SCI14 IAR Assembler

Reference Guide

for National Semiconductor’s
SC14xxx Co-processors

COPYRIGHT NOTICE
© Copyright 2001 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, AR Systems assumes no responsibility for any
errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or
kind.

TRADEMARKS

IAR is a trademark owned by IAR Systems. IAR Embedded Workbench, ICC,
XLINK, and XLIB are trademarks owned by IAR Systems. C-SPY is a registered
trademark in Sweden by IAR Systems.

National Semiconductor is a registered trademark of National Semiconductor
Corporation.

Microsoft is a registered trademark, and Windows is a trademark of Microsoft
Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
First edition: November 2001

Part number: ASC14-1

Contents

Tables vii
PrEfAcCe ..o ix
Who should read this guide ix

How to use this guide ix
What this guide contains ix
Other doCUMENLALION ..o ssesssaene X
Document conventions X
Introduction to the SC14 |IAR Assembler ... |
SOUPCE FOFMAL ... seeis e essss s sssssse s I
Assembler expressions 2

TRUE and FALSEooicnenerineetiseeisieeessessessessessesssssesessssssessessesses 2

Using symbols in relocatable expressions 2

Symbols 2

LADEILS ettt stsesetsses e assasessesse s ssssesseset e s sasssesssees 3

Integer constants 3

ASCII character constants 3

Predefined SYMDOLScccueeceneeneinemiicneimseeisieeessessessessensesseseesesessssessessesses 4
Programming hints ... essessseseseens 5
Processor-specific files 5

Using C-style preprocessor directives 5

OULPUL FOFMIALSooeeecctieeeiieeeis e essss s essssss et s sesene 5
Assembler options 7
Setting command line options 7
Extended command line file 7

Assembler environment variables 8

Summary of assembler options 9
Descriptions of assembler options 10

SCI14 IAR Assembler
iv Reference Guide

Assembler operators

Assembler directives

Precedence of operators

Summary of assembler operators

Unary operators — 1

Multiplicative arithmetic operators — 3

Shift operators — 3

Additive arithmetic operators — 4

AND operators — 5

OR operators — 6

Comparison operators — 7

Description of operators

Summary of directives

Syntax conventions

Labels and comments

Parameters

Module control directives

Syntax

Parameters

Description

Symbol control directives
Syntax

Parameters

Description

Examples

Segment control directives

Syntax

Parameters

Description

Examples

Value assignment directives

Syntax

Parameters

21

21
21
21
22
22
22
22
22
23
23

33

33
36
36
36
37
37
37
38
39
39
39
39
39
40

.. 40

41
41

.43

44
44
44

Contents __o

Description 45
Examples 45
Conditional assembly directives 48
Syntax 48
Parameters 48
Description 49
Examples 49
Macro processing directives 50
Syntax 50
Parameters 51
Description 51
Examples 54
Listing control directives 57
Syntax 57
Parameters 57
Description 58
Examples 59
C-style preprocessor directives 62
Syntax 63
Parameters 63
Description 64
Examples 65
Data definition or allocation directives 66
Syntax 67
Parameters 67
Description 67
Examples 67
Assembler control directives 68
Syntax 68
Parameters 68
Description 68
Examples 69

vi

SCI14 IAR Assembler
Reference Guide

Assembler diagnostics

Message format
Severity levels

Index

Assembly warning messages

Command line error messages

Assembly error messages

Assembly fatal error messages

Assembler internal error messages

71

71
71
71
71
71
71
72

Tables

1: Typographic conventions used in this gUidec.ceceeveiiiiienininiinininiencnceee X
2: Integer constant fOrMALScoeeevueeriiniereiiertere ettt ettt 3
3: ASCII character constant formats .3
4: Predefined SYMDOLS ...cc.eeiieieriieiieieeiiest ettt ettt ettt st s 4
5: Assembler error TetUIN COAESc.uoiiiiiiiiiiriiiiieieiereeeee e e 8
6: Assembler environment variables ... 8
7: Assembler Options SUMIMATY cc.coeeueeeririerereeeeienteeeteee ettt e eeeaeeseneens 9
8: ConditioNal LISt (=C) .uvvieeeeiiieeceiie ettt et 11
9: Generating debug information (-r) .16
10: Controlling case sensitivity in user Symbols (=) ...c..cccceveeereerererericneerieennenes 17
11: Specifying the processor configuration (-V)cc.cceceereevierreenienienieesieneeneenienne 18
12: Disabling assembler Warnings (=W)coeeeeriereeniienenienieneeseneeeseeieeseeseenee 18
13: Including cross-references in assembler list file (-X)ccceveeveeveniiiniecnniennnne. 19
14: Assembler direCtives SUMMATY .ec.covueeruerererienieenieniienieeieeteeresieeieesteseesneeseeens 33
15: Assembler direCtive PAramMELeTScceeerueerieriierieniienieniienieeieereseeesseeareeeeseenee 36
16: Module control dir€CtiVEScceevueruerierieriinienieniinrenenieeteeie et 37
17: Symbol control dir€CtiVesc..ooceeeeiiieieiiieieereeeeeeee e 39
18: Segment cONrOl AITECTIVESevueeriieiirieniieniieiteetetterte ettt
19: Value assignment dif€CtIVEScecveerieiruierieieiiieiteneteneete et s
20: Conditional assembly directives

21: Macro processing dir€CtIVEScevueeiereeriierieriieienitenteeieeteste st et eresaesbeeseeene
22: Listing control dir€CtiVES c..coeririereririeninie ettt et
23: C-style preprocessor dif€CIVES eeiereeruierierrieeieniienieeieeeeeteseeeieeie s eaeesaeens 62
24: Data definition or allocation dir€Ctivesc.ccoceevererenerreneeirenieeee e 66
25: Assembler control dir€CtiVesc.eveeereriinirininenereeeee ettt 68

vii

SCI14 IAR Assembler
viii Reference Guide

Preface

Welcome to the SCI4 IAR Assembler Reference Guide. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the SC14 IAR Assembler for creating DIP or GenDSP output for the
SC14 co-processor.

Who should read this guide

You should read this guide if you plan to develop an application using assembler
language for the SC14 co-processor and need to get detailed reference information on
how to use the SC14 IAR Assembler. In addition, you should have a working
knowledge of the following:

e The architecture and instruction set of the SC14xxx co-processor. Refer to the
documentation from National Semiconductor for information about the SC14xxx
CO-Processor.

e General assembler language programming.

e Application development for embedded systems.

o The operating system of your host machine.

How to use this guide

When you first begin using the SC14 TAR Assembler, you should read the
Introduction to the SC14 IAR Assembler chapter in this reference guide.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using the IAR toolkit, we recommend that you first read the initial
chapters of the CRI6C IAR Embedded Workbench™ IDE User Guide. They give
product overviews, as well as tutorials that can help you get started.

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

o Introduction to the SC14 IAR Assembler provides programming information. It
also describes the source code format, and the format of assembler listings.

o Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical
summary of the assembler options, and contains detailed reference information
about each option.

Other documentation

o Assembler operators gives a summary of the assembler operators, arranged in
order of precedence, and provides detailed reference information about each
operator.

o Assembler directives gives an alphabetical summary of the assembler directives,
and provides detailed reference information about each of the directives, classified
into groups according to their function.

o Assembler diagnostics contains information about the formats and severity levels
of diagnostic messages.

Other documentation

The complete set of IAR Systems development tools for the SC14xxx co-processor is
described in a series of guides. For information about:

e Using the AR Embedded Workbench™ and the IAR C-SPY™ Debugger, refer to
the CR16C IAR Embedded Workbench™ IDE User Guide

o Using the IAR XLINK Linker™ and the IAR XLIB Librarian™, refer to the JAR
XLINK Linker™ and IAR XLIB Librarian™ Reference Guide.

All of these guides are delivered in PDF format on the installation media. Some of
them are also delivered as printed books.

Document conventions

SCI14 IAR Assembler
x Reference Guide

This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

reference A cross-reference within or to another part of this guide.
Identifies instructions specific to the versions of the IAR Systems tools

:E for the IAR Embedded Workbench interface.

Identifies instructions specific to the command line versions of IAR
@I Systems development tools.

Table 1: Typographic conventions used in this guide

Introduction to the SC14
IAR Assembler

This chapter describes the source code format for the SC14 |IAR Assembler.

Refer to National Semiconductor’s hardware documentation for syntax
descriptions of the instruction mnemonics.

Source format

The format of an assembler source line is as follows:
[label [:]1] [operation] [operands] [; comment]

where the components are as follows:

label A label, which is assigned the value and type of the current
program location counter (PLC). The : (colon) is optional if the
label starts in the first column.

operation An assembler instruction or directive. This must not start in the
first column.
operands An assembler instruction can have zero, one, or two operands.

The data definition directives, for example DB and DCS8, can have
any number of operands. For reference information about the
data definition directives, see Data definition or allocation
directives, page 66.

comment Comment, preceded by a ; (semicolon).

The fields can be separated by spaces or tabs.
A source line may not exceed 2047 characters.

Tab characters, ASCII 09H, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc.

The SC14 TAR Assembler uses the default file extensions s44, asm, and msa for
source files. Note: The file extension for object files is r4 5, which corresponds to the
file extension for CR16C object files.

Assembler expressions

Assembler expressions

SCI14 IAR Assembler
2 Reference Guide

Expressions can consist of operands and operators.

The assembler will accept a wide range of expressions, including both arithmetic and
logical operations. All operators use 32-bit two’s complement integers, and range
checking is only performed when a value is used for generating code.

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators; see also Precedence of operators, page 21.

The following operands are valid in an expression:

e User-defined symbols and labels.
e Constants, excluding floating-point constants.
o The program location counter (PLC) symbol, $.

These are described in greater detail in the following sections.

The valid operators are described in the chapter Assembler operators, page 21.

TRUE AND FALSE

In expressions a zero value is considered FALSE, and a non-zero value is considered
TRUE.

Conditional expressions return the value O for FALSE and 1 for TRUE.

USING SYMBOLS IN RELOCATABLE EXPRESSIONS

Expressions that include symbols in relocatable segments cannot be resolved at
assembly time, because they depend on the location of segments.

Such expressions are evaluated and resolved at link time, by the IAR XLINK
Linker™. There are no restrictions on the expression; any operator can be used on
symbols from any segment, or any combination of segments.

SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant.

Symbols must begin with a letter, a—z or A—Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

For built-in symbols like instructions, registers, operators, and directives case is
insignificant. For user-defined symbols case is by default significant but can be turned
on and off using the - s assembler option. See page 17 for additional information.

Introduction to the SCI14 IAR Assembler __4

LABELS

Symbols used for memory locations are referred to as labels.

Program location counter (PLC)
The program location counter is called $. For example:

JMP IS ; Loop forever

INTEGER CONSTANTS

Since all IAR Systems assemblers use 32-bit two’s complement internal arithmetic,
integers have a (signed) range from -2147483648 to 2147483647.

Constants are written as a sequence of digits with an optional - (minus) sign in front
to indicate a negative number.

Commas and decimal points are not permitted.

The following types of number representation are supported:

Integer type Example

Binary 1010b, b’1010°

Octal 1234q, q’'1234’

Decimal 1234, -1, d’l234’
Hexadecimal OFFFFh, OXFFFF, h'FFFF’

Table 2: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

ASCIl CHARACTER CONSTANTS

ASCII constants can consist of between zero and more characters enclosed in single
or double quotes. Only printable characters and spaces may be used in ASCII strings.
If the quote character itself is to be accessed, two consecutive quotes must be used:

Format Value

"ABCD’ ABCD (four characters).

"ABCD" ABCD\0’ (five characters the last ASCII null).
"A”B’ A'B

PAT A

/171 (4 quotes) ¢

Table 3: ASCII character constant formats

Assembler expressions

SCI14 IAR Assembler
4 Reference Guide

Format Value

/' (2 quotes) Empty string (no value).
" Empty string (an ASCII null character).
vV '
\\ \

Table 3: ASCII character constant formats (Continued)

PREDEFINED SYMBOLS

The SC14 IAR Assembler defines a set of symbols for use in assembler source files.
The symbols provide information about the current assembly, allowing you to test
them in preprocessor directives or include them in the assembled code. The strings
returned by the assembler are enclosed in double quotes.

The following predefined symbols are avilable:

Symbol Value

__DATE__ Current date in dd/Mmm/yyyy format (string).

__FILE__ Current source filename (string).

__IAR_SYSTEMS_ASM_ _ IAR assembler identifier (0x01).

__LINE__ Current source line number (number).

__TID__ Target identity, consisting of two bytes (number). The high

byte is the target identity, which is 45 for ASC14. The low
byte is the processor option *16.

__TIME__ Current time in hh: mm: ss format (string).

__VER__ Version number in integer format; for example, version
4.17 is returned as 417 (number).

Table 4: Predefined symbols

Including symbol values in code

To include a symbol value in the code, you use the symbol in one of the data definition
directives.

For example, to include the time of assembly as a string for the program to display:

tim DC8 __TIME ,",", DATE ,0; time and date

Testing symbols for conditional assembly

To test a symbol at assembly time, you use one of the conditional assembly directives.

Introduction to the SCI14 IAR Assembler __4

Programming hints

This section gives hints on how to write efficient code for the SC14 IAR Assembler.

PROCESSOR-SPECIFIC FILES

In the previous DIP IAR Assembler, ADIP, the environment variable QDIPINFO was
used to point out the * . chp files from which the assembler reads opcode information.
This variable is no longer used. Instead, the information about the * . chp file location
is entered in the registry when you install the product.

The ADIP assembler generated an output where each byte in a word was swapped.
Since no DIP application was programmed using a normal programming tool, this
error was never discovered. When adding the GenDSP format, the error was found and
corrected. If old DIP programs are to be used in the new environment, without being
recompiled, this needs to be taken in consideration.

When using direct jumps in the old ADIP environment, byte addresses were used, for
example:

JMP 0x24
These were later solved by the linker to give the DIP a word address.
The ASC14 assembler uses word addresses directly, for example:

JMP 0x12

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with
assembler-style comments.

Output formats

The relocatable and absolute output is in the same format for all IAR assemblers,
because object code is always intended for processing with the IAR XLINK Linker.

In absolute formats the output from XLINK is, however, normally compatible with the
chip vendor’s debugger programs (monitors), as well as with PROM programmers
and stand-alone emulators from independent sources.

Output formats

SCI14 IAR Assembler
6 Reference Guide

Assembler options

This chapter first explains how to set the options from the command line, and
gives an alphabetical summary of the assembler options. It then provides
detailed reference information for each assembler option.

:g The CRI6C IAR Embedded Workbench™ IDE User Guide describes how to set
assembler options in the IAR Embedded Workbench, and gives reference
information about the available options.

Setting command line options

To set assembler options from the command line, you include them on the command
line, after the asc14 command:

ascl4 [options] I[sourcefile] [options]
These items must be separated by one or more spaces or tab characters.

If all the optional parameters are omitted the assembler will display a list of available
options a screenful at a time. Press Enter to display the next screenful.

For example, when assembling the source file tutor. s44, use the following
command to generate a list file to the default filename (tutor.lst):

ascl4 tutor -L

Some options accept a filename, included after the option letter with a separating
space. For example, to generate a list file with the name 1ist.1st:

ascl4 tutor -1 list.lst

Some other options accept a string that is not a filename. This is included after the
option letter, but without a space. For example, to generate a list file to the default
filename but in the subdirectory named 1list:

ascl4 tutor -Llist)\

Note: The subdirectory you specify must already exist. The trailing backslash is
required because the parameter is prepended to the default filename.
EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the command line, the
assembler can accept them from an extended command line file.

Setting command line options

SCI14 IAR Assembler
8 Reference Guide

Extended command line files have the default extension xc1, and can be specified
using the - £ command line option. For example, to read the command line options
from extend.xcl, enter:

ascl4 -f extend.xcl

Error return codes

When using the SC14 IAR Assembler from within a batch file, you may need to
determine whether the assembly was successful in order to decide what step to take
next. For this reason, the assembler returns the following error return codes:

Return code Description

0 Assembly successful, warnings may appear

1 There were warnings (only if the -ws option is used)
2 There were errors

Table 5: Assembler error return codes

ASSEMBLER ENVIRONMENT VARIABLES

Options can also be specified using the ASMSC14 environment variable. The
assembler appends the value of this variable to every command line, so it provides a
convenient method of specifying options that are required for every assembly.

The following environment variable can be used with the SC14 IAR Assembler:

Environment variable Description

ASC14 INC Specifies directories to search for include files; for example:
set ASC14 INC=c:\myinc\

ASMSC1l4 Specifies command line options; for example:
set ASMSCl4=-L -ws

Table 6: Assembler environment variables

For example, setting the following environment variable will always generate a list
file with the name temp. 1st:

ASMSCl4=-1 temp.lst

Assembler options __

Summary of assembler options

The following table summarizes the assembler options available from the command

line:

Command line option

Description

-B

-b

-c [DEAOM]
-Dsymbol [=valuel]
-Enumber

-f extend.xcl
-G

-Iprefix

-i

-L[prefix]

-1 filename
-Mab

-N

-Oprefix

-o filename
-plines
-r{e|n}

-S

-s{+|-}

-tn

-Usymb
-vSCl4xxx
-wlstring] [s]

-x[DI2]

Macro execution information
Makes a library module
Conditional list
Defines a symbol

Maximum number of errors
Extends the command line
Opens standard input as source
Includes paths

#included text

Lists to prefixed source name
Lists to named file

Macro quote characters
Omits header from assembler listing
Sets object filename prefix
Sets object filename
Lines/page

Generates debug information
Sets silent operation

Case sensitive user symbols
Tab spacing
Undefines a symbol

Specifies target processor
Disables warnings

Includes cross-references

Table 7: Assembler options summary

Descriptions of assembler options

Descriptions of assembler options

SCI14 IAR Assembler
|0 Reference Guide

The following sections give full reference information about each assembler option.

-B

Use this option to make the assembler print macro execution information to the
standard output stream on every call of a macro. The information consists of:

e The name of the macro

e The definition of the macro

e The arguments to the macro

e The expanded text of the macro.

This option is mainly used in conjunction with the list file options -L or -1; for
additional information, see page 13.

This option is identical to the Macro execution info option in the ASC14 category in
the IAR Embedded Workbench.

-b
This option causes the object file to be a library module rather than a program module.

By default the assembler produces a program module ready to be linked with the IAR
XLINK Linker. Use the -b option if you instead want the assembler to make a library
module for use with XLIB.

If the NAME directive is used in the source (to specify the name of the program
module), the -b option is ignored, i.e. the assembler produces a program module
regardless of the -b option.

This option is identical to the Make a LIBRARY module option in the ASC14
category in the IAR Embedded Workbench.

-c [DEAOM]

Use this option to control the contents of the assembler list file. This option is mainly
used in conjunction with the list file options -L and -1; see page 13 for additional
information.

Assembler options __

The following table shows the available parameters:

Command line option Description

-cA Assembled lines only
-cD Disable list file

-cE No macro expansions
-cM Macro definitions
-cO Multiline code

Table 8: Conditional list (-c)

This option is related to the List file options in the ASC14 category in the
IAR Embedded Workbench.

Dsymbol [=value]

Use this option to define a preprocessor symbol with the name symbol and the value
value. If no value is specified, 1 is used.

The -D option allows you to specify a value or choice on the command line instead of
in the source file.

Example

For example, you could arrange your source to produce either the test or production
version of your program dependent on whether the symbol testver was defined. To
do this, use include sections such as:

#ifdef testver

. ; additional code lines for test version only
#endif
Then select the version required in the command line as follows:

Production version: ascl4d prog
Test version: ascl4 prog -Dtestver

Alternatively, your source might use a variable that you need to change often. You can
then leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

ascl4 prog -Dframerate=3

This option is identical to the #define option in the ASC14 category in the
IAR Embedded Workbench.

Descriptions of assembler options

SCI14 IAR Assembler
|2 Reference Guide

-Enumber

This option specifies the maximum number of errors that the assembler report will
report.

By default the maximum number is 100. The -E option allows you to decrease or
increase this number to see more or fewer errors in a single assembly.

This option is identical to the Max number of errors option in the ASC14 category
in the IAR Embedded Workbench.

-f extend.xcl

This option extends the command line with text read from the file named
extend.xcl. Notice that there must be a space between the option itself and the
filename.

The - £ option is particularly useful where there is a large number of options which
are more conveniently placed in a file than on the command line itself.

Example

To run the assembler with further options taken from the file extend.xc1, use:

ascl4 prog -f extend.xcl

-G

This option causes the assembler to read the source from the standard input stream,
rather than from a specified source file.

When -G is used, no source filename may be specified.

-Iprefix

Use this option to specify paths to be used by the preprocessor by adding the
#include file search prefix prefix.

By default the assembler searches for #include files only in the current working
directory and in the paths specified in the ASC14 INC environment variable. The -I
option allows you to give the assembler the names of directories where it will also
search if it fails to find the file in the current working directory.

Assembler options __

Example

Using the options:

-Ic:\global\ -Ic:\thisproj\headers\
and then writing:

#include "asmlib.hdr"

in the source, will make the assembler search first in the current directory, then in the
directory c:\globall\, and finally in the directory c: \thisproj\headers\
provided that the ASC14_INC environment variable is set.

This option is related to the #include option in the ASC14 category in the
TIAR Embedded Workbench.

-i
Includes #include files in the list file.

By default the assembler does not list #include file lines since these often come
from standard files and would waste space in the list file. The - i option allows you to
list these file lines.

This option is related to the #include option in the ASC14 category in the
TIAR Embedded Workbench.

-L[prefix]

By default the assembler does not generate a list file. Use this option to make the
assembler generate one and sent it to file [prefix] sourcename.lst.

To simply generate a listing, use the -L option without a prefix. The listing is sent to
the file with the same name as the source, but the extension will be 1st.

The -L option lets you specify a prefix, for example to direct the list file to a
subdirectory. Notice that you must not include a space before the prefix.

-L may not be used at the same time as -1.

Example
To send the list file to 1ist\prog. 1st rather than the default prog.1lst:
ascl4d prog -Llist)\

This option is related to the List options in the ASC14 category in the IAR Embedded
Workbench.

Descriptions of assembler options

SCI14 IAR Assembler
|4 Reference Guide

-1

-1 filename

Use this option to make the assembler generate a listing and send it to the file
filename. If no extension is specified, 1st is used. Notice that you must include a
space before the filename.

By default the assembler does not generate a list file. The -1 option generates a listing,
and directs it to a specific file. To generate a list file with the default filename, use the
- L option instead.

This option is related to the List options in the ASC14 category in the AR Embedded
Workbench.

-Mab

This option sets the characters to be used as left and right quotes of each macro
argument to a and b respectively.

By default the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

Example

For example, using the option:

-M[]

in the source you would write, for example:

print [>]

to call a macro print with > as the argument.

Note: Depending on your host environment, it may be necessary to use quote marks
with the macro quote characters, for example:

ascl4 filename -M’'<>’

This option is identical to the Macro quote chars option in the ASC14 category in
the IAR Embedded Workbench.

-N

Use this option to omit the header section that is printed by default in the beginning of
the list file.

This option is useful in conjunction with the list file options -L or -1; see page 13 for
additional information.

Assembler options __

This option is related to the List file option in the ASC14 category in the
IAR Embedded Workbench.

-Oprefix

Use this option to set the prefix to be used on the name of the object file. Notice that
you cannot include a space before the prefix.

By default the prefix is null, so the object filename corresponds to the source filename
(unless -o is used). The -0 option lets you specify a prefix, for example to direct the
object file to a subdirectory.

Notice that -0 may not be used at the same time as -o.

Example

To send the object code to the file obj\prog.r4s rather than to the default file
prog.r45:

ascld prog -0Oobj\

This option is related to the Output directories option in the General category in the
TIAR Embedded Workbench.

-o filename

This option sets the filename to be used for the object file. Notice that you must
include a space before the filename. If no extension is specified, r45 is used.

The option -o may not be used at the same time as the option -0.

Example

For example, the following command puts the object code to the file obj . r45 instead
of the default prog.r45:

ascl4 prog -o obj
Notice that you must include a space between the option itself and the filename.

This option is related to the filename and directory that you specify when creating a
new source file or project in the JAR Embedded Workbench.

Descriptions of assembler options

SCI14 IAR Assembler
|6 Reference Guide

-plines

The -p option sets the number of lines per page to 1ines, which must be in the range
10 to 150.

This option is used in conjunction with the list options -L or -1; see page 13 for
additional information.

This option is identical to the Lines/page option in the ASC14 category in the
TIAR Embedded Workbench.

-r{e|n}

The -r option makes the assembler generate debug information that allows a
symbolic debugger such as C-SPY to be used on the program.

By default the assembler does not generate debug information, to reduce the size and
link time of the object file. You must use the -r option if you want to use a debugger
with the program.

The following table shows the available parameters:

Command line option Description
-re Includes the full source file into the object file
-rn Generates an object file without source information; symbol

information will be available.

Table 9: Generating debug information (-r)

This option is identical to the Generate debug information option in the ASC14
category in the IAR Embedded Workbench.

-S

The - S option causes the assembler to operate without sending any messages to the
standard output stream.

By default the assembler sends various insignificant messages via the standard output
stream. Use the - S option to prevent this.

The assembler sends error and warning messages to the error output stream, so they
are displayed regardless of this setting.

Assembler options __

-s{+]-}
Use the -s option to control whether the assembler is sensitive to the case of user
symbols:

Command line option Description
-s+ Case sensitive user symbols
-s- Case insensitive user symbols

Table 10: Controlling case sensitivity in user symbols (-s)

By default case sensitivity is on. This means that, for example, LABEL and 1label
refer to different symbols. Use -s- to turn case sensitivity off, in which case LABEL
and label will refer to the same symbol.

This option is identical to the Case sensitive user symbols option in the ASC14
category in the IAR Embedded Workbench.

-tn

By default the assembler sets 8 character positions per tab stop. The -t option allows
you to specify a tab spacing to n, which must be in the range 2 to 9.

This option is useful in conjunction with the list options -L or -1; see page 13 for
additional information.

This option is identical to the Tab spacing option in the ASC14 category in the
IAR Embedded Workbench.

-Usymb
Use the -U option to undefine the predefined symbol symb.

By default the assembler provides certain predefined symbols; see Predefined
symbols, page 4. The -U option allows you to undefine such a predefined symbol to
make its name available for your own use through a subsequent -D option or source
definition.

Example

To use the name of the predefined symbol TIME _ for your own purposes, you
could undefine it with:

ascl4 prog -U _ TIME

This option is identical to the #undef option in the ASC14 category in the
TIAR Embedded Workbench.

Descriptions of assembler options

SCI14 IAR Assembler
|8 Reference Guide

-V

-vSCl4xxx
Use the -v option to specify the processor configuration:

Option Derivative
-vSC14428 (default) SC14428, SC14428-DSP
Table 11: Specifying the processor configuration (-v)

The -v option is identical to the Processor configuration option in the General
category in the JAR Embedded Workbench.

-w[string] [s]

By default the assembler displays a warning message when it detects an element of the
source which is legal in a syntactical sense, but may contain a programming error; see
Assembler diagnostics, page 71, for details.

Use this option to disable warnings. The -w option without a range disables all
warnings. The -w option with a range performs the following:

Command line option Description

-w+ Enables all warnings.

-w- Disables all warnings.
-w+n Enables just warning n.
-w-n Disables just warning n.
-w+m-n Enables warnings m to n.
-w-m-n Disables warnings m to n.

Table 12: Disabling assembler warnings (-w)

Only one -w option may be used on the command line.

By default the assembler generates exit code 0 for warnings. Use the -ws option to
generate exit code 1 if a warning message is produced.

Example

To disable just warning O (unreferenced label), use the following command:

ascl4 prog -w-0

Assembler options __

To disable warnings O to 8, use the following command:
ascl4 prog -w-0-8

This option is identical to the Warnings option in the ASC14 category in the
TIAR Embedded Workbench.

-x[DI2]

Use this option to make the assembler include a cross-reference table at the end of the
list file.

This option is useful in conjunction with the list options -L or -1; see page 13 for
additional information.

The following parameters are available:

Command line option Description
-xD #defines

-xI Internal symbols
-x2 Dual line spacing

Table 13: Including cross-references in assembler list file (-x)

This option is identical to the Include cross-reference option in the ASC14 category
in the IAR Embedded Workbench.

Descriptions of assembler options

SCI14 IAR Assembler
20 Reference Guide

Assembler operators

This chapter first describes the precedence of the assembler operators, and
then summarizes the operators, classified according to their precedence.
Finally, this chapter provides reference information about each operator,
presented in alphabetical order.

Precedence of operators

Each operator has a precedence number assigned to it that determines the order in
which the operator and its operands are evaluated. The precedence numbers range
from 1 (the highest precedence, i.e. first evaluated) to 7 (the lowest precedence, i.e.
last evaluated).

The following rules determine how expressions are evaluated:

o The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are
evaluated.

e Operators of equal precedence are evaluated from left to right in the expression.

e Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, the
following expression evaluates to 1:

7/ (1+(2%3))

Summary of assembler operators

The following tables give a summary of the operators, in order of priority. Synonyms,
where available, are shown in brackets after the operator name.

UNARY OPERATORS - |

+ Unary plus.

- Unary minus.

! Logical NOT.
BINNOT (~) Bitwise NOT.
LOW Low byte.
HIGH High byte.
BYTE2 Second byte.

21

Summary of assembler operators

BYTE3 Third byte.
BYTE4 Fourth byte
DATE Current time/date.
SFB Segment begin.
SFE Segment end.
SIZEOF Segment size.

MULTIPLICATIVE ARITHMETIC OPERATORS -3

* Multiplication.
/ Division.
% Modulo.

SHIFT OPERATORS -3

SHR [>>] Logical shift right.
SHL [<<] Logical shift left.

ADDITIVE ARITHMETIC OPERATORS -4

+ Addition.

- Subtraction.

AND OPERATORS -5

AND [&&] Logical AND.
BINAND [&] Bitwise AND.

OR OPERATORS -6

OR [||1] Logical OR.
BINOR [|] Bitwise OR.
XOR Logical exclusive OR.
BINXOR [*] Bitwise exclusive OR.

SCI14 IAR Assembler
22 Reference Guide

Assembler operators __o

COMPARISON OPERATORS -7

EQ [=], [==] Equal.

NE [<>], [!=] Not equal.

GT [>] Greater than.

LT [<I] Less than.

UGT Unsigned greater than.
ULT Unsigned less than.
GE [>=] Greater than or equal.
LE [<=] Less than or equal.

Description of operators

The following sections give detailed descriptions of each assembler operator. See
Assembler expressions, page 2, for related information.

* Multiplication (3).
* produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.
Examples

2*2 — 4
-2*2 > -4

+ Unary plus (1).

Unary plus operator.

Examples

+3 ™ 3
3*+2 > 6

+ Addition (4).

The + addition operator produces the sum of the two operands which surround it. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit
integer.

23

Description of operators

SCI14 IAR Assembler
24 Reference Guide

AND [&&]

Examples

92+19 — 111
-242 0
-2+-2 > -4

Unary minus (1).
The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of the operator is
the two’s complement negation of that integer.

Subtraction (4).

The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result
is also signed 32-bit integer.

Examples

92-19 — 73
-2-2 7 -4
-2--2 > 0

Division (3).

/ produces the integer quotient of the left operand divided by the right operator. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit
integer.

Examples

9/2 — a4
-12/3 —> -4
9/2%6 — 24

Logical AND (5).

Use AND to perform logical AND between its two integer operands. If both operands
are non-zero the result is 1; otherwise it is zero.

Examples

B’1010 && B’0011 > 1

BINAND [&]
BINNOT [~]
BINOR [|]
BINXOR ["]

BYTE2

Assembler operators __o

B’1010 && B’0101 — 1
B’1010 && B’0000 — O

Bitwise AND (5).

Use BINAND to perform bitwise AND between the integer operands.

Examples

B’1010 & B’0011 —> B’0010
B’1010 & B'0101 — B’0000
B’1010 & B'0000 — B’0000

Bitwise NOT (1).

Use BINNOT to perform bitwise NOT on its operand.

Examples

~ B’1010 > B’11111111111111111111111111110101

Bitwise OR (6).

Use BINOR to perform bitwise OR on its operands.

Examples

B’/1010 | B/0101 —> B’1111
B’/1010 | B’0000 —> B’1010

Bitwise exclusive OR (6).

Use BINXOR to perform bitwise XOR on its operands.

Examples

A

B’1010
B’1010

B’0101 — B’'1111
B’0011 — B’1001

A

Second byte (1).

BYTE?2 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.

25

Description of operators

SCI14 IAR Assembler
26 Reference Guide

BYTE3

BYTE4

DATE

Examples

BYTE2 0x12345678 —> 0x56

Third byte (1).

BYTES3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

Examples

BYTE3 0x12345678 —> 0x34

Fourth byte (1).

BYTEA4 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

Examples

BYTE4 0x12345678 — 0x12

Current time/date (1).
Use the DATE operator to specify when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59).

DATE 2 Current minute (0-59).

DATE 3 Current hour (0-23).

DATE 4 Current day (1-31).

DATE 5 Current month (1-12).

DATE 6 Current year MOD 100 (1998 —98, 2000 —00, 2002 —~02).
Examples

To assemble the date of assembly:

today: DC8 DATE 5, DATE 4, DATE 3

GE

GT

[==]

[>=]

HIGH

Assembler operators __o

Equal (7).

EQ evaluates to 1 (true) if its two operands are identical in value, or to O (false) if its
two operands are not identical in value.

"ABC’ = 'ABCD’ — 0

Greater than or equal (7).

GE evaluates to 1 (true) if the left operand is equal to or has a higher numeric value
than the right operand.

Examples

1 >=2 >0
2 >=1 > 1
1 >=1—>1

Greater than (7).

GT evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand.

Examples

-1 >1 >0
2 >1 > 1
1 >1—>0

High byte (1).

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

Examples

HIGH OxABCD — O0xAB

27

Description of operators

SCI14 IAR Assembler
28 Reference Guide

LE

LT

MOD

[<=]

LOW

[%]

Less than or equal (7)

LE evaluates to 1 (true) if the left operand has a lower or equal numeric value to the
right operand.

Low byte (1).

LOW takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Examples

LOW O0xABCD — 0xCD

Less than (7).

LT evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand.

Examples

-1 <2 > 1
2 <1 >0
2 <2 >0

Modulo (3).

MOD produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers and the result is also a
signed 32-bit integer.

X % Yisequivalentto X-Y* (X/Y) using integer division.

Examples

2% 2 >0
12 %57 > 5
3%2 1

Assembler operators __o

NE [<>], [!=] Notequal (7).
NE evaluates to 0 (false) if its two operands are identical in value or to 1 (true) if its
two operands are not identical in value.
Examples

1 <>2 > 1
2 <> 2 >0
'A' <> 'B’ ™ 1

NOT [!] Logical NOT (1).

Use NOT to negate a logical argument.

Examples

! B’0101 > 0
! B’0000 > 1

OR []|] Logical OR (6).

Use OR to perform a logical OR between two integer operands.

Examples
B’1010 || B’0000 —> 1
B’0000 || B’0000 —> O

SFB Segment begin (1).

Syntax

SFB (segment [{+ | -} offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFB is used.

offset An optional offset from the start address. The parentheses are

optional if of fset is omitted.

29

Description of operators

SCI14 IAR Assembler
30 Reference Guide

SFE

Description

SFB accepts a single operand to its right. The operand must be the name of a
relocatable segment.

The operator evaluates to the absolute address of the first byte of that segment. This
evaluation takes place at linking time.
Examples

NAME demo
RSEG CODE
start: DC1l6 SFB(CODE)

Even if the above code is linked with many other modules, start will still be set to
the address of the first byte of the segment.

Segment end (1).

Syntax

SFE (segment [{+ | -} offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFE is used.

offset An optional offset from the start address. The parentheses are

optional if of £set is omitted.

Description

SFE accepts a single operand to its right. The operand must be the name of a
relocatable segment. The operator evaluates to the segment start address plus the
segment size. This evaluation takes place at linking time.

Examples

NAME demo
RSEG CODE
end: DClé SFE(CODE)

Even if the above code is linked with many other modules, end will still be set to the
address of the last byte of the segment.

Assembler operators __o

SHL [<<] Logical shift left (3).

Use SHL to shift the left operand, which is always treated as unsigned, to the left.
The number of bits to shift is specified by the right operand, interpreted as an integer
value between 0 and 32.

Examples

B’00011100 << 3 — B’11100000
B’00000111111111111 << 5 —> B’11111111111100000
14 << 1 — 28

SHR [>>] Logical shift right (3).

Use SHR to shift the left operand, which is always treated as unsigned, to the right.
The number of bits to shift is specified by the right operand, interpreted as an integer
value between 0 and 32.

Examples

B’01110000 >> 3 — B’00001110
B’1111111111111111 >> 20 > 0
14 >> 1 > 7

SIZEOF Segment size (1).

Syntax

SIZEOF segment

Parameters

segment The name of a relocatable segment, which must be defined
before SIZEOF is used.

Description

SIZEOF generates SFE-SFB for its argument, which should be the name of a
relocatable segment; i.e. it calculates the size in bytes of a segment. This is done when
modules are linked together.

Examples

NAME demo
RSEG CODE

31

Description of operators

SCI14 IAR Assembler
32 Reference Guide

UGT

ULT

XOR

size: DCleé SIZEOF CODE

sets size to the size of segment CODE.

Unsigned greater than (7).

UGT evaluates to 1 (true) if the left operand has a larger value than the right operand.
The operation treats its operands as unsigned values.

Examples

2 UGT 1 > 1
-1 UGT 1 > 1

Unsigned less than (7).

ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand.
The operation treats its operands as unsigned values.

Examples

1 ULT 2 > 1
-1 ULT 2 > 0

Logical exclusive OR (6).

Use XOR to perform logical XOR on its two operands.

Examples

B’0101 XOR B’1010 —> O
B’0101 XOR B’0000 — 1

Assembler directives

This chapter gives an alphabetical summary of the assembler directives. It then
describes the syntax conventions and provides detailed reference information
for each category of directives.

Summary of directives

The following table gives a summary of all the assembler directives.

Directive Description Section
S Includes a file. Assembler control
#define Assigns a value to a label. C-style preprocessor
#elif Introduces a new condition ina #if...#endif C-style preprocessor
block.
#else Assembles instructions if a condition is false. C-style preprocessor
#endif Endsa #if, #ifdef, or #ifndef block. C-style preprocessor
#error Generates an error. C-style preprocessor
#if Assembles instructions if a condition is true. C-style preprocessor
#ifdef Assembles instructions if a symbol is defined. C-style preprocessor
#ifndef Assembles instructions if a symbol is undefined. C-style preprocessor
#include Includes a file. C-style preprocessor
#message Generates a message on standard output. C-style preprocessor
#undef Undefines a label. C-style preprocessor
/*comment*/ C-style comment delimiter. Assembler control
// C++ style comment delimiter. Assembler control
= Assigns a permanent value local to a module. Value assignment
ALIAS Assigns a permanent value local to a module. Value assignment
ALIGN Aligns the location counter by inserting Segment control
zero-filled bytes.
ASEG Begins an absolute segment. Segment control
ASSIGN Assigns a temporary value. Value assignment
CASEOFF Disables case sensitivity. Assembler control
CASEON Enables case sensitivity. Assembler control

Table 14: Assembler directives summary

33

Summary of directives

SCI14 IAR Assembler
34 Reference Guide

Directive Description Section
COL Sets the number of columns per page. Listing control
COMMON Begins a common segment. Segment control
DB Generates 8-bit byte constants, including strings. Data definition or
allocation
DC8 Generates 8-bit byte constants, including strings. Data definition or
allocation
DC16 Generates |6-bit word constants, including Data definition or
strings. allocation
DEFINE Defines a file-wide value. Value assignment
DQ15 Generates |6-bit fixed-point values. Data definition or
allocation
DS Allocates space for 8-bit bytes. Data definition or
allocation
DS8 Allocates space for 8-bit bytes. Data definition or
allocation
DS16 Allocates space for |6-bit words. Data definition or
allocation
DW Generates |6-bit word constants, including Data definition or
strings. allocation
ELSE Assembles instructions if a condition is false. Conditional assembly
ELSEIF Specifies a new condition in an IF...ENDIF Conditional assembly
block.
END Terminates the assembly of the last module ina Module control
file.
ENDIF Ends an IF block. Conditional assembly
ENDM Ends a macro definition. Macro processing
ENDMOD Terminates the assembly of the current module. Module control
EQU Assigns a permanent value local to a module. Value assignment
EVEN Aligns the program counter to an even address. ~ Segment control
EXITM Exits prematurely from a macro. Macro processing
EXPORT Exports symbols to other modules. Symbol control
EXTERN Imports an external symbol. Symbol control
IF Assembles instructions if a condition is true. Conditional assembly
IMPORT Imports an external symbol. Symbol control

Table 14: Assembler directives summary (Continued)

Assembler directives __¢

Directive Description Section
LIBRARY Begins a library module. Module control
LIMIT Checks a value against limits. Value assignment
LOCAL Creates symbols local to a macro. Macro processing
LSTCND Controls conditional assembly listing. Listing control
LSTCOD Controls multi-line code listing. Listing control
LSTEXP Controls the listing of macro generated lines. Listing control
LSTMAC Controls the listing of macro definitions. Listing control
LSTOUT Controls assembly-listing output. Listing control
LSTPAG Controls the formatting of output into pages. Listing control
LSTREP Controls the listing of lines generated by repeat Listing control
directives.
LSTXRF Generates a cross-reference table. Listing control
MACRO Defines a macro. Macro processing
MODULE Begins a library module. Module control
NAME Begins a program module. Module control
ODD Aligns the program counter to an odd address. ~ Segment control
ORG Sets the location counter. Segment control
PAGE Generates a new page. Listing control
PAGSIZ Sets the number of lines per page. Listing control
PROGRAM Begins a program module. Module control
PUBLIC Exports symbols to other modules. Symbol control
RADIX Sets the default base. Assembler control
REPT Assembles instructions a specified number of Macro processing
times.
REPTC Repeats and substitutes characters. Macro processing
RSEG Begins a relocatable segment. Segment control
RTMODEL Declares run-time model attributes. Module control
SET Assigns a temporary value. Value assignment
VAR Assigns a temporary value. Value assignment

Table 14: Assembler directives summary (Continued)

35

Syntax conventions

Syntax conventions

SCI14 IAR Assembler
36 Reference Guide

In the syntax definitions the following conventions are used:

Parameters, representing what you would type, are shown in italics. So, for example,
in:

ORG expr

expr represents an arbitrary expression.

Optional parameters are shown in square brackets. So, for example, in:
END [expr]

the expr parameter is optional. An ellipsis indicates that the previous item can be
repeated an arbitrary number of times. For example:

PUBLIC symbol [,symboll

indicates that PUBLIC can be followed by one or more symbols, separated by commas.
Alternatives are enclosed in { and } brackets, separated by a vertical bar, for example:
LSTOUT{+| -}

indicates that the directive must be followed by either + or -.

LABELS AND COMMENTS
Where a label must precede a directive, this is indicated in the syntax, as in:
label VAR expr

An optional label, which will assume the value and type of the current program
location counter (PLC), can precede all directives. For clarity, this is not included in
each syntax definition.

In addition, unless explicitly specified, all directives can be followed by a comment,
preceded by ; (semicolon).
PARAMETERS

The following table shows the correct form of the most commonly used types of
parameter:

Parameter What it consists of

expr An expression; see Assembler expressions, page 2.
label A symbolic label.

symbol An assembler symbol.

Table 15: Assembler directive parameters

Assembler directives __¢

Module control directives

Module control directives are used for marking the beginning and end of source
program modules, and for assigning names and types to them.

Directive Description

END Terminates the assembly of the last module in a file.
ENDMOD Terminates the assembly of the current module.
LIBRARY Begins a library module.

MODULE Begins a library module.

NAME Begins a program module.

PROGRAM Begins a program module.

RTMODEL Declares run-time model attributes.

Table 16: Module control directives

SYNTAX

END [label]

ENDMOD [labell

LIBRARY symbol [(expr)]
MODULE symbol [(expr)]
NAME symbol [(expr)]
PROGRAM symbol [(expr)]
RTMODEL key, value

PARAMETERS

expr Optional expression (0-255) used by the IAR compiler to encode
programming language, memory model, and processor configuration.

key A text string specifying the key.

label An expression or label that can be resolved at assembly time. It is

output in the object code as a program entry address.

symbol Name assigned to module, used by XLINK and XLIB when
processing object files.

value A text string specifying the value.

37

Module control directives

SCI14 IAR Assembler
38 Reference Guide

DESCRIPTION

Beginning a program module

Use NAME to begin a program module, and to assign a name for future reference by the
IAR XLINK Linker™ and the IAR XLIB Librarian™.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a library module

Use MODULE to create libraries containing lots of small modules—Ilike run-time
systems for high-level languages—where each module often represents a single
routine. With the multi-module facility, you can significantly reduce the number of
source and object files needed.

Library modules are only copied into the linked code if other modules reference a
public symbol in the module.

Terminating a module

Use ENDMOD to define the end of a module.

Terminating the last module

Use END to indicate the end of the source file. Any lines after the END directive are
ignored.

Assembling multi-module files

Program entries must be either relocatable or absolute, and will show up in XLINK
load maps, as well as in some of the hexadecimal absolute output formats. Program
entries must not be defined externally.

The following rules apply when assembling multi-module files:

o At the beginning of a new module all user symbols are deleted, except for those
created by DEFINE, #define, or MACRO, the location counters are cleared, and
the mode is set to absolute.

e Listing control directives remain in effect throughout the assembly.

Note: END must always be used in the last module, and there must not be any source
lines (except for comments and listing control directives) between an ENDMOD and a
MODULE directive.

If the NAME or MODULE directive is missing, the module will be assigned the name of
the source file and the attribute program.

Assembler directives __¢

Symbol control directives

These directives control how symbols are shared between modules.

Directive Description
EXTERN (IMPORT) Imports an external symbol.
PUBLIC (EXPORT) Exports symbols to other modules.

Table 17: Symbol control directives

SYNTAX
EXTERN symbol [,symbol]
PUBLIC symbol [,symboll

PARAMETERS

symbol Symbol to be imported or exported.

DESCRIPTION

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. The symbols
declared as PUBLIC can only be assigned values by using them as labels. Symbols
declared PUBLIC can be relocated or absolute, and can also be used in expressions
(with the same rules as for other symbols).

The PUBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the
LOW, HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit
or 16-bit register or word.

There are no restrictions on the number of PUBLIC-declared symbols in a module.

Importing symbols

Use EXTERN to import an untyped external symbol.

EXAMPLES

The following example defines two subroutines to set the power pins high or low. The
pow_high and pow_1low subroutines are defined as PUBLIC so that they can be
called from other modules.

MODULE pow_high
PUBLIC pow_high

39

Segment control directives

RSEG CODE
pow_high P_EN // make sure that power pins are enabled
P LDH O0xFF // set all pins high
RTN
ENDMOD // end of module

MODULE pow_low
PUBLIC pow_low

RSEG CODE
pow_low P_EN // make sure that power pins are enabled
P LDH 0x00 // set all pins low
RTN
ENDMOD // end of module
END

Segment control directives

SCI14 IAR Assembler
40 Reference Guide

The segment directives control how code and data are generated.

Directive Description

ALIGN Aligns the location counter by inserting zero-filled bytes.
ASEG Begins an absolute segment.

COMMON Begins a common segment.

EVEN Aligns the program counter to an even address.

ODD Aligns the program counter to an odd address.

ORG Sets the location counter.

RSEG Begins a relocatable segment.

Table 18: Segment control directives

SYNTAX

ALIGN align [,valuel

ASEG [start [(align)]]

COMMON segment [:type]l [(align)]

EVEN [value]

ODD [value]

ORG expr

RSEG segment [:typel I[flagl [(align)]
RSEG segment [:typel, address

Assembler directives __¢

PARAMETERS

address Address where this segment part will be placed.

align Exponent of the value to which the address should be aligned, in the
range 0 to 30. For example, align 1 results in word alignment 2.

expr Address to set the location counter to.

flag NOROOT

This segment part may be discarded by the linker even if no
symbols in this segment part are referred to. Normally all segment
parts except startup code and interrupt vectors should set this flag.
The default mode is ROOT which indicates that the segment part
must not be discarded.

REORDER

Allows the linker to reorder segment parts. For a given segment, all
segment parts must specify the same state for this flag. The default
mode is NOREORDER which indicates that the segment parts must
remain in order.

SORT

The linker will sort the segment parts in decreasing alignment order.
For a given segment, all segment parts must specify the same state
for this flag. The default mode is NOSORT which indicates that the
segment parts will not be sorted.

segment The name of the segment.

start A start address that has the same effect as using an ORG directive at
the beginning of the absolute segment.

type The memory type; one of UNTYPED (the default), CODE, or DATA.
value Byte value used for padding, default is zero.
DESCRIPTION

Beginning an absolute segment

Use ASEG to set the absolute mode of assembly, which is the default at the beginning
of a module.

If the parameter is omitted, the start address of the first segment is 0, and subsequent
segments continue after the last address of the previous segment.

41

Segment control directives

SCI14 IAR Assembler
42 Reference Guide

Note: The use of ASEG is not recommended in the SC14 IAR Assembler. Instead, use
RSEG to specify the DIP_CODE segment.

Beginning a relocatable segment

Use RSEG to set the current mode of the assembly to relocatable assembly mode. The
assembler maintains separate location counters (initially set to zero) for all segments,
which makes it possible to switch segments and mode anytime without the need to
save the current segment location counter.

Up to 65536 unique, relocatable segments may be defined in a single module.

Beginning a common segment

Use COMMON to place data in memory at the same location as COMMON segments from
other modules that have the same name. In other words, all COMMON segments of the
same name will start at the same location in memory and overlay each other.

Obviously, the COMMON segment type should not be used for overlaid executable code.
A typical application would be when you want a number of different routines to share
a reusable, common area of memory for data.

It can be practical to have the interrupt vector table in a COMMON segment, thereby
allowing access from several routines.

The final size of the COMMON segment is determined by the size of largest occurrence
of this segment. The location in memory is determined by the XLINK -2z command;
see the IAR XLINK Linker™ and IAR XLIB Librarian™ Reference Guide.

Use the align parameter in any of the above directives to align the segment start
address.
Setting the program location counter (PLC)

Use ORG to set the program location counter of the current segment to the value of an
expression. The optional label will assume the value and type of the new location
counter.

The result of the expression must be of the same type as the current segment, i.e. it is
not valid to use ORG 10 during RSEG, since the expression is absolute; use ORG $+10
instead. The expression must not contain any forward or external references.

All program location counters are set to zero at the beginning of an assembler module.

Aligning a segment

Use ALIGN to align the program location counter to a specified address boundary. The
expression gives the power of two to which the program counter should be aligned.

Assembler directives __¢

The alignment is made relative to the segment start; normally this means that the
segment alignment must be at least as large as that of the alignment directive to give
the desired result.

ALIGN aligns by inserting zero/filled bytes. The EVEN directive aligns the program
counter to an even address (which is equivalent to ALIGN 1) and the ODD directive
aligns the program counter to an odd address.

EXAMPLES

Beginning a common segment

The following example defines two common segments containing variables:

NAME commonl
COMMON data
count DS16 2
endmod
NAME commonz2
COMMON data
up DS8 1
ORG S+2
down DS8 1
END

Because the common segments have the same name, data, the variables up and down
refer to the same locations in memory as the first and last bytes of the 4-byte variable
count.

Aligning a segment

This example starts a relocatable segment, moves to an odd address, and adds some
data. It then aligns to a 16-byte boundary before creating a 64-byte table.

NAME ALIGN EX
RSEG CODE

ORG $+1

EVEN

DC8 1,2
ENDMOD

END

43

Value assignment directives

It generates the following code:

1 0000

2 0000 NAME ALIGN_EX
3 0000 RSEG CODE

4 0001 ORG S+1

5 0001 00 EVEN

6 0002

7 0002 0201 DC8 1,2

8 0004

9 0004 ENDMOD

Value assignment directives

These directives are used for assigning values to symbols.

Directive Description

= Assigns a permanent value local to a module.

ALIAS Assigns a permanent value local to a module.
ASSIGN Assigns a temporary value.

DEFINE Defines a file-wide value.

EQU Assigns a permanent value local to a module.
LIMIT Checks a value against limits.

SET Assigns a temporary value.

Table 19: Value assignment directives

SYNTAX

label = expr

label ALIAS expr

label ASSIGN expr

label DEFINE expr

label EQU expr

LIMIT expr, min, max, message
label SET expr

PARAMETERS

expr Value assigned to symbol or value to be tested.

label Symbol to be defined.

message A text message that will be printed when expr is out of range.

SCI14 IAR Assembler
44 Reference Guide

Assembler directives __o

min, max The minimum and maximum values allowed for expr.

DESCRIPTION

Defining a temporary value

Use either of ASSIGN and SET to define a symbol that may be redefined, such as for
use with macro variables. Symbols defined with SET cannot be declared PUBLIC.
Defining a permanent local value

Use EQU or = to assign a value to a symbol.

Use EQU to create a local symbol that denotes a number or offset.

The symbol is only valid in the module in which it was defined, but can be made
available to other modules with a PUBLIC directive.

Use EXTERN to import symbols from other modules.

Defining a permanent global value
Use DEFINE to define symbols that should be known to all modules in the source file.

A symbol which has been given a value with DEFINE can be made available to
modules in other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file.

Checking symbol values

Use LIMIT to check that expressions lie within a specified range. If the expression is
assigned a value outside the range, an error message will appear.

The check will occur as soon as the expression is resolved, which will be during
linking if the expression contains external references. The min and max expressions
cannot involve references to forward or external labels, that is, they must be resolved
when encountered.

EXAMPLES

Redefining a symbol

The following example uses SET to redefine the symbol cons in a loop to generate a
table of the first 4 powers of 3:

cons SET 1

45

Value assignment directives

SCI14 IAR Assembler
46 Reference Guide

rep

cons

MACRO
DB
SET
IF
rep
ENDIF
ENDM

rep

END

times
cons
cons*3
times>1
times-1

It generates the following code:

1
2
3
11
12

12.
12.
12.

12

12.
12.
12.

12

12.
12.
12.

12

12.
12.
12.
12.
12.

12

12.
12.
12.
12.
12.
12.

13
14

0w 9 o0 U Ww N

w

10
11
12

0000
0001
0000
0000
0000
0000
0003
0001
0001
0001
0009
0002
0002
0002
001B
0003
0003
0003
0051
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004

01

03

09

1B

cons

cons

cons

cons

cons

SET

rep
DB
SET
IF
rep
DB
SET
IF
rep
DB
SET
IF
rep
DB
SET
IF
rep
ENDIF
ENDM
ENDIF
ENDM
ENDIF
ENDM
ENDIF
ENDM

END

4

cons
cons*3
4>1

4-1

cons
cons*3
4-1>1
4-1-1
cons
cons*3
4-1-1>1
4-1-1-1
cons
cons*3
4-1-1-1>1
4-1-1-1-1

Using local and global symbols

Assembler directives __¢

In the following example the symbol x defined in module Local 1 is local to that
module; a distinct symbol of the same name is defined in module Local_2. The
DEFINE directive is used for declaring y for use anywhere in the file:

NAME
RSEG

X EQU
v DEFINE

WT
WT

ENDMOD

NAME

RSEG

X EQU

WT
WT

ENDMOD
END

Local 1
CODE

N -

Local 2
CODE

The symbol y defined in module Local_1 is also available to module Local 2.

It generates the following code:

O VW oUW N R

-

I T S S S
U W N R

0000
0000
0000
0001
0002
0000
0000
0002
0004
0004

0000
0000
0000
0000
0000

0109
0209

NAME
RSEG

EQU
DEFINE

WT
WT

ENDMOD

NAME
RSEG

Local_1
CODE

b

; WT 1

Local_2
CODE

47

Conditional assembly directives

16 0004 x EQU 4

17 0000

18 1 0000 0409 WT x i WT 4
19 1 0002 0209 WT Y i WT 2
20 0004

21 0004 ENDMOD

Using the LIMIT directive

The following example sets the value of a variable called speed and then checks it,
at assembly time, to see if it is in the range 10 to 30. This might be useful if speed is
often changed at compile time, but values outside a defined range would cause
undesirable behavior.

speed VAR 23
LIMIT speed, 10,30, ...speed out of range...

Conditional assembly directives

SCI14 IAR Assembler
48 Reference Guide

These directives provide logical control over the selective assembly of source code.

Directive Description

IF Assembles instructions if a condition is true.

ELSE Assembles instructions if a condition is false.
ELSEIF Specifies a new condition in an IF...ENDIF block.
ENDIF Ends an IF block.

Table 20: Conditional assembly directives

SYNTAX

IF condition
ELSE

ELSEIF condition
ENDIF

PARAMETERS

condition One of the following:

An absolute expression The expression must not contain
forward or external references, and any
non-zero value is considered as true.

Assembler directives __¢

stringl=string2 The condition is true if stringl and
string2 have the same length and
contents.
stringl<>string2 The condition is true if stringl and
string2 have different length or
contents.
DESCRIPTION

Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly
time. If the condition following the IF directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until an
ELSE or ENDIF directive is found.

Use ELSEIF tointroduce a new condition after an IF directive. Conditional assembler
directives may be used anywhere in an assembly, but have their greatest use in
conjunction with macro processing.

All assembler directives (except END) as well as the inclusion of files may be disabled
by the conditional directives. Each IF directive must be terminated by an ENDIF

directive. The ELSE directive is optional; it can only be used inside an IF. . .ENDIF
block. IF. . .ENDIF and IF...ELSE. . .ENDIF blocks may be nested to any level.

EXAMPLES

The following macro shows the usage both of macro quotes and of the IF, ELSE, and
ENDIF directives. The first line in the macro checks the number of arguments passed
to the macro.

MACRO mac
IF _args 2
DW \0 + \1
ELSE
DW \O0
ENDIF
ENDMAC

ASEG

mac 2,2 ; two arguments passed to the macro
mac <2,2> ; passed as one argument

END

49

Macro processing directives

It produces the following code:

15
16
17

17.
17.
17.
17.
17.
17.
18

18.
18.
18
18
18.
18.
19

20

Lo B e S S R

o Ul W N

0000
0000
0000

0000
0000
0002
0002
0002
0002
0002
0002
0002
0002
0002
0006
0006
0006
0006

ASEG

mac 2,2 ; two arguments passed to the
; macro
IF _args ==
0400 DW 2 + 2
ELSE
DW 2
ENDIF
ENDMAC
mac <2,2> ; passed as one argument
IF _args ==
DW 2,2 +
ELSE
02000200 DW 2,2
ENDIF
ENDMAC

END

Macro processing directives

These directives allow user macros to be defined.

SCI14 IAR Assembler
50 Reference Guide

Directive Description

ENDM Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times.
REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes strings.

Table 21: Macro processing directives

SYNTAX

ENDM
ENDR
EXITM

LOCAL symbol

[, symbol]

Assembler directives __¢

name MACRO [argument]

REPT expr

REPTC formal,actual

REPTI formal,actual [,actuall

PARAMETERS

actual String to be substituted.

argument A symbolic argument name.

expr An expression.

formal Argument into which each character of actual (REPTC) or each

actual (REPTI) is substituted.

name The name of the macro.
symbol Symbol to be local to the macro.
DESCRIPTION

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro you can use it in your program like an
assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

Defining a macro

You define a macro with the statement:

macroname MACRO [arg] [argl

Here macroname is the name you are going to use for the macro, and argis an
argument for values that you want to pass to the macro when it is expanded.

For example, you could define a macro ERROR as follows:

errmac MACRO text

JMP abort
DC8 text, 0
ENDM

51

Macro processing directives

This uses a parameter text to set up an error message for a routine abort. You would
call the macro with a statement such as:

errmac 'Disk not ready’
This will be expanded by the assembler to:

JMP abort
DC8 'Disk not ready’,0

If you omit a list of one or more arguments, the arguments you supply when calling
the macro are called \1 to \ 9 and \A to \ Z.

The previous example could therefore be written as follows:

errmac MACRO

JMP abort
DC8 1,0
ENDM

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, or REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used
before the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LOCAL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted
as one argument by using the matching quote characters < and > in the macro call.

For example:

macro <A, #42H>
END

You can redefine the macro quote characters with the -M command line option; see
-M, page 14.

SCI14 IAR Assembler
52 Reference Guide

Assembler directives __¢

Using macro quotes

This macro shows the usage of macro quotes. The first call will generate the code "DW
2+2" while the second call, which uses macro quotes, will generate "DW 2,2".
MACRO mac
IF _args ==

ELSE

DW \O
ENDIF
ENDMAC
ASEG

mac 2,2 ; two arguments passed to the macro
mac <2,2> ; passed as one argument

END

It will produce the following code:

15 0000 ASEG

16 0000

17 0000 mac 2,2 ; two arguments passed
; to the macro

17.1 0000 IF _args ==

17.2 0000 0400 DW 2 + 2

17.3 0002 ELSE

17.4 0002 DW 2

17.5 0002 ENDIF

17.6 0002 ENDMAC

18 0002 mac <2,2> ; passed as one argument

18.1 0002 IF _args == 2

18.2 0002 DW 2,2 +

18.3 0002 ELSE

18.4 0002 02000200 DW 2,2

18.5 0006 ENDIF

18.6 0006 ENDMAC

19 0006

20 0006 END

53

Macro processing directives

SCI14 IAR Assembler
54 Reference Guide

How macros are processed
There are three distinct phases in the macro process:

1 The assembler performs scanning and saving of macro definitions. The text
between MACRO and ENDM is saved but not syntax checked. Include-file references
$file are recorded and will be included during macro expansion.

2 A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander
takes its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals
with text substitutions at source level. Before a line from the called macro
definition is handed over to the assembler, the expander scans the line for all
occurrences of symbolic macro arguments, and replaces them with their
expansion arguments.

3 The expanded line is then processed as any other assembler source line. The input
stream to the assembler will continue to be the output from the macro processor,
until all lines of the current macro definition have been read.

Repeating statements

Use the REPT. . . ENDR structure to assemble the same block of instructions a number
of times. If expr evaluates to 0 nothing will be generated.

Use REPTC to assemble a block of instructions once for each character in a string. If
the string contains a comma it should be enclosed in quotation marks.

Only double quotes have a special meaning and its only use is to enclose the characters
to iterate over. Single quotes have no special meaning and are treated as any ordinary
character.

Use REPTI to assemble a block of instructions once for each string in a series of
strings. Strings containing commas should be enclosed in quotation marks.
EXAMPLES

This section gives examples of the different ways in which macros can make
assembler programming easier.

Coding in-line for efficiency

In time-critical code it is often desirable to code routines in-line to avoid the overhead
of a subroutine call and return. Macros provide a convenient way of doing this.

Assembler directives __¢

The following macros sets the power pins:

MACRO power_pins_high // no use of incoming argument

P_EN // make sure that power pins are enabled
P _LDH 0xFF // set all pins high
ENDMAC // end of macro

MACRO power_pins_low // no use of incoming argument

P_EN // make sure that power pins are enabled
P LDH 0x00 // set all pins low
ENDMAC // end of macro

The macros would be called with a statement such as:
power_pins_high
The following program calls the macros from the file macros.s44:

RSEG DIP_ CODE
#include "macros.s44"

WT 0x04
JMP init
power_pins_high
JMP mute
BR QUIT
mute A RCV36
RTN
init A_NORM
RTN
QUIT WNT 0x01
END

Using REPTC and REPTI
The following example assembles a series of DBs to store a version string in memory
to a subroutine plot to plot each character in a string:

RSEG DIP_DATA
REPTC char, "Version 1.21A"
DB ’char’

ENDR
END

55

Macro processing directives

This produces the following code:

1 0000 RSEG DIP_DATA
2 0000

3 0000 REPTC char, "Version 1.21A"
4 0000 DB 'char’

5 0000 ENDR

5.1 0000 56 DB v

5.2 0001 65 DB re’

5.3 0002 72 DB '’

5.4 0003 73 DB 's’

5.5 0004 69 DB ri’

5.6 0005 6F DB o’

5.7 0006 6E DB 'n’

5.8 0007 20 DB r

5.9 0008 31 DB Tl

5.10 0009 2E DB rt

5.11 000A 32 DB a2

5.12 000B 31 DB Tl

5.13 000C 41 DB ‘A’

6 000D END

The following example uses REPTI to define a number of memory locations:

RSEG
EXTERN X,Vy,2

REPTI number, x, y, 2z
DW number

ENDR

END

This produces the following code:

1 0000 RSEG

2 0000 EXTERN X,Y,2Z

3 0000

4 0000 REPTI number, X, y, 2z
5 0000 DW number

6 0000 ENDR

6.1 0000 DW b4

6.2 0002 DW v

6.3 0004 DW Z

7 0006 END

SCI14 IAR Assembler
56 Reference Guide

Assembler directives __¢

Listing control directives

These directives provide control over the assembler list file.

Directive Description

COL Sets the number of columns per page.
LSTCND Controls conditional assembly listing.
LSTCOD Controls multi-line code listing.

LSTEXP Controls the listing of macro-generated lines.
LSTMAC Controls the listing of macro definitions.
LSTOUT Controls assembly-listing output.

LSTPAG Controls the formatting of output into pages.
LSTREP Controls the listing of lines generated by repeat directives.
LSTXRF Generates a cross-reference table.

PAGE Generates a new page.

PAGSIZ Sets the number of lines per page.

Table 22: Listing control directives

SYNTAX

COL columns
LSTCND{+ |
LSTCOD{+ |
LSTEXP{+ |
LSTMAC{+ |
LSTOUT{+ |
|
|
|

LSTPAG{+
LSTREP{+
LSTXRF{+
PAGE

PAGSIZ lines

e e e e e e e

PARAMETERS

columns An absolute expression in the range 80 to 132, default is 80

lines An absolute expression in the range 10 to 150, default is 44

57

Listing control directives

SCI14 IAR Assembler
58 Reference Guide

DESCRIPTION

Turning the listing on or off

Use LSTOUT - to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LSTOUT+, which lists the output (if a list file was specified).

Listing conditional code and strings

Use LSTCND+ to force the assembler to list source code only for the parts of the
assembly that are not disabled by previous conditional IF statements, ELSE, or END.

The default setting is LSTCND-, which lists all source lines.

Use LSTCOD- to restrict the listing of output code to just the first line of code for a
source line.

The default setting is LSTCOD+, which lists more than one line of code for a source
line, if needed; i.e. long ASCII strings will produce several lines of output. Code
generation is not affected.

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which disables the
listing of macro definitions.
Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

The default is LSTREP+, which lists the generated lines.

Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for
the current module. The table shows values and line numbers, and the type of the
symbol.

The default is LSTXRF-, which does not give a cross-reference table.

Assembler directives __¢

Specifying the list file format

Use COL to set the number of columns per page of the assembler list. The default
number of columns is 80.

Use PAGSIZ to set the number of printed lines per page of the assembler list. The
default number of lines per page is 44.

Use LSTPAG+ to format the assembler output list into pages.
The default is LSTPAG-, which gives a continuous listing.

Use PAGE to generate a new page in the assembler list file if paging is active.
EXAMPLES

Turning the listing on or off
To disable the listing of a debugged section of program:

LSTOUT -
; Debugged section
LSTOUT+
; Not yet debugged

Listing conditional code and strings

The following example shows how LSTCND+ hides a call to a subroutine that is
disabled by an IF directive:

MACRO mac
LSTCND+
IF _args ==
DW \0 + \1
ELSE
DW \0
ENDIF
ENDMAC

RSEG DIP CODE

mac <2,2>
mac 2,2

END

59

Listing control directives

This will generate the following listing:

9 0000
10 0000
11 0000 RSEG DIP_CODE
12 0000
13 0000 mac <2,2>
13.1 0000 LSTCND+
13.2 0000 IF _args == 2
13.3 0000 ELSE
13.4 0000 02000200 DW 2,2
13.5 0004 ENDIF
13.6 0004 ENDMAC
14 0004 mac 2,2
14.1 0004 LSTCND+
14.2 0004 IF _args == 2
14.3 0004 0400 DW 2 + 2
14.4 0006 ELSE
14.5 0006 ENDMAC
15 0006
16 0006 END

The following example shows the effect of LSTCOD- and LSTCOD+ on the generated

code:
1 0000 ASEG
2 0000
3 0000 LSTCOD-
4 0000 01000A00* DW 1,10,100,1000,10000
5 000A LSTCOD+
6 000A 01000A00 DW 1,10,100,1000,10000
6400E803 1027
7 0014
8 0014 END

Note: An asterisk (*) indicates that the line has been truncated.

Controlling the listing of macros

The following example shows the effect of LSTEXP:

LSTEXP-
MACRO power pins high // no use of incoming argument
P_EN // make sure that power pins are enabled
P LDH OxFF // set all pins high
ENDMAC // end of macro

MACRO power pins low // no use of incoming argument

SCI14 IAR Assembler
60 Reference Guide

Assembler directives __¢

P_EN // make sure that power pins are enabled
P_LDH 0x00 // set all pins low
ENDMAC // end of macro

The macros are defined int the file macros.s44 which is called from the following
program:

RSEG DIP_CODE

#include "macros.s44"

WT 0x04
JMP init
power_ pins_high
JMP mute
BR QUIT
mute A RCV36
RTN
init A_NORM
RTN
QUIT WNT 0x01
END

This will produce the following output without expansion of the power pins high
macro:

1 0000 RSEG DIP_CODE
2 0002
3 0002
4 0002 #include "macros.s44"
5 0002
6 4 0002 0904 WT 0x04
7 7 0004 JMP init
8 0006 power_pins_high
9 12 000A JMP mute
10 0 o0o00C BR QUIT
11 000E
12 1 OOOE 8200 mute A_RCV36
13 2 0010 0400 RTN
14 0012
15 1 0012 C500 init A_NORM
16 2 0014 0400 RTN
17 0016

61

C-style preprocessor directives

18 14 0016 0801 QUIT WNT 0x01

19 0018 END

Note: The second field from the left shows the cycle count. To make it easier to count
the consumed cycles, the assembler has a built in cycle counter. This mechanism is
automatically generated and the output is displayed in the list file. The cycle count
represents the accumulated cycles so far in the program: the cycle count on the WT
instruction, shown above, indicates that when this line is executed 4 cycles have been
performed; when JMP is executed the count is incremented to 7 cycles.

Formatting listed output

The following example formats the output into pages of 66 lines each with 132
columns. The LSTPAG directive organizes the listing into pages, starting each module
on a new page. The PAGE directive inserts additional page breaks.

PAGSIZ 66 ; Page size
COL 132
LSTPAG+
ENDMOD
MODULE

PAGE

C-style preprocessor directives

SCI14 IAR Assembler
62 Reference Guide

The following C-language preprocessor directives are available:

Directive Description

#define Assigns a value to a label.

#elif Introduces a new condition ina #if. . .#endif block.
#telse Assembles instructions if a condition is false.

#endif Endsa #1if, #ifdef, or #ifndef block.

#ferror Generates an error.

#if Assembles instructions if a condition is true.

#ifdef Assembles instructions if a symbol is defined.

#ifndef Assembles instructions if a symbol is undefined.
#include Includes a file.

Table 23: C-style preprocessor directives

Assembler directives __¢

Directive Description
#message Generates a message on standard output.
#undef Undefines a label.

Table 23: C-style preprocessor directives (Continued)

SYNTAX

#define label text
#elif condition
#else

#endif

#error "message"
#if condition
#ifdef label
#ifndef label
#include {"filename" | <filename>}
#message "message"
#undef label

PARAMETERS
condition One of the following:

An absolute expression The expression must not
contain forward or external
references, and any
non-zero value is considered
as true.

stringl=string The condition is true if
stringl and string2
have the same length and
contents.

stringl<>string2 The condition is true if
stringl and string2
have different length or
contents.

filename Name of file to be included.

label Symbol to be defined, undefined, or
tested.

message Text to be displayed.

63

C-style preprocessor directives

SCI14 IAR Assembler
64 Reference Guide

text Value to be assigned.

DESCRIPTION

Defining and undefining labels
Use #define to define a temporary label.
#define label value

is similar to:

label VAR value

Use #undef to undefine a label; the effect is as if it had not been defined.

Conditional directives

Usethe #if...#else...##endif directives to control the assembly process at assembly
time. If the condition following the #if directive is not true, the subsequent
instructions will not generate any code (i.e. it will not be assembled or syntax checked)
until a #endif or #else directive is found.

All assembler directives (except for END) and file inclusion may be disabled by the
conditional directives. Each #if directive must be terminated by a #endif directive.
The #else directive is optional and, if used, it must be inside a #1if...#endif block.

#if..#endif and #if...#else..#fendif blocks may be nested to any level.

Use #1ifdef to assemble instructions up to the next #else or #endif directive only
if a symbol is defined.

Use #1ifndef to assemble instructions up to the next #else or #endif directive only
if a symbol is undefined.

Including source files

Use #include to insert the contents of a file into the source file at a specified point.
#include "filename" searches the following directories in the specified order:

1 The source file directory.
2 The directories specified by the - I option, or options.
3 The current directory.

#include <filename> searches the following directories in the specified order:

1 The directories specified by the - I option, or options.
2 The current directory.

Assembler directives __¢

Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

Defining comments
Use /* ... */tocomment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Note: It is important to avoid mixing the assembler language with the C-style
preprocessor directives. Conceptually, they are different languages and mixing them
may lead to unexpected behavior since an assembler directive is not necessarily
accepted as a part of the C language.

The following example illustrates some problems that may occur when assembler
comments are used in the C-style preprocessor:

#define version 13 ; API version
ASEG
DW version ; Expands to "DW 13 ; API version"
DW version + 1 ; Expands to "DW 13 ; API version + 1"

; So memory will contain 13 and not
; 13+1 since '+ 1’ 1is commented away

EXAMPLES

Using conditional directives

The following example defines a label deriv, and then uses the conditional directive
#ifdef to use the value if it is defined. If it is not defined #error displays an error:

#define deriv 14428

#ifdef deriv

current DW deriv
#else
#terror "’'deriv’ not defined"
#endif
END

Including a source file

The following example uses #include to include a file defining macros into the
source file. For example, the following macros are defined in macros.s44:

65

Data definition or allocation directives

MACRO power pins high // no use of incoming argument

P_EN // make sure that power pins are enabled
P _LDH O0xFF // set all pins high
ENDMAC // end of macro

MACRO power pins low // no use of incoming argument

P_EN // make sure that power pins are enabled
P _LDH 0x00 // set all pins low
ENDMAC // end of macro

The macro definitions can then be included, using #include, as in the following
example:

ASEG
ORG 0x02

#include "macros.s44"

WT 0x04
JMP init
power_ pins_high
JMP mute
BR QUIT
mute A RCV36
RTN
init A_NORM
RTN
QUIT WNT 0x01
END

Data definition or allocation directives

These directives define temporary values or reserve memory.

Directive Description

DC8, DB Generates 8-bit byte constants, including strings.
DC16,DW Generates |6-bit word constants, including strings.
DQ15 Generates |6-bit fixed-point constants.

DS8, DS Allocates space for 8-bit bytes.

DS16 Allocates space for |6-bit words.

Table 24: Data definition or allocation directives

SCI14 IAR Assembler
66 Reference Guide

Assembler directives __¢

SYNTAX

DB expr

DC8 expr [,expr]
DCl6 expr [,expr]
DQ15 valuel, valuel]
DS exprl, expr]

DS8 expr [,expr]
DS16 expr [,expr]
DW exprl, expr]

PARAMETERS

expr A valid absolute, relocatable, or external expression, or an ASCII string.
ASCII strings will be zero filled to a multiple of the size. Double-quoted
strings will be zero terminated.

value A valid absolute expression or a floating-point constant.

DESCRIPTION
Use DB, DC8, DC16, DQ15, or DW to reserve and initialize memory space.

Use DS, DS8, or DS16 to reserve uninitialized memory space.
EXAMPLES

Defining strings

To define a string:

myMsg DC8 ’'Please enter your name’
To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

67

Assembler control directives

To include a single quote in a string, enter it twice; for example:

errMsg DC8 ’‘Don’’t understand!’

Reserving space

To reserve space for 0xA bytes:

table DS8

0xA

Assembler control directives

These directives provide control over the operation of the assembler.

SCI14 IAR Assembler
68 Reference Guide

Directive Description

S Includes a file.
/*comment*/ C-style comment delimiter.
// C+style comment delimiter.
CASEOFF Disables case sensitivity.
CASEON Enables case sensitivity.
RADIX Sets the default base.

Table 25: Assembler control directives

SYNTAX

sfilename
/*comment*/
//comment
CASEOQOFF
CASEON
RADIX expr

PARAMETERS

comment
expr

filename

DESCRIPTION

Comment ignored by the assembler.
Default base; default 10 (decimal).

Name of file to be included. The $ character must be the first
character on the line.

Use $ to insert the contents of a file into the source file at a specified point.

Assembler directives __¢

Use /*...*/ to comment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Use RADIX to set the default base for use in conversion of constants from ASCII
source to the internal binary format.

To change the base from 16 to 10, expr can be written in hexadecimal format, for
example:

RADIX D’'10

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols.
By default case sensitivity is off.

When CASEOFF is active all symbols are stored in upper case, and all symbols used
by XLINK should be written in upper case in the XLINK definition file.

EXAMPLES

Including a source file

The following example uses $ to include a file defining macros into the source file.
For example, the following macros could be defined in mymacros.s44:

MACRO power_pins_high // no use of incoming argument

P_EN // make sure that power pins are enabled
P_LDH 0xXFF // set all pins high
ENDMAC // end of macro

MACRO power_pins_low // no use of incoming argument

P_EN // make sure that power pins are enabled
P _LDH 0x00 // set all pins low
ENDMAC // end of macro

The macro definitions can be included with a $ directive, as in:

RSEG DIP_CODE

$include "mymacros.s44"

WT 0x04
JMP init
power_pins_high
JMP mute
BR QUIT

69

Assembler control directives

SCI14 IAR Assembler
70 Reference Guide

mute A RCV36
RTN

init A_NORM
RTN

QUIT WNT 0x01
END

Defining comments

The following example shows how /=*. . .*/ can be used for a multi-line comment:
/*

Program to read serial input.

Version 3: dd.mm.yy

Author: mjp
*/

Changing the base

To set the default base to 16:

RADIX D’'16
WT A,12

The immediate argument will then be interpreted as H' 12.

Controlling case sensitivity

When CASEOFF is set, Label and LABEL are identical in the following example:

label WNT 0x01 ;stored as "LABEL"
JMP LABEL

The following will generate a duplicate label error:

label WNT 0x01
LABEL WNT 0x01 ;Error: "LABEL" already defined
END

Assembler diagnostics

This chapter describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

Message format

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the assembler is produced in the form:

filename, linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered;
linenumber is the line number at which the assembler detected the error; level is
the level of seriousness of the diagnostic; tag is a unique tag that identifies the
diagnostic message; message is a self-explanatory message, possibly several lines
long.

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Severity levels

The diagnostic messages produced by the SC14 IAR Assembler reflect problems or
errors that are found in the source code or occur at assembly time.

ASSEMBLY WARNING MESSAGES

Assembly warning messages are produced when the assembler has found a construct
which is probably the result of a programming error or omission.

COMMAND LINE ERROR MESSAGES

Command line errors occur when the assembler is invoked with incorrect parameters.
The most common situation is when a file cannot be opened, or with duplicate,
misspelled, or missing command line options.

ASSEMBLY ERROR MESSAGES

Assembly error messages are produced when the assembler has found a construct
which violates the language rules.

ASSEMBLY FATAL ERROR MESSAGES

Assembly fatal error messages are produced when the assembler has found a user error
so severe that further processing is not considered meaningful. After the diagnostic
message has been issued the assembly is immediately terminated.

71

Severity levels

SCI14 IAR Assembler
72 Reference Guide

ASSEMBLER INTERNAL ERROR MESSAGES

During assembly a number of internal consistency checks are performed and if any of
these checks fail, the assembler will terminate after giving a short description of the
problem. Such errors should normally not occur. However, if you should encounter an
error of this type, please report it to your software distributor or to IAR Technical
Support. Please include information enough to reproduce the problem. This would
typically include:

The exact internal error message text.

The source file of the program that generated the internal error.

A list of the options that were used when the internal error occurred.

The version number of the assembler, which can be seen in the header of the list
files generated by the assembler.

Index __o

A DW 66
ELSE. ... o 48

absolute segments.ot 41 ELSEIF 48
addition (assembler operator). 23 END. ... 37
ALIAS (assembler directive) 44 ENDIF. 48
ALIGN (assembler directive). 40 ENDM. 50
alignment, of segments. 42 ENDMOD. i 37
architecture, SCI4XXX ..ot vt i ix ENDR ... 50
ASCII character constantsvuunuuen... 3 EQU. ... 44
ASCI14_INC (environment variable) 8 EVEN 40
ASEG (assembler directive). 40 EXITM ... 50
asm (fileextension)oiiniiiinnean... 1 EXPORT e 39
ASMSC14 (environment variable). 8 EXTERN. 39
assembler control directives. 68) 48
assembler diagnostics. i 71 IMPORT 39
assembler directives labels, using. 36
ALIAS. .. 44 LIBRARY i 37
ALIGN ... 40 LIMIT .. e 44
ASEG 40 listfilecontrol, 57
assemblercontrol, 68 LOCAL o i 50
ASSIGN ... 44 LSTCND. ... e 57
CASEOFF. i 68 LSTCOD. ... e 57
CASEON. e 68 LSTEXP e s 57
COL. ..o 57 LSTMAC. ... e i 57
COMMENES, USING « + v o v oe e et e ie e eeee e 36 LSTOUT i 57
COMMON ... e 40 LSTPAG e 57
conditional LSTREP i 57
See also C-style preprocessor directives LSTXREF ... 57
conditional assembly. 48 MACRO ... 50
C-style preprocessorovvvnn ... 62 MACTO PIOCESSING. « ¢ vt vv e et e et e ie e eeen e 50
data definition or allocation. 66 MODULE e 37
DB .. 66 modulecontrol 37
DCI6. ..o 66 NAME. ... 37
DO . 66 ODD ... 40
DEFINE. 44 ORG ... 40
DQIS. 66 PAGE. 57
DS 66 PAGSIZ. ... 57
DS16 ... 66 PATAMCLETS . . o . vttt et e e 36
DS e 66 PROGRAM. i 37

73

RADIX ..o 68
REPT. ..o 50
REPTC ... e 50
REPTI . ..o 50
RSEG. . ..o 40
RTMODEL i 37
segment control. i 40
SUMMATY « v ooe et ettt et e et e e e 33
symbolcontrol. i 39
SYMEAX &« vttt e et e e 36
value assignment. 44
#define........ . .. 62
#elif ... 62
Helse. ..o 62
#endif. 62
T 4 (o) o 62
HE 62
#ifdef.o . 62
#ifndef.. 62
#include. 62
HMNESSAZE . « o v v et e 63
#undef 63
S 68
PR 68
I 68
T PP 44
assembler environment variables..................... 8
assembler eXpressions 2
assemblerlabels........... i L. 3
assembler directives, using with 36
defining and undefining 64
formatof 1
assembler list files
conditional code and strings 58
conditions, specifying 10
cross-references, generating 19, 58
disabling i 58
enabling. 58

SCI14 IAR Assembler
74 Reference Guide

filename, specifying 14
format
specifying. 59
generated lines, controlling. 58
GENETALING .« . o vttt ettt e e e 13
header section, omitting 14
lines per page, specifying 16
macro execution information, including 10
macro-generated lines, controlling 58
tab spacing, specifying 17
using directives to format L L. 59
#include files, specifying, 13
assembler macros
arguments, passingtoiae... 53
defining i 51
generated lines, controlling in list file. 58
in-lineroutines 54
predefined symbol. 53
PIOCESSING « . ottt ettt e e 54
quote characters, specifying 14
special characters,using 52
assembler object file, specifying filename............. 15
assembler Operators i 21
BYTE2 ... 25
BYTE3 ... 26
BYTE4 .. o 26
DATE. . .o 26
HIGH. 27
IN @XPIESSIONS . o\ v vt vttt e ee e 2
LOW 28
precedence. 21
SEB . . 29
SEE . o 30
SIZEOFo e 31
UGT. .o 32
ULT . .o 32
XOR o 32
e 29
L 29

/N 28
2 25
& o 24
e e e e 23
o e 23
P 24
P 24
S P 28
K et 31
o e e 28
> 29
T 27
S i e 27
> e 27
> e 27
> e 31
LA 25
L 25
PP 29
P 25
assembler options
command line, setting 7
extended command file, setting. 7
SUMMATY « .+ v v ettt et et ettt e e e e eeae 9
typographic convention., X
Bl 10
Do 10
S e e e 10
D 11
B 12
P 7,12
G 12
P 12
S 13
I 13
o 14
Mo 14
N 14
SO 15

Index __o

S0 e e 15

D 16

S 16

S 16

e 17
P 17
U 17

TV e e 18
2 18

K e e e 19
assembler output format. L. 5
assembler output, including debug information. 16
assembler source files, including 64, 69
assembler source format., 1
assembler symbols L i 2
EXPOItING . . oottt 39
IMPOrting.ot 39

in relocatable expressions 2
local. 47
predefined 4
undefining. i 17
redefining i 45
assembly error messages 71
assembly warning messages. 71
disabling 18
ASSIGN (assembler directive). 44
assumptions (programming eXperience) ix
-B (assembler option). L. 10
-b (assembleroption), 10
bitwise AND (assembler operator) 25
bitwise exclusive OR (assembler operator) 25
bitwise NOT (assembler operator). 25
bitwise OR (assembler operator) 25
BYTE2 (assembler operator) 25
BYTES3 (assembler operator) 26
BYTE4 (assembler operator) 26

75

76

C

-c (assembler option) i 10
case sensitive user symbols L. 17
case sensitivity, controlling 69
CASEOFF (assembler directive) 68
CASEON (assembler directive) 68
character constants, ASCIIL. 3
COL (assembler directive)o..... 57
command line error messages, assembler 71
command line Optionsc.iuiuiiii. 7
command line, extending 12
COMMENLS .« o v vttt et e et e et e et e ene e 65
assembler directives, using with 36
in assembler soucecode 1
multi-line, using with assembler directives. 70
COMMON SEZMENLS .+ . v v v ev et eee e e et e aenen e 42
COMMON (assembler directive). 40
computer style, typographic convention X
conditional assembly directives 48
See also C-style preprocessor directives
conditional code and strings, listing. 58
conditional listfile 10
configuration, ProCessSOor.c.vuvu v vt e enenen . 18
CONSEANES, INEZET .« . o v vttt e e eeens 3
conventions, typographic L. X
CPU, defining in assembler. See processor configuration
cross-references, generating. 19, 58
current time/date (assembler operator) 26
cyclecount. 62
C-style preprocessor directives 62
-D (assembleroption). 11
data allocation directivesovuuenenn.. 66
data definition directiveso.... 66
_ _DATE_ _ (predefined symbol) 4
DATE (assembler operator)c..c..... 26
DB (assembler directive) 66

SCI14 IAR Assembler
Reference Guide

DC16 (assembler directive) 66
DC8 (assembler directive) 66
debug information, including in assembler output. 16
#define (assembler directive) 62
DEFINE (assembler directive)...................... 44
derivatives, specifying. See processor configuration
diagnostics . ..ottt 71
directives. See assembler directives
division (assembler operator). 24
document CONVENtioNS ovvvv v eee e eeennnn X
DQI15 (assembler directive) 66
DS (assembler directive) 66
DS16 (assembler directive) 66
DS8 (assembler directive) 66
DW (assembler directive). 66
-E (assembleroption). L. 12
editioN NOLICE . .. vttt e e ii
efficient coding techniques. 5
#elif (assembler directive) 62
#else (assembler directive). 62
ELSE (assembler directive) 48
ELSEIF (assembler directive) 48
END (assembler directive). 37
#endif (assembler directive). 62
ENDIF (assembler directive)ono... 48
ENDM (assembler directive) 50
ENDMOD (assembler directive) 37
ENDR (assembler directive) 50
environment variables
ASCI4_INC . .. e 8
ASMSCI4. .. 8
assembler. 8
QDIPINFO 5
EQU (assembler directive).cvuin.... 44
equal (assembler operator).c..c.o.... 27
#error (assembler directive) 62

€1ror messages

maximum number, specifying. 12

using #error to display. oL 65
EVEN (assembler directive). 40
EXITM (assembler directive). 50
experience, programming.c.e.euenaeaenen.. ix
EXPORT (assembler directive) 39
expressions. See assembler expressions
extended command line file (extend.xcl)............ 7,12
EXTERN (assembler directive) 39
-f(assembleroption) 7,12
false value, in assembler expressions. 2
fatal errors 71
_ _FILE_ _ (predefined symbol) 4
file extensions

) 1 1

ISA ottt et e e e 1

A 1

SAA 1

XCl o 7,12
file types

assembler SOUrCevoviii i 1

extended command line. 7,12

#include. L 12
filenames, specifying for assembler object file 15
fixed-point constantscuiuin.... 66
formats

assembleroutput i 5

assembler sourcecode. L. 1
fourth byte (assembler operator) 26
-G (assembler option). 12
global value, defining. 45
greater than or equal (assembler operator). 27
greater than (assembler operator). 27

Index __o

H

header section, omitting from assembler list file........ 14
high byte (assembler operator). 27
HIGH (assembler operator) 27
-I(assembleroption) 12
-i(assembleroption), 13
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol). 4
#if (assembler directive). 62
IF (assembler directive)cvvin.... 48
#ifdef (assembler directive) 62
#ifndef (assembler directive) 62
IMPORT (assembler directive) 39
#includefiles i 12-13
#include (assembler directive) 62
include paths, specifying 12
instruction set, SCI4XXXvvvvnnn e, ix
INteer CONSLANTS.ottt ettt 3
internal errors, assembler. 72
in-line coding, using macros 54
-L (assembler option). 13
-l (assembleroption)l 14
labels. See assembler labels
less than or equal (assembler operator) 28
less than (assembler operator) 28
library modules 38
CrEAtiNg . .ottt et e e 10
LIBRARY (assembler directive) 37
LIMIT (assembler directive) 44
_ _LINE_ _ (predefined symbol)..................... 4
lines per page, in assembler listfile.................. 16
listing control directives. 57
local value, defining. 45
LOCAL (assembler directive) 50

77

logical AND (assembler operator). 24

logical exclusive OR (assembler operator) 32
logical NOT (assembler operator) 29
logical OR (assembler operator) 29
logical shift left (assembler operator) 31
logical shift right (assembler operator) 31
low byte (assembler operator) 28
LOW (assembler operator).cvvnen.. 28
LSTCND (assembler directive) 57
LSTCOD (assembler directive) 57
LSTEXP (assembler directives). 57
LSTMAC (assembler directive). 57
LSTOUT (assembler directive) 57
LSTPAG (assembler directive). 57
LSTREP (assembler directive). 57
LSTXREF (assembler directive) 57
-M (assembleroption), 14
macro execution information, including in list file 10
macro processing directives. 50
macro quote characters. 52
specifying 14
MACRO (assembler directive). 50
macros. See assembler macros
Memory, reserving Space ino.oo.... 66
#message (assembler directive) 63
messages, excluding from standard output stream. 16
module control directives. 37
MODULE (assembler directive) 37
modules, terminating 38
modulo (assembler operator) 28
msa (fileextension)itiriiinn... 1
multiplication (assembler operator).................. 23
multi-module files, assembling 38
-N (assembler option)., 14

SCI14 IAR Assembler

78 Reference Guide

NAME (assembler directive) 37
not equal (assembler operator). 29
-O (assembler option)., 15
-o (assembleroption), 15
ODD (assembler directive).couun... 40
operands
formatof 1
in assembler expressions. 2
operations, formatof 1
operation, silent i i 16
operators. See assembler operators
OPHON SUMMATY .« . v e vttt et et e e e e 9
ORG (assembler directive).oon... 40
output format 5
-p (assembleroption) i 16
PAGE (assembler directive) 57
PAGSIZ (assembler directive) 57
parameters
in assembler directives 36
typographic convention.c..c...ou.... X
precedence, of assembler operators 21
predefined symbols 4
inassembler macros 53
undefining 17
_ DATE .. 4
__FILE 4
_JAR_SYSTEMS_ASM_ ..., 4
LINE 4
C _TID 4
TIME . 4
__VER . 4
preprocessor symbol, defining 11
prerequisites (programming experience) ix
processor configuration, specifying.................. 18

program location counter (PLC) 1,3
SELHIE « oot ettt e 42
program modules, beginning 38
PROGRAM (assembler directive) 37
programming experience, required ix
programming hints. 5
PUBLIC (assembler directive). 39
QDIPINFO (environment variable) 5
-r (assembler option)l 16
RADIX (assembler directive). 68
reference information, typographic convention. X
relocatable expressions, using symbolsin.............. 2
relocatable segments, beginning 42
repeating Statements.ov ittt 54
REPT (assembler directive) 50
REPTC (assembler directive). 50
REPTI (assembler directive) 50
RSEG (assembler directive). 40
RTMODEL (assembler directive) 37
rd5 (fileextension), 1
-S (assembler option) 16
-s (assembleroption), 17
SCl4xxx
architectureo ittt ix
derivatives, specifying. 18
INSIUCION SEL . .« oottt ix
second byte (assembler operator). 25
segment begin (assembler operator). 29
segment control directives 40
segment end (assembler operator) 30
segment size (assembler operator) 31

Index __o

segments

absolute 41

aligning 42

common, beginning. 42

relocatable. i 42
SFB (assembler operator).oouienin... 29
SFE (assembler operator).c.covuiun... 30
silent operation, specifying in assembler.............. 16
SIZEOF (assembler operator) 31
source files, including 64, 69
source format, assembler 1
standard input stream (stdin), reading from............ 12
standard output stream, disabling messagesto 16
statements, TePeatingcuvuenenenenenennn.. 54
subtraction (assembler operator) 24
symbol control directives. 39
symbol values, checking 45
symbols

predefined 4

in assembler macro. 53

user-defined, case sensitive 17

See also assembler symbols
syntax

assembler directives 36

See also assembler source format
s44 (file eXtension).o i i 1
-t (assembleroption), 17
tab spacing, specifying in assembler listfile 17
target processor, specifying 18
temporary values, defining. 45, 66
third byte (assembler operator) 26
_ _TID_ _ (predefined symbol) 4
_ _TIME_ _ (predefined symbol) 4
time-criticalcode oL 54
true value, in assembler expressions 2
typographic conventionsc........ X

79

U

-U (assembler option).ot 17
UGT (assembler operator)coveienen.. 32
ULT (assembler operator)coeuenen.. 32
unary minus (assembler operator) 24
unary plus (assembler operator). 23
#undef (assembler directive) 63
unsigned greater than (assembler operator) 32
unsigned less than (assembler operator) 32
user symbols, case sensitive. 17
-v (assembleroption) i, 18
value assignment directives 44
values, defining temporary. 66
_ _VER_ _ (predefined symbol) 4
-w (assembler option).l 18
WAIMINZS .+« e vttt et e e e et e 71

disabling i 18
-X (assembler option)l 19
xcl (fileextension)o ... 7,12
XOR (assembler operator) 32

Symbols

! (assembler operator)c..iiiiiiin... 29
I=(assembler operator)c.. i, 29
#define (assembler directive) 62
#elif (assembler directive) 62
#else (assembler directive). 62
#endif (assembler directive). 62
#error (assembler directive), 62

SCI14 IAR Assembler

80 Reference Guide

#if (assembler directive). 62
#ifdef (assembler directive) 62
#ifndef (assembler directive) 62
#includefiles 12-13
#include (assembler directive) 62
#message (assembler directive) 63
#undef (assembler directive) 63
$ (assembler directive) 68
$ (program location counter)ooun... 3
% (assembler operator)c...iuiiiiaa.. 28
& (assembler Operator). i i 25
&& (assembler operator) 24
* (assembler Operator) 23
+ (assembler Operator)t 23
- (assembler operator) 24
-B (assembler option). il 10
-b (assembleroption) i 10
-c (assembler option)t 10
-D (assembler option). 11
-E (assembleroption). il 12
-f (assembleroption) 7,12
-G (assembler option). 12
-I (assembleroption), 12
-i(assembler option)o 13
-L (assembler option). i 13
-l (assembleroption) i, 14
-M (assembler option) 14
-N (assembler option). 14
-O (assembler option).t 15
-0 (assembler option)l 15
-p (assembleroption) il 16
-r (assembler option) 16
-S (assembler option) 16
-s (assembleroption) il 17
-t (assembler option) il 17
-U (assembler option). v 17
-v (assembler option) i 18
-w (assembler option). 18
-X (assembler option)l 19

/ (assembler operator).l 24
/*...*%/ (assembler directive) 68
// (assembler directive)., 68
< (assembler operator) 28
<< (assembler Operator)ttt 31
<= (assembler Operator)t 28
<> (assembler Operator)t 29
= (assembler directive). 44
= (assembler operator) 27
== (assembler operator)t 27
> (assembler operator) 27
>= (assembler Operator) 27
>> (assembler Operator) 31
A (assembler operator) i 25
_ _DATE_ _ (predefined symbol) 4
_ _FILE_ _ (predefined symbol) 4
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol). 4
_ _LINE_ _ (predefined symbol)..................... 4
_ _TID_ _ (predefined symbol) 4
_ _TIME_ _ (predefined symbol) 4
_ _VER_ _ (predefined symbol) 4
_args, predefined macro symbol 53
| (assembler operator)., 25
Il (assembler operator)c.iuiiiiion... 29
~ (assembler operator) 25

Index __o

8l

SCI14 IAR Assembler
82 Reference Guide

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Document conventions

	Introduction to the SC14 IAR Assembler
	Source format
	Assembler expressions
	TRUE and FALSE
	Using symbols in relocatable expressions
	Symbols
	Labels
	Program location counter (PLC)

	Integer constants
	ASCII character constants
	Predefined symbols
	Including symbol values in code
	Testing symbols for conditional assembly

	Programming hints
	Processor-specific files
	Using C-style preprocessor directives

	Output formats

	Assembler options
	Setting command line options
	Extended command line file
	Error return codes

	Assembler environment variables

	Summary of assembler options
	Descriptions of assembler options
	-B
	-b
	-c
	-D
	-E
	-f
	-G
	-I
	-i
	-L
	-l
	-M
	-N
	-O
	-o
	-p
	-r
	-S
	-s
	-t
	-U
	-v
	-w
	-x

	Assembler operators
	Precedence of operators
	Summary of assembler operators
	Unary operators – 1
	Multiplicative arithmetic operators – 3
	Shift operators – 3
	Additive arithmetic operators – 4
	AND operators – 5
	OR operators – 6
	Comparison operators – 7

	Description of operators
	*
	+
	+
	–
	–
	/
	AND [&&]
	BINAND [&]
	BINNOT [~]
	BINOR [|]
	BINXOR [^]
	BYTE2
	BYTE3
	BYTE4
	DATE
	EQ [=], [==]
	GE [>=]
	GT [>]
	HIGH
	LE [<=]
	LOW
	LT [<]
	MOD [%]
	NE [<>], [!=]
	NOT [!]
	OR [||]
	SFB
	Syntax
	Parameters
	Description

	SFE
	Syntax
	Parameters
	Description

	SHL [<<]
	SHR [>>]
	SIZEOF
	Syntax
	Parameters
	Description

	UGT
	ULT
	XOR

	Assembler directives
	Summary of directives
	Syntax conventions
	Labels and comments
	Parameters

	Module control directives
	Syntax
	Parameters
	Description
	Beginning a program module
	Beginning a library module
	Terminating a module
	Terminating the last module
	Assembling multi-module files

	Symbol control directives
	Syntax
	Parameters
	Description
	Exporting symbols to other modules
	Importing symbols

	Examples

	Segment control directives
	Syntax
	Parameters
	Description
	Beginning an absolute segment
	Beginning a relocatable segment
	Beginning a common segment
	Setting the program location counter (PLC)
	Aligning a segment

	Examples
	Beginning a common segment
	Aligning a segment

	Value assignment directives
	Syntax
	Parameters
	Description
	Defining a temporary value
	Defining a permanent local value
	Defining a permanent global value
	Checking symbol values

	Examples
	Redefining a symbol
	Using local and global symbols
	Using the LIMIT directive

	Conditional assembly directives
	Syntax
	Parameters
	Description
	Examples

	Macro processing directives
	Syntax
	Parameters
	Description
	Defining a macro
	Passing special characters
	Using macro quotes
	How macros are processed
	Repeating statements

	Examples
	Coding in-line for efficiency
	Using REPTC and REPTI

	Listing control directives
	Syntax
	Parameters
	Description
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Controlling the listing of generated lines
	Generating a cross-reference table
	Specifying the list file format

	Examples
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Formatting listed output

	C-style preprocessor directives
	Syntax
	Parameters
	Description
	Defining and undefining labels
	Conditional directives
	Including source files
	Displaying errors
	Defining comments

	Examples
	Using conditional directives
	Including a source file

	Data definition or allocation directives
	Syntax
	Parameters
	Description
	Examples
	Defining strings
	Reserving space

	Assembler control directives
	Syntax
	Parameters
	Description
	Controlling case sensitivity

	Examples
	Including a source file
	Defining comments
	Changing the base
	Controlling case sensitivity

	Assembler diagnostics
	Message format
	Severity levels
	Assembly warning messages
	Command line error messages
	Assembly error messages
	Assembly fatal error messages
	Assembler internal error messages

	Index

