information, see Code completion, page 125.

Parameter Hint

Suggests parameters as tooltip information for the function parameter list you
have begun to type. When there are several overloaded versions of a function,
you can choose which one to use by clicking the arrows in the tooltip. For more
information, see Parameter hint, page 125.

Match Brackets

Selects all text between the brackets immediately surrounding the insertion
point, increases the selection to the next hierarchic pair of brackets, or beeps if
there is no higher bracket hierarchy.

Toggle All Folds
Expands/collapses all code folds in the active project.

Insert Template

Displays a list in the editor window from which you can choose a code template
to be inserted at the location of the insertion point. If the code template you
choose requires any field input, the Template dialog box appears; for
information about this dialog box, see Template dialog box, page 157. For
information about using code templates, see Using and adding code templates,
page 126.

Open "header.h"

Opens the header file header.h in an editor window. If more than one header
file with the same name is found and the IDE does not have access to
dependency information, the Resolve File Ambiguity dialog box is displayed,
see Resolve File Ambiguity dialog box, page 156. This menu command is only
available if the insertion point is located on an #include line when you open
the context menu.

137

Reference information on the editor

138

Open Header/Source File
Opens the header or source code file that has same base name as the current file.
If the destination file is not open when you choose the command, the file will
first be opened. This menu command is only available if the insertion point is
located on any line except an #include line when you open the context menu.
This command is also available from the File>Open menu.

Go to Definition of symbol
Places the insertion point at the definition of the symbol. If no definition is found
in the source code, the first declaration will be used instead. If more than one
possible definition is found, they are listed in the Ambiguous Definitions
window. See Ambiguous Definitions window, page 150.

Go to Declaration of symbol

If only one declaration is found, the command puts the insertion point at the
declaration of the symbol. If more than one declaration is found, these
declarations are listed in the Declarations window.

Find All References to symbol
The references are listed in the References window.

Find All Calls to
Opens the Call Graph window which displays all functions in the project that
calls the selected function, see Call Graph window, page 156. If this command
is disabled, make sure to select a function in the editor window.

Find All Calls from
Opens the Call Graph window which displays all functions in the project that
are called from the selected function, see Call Graph window, page 156. If this
command is disabled, make sure to select a function in the editor window.

Check In, Check Out, Undo Checkout
Commands for source code control; for more information, see Version Control
System menu for SCC, page 96. These menu commands are only available if the
current source file in the editor window is SCC-controlled. The file must also be
a member of the current project.

Toggle Breakpoint (Code)
Toggles a code breakpoint at the statement or instruction containing or close to
the cursor in the source window. For information about code breakpoints, see the
C-SPY® Debugging Guide.

IDE Project Management and Building Guide

for CR16C

Editing °

Toggle Breakpoint (Log)

Toggles a log breakpoint at the statement or instruction containing or close to
the cursor in the source window. For information about log breakpoints, see the
C-SPY® Debugging Guide.

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. For information about Trace Start breakpoints, see the C-SPY®
Debugging Guide. Note that this menu command is only available if the C-SPY
driver you are using supports trace.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. For information about Trace Stop breakpoints, see the C-SPY®
Debugging Guide. Note that this menu command is only available if the C-SPY
driver you are using supports trace.

Enable/disable Breakpoint

Toggles a breakpoint between being disabled, but not actually
removed—making it available for future use—and being enabled again.

Set Data Breakpoint for 'variable'

Toggles a data log breakpoint on variables with static storage duration. Requires
support in the C-SPY driver you are using. For more information about data
breakpoints, see the C-SPY® Debugging Guide.

Set Data Log Breakpoint for 'variable'

Toggles a data log breakpoint on variables with static storage duration. Requires
support in the C-SPY driver you are using. The breakpoints you set in this
window will be triggered by both read and write accesses; to change this, use the
Breakpoints window. For more information about data logging and data log
breakpoints, see the C-SPY® Debugging Guide.

Find in Trace

Searches the contents of the Trace window for occurrences of the given
location—the position of the insertion point in the source code—and reports the
result in the Find in Trace window. This menu command requires support for
Trace in the C-SPY driver you are using, see the C-SPY® Debugging Guide.

Edit Breakpoint

Displays the Edit Breakpoint dialog box to let you edit the breakpoint available
on the source code line where the insertion point is located. If there is more than
one breakpoint on the line, a submenu is displayed that lists all available
breakpoints on that line.

139

Reference information on the editor

Set Next Statement

Sets the Program Counter directly to the selected statement or instruction
without executing any code. This menu command is only available when you are
using the debugger. For more information, see the C-SPY® Debugging Guide.

Quick Watch

Opens the Quick Watch window, see the C-SPY® Debugging Guide. This
menu command is only available when you are using the debugger.

Add to Watch

Adds the selected symbol to the Watch window. This menu command is only
available when you are using the debugger.

Move to PC

Moves the insertion point to the current PC position in the editor window. This
menu command is only available when you are using the debugger.

Run to Cursor

Executes from the current statement or instruction up to the statement or
instruction where the insertion point is located. This menu command is only
available when you are using the debugger.

Character Encoding

Interprets the source file according to the specified character encoding. Choose
between:

System (uses the Windows settings)
UTF-8

Western European

Japanese (Shift-JIS)

Chinese Simplified (GB2312)
Korean (Unified Hangul Code)
Arabic

Baltic

Central European

Greek

Hebrew

Russian

Thai

IDE Project Management and Building Guide
140 for CRI6C

Editing °

Vietnamese
Convert to UTF-8 (converts the document to UTF-8)

Use one of these settings if the Auto-detect character encoding option could
not determine the correct encoding or if the option is deselected. For more
information about file encoding, see Editor options, page 42.

Options
Displays the IDE Options dialog box, see Tools menu, page 184.

Find dialog box

The Find dialog box is available from the Edit menu.

Find | = |
Frd et v
Macheace
[Match whole word

Only in zelection

Note that the contents of the dialog box might be different if you search in an editor
window compared to if you search in the Memory window.

Find what

Specity the text to search for. Use the drop-down list to use old search strings.

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int. This option is only available
when you perform the search in an editor window.

Match whole word

Searches for the specified text only if it occurs as a separate word. Otherwise, specifying
int will also find print, sprint£ etc. This option is only available when you perform
the search in an editor window.

Search as hex

Searches for the specified hexadecimal value. This option is only available when you
perform the search in the Memory window.

141

Reference information on the editor

142

Only in selection

Find Next

¥

Find Previous

Stop

Find in Files window

Context menu

Limits the search operation to the selected lines (when searching in an editor window)
or to the selected memory area (when searching in the Memeory window). The option is
only enabled when a selection has been made before you open the dialog box.

Searches for the next occurrence of the specified text.

Searches for the previous occurrence of the specified text.

Stops an ongoing search. This button is only available during a search in the Memory
window.

The Find in Files window is available by choosing View>Messages.

Find in Files B
Fath | Line | String -
Chprojectsh. ATutorc 4 * Ctutarial. Print the Fibonacci numbers.
Chprojectsh. ATutorc 14 int call_count;

Chprojectsh. ATutor.c 28 Getand printthe associated Fibonacci number.
Chprojectsh. ATutor.c 32 unsigned intfik;

Chprojectsh. ATutor.c 41 Prints the Fibonacci numbers.

Chproject. \Utilities.c 16 unsigned int root[MAx_FIB]:

Chproject. \Utilities.c 23 inti=45;

Chproject. \Utilities.c 35 unsigned int get_fib(intnr) -
« | _>l_I
Call Stack | Debug Lag |Builld Find in Files ITooI Cutput x

This window displays the output from the Edit>Find and Replace>Find in Files
command. When opened, this window is, by default, grouped together with the other
message windows.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. That source location is highlighted with a blue
flag icon. Choose Edit>Next Error/Tag or press F4 to jump to the next in sequence.

This context menu is available:

Copy
Select Al

Clear Al

IDE Project Management and Building Guide

for CR16C

Editing °

These commands are available:

Copy
Copies the selected content of the window.

Select All

Selects the contents of the window.

Clear All

Deletes the contents of the window and any blue flag icons in the left-side
margin of the editor window.

Replace dialog box

The Replace dialog box is available from the Edit menu.

Replace | = |
Replace with: -
Match case Replace &l
[Match whole word

Only in zelection

Note that the contents of the dialog box is different if you search in an editor window
compared to if you search in the Memory window.

Find what

Specify the text to search for. Use the drop-down list to use old search strings.

Replace with

Specify the text to replace each found occurrence with. Use the drop-down list to use old
search strings.

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int. This option is only available
when you perform the search in an editor window.

Match whole word

Searches for the specified text only if it occurs as a separate word. Otherwise, int will
also find print, sprint£ etc. This option is only available when you search in an editor
window.

143

Reference information on the editor

144

Search as hex

Searches for the specified hexadecimal value. This option is only available when you
perform the search in the Memory window.

Only in selection
Limits the search operation to the selected lines (when searching in an editor window)
or to the selected memory area (when searching in the Memory window). The option is
only enabled when a selection has been made before you open the dialog box.

Find next

Searches for the next occurrence of the specified text.

Replace

Replaces the searched text with the specified text.

Replace all

Replaces all occurrences of the searched text in the current editor window.

Find in Files dialog box

The Find in Files dialog box is available from the Edit menu.

Find what:
| [~
[~ Match case ﬂ

I Match whale word

™ Match reqular expression

Look in
[v For all projects in workspace

+ Project files
" Project files and user include Files
" Project files and all include Files

" Directary:
v
File types
|*.c,'*.cpp,'*.cc,'*.h;*.hpp;*.s*;*.msa;*.asm j

Use this dialog box to search for a string in files.

IDE Project Management and Building Guide

for CR16C

Find what

Look in

Editing °

The result of the search appears in the Find in Files message window—available from
the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
message window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-hand
margin indicates the line with the string you searched for.

Specify the string you want to search for, or a regular expression. Use the drop-down list
to use old search strings/expressions. You can narrow the search down with one or more
of these conditions:

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int.

Match whole word
Searches only for the string when it occurs as a separate word (mnemonic &w).
Otherwise, int will also find print, sprintf and so on.

Match regular expression

Interprets the search string as a the regular expression, which must follow the
standard for the Perl programming language.

Specify which files you want to search in. Choose between:

For all projects in workspace
Searches all projects in the workspace, not just the active project.

Project files
Searches all files that you have explicitly added to your project.

Project files and user include files

Searches all files that you have explicitly added to your project and all files that
they include, except the include files in the IAR Embedded Workbench
installation directory.

Project files and all include files

Searches all project files that you have explicitly added to your project and all
files that they include.

Directory

Searches the directory that you specify. Recent search locations are saved in the
drop-down list. A browse button is available for your convenience.

145

Reference information on the editor

Look in subdirectories
Searches the directory that you have specified and all its subdirectories.

File types
A filter for choosing which type of files to search; the filter applies to all Look in
settings. Choose the appropriate filter from the drop-down list. The text field is editable,
to let you add your own filters. Use the * character to indicate zero or more unknown
characters of the filters, and the ? character to indicate one unknown character.

Stop

Stops an ongoing search. This button is only available during an ongoing search.

Replace in Files dialog box
The Replace in Files dialog box is available from the Edit menu.

Replace in Files &J

Find what: Stop
| -
Replace with:
- Find Nex
Replace
Match case -
eplace A
Match whole word =
[CIMatch regular expression kip File
Look in

[For all projects in workspace
() Project files
(@) Project files and user indude files
() Project files and all indude files
() Directory:
D:\Too-ticki\test\ARM'FlySim E]

Look in subdirectories

File types
.;.cpp; *.cc; *.h; . hpp; *.5% . msa; *.asm -

Use this dialog box to search for a specified string in multiple text files and replace it
with another string.

The result of the replacement appears in the Find in Files message window—available
from the View menu. You can then go to each occurrence by choosing the Edit>Next

Error/Tag command, alternatively by double-clicking the messages in the Find in Files
message window. This opens the corresponding file in an editor window with the

IDE Project Management and Building Guide
146 for CRI6C

Editing °

insertion point positioned at the start of the specified text. A blue flag in the left-hand
margin indicates the line containing the string you searched for.

Find what

Specify the string you want to search for and replace, or a regular expression. Use the
drop-down list to use old search strings/expressions. You can narrow the search down
with one or more of these conditions:
Match case
Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int.
Match whole word
Searches only for the string when it occurs as a separate word (mnemonic &w).
Otherwise, int will also find print, sprintf and so on.
Match regular expression

Interprets the search string as a regular expression, which must follow the
standard for the Perl programming language.

Replace with

Specify the string you want to replace the original string with. Use the drop-down list to
use old replace strings.

Look in
Specify which files you want to search in. Choose between:
For all projects in workspace
Searches all projects in the workspace, not just the active project.
Project files
Searches all files that you have explicitly added to your project.

Project files and user include files
Searches all files that you have explicitly added to your project and all files that
they include, except the include files in the IAR Embedded Workbench
installation directory.

Project files and all include files

Searches all project files that you have explicitly added to your project and all
files that they include.

147

Reference information on the editor

148

File types

Stop

Close

Find Next

Replace

Replace All

Skip file

Directory

Searches the directory that you specify. Recent search locations are saved in the
drop-down list. A browse button is available for your convenience.

Look in subdirectories
Searches the directory that you have specified and all its subdirectories.

A filter for choosing which type of files to search; the filter applies to all Look in
settings. Choose the appropriate filter from the drop-down list. The text field is editable,
to let you add your own filters. Use the * character to indicate zero or more unknown
characters of the filters, and the ? character to indicate one unknown character.

Stops an ongoing search. This button is only available during an ongoing search.

Closes the dialog box. An ongoing search must be stopped first.

Finds the next occurrence of the specified search string.

Replaces the found string and finds the next occurrence of the specified search string.

Saves all files and replaces all found strings that match the search string.

Skips the occurrences in the current file.

Incremental Search dialog box

The Incremental Search dialog box is available from the Edit menu.

Incremental Search

Find what: Flnd Mext

[Match case Elose
Only in zelection

IDE Project Management and Building Guide

for CR16C

Editing °

Use this dialog box to gradually fine-tune or expand the search string.

Find what

Type the string to search for. The search is performed from the location of the insertion
point—the start point. Every character you add to or remove from the search string
instantly changes the search accordingly. If you remove a character, the search starts
over again from the start point.

If a word in the editor window is selected when you open the Incremental Search
dialog box, this word will be displayed in the Find What text box.

Use the drop-down list to use old search strings.

Match case

Searches for occurrences that exactly match the case of the specified text. Otherwise,
searching for int will also find INT and Int.

Find Next
Searches for the next occurrence of the current search string. If the Find What text box
is empty when you click the Find Next button, a string to search for will automatically
be selected from the drop-down list. To search for this string, click Find Next.

Close

Closes the dialog box.

Only in selection

Limits the search operation to the selected lines. The option is only available when more
than one line has been selected before you open the dialog box.

Declarations window
The Declarations window is available by choosing View>Source Browser.

Declarations =]
Fath Line String
CADocumentsilAR Embedded Workbenchy, \CppTutor.cpp 36 int callCount;
CADocumentsilAR Embedded Workbenchy, \CppTutor.cpp a7 extern int callCount;
CADocumentsilAR Embedded Workbenchy, \CppTutor.cpp 3 extern int callCount;

149

Reference information on the editor

150

Context menu

This window displays the result from the Go to Declaration command on the editor
window context menu.

When opened, this window is by default grouped together with the other message
windows.

To find and list declarations for a specific symbol, select a symbol in the editor window,
right-click and choose Go to Declaration from the context menu. All declarations are
listed in the Declarations window.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next in sequence.

This context menu is available:

Copy
Select Al

Clear Al

These commands are available:

Copy
Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All
Deletes the contents of the window.

Ambiguous Definitions window

The Ambiguous Definitions window is available by choosing View>Source Browser.

Fath Line String

Diprojsitutoninterrupt.c 31 woid InitUartivoid);

Diprojsitutoninterrupt.c 41 woid InitUlartvoid)

Fl 1] 3
Build Ambiguous Definitions x

This window displays the result from the Go to Definition command on the editor
window context menu, if the source browser finds more than one possible definition.

When opened, this window is by default grouped together with the other message
windows.

IDE Project Management and Building Guide

for CR16C

Editing °

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next entry in sequence.

Context menu

This context menu is available:

Copy
Select Al

Clear Al
These commands are available:

Copy
Copies the contents of the window.
Select All

Selects the contents of the window.

Clear All

Deletes the contents of the window.

References window

The References window is available by choosing View>Source Browser.

Find All References =)
Fath Line String
CADocumentsilAR Embedded Woarkbenchy, \Fibonacci.cpp 42 return (msFib[n- 1]
CADocumentsilAR Embedded Woarkbenchy, \Fibonacci.cpp B4 msFib[n-1] =value;

This window displays the result from the Find All References commands on the editor
window context menu.

When opened, this window is by default grouped together with the other message
windows.

To find and list references for a specific symbol, select a symbol in the editor window,
right-click and choose Find All References from the context menu. All references are
listed in the References window.

151

Reference information on the editor

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next in sequence.

Context menu

This context menu is available:

Copy
Select Al

Clear Al

These commands are available:
Copy

Copies the contents of the window.
Select All

Selects the contents of the window.

Clear All

Deletes the contents of the window.

Source Browser window

The Source Browser window is available from the View menu.

Si =

®; | Name File
project3 - Debug
— ¢ Fibonacci Fibonaceih
— ¢ Fibonacci Fibonacecih
: Fibo
Fibonacci MS:Fibonacc Fibonaceih
Fibonacci MS:Fibonacc Fibonaceih
@ mCurrent MS:Fibonacc Fibonaceih
+ “Fibonacci MS:Fibonacc Fibonaceih
— 4 main CppTutar.cpp
— < mCurrent MS:Fibonacc Fibonaceih
{3 NS Fibonacsih
'— ¢ “Fibhonacci MS:Fibonacc Fibonaceih
KN — 2
Full name: MS:Fibonacc
Symbol type: struct/class
Filename: CAProjectsitutor\Fibonaccih

‘Workspace Source Browser x

This window displays an hierarchical view in alphabetical order of all symbols defined
in the active build configuration. This means that source browse information is available
for symbols in source files and include files part of that configuration. Source browse

IDE Project Management and Building Guide
152 for CR16C

Editing °

information is not available for symbols in linked libraries. The window consists of two
separate display areas.

For more information about how to use this window, see Displaying source browse

information, page 130.

The upper display area
The upper display area contains two columns:
#. An icon that corresponds to the Symbol type classification.

Name The names of global symbols and functions defined in the project. Note
that an unnamed type, for example a struct or a union without a name,
will get a name based on the filename and line number where it is defined.
These pseudonames are enclosed in angle brackets.

Scope The scope (namespaces and classes/structs) that the entry belongs to.

File The file name (without path) that contains the definition of the entry.
To sort each column, click its header.

The lower display area
For a symbol selected in the upper display area, the lower area displays its properties:

Full name Displays the unique name of each element, for instance
classname:..membername.

Symbol type Displays the symbol type for each element represented as an
icon.
Filename Specifies the path to the file in which the element is defined.

Icons used for the symbol types

These are the icons used:

= Base class

= Class

Configuration

& Enumeration

=l Enumeration constant
L (Yellow rhomb) Field of a struct

153

Reference information on the editor

& (Purple rhomb) Function

H# Macro

i Namespace

o Template class

s Template function
0. Type definition
A Union

2 (Yellow rhomb) Variable

Context menu
This context menu is available in the upper display area:
Go to Definition
Find All Calls to
Find All Calls from
Move to Parent
v | All Symbols
All Functions & Variables
MNon-Member Functions & Variables
Types

Constants & Macros

Project Files
v | Project Files and User Include Files
Project Files and All Include Files

These commands are available:

Go to Definition
The editor window will display the definition of the selected item.

Find All Calls to

Opens the Call Graph window which displays all functions in the project that
calls the selected function, see Call Graph window, page 156. If this command
is disabled, make sure to select a function in the Source Browser window.

Find All Calls from

Opens the Call Graph window which displays all functions in the project that
are called from the selected function, see Call Graph window, page 156. If this
command is disabled, make sure to select a function in the Source Browser
window.

IDE Project Management and Building Guide
154 for CRI6C

Editing °

Move to Parent
If the selected element is a member of a class, struct, union, enumeration, or
namespace, this menu command can be used for moving the insertion point to
the enclosing element.

All Symbols
Type filter; displays all global symbols and functions defined in the project.

All Functions & Variables
Type filter; displays all functions and variables defined in the project.

Non-Member Functions & Variables
Type filter; displays all functions and variables that are not members of a class.

Types
Type filter; displays all types such as structures and classes defined in the
project.

Constants & Macros
Type filter; displays all constants and macros defined in the project.

Project Files
File filter; displays symbols from all files that you have explicitly added to your
project, but no include files.

Project Files and User Include Files
File filter; displays symbols from all files that you have explicitly added to your
project and all files included by them, except the include files in the IAR
Embedded Workbench installation directory.

Project Files and All Include Files

File filter; displays symbols from all files that you have explicitly added to your
project and all files included by them.

155

Reference information on the editor

156

Resolve File Ambiguity dialog box

Call Graph window

The Resolve File Ambiguity dialog box is displayed when the editor finds more than
one header file with the same name.

Resolve File Ambiguity

Ambiguous file name: mizc.h
Select one file:

[(0] 3][Cancel]

This dialog box lists the header files if more than one header file is found when you
choose the Open "header.h'" command on the editor window context menu and the IDE

does not have access to dependency information.

The Call Graph window is available by choosing View>Source Browser>Call Graph.

Call Graph #

Function | File | Line |
= * Calls from main{void) Tutar.c 49
; Y InitFib(void) Tutar.c 53
Y GetFibling Lttilities.c 41
Y GetFibling ttilities.c 41
DoForegroundProce i) Tutar.c 57
Y NextCounterfvoid) Tutar.c 42
Y GetFiblint) Tutar.c 43
Y PutFib(unsigned inf) Tutar.c 44

x

Build Call Graph

This window displays calls to or calls from a function. The window is useful for
navigating between the function calls.

To display a call graph, select a function name in the editor window or in the Source
Browser window, right-click and select either Find All Calls to or Find All Calls from
from the context menu.

Double-click an entry in the window to place the insertion point at the location of the
function call (or definition, if a call is not applicable for the entry). The editor will open
the file that contains the call if necessary.

IDE Project Management and Building Guide

for CR16C

Editing °

Display area
The display area shows the call graph for the selected function, where each line lists a
function. These columns are available:

Function Displays the call graph for the selected function; first the
selected function, followed by a list of all called or calling
functions. The functions calling the selected function are
indicated with left arrow and the functions called by the
selected function are indicated with a right arrow.

File The name of the source file.

Line The line number for the call.

Context menu
This context menu is available:
G0 ko Definition
Go ko Call
These commands are available:

Go to Definition
Places the insertion point at the location of the function definition.

Go to Call
Places the insertion point at the location of the function call.

Template dialog box

The Template dialog box appears when you insert a code template that requires any

field input.

End Yalue I 10 ok I
‘ariable I i Cancel |

fForfink i =0; i < 10; +-+i)

+

Use this dialog box to specify any field input that is required by the source code template
you insert.

Note: The figure reflects the default code template that can be used for automatically
inserting code for a for loop.

157

Reference information on the editor

Text fields

Specify the required input in the text fields. Which fields that appear depends on how
the code template is defined.

Display area
The display area shows the code that would result from the code template, using the
values you submit.

For more information about using code templates, see Using and adding code templates,
page 126.

Editor shortcut key summary
There are three types of shortcut keys that you can use in the editor:
o Predefined shortcut keys, which you can configure using the IDE Options dialog
box
o Shortcut keys provided by the Scintilla editor.
o Custom shortcut keys that you configure yourself using the IDE Options dialog

box.

The following tables summarize the editor’s predefined shortcut keys.

Moving the insertion point

To move the insertion point Press
One character to the left Left arrow
One character to the right Right arrow

One word to the left Ctrl + Left arrow

One word to the right Ctrl + Right arrow

One word part to the left; when using mixed Ctrl + Alt + Left arrow
cases, for example mixedCaseName

One word part to the right; when using mixed Ctrl + Alt + Right arrow
cases, for example mixedCaseName

158

One line up

One line down

To the previous paragraph
To the next paragraph

To the start of the line

Up arrow

Down arrow

Ctrl + Alt + Up arrow
Ctrl + Alt + Down arrow

Home

Table 5: Editor shortcut keys for insertion point navigation

IDE Project Management and Building Guide

for CR16C

Selecting text

Scrolling text

To move the insertion point

Editing °

Press

To the end of the line
To the beginning of the file

To the end of the file

End
Ctrl + Home

Ctrl + End

Table 5: Editor shortcut keys for insertion point navigation (Continued)

To select text, press Shift and the corresponding command for moving the insertion
point. In addition, this command is available:

To select

Press

A column-based block

Shift + Alt + Arrow key

Table 6: Editor shortcut keys for selecting text

To scroll

Press

Up one line.

When used in the parameter hints text box,
this shortcut steps up one line through the
alternatives.

Down one line,

When used in the parameter hints text box,
this shortcut steps down one line through the
alternatives.

Ctrl + Up arrow

Ctrl + Down arrow

Miscellaneous shortcut keys

Up one page Page Up
Down one page Page Down
Table 7: Editor shortcut keys for scrolling

Description Press

When used in the parameter hints text box, Ctrl + Enter
this shortcut inserts parameters as text in the

source code.

Bracket matching: Expand selection to next Ctrl +B

level of matching of {}, [], or ().

Bracket matching: Expand selection to next Ctrl + Alt + B

level of matching of {}, [1, (), or <>.

Table 8: Miscellaneous editor shortcut keys

159

Reference information on the editor

160

Description

Press

Bracket matching: Shrink selection to next
level of matching of {}, [], or ().

Bracket matching: Shrink selection to next
level of matching of {}, [, (), or <>.

Change case for selected text to lower
Change case for selected text to upper
Complete code

Complete word

Insert template

Parameter hint

Zooming

Zoom in

Zoom out

Zoom normal

Ctrl + Shift + B

Ctrl + Alt + Shift + B

Ctrl +u

Ctrl +U

Ctrl + Space

Ctrl + Alt + Space

Ctrl + Alt +V

Ctrl + Shift + Space
Mouse wheel

Ctrl + numeric keypad '+'
Ctrl + numeric keypad '-'

Ctrl + numeric keypad '/'

Table 8: Miscellaneous editor shortcut keys (Continued)

Additional Scintilla shortcut keys

Description

Press

Scroll window line up or down
Select a rectangular block and change its size a

line up or down, or a column left or right

Move insertion point one paragraph up or
down

Grow selection one paragraph up or down
Move insertion point one word left or right
Grow selection one word left or right

Grow selection to next start or end of a word

Move to first non-blank character of the line

Move to start of line

Ctrl + Up
Ctrl + Down

Shift + Alt + arrow key

Ctrl + Alt + Up
Ctrl + Alt + Down

Ctrl + Shift + Alt + Up
Ctrl + Shift + Alt + Down

Ctrl + Left
Ctrl + Right

Ctrl + Shift + Left
Ctrl + Shift + Right

Ctrl + Shift + Alt + Left
Ctrl + Shif + Alt + Right

Home

Alt + Home

Table 9: Additional Scintilla shortcut keys

IDE Project Management and Building Guide

for CR16C

Description

Press

Editing °

Select to start of the line

Select a rectangular block to the start or end

of page

Delete to start of next word
Delete to start of previous word
Delete forward to end of line
Delete backward to start of line
Zoom in

Zoom out

Restore zoom to 100%

Cut current line

Copy current line

Delete current line

Change selection to lower case

Change selection to upper case

Shift + Alt + Home

Shift + Alt + Page Up
Shift + Alt + Page Down

Ctrl + Delete

Ctrl + Backspace

Ctrl + Shift + Delete
Ctrl + Shift + Backspace
Ctrl + Add (numeric +)
Ctrl + Subtract (numeric -)
Ctrl + Divide (numeric /)
Ctrl + L

Ctrl + Shift + T

Ctrl + Shift + L

Ctrl +U

Ctrl + Shift + U

Table 9: Additional Scintilla shortcut keys (Continued)

161

Reference information on the editor

IDE Project Management and Building Guide
162 for CRI6C

Part 2. Reference
information

This part contains these chapters:
o Installed files

e Menu reference

o General options

e Compiler options

e CRI6C assembler options

e SCI4 assembler options

o Custom build options

o Build actions options

e Linker options

e Library builder options.

.hmuhhhhi

163

AAARRIE

164

Installed files

e Directory structure

e File types

Directory structure

These topics are covered:

o Root directory

o The crl6c directory

o The common directory

o The install-info directory

The installation procedure creates several directories to contain the various types of files
used with the IAR Systems development tools. The following sections give a description
of the files contained by default in each directory.

ROOT DIRECTORY

The root directory created by the default installation procedure is the

x:\Program Files\IAR Systems\Embedded Workbench 7.n\ directory where x
is the drive where Microsoft Windows is installed and 7 . n is the version number of the
IDE.

THE CRI16C DIRECTORY

The cri6c directory contains all product-specific subdirectories.

Directory Description

crléc\bin Contains executable files for CR6C-specific components, such as the
compiler; the assembler, the linker and the library tools, and the
C-SPY® drivers.

Table 10: The crl6c directory

165

Directory structure

166

Directory

Description

crléc\config

crléc\doc

crl6c\drivers

crléc\examples

crléc\inc

crléec\lib

crléc\src

crléc\tutor

Contains files used for configuring the development environment and
projects, for example:

* Linker configuration files (* .xc1)

* Special function register description files (* . sfr)

* C-SPY device description files (* . ddf)

* Device selection files (* . menu)

* Syntax coloring configuration files (* . cfg)

* Project templates for both application and library projects (* . ewp),
and for the library projects, the corresponding library configuration
files.

Contains release notes with recent additional information about the
CR16C tools. We recommend that you read all of these files. The
directory also contains online versions in hypertext PDF format of this
user guide, and of the CR16C reference guides, as well as online help
files (* . chm).

Contains low-level device drivers, typically USB drivers required by the
C-SPY drivers.

Contains files related to example projects, which can be opened from
the Information Center.

Contains include files, such as the header files for the standard C or
C++ library. There are also specific header files that define special
function registers (SFRs); these files are used by both the compiler and
the assembler.

Contains prebuilt libraries and the corresponding library configuration
files, used by the compiler.

Contains source files for some configurable library functions and the
library source code.

For the XLINK linker, the directory also contains the source files for
components common to all IAR Embedded Workbench products, such
as a sample reader of the IAR XLINK Linker output format STMPLE.

Contains the files used for the tutorials in the Information Center.

Table 10: The crl6c directory (Continued)

IDE Project Management and Building Guide

for CR16C

Installed files °

THE COMMON DIRECTORY

The common directory contains subdirectories for components shared by all AR
Embedded Workbench products.

Directory

Description

common\bin

common\config

common\doc

common\plugins

Contains executable files for components common to all IAR
Embedded Workbench products, such as the editor and the graphical
user interface components. The executable file for the IDE is also
located here.

Contains files used by the IDE for settings in the development
environment.

Contains release notes with recent additional information about the
components common to all IAR Embedded Workbench products. We
recommend that you read these files. The directory also contains
documentation related to installation and licensing, and getting started
using IAR Embedded Workbench.

Contains executable files and description files for components that can
be loaded as plugin modules, for example modules for code coverage.

Table 11: The common directory

THE INSTALL-INFO DIRECTORY

The install-info directory contains metadata (version number, name, etc.) about the
installed product components. Do not modify these files.

File types

The IAR Systems development tools use the following default filename extensions to
identify the produced files and other recognized file types:

Ext. Type of file Output from Input to

ads Target application XLINK EPROM, C-SPY,
etc.

asm Assembler source code Text editor Assembler

bat Windows command batch file C-SPY Windows

board Configuration file for flash loader Text editor C-SPY

c C source code Text editor Compiler

cfg Syntax coloring configuration Text editor IDE

chm Online help system file - IDE

Table 12: File types

167

File types

Ext. Type of file Output from Input to

cout Source browse information IDE IDE

cpp C++ source code Text editor Compiler

cspy.bat Invocation file for cspybat C-SPY -

das Target application with debug information XLINK C-SPY and other
symbolic
debuggers

dat Macros for formatting of STL containers IDE IDE

dbg Target application with debug information XLINK C-SPY and other
symbolic
debuggers

dbgdt Debugger desktop settings C-SPY C-SPY

ddf Device description file Text editor C-SPY

dep Dependency information IDE IDE

dni Debugger initialization file C-SPY C-SPY

ewd Project settings for C-SPY IDE IDE

ewp IAR Embedded Workbench project IDE IDE

(current version)

ewplugin IDE description file for plugin modules -- IDE

ewt Project settings for C-STAT and C-RUN IDE IDE

eww Workspace file IDE IDE

flash Configuration file for flash loader Text editor C-SPY

fmt Formatting information for the Locals IDE IDE

and Watch windows

h C/C++ or assembler header source Text editor Comepiler or
assembler
#include

helpfiles Help menu configuration file Text editor IDE

html, htm HTML document Text editor IDE

i Preprocessed source Comepiler Comepiler

inc Assembler header source Text editor Assembler
#include

ini Project configuration IDE -

log Log information IDE -

Table 12: File types (Continued)

IDE Project Management and Building Guide

168 for CRI6C

Installed files °

Ext. Type of file Output from Input to
1lst List output Compiler and -
assembler
mac C-SPY macro definition Text editor C-SPY
map List output XLINK -
menu Device selection file Text editor IDE
pbd Source browse information IDE IDE
pbi Source browse information IDE IDE
pew IAR Embedded Workbench project (old IDE IDE
project format)
prj IAR Embedded Workbench project (old IDE IDE
project format)
rd5 Object module Compiler and XLINK, XAR, and
assembler XLIB
r45 Library XAR, XLIB XLINK, XAR, and
XLIB
s45 Assembler source code Text editor Assembler
sfr Special function register definitions Text editor C-SPY
sim Simple code formatted input for the flash C-SPY C-SPY
loader
vsp visualSTATE project files IAR visualSTATE IAR visualSTATE
Designer Designer and IAR
Embedded
Workbench IDE
wsdt Workspace desktop settings IDE IDE
wSsSpos Main IDE window placement information IDE IDE
xcl Extended command line Text editor Assembler,

compiler, linker,
cspybat

Table 12: File types (Continued)

When you run the IDE, some files are created and located in dedicated directories under
your project directory, by default $PROJ_DIR$\Debug, $PROJ_DIRS\Release,

$PROJ_DIR$\settings. None of these directories or files affect the execution of the
IDE, which means you can safely remove them if required.

169

File types

IDE Project Management and Building Guide
170 for CR16C

Menu reference

e Menus

Menus

File menu

Reference information about:

File menu
Edit menu

View menu

Tools menu

Help menu.

Project menu

Window menu

In addition, a set of C-SPY-specific menus become available when you start the

debugger. For more information about these menus, see the C-SPY® Debugging Guide.

The File menu provides commands for opening workspaces and source files, saving and
printing, and exiting from the IDE.

The menu also includes a numbered list of the most recently opened files and
workspaces. To open one of them, choose it from the menu.

Mew
Open
Close

3
3

Save Workspace
Close Workspace

Save
Save fs..,
Save Al

CTRLES

Page Setup...
Frint. ..

CTRLAR

Recent Files
Recent Workspaces

Exit

171

Menus

172

Menu commands

These commands are available:

Q| New (Ctrl+N)

Close

Displays a submenu with commands for creating a new workspace, or a new text
file.

Open>File (Ctrl+O)

Displays a submenu from which you can select a text file or an HTML document
to open. See Editor window, page 133.

~ Open>Workspace

Displays a submenu from which you can select a workspace file to open. Before
anew workspace is opened you will be prompted to save and close any currently
open workspaces.

Open>Header/Source File (Ctrl+Shift+H)

Opens the header file or source file that corresponds to the current file, and shifts
focus from the current file to the newly opened file. This command is also
available from the context menu available from the editor window.

Closes the active window. You will be given the opportunity to save any files that
have been modified before closing.

Save Workspace

Saves the current workspace file.

Close Workspace

Closes the current workspace file.

E Save (Ctrl+S)

Saves the current text file or workspace file.

Save As

Displays a dialog box where you can save the current file with a new name.

Save All

Saves all open text documents and workspace files.

Page Setup

Displays a dialog box where you can set printer options.

% Print (Ctrl+P)

IDE Project Management and Building Guide
for CR16C

Displays a dialog box where you can print a text document.

Menu reference °

Recent Files
Displays a submenu from where you can quickly open the most recently opened
text documents.

Recent Workspaces
Displays a submenu from where you can quickly open the most recently opened
workspace files.

Exit
Exits from the IDE. You will be asked whether to save any changes to text files
before closing them. Changes to the project are saved automatically.

Edit menu

The Edit menu provides commands for editing and searching.
Undo Ctrl+Z
Redo Ctrl+Y
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Select All Ctrl+A
Find and Replace 3
MNavigate 3
Code Templates 3
MNext Error/Tag F4
Previous Error/Tag Shift+F4
Complete Word Ctrl+Alt+5pace
Complete Code Ctrl+Space
Parameter Hint Ctrl+Shift+Space
Match Brackets 3
Toggle All Folds Ctrl+Alt+F
Auto Indent Ctrl+T
Block Comment Ctrl+K
Block Uncomment Ctrl+Shift+K
Toggle Breakpoint Fa
Enable/Disable Breakpoint Ctrl+F9

Menu commands

These commands are available:

= Undo (Ctrl+Z)
— Undoes the last edit made to the current editor window.

173

Menus

174

Redo (Ctrl+Y)
Redoes the last Undo in the current editor window.
You can undo and redo an unlimited number of edits independently in each
editor window.

Cut (Ctrl+X)
The standard Windows command for cutting text in editor windows and text
boxes.

Copy (Ctrl1+C)
The standard Windows command for copying text in editor windows and text
boxes.

Paste (Ctrl+V)
The standard Windows command for pasting text in editor windows and text
boxes.

Select All (Ctrl+A)
Selects all text in the active editor window.

Find and Replace>Find (Ctrl+F)

Displays the Find dialog box where you can search for text within the current
editor window; see Find dialog box, page 141. Note that if the insertion point is
located in the Memory window when you choose the Find command, the dialog
box will contain a different set of options than otherwise. If the insertion point
is located in the Trace window when you choose the Find command, the Find
in Trace dialog box is opened; the contents of this dialog box depend on the
C-SPY driver you are using, see the C-SPY® Debugging Guide for more
information.

Find and Replace>Find Next (F3)
Finds the next occurrence of the specified string.

Find and Replace>Find Previous (Shift+F3)
Finds the previous occurrence of the specified string.

Find and Replace>Find Next (Selected) (Ctrl+F3)
Searches for the next occurrence of the currently selected text or the word
currently surrounding the insertion point.

Find and Replace>Find Previous (Selected) (Ctrl+Shift+F3)

Searches for the previous occurrence of the currently selected text or the word
currently surrounding the insertion point.

IDE Project Management and Building Guide

for CR16C

Menu reference °

Yo Find and Replace>Replace (Ctrl+H)
== Displays a dialog box where you can search for a specified string and replace
each occurrence with another string; see Replace dialog box, page 143. Note
that if the insertion point is located in the Memory window when you choose
the Replace command, the dialog box will contain a different set of options than
otherwise.
Find and Replace>Find in Files
Displays a dialog box where you can search for a specified string in multiple text
files; see Find in Files window, page 142.
Find and Replace>Replace in Files
Displays a dialog box where you can search for a specified string in multiple text
files and replace it with another string; see Replace in Files dialog box, page
146.
Find and Replace>Incremental Search (Ctrl+I)
Displays a dialog box where you can gradually fine-tune or expand the search
by continuously changing the search string; see Incremental Search dialog box,
page 148.
Navigate>Go To (Ctrl+G)

. Displays the Go to Line dialog box where you can move the insertion point to
a specified line and column in the current editor window.
Navigate>Toggle Bookmark (Ctrl+F2)
Toggles a bookmark at the line where the insertion point is located in the active
editor window.
Navigate>Previous Bookmark (Shift+F2)
Moves the insertion point to the previous bookmark that has been defined with
the Toggle Bookmark command.
Navigate>Next Bookmark (F2)
Moves the insertion point to the next bookmark that has been defined with the
Toggle Bookmark command.
Qﬁ Navigate>Navigate Backward (Alt+Left Arrow)

Navigates backward in the insertion point history. The current position of the
insertion point is added to the history by actions like Go to definition and
clicking on a result from the Find in Files command.

@} Navigate>Navigate Forward (Alt+Right Arrow)

Navigates forward in the insertion point history. The current position of the
insertion point is added to the history by actions like Go to definition and
clicking on a result from the Find in Files command.

175

Menus

176

Navigate>Go to Definition (F12)

Shows the declaration of the selected symbol or the symbol where the insertion
point is placed. This menu command is available when browse information has
been enabled, see Project options, page 52.

Code Templates>Insert Template (Ctrl+Alt+V)

Displays a list in the editor window from which you can choose a code template
to be inserted at the location of the insertion point. If the code template you
choose requires any field input, the Template dialog box appears; see Template
dialog box, page 157. For information about using code templates, see Using
and adding code templates, page 126.

Code Templates>Edit Templates
Opens the current code template file, where you can modify existing code
templates and add your own code templates. For information about using code
templates, see Using and adding code templates, page 126.

Next Error/Tag (F4)
If the message window contains a list of error messages or the results from a
Find in Files search, this command displays the next item from that list in the
editor window.

Previous Error/Tag (Shift+F4)
If the message window contains a list of error messages or the results from a
Find in Files search, this command displays the previous item from that list in
the editor window.

Complete Word (Ctrl+Alt+Space)

Attempts to complete the word you have begun to type, basing the guess on the
contents of the rest of the editor document.

Complete Code (Ctrl+Space)
Shows a list of symbols that are available in a class, when you place the insertion
point after ., ->, or : : and when these characters are preceded by a class or
object name. For more information, see Code completion, page 125.

Parameter Hint (Ctrl+Shift+Space)

Suggests parameters as tooltip information for the function parameter list you

have begun to type. When there are several overloaded versions of a function,

you can choose which one to use by clicking the arrows in the tooltip. For more
information, see Parameter hint, page 125.

IDE Project Management and Building Guide

for CR16C

View menu

Menu reference °

Match Brackets
Selects all text between the brackets immediately surrounding the insertion
point, increases the selection to the next hierarchic pair of brackets, or beeps if
there is no higher bracket hierarchy.

Toggle All Folds (Ctrl+Alt+F)
Expands/collapses all code folds in the active project.

Auto Indent (Ctrl+T)
Indents one or several lines you have selected in a C/C++ source file. To
configure the indentation, see Configure Auto Indent dialog box, page 46.
Block Comment (Ctrl+K)

Places the C++ comment character sequence // at the beginning of the selected
lines.

Block Uncomment (Ctrl+K)
Removes the C++ comment character sequence // from the beginning of the
selected lines.

Toggle Breakpoint (F9)
Toggles a breakpoint at the statement or instruction that contains or is located
near the cursor in the source window.

This command is also available as an icon button on the debug toolbar.

Enable/Disable Breakpoint (Ctrl+F9)

Toggles a breakpoint between being disabled, but not actually
removed—making it available for future use—and being enabled again.

The View menu provides several commands for opening windows and displaying
toolbars in the IDE. When C-SPY is running you can also open debugger-specific
windows from this menu. See the C-SPY® Debugging Guide for information about
these.

Messages 3

‘Warkspace

Source Browser k

Breakpoints 3

Toolbars 3
v Status Bar

177

Menus

178

Menu commands
These commands are available:

Messages
Displays a submenu which gives access to the message windows—Build, Find
in Files, Tool Output, Debug Log—that display messages and text output from
the IAR Embedded Workbench commands. If the window you choose from the
menu is already open, it becomes the active window.

Workspace
Opens the current Workspace window, see Workspace window, page 89.

Source Browser>Source Browser

Opens the Source Browser window, see Source Browser window, page 152.
Source Browser>References

Opens the References window, see References window, page 151.
Source Browser>Declarations

Opens the Declarations window, see Declarations window, page 149.
Source Browser>Call Graph

Opens the Call Graph window, see Call Graph window, page 156.
Breakpoints

Opens the Breakpoints window, see the C-SPY® Debugging Guide.
Disassembly

Opens the Disassembly window. Only available when C-SPY is running.
Memory

Opens the Memory window. Only available when C-SPY is running.
Symbolic Memory

Opens the Symbolic Memory window. Only available when C-SPY is running.
Register

Opens the Register window. Only available when C-SPY is running.
Watch

Opens the Watch window. Only available when C-SPY is running.
Locals

Opens the Locals window. Only available when C-SPY is running.

Statics
Opens the Statics window. Only available when C-SPY is running.

IDE Project Management and Building Guide

for CR16C

Menu reference °

Auto
Opens the Auto window. Only available when C-SPY is running.

Live Watch

Opens the Live Watch window. Only available when C-SPY is running.
Quick Watch

Opens the Quick Watch window. Only available when C-SPY is running.
Call Stack

Opens the Call Stack window. Only available when C-SPY is running.
Stack

Opens the Stack window. Only available when C-SPY is running.
Terminal I/O

Opens the Terminal I/O window. Only available when C-SPY is running.
Images

Opens the Images window. Only available when C-SPY is running.
Code Coverage

Opens the Code Coverage window. Only available when C-SPY is running.
Symbols

Opens the Symbols window. Only available when C-SPY is running.
Toolbars

The options Main and Debug toggle the two toolbars on or off.

Status bar
Toggles the status bar on or off.

179

Menus

Project menu

The Project menu provides commands for working with workspaces, projects, groups,
and files, and for specifying options for the build tools, and running the tools on the
current project.

Add Files...

Add Group...

Import File List...

Add Project Connection...

Edit Configurations...

Remove

Create New Project...

Add Existing Project...
Options... Alt+F7
Version Control System 3

Make F7
Compile Ctrl+F7
Rebuild All

Clean

Batch build... F&
C-STAT Static Analysis 3

Analyze Project 3
Analyze File(s) 3

Stop Build Ctrl+Break

Download and Debug Ctrl+D
Debug without Downloading

Make & Restart Debugger Ctrl+R
Restart Debugger Ctrl+Shift+R
Download 3

SFR Setup

Open Device Description File 3

Save List of Registers...

Menu commands
These commands are available:

Add Files

Displays a dialog box where you can select which files to include in the current
project.

IDE Project Management and Building Guide
180 for CRI16C

Menu reference °

Add Group
Displays a dialog box where you can create a new group. In the Group Name
text box, specify the name of the new group. For more information about groups,
see Groups, page 81.

Import File List
Displays a standard Open dialog box where you can import information about
files and groups from projects created using another IAR Systems toolchain.

To import information from project files which have one of the older filename
extensions pew or prj you must first have exported the information using the
context menu command Export File List available in your current IAR
Embedded Workbench.

Add Project Connection
Displays the Add Project Connection dialog box, see Add Project Connection
dialog box, page 96.

Edit Configurations
Displays the Configurations for project dialog box, where you can define new
or remove existing build configurations. See Configurations for project dialog
box, page 94.

Remove
In the Workspace window, removes the selected item from the workspace.

Create New Project
Displays the Create New Project dialog box where you can create a new project
and add it to the workspace; see Create New Project dialog box, page 93.

Add Existing Project
Displays a standard Open dialog box where you can add an existing project to
the workspace.

Options (Alt+F7)
Displays the Options dialog box, where you can set options for the build tools,
for the selected item in the Workspace window; see Options dialog box, page
115. You can set options for the entire project, for a group of files, or for an
individual file.

Version Control System

Displays a submenu with commands for version control, see Version Control
System menu for SCC, page 96.

181

Menus

182

BFs

Make (F7)

Brings the current build configuration up to date by compiling, assembling, and
linking only the files that have changed since the last build.

Compile (Ctrl+F7)
Compiles or assembles the currently selected file, files, or group.
One or more files can be selected in the Workspace window—all files in the
same project, but not necessarily in the same group. You can also select the

editor window containing the file you want to compile. The Compile command
is only enabled if all files in the selection can be compiled or assembled.

You can also select a group, in which case the command is applied to each file
in the group (also inside nested groups) that can be compiled, even if the group
contains files that cannot be compiled, such as header files.

If the selected file is part of a multi-file compilation group, the command will
still only affect the selected file.

Rebuild All
Rebuilds and relinks all files in the current target.

Clean
Removes any intermediate files.

Batch Build (F8)

Displays the Batch Build dialog box where you can configure named batch
build configurations, and build a named batch. See Batch Build dialog box, page
117.

C-STAT Static Analysis>Analyze Project

Makes C-STAT analyze the selected project. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Analyze File(s)
Makes C-STAT analyze the selected file(s). For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Clear Analysis Results
Makes C-STAT clear the analysis information for previously performed
analyses. For more information about C-STAT, see the C-STAT® Static Analysis
Guide.

C-STAT Static Analysis>Generate HTML Summary

Shows a standard save dialog box where you can select the destination for a
report summary in HTML and create it. For more information about C-STAT,
see the C-STAT® Static Analysis Guide.

IDE Project Management and Building Guide

for CR16C

Menu reference °

C-STAT Static Analysis>Generate Full HTML Report

Shows a standard save dialog box where you can select the destination for a full
report in HTML and create it. For more information about C-STAT, see the
C-STAT® Static Analysis Guide.

Analyze Project

Runs the external analyzer that you select and performs an analysis on all source
files of your project. The list of analyzers is populated with analyzers that you
specify on the External Analyzers page in the IDE Options dialog box.

Note that this menu command is not available if you have not added an analyzer.
For more information, see Getting started using external analyzers, page 27.

Analyze File(s)

Runs the external analyzer that you select and performs an analysis on a group
of files or on an individual file. The list of analyzers is populated with analyzers
that you specify on the External Analyzers page in the IDE Options dialog
box.

Note that this menu command is not available if you have not added an analyzer.

For more information, see Getting started using external analyzers, page 27.
Stop Build (Ctrl+Break)

Stops the current build operation.

Download and Debug (Ctrl+D)

Downloads the application and starts C-SPY so that you can debug the project
object file. If necessary, a make will be performed before running C-SPY to
ensure the project is up to date. This command is not available during a debug
session.

Debug without Downloading

Starts C-SPY so that you can debug the project object file. This menu command
is a shortcut for the Suppress Download option available on the Download
page. The Debug without Downloading command is not available during a
debug session.

Make & Restart Debugger

Stops C-SPY, makes the active build configuration, and starts the debugger
again; all in a single command. This command is only available during a debug
session.

Restart Debugger

Stops C-SPY and starts the debugger again; all in a single command. This
command is only available during a debug session.

183

Menus

184

Tools menu

Download
Commands for flash download and erase. Choose between these commands:

Download active application downloads the active application to the target
without launching a full debug session. The result is roughly equivalent to
launching a debug session but exiting it again before the execution starts.

Download file opens a standard Open dialog box where you can specify a file
to be downloaded to the target system without launching a full debug session.

Erase memory erases all parts of the flash memory.

If your .boarad file specifies only one flash memory, a simple confirmation
dialog box is displayed where you confirm the erasure. However, if your
.board file specifies two or more flash memories, the Erase Memory dialog
box is displayed. For information about this dialog box, see the C-SPY®
Debugging Guide.

SFR Setup

Opens the SFR Setup window which displays the currently defined SFRs that
C-SPY has information about. For more information about this window, see the
C-SPY® Debugging Guide.

Open Device Description File
Opens a submenu where you can choose to open a file from a list of all device
files and SFR definitions files that are in use.

Save List of Registers

Reads the contents of all registers, including SFRs, and stores the list in a log
file. If you are not in a debug session, only the list of registers is stored.

The Tools menu provides commands for customizing the environment, such as changing
common fonts and shortcut keys.

It is a user-configurable menu to which you can add tools for use with IAR Embedded
Workbench. Thus, it might look different depending on which tools you have
preconfigured to appear as menu items.

Options...

Filename Extensions...

Configure Viewers...

Configure Custom Argument Variables...

Configure Tools...

MNotepad

IDE Project Management and Building Guide

for CR16C

Menu reference °

Menu Commands

These commands are available:

Options
Displays the IDE Options dialog box where you can customize the IDE. See:

Common Fonts options, page 39

Key Bindings options, page 40

Language options, page 41

Editor options, page 42

Configure Auto Indent dialog box, page 46
External Editor options, page 47

Editor Setup Files options, page 48
Editor Colors and Fonts options, page 49
Messages options, page 50

Project options, page 52

Source Code Control options, page 58
Debugger options, page 59

Stack options, page 61

Register Filter options, page 63

Terminal 1/0 options, page 65.

Configure Tools

Displays the Configure Tools dialog box where you can set up the interface to
use external tools; see Configure Tools dialog box, page 66.

Filename Extensions

Displays the Filename Extensions dialog box where you can define the
filename extensions to be accepted by the build tools; see Filename Extensions
dialog box, page 70.

Configure Viewers
Displays the Configure Viewers dialog box where you can configure viewer
applications to open documents with; see Configure Viewers dialog box, page
68.

185

Menus

Notepad

User-configured. This is an example of a user-configured addition to the Tools
menu.

Window menu

The Window menu provides commands for manipulating the IDE windows and
changing their arrangement on the screen.

Close Tab CTRL+F4

Close Window

Split

MNew Vertical Editor Window

MNew Horizontal Editor Window
Move Tabs to Mext Window

Move Tabs to Previous Window
Close All Tabs Except Active

Close All Tabs to the Right of Active
Close All Editor Tabs

The last section of the Window menu lists the currently open windows. Choose the
window you want to switch to.

Menu commands
These commands are available:

Close Tab
Closes the active tab.

Close Window (Ctrl+F4)
Closes the active editor window.

Split
Splits an editor window horizontally or vertically into two or four panes, which
means that you can see more parts of a file simultaneously.

New Vertical Editor Window
Opens a new empty window next to the current editor window.

New Horizontal Editor Window
Opens a new empty window under the current editor window.

Move Tabs to Next Window

Moves all tabs in the current window to the next window.

IDE Project Management and Building Guide
186 for CRI6C

Menu reference °

Move Tabs to Previous Window

Moves all tabs in the current window to the previous window.

Close All Tabs Except Active

Closes all the tabs except the current tab.
Close All Tabs to the Right of Active

Closes all tabs to the right of the current tab.
Close All Editor Tabs

Closes all tabs currently available in editor windows.

Help menu

The Help menu provides help about IAR Embedded Workbench and displays the
version numbers of the user interface and of the IDE.

You can also access the Information Center from the Help menu. The Information
Center is an integrated navigation system that gives easy access to the information
resources you need to get started and during your project development: tutorials,
example projects, user guides, support information, and release notes. It also provides
shortcuts to useful sections on the IAR Systems web site.

187

Menus

IDE Project Management and Building Guide
188 for CRI16C

General options

e Description of general options

Description of general options

Reference information about:

Target options

Output

Library Configuration
Library Options
Stack/Heap

MISRA C

To set general options in the IDE:
I Choose Project>Options to display the Options dialog box.
2 Select General Options in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.

Target options

The Target options specify target-specific features for the IAR C/C++ Compiler and
Assembler.
Target

Device:

CRIEC - 5C14480 EN

Code model Data model
@ MNomal Large -
Short

Enable indexed
addressing

189

Description of general options

Device

Code model

Data model

The device your are using. The choice of device will automatically determine the default
linker configuration file and C-SPY® device description file. For information about how
to override the default files, see the C-SPY® Debugging Guide.

Selects the code model for your project:

Normal

Supports the normal register mode.

Short
Supports the short register mode.

For more information about the code models, see the [AR C/C++ Compiler Reference
Guide for CR16C.

Selects the data model for your project:

Small
Selects the Small data model. In this model, the stack must be placed in the first
64 Kbytes of the memory.

Medium
Selects the Medium data model. In this model, data is placed in the first 1 Mbyte
of the memory.

Large
Selects the Large data model. In this model, data is placed in a 16-Mbytes area
of the memory.

Huge
Selects the Huge data model. In this model, data can be placed anywhere in
memory.

Indexed
Selects the Indexed data model. In this model, data is placed anywhere in a
1-Mbyte area of the memory.

For more information about the data models, see the [AR C/C++ Compiler Reference
Guide for CR16C.

Enable indexed addressing

Enables the indexed data types ix4 and ix20.

IDE Project Management and Building Guide

190 for CR16C

General options __¢

Output

The Output options determine the type of output file. You can also specify the

destination directories for executable files, object files, and list files.
Clutput |

— Output file
& Executable
 Library

r— Output directarie:
Executables/libraries:
IDebug\E we

Object files:
|DebugiObi

List files:
|DebughList

Output file
Selects the type of the output file:

Executable (default)
As a result of the build process, the linker will create an application (an
executable output file). When this setting is used, linker options will be available
in the Options dialog box. Before you create the output you should set the
appropriate linker options.

Library

As a result of the build process, the library builder will create a library file.
When this setting is used, library builder options will be available in the Options
dialog box, and Linker will disappear from the list of categories. Before you
create the library you can set the options.

Output directories
Specify the paths to the destination directories. Note that incomplete paths are relative
to your project directory. You can specify:
Executables/libraries
Overrides the default directory for executable or library files. Type the name of
the directory where you want to save executable files for the project.
Object files

Overrides the default directory for object files. Type the name of the directory
where you want to save object files for the project.

191

Description of general options

List files

Overrides the default directory for list files. Type the name of the directory
where you want to save list files for the project.

Library Configuration

The Library Configuration options determine which library to use.
Library Configuration |

Library: Description:
Customn DLIB j Use a customized C/EC++ runtime library.

Library file:

IEI: projectsimylibrang. rax

|
Configuration file:
|

IEI: Sprojectshmylibrane. b

For information about the runtime library, library configurations, the runtime
environment they provide, and the possible customizations, see /AR C/C++ Compiler
Reference Guide for CR16C.

Library
Selects which runtime library to use. For information about available libraries, see the
IAR C/C++ Compiler Reference Guide for CR16C.
Note: For C++ projects, you must use one of the DLIB library variants.
The names of the library object file and library configuration file that actually will be
used are displayed in the Library file and Configuration file text boxes, respectively.
Library file

Displays the library object file that will be used. A library object file is automatically
chosen depending on your settings of these options:

Library

Library variant

Code model

°
°
°
e Data model

IDE Project Management and Building Guide
192 for CR16C

General options __¢

If you have chosen Custom DLIB or Custom CLIB in the Library drop-down list, you
must specify your own library object file.

Configuration file

Displays the library configuration file that will be used. A library configuration file is
chosen automatically depending on the project settings. If you have chosen Custom
DLIB in the Library drop-down list, you must specify your own library configuration
file.

Note: A library configuration file is only required for the DLIB library.

Library Options

The Library Options select the printf and scanf formatters.

Library Options

Printf formatter

Ful -

Full formatting.

Scanf formatter

Full bd

Full formatting.

For information about the capabilities of the formatters, see the /AR C/C++ Compiler
Reference Guide for CRI16C.

Printf formatter

If Auto is selected, the linker automatically chooses the appropriate formatter for
print£-related functions based on information from the compiler.

To override the default formatter for all print £-related functions, except for wprint£
variants, choose between:

o Printf formatters in the IAR DLIB Library: Full, Full without multibytes, Large,
Large without multibytes, Small, Small without multibytes, and Tiny

o Printf formatters in the IAR CLIB Library: Large, Medium, and Small.

Choose a formatter that suits the requirements of your application.

193

Description of general options

Scanf formatter

Stack/Heap

CStack size

IStack size

Datal 6 heap size

If Auto is selected, the linker automatically chooses the appropriate formatter for
scanf-related functions based on information from the compiler.

To override the default formatter for all scanf-related functions, except for wscanf
variants, choose between:

e Scanf formatters in the IAR DLIB Library: Full, Full without multibytes, Large,
Large without multibytes, Small, and Small without multibytes

o Scanf formatters in the IAR CLIB Library: Large, and Medium.

Choose a formatter that suits the requirements of your application.

The Stack/Heap options determine the heap and stack sizes.

Stack/Heap

CStack size: Data16 heap size:
400 100
|5tack size: Data32 heap size:
200 100

For more information about using the stacks and heaps, see the IAR C/C++ Compiler
Reference Guide for CR16C.

Specify the Cstack size.

Specify the Istack size.

Specify the datal6 heap size.

IDE Project Management and Building Guide

194 for CRI6C

General options __¢

Data32 heap size
Specify the data32 heap size.

MISRA C

The MISRA-C:1998 and MISRA-C:2004 options control how the IDE checks the
source code for deviations from the MISRA C rules. The settings are used for both the
compiler and the linker.

For details about specific options, see the JAR Embedded Workbench® MISRA C:2004
Reference Guide or the IAR Embedded Workbench® MISRA C:1998 Reference Guide
available from the Help menu.

195

Description of general options

IDE Project Management and Building Guide
196 for CRI6C

Compiler options

Description of compiler options

Description of compiler options

Reference information about:

Multi-file Compilation

Multi-file Compilation
Language 1

Language 2
Optimizations

Output

List

Preprocessor
Diagnostics

MISRA C

Extra Options

Edit Include Directories dialog box

To set compiler options in the IDE:

Choose Project>Options to display the Options dialog box.

Select C/C++ Compiler in the Category list.

To restore all settings to the default factory settings, click the Factory Settings button.

Before you set specific compiler options, you can decide whether you want to use
multi-file compilation, which is an optimization technique.

Factory Settings

Iv Multi-file Compilation
[Discard Unused Publics

Multi-file Compilation

Enables multi-file compilation from the group of project files that you have selected in

the workspace window.

197

Description of compiler options

198

You can use this option for the entire project or for individual groups of files. All C/C++
source files in such a group are compiled together using one invocation of the compiler.

This means that all files included in the selected group are compiled using the compiler
options which have been set on the group or nearest higher enclosing node which has
any options set. Any overriding compiler options on one or more files are ignored when
building, because a group compilation must use exactly one set of options.

For information about how multi-file compilation is displayed in the Workspace
window, see Workspace window, page 89.

Discard Unused Publics

Language |

Language

Discards any unused public functions and variables from the compilation unit.

For more information about multi-file compilation and discarding unused public
functions, see the /AR C/C++ Compiler Reference Guide for CR16C.

The Language 1 options determine which programming language to use and which
extensions to enable.

Language 1 |
Language Language corformance -
o * Standard with |AR extensions
(" Cas " Standard
% Auto {extension based) " Strict
Cdialect - 1 Ce=dialect
¢)
5 gﬁg‘; € Embedded C++
) {* Bdended Embedded C++
[Allow VLA
[~ Ce+inline semantics ¥ Destroy static objects
I Require prototypes

For more information about the supported languages, their dialects, and their extensions,
see the JAR C/C++ Compiler Reference Guide for CR16C.

Determines the compiler support for either C or C++:

C (default)

Makes the compiler treat the source code as C, which means that features
specific to C++ cannot be used.

IDE Project Management and Building Guide

for CR16C

Compiler options _o

C++

Makes the compiler treat the source code as Embedded C++ or Extended
Embedded C++. This means that some features specific to C++, such as classes
and overloading, can be used. C++ requires that a DLIB library (C/C++ library)
is used.

Auto

Language support is decided automatically depending on the filename extension
of the file being compiled:

c, files with this filename extension are treated as C source files.

cpp, files with this filename extension will be treated as C++ source files.

Language conformance
Controls how strictly the compiler adheres to the standard C or C++ language:

Standard with IAR extensions
Accepts CR16C-specific keywords as extensions to the standard C or C++
language. In the IDE, this setting is enabled by default.

Standard
Disables IAR Systems extensions, but does not adhere strictly to the C or C++
dialect you have selected. Some very useful relaxations to C or C++ are still
available.

Strict

Adheres strictly to the C or C++ dialect you have selected. This setting disables
a great number of useful extensions and relaxations to C or C++.

C dialect
Selects the dialect if C is the supported language:

C89

Enables the C89 standard instead of Standard C. Note that this setting is
mandatory when the MISRA C checking is enabled.

C99

Enables the C99 standard, also known as Standard C. This is the default standard
used in the compiler, and it is stricter than C89. Features specific to C89 cannot
be used. In addition, choose between:

Allow VLA, allows the use of C99 variable length arrays.

C++ inline semantics, enables C++ inline semantics when compiling a
Standard C source code file.

199

Description of compiler options

Require prototypes
Forces the compiler to verify that all functions have proper prototypes, which
means that source code containing any of the following will generate an error:
o A function call of a function with no declaration, or with a Kernighan &
Ritchie C declaration.

e A function definition of a public function with no previous prototype
declaration.

o An indirect function call through a function pointer with a type that does not
include a prototype.

C++ dialect
Selects the dialect if C++ is the supported language:

Embedded C++
Makes the compiler treat the source code as Embedded C++. This means that
features specific to C++, such as classes and overloading, can be used.
Extended Embedded C++
Enables features like namespaces or the standard template library in your source
code.
Destroy static objects
Makes the compiler generate code to destroy C++ static variables that require
destruction at program exit.

C++ requires that a DLIB library (C/C++ library) is used.

IDE Project Management and Building Guide
200 for CRI6C

Compiler options °

Language 2

The Language 2 options control the use of some language extensions.

Language 2

Plain ‘char’is

~ Signed
@ Unsigned

Floating-point semartics
@ Strict conformance

_ Relaxed (smaller and//or faster)

[Enable muttibyte support

Plain 'char' is
Normally, the compiler interprets the plain char type as unsigned char. Plain 'char'

is Signed makes the compiler interpret the char type as signed char instead, for
example for compatibility with another compiler.

Note: The runtime library is compiled with unsigned plain characters. If you select the
Signed option, references to library functionality that uses unsigned plain characters
will not work.

Floating-point semantics
Controls floating-point semantics. Choose between:

Strict conformance

Makes the compiler conform strictly to the C and floating-point standards for
floating-point expressions.

Relaxed
Makes the compiler relax the language rules and perform more aggressive
optimization of floating-point expressions. This option improves performance
for floating-point expressions that fulfill these conditions:
o The expression consists of both single- and double-precision values

o The double-precision values can be converted to single precision without
loss of accuracy

o The result of the expression is converted to single precision.

201

Description of compiler options

Note that performing the calculation in single precision instead of double
precision might cause a loss of accuracy.

Enable multibyte support

By default, multibyte characters cannot be used in C or Embedded C++ source code.
Enable multibyte support makes the compiler interpret multibyte characters in the
source code according to the host computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Optimizations
The Optimizations options determine the type and level of optimization for the
generation of object code.
[optimizations |
Level Enabled transformations:
() None nat
@ Low
() Medium
© High
Balanced
Mo size constraints
Level

Selects the optimization level:

None
No optimization; provides best debug support.

Low
The lowest level of optimization.

Medium

The medium level of optimization.

High, balanced
The highest level of optimization, balancing between speed and size.

IDE Project Management and Building Guide
202 for CRI6C

Compiler options _o

High, size
The highest level of optimization, favors size.
High, speed
The highest level of optimization, favors speed.
No size constraints
Optimizes for speed, but relaxes the normal restrictions for code size expansion.

This option is only available at the level High, speed.

By default, a debug project will have a size optimization that is fully debuggable, while
a release project will have a high balanced optimization that generates small code
without sacrificing speed.

For a list of optimizations performed at each optimization level, see the /AR C/C++
Compiler Reference Guide for CR16C.

Enabled transformations
Selects which transformations that are available at different optimization levels. When
a transformation is available, you can enable or disable it by selecting its check box.
Choose between:

Common subexpression elimination

Loop unrolling

Function inlining

Code motion

Type-based alias analysis

In a debug project the transformations are, by default, disabled. In a release project the
transformations are, by default, enabled.

For a brief description of the transformations that can be individually disabled, see the
IAR C/C++ Compiler Reference Guide for CR16C.

203

Description of compiler options

Output

The Output options determine the generated compiler output.
| Output |

Module type
[F] Overide defautt
3) Program Module
Library Module

[Object module name:
Generate debug information
[No emor messages in output files

Module type

Selects the module type. Select Override default and choose between:

Program Module

The object file will be treated as a program module rather than as a library
module. By default, the compiler generates program modules.

Library Module

The object file will be treated as a library module rather than as a program
module. A library module will only be included if it is referenced in your
application.

For information about program and library modules, and working with libraries, see the
XLIB and XAR chapters in the AR Linker and Library Tools Reference Guide, available
from the Help menu.

Object module name
Specify the object module name. Normally, the internal name of the object module is
the name of the source file, without a directory name or extension.

This option is particularly useful when several modules have the same filename, because
the resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

Generate debug information

Makes the compiler include additional information in the object modules that is required
by C-SPY® and other symbolic debuggers.

IDE Project Management and Building Guide
204 for CRI16C

Compiler options _o

Generate debug information is selected by default. Deselect it if you do not want the
compiler to generate debug information.

Note: The included debug information increases the size of the object files.

No error messages in output files

By default, range error messages are embedded in the UBROF output object file. These
messages can contain tiny fragments of your source code.

Select No error messages in output files if you do not want the UBROF output file to
contain this type of information. The drawback is that the range error messages will be
less helpful.

The List options make the compiler generate a list file and determine its contents.
List |
™ Output list fle

| fissemblern memarics
™| Diagnostics

™ Output assembler file
| Ihelude source
¥ | Irelude callframe infarmation

By default, the compiler does not generate a list file. Select any of the following options
to generate a list file or an assembler file. The list file will be saved in the List directory,
and its filename will consist of the source filename, plus the filename extension 1st.

If you want to save the list file in another directory than the default directory for list files,
use the Output Directories option in the General Options category; see Ouiput, page
191, for additional information.

You can open the output files directly from the Output folder which is available in the
Workspace window.

205

Description of compiler options

206

Output list file

Makes the compiler generate a list file. You can open the output files directly from the
Output folder which is available in the Workspace window. By default, the compiler
does not generate a list file. For the list file content, choose between:

Assembler mnemonics

Includes assembler mnemonics in the list file.

Diagnostics

Includes diagnostic information in the list file.

Output assembler file

Preprocessor

Makes the compiler generate an assembler list file. For the list file content, choose
between:

Include source
Includes source code in the assembler file.

Include call frame information

Includes compiler-generated information for runtime model attributes, call
frame information, and frame size information.

The Preprocessor options allow you to define symbols and include paths for use by the

compiler and assembler.
Preprocessor

[Ignore standard include directories

Additional include directories: {one per line)

Preinclude file:

()

Defined symbols: {one per line)
P [Preprocessar output to file
Preserve comments
Generate Hine directives

IDE Project Management and Building Guide

for CR16C

Compiler options _o

Ignore standard include directories

Normally, the compiler and assembler automatically look for include files in the
standard include directories. Use this option to turn off this behavior.

Additional include directories

Specify the full paths of directories to search for include files, one per line. Any
directories specified here are searched before the standard include directories, in the
order specified.

Use the browse button to display the Edit Include Directories dialog box, where you
can specify directories using a file browser. For more information, see Edit Include
Directories dialog box, page 210.

To avoid being dependent on absolute paths, and to make the project more easily
portable between different machines and file system locations, you can use argument
variables like $TOOLKIT_DIRS$ and $PROJ_DIRS, see Argument variables, page 72.

Preinclude file

Specify a file to include before the first line of the source file.

Defined symbols

Define a macro symbol (one per line), including its value, for example like this:.
TESTVER=1

This has the same effect as if a line like this appeared before the start of the source file:
#define TESTVER 1

A line with no value has the same effect as if =1 was specified.

Preprocessor output to file
Makes the compiler and assembler output the result of the preprocessing to a file with
the filename extension i, located in the 1st directory. Choose between:
Preserve comments
Includes comments in the output. Normally, comments are treated as
whitespace, and their contents are not included in the preprocessor output.
Generate #line directives

Generates #1ine directives in the output to indicate where each line originated
from.

207

Description of compiler options

Diagnostics
The Diagnostics options determine how diagnostic messages are classified and
displayed. Use the diagnostics options to override the default classification of the
specified diagnostics.

Diagnostics |
[T Enable remarks

Suppress theze diagnostics:

Treat these as remarks:

Treat these as warnings:

Treat these as emars:

™ Treat all wamings as emors

Note: The diagnostic messages cannot be suppressed for fatal errors, and fatal errors
cannot be reclassified.

Enable remarks
Enables the generation of remarks. By default, remarks are not issued.
The least severe diagnostic messages are called remarks. A remark indicates a source

code construct that might cause strange behavior in the generated code.

Suppress these diagnostics
Suppresses the output of diagnostic messages for the tags that you specify.
For example, to suppress the warnings xx117 and xx177, type:

Xx117,Xx177

Treat these as remarks

Classifies diagnostic messages as remarks. A remark is the least severe type of
diagnostic message. It indicates a source code construct that might cause strange
behavior in the generated code.

For example, to classify the warning Xx177 as a remark, type:

Xx177

IDE Project Management and Building Guide
208 for CRI6C

Compiler options _o

Treat these as warnings

Classifies diagnostic messages as warnings. A warning indicates an error or omission
that is of concern, but which will not cause the compiler to stop before compilation is
completed.

For example, to classity the remark xx826 as a warning, type:

Xx826

Treat these as errors

Classifies diagnostic messages as errors. An error indicates a violation of the language
rules, of such severity that object code will not be generated, and the exit code will be
non-zero.

For example, to classify the warning xx117 as an error, type:

Xx117

Treat all warnings as errors

Classifies all warnings as errors. If the compiler encounters an error, object code is not
generated.

MISRA C
The MISRA-C:1998 and MISRA-C:2004 options override the corresponding options
in the General Options category.

For details about specific option, see the /AR Embedded Workbench® MISRA C:2004
Reference Guide or the IAR Embedded Workbench® MISRA C:1998 Reference Guide
available from the Help menu.

209

Description of compiler options

Extra Options

The Extra Options page provides you with a command line interface to the tool.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Use command line options

Specity additional command line arguments to be passed to the tool (not supported by
the GUI).

Edit Include Directories dialog box

The Edit Include Directories dialog box is available from the Preprocessor page in the
Options dialog box for the compiler and assembler categories.

Edit Include Direc_

Include directory

A1 C:\Program Files [=86) yatemshEmbedded Workbenchtargething
$TOOLKIT_DIR $\butorsing C\Program Files (x86)\IAR Systems\Embedded Workbench\target\inc
<Click to add> STOOLKIT_DIRS\inc

Use this dialog box to specify or delete include paths, or to make a path relative or
absolute.

To add a path to an include directory:
I Click the text <Click to add>. A browse dialog box is displayed.
2 Browse to the appropriate include directory and click Select. The include path appears.

To add yet another one, click <Click to Add>.

IDE Project Management and Building Guide
210 for CRI6C

Compiler options _o

To make the path relative or absolute:

Click the drop-down arrow. A context menu is displayed. which shows the absolute
path and paths relative to the argument variables $PROJ_DIRS$ and $TOOLKIT_DIRS,
when possible.

Choose one of the alternatives.

To change the order of the paths:

Use the shortcut key combinations Ctrl+Up/Down.
Notice that the list will be sorted accordingly.

To delete an include path:

Select the include path and click the red cross at the beginning of the line, alternatively
press the Delete key.

Notice that the selected path will disappear.

211

Description of compiler options

IDE Project Management and Building Guide
212 for CRI6C

SC 14 assembler options

e Description of assembler options

Description of assembler options
Reference information about:
Language
GenDSP
Output
List
Preprocessor

Diagnostics

Extra Options

To set assembler options in the IDE:
I Choose Project>Options to display the Options dialog box.
2 Select Assembler in the Category list.

To restore all settings to the default factory settings, click the Factory Settings button.

Language

The Language options control certain behavior of the assembler language.

Language|
V' User symbols are case sensitive
" Enable multibyte suppart

Macro quote characters:

< ~

213

Description of assembler options

User symbols are case sensitive

Toggles case sensitivity on and off. By default, case sensitivity is on. This means that,
for example, LABEL and label refer to different symbols. When case sensitivity is off,
LABEL and label will refer to the same symbol.

Enable multibyte support

Makes the assembler interpret multibyte characters in the source code according to the
host computer’s default setting for multibyte support. By default, multibyte characters
cannot be used in assembler source code.

Multibyte characters are allowed in comments, in string literals, and in character
constants. They are transferred untouched to the generated code.

Macro quote characters
Selects the characters used for the left and right quotes of each macro argument. By
default, the characters are < and >.

Macro quote characters changes the quote characters to suit an alternative convention
or simply to allow a macro argument to contain < or >.

tacro quote characters
< 'I

[
[
M

GenDSP

The GenDSP option controls the GenDSP override settings.

GenDSP

7] GenDSP avemide

The DSP ovenide can be used to ovemide the default DSP
chip file used for the s47 files.

By default the chip file for the Co-processor chosen on the
general page will be used.

IDE Project Management and Building Guide
214 for CRI16C

SCl14 assembler options __o

GenDSP override

Your choice of device in the General Options category controls the default GenDSP
setting. Use this option to override the default setting. Note that the corresponding
instruction set definition file, * . chp, must be available in the cr16c\config\sitel
directory. This option only affects SC14 assembler source files for the GenDSP
(filename extension s47).

Output

The Output options determine the generated assembler output.
Clutput |

[V Generate debug information

Generate debug information

Makes the assembler generate debug information. Use this option if you want to use a
debugger with your application. By default, this option is selected in a Debug project,
but not in a Release project.

215

Description of assembler options

216

List

Output list file

Include header

Include listing

The List options make the assembler generate a list file and determine its contents.

List |
I™ Olutput fist fle
¥ | Irelude header | melude cross reference
¥ | Include listing I~ | #defines
I~ | Hincluded text I~ Internial symbiols
™| Macro defiritions I~ Dual line spacing

— .
¥ tacio ERpAnEOns r Lines/page: ISD—

™| acre execution itfa

Tat ing: IB
™| Assembled lines anly A

| Fultiine code

Makes the assembler generate a list file and send it to the file sourcename. 1st. By
default, the assembler does not generate a list file.

If you want to save the list file in another directory than the default directory for list files,
use the Output Directories option in the General Options category; see Output, page
191, for additional information. You can open the output files directly from the Output
folder which is available in the Workspace window.

Includes the header. The header of the assembler list file contains information about the
product version, date and time of assembly, and the command line equivalents of the
assembler options that were used.

Selects which type of information to include in the list file:

#included text

Includes #include files in the list file.
Macro definitions

Includes macro definitions in the list file.
Macro expansion

Excludes macro expansions from the list file.

Macro execution info

Prints macro execution information on every call of a macro.

IDE Project Management and Building Guide

for CR16C

SCl14 assembler options __o

Assembled lines only
Excludes lines in false conditional assembler sections from the list file.

Multiline code
Lists the code generated by directives on several lines if necessary.

Include cross-reference

Lines/page

Tab spacing

Includes a cross-reference table at the end of the list file:

#define
Includes preprocessor #defines.

Internal symbols
Includes all symbols, user-defined as well as assembler-internal.

Dual line spacing
Uses dual-line spacing.

Specify the number of lines per page, within the range 10 to 150. The default number of
lines per page is 80 for the assembler list file.

Specify the number of character positions per tab stop, within the range 2 to 9. By
default, the assembler sets eight character positions per tab stop.

217

Description of assembler options

218

Preprocessor

The Preprocessor options allow you to define symbols and include paths for use by the

compiler and assembler.
Preprocessor

[Ignore standard include directories

Additional include directories: {one per line)

Preinclude file:

Defined symbols: {one per line)
P [Preprocessar output to file
Preserve comments
Generate Hine directives

Ignore standard include directories

Normally, the compiler and assembler automatically look for include files in the
standard include directories. Use this option to turn off this behavior.

Additional include directories

Defined symbols

Specify the full paths of directories to search for include files, one per line. Any
directories specified here are searched before the standard include directories, in the
order specified.

Use the browse button to display the Edit Include Directories dialog box, where you
can specify directories using a file browser. For more information, see Edit Include
Directories dialog box, page 210.

To avoid being dependent on absolute paths, and to make the project more easily
portable between different machines and file system locations, you can use argument
variables like STOOLKIT_DIR$ and $PROJ_DIRS, see Argument variables, page 72.

Define a macro symbol (one per line), including its value, for example like this:.
TESTVER=1

This has the same effect as if a line like this appeared before the start of the source file:
#define TESTVER 1

A line with no value has the same effect as if =1 was specified.

IDE Project Management and Building Guide

for CR16C

SCl14 assembler options __o

Diagnostics
The Diagnostics options control individual warnings or ranges of warnings.
Diagnostics |
Warning:
' Enable & 4l wamings
" Dizable © Just warning: I
" amings from: l— o l—
™ Maw number of emors: |1DD
Warnings

Controls the assembler warnings. The assembler displays a warning message when it
finds an element of the source code that is legal, but probably the result of a
programming error. By default, all warnings are enabled. To control the generation of
warnings, choose between:

Enable
Enables warnings.

Disable

Disables warnings.

All warnings
Enables/disables all warnings.

Just warning
Enables/disables the warning you specify.

Warnings from to
Enables/disables all warnings in the range you specify.

For additional information about assembler warnings, see the CR16C IAR Assembler
Reference Guide.

Disable all warnings

Disables all warnings.

219

Description of assembler options

Disable warning or range of warnings

Disables the warning or warnings in the range you specify.

Enable warning or range of warnings

Disables the warning or warnings in the range you specify.

Max number of errors

Specify the maximum number of errors. This means that you can increase or decrease
the number of reported errors, for example, to see more errors in a single assembly. By
default, the maximum number of errors reported by the assembler is 100.

Extra Options

The Extra Options page provides you with a command line interface to the tool.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Use command line options

Specify additional command line arguments to be passed to the tool (not supported by
the GUI).

IDE Project Management and Building Guide
220 for CRI6C

CRI16C assembler options

e Description of assembler options

Description of assembler options
Reference information about:
Language
Output
List
Preprocessor

Diagnostics

Extra Options

To set assembler options in the IDE:

I Choose Project>Options to display the Options dialog box.
2 Select Assembler in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.

Language
The Language options control certain behavior of the assembler language.
Language|
IV User symbols are case sensitive
™ Enable multibyte support
™ Allows meemonic in first column
[Allow directives in first column

Macro quoted characters

i} hd

221

Description of assembler options

User symbols are case sensitive

Toggles case sensitivity on and off. By default, case sensitivity is on. This means that,
for example, LABEL and label refer to different symbols. When case sensitivity is off,
LABEL and label will refer to the same symbol.

Enable multibyte support

Makes the assembler interpret multibyte characters in the source code according to the
host computer’s default setting for multibyte support. By default, multibyte characters
cannot be used in assembler source code.

Multibyte characters are allowed in comments, in string literals, and in character
constants. They are transferred untouched to the generated code.

Allow mnemonics in first column

Makes mnemonics names (without a trailing colon) that start in the first column to be
recognized as mnemonics. By default, the assembler treats all identifiers starting in the
first column as labels.

Allow directives in first column

Makes directive names (without a trailing colon) that start in the first column to be
recognized as directives. By default, the assembler treats all identifiers starting in the
first column as labels.

Macro quote characters
Selects the characters used for the left and right quotes of each macro argument. By
default, the characters are < and >.

Macro quote characters changes the quote characters to suit an alternative convention
or simply to allow a macro argument to contain < or >.

tacro quote characters
< 'I

[
[
{

IDE Project Management and Building Guide
222 for CRI6C

CRI16C assembler options ___o

Output

The Output options determine the generated assembler output.
Clutput |
[V Generate debug information
Generate debug information

Makes the assembler generate debug information. Use this option if you want to use a
debugger with your application. By default, this option is selected in a Debug project,
but not in a Release project.

List

The List options make the assembler generate a list file and determine its contents.
List |
I Olutput list fle
[Include cross reference
[List macro definitions
™ Disable macro expansion
[List only azsembled parts

[T Truncate mulkine data field

Output list file

Makes the assembler generate a list file and send it to the file sourcename. 1st. By
default, the assembler does not generate a list file.

If you want to save the list file in another directory than the default directory for list files,
use the Output Directories option in the General Options category; see Output, page

223

Description of assembler options

191, for additional information. You can open the output files directly from the QOutput
folder which is available in the Workspace window.

For the list file content, choose between:

Do not include diagnostics
Excludes diagnostic information from the list file.

Include cross-reference
Generates a cross-reference table at the end of the list file.

List macro definitions

Includes macro definitions in the list file.

Disable macro expansion

Excludes macro expansions from the list file.

List only assembled parts
Excludes lines in false conditional assembly sections from the list file.

Truncate multiline data field

Lists only the first line of a generated multiline construction. If the option is
deselected, all lines are listed.

Preprocessor

The Preprocessor options allow you to define symbols and include paths for use by the

compiler and assembler.
Preprocessor

[Ignore standard include directories

Additional include directories: {one per line)

Preinclude file:

()

P [Preprocessar output to file
Preserve comments
Generate Hine directives

Defined symbols: {one per line)

IDE Project Management and Building Guide
224 for CRI16C

CRI16C assembler options ___o

Ignore standard include directories

Normally, the compiler and assembler automatically look for include files in the
standard include directories. Use this option to turn off this behavior.

Additional include directories

Specify the full paths of directories to search for include files, one per line. Any
directories specified here are searched before the standard include directories, in the
order specified.

Use the browse button to display the Edit Include Directories dialog box, where you
can specify directories using a file browser. For more information, see Edit Include
Directories dialog box, page 210.

To avoid being dependent on absolute paths, and to make the project more easily
portable between different machines and file system locations, you can use argument
variables like $TOOLKIT_DIRS$ and $PROJ_DIRS, see Argument variables, page 72.

Preinclude file

Specify a file to include before the first line of the source file.

Defined symbols

Define a macro symbol (one per line), including its value, for example like this:.
TESTVER=1

This has the same effect as if a line like this appeared before the start of the source file:
#define TESTVER 1

A line with no value has the same effect as if =1 was specified.

Preprocessor output to file
Makes the compiler and assembler output the result of the preprocessing to a file with
the filename extension i, located in the 1st directory. Choose between:
Preserve comments
Includes comments in the output. Normally, comments are treated as
whitespace, and their contents are not included in the preprocessor output.
Generate #line directives

Generates #1ine directives in the output to indicate where each line originated
from.

225

Description of assembler options

Diagnostics
The Diagnostics options determine how diagnostic messages are classified and
displayed. Use the diagnostics options to override the default classification of the
specified diagnostic messages.

Diagnostics

[™ Enable remarks

Suppress theze diagnostics:

Treat these as remarks:

Treat these as warnings:

Treat these as emors:

™ Treat all wamings as emors

[~ Max number of erars:

Note: The diagnostic messages cannot be suppressed for fatal errors, and fatal errors
cannot be reclassified.

Enable remarks
Enables the generation of remarks. By default, remarks are not issued.
The least severe diagnostic messages are called remarks. A remark indicates a source

code construct that might cause strange behavior in the generated code.

Suppress these diagnostics
Suppresses the output of diagnostic messages for the tags that you specify.
For example, to suppress the warnings xx117 and xx177, type:

Xx117,Xx177

Treat these as remarks

Classifies diagnostic messages as remarks. A remark is the least severe type of
diagnostic message. It indicates a source code construct that might cause strange
behavior in the generated code.

For example, to classify the warning xx177 as a remark, type:

Xx177

IDE Project Management and Building Guide
226 for CR16C

CRI16C assembler options ___o

Treat these as warnings

Classifies diagnostic messages as warnings. A warning indicates an error or omission
that is of concern, but which will not cause the assembler to stop before assembly is
completed.

For example, to classify the remark As098 as a warning, type:

As098

Treat these as errors

Classifies diagnostic messages as errors. An error indicates a violation of the language
rules, of such severity that object code will not be generated, and the exit code will be
non-zero.

For example, to classify the warning xx117 as an error, type:

Xx117

Treat all warnings as errors

Classifies all warnings as errors. If the assembler encounters an error, object code is not
generated.

Max number of errors

Specify the maximum number of errors. This means that you can increase or decrease
the number of reported errors, for example, to see more errors in a single assembly. By
default, the maximum number of errors reported by the assembler is 100.

Extra Options

The Extra Options page provides you with a command line interface to the tool.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

227

Description of assembler options

Use command line options

Specity additional command line arguments to be passed to the tool (not supported by
the GUI).

IDE Project Management and Building Guide
228 for CRI6C

Custom build options

e Description of custom build options

Description of custom build options

Reference information about:

o Custom Tool Configuration

To set custom build options in the IDE:
I Choose Project>Options to display the Options dialog box.
2 Select Custom Build in the Category list.

Custom Tool Configuration

The Custom Tool Configuration options control the invocation of the tools you want
to add to the tool chain.

Custom Tool Configuration

Filename extensions:
Command line:

Qutput files (one per line):
Additional input files (one per line):

Run this tool before all other tools
For an example, see Extending the toolchain, page 105.

Filename extensions

Specity the filename extensions for the types of files that are to be processed by the
custom tool. You can type several filename extensions. Use commas, semicolons, or
blank spaces as separators. For example:

.htm; .html

229

Description of custom build options

230

Command line

Specify the command line for executing the external tool.

Output file

Specify the name for the output files from the external tool.

Additional input files

Specify any additional files to be used by the external tool during the build process. If
these additional input files, dependency files, are modified, the need for a rebuild is
detected.

Run this tool before all other tools

Forces the specified custom build tool to be run before all other tools. This can be useful
for some tools after a clean command has been executed or when running the tool for
the first time, typically to solve errors caused by unknown build dependencies. For
example, if the tool produces a header file (h), and this option is not used, the source file
cannot include the header file before it has been generated.

IDE Project Management and Building Guide

for CR16C

Build actions options

e Description of build actions options

Description of build actions options

Reference information about:
o Build Actions Configuration

To set build action options in the IDE:
I Choose Project>Options to display the Options dialog box.
2 Select Build Actions in the Category list.

Build Actions Configuration

The Build Actions Configuration options specify pre-build and post-build actions in
the IDE. These options apply to the whole build configuration, and cannot be set on
groups or files.

Build Actions Configuration |

Fre-build command line:
Post-build command line:

If a pre- or post-build action returns a non-zero error code, the entire Build or Make
command is aborted.
Pre-build command line

Specify the command line to be executed directly before a build. Use the browse button
to locate the tool you want to be executed. The commands will not be executed if the
configuration is already up-to-date.

231

Description of build actions options

Post-build command line
Specify the command line to be executed directly after each successful build. Use the
browse button to locate the tool you want to be executed. The commands will not be
executed if the configuration was up-to-date. This is useful for copying or
post-processing the output file.

IDE Project Management and Building Guide
232 for CRI6C

Linker options

e Description of linker options

Description of linker options

Reference information about:

Config
Output
Extra Output
List

Log

#define
Diagnostics

Checksum

Extra Options

To set linker options in the IDE:
I Choose Project>Options to display the Options dialog box.

2 Select Linker in the Category list.

233

Description of linker options

Config

The Config options specify the path and name of the linker configuration file, override
the default program entry, and specify the library search path.

Config

Linker configuration file
[F] Overide defautt
STOOLKIT_DIRS\CONFIG nk xec!

[T Overide defautt program entry
(@) Entry symbol |__program_start
Defined by application
Search paths: (one per line)
STOOLKIT_DIRS\LIBY - E]

Raw binary image
File: Symbol: Segment: Align:

Linker configuration file

A default linker configuration file is selected automatically based on your project
settings. To override the default file, select Override default and specify an alternative
file.

The argument variables $TOOLKIT_DIR$ or $PROJ_DIRS can be used for specifying a
project-specific or predefined linker configuration file.

Override default program entry

By default, the program entry is the symbol __program_start. The linker makes sure
that a module containing the program entry symbol is included, and that the segment
part containing the symbol is not discarded.

Override default program entry overrides the default program handling; choose
between:
Entry symbol

Specify an entry symbol other than default.

Defined by application
Uses an entry symbol defined in the linked object code. The linker will, as
always, include all program modules, and enough library modules to satisfy all
symbol references, keeping all segment parts that are marked with the root
attribute or that are referenced, directly or indirectly, from such a segment part.

IDE Project Management and Building Guide

234 for CR16C

Linker options °

Search paths

Specify the names of the directories that XLINK will search if it fails to find the object
files to link in the current working directory. Add the full paths of any additional
directories where you want XLINK to search for your object files.

The paths required by the product are specified automatically based on your choice of
runtime library.

Use the browse button to open the Edit Include Directories dialog box, where you can
specify directories using a file browser. For more information, see Edit Include
Directories dialog box, page 210.

The argument variables $PROJ_DIR$ and $TOOLKIT_DIRS can be used, see Argument
variables, page 72.

Raw binary image
Links pure binary files in addition to the ordinary input files. Specify these parameters:
File
The pure binary file you want to link.

Symbol
The symbol defined by the segment part where the binary data is placed.

Segment
The segment where the binary data is placed.

Align
The alignment of the segment part where the binary data is placed.

The entire contents of the file are placed in the segment you specify, which means it can
only contain pure binary data, for example, the raw binary output format. The segment
part where the contents of the specified file are placed, is only included if the specified
symbol is required by your application. Use the -g linker option if you want to force a
reference to the symbol. Read more about single output files and the -g option in the
IAR Linker and Library Tools Reference Guide.

235

Description of linker options

Output

Output file

Format

The Output options determine the generated linker output.

Clutput |
— Output file
™ Overide default Secondary output file:
Iproiect‘l .duw [Maone for the selected format]
— Format

&' Debug information for C-5PY
¥ w/ith untime control madules
¥ with 140 emulation modules
™| Buffered terminal autput
[~ Allow C-5P-specific extra output file
" Other

[utput format: I

Farmat wariart: INone

Lef L L

Module-local spmbols: IIncIude all

Sets the name of the XLINK output file. By default, the linker will use the project name
with a filename extension. The filename extension depends on which output format you
choose. If you choose Debug information for C-SPY, the output file will have the
filename extension d45.

Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).

To override the default name, select Override default and specify an alternative name
of the output file.

Determines the format of the output file generated by the IAR XLINK Linker. The
output file is either used as input to a debugger or for programming the target system.

Choose between:

Debug information for C-SPY

Creates a UBROF output file, with the d45 filename extension, to be used with
C-SPY.

With runtime control modules
Produces the same output as the Debug information for C-SPY option, but also
includes debugger support for handling program abort, exit, and assertions.
Special C-SPY variants for the corresponding library functions are linked with
your application.

IDE Project Management and Building Guide

236 for CRI16C

Linker options °

With I/0O emulation modules

Produces the same output as the Debug information for C-SPY and With
runtime control modules options, but also includes debugger support for /O
handling, which means that stdin and stdout are redirected to the Terminal
I/0 window, and that you can access files on the host computer during a debug
session.

Buffered terminal output

Buffers the terminal output during program execution, instead of instantly
printing each new character to the C-SPY Terminal I/0 window.

This option is useful when using debugger systems that have slow
communication.

Allow C-SPY-specific extra output file

Other

Enables the options available on the Extra Output page, see Extra Output, page
238.

Generates output in a different format than those generated by the options
Debug information for C-SPY, With runtime control modules, and With
1I/0 emulation modules. Choose between:

Output format selects the output format. When you select debug (ubrof) or
ubrof, a UBROF output file with the filename extension dbg is created. The
generated output file will not contain debug information for simulating facilities
such as stop at program exit, long jump instructions, and terminal I/O. If you
need support for these facilities during a debug session, use the Debug
information for C-SPY, With runtime control modules, and With I/O
emulation modules options, respectively.

Format variant selects the format variant which is available for some of the
output formats. The alternatives depend on the output format chosen.

Module-local symbols

Specifies whether local (non-public) symbols in the input modules should be
included or not. If suppressed, the local symbols will not appear in the listing
cross-reference and they will not be passed on to the output file. Choose
between:

Include all includes all local symbols.

Suppress compiler generated ignores compiler-generated local symbols, such
as jump or constant labels. Usually these are only of interest when debugging at
assembler level.

Suppress all ignores all local symbols.

237

Description of linker options

238

Extra Output

Note that local symbols are only included in files if they were compiled or
assembled with the appropriate option to specify this.

The default output settings are:

o In a debug project, Debug information for C-SPY, With runtime control
modules, and With I/O emulation modules are selected by default

o In arelease project, Motorola is selected by default, which is an output format
without debug information suitable for target download.

Note: For debuggers other than C-SPY®, check the user documentation supplied with
that debugger for information about which format/variant that should be used.

For more information about the debugger runtime interface, see the /4R C/C++
Compiler Reference Guide for CR16C.

The Extra Qutput options control the generation of an extra output file and specify its
format.

Extra Dutput

V' Generate extra output file

— Output file
™ Overide default

Iproiect‘l LR

— Format

Olutput format;: I

L L

Farmat wariatt: INone

For some debugger systems, two output files from the same build process are
required—one with the necessary debug information, and one that you can burn to your
hardware before debugging. This is useful when you want to debug code that is located
in non-volatile memory.

If the options are disabled, make sure to select the option Allow C-SPY-specific extra
output file on the Output page. The options are disabled if you have selected any of the
options With runtime control modules or With I/O emulation modules on the
Output page, because then the generated output file will contain dummy
implementations for certain library functions, such as putchar, and extra debug
information required by C-SPY to handle those functions. An extra output file would

IDE Project Management and Building Guide

for CR16C

Linker options °

still contain the dummy functions, but not the extra debug information, and would
therefore normally be useless.

Generate extra output file

Makes the linker generate an additional output file from the build process.

Output file
Sets the name of the additional output file. By default, the linker will use the project
name and a filename extension that depends on the output format you select. To override
the default name, select Override default and specify an alternative file.
Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (the first format).

Format

Determines the format of the extra output file:

Output format
Selects an output format. When you select debug (ubrof) or ubrof, a UBROF
output file with the filename extension dbg is created.

Format variant

Selects a format variant. The alternatives depend on the output format chosen.

List
The List options control the generation of XLINK cross-reference listings.
List |

V¥ Generate linker listing

¥ Segment map File format———————
Symbols—————————— & Text
£ Hone HTML

" Symbol listing

Lines/ : ISU
& Module map) e

™ Module summary

™ Include suppressed entries

™ Static averlay map

239

Description of linker options

240

Generate linker listing

Segment map

Symbols

Makes the linker generate a listing and send it to the projectname.map file located in
the 1ist directory.

Includes a segment map in the listing. The segment map will contain a list of all the
segments in dump order.

Selects which types of symbols to include in the listing:

None
Symbols are excluded.

Symbol listing
An abbreviated list of every entry (global symbol) in every module. This entry
map is useful for quickly finding the address of a routine or data element.
Module map

A list of all segments, local symbols, and entries (public symbols) for every
module in the application.

Module summary

Makes the linker generate a summary of the contributions to the total memory use from
each module. Only modules with a contribution to memory use are listed.

Include suppressed entries

Includes all segment parts in a linked module in the list file, not just the segment parts
that were included in the output. This makes it possible to determine exactly which
entries that were not needed.

Static overlay map

File format

Includes a listing of the static overlay system in the list file. This is only relevant if the
compiler uses static overlay. Read more about static overlay maps in the /AR Linker and
Library Tools Reference Guide.

Selects the file format of the linker listing:

Text
Plain text file.

IDE Project Management and Building Guide

for CR16C

Log

Linker options °

HTML
HTML format, with hyperlinks.

Lines/page

Sets the number of lines per page for the listing. This number must be in the range 10 to
150.

The Log options control the stack usage analysis performed by XLINK.

e |

[T Generate log file:
Input files
Module selections
Selection of printf/scanf
Segment selections

For more information about logging using XLINK, see the /AR Linker and Library Tools
Reference Guide.

Generate log file

Makes the linker log information to a log file, which you can find in
$PROJ_DIRS/Debug/List. The log information can be useful for understanding why
an executable image became the way it is.

Input files

Lists all object files that are used by the linking process and the order in which they will
be processed.

Module selections

Lists each module that is selected for inclusion in the application, and which symbol that
caused it to be included.

241

Description of linker options

Selection of printf/scanf

Lists redirected symbols, and why a certain automatic redirection was made.

Segment selections

Lists each segment part that is selected for inclusion in your application, an th
dependence that caused it to be included.

#define
The #define options define absolute symbols at link time.
Hdefine |
Defined symbols: [ane per line)
=
=

Defined symbols

Define absolute symbols to be used at link time. This is especially useful for
configuration purposes. Type the symbols that you want to define for the project, one
per line, and specify their value. For example:

TESTVER=1
Note that there should be no space around the equal sign.

Any number of symbols can be defined in a linker configuration file. The symbol(s)
defined in this manner will be located in a special module called ?ABS_ENTRY_MOD,
which is generated by the linker.

The linker will display an error message if you attempt to redefine an existing symbol.

IDE Project Management and Building Guide
242 for CRI16C

Linker options °

Diagnostics
The Diagnostics options determine the error and warning messages generated by the
IAR XLINK Linker.
Diagnostics
™ Always generate output Range checks

) &' Generate enors
™ Segment overlap warings)
 Generate warrings

™ Mo global type checking Dissbled

—warnings/E mor
™ Suppress all wamings
Suppress theze diagnostics:

Treat these as warnings:

Treat these as emors:

Always generate output

Makes the linker generate an output file even if a non-fatal error was encountered during
the linking process, such as a missing global entry or a duplicate declaration. Normally,
XLINK will not generate an output file if an error is encountered.

Note: XLINK always aborts on fatal errors, even when this option is used.

Always generate output allows missing entries to be patched in later in the absolute
output image.

Segment overlap warnings

Classifies segment overlap errors as warnings, making it possible to produce
cross-reference maps, etc.

No global type checking

Disables type checking at link time. While a well-written application should not need
this option, there might be occasions where it is helpful.

By default, XLINK performs link-time type checking between modules by comparing
the external references to an entry with the PUBLIC entry (if the information exists in the
object modules involved). A warning is generated if there are mismatches.

Range checks

Selects the behavior for address range check errors. If an address is relocated outside the
address range of the target CPU—code, external data, or internal data address—an error

243

Description of linker options

message is generated. This usually indicates an error in an assembler language module
or in the segment placement. Choose between:
Generate errors

Generates an error message.

Generate warnings

Generates a warning.

Disabled
Disables the address range checking.

Warnings/Errors

By default, the IAR XLINK Linker generates a warning when it detects a possible
problem, although the generated code might still be correct. Warnings/Errors
determines how diagnostic messages are classified.

Refer to the IAR Linker and Library Tools Reference Guide for information about the
various warning and error messages.

Use these settings to control the generation of warning and error messages:

Suppress all warnings
Suppresses all warnings.

Suppress these diagnostics
Suppresses the output of diagnostic messages for the tags that you specify. For
example, to suppress the warnings w117 and w177, type wll7,wl77.

Treat these as warnings
Classifies errors as warnings. For example, to make error 106 become treated as
a warning, type e106.

Treat these as errors

Classifies warnings as errors. For example, to make warning 26 become treated
as an error, type w26.

IDE Project Management and Building Guide
244 for CRI16C

Linker options °

Checksum
The Checksum options control filling and checksumming.

Checksum

Fill unused code memary
Fil pattem: OxFF

Generate checksum
Size: Alignment: 1
() Arthmetic sum
@ CRC16 (x11021)
() CRC32 (x4C11DB7)
() Cre polynomial: 11021

Complement: | Asis Initial value:

Bit order: MSE first e

Checksum unit size:

Fill unused code memory
Fills all gaps between segment parts introduced by the linker with the fill pattern you
specify:
Fill pattern
Specity a size, in hexadecimal notation, of the filler to be used in gaps between
segment parts.

The linker can introduce gaps either because of alignment restrictions, or at the end of
ranges given in segment placement options. The default behavior, when this option is
not used, is that these gaps are not given a value in the output file.

Generate checksum
Checksums all generated raw data bytes. This option can only be used if the Fill unused
code memory option has been specified.

Choose between:

Checksum size

Selects the size of the checksum, which can be 1, 2, or 4 bytes.

Alignment

Specify an optional alignment for the checksum. If you do not specify an
alignment explicitly, an alignment of 2 is used.

Algorithm
Selects the algorithm to be used when calculating the checksum. Choose
between:

245

Description of linker options

246

Arithmetic sum, the simple arithmetic sum algorithm. The result is truncated
to one byte.

CRC16 (default), the CRC16 algorithm (generating polynomial 0x1021).
CRC32, the CRC32 algorithm (generating polynomial 0x4C11DB?7).

CRC polynomial, the CRC polynomial algorithm, a generating polynomial of
the value you specify.

Complement

Selects the complement variant, either the one’s complement or two’s
complement.

Bit order

Selects the bit order of the result to be output. Choose between:
MSB first, which outputs the most significant bit first for each byte.

LSB first, which reverses the bit order for each byte and outputs the least
significant bit first.

Initial value

Specify an initial value for the checksum. This is useful if the microprocessor
you are using has its own checksum calculation and you want that calculation to
correspond to the calculation performed by the linker.

Checksum unit size

IDE Project Management and Building Guide
for CR16C

Selects the size of the unit for which a checksum should be calculated. Typically,
this is useful to make the linker produce the same checksum as some hardware
CRC implementations that calculate a checksum for more than 8 bits per
iteration. Choose between:

8-bit, calculates a checksum for 8 bits in every iteration.
16-bit, calculates a checksum for 16 bits in every iteration.

32-bit, calculates a checksum for 32 bits in every iteration.

Linker options __¢

Extra Options

The Extra Options page provides you with a command line interface to the tool.

r

(Cammatliie it

Use command line options

Specify additional command line arguments to be passed to the tool (not supported by
the GUI).

247

Description of linker options

IDE Project Management and Building Guide
248 for CR16C

Library builder options

e Description of library builder options

Description of library builder options

Reference information about:
e Output

Options for the library builder are not available by default. Before you can set these
options in the IDE, you must add the library builder tool to the list of categories.

To set Library Builder options in the IDE:
I Choose Project>Options>General Options>Output.

2 Select the Library option, which means that Library Builder appears as a category in
the Options dialog box.

3 Select Library Builder in the Category list.

249

Description of library builder options

Output

The Output options control the library builder and as a result of the build process, the
library builder will create a library output file.

Options for node “projectl - Debug" E

Category: Factary Settings |

General Options

C/C++ compiler Output |
Azzembler)
Custom Build Output file

™ Overide default

Iproiect‘l THE

: Library Builder

()3 I Cancel

Output file

Specifies the name of the output file from the library builder. By default, the linker will
use the project name with a filename extension. To override the default name, select
Override default and specify an alternative name of the output file.

IDE Project Management and Building Guide
250 for CRI6C

Glossary

This is a general glossary for terms relevant to
embedded systems programming. Some of the terms do
not apply to the IAR Embedded Workbench® version
that you are using.

A

Absolute location.

A specific memory address for an object specified in the
source code, as opposed to the object being assigned a location
by the linker

Absolute segments
Segments that have fixed locations in memory before linking.

Address expression
An expression which has an address as its value.

Application

The program developed by the user of the IAR Systems toolkit
and which will be run as an embedded application on a target
Pprocessor.

Architecture

A term used by computer designers to designate the structure
of complex information-processing systems. It includes the
kinds of instructions and data used, the memory organization
and addressing, and the methods by which the system is
implemented. The two main architecture types used in
processor design are Harvard architecture and von Neumann
architecture.

Assembler directives

The set of commands that control how the assembler operates.

Assembler language

A machine-specific set of mnemonics used to specify
operations to the target processor and input or output registers
or data areas. Assembler language might sometimes be

Glossary °

preferred over C/C++ to save memory or to enhance the
execution speed of the application.

Assembler options
Parameters you can specify to change the default behavior of
the assembler.

Auto variables

The term refers to the fact that each time the function in which
the variable is declared is called, a new instance of the variable
is created automatically. This can be compared with the
behavior of local variables in systems using static overlay,
where a local variable only exists in one instance, even if the
function is called recursively. Also called local variables.
Compare Register variables.

Backtrace

Information for keeping call frame information up to date so
that the IAR C-SPY® Debugger can return from a function
correctly. See also Call frame information.

Bank
See Memory bank.

Bank switching

Switching between different sets of memory banks. This
software technique increases a computer's usable memory by
allowing different pieces of memory to occupy the same
address space.

Banked code
Code that is distributed over several banks of memory. Each
function must reside in only one bank.

Banked data
Data that is distributed over several banks of memory. Each
data object must fit inside one memory bank.

Banked memory
Has multiple storage locations for the same address. See also
Memory bank.

251

Bank-switching routines
Code that selects a memory bank.

Batch files

A text file containing operating system commands which are
executed by the command line interpreter. In Unix, this is
called a “shell script” because it is the Unix shell which
includes the command line interpreter. Batch files can be used
as a simple way to combine existing commands into new
commands.

Bitfield
A group of bits considered as a unit.

Breakpoint

1 Code breakpoint. A point in a program that, when reached,
triggers some special behavior useful to the process of
debugging. Generally, breakpoints are used for stopping
program execution or dumping the values of some or all of
the program variables. Breakpoints can be part of the
program itself, or they can be set by the programmer as
part of an interactive session with a debugging tool for
scrutinizing the program's execution.

2 Data breakpoint. A point in memory that, when accessed,
triggers some special behavior useful to the process of
debugging. Generally, data breakpoints are used to stop
program execution when an address location is accessed
either by a read operation or a write operation.

3 Immediate breakpoint. A point in memory that, when
accessed, trigger some special behavior useful in the
process of debugging. Immediate breakpoints are
generally used for halting the program execution in the
middle of a memory access instruction (before or after the
actual memory access depending on the access type) while
performing some user-specified action. The execution is
then resumed. This feature is only available in the
simulator version of C-SPY.

IDE Project Management and Building Guide
for CR16C

C

Call frame information

Information that allows the IAR C-SPY® Debugger to show,
without any runtime penalty, the complete stack of function
calls—call stack—wherever the program counter is, provided
that the code comes from compiled C functions. See also
Backtrace.

Calling convention

A calling convention describes the way one function in a
program calls another function. This includes how register
parameters are handled, how the return value is returned, and
which registers that will be preserved by the called function.
The compiler handles this automatically for all C and C++
functions. All code written in assembler language must
conform to the rules in the calling convention to be callable
from C or C++, or to be able to call C and C++ functions. The
C calling convention and the C++ calling conventions are not
necessarily the same.

Cheap

As in cheap memory access. A cheap memory access either
requires few cycles to perform, or few bytes of code to
implement. A cheap memory access is said to have a low cost.
See Memory access cost.

Checksum

A small piece of data calculated from a larger block of data for
the purpose of detecting errors that might have been introduced
during its transmission or storage. Compare CRC (cyclic
redundancy check).

Code banking
See Banked code.

Code model

The code model controls how code is generated for an
application. Typically, the code model controls behavior such
as how functions are called and in which code segment
functions will be located. All object files of an application
must be compiled using the same code model.

Code pointers

A code pointer is a function pointer. As many microcontrollers
allow several different methods of calling a function,
compilers for embedded systems usually provide the users
with the ability to use all these methods.

Do not confuse code pointers with data pointers.

Code segments
Read-only segments that contain code. See also Segment.

Compilation unit
See Translation unit.

Compiler function directives

The compiler function directives are generated by the compiler
to pass information about functions and function calls to the
IAR XLINK Linker. To view these directives, you must create
an assembler list file. These directives are primarily intended
for compilers that support static overlay, a feature which is
useful in smaller microcontrollers.

Compiler options
Parameters you can specify to change the default behavior of
the compiler.

Context menu
A context menu appears when you right-click in the user
interface, and provides context-specific menu commands.

Cost
See Memory access cost.

CRC (cyclic redundancy check)

A checksum algorithm based on binary polynomials and an
initial value. A CRC algorithm is more complex than a simple
arithmetic checksum algorithm and has a greater error
detecting capability. Most checksum calculation algorithms

currently in wide used are based on CRC. Compare Checksum.

C-SPY options
Parameters you can specify to change the default behavior of
the IAR C-SPY Debugger.

Glossary °

Cstartup
Code that sets up the system before the application starts
executing.

C-style preprocessor

A preprocessor is either a stand-alone application or an
integrated part of a compiler, that performs preprocessing of
the input stream before the actual compilation occurs. A
C-style preprocessor follows the rules set up in Standard C and
implements commands like #define, #if, and #include,
which are used to handle textual macro substitution,
conditional compilation, and inclusion of other files.

D

Data banking
See Banked data.

Data model

The data model specifies the default memory type. This means
that the data model typically controls one or more of the
following: The method used and the code generated to access
static and global variables, dynamically allocated data, and the
runtime stack. It also controls the default pointer type and in
which data segments static and global variables will be
located. A project can only use one data model at a time, and
the same model must be used by all user modules and all
library modules in the project.

Data pointers

Many microprocessors have different addressing modes to
access different memory types or address spaces. Compilers
for embedded systems usually have a set of different data
pointer types so they can access the available memory
efficiently.

Data representation
How different data types are laid out in memory and what
value ranges they represent.

Declaration

A specification to the compiler that an object, a variable or
function, exists. The object itself must be defined in exactly
one translation unit (source file). An object must either be

253

254

declared or defined before it is used. Normally an object that is
used in many files is defined in one source file. A declaration
is normally placed in a header file that is included by the files
that use the object.

For example:

/* Variable "a" exists somewhere. Function
"b" takes two int parameters and returns an
int. */

extern int a;
int b(int, int);

Definition

The variable or function itself. Only one definition can exist
for each variable or function in an application. See also
Tentative definition.

For example:

int a;
int b(int x, int vy)
{

return x + y;

}

Device description file

A file used by C-SPY that contains various device-specific
information such as I/O register (SFR) definitions, interrupt
vectors, and control register definitions.

Device driver
Software that provides a high-level programming interface to
a particular peripheral device.

Digital signal processor (DSP)

A device that is similar to a microprocessor, except that the
internal CPU is optimized for use in applications involving
discrete-time signal processing. In addition to standard
microprocessor instructions, digital signal processors usually
support a set of complex instructions to perform common
signal-processing computations quickly.

IDE Project Management and Building Guide
for CR16C

Disassembly window

A C-SPY window that shows the memory contents
disassembled as machine instructions, interspersed with the
corresponding C source code (if available).

DWARF

An industry-standard debugging format which supports source
level debugging. This is the format used by the IAR ILINK
Linker for representing debug information in an object.

Dynamic initialization

Variables in a program written in C are initialized during the
initial phase of execution, before the main function is called.
These variables are always initialized with a static value,
which is determined either at compile time or at link time. This
is called static initialization. In C++, variables might require
initialization to be performed by executing code, for example,
running the constructor of global objects, or performing
dynamic memory allocation.

Dynamic memory allocation

There are two main strategies for storing variables: statically at
link time, or dynamically at runtime. Dynamic memory
allocation is often performed from the heap and it is the size of
the heap that determines how much memory that can be used
for dynamic objects and variables. The advantage of dynamic
memory allocation is that several variables or objects that are
not active at the same time can be stored in the same memory,
thus reducing the memory requirements of an application. See
also Heap memory.

Dynamic object

An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory
that is dynamically allocated. Compare Static object.

E

EEPROM

Electrically Erasable, Programmable Read-Only Memory. A
type of ROM that can be erased electronically, and then be
re-programmed.

ELF

Executable and Linking Format, an industry-standard object
file format. This is the format used by the IAR ILINK Linker.
The debug information is formatted using DWARF.

Embedded C++

A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that
performance and portability are particularly important in
embedded systems development was considered when
defining the language.

Embedded system

A combination of hardware and software, designed for a
specific purpose. Embedded systems are often part of a larger
system or product.

Emulator

An emulator is a hardware device that performs emulation of
one or more derivatives of a processor family. An emulator can
often be used instead of the actual microprocessor and
connects directly to the printed circuit board—where the
microprocessor would have been connected—via a connecting
device. An emulator always behaves exactly as the processor it
emulates, and is used when debugging requires all systems
actuators, or when debugging device drivers.

Enumeration

A type which includes in its definition an exhaustive list of
possible values for variables of that type. Common examples
include Boolean, which takes values from the list [true, false],
and day-of-week which takes values [Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday].
Enumerated types are a feature of typed languages, including
C and Ada.

Characters, (fixed-size) integers, and even floating-point types
might be (but are not usually) considered to be (large)
enumerated types.

EPROM

Erasable, Programmable Read-Only Memory. A type of ROM
that can be erased by exposing it to ultraviolet light, and then
be re-programmed.

Glossary °

Executable image

Contains the executable image; the result of linking several
relocatable object files and libraries. The file format used for
an object file is UBROF.

Exceptions

An exception is an interrupt initiated by the processor
hardware, or hardware that is tightly coupled with the
processor, for instance, a memory management unit (MMU).
The exception signals a violation of the rules of the
architecture (access to protected memory), or an extreme error
condition (division by zero).

Do not confuse this use of the word exception with the term
exception used in the C++ language (but not in Embedded
C++).

Expensive

As in expensive memory access. An expensive memory access
either requires many cycles to perform, or many bytes of code
to implement. An expensive memory access is said to have a

high cost. See Memory access cost.

Extended keywords

Non-standard keywords in C and C++. These usually control
the definition and declaration of objects (that is, data and
functions). See also Keywords.

F

Filling

How to fill up bytes—with a specific fill pattern—that exists
between the segments in an executable image. These bytes
exist because of the alignment demands on the segments.

Format specifiers

Used to specify the format of strings sent by library functions
such as print£. In the following example, the function call
contains one format string with one format specifier, %c, that
prints the value of a as a single ASCII character:

printf("a = %c", a);

255

G

General options
Parameters you can specify to change the default behavior of
all tools that are included in the IDE.

Generic pointers

Pointers that have the ability to point to all different memory
types in, for example, a microprocessor based on the Harvard
architecture.

H

Harvard architecture

A microprocessor based on the Harvard architecture has
separate data and instruction buses. This allows execution to
occur in parallel. As an instruction is being fetched, the current
instruction is executing on the data bus. Once the current
instruction is complete, the next instruction is ready to go. This
theoretically allows for much faster execution than a von
Neumann architecture, but adds some silicon complexity.
Compare von Neumann architecture.

Heap memory

The heap is a pool of memory in a system that is reserved for
dynamic memory allocation. An application can request parts
of the heap for its own use; once memory is allocated from the
heap it remains valid until it is explicitly released back to the
heap by the application. This type of memory is useful when
the number of objects is not known until the application
executes. Note that this type of memory is risky to use in
systems with a limited amount of memory or systems that are
expected to run for a very long time.

Heap size
Total size of memory that can be dynamically allocated.

Host

The computer that communicates with the target processor.
The term is used to distinguish the computer on which the
debugger is running from the microprocessor the embedded
application you develop runs on.

IDE Project Management and Building Guide
for CR16C

IDE (integrated development environment)
A programming environment with all necessary tools
integrated into one single application.

ILINK
The IAR ILINK Linker which produces absolute output in the
ELF/DWAREF format.

Image
See Executable image.

Include file
A text file which is included into a source file. This is often
done by the preprocessor.

Initialized segments
Read-write segments that should be initialized with specific
values at startup. See also Segment.

Inline assembler
Assembler language code that is inserted directly between C
statements.

Inlining

An optimization that replaces function calls with the body of
the called function. This optimization increases the execution
speed and can even reduce the size of the generated code.

Instruction mnemonics

A word or acronym used in assembler language to represent a
machine instruction. Different processors have different
instruction sets and therefore use a different set of mnemonics
to represent them, such as, ADD, BR (branch), BLT (branch if
less than), MOVE, LDR (load register).

Interrupt vector
A small piece of code that will be executed, or a pointer that
points to code that will be executed when an interrupt occurs.

Interrupt vector table
A table containing interrupt vectors, indexed by interrupt type.
This table contains the processor's mapping between interrupts

and interrupt service routines and must be initialized by the
programmer.

Interrupts

In embedded systems, the use of interrupts is a method of
detecting external events immediately, for example a timer
overflow or the pressing of a button.

Interrupts are asynchronous events that suspend normal
processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by
both hardware (I/O, timer, machine check) and software
(supervisor, system call or trap instruction). Compare 7rap.

Intrinsic
An adjective describing native compiler objects, properties,
events, and methods.

Intrinsic functions

1. Function calls that are directly expanded into specific
sequences of machine code. 2. Functions called by the
compiler for internal purposes (that is, floating-point
arithmetic etc.).

K

Key bindings
Key shortcuts for menu commands used in the IDE.

Keywords

A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they
cannot be used as identifiers (in other words, user-defined
objects such as variables or procedures). See also Extended
keywords.

L

L-value

A value that can be found on the left side of an assignment and
thus be changed. This includes plain variables and
de-referenced pointers. Expressions like (x + 10) cannot be
assigned a new value and are therefore not L-values.

Glossary °

Language extensions
Target-specific extensions to the C language.

Library
See Runtime library.

Library configuration file

A file that contains a configuration of the runtime library. The
file contains information about what functionality is part of the
runtime environment. The file is used for tailoring a build of a
runtime library. See also Runtime library.

Linker configuration file

A file used by the IAR XLINK Linker. It contains command
line options which specity the locations where the memory
segments can be placed, thereby assuring that your application
fits on the target chip.

Because many of the chip-specific details are specified in the
linker configuration file and not in the source code, the linker
configuration file also helps to make the code portable.

In particular, the linker specifies the placement of segments,
the stack size, and the heap size.

Local variable
See Auto variables.

Location counter
See Program location counter (PLC).

Logical address
See Virtual address (logical address).

M

MAC (Multiply and accumulate)

A special instruction, or on-chip device, that performs a
multiplication together with an addition. This is very useful
when performing signal processing where many filters and
transforms have the form:

The accumulator of the MAC usually has a higher precision
(more bits) than normal registers. See also Digital signal
processor (DSP).

257

N
Yi = Zcf'xiw'
i=0

Macro

1. Assembler macros are user-defined sets of assembler lines
that can be expanded later in the source file by referring to the
given macro name. Parameters will be substituted if referred

to.

2. C macro. A text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of
each macro is then substituted for any occurrences of the
macro name in the rest of the translation unit.

3. C-SPY macros are programs that you can write to enhance
the functionality of C-SPY. A typical application of C-SPY
macros is to associate them with breakpoints; when such a
breakpoint is hit, the macro is run and can for example be used
to simulate peripheral devices, to evaluate complex conditions,
or to output a trace.

The C-SPY macro language is like a simple dialect of C, but is
less strict with types.

Mailbox

A mailbox in an RTOS is a point of communication between
two or more tasks. One task can send messages to another task
by placing the message in the mailbox of the other task.
Mailboxes are also known as message queues or message
ports.

Memory access cost

The cost of a memory access can be in clock cycles, or in the
number of bytes of code needed to perform the access. A
memory which requires large instructions or many instructions
is said to have a higher access cost than a memory which can
be accessed with few, or small instructions.

Memory area
A region of the memory.

IDE Project Management and Building Guide
for CR16C

Memory bank

The smallest unit of continuous memory in banked memory.
One memory bank at a time is visible in a microprocessor’s
physical address space.

Memory map
A map of the different memory areas available to the
MiCroprocessor.

Memory model

Specifies the memory hierarchy and how much memory the
system can handle. Your application must use only one
memory model at a time, and the same model must be used by
all user modules and all library modules.

Microcontroller

A microprocessor on a single integrated circuit intended to
operate as an embedded system. In addition to a CPU, a
microcontroller typically includes small amounts of RAM,
PROM, timers, and I/O ports.

Microprocessor

A CPU contained on one (or a few) integrated circuits. A
single-chip microprocessor can include other components
such as memory, memory management, caches, floating-point
unit, I/O ports and timers. Such devices are also known as
microcontrollers.

Module

An object. An object file contains a module and library
contains one or more objects. The basic unit of linking. A
module contains definitions for symbols (exports) and
references to external symbols (imports). When you compile
C/C++, each translation unit produces one module.

Multi-file compilation

A technique which means that the compiler compiles several
source files as one compilation unit, which enables for
interprocedural optimizations such as inlining, cross call, and
cross jump on multiple source files in a compilation unit.

N

Nested interrupts
A system where an interrupt can be interrupted by another
interrupt is said to have nested interrupts.

Non-banked memory
Has a single storage location for each memory address in a
microprocessor’s physical address space.

Non-initialized memory
Memory that can contain any value at reset, or in the case of a
soft reset, can remember the value it had before the reset.

No-init segments
Read-write segments that should not be initialized at startup.
See also Segment.

Non-volatile storage

Memory devices such as battery-backed RAM, ROM,
magnetic tape and magnetic disks that can retain data when
electric power is shut off. Compare Volatile storage.

NOP

No operation. This is an instruction that does not do anything,
but is used to create a delay. In pipelined architectures, the NOP
instruction can be used for synchronizing the pipeline. See also
Pipeline.

o

Object
An object file or a library member.

Object file, absolute
See Executable image.

Object file, relocatable
The result of compiling or assembling a source file. The file
format used for an object file is UBROF.

Operator
A symbol used as a function, with infix syntax if it has two
arguments (+, for example) or prefix syntax if it has only one

Glossary °

(for instance, bitwise negation, ~). Many languages use
operators for built-in functions such as arithmetic and logic.

Operator precedence

Each operator has a precedence number assigned to it that
determines the order in which the operator and its operands are
evaluated. The highest precedence operators are evaluated
first. Use parentheses to group operators and operands to
control the order in which the expressions are evaluated.

Options

A set of commands that control the behavior of a tool, for
example the compiler or linker. The options can be specified
on the command line or via the IDE.

Output image
See Executable image.

P

Parameter passing
See Calling convention.

Peripheral unit
A hardware component other than the processor, for example
memory or an I/O device.

Pipeline

A structure that consists of a sequence of stages through which
a computation flows. New operations can be initiated at the
start of the pipeline even though other operations are already
in progress through the pipeline.

Pointer
An object that contains an address to another object of a
specified type.

#pragma

During compilation of a C/C++ program, the #pragma
preprocessing directive causes the compiler to behave in an
implementation-defined manner. This can include, for
example, producing output on the console, changing the
declaration of a subsequent object, changing the optimization
level, or enabling/disabling language extensions.

259

Pre-emptive multitasking

An RTOS task is allowed to run until a higher priority process
is activated. The higher priority task might become active as
the result of an interrupt. The term preemptive indicates that
although a task is allotted to run a given length of time (a
timeslice), it might lose the processor at any time. Each time
an interrupt occurs, the task scheduler looks for the highest
priority task that is active and switches to that task. If the
located task is different from the task that was executing before
the interrupt, the previous task is suspended at the point of
interruption.

Compare Round Robin.

Preprocessing directives
A set of directives that are executed before the parsing of the
actual code is started.

Preprocessor
See C-style preprocessor.

Processor variant
The different chip setups that the compiler supports.

Program counter (PC)
A special processor register that is used to address instructions.
Compare Program location counter (PLC).

Program location counter (PLC)

Used in the AR Assembler to denote the code address of the
current instruction. The PLC is represented by a special symbol
(typically $) that can be used in arithmetic expressions. Also

called simply location counter (LC).

Project
The user application development project.

Project options
General options that apply to an entire project, for example the
target processor that the application will run on.

PROM
Programmable Read-Only Memory. A type of ROM that can
be programmed only once.

IDE Project Management and Building Guide
for CR16C

Q

Qualifiers
See Type qualifiers.

R

Range, in linker configuration file
A range of consecutive addresses in a memory. A region is
built up of ranges.

Read-only segments
Segments that contain code or constants. See also Segment.

Real-time operating system (RTOS)

An operating system which guarantees the latency between an
interrupt being triggered and the interrupt handler starting, and
how tasks are scheduled. An RTOS is typically much smaller
than a normal desktop operating system. Compare Real-time

system.

Real-time system
A computer system whose processes are time-sensitive.
Compare Real-time operating system (RTOS).

Region, in linker configuration file

A set of non-overlapping ranges. The ranges can lie in one or
more memories. For XLINK, the segments are placed in
regions.

Register

A small on-chip memory unit, usually just one or a few bytes
in size, which is particularly efficient to access and therefore
often reserved as a temporary storage area during program
execution.

Register constant

A register constant is a value that is loaded into a dedicated
processor register when the system is initialized. The compiler
can then generate code that assumes that the constants are
present in the dedicated registers.

Register locking

Register locking means that the compiler can be instructed that
some processor registers shall not be used during normal code
generation. This is useful in many situations. For example,
some parts of a system might be written in assembler language
to gain speed. These parts might be given dedicated processor
registers. Or the register might be used by an operating system,
or by other third-party software.

Register variables

Typically, register variables are local variables that are placed
in registers instead of on the (stack) frame of the function.
Register variables are much more efficient than other variables
because they do not require memory accesses, so the compiler
can use shorter/faster instructions when working with them.
See also Auto variables.

Relocatable segments
Segments that have no fixed location in memory before
linking.

Reset

A reset is a restart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft
reset). A hard reset can usually not be distinguished from the
power-on condition, which a soft reset can be.

ROM-monitor

A piece of embedded software designed specifically for use as
adebugging tool. It resides in the ROM of the evaluation board
chip and communicates with a debugger via a serial port or
network connection. The ROM-monitor provides a set of
primitive commands to view and modify memory locations
and registers, create and remove breakpoints, and execute your
application. The debugger combines these primitives to fulfill
higher-level requests like program download and single-step.

Round Robin

Task scheduling in an operating system, where all tasks have
the same priority level and are executed in turn, one after the
other. Compare Pre-emptive multitasking.

RTOS
See Real-time operating system (RTOS).

Glossary °

Runtime library

A collection of relocatable object files that will be included in
the executable image only if referred to from an object file, in
other words conditionally linked.

Runtime model attributes

A mechanism that is designed to prevent modules that are not
compatible to be linked into an application. A runtime attribute
is a pair constituted of a named key and its corresponding
value.

For XLINK, two modules can only be linked together if they
have the same value for each key that they both define.

R-value
A value that can be found on the right side of an assignment.
This is just a plain value. See also L-value.

S

Saturation arithmetics

Most, if not all, C and C++ implementations use mod—2N
2-complement-based arithmetics where an overflow wraps the
value in the value domain, that is, (127 + 1) =-128. Saturation
arithmetics, on the other hand, does not allow wrapping in the
value domain, for instance, (127 + 1) = 127, if 127 is the upper
limit. Saturation arithmetics is often used in signal processing,
where an overflow condition would have been fatal if value
wrapping had been allowed.

Scheduler

The part of an RTOS that performs task-switching. It is also
responsible for selecting which task that should be allowed to
run. Many scheduling algorithms exist, but most of them are
either based on static scheduling (performed at compile-time),
or on dynamic scheduling (where the actual choice of which
task to run next is taken at runtime, depending on the state of
the system at the time of the task-switch). Most real-time
systems use static scheduling, because it makes it possible to
prove that the system will not violate the real-time
requirements.

261

Scope

The section of an application where a function or a variable can
be referenced by name. The scope of an item can be limited to
file, function, or block.

Segment

A chunk of data or code that should be mapped to a physical
location in memory. The segment can either be placed in RAM
or in ROM.

Segment map
A set of segments and their locations. This map is part of the
linker list file.

Segment part
A part of a segment, typically a variable or a function.

Semaphore

A semaphore is a type of flag that is used for guaranteeing
exclusive access to resources. The resource can be a hardware
port, a configuration memory, or a set of variables. If several
tasks must access the same resource, the parts of the code (the
critical sections) that access the resource must be made
exclusive for every task. This is done by obtaining the
semaphore that protects that resource, thus blocking all other
tasks from it. If another task wishes to use the resource, it also
must obtain the semaphore. If the semaphore is already in use,
the second task must wait until the semaphore is released.
After the semaphore is released, the second task is allowed to
execute and can obtain the semaphore for its own exclusive
access.

Severity level

The level of seriousness of the diagnostic response from the
assembler, compiler, or debugger, when it notices that
something is wrong. Typical severity levels are remarks,
warnings, errors, and fatal errors. A remark just points to a
possible problem, while a fatal error means that the
programming tool exits without finishing.

Sharing
A physical memory that can be addressed in several ways. For
XLINK, the command line option -U is used to define it.

IDE Project Management and Building Guide
for CR16C

Short addressing

Many microprocessors have special addressing modes for
efficient access to internal RAM and memory mapped I/O.
Short addressing is therefore provided as an extended feature
by many compilers for embedded systems. See also Data
pointers.

Side effect

An expression in C or C++ is said to have a side-effect if it
changes the state of the system. Examples are assignments to
a variable, or using a variable with the post-increment operator.
The C and C++ standards state that a variable that is subject to
a side-effect should not be used more that once in an
expression. As an example, this statement violates that rule:

*d++ = *d;

Signal

Signals provide event-based communication between tasks. A
task can wait for one or more signals from other tasks. Once a
task receives a signal it waits for, execution continues. A task
in an RTOS that waits for a signal does not use any processing
time, which allows other tasks to execute.

Simple format

The Simple output format is a format that supplies the bytes of
the application in a way that is easy to manipulate. If you want
to modify the contents of some addresses in the application but
the standard linker options are not sufficient, use the Simple
output format. Generate the application in the Simple format
and then write a small utility (example source code is delivered
with XLINK) that modifies the output.

Simulator

A debugging tool that runs on the host and behaves as similar
to the target processor as possible. A simulator is used for
debugging the application when the hardware is unavailable,
or not needed for proper debugging. A simulator is usually not
connected to any physical peripheral devices. A simulated
processor is often slower, or even much slower, than the real
hardware.

Single stepping
Executing one instruction or one C statement at a time in the
debugger.

Skeleton code
An incomplete code framework that allows the user to
specialize the code.

Special function register (SFR)
A register that is used to read and write to the hardware
components of the microprocessor.

Stack frames

Data structures containing data objects like preserved
registers, local variables, and other data objects that must be
stored temporary for a particular scope (usually a function).

Earlier compilers usually had a fixed size and layout on a stack
frame throughout a complete function, while modern
compilers might have a very dynamic layout and size that can
change anywhere and anytime in a function.

Stack segments

The segment or segments that reserve space for the stack(s).
Most processors use the same stack for calls and parameters,
but some have separate stacks.

Standard libraries

The C and C++ library functions as specified by the C and C++
standard, and support routines for the compiler, like
floating-point routines.

Static object

An object whose memory is allocated at link-time and is
created during system startup (or at first use). Compare
Dynamic object.

Static overlay

Instead of using a dynamic allocation scheme for parameters
and auto variables, the linker allocates space for parameters
and auto variables at link time. This generates a worst-case
scenario of stack usage, but might be preferable for small chips
with expensive stack access or no stack access at all.

Statically allocated memory

This kind of memory is allocated once and for all at link-time,
and remains valid all through the execution of the application.
Variables that are either global or declared static are
allocated this way.

Glossary °

Structure value

A collecting names for structs and unions. A struct is a
collection of data object placed sequentially in memory
(possibly with pad bytes between them). A union is a
collection of data sharing the same memory location.

Symbolic location
A location that uses a symbolic name because the exact
address is unknown.

T

Target

1. An architecture. 2. A piece of hardware. The particular
embedded system you are developing the application for. The
term is usually used to distinguish the system from the host
system.

Task (thread)

A task is an execution thread in a system. Systems that contain
many tasks that execute in parallel are called multitasking
systems. Because a processor only executes one instruction
stream at the time, most systems implement some sort of
task-switch mechanism (often called context switch) so that all
tasks get their share of processing time. The process of
determining which task that should be allowed to run next is
called scheduling. Two common scheduling methods are
Pre-emptive multitasking and Round Robin.

Tentative definition
A variable that can be defined in multiple files, provided that
the definition is identical and that it is an absolute variable.

Terminal /O
A simulated terminal window in C-SPY.

Timer
A peripheral that counts independent of the program
execution.

Timeslice

The (longest) time an RTOS allows a task to run without
running the task-scheduling algorithm. A task might be
allowed to execute during several consecutive timeslices

263

before being switched out. A task might also not be allowed to
use its entire time slice, for example if, in a preemptive system,
a higher priority task is activated by an interrupt.

Translation unit

A source file together with all the header files and source files
included via the preprocessor directive #include, except for
the lines skipped by conditional preprocessor directives such
as #if and #ifdef.

Trap

A trap is an interrupt initiated by inserting a special instruction
into the instruction stream. Many systems use traps to call
operating system functions. Another name for trap is software
interrupt.

Type qualifiers

In Standard C/C++, const or volatile. IAR Systems
compilers usually add target-specific type qualifiers for
memory and other type attributes.

U

UBROF (Universal Binary Relocatable Object
Format)

File format produced by some of the IAR Systems
programming tools, if your product package includes the
XLINK linker.

A\

Value expressions, in linker configuration file
A constant number that can be built up out of expressions that
has a syntax similar to C expressions.

Virtual address (logical address)

An address that must be translated by the compiler, linker or
the runtime system into a physical memory address before it is
used. The virtual address is the address seen by the application,
which can be different from the address seen by other parts of
the system.

IDE Project Management and Building Guide
for CR16C

Virtual space

An IAR Embedded Workbench Editor feature which allows
you to place the insertion point outside of the area where there
are actual characters.

Volatile storage

Data stored in a volatile storage device is not retained when the
power to the device is turned off. To preserve data during a
power-down cycle, you should store it in non-volatile storage.
This should not be confused with the C keyword volatile.
Compare Non-volatile storage.

von Neumann architecture

A computer architecture where both instructions and data are
transferred over a common data channel. Compare Harvard
architecture.

\a4

Woatchpoints

Watchpoints keep track of the values of C variables or
expressions in the C-SPY Watch window as the application is
being executed.

X

XAR
An IAR tool that creates archives (libraries) in the UBROF
format. XAR is delivered with IAR Embedded Workbench.

XLIB

An IAR tool that creates archives (libraries) in the UBROF
format, listing object code, converting and absolute object file
into an absolute object file in another format. XLIB is
delivered with AR Embedded Workbench.

XLINK
The IAR XLINK Linker which uses the UBROF output
format.

Z

Zero-initialized segments
Segments that should be initialized to zero at startup. See also
Segment.

Zero-overhead loop

A loop in which the loop condition, including branching back
to the beginning of the loop, does not take any time at all. This
is usually implemented as a special hardware feature of the
processor and is not available in all architectures.

Zone

Different processors have widely differing memory
architectures. Zone is the term C-SPY uses for a named
memory area. For example, on processors with separately
addressable code and data memory there would be at least two
zones. A processor with an intricate banked memory scheme
might have several zones.

Glossary °

265

IDE Project Management and Building Guide
266 for CRI16C

A

assembler options, definitionof 251
absolute location, definitionof 251
absolute segments, definitionof 251
accelerator keys. See shortcut keys
Add Files (Workspace window context menu) 92
Add Group (Workspace window context menu) 93
Add Project Connection dialog box (Project menu) 96
Add (Subversion controlmenu) 102
Additional include directories (assembler option). 225
Additional include directories (compiler option) 207
Additional include directories (SC14 assembler option)..218
Additional input files (custom build option) 230
address expression, definitionof.......... 251
address range check, specifying in linker 243
Algorithm (Generate checksum setting) 245
Alias (Key bindings option)c..... 41
Align (Raw binary image setting) 235
Alignment (Generate checksum setting) 245
All warnings (Warning setting). 219
Allow C-SPY-specific output file (Format setting) 237
Allow directives in first column (assembler option) 222
Allow mnemonics in first column (assembler option). . . . 222
Allow VLA (C dialectsetting) 199
Always generate output (linker option). 243
Ambiguous Definitions (View menu) 150
ANSI C. See C89
application, definitionof.......... 251
architecture, definitionof 251
argument variables L L L i 67
T 1T 70} o P 74
custom variables Lo il 73
environment variables L. 73
in #include filepaths 207,218, 225
summary of predefined 72
Arguments (External editor option) 47
Arithmetic sum (checksum algorithm) 246
asm (filename extension) 167

Index °

Assembled lines only (Include listing setting) 217
assembler comments, text style in editor. 128
assembler directives
definitionof L L Ll 251
text styleineditor L. 128
assembler language, definitionof 251
assembler list files
compiler call frame information. 206
conditional information, specifying............... 223
GENETALNG . . oottt 223
assembler list files (SC14)
conditional information, specifying............... 216
cross-references, generating. 217
GENETALNG . . oottt 216
header,including 216
lines per page, specifying. 217
tab spacing, specifying. 217
Assembler mnemonics (Output list file setting) 206
assembler options 221
Diagnosticsciiiiii i 226
Language 221
List. oo 223
OUEPUL .« o et e 223
Preprocessor. 224
assembler options, definitionof 251
assembler options (SC14) 213
Diagnosticsi i 219
GenDSP. 214
Languageot 213
List. oo 216
OUEPUL .« o et e 215
Preprocessor. 218
assembler output, including debug information215, 223
assembler preprocessor.ttt 224
assembler preprocessor (SC14). 218
Assembler source file (Workspace window icon) 90
assembler symbols, defining. 218, 225
assembler, command line version 23
assert, in built applications 80

267

268

assumptions, programming eXperience. 15
Auto code completion and parameter hints (editor option) . 45

Auto indent (editor option) 44
Auto (Language setting)c.ovennnnnnen... 199
a45 (filename extension). 167
Background color (IDE Tools option). 50
backtrace information, definitionof 251
bank switching, definitionof. 251
banked code, definitionof. 251
banked data, definitionof 251
banked memory, definitionof 251
bank-switching routines, definitionof. 252
Base (Register filteroption) 64
bat (filename extension)c.c.uueininn.. 167
BatchBuild. i 112
Batch Build Configuration dialog box (Project menu) ... 118
Batch Build dialog box (Project menu). 117
batch files

definitionof 252

specifying from the Tools menu. 31
bin, common (subdirectory) 167
bin, crl6¢ (subdirectory)., 165
Bit order (Generate checksum setting) 246
bitfield, definitionof, 252
blank (source code controlicon).................... 100
board (filename extension) 167
Body (b) (Configure auto indent option). 46
bold style,inthisguide. 19
bookmarks

adding 128

showingineditor............., 45
breakpoints, definitionof 252
Buffered terminal output (Format setting). 237
Buffered write (linker option) 194
-build (iarbuild command line option) 113
Build Actions 111

IDE Project Management and Building Guide
for CR16C

Build Actions Configuration (Build Actions options). . . . 231
build configuration

CIEALING . . ottt ettt e e e 84

definitionof 80
Build window (Viewmenu) 116
building

commandsfor 110

from the command line 112

OPLIONS . « . vttt et e 52

pre- and post-actions i ... 111

the Process vvvv e 105
C comments, text styleineditor 128
C dialect (compileroption).cccovu.... 199
C keywords, text styleineditor. 128
C source file (Workspace window icon) 90
¢ (filename extension).ouetnrenrnn.n. 167
C (Language Setting).o oo v e e einieenenennn. 198
call frame information

definitionof 252

including in assembler listfile 206
call frame information See also backtrace information
calling convention, definitionof 252
category, in Options dialogbox. 109, 115
cfg (filename extension)covuvuvn.... 167
characters

in SC14 assembler macroquotes 214
characters, in assembler macro quotes 222
cheap memory access, definitionof 252
Check In Files dialogbox, 99
Check In (Source code control menu). 97
Check Out Files dialogbox. 100
Check Out (Source code controlmenu) 97
checkmark (source code controlicon). 101
checksum

CRC. . 253

definitionof 252

GENETALING .« .t ottt et 245
Checksum unit size (Generate checksum setting) 246
Checksum (linker options) 245
chm (filename extension) 167
-clean (iarbuild command line option) 112
Clean (Workspace window context menu) 92
CLIB

documentation 17

library reference informationfor 18

Naming Convention.vuvuvunenenenen .. 20
Close Workspace (Filemenu). 172
code

banked, definitionof 251

skeleton, definitionof 263

EESHNE oo ettt e 111
code completion, ineditor. 125
code folding, ineditor. 124
code INtegrityo ettt 82
code memory, fillingunused. 245
Code model (general option). 190
code model, definitionof 252
code pointers, definitionof 253
code sections, definitionof 253
code templates, usingineditor 126
colors in C-SPY windows, switchingonoroff.......... 60
command line options

specifying from the Tools menu. 31

typographic convention 19
Command line (custom build option) 230
command prompt icon, in this guide. 19
Command (External editor option) 48
Commit (Subversion controlmenu) 102
Common Fonts (IDE Options dialogbox) 39
common (directory)c.uuererennenenen... 167
Compare (Source code control menu). 97
Compile (Workspace window context menu) 92
compiler diagnostics 206
compiler function directives, definitionof 253

Index °

compiler list files

assembler mnemonics, including 206
GENETALNG . . oottt e 206
source code, including L. 206
compiler Optionsot 197
definitionof L L i 253
Diagnosticsciiiiiii 208
Language 1 198
Language 2 201
LSt oot 205
MISRA C. oot e e e e 209
Optimizations.ottt 202
OUEPUL .« o et e 204
Preprocessor. 206
compiler output
including debug information 204
modulename 204
omitting error messages from. 205
overriding default directory for 191
programorlibrary 204
COMPIlEr PreProCeSSOT. « . v vttt e e e eeee 206
compiler symbols, defining. 207
compiler, command line version. 23
Complement (Generate checksum setting) 246
computer style, typographic convention 19
Config (linker options) 234
Configuration file (general option) 193
Configurations for project dialog box (Project menu). 94
Configure Auto Indent (IDE Options dialog box). 46
Configure Custom Argument Variables dialog box. 74
Configure Tools (Toolsmenu) 66
Configure Viewers dialog box (Tools menu). 68
$CONFIG_NAMES$ (argument variable) 72
config, common (subdirectory). 167
Connect Project to SCC Project
(Source code controlmenu) 98
Connect Project to SVN Project
(Subversion controlmenu) 102
context menu, definitionof. 253
Control file (Workspace window icon) 90

269

270

conventions, used inthisguide 19

copyrightnotice i, 2
correcting errors found during build 111
cost. See memory access cost
cout (filename extension) 168
cpp (filename extension).c..ovuiuneon .. 168
CRC polynomial (checksum algorithm) 246
CRC, definitionof. 253
CRC16 (checksum algorithm). 246
CRC32 (checksum algorithm). 246
Create New Project dialog box (Project menu).......... 93
Cross-reference (SC14 assembler option). 217
erl6e (direCtory) . ..o v e e 165
CStack size (general option)ovenen. .. 194
cstartup (system startup code)

definitionof L L. 253

stack pointers not valid until reaching 62
$CUR_DIRS (argument variable) 72
$CUR_LINES (argument variable)................... 72
custombuild L L 105

USINE .ottt e e 113
custom tool configuration. 105
Custom Tool Configuration (custom build options) 229
custom variables, as argument variables 73
C-SPY options

definitionof L 253
C-STAT for static analysis, documentation for 18
C-style preprocessor, definitionof 253
C/C++ syntax

enablingincompiler 199

options forstyles oL 49
C++ comments, text style ineditor.................. 128
C++ dialect (compiler option). 200
C++ inline semantics (C dialect setting) 199
C++ keywords, text style ineditor 128
C++ source file (Workspace window icon)............. 90
CH++terminology.o oovi i 19
C++ (Language setting)ovuuennen... 199
C89 (C dialect setting)oouervunenenen .. 199

IDE Project Management and Building Guide
for CR16C

C99 (Cdialect setting)covvemenenenen .. 199
dat (filename extension) 168-169
Data model (general option) 190
data model, definitionof............. 253
data pointers, definitionof 253
data representation, definitionof.................... 253
datal6 heap size (general option) 195
data32 heap size (general option) 195
$DATES$ (argument variable) 72
dbg (filename extension).covun... 168
dbgdt (filename extension) 168
ddf (filename extension) 168
debug information

generating inassembler 223

generating in assembler (SC14).................. 215

in compiler, generating 204
Debug information for C-SPY (Format setting) 236
Debug (Configuration factory setting) 95
Debugger (IDE Options dialog box) 59
Declarations window (View menu). 149
declaration, definitionof. 253
default installation path. 165
Default integer format (IDE option) 60
#define options (linker options) 242
define (linker options).ooviiinan... 242
Defined by application (Override default program
CNLTY SELHNG) . . o o v ettt 234
Defined symbols (assembler option). 225
Defined symbols (compiler option). 207
Defined symbols (linker option) 242
Defined symbols ((SC14 assembler option) 218
definition, definitionof 254
dep (filename extension).c.coeninen... 168
Destroy static objects (C++ dialect setting). 200
development environment, introduction 23

device descriptionfiles 166
definitionof L L., 254
device driver, definitionof 254
device selectionfiles. 166
Device (Processor variant setting). 190
diagnostics
compiler
includinginlistfile............ 206
linker, suppressing 244
SUPPIESSING &« o v v v ettt ettt 208
suppressing assembler L oL 226
Diagnostics (assembler options) 226
Diagnostics (compiler options) 208
Diagnostics (linker options) 243
Diagnostics (SC14 assembler options) 219
Diff (Subversion controlmenu) 102
digital signal processor, definitionof 254
directories
assembler, ignore standard include. 218,225
COMIMON . . o\ttt et ettt e e e e e e s 167
compiler, ignore standard include 207
CrlOC .ot 165
TOOL v vt ettt e e e e e e e e e 165
directory structure.ttt 165
Disable all warnings (SC14 assembler option) 219
Disable language extensions (Language conformance
SEHNG) v vttt 199
Disable macro expansions (Output list file setting). 224
Disable warnings or range of warnings (SC14 assembler op-
HON) ..ot 220
Disable (Warning setting)c........ 219
Disabled (Range checks setting) 244
Disassembly window, definitionof.................. 254

Discard Unused Publics (multi-file compilation setting). . 198
disclaimer.......... i 2
Disconnect Project from SCC Project
(Source code controlmenu) 98
Disconnect Project from SVN Project
(Subversion controlmenu) 102

Index °

DLIB
documentationi i 17
Naming CONVeNtion.vuvrvenenenenen .. 20
Specifying 192
dni (filename extension) 168
Do not include diagnostics (Output list file setting) 224
dockable windows. i 25
document CONVENtioNS.o vt nen e eneeannn 19
documentationl 165
online.ot 166
overviewof guides. 17
overview of thisguide 16
thisguide 15
doc, common (subdirectory) 167
doc, crléc (subdirectory)c.iiiia... 166
drag-and-drop
of files in workspace window. 82
textineditorwindow. 124
drivers, crl6c (subdirectory).c.o.... 166
DSP. See digital signal processor
Dual line spacing (Include cross-reference setting). 217
DWAREF, definitionof 254
Dynamic Data Exchange (DDE). 31
calling external editor 47
dynamic initialization, definitionof 254
dynamic memory allocation, definitionof 254
dynamic object, definitionof 254
d45 (filename extension).t 168
Edit Filename Extensions dialog box (Tools menu) 72
Edit Include Directories dialog box (preprocessor
OPLIONS) . & o ettt et e e e 210
Editmenu......... ... 173
Edit Viewer Extensions (Tools menu)................. 69
editing source files, 122
edition, of thisguide i 2

271

editor
code completion.t
codefolding.o,
codetemplatescoiinii...
commands
customizing the environment.
external
indentation.
matching parentheses and brackets
OPLIONS .« o ettt ettt e
parameterhint
shortcut keys ...
shortcut to functions. 129,
splitter controls i
status bar, using in il
USINE .ottt e e
word completion oo
Editor Colors and Fonts (IDE Options dialog box).
Editor Font (Editor colors and fonts option)
Editor Setup Files (IDE Options dialog box)
editor setup files, options
Editorwindow i
Editor (External editor option)
Editor (IDE Options dialog box).
EEC++ syntax (C++ dialect setting)
EEPROM, definitionof.
Embedded C++
definitionof L i
syntax, enabling in compiler
Embedded C++ Technical Committee
Embedded C++ (C++ dialect setting)
embedded system, definitionof
Embedded Workbench
ditOr . .ot

TUNMING. « oottt ettt e e e e e
version number, displaying

IDE Project Management and Building Guide
272 for CRI6C

emulator (C-SPY driver), definitionof 255
Enable graphical stack display and stack usage
tracking (Stackoption) i, 61
Enable multibyte support (assembler option) 222
Enable multibyte support (compiler option) 202
Enable multibyte support (SC14 assembler option) 214
Enable project connections (IDE Project options). 54
Enable remarks (assembler option). 226
Enable remarks (compiler option). 208
Enable virtual space (editor option) 45
Enable warnings or range of warnings (SC14 assembler op-
HOM) Lottt 220
Enable (Warning setting) 219
Enabled transformations (compiler option). 203
encoding, editor options 43
Entry symbol (Override default program entry setting). . . 234
enumeration, definitionof. 255
environment variables, as argument variables. 73
EOL character (editor option). 44
EPROM, definitionof............................ 255
error messages

assembler. L o Lol 227

compiler. 209
@ITOTS, COITECHNG. « . ¢ v ettt e e e e 111
ewd (filename extension) 168
ewp (filename extension) 168
ewplugin (filename extension) 168
eww (filename extension) 168

the workspacefile 26
EW_DIRS (argument variable). 73
examples, crl6c (subdirectory). 166
exceptions, definitionof L L 255
executable image, definitionof 255
Executable (Output file setting) 191
Executables/libraries (output directory setting). 191
EXE_DIRS (argument variable) 73
expensive memory access, definitionof 255
extended command linefile 169

Extended Embedded C++ syntax, enabling in compiler . . 200

extended keywords

definitionof L L. 255
extensions. See filename extensions or language extensions
External Analyzer (IDE Options dialog box) 54,56
External Editor (IDE Options dialog box). 47
external editor, using. i 31
Extra Options, specifying assembler command
lINe Optionso vttt 220, 227
Extra Options, specifying command
lineoptions.c..ouiiiiin. 210, 247
Extra Output (linker options) 238
factory settings, restoring default settings. 110
File Encoding (editor option) 43
file extensions. See filename extensions
File format (linker option). 240
Filemenu 171
File Properties (Workspace window context menu) 93
file types

device descriptionc.c.iiiiiia... 166

deviceselection 166

documentationc.ciiniiinaa... 166

AUIVEIS . .ot 166

extended command line 169

header 166

include. ... 166

Library 166

linker configuration files 166

TAD & v v ettt e e e e e e e 240

projecttemplatesc. i 166

readmeot 166

special function registers description files 166

syntax coloring configuration. 166
File (Raw binary image setting) 235
filename eXtensions.ttt 167

cfg, syntax highlighting 49

eww, the workspace file......................... 26

Index °

otherthandefault.............................. 27
Filename Extensions dialog box (Tools menu) 70
Filename Extensions Overrides dialog box (Tools menu). . 71
Filename extensions (custom build option). 229
files

editing ov i 122

Navigating among.ov vttt 79
$FILE_DIRS (argument variable).................... 73
$FILE_FNAMES (argument variable) 73
$FILE_PATHS (argument variable) 73
Fill pattern (Fill setting)c.coo i, 245
Fill unused code memory (linker option) 245
filling, definitionof. 255
Filter Files (Register filter option). 64
Find All References window (View menu)............ 156
Find dialog box (Editmenu). 141
Find in Files dialog box (Editmenu) 144
Find in Files window (View menu).................. 142
Fixed width font (IDE option). 39
flash (filename extension). 168
floating windows, 25
floating-point expressions, improving performance 201
Floating-point semantics (compiler option) 201
fmt (filename extension). 168
font

Editor. 49

Fixedwidth 39

Proportional width 39
format specifiers, definitionof 255
Format variant (Format setting) 237,239
Format (linker option). 236, 239
formats

linker output

default, overriding. 237
specifying 236
functions
intrinsic, definition of., 257
shortcut to in editor windows. 129, 135

273

274

G

GenDSP override (SC14 assembler option) 215
GenDSP (SC14 assembleroption) 214
general options
definitionof 256
Library Configuration 192
Library Optionsvvvtnin i 193
MISRAC. .. 195
OULPUL &« o ettt et e 191
Stack/Heap optionscuvuivninan.. 194
Target. . oot 189
Generate browse information (IDE Project options) 53
Generate checksum (linker option) 245
Generate debug information (assembler option) 223
Generate debug information (compiler option) 204
Generate debug information (SC14 assembler option) . . .215
Generate errors (Range checks setting). 244
Generate extra output file (linker option) 239
Generate linker listing (linker option). 240
Generate warnings (Range checks setting) 244
Generate #line directives (Preprocessor output
tofilesetting)ooiiiiii 207, 225
generating extraoutputfile........................ 237
generic pointers, definitionof 256
Get Latest Version (Source code control menu) 97
GlOSSAIY. .\ vt e 251
Go to function (editor button) 129, 135
Goto Line dialogbox 175
gray padlock (source code controlicon) 101
Group excluded from the build (Workspace window icon) . 90
Group members (Register filter option) 64
Group of files (Workspace window icon) 90
Groups (Register filteroption) 64
groups, definitionof 81
h (filename extension)., 168

IDE Project Management and Building Guide
for CR16C

Harvard architecture, definitionof 256
Header file (Workspace window icon) 90
headerfiles i 166

quickaccessto.o 130
heap memory, definitionof........................ 256
heap size, definitionof 256
Helpmenu 187
helpfiles (filename extension). 168
High, balanced (Level setting) 202
High, size (Level setting) 203
High, speed (Level setting) 203
History (Source code controlmenu) 97
host, definitionof 256
htm (filename extension) 168
HTML text file (Workspace window icon) 90
HTML (File format setting) 241
html (filename extension) 168
i (filename extension)uiiriinnnn. 168
iarbuild, building from the command line............. 112
TarldePmeexe. 26
icons

in Workspace window 89

SVN States . . oo ettt 102
icons,inthisguide 19
IDE

definitionof 256

OVEIVIEW . vttt et ettt et e e 23
IDE internal file (Workspace window icon) 90

Ignore standard include directories (assembler option). . . 225
Ignore standard include directories (compiler option). . . . 207

Ignore standard include directories ((SC14 assembler option)
218

ILINK, definitionof 256
inc (filename extension)c..uu.... 168
Include compiler call frame

information (Output assembler file setting). 206

Include cross-reference (Output list file setting) 224
includefiles. i 166
assembler, specifyingpath.................. 218, 225
compiler, specifyingpath. 207
definitionof i 256
linker, specifyingpath 235
specifyingpath. 207, 218, 225
Include header (SC14 assembler option). 216
Include listing (SC14 assembler option) 216
Include source (Output assembler file setting) 206
Include suppressed entries (linker option). 240
Incremental Search dialog box (Edit menu) 148
inc, crl6c (subdirectory). 166
Indent size (editor option). 42
Indent with spaces (Tab Key Function setting) 43
indentation, ineditor. 123
inherited settings, overriding. 109
ini (filename extension)ou.... 168
Initial value (Generate checksum setting) 246
initialized sections, definitionof.................... 256
inline assembler, definitionof. 256
inlining, definitionof 256
Insert tab (Tab Key Function setting) 43-44
insertion point, shortcut key for moving 129
installation directory 19
installation path, default 165
installed files. i 165
documentationc.ciininininaaa... 166
executable 167
include. ... 166
Library 166
instruction mnemonics, definitionof. 256
Integrated Development Environment (IDE)
definitionof 256
Internal symbol (Include cross-reference setting) 217
interrupt vector table, definitionof 256
interrupt vector, definitionof 256
interrupts
definitionof i 257
nested, definitionof, 259

Index °

intrinsic functions, definitionof 257
intrinsic, definitionof 257
IStack size (general option). 194
italic style,inthisguide 19

1/0 register. See SFR

)

Just warning (Warning setting) 219
Key bindings (IDE Options dialogbox) 40
key bindings, definitionof 257
key summary, editoro 158
keyboard shortcuts. See shortcut keys
keywords

definitionof L L Lol 257

enable language extensions for 199

specify syntax color forineditor................. 128
Label (c) (Configure auto indent option). 46
Language conformance (compiler option) 199
language extensions

definitionof L i 257

disablingincompiler........... 199
Language (assembler options). 221
Language (compiler option) 198
Language (IDE Options dialogbox).................. 41
Language (Language option)c..... 42
Language (SC14 assembler options). 213
Language 1 (compileroptions) 198
Language 2 (compiler options) 201
layout, of Embedded Workbench 25
Level (compileroption)c.covuiuinaen... 202
library builder, output options. 250

275

276

library configuration file

definitionof L L. 257
specifying fromIDE, 193
Library Configuration (general options) 192
Library file (general option) 192
library files i 166
library functions
avoid stepping into (Functions with source only). 60
configurable. i ... 166
onlinehelpfor.......... 18
Library Module (Module type setting) 204
library modules, specifying in compiler 204
Library Options (general options). 193
Library (general option)o on... 192
Library (Output file setting) 191
library, definitionof 261
lib, crl6c (subdirectory) 166
lightbulb icon, in thisguide. 19
#line directives, generating
inassembler......... L L L., 225
incompiler. i 207
Lines/page (linker option). 241
Lines/page (SC14 assembler option). 217
linker
command line version 23
diagnostics, SUppressing.t 244
overriding defaultoutput 237

linker command file. See linker configuration file
linker configuration file

definitionof L i 257
INIreCtOrY. . v ot ettt e 166
path, specifying i 235
specifyinginlinker 234
Linker configuration file (linker option) 234
linker list files
GENETALING .« . oottt et 240
including segmentmap 240
specifying lines perpagec.ovnin.. 241

IDE Project Management and Building Guide
for CR16C

linker optionsot 233
typographic convention 19
Checksum 245
Config . .ovoi e 234
define...... 242
Diagnosticsciiiiiii 243
ExtraOutputc.c.iuiiiininiinen... 238
LSt oot 239
Log oo 241
OUEPUL .« o et e 236

linker symbols, defining 242

list files
assembler

compiler runtime information. 206

conditional information, specifying 223
assembler (SC14)

conditional information, specifying 216

cross-references, generating 217

header, including. 216

lines per page, specifying 217

tab spacing, specifying 217
compiler

assembler mnemonics, including 206

GENETALING . . . ottt e 206

source code, including 206
linker

GENETALING . . . o\ttt e 240

including segmentmap 240

specifying lines perpage.c.ocovuon... 241
SC14 assembler

conditional information, specifying 216

List files (Output directories setting). 192

List macro definitions (Output list file setting) 224

List only assembled parts (Output list file setting) 224

List (assembler options)c.covuininiu.. 223

List (compiler options)o 205

List (linker options)oeniuenenennena.. 239

List (SC14 assembler options) 216

$LIST_DIRS (argument variable). 73

location counter, definitionof 260
-log (iarbuild command line option) 113
log (filename extension)ouenen... 168
Log (linker options)c.covuiniunnenen... 241
Log (Subversion control menu). 102
logical address, definitionof....................... 264
Low (Level setting). covvevei .. 202
Ist (filename extension).ovuvenen... 169
L-value, definitionof 257
mac (filename extension)o.... 169
Macro definitions (Include listing setting) 216
Macro execution info (Include listing setting). 216
Macro expansions (Include listing setting) 216
Macro quote characters (assembler option). 222
Macro quote characters (SC14 assembler option). 214
macros, definitionof. L L. 258
MAGC, definitionof 257
mailbox (RTOS), definitionof 258
-make (iarbuild command line option) 113
Make before debugging (IDE Project options) 53
Make (Workspace window context menu) 91
map files, generating. 240
map (filename extension) 169
Max number of errors (assembler option). 227
Max number of errors (SC14 assembler option) 220
Medium (Level setting).c.covuiinenon... 202
memory access cost, definitionof............ 258
memory area, definitionof 258
memory bank, definitionof. 258
memory map, definitionof 258
memory model, definitionof. 258
memory usage, summary of 240
memory, fillingunused L L. 245
menubar. 35
menu (filename extension) 169
Menu (Key bindings option) 40

Index °

10 1S] 1L PP 171
Messages window, amount of output 50
Messages (IDE Options dialogbox) 50
metadata (subdirectory) 167
microcontroller, definitionof 258
microprocessor, definitionof 258
migration, from earlier AR compilers 18
MISRA C
compiler Options 209
documentationi i 18
general options. 195
Module map (Symbols setting) 240
module name, specifying in compiler................ 204
Module summary (linker option) 240
Module type (compiler option) 204
modules, definitionof 258
Module-local symbol (Format setting) 237
Multiline code (Include listing setting) 217
Multiply and accumulate, definitionof 257
multitasking, definitionof. 260
multi-file compilation. 197
definitionof 258
NAMing CONVENLIONS . ..o v vt vttt e e e eenennnnn 20
NDEBUG, preprocessor symbol. 80
nested interrupts, definitionof 259
New Configuration dialog box (Project menu) 95
New Group (Register filter option) 64
No error messages in output (compiler option). 205
No global type checking (linker option) 243
No size constraints (Level setting) 203
No source browser and build status updates when the IDE
is not the foreground process (IDE Project options) 54
None (Level setting)oovinininenennnna.. 202
None (Symbols setting)., 240
non-banked memory, definitionof 259
non-initialized memory, definitionof 259

277

non-volatile storage, definitionof 259

NOP (assembler instruction), definitionof 259
no-init sections, definitionof 259
Object file or library (Workspace window icon)......... 90
object file (absolute), definitionof 259
object file (relocatable), definitionof 259
Object files (Output directories setting) 191
Object module name (compiler option). 204
object, definitionof. 259
$OBJ_DIRS (argument variable) 73
online documentation

available fromHelpmenu 187

target-specific, in directory 166

Open Containing Folder (editor window context menu) . . 134
Open Containing Folder (Workspace

window conteXt menu)ourerenrenennnn.. 93
Open Workspace (Filemenu) 172
Opening Brace (a) (Configure auto indent option) 46
operator precedence, definitionof. 259
operators, definitionof 259
optimization levels, setting 202
Optimizations page (compiler options). 202
Option name (category option) 95
options
assembler......... Lol 221
buildactions.t 231
compiler. 197
custombuild L L 229
editor 42
library builder 249
linker oo 233
SCl4assembler............ ... i, 213
setup files foreditor., 48
Options dialog box (Projectmenu) 115
USING © ot v ettt 107
Options (Workspace window context menu). 91

IDE Project Management and Building Guide
for CR16C

options, definitionof. oL oL 259
Other file (Workspace window icon). 90
Other (Format setting).cooiiiennen .. 237
output
assembler. L L i 223
including debug information.................. 223
assembler (SC14). i 215
including debug information.................. 215
compiler. e 204
including debug information.................. 204
formats. 236
debug (ubrof) i 236
generating extrafile........... 237
linker
GENETALING . . . o vttt 243
specifying filename. 236
specifying filename on extra output 239
PIEPIOCESSOT. « v o v e e e e e e e e e 207, 225
Output assembler file (compiler option) 206
Output directories (general option) 191
Output file (custom build option) 230
Output file (general option). 191
Output file (library builder options) 250
Output file (linker option). 236, 239
Output format (Format setting) 237,239
output image. See executable image
Output list file (assembler option). 223
Output list file (compiler option) 206
Output list file (SC14 assembler option). 216
Output (assembler option).cveieninon .. 223
Output (compiler options).covieninon .. 204
Output (general options) 191
Output (library builder options) 250
Output (linker options)cvviininenenan .. 236
Output (SC14 assembler option). 215
Override default program entry (linker option). 234

P

padlock (source code controlicon) 101
parameter hint, ineditor 125
parameters

typographic conventiono... 19

when building from command line 112
parentheses and brackets, matching (in editor) 123
part number, of thisguide 2
paths

assembler include files. 218, 225

compiler include files. 207

includefiles 207,218, 225

linkerincludefiles 235

relative, in Embedded Workbench 81, 134

source files. 134
pbd (filename extension)., 169
pbi (filename extension)vueiiin... 169
peripheral units, definitionof 259
peripherals register. See SFR
pew (filename extension) 169
pipeline, definitionof 259
Plain ‘char’ is (compiler option) 201
Play a sound after build operations (IDE Project options). . 53
plugins

common (subdirectory), 167
pointers

definitionof L i 259

warn when stack pointer is out of range. 61
pop-up menu. See context menu
Post-build command line (build actions option) 232
#pragma directive, definitionof 259
precedence, definitionof. 259
preemptive multitasking, definitionof 260
Preinclude file (assembler option). 225
Preinclude file (compiler option) 207
preprocessor

definition of. See C-style preprocessor
macros for initializing string variables. 111

Index °

NDEBUG symbol, 80
preprocessor directives

definitionof L L Ll 260

text styleineditor L. 128
Preprocessor output to file (assembler option) 225
Preprocessor output to file (compiler option) 207
Preprocessor (assembler options) 224
Preprocessor (compiler options) 206
Preprocessor (SC14 assembler options) 218
prerequisites, programming experience. 15
Preserve comments (Preprocessor output
tofilesetting)coo i 207, 225
Press shortcut key (Key bindings option) 40
Pre-build command line (build actions option) 231
Primary (Key bindings option) 40
Printf formatter (general option) 193
prj (filename extension), 169
processor variant, definitionof 260
product overview

directory structure 165

filletypes . ..covvn 167
program counter, definitionof. 260
program location counter, definitionof............... 260
Program Module (Module type setting) 204
programming eXperience.e i 15
program, see also application
Project Make, options 52
Projectmenu. i 180
projectmodel 77
project options, definitionof. 260
Project page (IDE Options dialog box)................ 52
Project with multi-file compilation
(Workspace window icon)., 90
Project (Workspace window icon). 89
projects

adding filesto i 84

build configuration, creating 84

building 110

inbatches o 112
CIEALINE « . v ettt ettt e e 84

279

280

definitionof, 79, 260

excluding groups and files 84
SrOUPS, CTEALNG . .« . v\ vttt ettt eee e 84
MANAZING .« o v oe et e e e e e e 77
OFZANIZALION . . . o vttt et 79
source code control 82
version control systems 82
workspace, creatingol 84
$PROJ_DIRS (argument variable) 73
$PROJ_FNAMES$ (argument variable) 73
$PROJ_PATHS (argument variable) 73
PROM, definitionof 260
Properties (Source code control menu) 97
Properties (Subversion control menu). 102
Proportional width font (IDE option) 39
prototypes, verifying the existenceof 200
publication date, of this guide. 2

Q

qualifiers, definition of. See type qualifiers

R

Range checks (linkeroption) 243
range, definitionof L L. 260
Raw binary image (linker option) 235
reading guidelines. L, 15
readme files, See release notes

read-only sections, definitionof 260
real-time operating system, definitionof. 260
real-time system, definitionof 260
Rebuild All (Workspace window context menu). 92
red padlock (source code control icon) 101
reference information, typographic convention. 19
References window (Viewmenu) 151
Refresh (Source code control menu). 97
Refresh (Subversion control menu). 102
register constant, definitionof. 260

IDE Project Management and Building Guide
for CR16C

Register Filter (IDE Options dialog box) 63
register locking, definitionof 261
register variables, definitionof 261
registered trademarks 2
registers

definitionof L. 260

header files for in inc directory 166
relative paths. o i 81, 134
Telease NOES « . v o v v vttt et 166
Release (Configuration factory setting). 95
Reload last workspace at startup (IDE Project options) .. .53
relocatable segments, definitionof 261
remarks, classifying diagnostics as.............. 208, 226
Remove trailing blanks (editor option) 45
Remove (Workspace window context menu) 93
Rename Group dialogbox 93
Rename (Workspace window context menu) 93
Replace dialog box (Editmenu) 143
Replace in Files dialog box (Edit menu).............. 146
Require prototypes (C dialect setting). 200
Reset All (Key bindings option) 41
reset, definition of 261
restoring default factory settings. 110
Revert (Subversion control menu). 102
ROM-monitor, definitionof 261
TOOt dITECLOTY . . vttt ettt e e e e 165
Round Robin, definitionof 261
RTOS, definitionof. i 260
runtime libraries

definitionof L. 261

specifying 192
runtime model attributes, definitionof 261
R-value, definitionof 261
r45 (filename extension)ouurenrnn.n. 169
saturation arithmetics, definitionof. 261
Save All (Filemenu).ccvuun.n.. 172

Index __o

Save As(Filemenu) 172 sharing, definitionof. 262
Save editor windows before building (IDE Project short addressing, definitionof. 262
OPLIONS). ..o 52 ShOTECUL KEYS .+« v v vt 128
Save workspace and projects before building (IDE CUSTOMUZING + .+« v vttt e et et iie e e e n 40
Projectoptions). 53 Show bookmarks (editor option). 45
Save Workspace (Filemenu). 172 Show fold margin (editor option) 45
Save (Filemenu)......... ... 172 Show line break characters (editor option) 45
Scan for changed files (editor option) 44 Show line numbers (editor option) 44
Scanf formatter (general option).................... 194 Show right margin (editor option). 43
SCC. See source code control systems side-effect, definitionof, 262
scheduler (RTOS), definitionof 261 signals, definitionof 262
scope, definitionof oo 262 sim (filename extension). 169
scrolling, shortcut key for...................... ... 129 Simple format, definition of 262
Search paths (linker option) 235 simulator, definition of, 262
searching in editor windows 131 Size Optimization.oeuiiiiiia... 203
Segment map (linker option)., 240 Size (Generate checksum setting) 245
segment map, definitionof oL 262 skeleton code, definitionof. 263
Segment overlap warnings (linker option). 243 Source Browser window 152
segment parts, including all in listfile. 240 USING .ottt 130
segment part, definitionof 262 source code
Segment (Raw binary image setting) 235 including in compiler listfile.................... 206
segments TEMPIALES © . v 126
definitionof 262 Source code color in Disassembly window (IDE option) . . 59
overlap errors, reducing 243 source code control SyStems 82
range checks, controlling 243 Source Code Control (IDE Options dialog box) 58
Select SCC Provider dialog box (Project menu)......... 98 Source file excluded from the build
selecting text, shortcutkey for 129 (Workspace window icon).oouneenaa.... 90
semaphores, definitionof 262 source files
Service (External editoroption) 48 editing ..o vt 122
Set as Active (Workspace window context menu). 93 managing in projectsoeueeennee.... 81
settings (directory)oviiiiiii i 169 PathS tO .. oottt 81, 134
severity level special function registers (SFR)
changing default for assembler diagnostics 226 definitionof 263
changing default for compiler diagnostics 208 descriptionfiles, 166
changing default for linker diagnostics 243 inheaderfiles., 166
definitionof i 262 specifying options for. ..ot 197
SFR speed optimization o i 203
definitionof L 263 src, crl6e (subdirectory) 166
inheaderfiles. L. 166 stack frames, definition of. 263
sfr (filename extension) 169 stack segment, definitionof 263

281

282

Stack (IDE Options dialog box) 61

Stack/Heap (general options) 194
Standard C

making compiler adhere to. 199

syntax, enabling in compiler 199
standard libraries, definitionof 263
Standard (Language conformance setting) 199
static analysis

documentationfor L. 18
static objects, definitionof 263
Static overlay map (linker option). 240
static overlay, definitionof 263
statically allocated memory, definitionof............. 263
status bar. 37
Step into functions (IDE option). 59
stepping, definitionof L. 262
STL container expansion (IDE option) 60
Stop build operation on (IDE Project options) 52
Stop Build (Workspace window context menu) 92
Strict (Language conformance setting) 199
strings, text style ineditor., 128
structure value, definitionof 263
Subversion states and corresponding icons 102
Suppress all warnings (linker option) 244
Suppress these diagnostics (assembler option) 226
Suppress these diagnostics (compiler option) 208
Suppress these diagnostics (linker option) 244
Symbol listing (Symbols setting) 240
Symbol (Raw binary image setting) 235
symbolic location, definitionof 263
symbols

See also user symbols

defining in assembler. 225

defining in compiler. 207

defininginlinker 242

defining in SC14 assembler..................... 218

definitionof i 263
Symbols (linker option) 240

IDE Project Management and Building Guide
for CR16C

syntax coloring

configurationfiles 166

meditor 128
Syntax Coloring (Editor colors and fonts option) 50
Syntax highlighting (editor option). 44
syntax highlighting, in editor window. 128
s45 (filename extension), 169
Tab Key Function (editor option) 43
Tab size (editoroption)ovvvrernenenen.. 42
Tab spacing (SC14 assembler option). 217
Target (general Options)ccuvvenenenennn.. 189
$TARGET_BNAMES (argument variable). 73
$TARGET_BPATHS$ (argument variable). 73
$TARGET_DIRS (argument variable) 73
$TARGET_FNAMES$ (argument variable) 73
$TARGET_PATHS (argument variable) 73
target, definitionof 263
task, definitionof, 263
Template dialog box (Editmenu) 157
templates for code, using 126
tentative definition, definitionof.................... 263
Terminal I/O window, definitionof.................. 263
Terminal I/O (IDE Options dialogbox) 65
terminal I/O, simulating 237
terminology.ot 19, 251
testing,of code 111
Text file (Workspace window icon). 90
Text (File format setting)cocvvuvu.... 240
thread, definitionof. 263
timer, definitionof 263
timeslice, definitionof 263
Tool Output windowo, 38
toolbar, IDE 36
toolchain

extending i 105

OVEIVIEW . vttt et ettt ettt e 23

$TOOLKIT_DIRS (argument variable) 73
tools icon,inthisguide. 19
Toolsmenu.........., 184
tools, user-configured 66
trademarks e 2
transformations, enabled in compiler 203
translation unit, definitionof. 264
trap, definitionof L ... 264
Treat all warnings as errors (compiler option). 209
Treat these as errors (assembler option) 227
Treat these as errors (compiler option) 209
Treat these as errors (linker option). 244
Treat these as remarks (assembler option). 226
Treat these as remarks (compiler option) 208
Treat these as warnings (assembler option). 227
Treat these as warnings (compiler option). 209
Treat these as warnings (linker option) 244
Treat warnings as errors (assembler option) 227
Truncate multiline data field (Output list file).......... 224
tutor, crl6c (subdirectory). 166
type qualifiers, definitionof 264
Type (External editor option) 47
type-checking, disabling at link time 243
typographic conventions, 19
UBROF
creating outputin.oveninenenennn.. 236
definitionof 264
error messages embeddedin 205
tool for generating, 264
Undo Checkout (Source code control menu) 97
Update intervals IDE option). 60
Update (Subversion controlmenu) 102
Use Code Templates (editor option) 49
Use colors (IDEoption)ovvnvininenenan.. 60
Use command line options (assembler option) 228
Use command line options (compiler option) 210

Index °

Use command line options (linker option) 247
Use command line options (SC14 assembler option) 220
Use Custom Keyword File (editor option) 48
Use External Editor (External editor option). 47
Use register filter (Register filter option) 64
User symbols are case sensitive (assembler option) 222
User symbols are case sensitive (SC14 assembler option) 214
$USER_NAMES$ (argument variable). 73
value expressions, definitionof..................... 264
variable length arrayso .. 199
variables, using in arguments 67
version

ofthisguide. i, 2
Version Control Systemmenu. 96, 101
Version Control System (Workspace
Window CONteXt Menu)o vve e ene e eeenenn.. 93
Version control Systems.o, 82
version number

of Embedded Workbench. 187
VIEW MENU . . oo oe ettt e e e e e e e e 177
virtual address, definitionof 264
virtual space

definitionof i 264

enablingintheeditor........................... 45
visual STATE

partofthe toolchain 24

projectfile 169
volatile storage, definitionof 264
von Neumann architecture, definitionof.............. 264
vsp (filename extension).c.ouvu.... 169
Warn when exceeding stack threshold (Stack option). 61

Warn when stack pointer is out of bounds (Stack option) . . 61

283

284

warnings

assembler. 227

assembler (SC14). i 219

compiler. 209

linker 244
Warnings from to (Warning setting) 219
warnings icon, inthisguide 19
Warnings (SC14 assembler option). 219
Warnings/Errors (linker option) 244
watchpoints, definitionof 264
web sites, recommended. 18
When source resolves to multiple function instances 59
Window menu.ttt 186
windows

about organizing on the screen. 25

how to organize onthe screen 26
With I/O emulation modules (Format setting). 237
With runtime control modules (Format setting) 236
word completion, ineditor 125
Workspace window. 89

drag-and-drop of files 82
Workspace window icons 89
Workspace (Workspace window icon) 89
workspaces

CIEALINE « v v ot et ettt e e e e 84

USING « vt ettt et e 83
wsdt (filename extension). 169
XAR, definitionof 264
xcl (filename extension)c.couiinn. .. 169
XLIB, definitionof o .. 264
XLINK, definitionof 264
zero-initialized sections, definitionof 265
zero-overhead loop, definitionof 265

IDE Project Management and Building Guide
for CR16C

zone, definitionof 265

Symbols

#define options (linker options) 242
#define (Include cross-reference setting) 217
#included text (Include listing setting) 216
#pragma directive, definitionof 259
% stack usage threshold (Stack option). 61
$CONFIG_NAMES (argument variable) 72
CUR_DIR (argument variable). 72
$CUR_LINES (argument variable)................... 72
$DATES$ (argument variable) 72
$EW_DIRS (argument variable) 73
$EXE_DIRS (argument variable) 73
$FILE_DIRS (argument variable). 73
$FILE_FNAMES (argument variable) 73
$FILE_PATHS (argument variable) 73
$LIST_DIRS (argument variable). 73
$OBJ_DIRS (argument variable) 73
$PROJ_DIRS (argument variable) 73
$PROJ_FNAMES$ (argument variable) 73
$PROJ_PATHS (argument variable) 73
$TARGET_BNAMES (argument variable). 73
$TARGET_BPATHS$ (argument variable).............. 73
$TARGET_DIRS (argument variable) 73
$TARGET_FNAMES$ (argument variable) 73
$TARGET_PATHS (argument variable) 73
$TOOLKIT_DIRS (argument variable) 73
$USER_NAMES (argument variable). 73

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Project management and building
	Part 2. Reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Project management and building
	The development environment
	Introduction to the IAR Embedded Workbench IDE
	Briefly about the IDE and the build toolchain
	Tools for analyzing and checking your application
	An extensible and modular environment
	Organizing the windows on the screen

	Using and customizing the IDE
	Running the IDE
	Double-clicking the workspace filename

	Organizing windows
	Specifying tool options
	Recognizing filename extensions
	Getting started using external analyzers
	Invoking external tools from the Tools menu
	Adding command line commands to the Tools menu
	Using an external editor

	Reference information on the IDE
	IAR Embedded Workbench IDE window
	Menu bar
	Toolbar
	Status bar

	Tool Output window
	Context menu

	Common Fonts options
	Fixed Width Font
	Proportional Width Font

	Key Bindings options
	Menu
	List of commands
	Press shortcut key
	Primary
	Alias
	Reset All

	Language options
	Language

	Editor options
	Tab size
	Indent size
	Tab Key Function
	Show right margin
	File Encoding
	Syntax highlighting
	Auto indent
	Show line numbers
	Scan for changed files
	Show bookmarks
	Show fold margin
	Enable virtual space
	Remove trailing blanks
	Auto code completion and parameter hints
	Show source browser tooltips
	Show line break characters

	Configure Auto Indent dialog box
	Opening Brace (a)
	Body (b)
	Label (c)
	Sample code

	External Editor options
	Use External Editor
	Type
	Editor
	Arguments
	Service
	Command

	Editor Setup Files options
	Use Custom Keyword File
	Use Code Templates

	Editor Colors and Fonts options
	Editor Font
	Syntax Coloring

	Messages options
	Show build messages
	Log in file
	Enable All Dialogs

	Project options
	Stop build operation on
	Save editor windows before building
	Save workspace and projects before building
	Make before debugging
	Reload last workspace at startup
	Play a sound after build operations
	Generate browse information
	No source browser and build status updates when the IDE is not the foreground process
	Enable project connections
	Enable parallel build

	External Analyzers options
	Analyzers
	Move Up
	Move Down
	Add
	Delete
	Edit

	External Analyzer dialog box
	Name
	Path
	Arguments
	Location
	Warning
	Error

	Source Code Control options
	Keep items checked out when checking in
	Save editor windows before performing source code control commands

	Debugger options
	When source resolves to multiple function instances
	Source code color in disassembly window
	Step into functions
	STL container expansion
	Update intervals
	Default integer format
	Window classification by background color

	Stack options
	Enable graphical stack display and stack usage tracking
	% stack usage threshold
	Warn when exceeding stack threshold
	Warn when stack pointer is out of bounds
	Stack pointer(s) not valid until program reaches
	Warnings
	Limit stack display to

	Register Filter options
	Use register filter
	Filter Files
	Groups
	New Group
	Group members
	Base

	Terminal I/O options
	Input mode
	Input echoing
	Show target reset in Terminal I/O window

	Configure Tools dialog box
	New
	Delete
	Menu Content
	Menu Text
	Command
	Argument
	Initial Directory
	Redirect to Output window
	Prompt for Command Line
	Tool Available

	Configure Viewers dialog box
	Display area
	New
	Edit
	Delete

	Edit Viewer Extensions dialog box
	File name extensions
	Action

	Filename Extensions dialog box
	Toolchain
	Edit

	Filename Extension Overrides dialog box
	Display area
	Edit

	Edit Filename Extensions dialog box
	Factory setting
	Override

	Argument variables
	Configure Custom Argument Variables dialog box
	Workspace and Global tabs
	Expand/Collapse All
	Hide disabled groups
	Enable Group / Disable Group
	New Group
	Add Variable
	Edit Variable
	Delete
	Import

	Project management
	Introduction to managing projects
	Briefly about managing projects
	Navigating between project files

	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files and their paths
	Drag and drop

	Interacting with version control systems

	Managing projects
	Creating and managing workspaces
	Viewing the workspace
	Interacting with SCC-compatible systems
	Setting up an SCC project in the SCC client application
	Viewing the SCC states
	Configuring the interaction between the IDE and SCC

	Interacting with Subversion
	Viewing the Subversion states

	Reference information on managing projects
	Workspace window
	Drop-down list
	The display area
	Context menu

	Create New Project dialog box
	Tool chain
	Project templates
	Description

	Configurations for project dialog box
	Configurations
	New
	Remove

	New Configuration dialog box
	Name
	Tool chain
	Based on configuration
	Factory settings

	Add Project Connection dialog box
	Connect using
	OK

	Version Control System menu for SCC
	Menu commands

	Select Source Code Control Provider dialog box
	Check In Files dialog box
	Comment
	Keep checked out
	Advanced
	Files

	Check Out Files dialog box
	Comment
	Advanced
	Files

	Source code control states
	Version Control System menu for Subversion
	Menu commands

	Subversion states

	Building projects
	Introduction to building projects
	Briefly about building a project
	Extending the toolchain
	Tools that can be added to the toolchain

	Building a project
	Setting project options using the Options dialog box
	Building your project
	Correcting errors found during build
	Using pre- and post-build actions
	Using pre-build actions for time stamping

	Building multiple configurations in a batch
	Building from the command line
	Adding an external tool

	Reference information on building
	Options dialog box
	Category
	Factory Settings

	Build window
	Context menu

	Batch Build dialog box
	Batches
	Build
	New
	Remove
	Edit

	Edit Batch Build dialog box
	Name
	Available configurations
	Configurations to build

	Editing
	Introduction to the IAR Embedded Workbench editor
	Briefly about the editor
	Briefly about source browse information
	Customizing the editor environment

	Editing a file
	Indenting text automatically
	Matching brackets and parentheses
	Splitting the editor window into panes
	Dragging text
	Code folding
	Word completion
	Code completion
	Parameter hint
	Using and adding code templates
	Syntax coloring
	Adding bookmarks
	Using and customizing editor commands and shortcut keys
	Displaying status information

	Programming assistance
	Navigating to a function
	Finding a definition or declarations of a symbol
	Finding references to a symbol
	Finding function calls for a selected function
	Switching between source and header files
	Displaying source browse information
	Text searching
	Accessing online help for reference information

	Reference information on the editor
	Editor window
	Relative source file paths
	Window tabs, tab groups, and tab context menu
	Multiple editor windows and splitter controls
	Go to function
	Context menu

	Find dialog box
	Find what
	Match case
	Match whole word
	Search as hex
	Only in selection
	Find Next
	Find Previous
	Stop

	Find in Files window
	Context menu

	Replace dialog box
	Find what
	Replace with
	Match case
	Match whole word
	Search as hex
	Only in selection
	Find next
	Replace
	Replace all

	Find in Files dialog box
	Find what
	Look in
	File types
	Stop

	Replace in Files dialog box
	Find what
	Replace with
	Look in
	File types
	Stop
	Close
	Find Next
	Replace
	Replace All
	Skip file

	Incremental Search dialog box
	Find what
	Match case
	Find Next
	Close
	Only in selection

	Declarations window
	Context menu

	Ambiguous Definitions window
	Context menu

	References window
	Context menu

	Source Browser window
	The upper display area
	The lower display area
	Icons used for the symbol types
	Context menu

	Resolve File Ambiguity dialog box
	Call Graph window
	Display area
	Context menu

	Template dialog box
	Text fields
	Display area

	Editor shortcut key summary
	Moving the insertion point
	Selecting text
	Scrolling text
	Miscellaneous shortcut keys
	Additional Scintilla shortcut keys

	Part 2. Reference information
	Installed files
	Directory structure
	Root directory
	The cr16c directory
	The common directory
	The install-info directory

	File types

	Menu reference
	Menus
	File menu
	Menu commands

	Edit menu
	Menu commands

	View menu
	Menu commands

	Project menu
	Menu commands

	Tools menu
	Menu Commands

	Window menu
	Menu commands

	Help menu

	General options
	Description of general options
	Target options
	Device
	Code model
	Data model
	Enable indexed addressing

	Output
	Output file
	Output directories

	Library Configuration
	Library
	Library file
	Configuration file

	Library Options
	Printf formatter
	Scanf formatter

	Stack/Heap
	CStack size
	IStack size
	Data16 heap size
	Data32 heap size

	MISRA C

	Compiler options
	Description of compiler options
	Multi-file Compilation
	Multi-file Compilation
	Discard Unused Publics

	Language 1
	Language
	Language conformance
	C dialect
	C++ dialect

	Language 2
	Plain 'char' is
	Floating-point semantics
	Enable multibyte support

	Optimizations
	Level
	Enabled transformations

	Output
	Module type
	Object module name
	Generate debug information
	No error messages in output files

	List
	Output list file
	Output assembler file

	Preprocessor
	Ignore standard include directories
	Additional include directories
	Preinclude file
	Defined symbols
	Preprocessor output to file

	Diagnostics
	Enable remarks
	Suppress these diagnostics
	Treat these as remarks
	Treat these as warnings
	Treat these as errors
	Treat all warnings as errors

	MISRA C
	Extra Options
	Use command line options

	Edit Include Directories dialog box

	SC14 assembler options
	Description of assembler options
	Language
	User symbols are case sensitive
	Enable multibyte support
	Macro quote characters

	GenDSP
	GenDSP override

	Output
	Generate debug information

	List
	Output list file
	Include header
	Include listing
	Include cross-reference
	Lines/page
	Tab spacing

	Preprocessor
	Ignore standard include directories
	Additional include directories
	Defined symbols

	Diagnostics
	Warnings
	Disable all warnings
	Disable warning or range of warnings
	Enable warning or range of warnings
	Max number of errors

	Extra Options
	Use command line options

	CR16C assembler options
	Description of assembler options
	Language
	User symbols are case sensitive
	Enable multibyte support
	Allow mnemonics in first column
	Allow directives in first column
	Macro quote characters

	Output
	Generate debug information

	List
	Output list file

	Preprocessor
	Ignore standard include directories
	Additional include directories
	Preinclude file
	Defined symbols
	Preprocessor output to file

	Diagnostics
	Enable remarks
	Suppress these diagnostics
	Treat these as remarks
	Treat these as warnings
	Treat these as errors
	Treat all warnings as errors
	Max number of errors

	Extra Options
	Use command line options

	Custom build options
	Description of custom build options
	Custom Tool Configuration
	Filename extensions
	Command line
	Output file
	Additional input files
	Run this tool before all other tools

	Build actions options
	Description of build actions options
	Build Actions Configuration
	Pre-build command line
	Post-build command line

	Linker options
	Description of linker options
	Config
	Linker configuration file
	Override default program entry
	Search paths
	Raw binary image

	Output
	Output file
	Format

	Extra Output
	Generate extra output file
	Output file
	Format

	List
	Generate linker listing
	Segment map
	Symbols
	Module summary
	Include suppressed entries
	Static overlay map
	File format
	Lines/page

	Log
	Generate log file
	Input files
	Module selections
	Selection of printf/scanf
	Segment selections

	#define
	Defined symbols

	Diagnostics
	Always generate output
	Segment overlap warnings
	No global type checking
	Range checks
	Warnings/Errors

	Checksum
	Fill unused code memory
	Generate checksum

	Extra Options
	Use command line options

	Library builder options
	Description of library builder options
	Output
	Output file

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols

