IAR Embedded Workbench®

IAR Assembler " Reference Guide

for the 8051 Microcontroller Architecture

©IAR

A805 -8 SYSTEMS

COPYRIGHT NOTICE
Copyright © 1991-2011 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
Intel® is a registered trademark of Intel Corporation.
Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

8th edition: April 2011

Part number: A8051-8

This guide applies to version 8.x of IAR Embedded Workbench® for 8051.

Internal reference: ISUD.

Contents

TABIES ... e 7

Preface ... 9
Who should read this guide ... 9
How to use this guide ... 9
What this guide contains ...,

Other documentationc.ocoovovieiiiiieeceeeeeeeeeeeean

User and reference guides ...

The online help SYStEMovieriiriiniiiiirieeie e
WED SIEES .nneeniiiintietieiieteeie ettt ettt 11
Document cONVENLIONSc.ooooiuiiiiiiiireercee e 11
Typographic CONVENTIONScceeverreririeriereiereierienenieseereeeeneeneenees 12
Naming CONVENTIONScoeeueruiruieieieieierieienieneneesiesteeseesesseeeeseeneenees 12
Introduction to the IAR Assembler ..., 15

Source format

Assembler expressions

TRUE and FALSEccocooiiieiineceteeteeeeeeeee et 16
Using symbols in relocatable eXpressionsc.cecceveverereeeeeenees 16
SYMDOIS ittt st 17
Labels

INtEZET CONSLANLSeevvieniieiieieeeete et 17
ASCII character CONSLANLScccooviiiiiiiiiiiiiiiiicee e 18
Floating-point CONSTANESc..cvvererierueriiriirieieeiieeererenrentesiesresiesiesneene 18
Predefined SymDbOISccooerireniriniiieceeeeeseee e 19

Programming hints ...

Accessing special function registers
Using C-style preprocessor dir€Ctivesoeeveverenieneneneneneneenees 21
Using IMP and CALL ...cocoooiiiiiiiieteeeeteeee e 22

Upgrading from previous versions of the assembler 22

AsSeMbIer OPLIONS ... 23
Setting command line options ... 23
Extended command line filecccocovvieiiiniinininininininnie 23
EITOL TETUIN COUESvenviiiiiniiiiiiiriieiceteite ettt 24
Assembler environment variablescocoecvereerieneneneneneneeieeene 24

Summary of assembler options ...

Descriptions of assembler options

AssembIler OPErators ... 37
Precedence of operators ... 37
Summary of assembler operators ... 37

Unary Operators — 1cccovereninenininieieeeeeieteteee et 37
Multiplicative arithmetic Operators — 2ccceeevereneneneneneeeenes 38
Additive arithmetic Operators — 3cccevieierierieneneneneneeeeeeeene 38
Shift OPErators — 4cccveieriiriririreeteetetete e 38
AND OPETAtOrS — 5 .oeniiieiiiieienieeieeitee ettt 38
OR OPCIALOrS — 6 ..eovveniiieieieieeie ettt sttt et 38
CompariSON OPETALOTS — 7 ...eeververuerrereirririiereeiietereresrestesieneesieeseeneene 39
Description of Operators ... 39

Assembler dir€CtiVes ... 51
Summary of assembler directives ... 51
SyNtax CONVENLIONSocooooviiiiiiiiiiee e 54

Labels and COMMENLScoceeieiririirieieieieienenene e 55

IAR Assembler for 8051
Reference Guide

Contents °

DESCTIPHION ...ttt ettt ettt bbbt 84
EXAMPIES ..ottt 86
Data definition or allocation directives ..o 87
SYNLAX <ottt ettt b s sttt et e e ne s 87
Parameterscoceevveevieiiieiienieneee e 88

DESCIIPLONS .evenienieniiienienieeteeteei ettt sttt een 88

EXAMPIES ..ceviiiiiiiiiieieee et 88
Assembler control directivesccccoooieiniieeicee, 89
SYNLAX vttt sttt ettt et e bbb sbe st ebe e eseeneene 89
Parameterscococeeiviiininiiiiic e 89
DESCTIPLION ...ttt ettt ettt s sbe et eneene 90

EXAMPIES .ottt s 90
Function directivescooooi 91
SYNTAX .eevvinrireientenene sttt ettt ettt st s b b i bttt eneene 92
Parameterscoceeeeeeirinieieiee e 92
DESCIIPLONS .vvivieiiiiiieiienieeie ettt sttt ettt et et saeees 92
Call frame information directivesc.cccocoovivrvnieennen. 93
SYNLAX vttt ettt ettt se et sb bbbt ebe e eseene

Descriptions ...

Simple rules

CFI @XPIESSIONS ...vvieuviruiiriieriieriienitenieenteenteentesiressesieesieesseenseensessseenne 102

EXAMPIE ..ot 104

Assembler diagnostiCs ... 107
Severity levels ... 107
Assembly Warning mMeSSAZESccvevververrerierrererieeeerieniensensessessennens 107

Command 1ine error MESSAZEScecveevverrverruerrerierieeneenieeneeesiesseennns 107

ASSEMDIY EITOT MESSAZES ..veeveeveviurenieiieienienienienieeieeiteteneenseseessennens 107

Assembly fatal erTor MESSAZESc.eeuveuverierierierienierenieeeeeeeeseeseenaens 107

Assembler internal error messages ...

Error messagesccoovvevninnn. ...108
General EITOr MESSAZES ..eververveereereereeriereertensenseeseeseeseensessessessessessenee 108

8051-SpecifiC EITOr MESSAZES ...evvverveervreriirierienienieenieenieeieereeareeeees 114

Warning MESSAZESccccoviriiiiiiiricieieeiee et 116
GENETAL ...oviiiiierieieee ettt ettt 116

8051-specific Warning mMeSSAZESccoveerveeruerruerruerieneeneenrenieesrensees 117

INAEX oo 119

IAR Assembler for 8051
Reference Guide

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 12
2: Naming conventions used in this gUIdecccceevieiriiriieiienienienenerererese e 12
3: Integer constant fOTMALSccevveriererirenirirtetctetetee ettt sae e 18
4: ASCII character constant fOrMAatScocceceeeeeeierierienenenereneeeeteeeee e eeeas 18
5: Floating-point constants

6: Predefined SYMDOLSc.cccooiririniniiiiiicicceeee et

72 REZISIEr SYMDOLS ..cuiiuiiniiiiiiitietieieeitetet ettt ettt s

8: Assembler error retUrn COAESoviriririririinierieierteneete oottt ebe e sieene 24
9: Assembler environment variablescccooeviriiniinininininee 24
10: Assembler OPtionS SUMIMATYcccceeeueererieruertertensenseneeseeseeeetesessensessessesesenne 25
11: Conditional LISt (=€) .veeeviieriieeiiieiiieeiieeiteeetee et eereeestaeesebeeebeeesaeesnseesaseeensaeennns 27
12: Controlling case sensitivity in user Symbols (=5)c.ccoverererreereerieieecieiienenenenne 33
13: Specitying the processor configuration (-v)34
14: Disabling assembler warnings (-w)35
15: Including cross-references in assembler list file (-X) .e.coevveeeeeeieivencnenenicnenne 36
16: Assembler direCtives SUMIMATYceveveeverierierierenenenieeseeeetetessessestesiesienaenne 51
17: Assembler direCtive PArameterSccoceereerieerieerierieeieeneenteneestesieesieenseensennee 55
18: Module control dir€CIVEScoevuerieriiriiriiriirieiieiteeetetetetesreres e 56
19: Symbol cONtrol dir€CHIVEScceeverueriiriieiieieienieierie sttt s 59
20: Segment CONLIOl AITECLIVES ...c.ervverririerieniienieenieenteet ettt sttt esee e 60
21: Value assignment difECHIVESc.evueeeeueerueierieniinrinriereeieeteeerereeressessesseseesaesaeene 65
22: Conditional assembly directives 69
23: Macro processing dir€CtIVESeecvereerierienieerieenieeieeie et site st enieesieesseenseeseeanes 71
24: Listing cONtrol dIir€CHIVESccuervirieruiruieiiiieieienteteteereee ettt ettt sa e s saeene 78
25: C-style preprocessor dir€CiVESc.cvererereerierieieniinienteereee ettt siesieene 83
26: Data definition or allocation dir€CtiVESc..cceerererueireneeirieineneeenreeee e 87
27: Assembler control dir€CHIVEScocceveeieriiniiniiniiniiniierieeet ettt 89
28: Call frame information dir€CIVEScoceeveruereeieieniiniinieereeceeeeterer e
29: Unary operators in CFI expressions

30: Binary operators in CFI expressions

31: Ternary operators in CFL @Xpressionsc.cccccoeverenerereeneeneenenenenesenennes 103

IAR Assembler for 8051
Reference Guide

32: Code sample with backtrace rows and columns

Preface

Welcome to the IAR Assembler for 8051 Reference Guide. The purpose of
this guide is to provide you with detailed reference information that can help
you to use the 8051 IAR Assembler to develop your application according to
your requirements.

Who should read this guide

You should read this guide if you plan to develop an application using assembler
language for your 8051 microcontroller and need to get detailed reference information
on how to use the IAR Assembler for 8051. In addition, you should have working
knowledge of the following:

o The architecture and instruction set of your 8051 microcontroller. Refer to the
documentation from the chip manufacturer for information about your 8051
microcontroller

o General assembler language programming

Application development for embedded systems

o The operating system of your host computer.

How to use this guide

When you first begin using the IAR Assembler for 8051, you should read the
Introduction to the IAR Assembler chapter in this reference guide.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using the IAR toolkit, we recommend that you first read the initial
chapters of the IDE Project Management and Building Guide. They give product
overviews, as well as tutorials that can help you get started.

What this guide contains

10

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

Introduction to the IAR Assembler provides programming information. It also
describes the source code format, and the format of assembler listings.

Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical
summary of the assembler options, and contains detailed reference information
about each option.

Assembler operators gives a summary of the assembler operators, arranged in order
of precedence, and provides detailed reference information about each operator.
Assembler directives gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into
groups according to their function.

Assembler diagnostics contains information about the formats and severity levels of
diagnostic messages.

Other documentation

IAR Assembler for 8051
Reference Guide

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the TAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
For information about:

System requirements and information about how to install and register the IAR
Systems products, refer to the booklet Quick Reference (available in the product
box) and the Installation and Licensing Guide.

Getting started using IAR Embedded Workbench and the tools it provides, see the
guide Getting Started with IAR Embedded Workbench® .

Using the IDE for project management and building, see the IDE Project
Management and Building Guide
Using the IAR C-SPY® Debugger, see the C-SPY® Debugging Guide for 8051

Programming for the IAR C/C++ Compiler for 8051, see the IAR C/EC++
Compiler Reference Guide for 8051

Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, see the IAR Linker and Library Tools Reference Guide.

Preface __4

e Using the IAR DLIB Library, see the DLIB Library Reference information,
available in the online help system.

e Using the IAR CLIB Library, see the IAR C Library Functions Reference Guide,
available in the online help system.

e Porting application code and projects created with a previous version of the IAR
Embedded Workbench for 8051, see the Information Center for a list of migration
guides.

o Developing safety-critical applications using the MISRA C guidelines, see the IAR
Embedded Workbench® MISRA C:2004 Reference Guide or the IAR Embedded
Workbench® MISRA C:1998 Reference Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

Comprehensive information about debugging using the IAR C-SPY® Debugger
Reference information about the menus, windows, and dialog boxes in the IDE

Compiler reference information

Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1. Note that if you select a function name in the editor window and press F1 while
using the CLIB library, you will get reference information for the DLIB library.

WEB SITES
Recommended web sites:

o The website of your chip manufacturer.
o The IAR Systems web site, www.iar.com, holds application notes and other
product information.

Finally, the Embedded C++ Technical Committee web site, www.caravan.net/ec2plus,
contains information about the Embedded C++ standard.

Document conventions

When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

Document conventions

When referring to a directory in your product installation, for example 8051\ doc, the
full path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench 6.n\8051\doc.

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where £ilename represents the name of the file.

[option] An optional part of a command.

[a]b|c] An optional part of a command with alternatives.

{a|b]|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Brand name Generic term
IAR Embedded Workbench® for 8051 IAR Embedded Workbench®
IAR Embedded Workbench® IDE for 8051 the IDE

Table 2: Naming conventions used in this guide

IAR Assembler for 8051
12 Reference Guide

Brand name

Generic term

Preface __4

IAR C-SPY® Debugger for 8051
IAR C-SPY® Simulator

IAR C/C++ Compiler™ for 8051
IAR Assembler™ for 8051

IAR XLINK Linker™

IAR XAR Library Builder™

IAR XLIB Librarian™

IAR DLIB Library™

IAR CLIB Library™

C-SPY, the debugger
the simulator

the compiler

the assembler
XLINK, the linker
the library builder
the librarian

the DLIB library

the CLIB library

Table 2: Naming conventions used in this guide (Continued)

Document conventions

IAR Assembler for 8051
14 Reference Guide

Introduction to the I1AR
Assembler

This chapter describes the source code format for the 8051 IAR Assembler
and provides programming hints.

Refer to the chip manufacturer’s hardware documentation for syntax
descriptions of the instruction mnemonics.

Source format

The format of an assembler source line is as follows:
[label [:]] [operation] [operands] [; comment]

where the components are as follows:

label A label, which is assigned the value and type of the current
program location counter (PLC). The : (colon) is optional if the
label starts in the first column.

operation An assembler instruction or directive. This must not start in the
first column.
operands An assembler instruction can have zero, one, or more operands.

The data definition directives, for example DB and DCS8, can have
any number of operands. For reference information about the
data definition directives, see Data definition or allocation directives,
page 87.

Other assembler directives can have one, two, or three operands,
separated by commas.

comment Comment, preceded by a ; (semicolon).

The fields can be separated by spaces or tabs.
A source line may not exceed 2047 characters.

Tab characters, ASCII 094, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc.

Assembler expressions

16

The 8051 IAR Assembler uses the default filename extensions s51, asm, and msa for
source files.

Assembler expressions

IAR Assembler for 8051
Reference Guide

Expressions consist of operands and operators.

The assembler will accept a wide range of expressions, including both arithmetic and
logical operations. All operators use 32-bit two’s complement integers, and range
checking is only performed when a value is used for generating code.

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators; see also Precedence of operators, page 37.

The following operands are valid in an expression:

o User-defined symbols and labels.
o Constants, excluding floating-point constants.
o The program location counter (PLC) symbol, $.

The operands are described in greater detail on the following pages.

The valid operators are described in the chapter Assembler operators, page 37.

TRUE AND FALSE

In expressions a zero value is considered FALSE, and a non-zero value is considered
TRUE.

Conditional expressions return the value O for FALSE and 1 for TRUE.

USING SYMBOLS IN RELOCATABLE EXPRESSIONS

Expressions that include symbols in relocatable segments cannot be resolved at
assembly time, because they depend on the location of segments.

Such expressions are evaluated and resolved at link time, by the IAR XLINK Linker™.
There are no restrictions on the expression; any operator can be used on symbols from
any segment, or any combination of segments.

For example, a program could define the segments DATA and CODE as follows:

NAME progl
PUBLIC first
PUBLIC second
RSEG DATA
first DB 5
second DB 3
ENDMOD

Introduction to the IAR Assembler ___4

MODULE prog?2
EXTERN first
EXTERN second
RSEG CODE

MOV A, first
MOV A, first+1l
MOV A,l+first
MOV A, first/second
ENDMOD
SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant.

Symbols must begin with a letter, a—z or A-Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

Case is insignificant for built-in symbols like instructions, registers, operators, and
directives. For user-defined symbols case is by default significant but can be turned on
and off using the Case sensitive user symbols (-s) assembler option. See page 33 for
additional information.

Notice that symbols and labels are byte addresses. For additional information, see
Generating lookup table, page 88.
LABELS

Symbols used for memory locations are referred to as labels.

Program location counter (PLC)

The assembler keeps track of the address of the current instruction. This is called the
program location counter.

If you need to refer to the program location counter in your assembler source code you
can use the $ (dollar) sign. For example:

SJMP S ; Loop forever

INTEGER CONSTANTS

Since all IAR Systems assemblers use 32-bit two’s complement internal arithmetic,
integers have a (signed) range from -2147483648 to 2147483647.

Constants are written as a sequence of digits with an optional - (minus) sign in front to
indicate a negative number.

Assembler expressions

18

IAR Assembler for 8051
Reference Guide

Commas and decimal points are not permitted.

The following types of number representation are supported:

Integer type Example

Binary 1010b,b'1010

Octal 1234qg,g'1234

Decimal 1234,-1,d'1234
Hexadecimal OFFFFh, OXFFFF, h' FFFF

Table 3: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

ASCIlI CHARACTER CONSTANTS

ASCII constants can consist of between zero and more characters enclosed in single or
double quotes. Only printable characters and spaces may be used in ASCII strings. If the
quote character itself is to be accessed, two consecutive quotes must be used:

Format Value

'ABCD' ABCD (four characters).

"ABCD" ABCD'\0' (five characters the last ASCII null).
'‘A"B' A'B

R A

"' (4 quotes) '

' ' (2 quotes) Empty string (no value).

Empty string (an ASCII null character).
X !
\\ \

Table 4: ASCII character constant formats

FLOATING-POINT CONSTANTS

The 8051 IAR Assembler will accept floating-point values as constants and convert
them into IEEE single-precision (signed 32-bit) floating-point format or fractional
format.

Floating-point numbers can be written in the format:

[+|-1[digits].[digits] [{E|e}[+]|-]1digits]

Introduction to the IAR Assembler ___¢

The following table shows some valid examples:

Format

10.23 1.023 x 10’
1.23456E-24 1.23456 x 104
I.0E3

Table 5: Floating-point constants

Spaces and tabs are not allowed in floating-point constants.

Note: Floating-point constants will not give meaningful results when used in

expressions.

PREDEFINED SYMBOLS

The 8051 IAR Assembler defines a set of symbols for use in assembler source files. The
symbols provide information about the current assembly, allowing you to test them in

preprocessor directives or include them in the assembled code. The strings returned by
the assembler are enclosed in double quotes.

The following predefined symbols are available:

Symbol Value

__DATE__ Current date in dd/Mmm/yyyy format (string).

__FILE__ Current source filename (string).

__IAR_SYSTEMS_ASM_ _ IAR assembler identifier (number).

__LINE__ Current source line number (number).

__TID__ Target identity, consisting of two bytes (number). The high
byte is the target identity, which is 32 (0x20) for A8051.
The low byte is the processor option *16.
The following values are therefore possible:
-v0 0x2000
-vl 0x2010
-v2 0x2020

__TIME__ Current time in hh:mm: ss format (string).

__VER__ Version number in integer format; for example, version

4.17 is returned as 417 (number).

Table 6: Predefined symbols

Assembler expressions

20

IAR Assembler for 8051
Reference Guide

Notice that __TID__ is related to the predefined symbol __TID__ in the 8051 IAR
C/EC++ Compiler. It is described in the IAR C/EC++ Compiler Reference Guide for
8051.

Including symbol values in code

There are several data definition directives provided to make it possible to include a
symbol value in the code. These directives define values or reserve memory. To include
a symbol value in the code, use the symbol in the appropriate data definition directive.

For example, to include the time of assembly as a string for the program to display:

RSEG DATA

td DB __TIME__,",",__DATE__,0 ; time and date
RSEG CODE
EXTERN printstring

main
MOV A, td ; load address of string
MOV R1,A
LCALL printstring ; routine to print string
RET

Testing symbols for conditional assembly

To test a symbol at assembly time, you can use one of the conditional assembly
directives. These directives let you control the assembly process at assembly time.

For example, in a source file written for use on any one of the 8051 family members,
you may want to assemble appropriate code for a specific processor. You could do this
using the __TID__ symbol as follows:

#define TARGET ((__TID__& O0x0F00)>>4)
#if (TARGET==0x02)

#else

#endif

See Conditional assembly directives, page 69.
Register symbols

This table shows the existing predefined register symbols:

Register symbol Addressing Description

RO-R7 8-bit Data registers

Table 7: Register symbols

Introduction to the IAR Assembler ___¢

Register symbol Addressing Description

A 8-bit Data register

B 8-bit Data register or SFR address of register B

ACC 8-bit SFR address of register A

DPL 8-bit SFR address of the low part of register DPTR

DPH 8-bit SFR address of the high part of register DPTR

PSwW 8-bit SFR address of register PSW (program status word)

Table 7: Register symbols (Continued)

Programming hints

This section gives hints on how to write efficient code for the 8051 IAR Assembler. For
information about projects including both assembler and C or Embedded C++ source
files, see the IAR C/EC++ Compiler Reference Guide for 8051.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of 8051 derivatives are included in the IAR product
package, in the \ 8051\ inc directory. These header files define the processor-specific
special function registers (SFRs) and interrupt vector numbers.

The header files are intended to be used also with the 8051 IAR C/EC++ Compiler, and
they are suitable to use as templates when creating new header files for other 8051
derivatives.

If any assembler-specific additions are needed in the header file, these can be added
easily in the assembler-specific part of the file:

#ifdef __TIAR_SYSTEMS_ASM_

(assembler-specific defines)
#endif

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with
assembler-style comments.

21

Upgrading from previous versions of the assembler

USING JMP AND CALL

JMP is a pseudo mnemonic which is expanded to the smallest possible of the instructions
SJMP, AJMP, or LJIMP. If the expression is unresolved, the assembler expands JMP to
LJMP, because that instruction can reach the entire address space. Likewise, CALL is a
pseudo mnemonic which is expanded to the smallest possible of the instructions ACALL
or LCALL. If the expression is unresolved, the assembler expands CALL to LCALL,
because that instruction can reach the entire address space.

For this reason, we recommend that you decide which instruction that you need, and do
not use JMP or CALL unnecessarily.

Upgrading from previous versions of the assembler

The current version of the IAR C/EC++ Compiler for 8051 has been completely
rewritten to achieve a substantial increase in code efficiency. Because of this, the
assembler interface to C functions has been changed and is incompatible with version 5
and earlier in object code.

However, the new assembler is source code compatible with previous versions.
Reassembled source code can be used together with version 6 or later of the IAR
Assembler for 8051. Note, however, that the byte order has been changed from
big-endian to little-endian.

IAR Assembler for 8051
22 Reference Guide

Assembler options

This chapter first explains how to set the options from the command line, and
gives an alphabetical summary of the assembler options. It then provides
detailed reference information for each assembler option.

The IDE Project Management and Building Guide describes how to set assembler
options in the IAR Embedded Workbench, and gives reference information
about the available options.

Setting command line options

To set assembler options from the command line, you include them on the command
line, after the a8051 command:

a8051 [options] [sourcefile] [options]
These items must be separated by one or more spaces or tab characters.

If all the optional parameters are omitted the assembler will display a list of available
options a screenful at a time. Press Enter to display the next screenful.

For example, when assembling the source file power2.s51, use the following
command to generate a list file to the default filename (power2.1st):

a8051 power2 -L

Some options accept a filename, included after the option letter with a separating space.
For example, to generate a list file with the name 1ist.1lst:

a8051 power2 -1 list.lst

Some other options accept a string that is not a filename. This is included after the option
letter, but without a space. For example, to generate a list file to the default filename but
in the subdirectory named list:

a8051 power2 -Llist\

Note: The subdirectory you specify must already exist. The trailing backslash is
required because the parameter is prepended to the default filename.
EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the command line, the
assembler can accept them from an extended command line file.

23

Setting command line options

24

IAR Assembler for 8051
Reference Guide

By default, extended command line files have the extension xc1, and can be specified
using the - £ command line option. For example, to read the command line options from
extend.xcl when assembling the file source.s51, enter:

a8051 source.s51 -f extend.xcl

ERROR RETURN CODES

When using the 8051 IAR Assembler from within a batch file, you may need to
determine whether the assembly was successful in order to decide what step to take next.
For this reason, the assembler returns the following error return codes:

Return code Description

0 Assembly successful, warnings may appear

1 There were warnings (only if the -ws option is used)
2 There were errors

Table 8: Assembler error return codes

ASSEMBLER ENVIRONMENT VARIABLES

Options can also be specified using the ASM8051 environment variable. The assembler
appends the value of this variable to every command line, so it provides a convenient
method of specifying options that are required for every assembly.

The following environment variables can be used with the 8051 IAR Assembler:

Environment variable Description

ASM8051 Specifies command line options; for example:
set ASM8051=-L -ws

AB8051_INC Specifies directories to search for include files; for example:
set A8051_INC=c:\myinc\

Table 9: Assembler environment variables

For example, setting the following environment variable will always generate a list file
with the name temp.1lst:

ASM8051=-1 temp.lst

For information about the environment variables used by the AR XLINK Linker and
the TAR XLIB Librarian, see the IAR Linker and Library Tools Reference Guide.

Assembler options ___¢

Summary of assembler options

The following table summarizes the assembler options available from the command

line:

Command line option

Description

-B
-b
-c{SDMEAO}

-Dsymbol[=value]

-d

-Enumber

-f filename
-G

-Iprefix

-i
-L[prefix]
-1 filename
-Mab

-N

-n

-Oprefix

-o filename
-plines

-r

-S

-s{+|-}

=T

-tn
-Usymbol
-v[0]1]2]

-wlstring] [s]

-X

-x{DI2}

Macro execution information

Makes a library module

Conditional list

Defines a symbol

Disable #1ifdef/#endif matching
Maximum number of errors
Extends the command line

Opens standard input as source
Includes paths

Lists #included text

Lists to prefixed source name

Lists to named file

Macro quote characters

Omit header from assembler listing
Enables support for multibyte characters
Sets object filename prefix

Sets object filename

Lines/page

Generates debug information

Sets silent operation

Case sensitive user symbols

Active lines only

Tab spacing

Undefines a symbol

Processor configuration

Disables warnings

Unreferenced externals in object file

Includes cross-references

Table 10: Assembler options summary

25

Descriptions of assembler options

26

Descriptions of assembler options

IAR Assembler for 8051
Reference Guide

-B

The following sections give full reference information about each assembler option.

-B

Use this option to make the assembler print macro execution information to the standard
output stream on every call of a macro. The information consists of:

o The name of the macro

e The definition of the macro

o The arguments to the macro

e The expanded text of the macro.

This option is mainly used in conjunction with the list file options -L or -1; for
additional information, see page 30.

This option is identical to the Macro execution info option on the List page in the
A8051 category in the IAR Embedded Workbench.

-b

This option causes the object file to be a library module rather than a program module.
A program module is always included during linking. A library module will only be
included if it is referenced in your application.

By default, the assembler produces a program module ready to be linked with the IAR
XLINK Linker. Use the -b option if you instead want the assembler to make a library
module.

If the NAME directive is used in the source (to specify the name of the program module),
the -b option is ignored, i.e. the assembler produces a program module regardless of the
-b option.

This option is identical to the Make library module option on the Output page in the
AB8051 category in the IAR Embedded Workbench.

-c{SDMEAO}

Use this option to control the contents of the assembler list file. This option is mainly
used in conjunction with the list file options -L and -1; see page 30 for additional
information.

Assembler options ___¢

The following table shows the available parameters:

Command line option Description

-cS No structured assembler list
-cDh Disable list file

-cM Macro definitions

-cE No macro expansions

-CcA Assembled lines only

-cO Multiline code

Table 11: Conditional list (-c)

This option is related to the Output list file option on the List page in the A8051
category in the IAR Embedded Workbench.

-Dsymbol [=value]

Use this option to define a preprocessor symbol with the name symbol and the value
value. If no value is specified, 1 is used.

The -D option allows you to specify a value or choice on the command line instead of
in the source file.
Example

For example, you could arrange your source to produce either the test or production
version of your program dependent on whether the symbol TESTVER was defined. To do
this, use include sections such as:

#ifdef TESTVER

.. ; additional code lines for test version only
#endif
Then select the version required in the command line as follows:

Production version: a8051 prog
Test version: a8051 prog -DTESTVER

Alternatively, your source might use a variable that you need to change often. You can
then leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

a8051 prog -DFRAMERATE=3

This option is identical to the Defined symbols option on the Preprocessor page in the
AB8051 category in the IAR Embedded Workbench.

27

Descriptions of assembler options

28

IAR Assembler for 8051
Reference Guide

-d

-d
Allows unmatched #ifdef .. #endif statements to be used without causing an error.

The checks for #ifdef .. #endif matching are performed for each module, and a
#endi £ outside modules will therefore normally generate an error message. Use this
option to turn checking off.

Example
This allows you to write constructs such as:

#ifdef Versionl
MODULE M1
NOP
ENDMOD
#endif
MODULE M2

etc

This option is identical to the Disable #ifdef/#endif matching option on the Language
page in the A8051 category in the IAR Embedded Workbench.

-Enumber
This option specifies the maximum number of errors that the assembler will report.

By default, the maximum number is 100. The -E option allows you to decrease or
increase this number to see more or fewer errors in a single assembly.

-f filename

This option extends the command line with text read from the file named extend. xc1.
Notice that there must be a space between the option itself and the filename.

The - £ option is particularly useful where there is a large number of options which are
more conveniently placed in a file than on the command line itself.

Example

To run the assembler with further options taken from the file extend.xc1, use:

a8051 prog -f extend.xcl

-G

Assembler options ___¢

-G

This option causes the assembler to read the source from the standard input stream,
rather than from a specified source file.

When -G is used, no source filename may be specified.

-Iprefix

Use this option to specify paths to be used by the preprocessor by adding the #include
file search prefix prefix.

By default, the assembler searches for #include files only in the current working
directory and in the paths specified in the A8051_INC environment variable. The -1
option allows you to give the assembler the names of directories where it will also search
if it fails to find the file in the current working directory.

Example

Using the options:

-Ic:\global\ -Ic:\thisproj\headers\
and then writing:

#include "asmlib.hdr"

in the source, will make the assembler search first in the current directory, then in the
directory c:\global\, and finally in the directory c:\thisproj\headers\.

You can also specify the include path with the A8051_INC environment variable, see
Assembler environment variables, page 24.

This option is related to the Include paths option on the Preprocessor page in the
AB051 category in the IAR Embedded Workbench.

-i
Includes #include files in the list file.

By default, the assembler does not list #include file lines since these often come from
standard files and would waste space in the list file. The -i option allows you to list
these file lines.

This option is related to the Include paths option on the Preprocessor page in the
AB8051 category in the IAR Embedded Workbench.

29

Descriptions of assembler options

30

IAR Assembler for 8051
Reference Guide

-L

-L[prefix]

By default the assembler does not generate a listing. Use this option to make the
assembler generate one and send it to the file [prefix] sourcename.lst.

To simply generate a listing, use the -L option without a prefix. The listing is sent to the
file with the same name as the source, but the extension will be 1st.

The -L option lets you specity a prefix, for example to direct the list file to a
subdirectory. Notice that you cannot include a space before the prefix.

-L may not be used at the same time as -1.

Example
To send the list file to 1ist\prog. 1st rather than the default prog.1st:
a8051 prog -Llist\

This option is related to the options on the List page in the A8051 category in the
IAR Embedded Workbench.

-1 filename

Use this option to make the assembler generate a listing and send it to the file £i1ename.
If no extension is specified, 1st is used. Notice that you must include a space before the
filename.

By default, the assembler does not generate a list file. The -1 option generates a listing,
and directs it to a specific file. To generate a list file with the default filename, use the
-L option instead.

This option is related to the options on the List page in the A8051 category in the
IAR Embedded Workbench.

-Mab

This option sets the characters to be used as left and right quotes of each macro argument
to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

Assembler options ___¢

Example

For example, using the option:

-M[]

in the source you would write, for example:
print [>]

to call a macro print with > as the argument.

Note: Depending on your host environment, it may be necessary to use quote marks
with the macro quote characters, for example:

a8051 filename -M’'<>’

This option is identical to the Macro quote characters option on the Language page
in the A8051 category in the ITAR Embedded Workbench.

-N

Use this option to omit the header section that is printed by default in the beginning of
the list file.

This option is useful in conjunction with the list file options -L or -1; see page 30 for
additional information.

This option is related to the options on the List page in the A8051 category in the
IAR Embedded Workbench.

-n

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

This option is identical to the Enable multibyte support option on the Language page
in the A8051 category in the IAR Embedded Workbench.

-Oprefix

Use this option to set the prefix to be used on the name of the object file. Notice that you
cannot include a space before the prefix.

31

Descriptions of assembler options

32

IAR Assembler for 8051
Reference Guide

By default the prefix is null, so the object filename corresponds to the source filename
(unless -o is used). The -0 option lets you specify a prefix, for example to direct the
object file to a subdirectory.

Notice that -0 may not be used at the same time as -o.

Example

To send the object code to the file obj\prog.r51 rather than to the default file
prog.r51:

a8051 prog -0obj\

This option is related to the Output directories option on the Output page in the
General category in the AR Embedded Workbench.

-o filename

This option sets the filename to be used for the object file. Notice that you must include
a space before the filename. If no extension is specified, r51 is used.

The option -o may not be used at the same time as the option -0.

Example

For example, the following command puts the object code to the file obj . r51 instead
of the default prog.r51:

a8051 prog -o obj

Notice that you must include a space between the option itself and the filename.

-plines

The -p option sets the number of lines per page to 1ines, which must be in the range
10 to 150.

This option is used in conjunction with the list options -L or -1; see page 30 for
additional information.

This option is identical to the Lines/page option on the List page in the A8051 category
in the IAR Embedded Workbench.

-r

The -r option makes the assembler generate debug information that allows a symbolic
debugger such as C-SPY to be used on the program.

Assembler options ___¢

By default, the assembler does not generate debug information, to reduce the size and
link time of the object file. You must use the -r option if you want to use a debugger
with the program.

This option is identical to the Generate debug information option on the Output page
in the A8051 category in the AR Embedded Workbench.

-S

By default, the assembler sends various informational messages via the standard output
stream. Use the -S option to prevent this.

Error and warning messages are sent to the error output stream, so they are displayed
regardless of this setting.

-s{+|-}

Use the -s option to control whether the assembler is sensitive to the case of user
symbols:

Command line option Description
-s+ Case sensitive user symbols
-s- Case insensitive user symbols

Table 12: Controlling case sensitivity in user symbols (-s)

By default, case sensitivity is on. This means that, for example, LABEL and label refer
to different symbols. Use -s- to turn case sensitivity off, in which case LABEL and 1abel
will refer to the same symbol.

This option is identical to the User symbols are case sensitive option on the Language
page in the A8051 category in the AR Embedded Workbench.

-T

Includes only active lines in listings, for example not those in false #if blocks. By
default, all lines are listed.

This option is useful for reducing the size of listings by eliminating lines that do not
generate or affect code.

This option is identical to the Active lines only option on the List page in the A8051
category in the IAR Embedded Workbench.

33

Descriptions of assembler options

34

IAR Assembler for 8051
Reference Guide

-t

-tn

By default the assembler sets 8 character positions per tab stop. The -t option allows
you to specify a tab spacing to n, which must be in the range 2 to 9.

This option is useful in conjunction with the list options -L or -1; see page 30 for
additional information.

This option is identical to the Tab spacing option on the List page in the A8051
category in the IAR Embedded Workbench.

-Usymbol
Use the -U option to undefine the predefined symbol symbo1l.

By default, the assembler provides certain predefined symbols; see Predefined symbols,
page 19. The -U option allows you to undefine such a predefined symbol to make its
name available for your own use through a subsequent -D option or source definition.

Example

To use the name of the predefined symbol __TIME__ for your own purposes, you could
undefine it with:

a8051 prog -U__TIME__

-v[0|1]2]
Use the -v option to specify the processor configuration.
The following table shows how the -v options are mapped to the 8051 derivatives:

Option Description Derivative

-v0 Supports derivatives that use a standard 8051 core, with a 8051
maximum of 64 Kbytes of code memory. This option
corresponds to the compiler option --cpu=plain.

-vl Supports derivatives with a maximum of 2 Kbytes of code 80751
memory. Using this processor option, no long jump (LJMP)
instructions will be generated, only the shorter ATMP
instructions. This option corresponds to the compiler option
--cpu=tiny.

Table 13: Specifying the processor configuration (-v)

Assembler options ___¢

Option Description Derivative
-v2 Supports derivatives that use cores similar to the extended core Dallas
of the Dallas DS80C390/DS80C400 processors. Using this DS80C390/
processor option, 3-byte addresses will be generated when DS80C400

appropriate. This option corresponds to the compiler option
--cpu=extendedl.

Table 13: Specifying the processor configuration (-v) (Continued)
If no processor configuration option is specified, the assembler uses the -v0 option by
default.

The -v option is identical to the CPU core option on the Target page in the General
category in the IAR Embedded Workbench.

—w[+|—] [[,]1rangel [, range, ...]1[s]

By default, the assembler displays a warning message when it detects an element of the
source which is legal in a syntactical sense, but may contain a programming error; see
Assembler diagnostics, page 107, for details.

Use this option to disable warnings. The -w option without a range disables all warnings.
The -w option with one or more ranges performs the following:

Command line option Description

-w+ Enables all warnings

-w- Disables all warnings

-w+n Enables just warning n

-w-n Disables just warning n

-w+m-n Enables warnings mto n

-w-m-n Disables warnings m to n

-w+, -m-n Enables all warnings except mto n
-w-,+m-n Disables all warnings except mto n
-wW+,-m-n, -o-p Enables all warnings except mto nand oto p
-w-,+m-n, +o-p Disables all warnings except mto nand o to p

Table 14: Disabling assembler warnings (-w)
Only one -w option may be used on the command line.

By default, the assembler generates exit code O for warnings. Use -ws to generate exit
code 1 if a warning message is produced.

35

Descriptions of assembler options

Example

To disable just warning 0 (unreferenced label), use the following command:
a8051 prog -w-0

To disable warnings O to 8 and 14-15, use the following command:

a8051 prog -w-0-8,-14-15

This option is related to the options on the Diagnostics page in the A8051 category in
the AR Embedded Workbench.

-X -X

Use this option to force all unreferenced externally declared symbols to be included in
the object file.

-x -x{DI2}

Use this option to make the assembler include a cross-reference table at the end of the
list file.

This option is useful in conjunction with the list options -L or -1; see page 30 for
additional information.

The following parameters are available:

Command line option Description

-xD #defines

-xI Internal symbols
-x2 Dual line spacing

Table 15: Including cross-references in assembler list file (-x)

This option is identical to the Include cross-reference option on the List page in the
AB051 category in the IAR Embedded Workbench.

IAR Assembler for 8051
36 Reference Guide

Assembler operators

This chapter first describes the precedence of the assembler operators, and

then summarizes the operators, classified according to their precedence.

Finally, this chapter provides reference information about each operator,

presented in alphabetical order.

Precedence of operators

Each operator has a precedence number assigned to it that determines the order in which
the operator and its operands are evaluated. The precedence numbers range from 1 (the
highest precedence, i.e. first evaluated) to 7 (the lowest precedence, i.e. last evaluated).

The following rules determine how expressions are evaluated:

The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are evaluated.
Operators of equal precedence are evaluated from left to right in the expression.
Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, the
following expression evaluates to 1:

7/ (1+(2*3))

Summary of assembler operators

The following tables give a summary of the operators, in order of priority. Synonyms,
where available, are shown after the operator name.

UNARY OPERATORS - |

+

Unary plus.

Unary minus.

1, NOT Logical NOT.
~, BITNOT Bitwise NOT.
LOW Low byte.
HIGH High byte.
BYTE2 Second byte.

37

Summary of assembler operators

BYTE3 Third byte.

BYTE4 Fourth byte

LWRD Low word.

HWRD High word.

DATE Current time/date.

LOC Local variable reference.
PRM Parameter reference
SFB Segment begin.

SFE Segment end.

SIZEOF Segment size.

MULTIPLICATIVE ARITHMETIC OPERATORS -2

* Multiplication.
/ Division.
% Modulo.

ADDITIVE ARITHMETIC OPERATORS -3

+ Addition.

- Subtraction.

SHIFT OPERATORS -4

>>, SHR Logical shift right.

<<, SHL Logical shift left.

AND OPERATORS -5

&&, AND Logical AND.
&, BITAND Bitwise AND.
OR OPERATORS -6

||, OR Logical OR.
|, BITOR Bitwise OR.

IAR Assembler for 8051
38 Reference Guide

Assembler operators ___o

XOR Logical exclusive OR.

~, BITXOR Bitwise exclusive OR.

COMPARISON OPERATORS -7

= ==, EQ Equal.

<>, 1=, NE Not equal.

>, GT Greater than.

<, LT Less than.

UGT Unsigned greater than.
ULT Unsigned less than.
>=, GE Greater than or equal.
<=, LE Less than or equal.

Description of operators

The following sections give detailed descriptions of each assembler operator. See
Assembler expressions, page 16, for related information. The number within parentheses
specifies the priority of the operator.

* Multiplication (2).
* produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.
Example

2*2 > 4
-2*2 = -4

+ Unary plus (1).

Unary plus operator.

Example

+3 > 3
3*+2 > 6

39

Description of operators

40

IAR Assembler for 8051
Reference Guide

Addition (3).

The + addition operator produces the sum of the two operands which surround it. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example
92+19 — 111

-2+2 ™ 0
-2+-2 > -4

Unary minus (1).

The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of the operator is the
two’s complement negation of that integer.

Example

3 > -3
3*-2 > -6
4--5 > 9

Subtraction (3).

The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result is
also signed 32-bit integer.

Example
92-19 — 73

-2-2 > -4
-2--2 7> 0

Division (2).

/ produces the integer quotient of the left operand divided by the right operator. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example
9/2 > 4
-12/3 = -4
9/2*6 — 24

Assembler operators ___o

<, LT Less than (7).

< evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand.

Example

-1 <2 > 1
2 <1 >0
2 <2 ™0

Less than or equal (7)

<= evaluates to 1 (true) if the left operand has a numeric value that is lower than or equal
to the right operand.

Example
1 <=2 —>1
2<=1—">0

1 <=1 —>1

Not equal (7).

<> evaluates to 0 (false) if its two operands are identical in value or to 1 (true) if its two
operands are not identical in value.

Example

1 <>2 > 1
2 <>2 >0
'A' <> 'B' 1

Equal (7).

= evaluates to 1 (true) if its two operands are identical in value, or to O (false) if its two
operands are not identical in value.

Example

1 =220
2 ==2 1
'"ABC' = 'ABCD' > 0

41

Description of operators

42

IAR Assembler for 8051
Reference Guide

>, GT

>=, GE

&&, AND

&, BITAND

Greater than (7).

> evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand.

Example

-1 >1 >0
2 >1 1
1>1—>0

Greater than or equal (7).

>= evaluates to 1 (true) if the left operand is equal to or has a higher numeric value than
the right operand.

Example
1>=2—>0
2>=1—>1

1 >=1 1

Logical AND (5).

Use && to perform logical AND between its two integer operands. If both operands are
non-zero the result is 1; otherwise it is zero.

Example

B’1010 && B’0011 — 1
B’1010 && B’0101 — 1
B’1010 && B’0000 —> O

Bitwise AND (5).

Use & to perform bitwise AND between the integer operands.

Example

B’1010 & B’0011 — B’0010
B’1010 & B’0101 — B’0000
B’1010 & B’0000 — B’0000

Assembler operators ___o

~, BITNOT Bitwise NOT (1).

Use ~ to perform bitwise NOT on its operand.

Example

~ B’1010 — B’11111111111111111111111111110101

|, BITOR Bitwise OR (6).

Use | to perform bitwise OR on its operands.

Example

B’1010 | B/0101 — B’1111
B’1010 | B’0000 —> B’1010

~, BITXOR Bitwise exclusive OR (6).

Use ~ to perform bitwise XOR on its operands.

Example

B’1010 ~ B’0101 — B’1111
B’1010 ~ B'0011 — B’1001

%, MOD Modulo (2).

% produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers and the result is also a signed
32-bit integer.

X % Yisequivalent to Xx-Y* (X/Y) using integer division.

Example

2% 2 2>0
12 7 > 5
3% 2 >1

!, NOT Logical NOT (1).

Use ! to negate a logical argument.

43

Description of operators

44

IAR Assembler for 8051
Reference Guide

I, or

BYTE2

BYTE3

BYTE4

DATE

Example

! B’0101 —> O
! B’0000 > 1

Logical OR (6).

Use | | to perform a logical OR between two integer operands.

Example

B'1010 || B'0000 — 1
B'0000 || B'0000 — 0

Second byte (1).

BYTE?2 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.

Example

BYTE2 0x12345678 — 0x56

Third byte (1).

BYTE3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

Example

BYTE3 0x12345678 — 0x34

Fourth byte (1).

BYTE4 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the high byte (bits 31 to 24) of the operand.

Example

BYTE4 0x12345678 — 0x12

Current time/date (1).

Use the DATE operator to specify when the current assembly began.

Assembler operators ___o

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59).

DATE 2 Current minute (0-59).

DATE 3 Current hour (0-23).

DATE 4 Current day (1-31).

DATE 5 Current month (1-12).

DATE 6 Current year MOD 100 (1998 —98, 2000 —~00, 2002 —02).
Example

To assemble the date of assembly:

today: DC8 DATE 6, DATE 5, DATE 4

HIGH High byte (1).

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

Example

HIGH OxABCD —> OxAB

HWRD High word (1).
HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.
Example

HWRD 0x12345678 — 0x1234

LOC Local variable reference (2)

LOC evaluates to an absolute address in the memory area block used for a function’s
local variables in a specific segment. This evaluation takes place at link time.

Loc is intended for functions using static overlays. The memory area block for local
variables must have been defined using the LOCFRAME assembler directive.

45

Description of operators

46

IAR Assembler for 8051
Reference Guide

Low

LWRD

PRM

See also the IAR C/EC++ Compiler Reference Guide for 8051 for information about the
assembler language interface.

Syntax

LOC (function, segment, offset)

Parameters
function The name of the function.
segment The name of a memory segment, which must be defined before
LOC is used.
offset An offset from the start address.
Example
MOV RO, #LOC (func, IOVERLAY, 0)

This will load the address of the first local variable of func into the RO register. The
TOVERLAY memory segment is used for storing static overlay frames.

Low byte (1).

Low takes a single operand, which is interpreted as an unsigned, 16-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example

LOW OxABCD — 0xCD

Low word (1).

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

Example

LWRD 0x12345678 — 0x5678

Parameter reference (2).

PRM evaluates to an absolute address in the memory area block used for a function’s
parameters in a specific segment. This evaluation takes place at link time.

SFB

Assembler operators ___o

PRM is intended for functions using static overlays. The memory area block for
parameters must have been defined using the ARGFRAME assembler directive.

See also the IAR C/EC++ Compiler Reference Guide for 8051 for information about the

assembler language interface.

Syntax

PRM (function, segment, offset)

Parameters
function The name of the function.
segment The name of a memory segment, which must be defined before
PRM is used.
offset An offset from the start address.
Example
MOV RO, #PRM (func, IOVERLAY, 0)

This will load the address of the first parameter of func into the RO register. The
IOVERLAY memory segment is used for storing static overlay frames.

Segment begin (1).

Syntax

SFB (segment [{+|-}offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFB is used.

offset An optional offset from the start address. The parentheses are

optional if offset is omitted.

Description

SFB accepts a single operand to its right. The operand must be the name of a relocatable
segment.

The operator evaluates to the absolute address of the first byte of that segment. This
evaluation takes place at linking time.

47

Description of operators

48

IAR Assembler for 8051
Reference Guide

<<

’

SFE

SHL

Example

NAME demo
RSEG CODE
start: DC1l6 SFB(CODE)

Even if the above code is linked with many other modules, start will still be set to the
address of the first byte of the segment.

Segment end (1).

Syntax

SFE (segment [{+ | -} offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFE is used.

offset An optional offset from the start address. The parentheses are

optional if of £set is omitted.

Description

SFE accepts a single operand to its right. The operand must be the name of a relocatable
segment. The operator evaluates to the segment start address plus the segment size. This
evaluation takes place at linking time.

Example

NAME demo
RSEG CODE
end: DCl6 SFE(CODE)

Even if the above code is linked with many other modules, end will still be set to the
address of the last byte of the segment.

The size of the continuous segment MY_SEGMENT can be calculated as:

SFE (MY_SEGMENT) -SFB (MY_SEGMENT)

Logical shift left (4).

Use << to shift the left operand, which is always treated as unsigned, to the left. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

>>, SHR

SIZEOF

Assembler operators ___o

Example

B’00011100 << 3 —> B’11100000
B’00000111111111111 << 5 — B’11111111111100000
14 << 1 — 28

Logical shift right (4).

Use >> to shift the left operand, which is always treated as unsigned, to the right. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

Example

B’01110000 >> 3 —> B’'00001110
B’1111111111111111 >> 20 > 0
14 >> 1 —> 7

Segment size (1).

Syntax

SIZEOF segment

Parameters

segment The name of a relocatable segment, which must be defined
before SIZEOF is used.

Description

SIZEOF generates SFE-SFB for its argument, which should be the name of a relocatable
segment; i.e. it calculates the size in bytes of a segment. This is done when modules are
linked together.

Example

NAME demo
RSEG CODE
size: DC16 SIZEOF CODE

sets size to the size of segment CODE.

49

Description of operators

50

IAR Assembler for 8051
Reference Guide

UGT

ULT

XOR

Unsigned greater than (7).

UGT evaluates to 1 (true) if the left operand has a larger value than the right operand. The
operation treats its operands as unsigned values.

Example

2 UGT 1 > 1
-1 UGT 1 > 1

Unsigned less than (7).

ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand.
The operation treats its operands as unsigned values.

Example

1 U0LT 2 > 1
-1 ULT 2 > 0

Logical exclusive OR (6).

Use XOR to perform logical XOR on its two operands.

Example

B’0101 XOR B’1010 — 0
B’0101 XOR B’'0000 — 1

Assembler directives

This chapter gives an alphabetical summary of the assembler directives. It then

describes the syntax conventions and provides detailed reference information

for each category of directives.

Summary of assembler directives

The following table gives a summary of all the assembler directives.

Directive

Description

Section

$
#define
#elif

#else
#endif
#error

#if

#ifdef
#ifndef
#include
#message
#undef
/*comment*/

//

ALIAS
ALIGN

ALIGNRAM
ARGFRAME
ASEG

ASEGN

Includes a file.
Assigns a value to a label.

Introduces a new condition ina #if...#endif
block.

Assembles instructions if a condition is false.
Endsa #if, #ifdef, or #ifndef block.
Generates an error.

Assembles instructions if a condition is true.
Assembles instructions if a symbol is defined.
Assembles instructions if a symbol is undefined.
Includes a file.

Generates a message on standard output.
Undefines a label.

C-style comment delimiter.

C++ style comment delimiter.

Assigns a permanent value local to a module.
Assigns a permanent value local to a module.

Aligns the location counter by inserting
zero-filled bytes.

Aligns the program counter.
Defines a function’s arguments.
Begins an absolute segment.

Begins a named absolute segment.

Assembler control
C-style preprocessor

C-style preprocessor

C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
Assembler control
Assembler control
Value assignment
Value assignment

Segment control

Segment control
Function control
Segment control

Segment control

Table 16: Assembler directives summary

51

Summary of assembler directives

52

IAR Assembler for 8051

Reference Guide

Directive Description Section

ASSIGN Assigns a temporary value. Value assignment

CASEOFF Disables case sensitivity. Assembler control

CASEON Enables case sensitivity. Assembler control

CFI Specifies call frame information. Call frame
information

COL Sets the number of columns per page. Listing control

COMMON Begins a common segment. Segment control

DB Generates 8-bit byte constants, including strings. Data definition or
allocation

DC8 Generates 8-bit byte constants, including strings. Data definition or
allocation

DC16 Generates |6-bit word constants. Data definition or
allocation

DC24 Generates 24-bit word constants. Data definition or
allocation

DC32 Generates 32-bit long word constants. Data definition or
allocation

DD Generates 32-bit long word constants. Data definition or
allocation

DEFINE Defines a file-wide value. Value assignment

DS Allocates space for 8-bit bytes. Data definition or
allocation

DS16 Allocates space for |6-bit words. Data definition or
allocation

DS24 Allocates space for 24-bit words. Data definition or
allocation

DS32 Allocates space for 32-bit words. Data definition or
allocation

DS8 Allocates space for 8-bit bytes. Data definition or
allocation

DT Generates 24-bit word constants. Data definition or
allocation

DW Generates |6-bit word constants, including Data definition or

strings. allocation
ELSE Assembles instructions if a condition is false. Conditional assembly

Table 16: Assembler directives summary (Continued)

Assembler directives ___¢

Directive Description Section
ELSEIF Specifies a new condition in an IF...ENDIF Conditional assembly
block.
END Terminates the assembly of the last module ina Module control
file.
ENDIF Ends an IF block. Conditional assembly
ENDM Ends a macro definition. Macro processing
ENDMAC Ends a macro definition. Macro processing
ENDMOD Terminates the assembly of the current module. Module control
ENDR Ends a REPT, REPTC or REPTT structure. Macro processing
EQU Assigns a permanent value local to a module. Value assignment
EVEN Aligns the program counter to an even address. ~ Segment control
EXITM Exits prematurely from a macro. Macro processing
EXPORT Exports symbols to other modules. Symbol control
EXTERN Imports an external symbol. Symbol control
EXTRN Imports an external symbol. Symbol control
FUNCALL Defines function call information. Function control
FUNCTION Defines a function. Function control
IF Assembles instructions if a condition is true. Conditional assembly
IMPORT Imports an external symbol. Symbol control
LIBRARY Begins a library module. Module control
LIMIT Checks a value against limits. Value assignment
LOCAL Creates symbols local to a macro. Macro processing
LOCFRAME Defines a function’s local variables. Function control
LSTCND Controls conditional assembler listing. Listing control
LSTCOD Controls multi-line code listing. Listing control
LSTEXP Controls the listing of macro generated lines. Listing control
LSTMAC Controls the listing of macro definitions. Listing control
LSTOUT Controls assembler-listing output. Listing control
LSTPAG Controls the formatting of output into pages. Listing control
LSTREP Controls the listing of lines generated by repeat Listing control
directives.
LSTSAS Controls structured assembler listing. Listing control
LSTXRF Generates a cross-reference table. Listing control

Table 16: Assembler directives summary (Continued)

53

Syntax conventions

54

Directive Description Section

MACRO Defines a macro. Macro processing
MODULE Begins a library module. Module control
NAME Begins a program module. Module control
ODD Aligns the program counter to an odd address. ~ Segment control
ORG Sets the location counter. Segment control
PAGE Generates a new page. Listing control
PAGSIZ Sets the number of lines per page. Listing control
PROGRAM Begins a program module. Module control
PUBLIC Exports symbols to other modules. Symbol control
PUBWEAK Exports symbols to other modules, multiple Symbol control

definitions allowed.

RADIX Sets the default base.

REPT Assembles instructions a specified number of
times.

REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes strings.

REQUIRE Repeats subsequent instructions until a condition
is true.

RSEG Begins a relocatable segment.

RTMODEL Declares runtime model attributes.

SET Assigns a temporary value.

sfr Creates byte-access SFR labels.

SFRTYPE Specifies SFR attributes.

STACK Begins a stack segment.

Assembler control

Macro processing

Macro processing
Macro processing

Symbol control

Segment control
Module control

Value assignment
Value assignment
Value assignment

Segment control

Table 16: Assembler directives summary (Continued)

Syntax conventions

IAR Assembler for 8051

Reference Guide

In the syntax definitions the following conventions are used:

o Parameters, representing what you would type, are shown in italics. So, for

example, in:
ORG expr

expr represents an arbitrary expression.

Assembler directives ___¢

o Optional parameters are shown in square brackets. So, for example, in:
END [expr]

the expr parameter is optional. An ellipsis indicates that the previous item can be
repeated an arbitrary number of times. For example:

PUBLIC symbol [,symbol]

indicates that PUBLIC can be followed by one or more symbols, separated by
commas.

e Alternatives are enclosed in { and } brackets, separated by a vertical bar, for
example:

LSTOUT{+ |-}

indicates that the directive must be followed by either + or -.

LABELS AND COMMENTS
Where a label must precede a directive, this is indicated in the syntax, as in:
label SET expr

An optional label, which will assume the value and type of the current program location
counter (PLC), can precede all directives. For clarity, this is not included in each syntax
definition.

In addition, unless explicitly specified, all directives can be followed by a comment,
preceded by ; (semicolon).
PARAMETERS

The following table shows the correct form of the most commonly used types of
parameter:

Parameter What it consists of

expr An expression; see Assembler expressions, page 16.
label A symbolic label.

symbol An assembler symbol.

Table 17: Assembler directive parameters

55

Module control directives

Module control directives

Module control directives are used for marking the beginning and end of source program
modules, and for assigning names and types to them.

Directive Description

END Terminates the assembly of the last module in a file.
ENDMOD Terminates the assembly of the current module.
LIBRARY Begins a library module.

MODULE Begins a library module.

NAME Begins a program module.

PROGRAM Begins a program module.

RTMODEL Declares runtime model attributes.

Table 18: Module control directives

SYNTAX

END [labell]

ENDMOD [labell

LIBRARY symbol [(expr)]
MODULE symbol [(expr)]
NAME symbol [(expr)]
PROGRAM symbol [(expr)]
RTMODEL key, value

PARAMETERS

expr Optional expression (0-255) used by the IAR compiler to encode
programming language, memory model, and processor configuration.

key A text string specifying the key.

label An expression or label that can be resolved at assembly time. It is output in the
object code as a program entry address.

symbol Name assigned to module, used by XLINK and XLIB when processing object
files.
value A text string specifying the value.

IAR Assembler for 8051
56 Reference Guide

Assembler directives ___¢

DESCRIPTION

Beginning a program module

Use NAME to begin a program module, and to assign a name for future reference by the
IAR XLINK Linker™ and the IAR XLIB Librarian™.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a library module

Use MODULE to create libraries containing a number of small modules—Ilike runtime
systems for high-level languages—where each module often represents a single routine.
With the multi-module facility, you can significantly reduce the number of source and
object files needed.

Library modules are only copied into the linked code if other modules reference a public
symbol in the module.

Terminating a module

Use ENDMOD to define the end of a module.

Terminating the last module

Use END to indicate the end of the source file. Any lines after the END directive are
ignored.

Assembling multi-module files

Program entries must be either relocatable or absolute, and will show up in XLINK load
maps, as well as in some of the hexadecimal absolute output formats. Program entries
must not be defined externally.

The following rules apply when assembling multi-module files:

o At the beginning of a new module all user symbols are deleted, except for those
created by DEFINE, #define, or MACRO, the location counters are cleared, and the
mode is set to absolute.

e Listing control directives remain in effect throughout the assembly.

Note: END must always be used in the last module, and there must not be any source
lines (except for comments and listing control directives) between an ENDMOD and a
MODULE directive.

If the NAME or MODULE directive is missing, the module will be assigned the name of the
source file and the attribute program.

57

Module control directives

IAR Assembler for 8051
58 Reference Guide

Declaring runtime model attributes

Use RTMODEL to enforce consistency between modules. All modules that are linked
together and define the same runtime attribute key must have the same value for the
corresponding key value, or the special value *. Using the special value * is equivalent
to not defining the attribute at all. It can however be useful to explicitly state that the
module can handle any runtime model.

A module can have several runtime model definitions.

Note: The compiler runtime model attributes start with double underscore. In order to
avoid confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C code, and you want to control the
module consistency, refer to the IAR C/EC++ Compiler Reference Guide for 8051.

Examples
The following example defines three modules where:

e MOD_1 and MOD_2 cannot be linked together since they have different values for
runtime model ""foo"".

e MOD_1 and MOD_3 can be linked together since they have the same definition of
runtime model ""bar'" and no conflict in the definition of " foo"".

e MOD_2 and MOD_3 can be linked together since they have no runtime model
conflicts. The value "'*"" matches any runtime model value.
MODULE MOD_1

RTMODEL "foo", "1"
RTMODEL "bar", "XXX"
ENDMOD

MODULE MOD_2

RTMODEL "foo", "2"
RTMODEL "bar", "*"
ENDMOD

MODULE MOD_3
RTMODEL "bar", "XXX"

END

Assembler directives ___¢

Symbol control directives

These directives control how symbols are shared between modules.

Directive Description

EXTERN (EXTRN, IMPORT) Imports an external symbol.

PUBLIC (EXPORT) Exports symbols to other modules.

PUBWEAK Exports symbols to other modules, multiple definitions
allowed.

REQUIRE Forces a symbol to be referenced.

Table 19: Symbol control directives

SYNTAX

EXTERN symbol [, symbol]
PUBLIC symbol [,symbol]
PUBWEAK symbol [,symboll]
REQUIRE symbol

PARAMETERS

symbol Symbol to be imported or exported.

DESCRIPTION

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. Symbols declared
PUBLIC can be relocatable or absolute, and can also be used in expressions (with the
same rules as for other symbols).

The puBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the Low,
HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit or
16-bit register or word.

There are no restrictions on the number of PUBLIC-declared symbols in a module.

Exporting symbols with multiple definitions to other modules

PUBWEAK is similar to PUBLIC except that it allows the same symbol to be declared
several times. Only one of those declarations will be used by XLINK. If a module
containing a PUBLIC definition of a symbol is linked with one or more modules
containing PUBWEAK definitions of the same symbol, XLINK will use the PUBLIC
definition.

59

Segment control directives

60

A symbol declared as PUBWEAK must be a label in a segment part, and it must be the only
symbol declared as PUBLIC or PUBWEAK in that segment part.

Note: Library modules are only linked if a reference to a symbol in that module is
made, and that symbol has not already been linked. During the module selection phase,
no distinction is made between PUBLIC and PUBWEAK definitions. This means that to
ensure that the module containing the PUBLIC definition is selected, you should link it
before the other modules, or make sure that a reference is made to some other PUBLIC
symbol in that module.

Importing symbols
Use EXTERN to import an untyped external symbol.

The REQUIRE directive marks a symbol as referenced. This is useful if the segment part
containing the symbol must be loaded for the code containing the reference to work, but
the dependence is not otherwise evident.

EXAMPLES

The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules. It defines print as an
external routine; the address will be resolved at link time.

NAME error
EXTERN print
PUBLIC err

err CALL print

DB "% % Error **xkn
RET
END err

Segment control directives

IAR Assembler for 8051
Reference Guide

The segment directives control how code and data are generated.

Directive Description

ALIGN Aligns the location counter by inserting zero-filled bytes.
ALIGNRAM Aligns the program counter.

ASEG Begins an absolute segment.

ASEGN Begins a named absolute segment.

COMMON Begins a common segment.

Table 20: Segment control directives

Assembler directives ___¢

Directive Description

EVEN Aligns the program counter to an even address.
ODD Aligns the program counter to an odd address.
ORG Sets the location counter.

RSEG Begins a relocatable segment.

STACK Begins a stack segment.

Table 20: Segment control directives

SYNTAX

ALIGN align [,valuel

ALIGNRAM align [,value]

ASEG [start [(align)]]

ASEGN segment [:typel, address
COMMON segment [:typel [(align)]
EVEN [value]

ODD [value]

ORG expr

RSEG segment [:type]l [flag]l [(align)]

RSEG segment |[:type], address

STACK segment [:typel [(align)]

PARAMETERS

address Address where this segment part will be placed.

align Exponent of the value to which the address should be aligned, in the range 0
to 30.

expr Address to set the location counter to.

flag NOROOQOT, ROOT

NOROOT means that the segment part may be discarded by the linker
if no symbols in this segment part are referred to. Normally all
segment parts except startup code and interrupt vectors should set this
flag. The default mode is ROOT which indicates that the segment part
must not be discarded.

REORDER, NOREORDER

REORDER allows the linker to reorder segment parts. For a given
segment, all segment parts must specify the same state for this flag.
The default mode is NOREORDER which indicates that the segment
parts must remain in order.

61

Segment control directives

SORT, NOSORT

SORT means that the linker will sort the segment parts in decreasing
alignment order. For a given segment, all segment parts must specify
the same state for this flag. The default mode is NOSORT which
indicates that the segment parts will not be sorted.

segment The name of the segment.

start A start address that has the same effect as using an ORG directive at the
beginning of the absolute segment.

type The memory type, typically CODE, or DATA. In addition, any of the types
supported by the IAR XLINK Linker.

value Byte value used for padding, default is zero.

DESCRIPTION

Beginning an absolute segment

Use ASEG to set the absolute mode of assembly, which is the default at the beginning of
a module.

If the parameter is omitted, the start address of the first segment is 0, and subsequent
segments continue after the last address of the previous segment.

Beginning a named absolute segment
Use ASEGN to start a named absolute segment located at the address address.

This directive has the advantage of allowing you to specify the memory type of the
segment.

Beginning a relocatable segment

Use RSEG to set the current mode of the assembly to relocatable assembly mode. The
assembler maintains separate program location counters (initially set to zero) for all
segments, which makes it possible to switch segments and mode anytime without the
need to save the current segment location counter.

Up to 65536 unique, relocatable segments may be defined in a single module.

Beginning a stack segment

Use sTACK to allocate code or data allocated from high to low addresses (in contrast
with the RSEG directive that causes low-to-high allocation).

Note: The contents of the segment are not generated in reverse order.

IAR Assembler for 8051
62 Reference Guide

Assembler directives ___¢

Beginning a common segment

Use cCOMMON to place data in memory at the same location as COMMON segments from
other modules that have the same name. In other words, all coMMon segments of the
same name will start at the same location in memory and overlap each other.

Obviously, the coMMON segment type should not be used for overlapping executable
code. A typical application would be when you want a number of different routines to
share a reusable, common area of memory for data.

It can be practical to have the interrupt vector table in a COMMON segment, thereby
allowing access from several routines.

The final size of the coMMON segment is determined by the size of largest occurrence of
this segment. The location in memory is determined by the XLINK -z command; see
the IAR Linker and Library Tools Reference Guide.

Use the align parameter in any of the above directives to align the segment start
address.

Setting the program location counter (PLC)

Use ORG to set the program location counter of the current segment to the value of an
expression. The optional label will assume the value and type of the new location
counter.

The result of the expression must be of the same type as the current segment, i.e. it is not
valid to use ORG 10 during RSEG, since the expression is absolute; use ORG $+10 instead.
The expression must not contain any forward or external references.

All program location counters are set to zero at the beginning of an assembly module.

Aligning a segment

Use ALIGN to align the program location counter to a specified address boundary. The
expression gives the power of two to which the program counter should be aligned.

The alignment is made relative to the segment start; normally this means that the
segment alignment must be at least as large as that of the alignment directive to give the
desired result.

ALIGN aligns by inserting zero/filled bytes. The EVEN directive aligns the program
counter to an even address (which is equivalent to ALIGN 1) and the oDD directive aligns
the program counter to an odd address.

Use ALIGNRAM to align the program location counter to a specified address boundary.
The expression gives the power of two to which the program location counter should be
aligned. ALIGNRAM aligns by incrementing the data; no data is generated.

63

Segment control directives

EXAMPLES

Beginning an absolute segment

The following example assembles interrupt routine entry addresses in the appropriate
8051 interrupt vectors using an absolute segment:

EXTERN

main:

iesrv, tOsrv

ASEG
ORG
JMP

ORG
JMP

ORG
JMP

ORG
MOV

END

main ; Power on

iesrv ; External interrupt

0BH
tOsrv ; Timer interrupt

30H
A, #1

Beginning a relocatable segment

In the following example the data following the first RSEG directive is placed in a
relocatable segment called table; the ORG directive is used to create a gap of six bytes

in the table.

The code following the second RSEG directive is placed in a relocatable segment called

code:

EXTERN

RSEG
DW

ORG
DW

RSEG
subrtn MOV
SUBB
MOV
END

IAR Assembler for 8051
64 Reference Guide

divrtn,mulrtn

table
divrtn,mulrtn

$+6
subrtn

code
A,R7
A, #20
R7,A

Assembler directives ___¢

Beginning a stack segment

The following example defines two 100-byte stacks in a relocatable segment called

rpnstack:

STACK rpnstack
parms DS 100
opers DS 100

END

The data is allocated from high to low addresses.

Beginning a common segment

The following example defines two common segments containing variables:

NAME commonl
COMMON data
count DD 1
ENDMOD
NAME common?2
COMMON data
up DB 1
ORG S+2
down DB 1
END

Because the common segments have the same name, data, the variables up and down
refer to the same locations in memory as the first and last bytes of the 4-byte variable
count.

Value assighment directives

These directives are used for assigning values to symbols.

Directive Description

= Assigns a permanent value local to a module.

ALIAS Assigns a permanent value local to a module.
ASSIGN Assigns a temporary value.

DEFINE Defines a file-wide value.

EQU Assigns a permanent value local to a module.
LIMIT Checks a value against limits.

SET Assigns a temporary value.

Table 21: Value assignment directives

65

Value assignment directives

66

IAR Assembler for 8051
Reference Guide

Directive Description
sfr Creates byte-access SFR labels.
SFRTYPE Specifies SFR attributes.

Table 21: Value assignment directives

SYNTAX

label = expr

label ALIAS expr

label ASSIGN expr

label DEFINE expr

label EQU expr

LIMIT expr, min, max, message
label SET expr

[const] sfr register = value

[const] SFRTYPE register attribute [,attribute] = value
PARAMETERS
attribute One or more of the following:
BYTE The SFR must be accessed as a byte.
READ You can read from this SFR.
WORD The SFR must be accessed as a word.
WRITE You can write to this SFR.
expr Value assigned to symbol or value to be tested.
label Symbol to be defined.
message A text message that will be printed when expr is out of range.
min, max The minimum and maximum values allowed for expr.
register The special function register.
value The SFR port address.
DESCRIPTION

Defining a temporary value

Use either of ASSIGN and SET to define a symbol that may be redefined, such as for use
with macro variables. Symbols defined with SET cannot be declared PUBLIC.

Assembler directives ___¢

Defining a permanent local value
Use EQU or = to assign a value to a symbol.
Use EQU to create a local symbol that denotes a number or offset.

The symbol is only valid in the module in which it was defined, but can be made
available to other modules with a PUBLIC directive.

Use EXTERN to import symbols from other modules.

Defining a permanent global value
Use DEFINE to define symbols that should be known to all modules in the source file.

A symbol which has been given a value with DEFINE can be made available to modules
in other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file.

Defining special function registers

Use sfr to create special function register labels with attributes READ, WRITE, and BYTE
turned on. Use SFRTYPE to create special function register labels with specified
attributes.

Prefix the directive with const to disable the WRITE attribute assigned to the SFR. You
will then get an error or warning message when trying to write to the SFR. The const
keyword must be placed on the same line as the directive.

Checking symbol values

Use LIMIT to check that expressions lie within a specified range. If the expression is
assigned a value outside the range, an error message will appear.

The check will occur as soon as the expression is resolved, which will be during linking
if the expression contains external references. The min and max expressions cannot
involve references to forward or external labels, i.e. they must be resolved when
encountered.

EXAMPLES

Redefining a symbol

The following example uses SET to redefine the symbol cons in a REPT loop to generate
a table of the first 8 powers of 3:

NAME table
cons SET 1

67

Value assignment directives

68

IAR Assembler for 8051
Reference Guide

buildit

cons

main

It generates the following code:

1

2
10
10
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
11

W N oUW N

VNN NN R R R R R R R RE R BPo
S W N R OWO®TIOo U ™ WN EF o

MACR
Dw
SET
IF
buil
ENDTI
ENDM
buil
END

000000
000001
000000
000000
000000
000003
000002
000002
000002
000009
000004
000004
000004
00001B
000006
000006
000006
000051
000008
000008
000008
000008
000008
000008
000008
000008
000008
000008
000008

0]

dit
F

dit

0001

0003

0009

001B

times
cons

cons * 3
times > 1

times

4

cons
main

main

cons

cons

cons

cons

1

NAME
SET
buildit
buildit
Dw

SET

IF
buildit
Dw

SET

IF
buildit
Dw

SET

IF
buildit
Dw

SET

IF
buildit
ENDIF
ENDM
ENDIF
ENDM
ENDIF
ENDM
ENDIF
ENDM
END

table

4

4
cons
cons * 3
4 > 1

4 -1
cons

cons * 3

4 -1 >1
4 -1 -

cons

cons * 3

4 -1-1>1

4 -1 -
cons
cons * 3

4 -1-1-1>1

4 -1 -

1

1

1

1

1

1

Assembler directives ___¢

Using local and global symbols

In the following example the symbol value defined in module add1 is local to that
module; a distinct symbol of the same name is defined in module add2. The DEFINE
directive is used for declaring 1ocn for use anywhere in the file:

NAME addl
locn DEFINE 020H
value EQU 77

MOV R1,locn

MOV A,value

ADD A,R1

MOV R1,A

RET

ENDMOD

NAME add2
value EQU 77

MOV R1,locn

MOV A,value

ADD A,R1

MOV R1,A

RET

END

The symbol locn defined in module addl is also available to module add2.

Using the LIMIT directive

The following example sets the value of a variable called speed and then checks it, at
assembly time, to see if it is in the range 10 to 30. This might be useful if speed is often
changed at compile time, but values outside a defined range would cause undesirable

behavior.
speed SET 23
LIMIT speed, 10,30, ...speed out of range...

Conditional assembly directives

These directives provide logical control over the selective assembly of source code.

Directive Description

ELSE Assembles instructions if the corresponding IF directive is false.
ELSEIF Specifies a new condition in an IF...ENDIF block.

ENDIF Ends an IF block.

Table 22: Conditional assembly directives

69

Conditional assembly directives

70

IAR Assembler for 8051
Reference Guide

Directive Description

IF Assembles instructions if a condition is true.

Table 22: Conditional assembly directives (Continued)

SYNTAX

ELSE

ELSEIF condition
ENDIF

IF condition

PARAMETERS

condition One of the following:

An absolute expression

stringl=string2

stringl<>string2

DESCRIPTION

The expression must not contain forward
or external references, and any non-zero
value is considered as true.

The condition is true if stringl and
string2 have the same length and
contents.

The condition is true if stringl and
string2 have different length or
contents.

Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly

time. If the condition following the IF directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until an ELSE

or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembler

directives may be used anywhere in an assembly, but have their greatest use in

conjunction with macro processing.

All assembler directives (except END) as well as the inclusion of files may be disabled

by the conditional directives. Each IF directive must be terminated by an ENDIF

directive. The ELSE directive is optional, and if used, it must be inside an IF...ENDIF

block. IF. . .ENDIF and IF...ELSE. . .ENDIF blocks may be nested to any level.

Assembler directives ___¢

EXAMPLES

The following macro subtracts a constant from the register r.

sub MACRO
IF
DEC
ELSEIF
DEC
DEC
ELSE
XCH A, r
SUBB A, #c
XCH A, r
ENDIF
ENDM

If the argument to the macro is less than 2, it generates DEC instructions to save
instruction cycles and code size; otherwise it generates a SUBB instruction.

It could be tested with the following program:

main MOV R6, #7
sub R6,2
MOV R7,#22
sub R7,1
RET

END

Macro processing directives

These directives allow user macros to be defined.

Directive Description

ENDM Ends a macro definition.

ENDMAC Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times.
REPTC Repeats and substitutes characters.

Table 23: Macro processing directives

71

Macro processing directives

72

IAR Assembler for 8051
Reference Guide

Directive Description

REPTI Repeats and substitutes strings.

Table 23: Macro processing directives

SYNTAX

ENDM

ENDMAC

ENDR

EXITM

LOCAL symbol [,symboll

name MACRO [, argument]

REPT expr

REPTC formal,actual

REPTI formal,actual [,actuall]

PARAMETERS

actual String to be substituted.

argument A symbolic argument name.

expr An expression.

formal Argument into which each character of actual (REPTC) or each actual

(REPTTI) is substituted.

name The name of the macro.
symbol Symbol to be local to the macro.
DESCRIPTION

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro you can use it in your program like an
assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

Defining a macro

You define a macro with the statement:

macroname MACRO [,arg] [,arg]

Assembler directives ___¢

Here macroname is the name you are going to use for the macro, and argis an argument
for values that you want to pass to the macro when it is expanded.

For example, you could define a macro ERROR as follows:

errmac MACRO text

CALL abort
DB text, 0
ENDM

This macro uses a parameter text to set up an error message for a routine abort. You
would call the macro with a statement such as:

errmac 'Disk not ready'
The assembler will expand this to:

CALL abort
DB 'Disk not ready',0

If you omit a list of one or more arguments, the arguments you supply when calling the
macro are called \1 to \9 and \A to \z.

The previous example could therefore be written as follows:

errmac MACRO

CALL abort
DB \1,0
ENDM

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, Oof REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LocaL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

For example:

macld MACRO op
MOV op
ENDM

73

Macro processing directives

The macro can be called using the macro quote characters:

macld <R6,#3>
END

You can redefine the macro quote characters with the -M command line option; see -M,
page 30.

Predefined macro symbols

The symbol _args is set to the number of arguments passed to the macro. The following
example shows how _args can be used:

MODULE MAN

do_op MACRO
IF _args == 2
ADD \1,\2
ELSE
INC \1
ENDIF
ENDM

RSEG CODE

do_op A
do_op A, #1

END
The following listing is generated:

1 000000 MODULE MAN

2 000000

10 000000

11 000000 RSEG CODE

12 000000

13 000000 do_op A

13.1 000000 IF _args == 2
13.2 000000 ADD A,

13.3 000000 ELSE

13.4 000000 04 INC A

13.5 000001 ENDIF

13.6 000001 ENDM

14 000001 do_op A, #1
14.1 000001 IF _args == 2
14.2 000001 2401 ADD A, #1
14.3 000003 ELSE

14.4 000003 INC A

14.5 000003 ENDIF

IAR Assembler for 8051
74 Reference Guide

Assembler directives ___¢

14.6 000003 ENDM
15 000003
16 000003 END

How macros are processed
There are three distinct phases in the macro process:

o The assembler performs scanning and saving of macro definitions. The text between
MACRO and ENDM is saved but not syntax checked. Include-file references $ £ile are
recorded and will be included during macro expansion.

o A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander takes
its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals with
text substitutions at source level. Before a line from the called macro definition is
handed over to the assembler, the expander scans the line for all occurrences of
symbolic macro arguments, and replaces them with their expansion arguments.

o The expanded line is then processed as any other assembler source line. The input
stream to the assembler will continue to be the output from the macro processor,
until all lines of the current macro definition have been read.

Repeating statements

Use the REPT. . . ENDR structure to assemble the same block of instructions a number of
times. If expr evaluates to 0 nothing will be generated.

Use REPTC to assemble a block of instructions once for each character in a string. If the
string contains a comma it should be enclosed in quotation marks.

Only double quotes have a special meaning and their only use is to enclose the
characters to iterate over. Single quotes have no special meaning and are treated as any
ordinary character.

Use REPTT to assemble a block of instructions once for each string in a series of strings.
Strings containing commas should be enclosed in quotation marks.

EXAMPLES

This section gives examples of the different ways in which macros can make assembler
programming easier.

Coding inline for efficiency

In time-critical code it is often desirable to code routines inline to avoid the overhead of
a subroutine call and return. Macros provide a convenient way of doing this.

75

Macro processing directives

The following example outputs bytes from a buffer to a port:

NAME play
RSEG XDATA
buffer DS 256
RSEG CODE
play MOV DPTR, #LWRD (buffer)
MOV R5, #255
loop MOVX A, @DPTR
MOV Pl,A
INC DPTR
DJINZ R5, loop
RET
END

The main program calls this routine as follows:
doplay CALL play

For efficiency we can recode this as the following macro:

NAME play

PUBLIC main

RSEG XDATA
buffer DS 256
play MACRO

LOCAL loop

MOV DPTR, #LWRD (buffer)

MOV R5, #255
loop MOVX A, @DPTR

MOV P1l,A

INC DPTR

DJNZ R5, loop

RET

ENDM

RSEG CODE
main: play

END

Notice the use of the LOCAL directive to make the label 1oop local to the macro;
otherwise an error will be generated if the macro is used twice, as the 1oop label will
already exist.

IAR Assembler for 8051
76 Reference Guide

Using REPTC and REPTI

The following example assembles a series of calls to a subroutine plot to plot each

character in a string:

NAME

EXTERN plotc

REPTC
MOV
CALL
ENDR

banner

END

reptc

chr,

"Welcome"

R6, ‘chr’

plotc

This produces the following code:

1 000000
2 000000
3 000000
4 000000
5 000000
6 000000
7 000000
7.1 000000
7.2 000002
7.3 000005
7.4 000007
7.5 00000A
7.6 00000C
7.7 00000F
7.8 000011
7.9 000014
7.10 000016
7.11 000019
7.12 00001B
7.13 00001E
7.14 000020
8 000023
9 000023

AES57

12....

AE65

12....

AE6C

12....

AE63

12....

AE6F

12....

AE6D

12....

AE65

12....

NAME

EXTERN
REPTC
MOV
CALL
ENDR
MOV
CALL
MOV
CALL
MOV
CALL
MOV
CALL
MOV
CALL
MOV
CALL
MOV
CALL

banner

END

Assembler directives ___¢

reptc

plotc

chr, "Welcome"
R6, 'chr’
plotc

R6, 'W'
plotc
R6, 'e"’
plotc
R6,'1"
plotc
R6,'cC’
plotc
R6,'0"
plotc
R6, 'm’
plotc
R6,'e"’
plotc

The following example uses REPTI to clear a number of memory locations:

NAME

EXTERN base,

repti

count, init,

func

77

Listing control directives

banner REPTI adds, base, count, init
MOV RO, LOW (adds)

MOV R1,HIGH (adds)
CALL func

ENDR

END

This produces the following code:

1 000000 NAME repti

2 000000

3 000000 EXTERN base, count, init, func
4 000000

5 000000 banner REPTI adds, base, count, init
6 000000 MOV RO, LOW (adds)

7 000000 MOV R1,HIGH (adds)

8 000000 CALL func

9 000000 ENDR

9.1 000000 A8.. MOV RO, LOW (base)

9.2 000002 A9.. MOV R1,HIGH (base)

9.3 000004 12.... CALL func

9.4 000007 A8.. MOV RO, LOW (count)

9.5 000009 A9.. MOV R1,HIGH (count)

9.6 00000B 12.... CALL func

9.7 O0000OE A8.. MOV RO,LOW (init)

9.8 000010 A9.. MOV R1,HIGH (init)

9.9 000012 12.... CALL func

10 000015

11 000015 END

Listing control directives

These directives provide control over the assembler list file.

Directive Description

CcoL Sets the number of columns per page.
LSTCND Controls conditional assembly listing.
LSTCOD Controls multi-line code listing.

LSTEXP Controls the listing of macro-generated lines.
LSTMAC Controls the listing of macro definitions.
LSTOUT Controls assembler-listing output.

LSTPAG Controls the formatting of output into pages.

Table 24: Listing control directives

IAR Assembler for 8051
78 Reference Guide

Assembler directives ___¢

Directive Description

LSTREP Controls the listing of lines generated by repeat directives.
LSTXRF Generates a cross-reference table.

PAGE Generates a new page.

PAGSIZ Sets the number of lines per page.

Table 24: Listing control directives (Continued)

SYNTAX

COL columns
LSTCND{+ |-}
LSTCOD{+ |-}
LSTEXP{+|-}
LSTMAC{+ |-}
LSTOUT{+ |-}
LSTPAG{+|-}
LSTREP{+ |-}
LSTSAS{+|-}
LSTXRF{+|-}
PAGE

PAGSIZ Iines

PARAMETERS

columns An absolute expression in the range 80 to 132, default is 80

lines An absolute expression in the range 10 to 150, default is 44

DESCRIPTION

Turning the listing on or off

Use LsTOUT- to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LsTouT+, which lists the output (if a list file was specified).

Listing conditional code and strings

Use LsTCND+ to force the assembler to list source code only for the parts of the assembly
that are not disabled by previous conditional IF statements.

The default setting is LSTCND-, which lists all source lines.

Use LSTCOD- to restrict the listing of output code to just the first line of code for a source
line.

79

Listing control directives

80

IAR Assembler for 8051
Reference Guide

The default setting is LSTCOD+, which lists more than one line of code for a source line,
if needed; i.e. long ASCII strings will produce several lines of output. Code generation
is not affected.

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which disables the
listing of macro definitions.
Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

The default is LSTREP+, which lists the generated lines.

Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross-reference table.

Specifying the list file format

Use coOL to set the number of columns per page of the assembler list. The default number
of columns is 80.

Use PAGSIZ to set the number of printed lines per page of the assembler list. The default
number of lines per page is 44.

Use LSTPAG+ to format the assembler output list into pages.
The default is LSTPAG-, which gives a continuous listing.

Use PAGE to generate a new page in the assembler list file if paging is active.
EXAMPLES

Turning the listing on or off
To disable the listing of a debugged section of program:

LSTOUT-
; Debugged section
LSTOUT+

Assembler directives ___¢

; Not yet debugged

Listing conditional code and strings

The following example shows how LSTCND+ hides a call to a subroutine that is disabled
by an IF directive:

NAME lstcndtst
EXTERN print

RSEG prom
debug SET 0
begin IF debug

CALL print

ENDIF

LSTCND+
begin2 IF debug

CALL print

ENDIF

END

This will generate the following listing:

1 00000000 NAME lstcndtst
2 00000000 EXTERN print
3 00000000

4 00000000 RSEG CODE
5 00000000

6 00000000 debug SET 0

7 00000000 begin IF debug
8 00000000 CALL print
9 00000000 ENDIF

10 00000000

11 00000000 LSTCND+

12 00000000 begin2 IF debug
14 00000000 ENDIF

15 00000000

16 00000000 END

The following example shows the effect of LSTCOD+ on the generated code:

1 000000 NAME lstcodtst

2 000000 00010002 DW 1,10,100,100,10000
3 00000A

4 00000A LSTCOD+

5 00000A 00010002 DW 1,10,100,1000,10000

81

Listing control directives

006403E8
2710
6 000014 END

Controlling the listing of macros

The following example shows the effect of LSTMAC and LSTEXP:

dec?2 MACRO arg
DEC arg
DEC arg
ENDM
LSTMAC+

inc2 MACRO arg
INC arg
INC arg
ENDM

begin:
dec2 R6
LSTEXP-
inc2 R7
RET
END begin

This will produce the following output:

5 000000

6 000000 LSTMAC+

7 000000 inc2 MACRO arg
8 000000 INC arg
9 000000 INC arg
10 000000 ENDM

11 000000

12 000000 begin:

13 000000 dec2 R6
13.1 000000 1E DEC R6
13.2 000001 1E DEC R6
13.3 000002 ENDM

14 000002

15 000002 LSTEXP-

16 000002 inc2 R7
17 000004 22 RET

18 000005 END begin

IAR Assembler for 8051
82 Reference Guide

Assembler directives ___¢

Formatting listed output

The following example formats the output into pages of 66 lines each with 132 columns.
The LSTPAG directive organizes the listing into pages, starting each module on a new
page. The PAGE directive inserts additional page breaks.

PAGSIZ 66 ; Page size
COL 132
LSTPAG+
ENDMOD
MODULE

PAGE

C-style preprocessor directives

The following C-language preprocessor directives are available:

Directive Description

#define Assigns a value to a label.

#elif Introduces a new condition ina #if. . .#endif block.
#else Assembles instructions if a condition is false.
#endif Endsa #if, #ifdef, or #ifndef block.
#error Generates an error.

#if Assembles instructions if a condition is true.
#ifdef Assembles instructions if a symbol is defined.
#ifndef Assembles instructions if a symbol is undefined.
#include Includes a file.

#message Generates a message on standard output.
#undef Undefines a label.

Table 25: C-style preprocessor directives

SYNTAX

#define label text
#elif condition
#else

#endif

#error "message"
#if condition

83

C-style preprocessor directives

84

IAR Assembler for 8051
Reference Guide

#ifdef Iabel

#ifndef label

#include {"filename" | <filename>}
#message "message"

#undef Iabel

PARAMETERS
condition One of the following:

An absolute expression The expression must not
contain forward or external
references, and any non-zero
value is considered as true.

stringl=string The condition is true if
stringl and string2 have
the same length and contents.

stringl<>string2 The condition is true if

stringl and string2 have
different length or contents.

filename Name of file to be included.

label Symbol to be defined, undefined, or tested.

message Text to be displayed.

text Value to be assigned.

DESCRIPTION

Defining and undefining labels
Use #define to define a temporary label.
#define label value

is similar to:

label SET value

Use #undef to undefine a label; the effect is as if it had not been defined.

Assembler directives ___¢

Conditional directives

Use the #if...#else...#endif directives to control the assembly process at assembly
time. If the condition following the #1i £ directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until a
#endif or #else directive is found.

All assembler directives (except for END) and file inclusion may be disabled by the
conditional directives. Each #if directive must be terminated by a #endi £ directive.
The #else directive is optional and, if used, it must be inside a #1if...#endi f block.

#if..#endif and #if...#else...#endif blocks may be nested to any level.

Use #ifdef to assemble instructions up to the next #else or #endif directive only if
a symbol is defined.

Use #1ifndef to assemble instructions up to the next #else or #endif directive only if
a symbol is undefined.

Including source files

Use #include to insert the contents of a file into the source file at a specified point.
#include " filename" searches the following directories in the specified order:

1 The source file directory.

2 The directories specified by the - option, or options.

3 The current directory.

#include <filename> searches the following directories in the specified order:

1 The directories specified by the - option, or options.

2 The current directory.

Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

Defining comments
Use /* ... */tocomment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Note: It is important to avoid mixing the assembler language with the C-style
preprocessor directives. Conceptually, they are different languages and mixing them
may lead to unexpected behavior since an assembler directive is not necessarily
accepted as a part of the C language.

85

C-style preprocessor directives

The following example illustrates some problems that may occur when assembler
comments are used in the C-style preprocessor:

#define five 5 ; comment
MOV five+addr,R7 ; syntax error!
; Expands to "5 ; comment+addr,R7"
EXAMPLES

Using conditional directives

The following example defines the labels tweak and adjust. If adjust is defined, then
register R6 is decremented by an amount that depends on adjust, in this case 30.

#define tweak 1
#define adjust 3

#ifdef tweak

MOV A,R6

CLR C
#if adjust=1

SUBB A, #4
#elif adjust=2

SUBB A, #20
#elif adjust=3

SUBB A, #30
#endif

MOV R6,A
#endif /* ifdef tweak */

Including a source file

The following example uses #include to include a file defining macros into the source
file. For example, the following macros could be defined in Macros.s51:

xch MACRO a,b
PUSH a
MOV a,b
POP b
ENDM

The macro definitions can then be included, using #include, as in the following
example:

NAME include

; standard macro definitions
#include "macros.s51"

IAR Assembler for 8051
86 Reference Guide

Assembler directives ___¢

; program

main: xch DPL, DPH
RET
END main

Data definition or allocation directives

These directives define values or reserve memory:

Directive Description Expression restrictions

DB Generates 8-bit byte constants, including strings.

DC8 Generates 8-bit byte constants, including strings.

DC16 Generates |6-bit word constants.

DC24 Generates 24-bit constants.

DC32 Generates 32-bit constants.

DD Generates 32-bit double word constants.

DS Allocates space for 8-bit values. No external references
Absolute

DS8 Allocates space for 8-bit integers. No external references
Absolute

DS16 Allocates space for |6-bit integers. No external references
Absolute

DS24 Allocates space for 24-bit integers. No external references
Absolute

DS32 Allocates space for 32-bit integers. No external references
Absolute

DT Generates 24-bit word constants.

DW Generates | 6-bit word constants.

Table 26: Data definition or allocation directives

SYNTAX

DB exprll[,exprl]
DC8 exprl [,exprl]
DCl6 exprl [,exprl]
DC24 exprl [,exprl]
DC32 exprl [,exprl]
DD exprll[,exprl]

DS expr2

87

Data definition or allocation directives

DS8 expr2
DS16 expr2
DS24 expr2
DS32 expr2
DT exprl[,exprl]
DW exprll[,exprl]

PARAMETERS

exprl A valid absolute, relocatable, or external expression, or an ASCII string.
ASCII strings will be zero filled to a multiple of the data size implied by
the directive. Double-quoted strings will be zero-terminated.

expr2 A constant value that specifies the number of data blocks of a given size
to be created.

DESCRIPTIONS
Use DB, DC8, DC16, DC24, DC32, DD, DP, or DW to reserve and initialize memory space.

Use DS, DS8, DS16, DS24, or DS32 to reserve uninitialized memory space.
EXAMPLES

Generating lookup table
The following example generates a lookup table of addresses to routines:

NAME table

table DB addsubr, subsubr, clrsubr
addsubr ADD A,R7
RET

subsubr SUBB A,R7
RET

clrsubr CLR A
RET

END
Defining strings

To define a string:

mymsg DC8 'Please enter your name'

IAR Assembler for 8051
88 Reference Guide

Assembler directives ___¢

To define a string which includes a trailing zero:
myCstr DC8 "This is a string."
To include a single quote in a string, enter it twice; for example:

errmsg DC8 'Don''t understand!'

Reserving space
To reserve space for 0xA bytes:

table DS8 0xA

Assembler control directives

These directives provide control over the operation of the assembler.

Directive Description

$ Includes a file.

/*comment*/ C-style comment delimiter.

!/ C+ style comment delimiter.

CASEOFF Disables case sensitivity.

CASEON Enables case sensitivity.

RADIX Sets the default base on all numeric values.

Table 27: Assembler control directives

SYNTAX

$filename
/*comment*/
// comment
CASEOFF
CASEON
RADIX expr

PARAMETERS

comment Comment ignored by the assembler.

expr Default base; default 10 (decimal).

filename Name of file to be included. The $ character must be the first

character on the line.

89

Assembler control directives

IAR Assembler for 8051

90 Reference Guide

DESCRIPTION

Use ¢ to insert the contents of a file into the source file at a specified point.
Use /*...*/ to comment sections of the assembler listing.

Use // to mark the rest of the line as comment.

Use RADIX to set the default base for constants. The default base is 10.

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols. By
default case sensitivity is off.

When CASEOFF is active all symbols are stored in upper case, and all symbols used by
XLINK should be written in upper case in the XLINK definition file.
EXAMPLES

Including a source file

The following example uses $ to include a file defining macros into the source file. For
example, the following macros could be defined in Mymacros.s51:

xch MACRO a,b
PUSH a
MOV a,b
POP b
ENDM

The macro definitions can be included with a $ directive, as in:

NAME include
; standard macro definitions

Smymacros.s51

; program
main
xch DPL, DPH
RET
END main

Assembler directives ___¢

Defining comments

The following example shows how /*. . .*/ can be used for a multi-line comment:
/*

Program to read serial input.

Version 6: 19.6.03

Author: mjp

*/

Changing the base

To set the default base to 16:

RADIX D'16
MOV A,12

The immediate argument will then be interpreted as H' 12.

To change the base from 16 to 10, expr must be written in hexadecimal format, for
example:

RADIX O0x0A

Controlling case sensitivity
When CASEOFF is set, label and LABEL are identical in the following example:

label NOP ; Stored as "LABEL"
JMP LABEL

The following will generate a duplicate label error:

CASEOFF

label NOP
LABEL NOP ; Error, "LABEL" already defined

END

Function directives

The function directives are generated by the IAR C/C++ Compiler for 8051 to pass
information about functions and function calls to the IAR XLINK Linker. These
directives can be seen if you create an assembler list file by using the compiler option
Output assembler file>Include compiler runtime information (-12).

Note: These directives are primarily intended to support static overlay, a feature which
is useful in smaller microcontrollers.

91

Function directives

92

IAR Assembler for 8051
Reference Guide

SYNTAX

ARGFRAME segment, size, type
FUNCALL caller, callee
FUNCTION label,value
LOCFRAME segment, size, type

PARAMETERS

callee The called function.

caller The caller to a function.

label A label to be declared as function.

segment The segment in which argument frame or local frame is to be stored.
size The size of the argument frame or the local frame.

type The type of argument or local frame; either STACK or STATIC.
value Function information.

DESCRIPTIONS

FUNCTION declares the Iabel name to be a function. value encodes extra information
about the function.

FUNCALL declares that the function caller calls the function callee. callee can be
omitted to indicate an indirect function call.

ARGFRAME and LOCFRAME declare how much space the frame of the function uses in
different memories. ARGFRAME declares the space used for the arguments to the
function, LOCFRAME the space for locals. segment is the segment in which the space
resides. size is the number of bytes used. type is either STACK or STATIC, for
stack-based allocation and static overlay allocation, respectively.

ARGFRAME and LOCFRAME always occur immediately after a FUNCTION or FUNCALL
directive.

After a FUNCTION directive for an external function, there can only be ARGFRAME
directives, which indicate the maximum argument frame usage of any call to that
function. After a FUNCTION directive for a defined function, there can be both
ARGFRAME and LOCFRAME directives.

After a FUNCALL directive, there will first be LoCFRAME directives declaring frame
usage in the calling function at the point of call, and then ARGFRAME directives
declaring argument frame usage of the called function.

Assembler directives ___¢

Call frame information directives

These directives allow backtrace information to be defined in the assembler source code.

Directive

Description

CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI

CFI

BASEADDRESS
BLOCK
CODEALIGN
COMMON
CONDITIONAL
DATAALIGN
ENDBLOCK
ENDCOMMON
ENDNAMES
FRAMECELL
FUNCTION
INVALID

NAMES
NOFUNCTION
PICKER
REMEMBERSTATE
RESOURCE
RESOURCEPARTS
RESTORESTATE
RETURNADDRESS

STACKFRAME

STATICOVERLAYFRAME

VALID

VIRTUALRESOURCE

cfa

resource

Declares a base address CFA (Canonical Frame Address).
Starts a data block.

Declares code alignment.

Starts or extends a common block.

Declares data block to be a conditional thread.
Declares data alignment.

Ends a data block.

Ends a common block.

Ends a names block.

Creates a reference into the caller’s frame.
Declares a function associated with data block.
Starts range of invalid backtrace information.
Starts a names block.

Declares data block to not be associated with a function.
Declares data block to be a picker thread.
Remembers the backtrace information state.
Declares a resource.

Declares a composite resource.

Restores the saved backtrace information state.
Declares a return address column.

Declares a stack frame CFA.

Declares a static overlay frame CFA.

Ends range of invalid backtrace information.
Declares a virtual resource.

Declares the value of a CFA.

Declares the value of a resource.

Table 28: Call frame information directives

SYNTAX

The syntax definitions below show the syntax of each directive. The directives are

grouped according to usage.

93

Call frame information directives

Names block directives

CFI NAMES name

CFI ENDNAMES name

CFI RESOURCE resource : bits [, resource : bits]

CFI VIRTUALRESOURCE resource : bits [, resource : bits]
CFI RESOURCEPARTS resource part, part [, part]

CFI STACKFRAME cfa resource type [, cfa resource typel
CFI STATICOVERLAYFRAME cfa segment [, cfa segment]

CFI BASEADDRESS cfa type [, cfa typel

Extended names block directives

CFI NAMES name EXTENDS namesblock
CFI ENDNAMES name
CFI FRAMECELL cell cfa(offset): size|[, cell cfa(offset): sizel

Common block directives

CFI COMMON name USING namesblock

CFI ENDCOMMON name

CFI CODEALIGN codealignfactor

CFI DATAALIGN dataalignfactor

CFI RETURNADDRESS resource type

CFI cfa {NOTUSED|USED}

CFI cfa {resource | resource + constant | resource - constant}
CFI cfa cfiexpr

CFI resource {UNDEFINED | SAMEVALUE | CONCAT}
CFI resource {resource | FRAME(cfa, offset)}
CFI resource cfiexpr

Extended common block directives

CFI COMMON name EXTENDS commonblock USING namesblock
CFI ENDCOMMON name

Data block directives

CFI BLOCK name USING commonblock

CFI ENDBLOCK name

CFI {NOFUNCTION | FUNCTION label}

CFI {INVALID | VALID}

CFI {REMEMBERSTATE | RESTORESTATE}

CFI PICKER

CFI CONDITIONAL label [, labell]

CFI cfa {resource | resource + constant | resource - constant}
CFI cfa cfiexpr

CFI resource {UNDEFINED | SAMEVALUE | CONCAT}

IAR Assembler for 8051
94 Reference Guide

Assembler directives ___¢

CFI resource {resource | FRAME (cfa, offset)}
CFI resource cfiexpr

PARAMETERS
bits

cell

cfa

cfiexpr

codealignfactor

commonblock

constant

dataalignfactor

label

name
namesblock
offset

part

resource
segment
size

type

The size of the resource in bits.

The name of a frame cell.

The name of a CFA (canonical frame address).

A CFI expression (see CFIl expressions, page 102).

The smallest factor of all instruction sizes. Each CFI directive for
a data block must be placed according to this alignment. 1 is the
default and can always be used, but a larger value will shrink the
produced backtrace information in size. The possible range is
1-256.

The name of a previously defined common block.

A constant value or an assembler expression that can be evaluated
to a constant value.

The smallest factor of all frame sizes. If the stack grows towards
higher addresses, the factor is negative; if it grows towards lower
addresses, the factor is positive. 1 is the default, but a larger value
will shrink the produced backtrace information in size. The
possible ranges are -256 — -1 and 1 — 256.

A function label.

The name of the block.

The name of a previously defined names block.

The offset relative the CFA. An integer with an optional sign.

A part of a composite resource. The name of a previously
declared resource.

The name of a resource.
The name of a segment.
The size of the frame cell in bytes.

The memory type, such as CODE, CONST or DATA. In addition, any
of the memory types supported by the IAR XLINK Linker. It is
used solely for the purpose of denoting an address space.

95

Call frame information directives

96

IAR Assembler for 8051
Reference Guide

DESCRIPTIONS

The Call Frame Information directives (CFI directives) are an extension to the
debugging format of the IAR C-SPY Debugger. The CFI directives are used for defining
the backtrace information for the instructions in a program. The compiler normally
generates this information, but for library functions and other code written purely in
assembler language, backtrace information has to be added if you want to use the call
frame stack in the debugger.

The backtrace information is used to keep track of the contents of resources, such as
registers or memory cells, in the assembler code. This information is used by the IAR
C-SPY Debugger to go “back” in the call stack and show the correct values of registers
or other resources before entering the function. In contrast with traditional approaches,
this permits the debugger to run at full speed until it reaches a breakpoint, stop at the
breakpoint, and retrieve backtrace information at that point in the program. The
information can then be used to compute the contents of the resources in any of the
calling functions—assuming they have call frame information as well.

Backtrace rows and columns

At each location in the program where it is possible for the debugger to break execution,
there is a backtrace row. Each backtrace row consists of a set of columns, where each
column represents an item that should be tracked. There are three kinds of columns:

e The resource columns keep track of where the original value of a resource can be
found.

e The canonical frame address columns (CFA columns) keep track of the top of the
function frames.

e The return address column keeps track of the location of the return address.

There is always exactly one return address column and usually only one CFA column,
although there may be more than one.
Defining a names block

A names block is used to declare the resources available for a processor. Inside the
names block, all resources that can be tracked are defined.

Start and end a names block with the directives:

CFI NAMES name
CFI ENDNAMES name

where name is the name of the block.

Only one names block can be open at a time.

Assembler directives ___¢

Inside a names block, four different kinds of declarations may appear: a resource
declaration, a stack frame declaration, a static overlay frame declaration, or a base
address declaration:

o To declare a resource, use one of the directives:

CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. A
virtual resource is a logical concept, in contrast to a “physical” resource such as a
processor register. Virtual resources are usually used for the return address.

More than one resource can be declared by separating them with commas.

A resource may also be a composite resource, made up of at least two parts. To
declare the composition of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part,

The parts are separated with commas. The resource and its parts must have been
previously declared as resources, as described above.

o To declare a stack frame CFA, use the directive:
CFI STACKFRAME cfa resource type

The parameters are the name of the stack frame CFA, the name of the associated
resource (the stack pointer), and the segment type (to get the address space). More
than one stack frame CFA can be declared by separating them with commas.

When going “back” in the call stack, the value of the stack frame CFA is copied into
the associated stack pointer resource to get a correct value for the previous function
frame.

e To declare a static overlay frame CFA, use the directive:
CFI STATICOVERLAYFRAME cfa segment

The parameters are the name of the CFA and the name of the segment where the static
overlay for the function is located. More than one static overlay frame CFA can be
declared by separating them with commas.

o To declare a base address CFA, use the directive:
CFI BASEADDRESS cfa type

The parameters are the name of the CFA and the segment type. More than one base
address CFA can be declared by separating them with commas.

A base address CFA is used to conveniently handle a CFA. In contrast to the stack
frame CFA, there is no associated stack pointer resource to restore.

97

Call frame information directives

98

IAR Assembler for 8051
Reference Guide

Extending a names block

In some special cases you have to extend an existing names block with new resources.
This occurs whenever there are routines that manipulate call frames other than their
own, such as routines for handling, entering, and leaving C or Embedded C++ functions;
these routines manipulate the caller’s frame. Extended names blocks are normally used
only by compiler developers.

Extend an existing names block with the directive:
CFI NAMES name EXTENDS namesblock

where namesblock is the name of the existing names block and name is the name of
the new extended block. The extended block must end with the directive:

CFI ENDNAMES name

Defining a common block

The common block is used for declaring the initial contents of all tracked resources.
Normally, there is one common block for each calling convention used.

Start a common block with the directive:
CFI COMMON name USING namesblock

where name is the name of the new block and namesblock is the name of a previously
defined names block.

Declare the return address column with the directive:
CFI RETURNADDRESS resource type

where resource is a resource defined in namesblock and type is the segment type.
You have to declare the return address column for the common block.

End a common block with the directive:
CFI ENDCOMMON name
where name is the name used to start the common block.

Inside a common block you can declare the initial value of a CFA or a resource by using
the directives listed last in Common block directives, page 94. For more information on
these directives, see Simple rules, page 100, and CFI expressions, page 102.

Assembler directives ___¢

Extending a common block

Since you can extend a names block with new resources, it is necessary to have a
mechanism for describing the initial values of these new resources. For this reason, it is
also possible to extend common blocks, effectively declaring the initial values of the
extra resources while including the declarations of another common block. Just as in the
case of extended names blocks, extended common blocks are normally only used by
compiler developers.

Extend an existing common block with the directive:
CFI COMMON name EXTENDS commonblock USING namesblock

where name is the name of the new extended block, commonblock is the name of the
existing common block, and namesblock is the name of a previously defined names
block. The extended block must end with the directive:

CFI ENDCOMMON name

Defining a data block

The data block contains the actual tracking information for one continuous piece of
code. No segment control directive may appear inside a data block.

Start a data block with the directive:
CFI BLOCK name USING commonblock

where name is the name of the new block and commonblockis the name of a previously
defined common block.

If the piece of code is part of a defined function, specify the name of the function with
the directive:

CFI FUNCTION label

where label is the code label starting the function.

If the piece of code is not part of a function, specify this with the directive:
CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

where name is the name used to start the data block.

Inside a data block you may manipulate the values of the columns by using the directives
listed last in Data block directives, page 94. For more information on these directives,
see Simple rules, page 100, and CFI expressions, page 102.

929

Call frame information directives

100

IAR Assembler for 8051
Reference Guide

SIMPLE RULES

To describe the tracking information for individual columns, there is a set of simple rules
with specialized syntax:

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }
CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME(cfa, offset) }

These simple rules can be used both in common blocks to describe the initial
information for resources and CFAs, and inside data blocks to describe changes to the
information for resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, a full
CFI expression can be used to describe the information (see CFI expressions, page 102).
However, whenever possible, you should always use a simple rule instead of a CFI
expression.

There are two different sets of simple rules: one for resources and one for CFAs.

Simple rules for resources

The rules for resources conceptually describe where to find a resource when going back
one call frame. For this reason, the item following the resource name in a CFI directive
is referred to as the location of the resource.

To declare that a tracked resource is restored, that is, already correctly located, use
SAMEVALUE as the location. Conceptually, this declares that the resource does not have
to be restored since it already contains the correct value. For example, to declare that a
register REG is restored to the same value, use the directive:

CFI REG SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this
declares that the resource does not have to be restored (when going back one call frame)
since itis not tracked. Usually it is only meaningful to use it to declare the initial location
of aresource. For example, to declare that REG is a scratch register and does not have to
be restored, use the directive:

CFI REG UNDEFINED

To declare that a resource is temporarily stored in another resource, use the resource
name as its location. For example, to declare that a register REG1 is temporarily located
in a register REG2 (and should be restored from that register), use the directive:

CFI REGl REG2

Assembler directives ___¢

To declare that a resource is currently located somewhere on the stack, use FRAME (cfa,
offset) as location for the resource, where cfa is the CFA identifier to use as “frame
pointer” and of fset is an offset relative the CFA. For example, to declare that a register
REG is located at offset -4 counting from the frame pointer CFA_SP, use the directive:

CFI REG FRAME (CFA_SP,-4)

For a composite resource there is one additional location, CONCAT, which declares that
the location of the resource can be found by concatenating the resource parts for the
composite resource. For example, consider a composite resource RET with resource
parts RETLO and RETHI. To declare that the value of RET can be found by investigating
and concatenating the resource parts, use the directive:

CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules
described above.

Simple rules for CFAs

In contrast with the rules for resources, the rules for CFAs describe the address of the
beginning of the call frame. The call frame often includes the return address pushed by
the subroutine calling instruction. The CFA rules describe how to compute the address
to the beginning of the current call frame. There are two different forms of CFAs, stack
frames and static overlay frames, each declared in the associated names block. See
Names block directives, page 94.

Each stack frame CFA is associated with a resource, such as the stack pointer. When
going back one call frame the associated resource is restored to the current CFA. For
stack frame CFAs there are two possible simple rules: an offset from a resource (not
necessarily the resource associated with the stack frame CFA) or NOTUSED.

To declare that a CFA is not used, and that the associated resource should be tracked as
anormal resource, use NOTUSED as the address of the CFA. For example, to declare that
the CFA with the name CFA_SP is not used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify
the resource and the offset. For example, to declare that the CFA with the name CFA_sp
can be obtained by adding 4 to the value of the sp resource, use the directive:

CFI CFA_SP SP + 4

For static overlay frame CFAs, there are only two possible declarations inside common
and data blocks: USED and NOTUSED.

101

Call frame information directives

102

IAR Assembler for 8051
Reference Guide

CF1 EXPRESSIONS

Call Frame Information expressions (CFI expressions) can be used when the descriptive
power of the simple rules for resources and CFAs is not enough. However, you should
always use a simple rule when one is available.

CFI expressions consist of operands and operators. Only the operators described below
are allowed in a CFI expression. In most cases, they have an equivalent operator in the
regular assembler expressions.

In the operand descriptions, cfiexpr denotes one of the following:

o A CFI operator with operands
® A numeric constant

o A CFA name

® A resource name.

Unary operators

Overall syntax: OPERATOR (operand)

Operator Operand Description

UMINUS cfiexpr Performs arithmetic negation on a CFl expression.

NOT cfiexpr Negates a logical CFl expression.

COMPLEMENT cfiexpr Performs a bitwise NOT on a CFl expression.

LITERAL expr Get the value of the assembler expression. This can insert

the value of a regular assembler expression into a CFl
expression.

Table 29: Unary operators in CFI expressions

Binary operators

Overall syntax: OPERATOR (operandl, operand2)

Operator Operands Description
ADD cfiexpr,cfiexpr Addition
SUB cfiexpr,cfiexpr Subtraction
MUL cfiexpr,cfiexpr Multiplication
DIV cfiexpr,cfiexpr Division

MOD cfiexpr,cfiexpr Modulo

AND cfiexpr,cfiexpr Bitwise AND
OR cfiexpr,cfiexpr Bitwise OR

Table 30: Binary operators in CFI expressions

Assembler directives ___¢

Operator Operands Description

XOR cfiexpr,cfiexpr Bitwise XOR

EQ cfiexpr,cfiexpr Equal

NE cfiexpr,cfiexpr Not equal

LT cfiexpr,cfiexpr Less than

LE cfiexpr,cfiexpr Less than or equal

GT cfiexpr,cfiexpr Greater than

GE cfiexpr,cfiexpr Greater than or equal

LSHIFT cfiexpr,cfiexpr Logical shift left of the left operand. The number of

bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

RSHIFTL cfiexpr,cfiexpr Logical shift right of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

RSHIFTA cfiexpr,cfiexpr Arithmetic shift right of the left operand. The number
of bits to shift is specified by the right operand. In
contrast with RSHIFTL the sign bit will be preserved
when shifting.

Table 30: Binary operators in CFI expressions (Continued)

Ternary operators
Overall syntax: OPERATOR (operandl, operand2, operand3)

Operator Operands Description

FRAME cfa,size,offset Get value from stack frame. The operands are:
cfa An identifier denoting a previously declared CFA.
sizeA constant expression denoting a size in bytes.
offsetA constant expression denoting an offset in
bytes.
Gets the value at address cfa+offset of size size.

IF cond, true, false Conditional operator. The operands are:
condA CFA expression denoting a condition.
trueAny CFA expression.
falseAny CFA expression.
If the conditional expression is non-zero, the result is the
value of the true expression; otherwise the result is the
value of the false expression.

Table 31: Ternary operators in CFI expressions

103

Call frame information directives

104

IAR Assembler for 8051
Reference Guide

Operator Operands Description

LOAD size, type, addr Get value from memory. The operands are:
sizeA constant expression denoting a size in bytes.
typeA memory type.
addrA CFA expression denoting a memory address.
Gets the value at address addr in segment type type of

size size.

Table 31: Ternary operators in CFI expressions (Continued)

EXAMPLE

The following is a generic example and not an example specific to the 8051
microcontroller. This will simplify the example and clarify the usage of the CFI
directives. A target-specific example can be obtained by generating assembler output
when compiling a C source file.

Consider a generic processor with a stack pointer Sp, and two registers R0 and R1.
Register RO will be used as a scratch register (the register is destroyed by the function
call), whereas register R1 has to be restored after the function call. For reasons of
simplicity, all instructions, registers, and addresses will have a width of 16 bits.

Consider the following short code sample with the corresponding backtrace rows and
columns. At entry, assume that the stack contains a 16-bit return address. The stack
grows from high addresses towards zero. The CFA denotes the top of the call frame, that
is, the value of the stack pointer after returning from the function.

Address CFA SP RO RI RET Assembler code

0000 SP+2 — SAME CFA-2 funcl: PUSH R1
0002 SP + 4 CFA -4 MOV R1,#4
0004 CALL func2
0006 POP RO
0008 SP+2 RO MOV R1,RO
000A SAME RET

Table 32: Code sample with backtrace rows and columns

Each backtrace row describes the state of the tracked resources before the execution of
the instruction. As an example, for the MOV R1, RO instruction the original value of the
R1 register is located in the RO register and the top of the function frame (the CFA
column) is SP + 2. The backtrace row at address 0000 is the initial row and the result
of the calling convention used for the function.

Assembler directives ___¢

The SP column is empty since the CFA is defined in terms of the stack pointer. The RET
column is the return address column—that is, the location of the return address. The RO
column has a ‘—’ in the first line to indicate that the value of RO is undefined and does
not need to be restored on exit from the function. The R1 column has SAME in the initial
row to indicate that the value of the R1 register will be restored to the same value it
already has.

Defining the names block
The names block for the small example above would be:

CFI NAMES trivialNames
CFI RESOURCE SP:16, R0:16, R1:16
CFI STACKFRAME CFA SP DATA

;; The virtual resource for the return address column
CFI VIRTUALRESOURCE RET:16
CFI ENDNAMES trivialNames

Defining the common block

The common block for the simple example above would be:

CFI COMMON trivialCommon USING trivialNames

CFI RETURNADDRESS RET DATA

CFI CFA SP + 2

CFI RO UNDEFINED

CFI R1 SAMEVALUE

CFI RET FRAME (CFA,-2) ; Offset -2 from top of frame
CFI ENDCOMMON trivialCommon

Note: sp may not be changed using a CFI directive since it is the resource associated
with CFA.

Defining the data block

Continuing the simple example, the data block would be:

RSEG CODE:CODE

CFI BLOCK funclblock USING trivialCommon
CFI FUNCTION funcl
funcl:
PUSH R1
CFI CFA SP + 4
CFI R1 FRAME (CFA, -4)
MOV R1,#4
CALL func?2
POP RO
CFI R1 RO

105

Call frame information directives

CFI CFA SP + 2
MOV R1,RO

CFI R1 SAMEVALUE
RET

CFI ENDBLOCK funclblock

Note that the CFI directives are placed after the instruction that affects the backtrace
information.

IAR Assembler for 8051
106 Reference Guide

Assembler diagnostics

This chapter lists the error and warning messages for the 8051 IAR Assembler.

Severity levels

The diagnostic messages produced by the 8051 IAR Assembler reflect problems or
errors that are found in the source code or occur at assembly time.

ASSEMBLY WARNING MESSAGES

Assembly warning messages are produced when the assembler has found a construct
which is probably the result of a programming error or omission. These messages are
listed in the section Warning messages, page 116.

COMMAND LINE ERROR MESSAGES

Command line errors occur when the assembler is invoked with incorrect parameters.
The most common situation is when a file cannot be opened, or with duplicate,
misspelled, or missing command line options.

ASSEMBLY ERROR MESSAGES

Assembly error messages are produced when the assembler has found a construct which
violates the language rules. These messages are listed in the section Error messages,
page 108.

ASSEMBLY FATAL ERROR MESSAGES

Assembly fatal error messages are produced when the assembler has found a user error
so severe that further processing is not considered meaningful. After the diagnostic
message has been issued the assembly is immediately terminated. These error messages
are identified as Fatal in the error messages list.

ASSEMBLER INTERNAL ERROR MESSAGES

During assembly a number of internal consistency checks are performed and if any of
these checks fail, the assembler will terminate after giving a short description of the
problem. Such errors should normally not occur. However, if you should encounter an
error of this type, please report it to your software distributor or to IAR Technical
Support. Please include information enough to reproduce the problem.

107

Error messages

108

This would typically include:

The exact internal error message text.

The source file of the program that generated the internal error.

A list of the options that were used when the internal error occurred.

The version number of the assembler, which can be seen in the header of the list file
generated by the assembler.

Error messages

IAR Assembler for 8051
Reference Guide

Error messages are displayed on the screen, as well as printed in the optional list file.

All errors are issued as complete, self-explanatory messages. The error message consists
of the incorrect source line, with a pointer to where the problem was detected, followed
by the source line number and the diagnostic message. If include files are used, error

messages will be preceded by the source line number and the name of the current file:

"subfile.h",4 Error[40]: bad instruction

GENERAL ERROR MESSAGES
The following section lists the general error messages.

0 Invalid syntax
The assembler could not decode the expression.

| Too deep #include nesting (max. is 10)
The assembler limit for nesting of #include files was exceeded. A recursive
#include could be the reason.

2 Failed to open #include file name
Could not open a #include file. The file does not exist in the specified
directories. Check the -1 prefixes.

3 Invalid #include file name
A #include file name must be written <file> or "file".

4 Unexpected end of file encountered
End of file encountered within a conditional assembly, the repeat directive, or
during macro expansion. The probable cause is a missing end of conditional
assembly etc.

5 Too long source line (max. is 2048 characters) truncated
The source line length exceeds the assembler limit.

15
16

17
18

20
21
22

23
24

Assembler diagnostics ___¢

Bad constant
A character that is not a legal digit was encountered.

Hexadecimal constant without digits
The prefix 0x or 0x of a hexadecimal constant found without any hexadecimal
digits following.

Invalid floating point constant
A too large floating-point constant or invalid syntax of floating-point constant
was encountered.

Too many errors encountered (>100).
Space or tab expected

Too deep block nesting (max is 50)
The preprocessor directives are nested too deep.

String too long (max is 2045)
The assembler string length limit was exceeded.

Missing delimiter in literal or character constant
No closing delimiter ' or " was found in character or literal constant.

Missing #endif
A #if, #ifdef, or #ifndef was found but had no matching #endif.

Invalid character encountered: char; ignored

Identifier expected
A name of a label or symbol was expected.

') expected

No such pre-processor command: command
was followed by an unknown identifier.

Unexpected token found in pre-processor line
The preprocessor line was not empty after the argument part was read.

Argument to #define too long (max is 2048)
Too many formal parameters for #define (max is 37)

Macro parameter parameter redefined
A #define symbol’s formal parameter was repeated.

', or')' expected

Unmatched #else, #endif or #elif
Fatal. Missing #if, #ifdef, or #ifndef.

109

Error messages

25 #error error
Printout via the #error directive.

26 '(" expected

27 Too many active macro parameters (max is 256)
Fatal. Preprocessor limit exceeded.

28 Too many nested parameterized macros (max is 50)
Fatal. Preprocessor limit exceeded.

29 Too deep macro nesting (max is 100)
Fatal. Preprocessor limit exceeded.

30 Actual macro parameter too long (max is 512)
A single macro (in #define) argument may not exceed the length of a source
line.

31 Macro macro called with too many parameters
The number of parameters used was greater than the number in the macro
declaration.

32 Macro macro called with too few parameters
The number of parameters used was less than the number in the macro
declaration (#define).

33 Too many MACRO arguments
The number of assembler macros exceeds 32.

34 May not be redefined
Assembler macros may not be redefined.

35 No name on macro
An assembler macro definition without a label was encountered.

36 lllegal formal parameter in macro
A parameter that was not an identifier was found.
37 ENDM or EXITM not in macro

An ENDM directive or EXITM directive encountered outside a macro.

38 '>' expected but found end-of-line
A < was found but no matching >.

39 END before start of module
The end-of-module directive has no matching MODULE directive.

40 Bad instruction
The mnemonic/directive does not exist.

IAR Assembler for 8051
110 Reference Guide

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Assembler diagnostics ___¢

Bad label

Labels must begin with A. . .Z, a. ..z, _, or 2. The succeeding characters
mustbeA...Z,a...z,0...9,_,or 2. Labels cannot have the same name as
a predefined symbol.

Duplicate label
The label has already appeared in the label field or has been declared as
EXTERN.

lllegal effective address
The addressing mode (operands) is not allowed for this mnemonic.

',' expected
A comma was expected but not found.

Name duplicated
The name of RSEG, STACK, or COMMON segments is already used but for
something else.

Segment type expected
In RSEG, STACK, or COMMON directive : was found but the segment type that
should follow was not valid.

Segment name expected
The RSEG, STACK, and COMMON directives need a name.

Value out of range range
The value exceeds its limits.

Alignment already set
RSEG, STACK, and COMMON segments do not allow alignment to be set more
than once. Use ALIGN, EVEN, or ODD instead.

Undefined symbol: symbol
The symbol did not appear in label field or in an EXTERN or sfr declaration.

Can't be both PUBLIC and EXTERN
Symbols can be declared as either PUBLIC or EXTERN.

EXTERN not allowed
Reference to EXTERN symbols is not allowed in this context.

Expression must be absolute
The expression cannot involve relocatable or external symbols.

Expression can not be forward
The assembler must be able to solve the expression the first time this
expression is encountered.

Error messages

112

IAR Assembler for 8051
Reference Guide

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

lllegal size
The maximum size for expressions is 32 bits.

Too many digits
The value exceeds the size of the destination.

Unbalanced conditional assembly directives
Missing conditional assembly IF or ENDIF.

ELSE without IF
Missing conditional assembly IF.

ENDIF without IF
Missing conditional assembly TF.

Unbalanced structured assembly directives
Missing structured assembly IF or ENDIF.

'+' or '-' expected
A plus or minus sign is missing.

lllegal operation on extern or public symbol
An illegal operation has been used on a public or external symbol, e.g. VAR.

lllegal operation on non-constant label
It is illegal to make a non-constant symbol PUBLIC or EXTERN.

Extern or unsolved expression
The expression must be solved at assembly time, i.e. not include external
references.

'=' expected
Equals sign was missing.

Segment too long (max is max)
The length of ASEG, RSEG, STACK, or COMMON segments is larger than the
addressable length.

Public did not appear in label field
A symbol was declared PUBLIC but no label with the same name was found in
the source file.

End of block-repeat without start
The repeat directive REPT was not found although the ENDR directive was.

Segment must be relocatable
The operation is not allowed on ASEG.

70

71

72

73

74

75

76

77

78

79

80

82

83

84

Assembler diagnostics ___¢

Limit exceeded: error text, value is: value (decimal)
The value exceeded the limits set with the LIMIT directive. The error text is
set by the user in the LIMIT directive.

Symbol symbol has already been declared EXTERN
An attempt to redeclare an EXTERN as EXTERN was made.

Symbol symbol has already been declared PUBLIC
An attempt to redeclare a PUBLIC as PUBLIC was made.

End-of-module missing
A PROGRAM or MODULE directive was encountered before ENDMOD was found.

Expression must yield non-negative result
The expression was evaluated to a negative number, whereas a positive number
was required.

Repeat directive unbalanced
This error is caused by a REPT directive without a matching ENDR, or a an ENDR
directive without a matching REPT.

End of repeat directive is missing
A REPT directive without a closing ENDR was encountered.

LOCALs not allowed in this context, (symbol)
Local symbols must be declared within macro definitions.

End of macro expected
An assembler macro is being defined but there was no end-of-macro.

End of repeat expected
One of the repeat directives is active, but there was no end-of-repeat found.

End of conditional assembly expected
Conditional assembly is active but there was no end of if.

End of structured assembly expected
One of the directives for structured assembly is active but has no matching
END.

Misplaced end of structured assembly
A directive that terminates one of the structured assembly directives was found
but no matching START directive is active.

Error in SFR attribute definition
The SFRTYPE directive was used with unknown attributes.

lllegal symbol type in symbol
The symbol cannot be used in this context since it has the wrong type.

113

Error messages

85

86

87

88

89
90
91
92
93
94
95
96
97
98
99
100

Wrong number of arguments
Expected a different number of arguments.

Number expected
Characters other than digits were encountered.

Label must be public or extern
The label must be declared with PUBLIC or EXTERN.

Label not defined with DEFFN
The label has to be defined via DEFFN before used in this context.

Sorry DEMO version, bytecount exceeded (max bytes)
Different parts of ASEG have overlapping code
Internal error

Empty macro stack overflow

Macro stack overflow

Attempt to access out-of-stack value

Invalid macro operator

No such macro argument

Sorry Lite version, bytecount exceeded (max bytes)
Option -re cannot handle code in include files, use -r or -rn instead
#include within macro not supported

Duplicate segment definitions
Segment redefinition with different attributes; for example, an RSEG segment
cannot be used as a COMMON segment.

8051-SPECIFIC ERROR MESSAGES

In addition to the general error messages, the 8051 IAR Assembler may generate the
following error messages:

401
402
403
404
405
406

IAR Assembler for 8051
114 Reference Guide

Too many operands

:8 or :16 expected

There is no error message with this number
The register name is not allowed here
There is no error message with this number

lllegal suffix

Assembler diagnostics ___¢

407 lllegal value value
408 lllegal size specifier specifier
409 C-comment has no end

410 Could not solve step
411 Nothing to BREAK out of

412 CASE after DEFAULT
DEFAULT is a catch-all case and is not allowed to have a CASE after it.

413 CASE outside SWITCH
414 COMMA expected

415 Nothing to CONTINUE to
CONTINUE needs something to continue.

416 Cannot solve break
The break count must be solvable.count value

417 DEFAULT outside SWITCH

418 ELSE used more than once
It is not allowed to have multiple ELSE directives for an IF.

419 ELSE without matching IF

420 ELSEIF cannot be used after ELSE
421 ELSEIF with no matching IF

422 ENDF without matching FOR

423 ENDIF without matching IF

424 ENDS without matching SWITCH
425 ENDW without matching WHILE

426 THEN without matching IF

427 Negative step value

428 Zero step value

429 UNTIL without matching REPEAT
430 Break argument must be 1,2, or 3

431 Multiple DEFAULT
It is not allowed to have more than one DEFAULT inside a SWITCH.

115

Warning messages

116

432 Can't assign register to register

433 lllegal constant prefix specifier

434 lllegal prefix specifier

435 lllegal bit suffix specifier

Warning messages

GENERAL

The following section lists the general warning messages.

0 Unreferenced label
The label was not used as an operand, nor was it declared public.

| Nested comment
A C-type comment, /* ... ¥/, was nested.

2 Unknown escape sequence
A backslash (\) found in a character constant or string literal was followed by
an unknown escape character.

3 Non-printable character
A non-printable character was found in a literal or character constant.

4 Macro or define expected

5 Floating point value out-of-range
Floating point value is too large to be represented by the floating-point system
of the target.

6 Floating point division by zero

7 Wrong usage of string operator (‘#' or '##'); ignored.
The current implementation restricts usage of the # and ## operators to the
token field of parameterized macros. In addition, the # operator must precede
a formal parameter.

8 Macro parameter(s) not used

9 Macro redefined

10 Unknown macro

I Empty macro argument

12 Recursive macro

IAR Assembler for 8051
Reference Guide

Assembler diagnostics ___¢

13 Redefinition of Special Function Register
The special function register (SFR) has already been defined.

14 Division by zero
Division by 0 in constant expression.

15 Constant truncated
The constant was longer than the size of the destination.

16 Suspicious sfr expression
A special function register (SFR) is used in an expression, and the assembler
cannot check access rights.

17 Empty module module, module skipped
An empty module was created by using END directly after ENDMOD or MODULE,
followed by ENDMOD without any statements in between.

18 End of program while in include file
The program ended while a file was being included.

19 Symbol symbol duplicated

20 Bit symbol cannot be used as operand
A symbol was declared using the bit directive, but since the bit address is not
calculated the symbol should not be used.

21 Label did not appear in label field

22 Set segment alignment the same value or larger
When the alignment set by ALIGN is larger than the segment alignment it may
be lost at link time.

8051-SPECIFIC WARNING MESSAGES

In addition to the general warning messages, the 8051 IAR Assembler may generate the
following warning messages:

400 Number out of range
The value does not fit the instruction/directive and is truncated.

401 SFR neither defined as READ nor WRITE
The sFRTYPE directive was used in such a way that the special function
register is inaccessible.

402 More than one SFR size attribute defined using default (byte)
The SFRTYPE directive was used with multiple size definitions. The assembler
will use default byte size.

17

Warning messages

118

IAR Assembler for 8051
Reference Guide

403

404

405

406

407
408
409

No SFR size attribute defined using default (byte)
The SFRTYPE directive was used with no size definition. The assembler will
use default byte size.

Displacement out of bounds
The offset in a JMP or CALL instruction does not fit, the destination label is to
far off.

Accessing SFR incorrectly, check read/write flags
An attempt such as to write to a read-only SFR has been made.

Accessing SFR using incorrect size
An attempt such as to write to a read-only SFR has been made.

Address may not be reachable
SFR address might not be bit addressable

Bit address used as regular dir8 address

Index °

A data definition or allocation 87
DB .. 87

absolute Segmentsttt 62 DC8 ..o 87
ADD (CFI Operator) 102 DC 1 6 87
addition (assembler operator)oeenL.. 40 DC24. ..o 87
ALIAS (assembler directive) 65 DC32. o 87
ALIGN (assembler directive) 60 DD 87
alignment, of segments, 63 DEFINE. ... 65
ALIGNRAM (assembler directive). 60 DS .o 87
AND (assembler operator)ooeuenenn.. 42 DS8 .o 87
AND (CFI Operator) 102 DS 1 6 87
architecture, 8051 9 DS24 oo 87
ARGFRAME (assembler directive) 92 DS32 . 87
ASCII character constants.couvuu.... 18 DT 87
ASEG (assembler directive) 60 DW o 87
ASEGN (assembler directive). 60 ELSE... ... 69
asm (filename extension) 16 ELSEIF ... 69
ASMS8051 (environment variable). 24 END.....ooo 56
assembler control directives, 89 ENDIF. ... 69
assembler diagnostics 107 ENDM. ... 71
assembler dll‘eCthGS ENDMAC 71
ALIAS . ..o 65 ENDMOD ... 56
ALIGN. 60 ENDR ... 71
ALIGNRAM 60 EQU .. 65
ARGFRAME 92 EVEN 61
ASEG. ..\ 60 EXITM oo 71
ASEGN . o o oo 60 EXPORT e 59
assemblercontrol. 89 EXTERN. ... 59
ASSIGN. ...t 65 EXTRN ..o 59
call frame information 93 FUNCAL. ... 92
CASEOFF . . . oo 89 FUNCTION. e 92
CASEON . . o o oo 89 functiono 91
CFLdIirectives. oovi et et 93 I 70
(/o) D 78 IMPORT ... 59
COMMENS, USING .+« v v e eeeeeeee e eeeeeeeenn 55 labels, using.c.oovninin i 55
COMMON.. .« o oo 60 LIBRARY 56
conditional assembly 69 LIMIT .. 65
See also C-style preprocessor directives listfilecontrolo iiiiiininan... 78
Cstyle PrEproCessor . .+ vvovoeoeo o 33 LOCAL ...ttt 71

19

120

LOCFRAME 92

LSTCND 78
LSTCOD o 78
LSTEXP 78
LSTMAC. 78
LSTOUT 78
LSTPAG 78
LSTREP. 79
LSTXRF 79
MACRO. 71
MACTO PrOCESSING . « v\ vttt eee et 71
MODULE i 56
modulecontrol. L i 56
NAME 56
ODD ... 61
ORG ... 61
PAGE. 79
PAGSIZ 79
PATAMELETS « . o v ettt e 55
PROGRAM i 56
PUBLIC. 59
PUBWEAK 59
RADIX ..o 89
REPT 71
REPTC. o 71
REPTI 72
REQUIRE 59
RSEG. 61
RTMODEL it 56
segmentcontrol i 60
SET . 65
) 66
SFRTYPE 66
STACK . ..o 61
SUMMATY © e v vttt et et et et e e e e e 51
symbolcontrol. i 59
13 117 . GO PP 54
value assignmentt 65
T P 89
IAR Assembler for 8051

Reference Guide

I 89
#define....... 83
#elif ... 83
#else. . ..o 83
#endif. 83
HEITOTottt 83
HE 83
#ifdef 83
#ifndef 83
#include. i 83
HMESSAZE .+« o v v e et e 83
#undef 83
TR PP 65
S 89
assembler environment variables 24
assembler eXpressions.t 16
assemblerlabels L L. 17
assembler directives, using with. 55
defining and undefining 84
formatof L 15
assembler list files
active lines, including 33
conditional code and strings. 79
conditions, specifying 26
cross-references
GENETALING . . . o\ vttt e 36
table, generating i 80
disabling 79
enabling....... 79
filename, specifying. 30
format, specifying 80
generated lines, controlling 80
GENETALNG . . ottt ettt 30
header section, omitting. 31
#include files, specifying 29
lines per page, specifying. 32
macro execution information, including. 26
macro-generated lines, controlling. 80
tab spacing, specifying. 34

Index °

using directives to format. 80 SEE . 48
assembler macros SHL 48
arguments, passing to. vt 74 SHR. ... 49
defining i 72 SIZEOF . . . 49
generated lines, controlling in listfile 80 UGT. . e 50
inlineroutines, 75 ULT .. 50
predefined symbol Ll 74 XOR 50
PIOCESSING . v vttt et e 75 P 43
quote characters, specifying. 30 P 40
special characters, using. 73 PP 43
assembler object file, specifying filename. 31 P 41
assembler Operators i 37 PN 39
AND .o 42 PP 40
BITAND ...t s 42 2P 42
BITNOT. ..ot e 43 Q& e 42
BITOR. . ..ot e e 43 Do v v 43
BITXOR ..ottt e 43 e 39-40
BYTE2. . ..o 44 S PP 41
BYTE3. ... 44 eSS 48
BYTEA4. ..o 44 Qo et e e 41
DATE. 44 > 41
EQ . 41 TR PP 41
GE .o e 42 e i PP 41
G ot 42 D PP 42
HIGH. e 45 D I PP 42
HWRD. 45 > 49
1N EXPIESSIONS. « v v vv e et e e et 16 | 43
LE . 41 I 44
LOC. .o 45 PP 43
LOW 46 assembler options
LT 41 command line, setting 23
LWRD ... 46 extended command file, setting 23
MOD ... 43 SUIMMATY « . v ovt et e e e et e e eaene 25
NE .o 41 B 26
NOT. .ot e 43 PP 26
OR .t 44 PP 26
Precedence.i it 37 D 27
PRM . 46 PP 28
SFB ..ot 47 B 28

121

122

S 23,28

SGe 29

e 29

s 29

e 30

e 30

Mo 30

N 31

e 1 31

SO 31

e 32

D e 32

s 32

S 33

S e e 33

e 33

e 34

U 34

2 34

W e e e 35

S 36

assembler output, including debug information 32

assembler source files, including 85,90

assembler source format. 15

assembler symbols oL, 17

EXPOItING . ..ottt 59

IMPOTLING . . vttt e e 60

in relocatable expressions, .. 16

local. ... 69

predefined 19

undefining. i 34

redefining. 67

assembler, upgrading from previous version. 22

assembly error messages.ovie i 107-108

assembly warning messages 107, 116

disabling i 35

ASSIGN (assembler directive) 65

assumptions (programming experience) 9

A8051_INC (environment variable) 24
IAR Assembler for 8051

Reference Guide

-B (assembleroption) 26
-b (assembler option)iiiiiii. 26
backtrace information, defining 93
BITAND (assembler operator) 42
BITNOT (assembler operator) 43
BITOR (assembler operator).ouvuvunenen.. 43
bitwise AND (assembler operator) 42
bitwise exclusive OR (assembler operator)............. 43
bitwise NOT (assembler operator) 43
bitwise OR (assembler operator). 43
BITXOR (assembler operator)c..... 43
bold style, inthisguide. 12
BYTE2 (assembler operator)c..... 44
BYTES3 (assembler operator)c..... 44
BYTE4 (assembler operator) 44
-c (assembler option)l 26
call frame information directives 93
CALL (pseudo mnemonic)covuvnvnenennnnn. 22
case sensitive user symbols. 33
case sensitivity, controlling. 90
CASEOFF (assembler directive). 89
CASEON (assembler directive) 89
CFLdirectiveso vt ettt e 93
CFIL eXpressionsc.vuvnenenenninenenenen.n. 102
CFLOperatorsc.ouuinenennnninninen.n. 102
character constants, ASCII 18
CLIB, documentationouuueeuinnnnnn... 11
COL (assembler directive)ccouuun... 78
command line error messages, assembler............. 107
command line options. 23

typographic convention 12
command line, extending 28
command prompt icon, in this guide. 12

COMIMENLS . .« vttt ettt ettt e e e e e e eeeaene 85

assembler directives, using with. 55

in assembler soucecode. 15

multi-line, using with assembler directives 91
COMMON SEZMENTS. . « . vt v ev et e e ee e e eeenenen.n 63
COMMON (assembler directive) 60
COMPLEMENT (CFI operator). 102
computer style, typographic convention 12
conditional assembly directives 69

See also C-style preprocessor directives. 85
conditional code and strings, listing 79
conditional listfile 26
configuration, processOoro v v v nen i 34
CONSLANTS, INLEZET . .« v v vv vttt e et e e eeen 17
conventions, used inthisguide 11
copyrightnotice i, 2
CPU core, specifyingc..ovuiiiininnenan.. 34

CPU, defining in assembler. See processor configuration
cross-references, in assembler list file

GENETALING .« . oottt et 36

table, generating. 80
current time/date (assembler operator) 44
C-style preprocessor directivesc.covu.n.. 83
C++terminology.o on i 11
-D (assembleroption)c. ... 27
-d (assembleroption) 28
data allocation directives.ccueinene.... 87
data definition directives., 87
_ _DATE_ _ (predefined symbol) 19
DATE (assembler operator).ooveuenenan.. 44
DB (assembler directive). 87
DCS8 (assembler directive). 87
DC16 (assembler directive)., 87
DC24 (assembler directive).o..... 87
DC32 (assembler directive).o..... 87
DD (assembler directive)c.iiii.... 87

Index °

debug information, including in assembler output 32
#define (assembler directive) 83
DEFINE (assembler directive) 65
derivatives, specifying. See processor configuration
diagnosticst 107
directives. See assembler directives
disclaimer. i 2
DIV (CFLOperator).ovvn i eeen 102
division (assembler operator)c........ 40
DLIB, documentationouuuiiiiinnnn.. 11
document cConventions.uuvueerennenen.. 11
documentation, overview of guides. 10
DSB8 (assembler directive).ciitii... 87
DS (assembler directive). 87
DS16 (assembler directive). 87
DS24 (assembler directive). 87
DS32 (assembler directive). 87
DT (assembler directive).coviiinn.. 87
DW (assembler directive) 87
-E (assembleroption), 28
edition, of thisguide i 2
efficient coding techniques 21
#elif (assembler directive). 83
#else (assembler directive), 83
ELSE (assembler directive). 69
ELSEIF (assembler directive). 69
Embedded C++ Technical Committee 11
END (assembler directive) 56
#endif (assembler directive) 83
ENDIF (assembler directive) 69
ENDM (assembler directive) 71
ENDMAC (assembler directive). 71
ENDMOD (assembler directive). 56
ENDR (assembler directive) 71
environment variables

ASMBOST ..o 24

123

124

assembler. 24

ABOSI_INC e e e 24
EQ (assembler operator)o.iiiiinn.. 41
EQ (CFLoperator).cvvenie i 103
EQU (assembler directive)coo..... 65
equal (assembler Operator)oeienen.. 41
#error (assembler directive) 83
CITOT MESSAZES « « « v v e ve ettt e e e e e eaeeenens 108

maximum number, specifying 28

using #error todisplay oL L., 85
EVEN (assembler directive) 61
EXITM (assembler directive) 71
eXperience, Programmingvuovuenenenenennenenn 9
EXPORT (assembler directive). 59
expressions. See assembler expressions
extended command linefile 23,28
EXTERN (assembler directive). 59
EXTRN (assembler directive). 59
-f (assembler option). 23,28
false value, in assembler expressions 16
fatal errors.o 107
_ _FILE_ _ (predefined symbol). 19
file extensions. See filename extensions
file types

assembler Ssource 16

extended commandline...................... 23,28

#include. ... 29
filename extensions

ASTNL &ttt e e 16

10T PP 16

Sl e 32

S5 16

XCl 23,28
filenames, specifying for assembler object file 31-32
floating-point constants.t 18
formats, assembler source code. 15

IAR Assembler for 8051

Reference Guide

fourth byte (assembler operator). 44
FRAME (CFLoperator). covueine e 103
FUNCALL (assembler directive) 92
function directives. 91
FUNCTION (assembler directive) 92
-G (assembler option)o vt 29
GE (assembler operator).c.cvuuinenenn.. 42
GE (CFLOperator).voveee e eeaen 103
global value, defining 67
greater than or equal (assembler operator) 42
greater than (assembler operator) 42
GT (assembler operator)vvenenenennnn. 42
GT (CFLOperator). . .. ovovv et eeeens 103
header files, SFR. 21
header section, omitting from assembler list file. 31
high byte (assembler operator) 45
high word (assembler operator) 45
HIGH (assembler operator). 45
HWRD (assembler operator) 45
-I (assembler option). it 29
-i (assembler option). 29
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol) 19
icons,inthisguide 12
#if (assembler directive) 83
IF (assembler directive)ccuui.n.. 70
IF (CFLoperator).vvt e i e 103
#ifdef (assembler directive)., 83
#ifdef/#fendif matching, disabling 28
#ifndef (assembler directive). 83
IMPORT (assembler directive) 59

#includefiles. 29
#include (assembler directive) 83
include paths, specifying. 29
inline coding, Using MAaCroscoeuennn.. 75
installation directory i 12
instructionset, 8051 9
INEEZET CONSLANLS . « . o\ vttt ettt e en e 17
internal errors, assembler, .. 107
italic style,inthisguide 12
JMP (pseudo mnemonic)oueuenennn.. 22
-L (assembleroption), 30
-l (assembleroption). i 30
labels. See assembler labels
LE (assembler operator) 41
LE (CFloperator)ovuuiuniuninnann.... 103
less than or equal (assembler operator). 41
less than (assembler operator). 41
librarymodules.o i 57
CIALNG . . oottt ettt e 26
LIBRARY (assembler directive). 56
lightbulb icon, in this guide. 12
LIMIT (assembler directive).covuen... 65
_ _LINE_ _ (predefined symbol) 19
lines per page, in assembler listfile 32
listing control directives 78
LITERAL (CFloperator)coouovuenenn... 102
LOAD (CFIOperator)ovuveveeenenennen.. 104
LOC (assembler operator).c..ouuennen .. 45
local value, defining 67
LOCAL (assembler directive).coovuvn... 71
LOCFRAME (assembler directive). 92
logical AND (assembler operator) 42
logical exclusive OR (assembler operator) 50

Index °

logical NOT (assembler operator). 43
logical OR (assembler operator) 44
logical shift left (assembler operator) 48
logical shift right (assembler operator) 49
low byte (assembler operator). 46
low word (assembler operator) 46
LOW (assembler operator)oouuuenen.. 46
LSHIFT (CFLoperator).covninenenennnnn.. 103
LSTCND (assembler directive). 78
LSTCOD (assembler directive). 78
LSTEXP (assembler directives) 78
LSTMAC (assembler directive) 78
LSTOUT (assembler directive). 78
LSTPAG (assembler directive) 78
LSTREP (assembler directive) 79
LSTXRF (assembler directive) 79
LT (assembler operator)c...ouuuvunenen.. 41
LT (CFLOperator)ovuvn e eeeaenn 103
LWRD (assembler operator)ovuuenen.. 46
-M (assembler option)., 30
macro execution information, including in list file 26
macro processing directives 71
macro quote charactersvueeuennnnen... 73

specifying 30
MACRO (assembler directive) 71
macros. See assembler macros
memory

reserving space and initializing 88

reserving uninitialized spacein 87
#message (assembler directive). 83
messages, excluding from standard output stream 33
migration, from earlier IAR compilers 11
MISRA C, documentationooueuun.. 11
MOD (assembler operator)vuvuvunenenn.. 43
MOD (CFLOPerator). . ..« vvvee e e e eeeeeeennn 102
module ConSiStency.o vvv v 58

125

module control directives 56
MODULE (assembler directive) 56
modules, terminating i 57
modulo (assembler operator) 43
msa (filename extension) 16
MUL (CFLOperator)covve e 102
multibyte character support. 31
multiplication (assembler operator) 39
multi-module files, assembling. 57
-N (assembler option)ovviin i 31
-n (assembler option) i 31
NAME (assembler directive).coonu.... 56
Naming Conventionsc..oeuueunenn.n. 12
NE (assembler operator), 41
NE (CFLoperator).o.vvneneeeieenennn. 103
not equal (assembler operator) 41
NOT (assembler operator).vvvunenenenan.. 43
NOT (CFLoperator)oouvuuenenennenenennn. 102
-O (assembleroption)t 31
-0 (assembleroption), 32
ODD (assembler directive)ciii.... 61
operands

formatof 15

in assembler expressionso 16
operations, formatof. Lo L. 15
operation, silent i 33
operators. See assembler operators
OPHiON SUMMATY . .. v vttt ettt e e e e e 25
OR (assembler operator).ovuiennen. .. 44
OR (CFLoperator).covueie ... 102
ORG (assembler directive)c.vvur.n.. 61

IAR Assembler for 8051

Reference Guide

P

-p (assembler option)iiiiiiia. 32
PAGE (assembler directive) 79
PAGSIZ (assembler directive).ovuvuvenen... 79
parameters
in assembler directives. L. 55
typographic convention 12
part number, of thisguide 2
precedence, of assembler operators. 37
predefined symbols. i 19
inassemblermacros. 74
undefining 34
_ DATE . 19
__FILE 19
_JAR_SYSTEMS_ASM_ _ ... 19
CLINE o 19
_ TID_ 19-20
TIME _ .o 19
__VER_ . 19
preprocessor symbol, defining 27
prerequisites (programming experience). 9
PRM (assembler operator)c..c.oon... 46
processor configuration, specifying 34
program location counter (PLC) 15,17
SEHLNE .« v v ettt et e e 63
program modules, beginning. 57
PROGRAM (assembler directive). 56
programming experience, required 9
programming hints oL oL 21
PUBLIC (assembler directive) 59
publication date, of this guide. 2
PUBWEAK (assembler directive). 59
-r (assembler option). 32
RADIX (assembler directive) 89
reference information, typographic convention. 12

register symbols, predefined 20
registered trademarksol 2
relocatable expressions, using symbolsin.............. 16
relocatable segments, beginning 62
repeating Statementsvu vttt 75
REPT (assembler directive) 71
REPTC (assembler directive) 71
REPTI (assembler directive). 72
REQUIRE (assembler directive). 59
RSEG (assembler directive) 61
RSHIFTA (CFloperator)c.c.ovuvuvenen... 103
RSHIFTL (CFLoperator)c.oouvuuenen... 103
RTMODEL (assembler directive). 56
rules, in CFl directivesciiiinnn.... 100
runtime model attributes, declaring. 58
r51 (filename extension) 32
-S (assembleroption) i 33
-s (assembler option).o 33
second byte (assembler operator) 44
segment begin (assembler operator) 47
segment control directives. 60
segment end (assembler operator). 48
segment size (assembler operator) 49
segments
absolute 62
aligning 63
common, beginmingoovuerenenennnnenn 63
relocatable 62
stack, beginning.o 62
SET (assembler directive). 65
SFB (assembler operator), 47
SFE (assembler operator)ouuervrnunenn. 48
sfr (assembler directive) 66
SFRTYPE (assembler directive) 66

SFR. See special function registers
SFR. See special function registers

Index °

SHL (assembler operator).c.coeuvnenennnn. 48
SHR (assembler operator)., 49
silent operation, specifying in assembler. 33
simple rules, in CFl directives. 100
SIZEOF (assembler operator)c.c.vuvunn.. 49
source files, including. 85,90
source format, assembler 15
special function registers. 21

defining labels o ... 67
stack segments, beginning. 62
STACK (assembler directive) 61
standard input stream (stdin), reading from. 29
standard output stream, disabling messagesto 33
statements, TePeating.ottt 75
SUB (CFLoperator)ouvuvinenenenen... 102
subtraction (assembler operator). 40
symbol control directives 59
symbol values, checking. 67
symbols

See also assembler symbols

predefined, in assembler 19

predefined, in assembler macro 74

user-defined, case sensitive 33
syntax

See also assembler source format

assembler directives., 54
s51 (filename extension).cuuiiinen... 16
-T (assembleroption) v .. 33
-t (assembler option). 34
tab spacing, specifying in assembler list file............ 34
target processor, specifying. 34
temporary values, defining 66
terminology.o v ettt 11
third byte (assembler operator) 44
_ _TID_ _ (predefined symbol). 19-20
_ _TIME_ _ (predefined symbol) 19

127

128

time-criticalcode 75

tools icon,inthis guide. 12
trademarks 2
true value, in assembler expressions 16
typographic conventionsveueuenen.n.. 12
-U (assembler option)oovvnn i 34
UGT (assembler operator)ccocuu.... 50
ULT (assembler operator)vuvunenenennn.. 50
UMINUS (CFILoperator).voveeenennnenen... 102
unary minus (assembler operator). 40
unary plus (assembler operator) 39
#undef (assembler directive). 83
unsigned greater than (assembler operator). 50
unsigned less than (assembler operator) 50
user symbols, case Sensitiveoeuin... 33
-v (assembleroption), 34
value assignment directives. 65
values, defining. L i 87
_ _VER_ _ (predefined symbol) 19
version number, of thisguide 2
-w (assembler option) 35
WAININEZS « ¢ v v ettt e e e e 107, 116

disabling 35
warnings icon, inthisguide 12
web sites, recommended. 11
-X (assembleroption) 36
xcl (filename extension) 23,28

IAR Assembler for 8051

Reference Guide

XOR (assembler operator), 50
XOR (CFLOperator)ovvuninn e 103

Symbols

A (assembler Operator). ov vt 43
_ _DATE_ _ (predefined symbol) 19
_ _FILE_ _ (predefined symbol). 19
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol) 19
_ _LINE_ _ (predefined symbol) 19
_ _TID_ _ (predefined symbol). 19-20
_ _TIME_ _ (predefined symbol) 19
_ _VER_ _ (predefined symbol) 19
_args, predefined macrosymbol 74
- (assembler Operator).t 40
-B (assembleroption) 26
-b (assembler option)iiiiiii. 26
-c (assembler option) it 26
-D (assembler option) 27
-d (assembler option)iiiiiii. 28
-E (assembleroption), 28
-f (assembleroption)., 23,28
-G (assembler option)o vt 29
-I (assembler option).oviiiii i 29
-i (assembler option)t 29
-L (assembleroption)ot 30
-1 (assembleroption).viiiiii . 30
-M (assembler option).t 30
-N (assembler option)ottt 31
-n (assembler option) 31
-O (assembler option)o vttt 31
-0 (assembler option) i 32
-p (assembler option)iiiiiia., 32
-r (assembler Option). 32
-S (assembler option) i 33
-s (assembler option). i 33
-T (assembler option)ooviniienenenennnn. 33
-t (assembler option)t 34
-U (assembler option)o oo v eein i 34

Index °

-v (assembler option)i i 34 $ (assembler directive)t 89
-w (assembler option)l 35 $ (program location counter). 17
-X (assembler option)i i 36

! (assembler operator).t 43 N *

!= (assembler operator).iiiiia.. 41 u m e rl c S

* (assembler operator) ...l 39 8051 architecture and instruction set. 9
/ (assembler operator) oL 40 8051 derivatives, specifyingooou.... 34
/*...*/ (assembler directive). 89

// (assembler directive) 89

& (assembler Operator)o vn i e 42

&& (assembler operator) 42

#define (assembler directive) 83

#elif (assembler directive). 83

#else (assembler directive) 83

#endif (assembler directive) 83

#error (assembler directive) 83

#if (assembler directive) 83

#ifdef (assembler directive). 83

#ifdef/#endif matching, disabling 28

#ifndef (assembler directive). 83

#includefiles. 29

#include (assembler directive) 83

#message (assembler directive). 83

#undef (assembler directive). 83

%o (assembler Operator).ttt 43

+ (assembler Operator)o.iuiian.. 39-40

< (assembler Operator)ouiiiinenenan.. 41

<< (assembler Operator)ouuenienenan.. 48

<= (assembler Operator)ueuenenan.. 41

<> (assembler Operator)uiiinenenan.. 41

= (assemblerdirective) 65

= (assembler Operator)uiiiinenenan.. 41

== (assembler Operator)ueuenenan.. 41

> (assembler Operator)iuiiiinenenan.. 42

>= (assembler Operator)vuiinenenan.. 42

>> (assembler Operator)ouiii i 49

| (assembler operator)t 43

Il (assembler operator).t 44

~ (assembler Operator) 43

129

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Document conventions

	Introduction to the IAR Assembler
	Source format
	Assembler expressions
	Programming hints
	Upgrading from previous versions of the assembler

	Assembler options
	Setting command line options
	Summary of assembler options
	Descriptions of assembler options
	-B
	-b
	-c
	-D
	-d
	-E
	-f
	-G
	-I
	-i
	-L
	-l
	-M
	-N
	-n
	-O
	-o
	-p
	-r
	-S
	-s
	-T
	-t
	-U
	-v
	-w
	-X
	-x

	Assembler operators
	Precedence of operators
	Summary of assembler operators
	Description of operators
	*
	+
	+
	–
	–
	/
	<, LT
	<=, LE
	<>, !=, NE
	=, ==, EQ
	>, GT
	>=, GE
	&&, AND
	&, BITAND
	~, BITNOT
	|, BITOR
	^, BITXOR
	%, MOD
	!, NOT
	||, OR
	BYTE2
	BYTE3
	BYTE4
	DATE
	HIGH
	HWRD
	LOC
	LOW
	LWRD
	PRM
	SFB
	SFE
	<<, SHL
	>>, SHR
	SIZEOF
	UGT
	ULT
	XOR

	Assembler directives
	Summary of assembler directives
	Syntax conventions
	Module control directives
	Symbol control directives
	Segment control directives
	Value assignment directives
	Conditional assembly directives
	Macro processing directives
	Listing control directives
	C-style preprocessor directives
	Data definition or allocation directives
	Assembler control directives
	Function directives
	Call frame information directives

	Assembler diagnostics
	Severity levels
	Error messages
	Warning messages

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

