
M430-2

IAR Embedded Workbench®
Migration Guide

for Texas Instruments’
MSP430 Microcontroller Family

M430-2

M430-2

COPYRIGHT NOTICE
Copyright © 1996–2010 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Texas Instruments is a registered trademark of Texas Instruments Incorporated.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Second edition: March 2010

Part number: M430-2

This guide applies to version 5.x of IAR Embedded Workbench® for Texas
Instruments’ MSP430 microcontroller family.

Internal reference: M3, 6.0.x, IJOA.

Contents
Migrating to version 5.x from 3.x or 4.x .. 5

Migration considerations ... 5

IAR Embedded Workbench IDE .. 5

Installation directory .. 5

Project settings in the Options dialog box ... 6

Project files .. 6

C language changes ... 6

Options for language support ... 7

Options for language conformance .. 7

Obsolete C89 features in your source code .. 7

Runtime library changes .. 8

Migrating to version 3.x or 4.x from version 2.x 11

Migration considerations ... 11

IAR Embedded Workbench IDE .. 11

Workspace and Projects ... 12

C-SPY® layout files .. 12

Runtime library and object files considerations 12

Compiling and linking with the DLIB runtime library 12

Program entry ... 13

System initialization—cstartup .. 14

Migrating from CLIB to DLIB .. 14

Migrating to version 2.x from version 1.x .. 15

Differences ... 15

The migration process ... 15

Compiler options .. 16

Converting option settings ... 16

Filenames ... 19

List files .. 19

Extended keywords .. 20

Interrupt functions and vectors .. 20
M430-2

3

4

Absolute located variables ... 21

Pragma directives ... 21

Intrinsic functions ... 23

Segments .. 25

Other changes .. 26

Object file format ... 26

Predefined symbols .. 26

Nested comments ... 26

Sizeof in preprocessor directives ... 27

Include files .. 28

Runtime library .. 28
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 5.x
from 3.x or 4.x
This chapter gives hints for porting your application code and projects to the
new version 5.x from one of the old versions 3.x or 4.x.

Note that if you are migrating from an older version than 3.x or 4.x, you must
first read the previous migration chapters in this guide.

Migration considerations
To migrate your old project, consider these topics:

● IAR Embedded Workbench IDE

● C language changes

● Runtime library changes.

Note that not all items in the list might be relevant for your project. Consider carefully
which actions that are needed in your case.

Code written for version 3.x or 4.x might generate warnings or errors in version 5.x.

IAR Embedded Workbench IDE
When you upgrade to the new version of the IAR Embedded Workbench IDE, you must
consider the issues described in this section.

INSTALLATION DIRECTORY

When you install your new version of the IAR Embedded Workbench IDE, you cannot
install it in the same installation directory as your old version.

The old default installation path is:

c:\Program Files\IAR Systems\Embedded Workbench 5.n\

The new default installation path is:

c:\Program Files\IAR Systems\Embedded Workbench 6.n\

Note the difference in version number of the IDE. (This is not the same as the version
number of your IAR Embedded Workbench product.)
M430-2

5

6

C language changes
PROJECT SETTINGS IN THE OPTIONS DIALOG BOX

The Options dialog box—available from the Project menu—has changed. This table
lists the most important changes:

PROJECT FILES

Even though some of the pages in the Options dialog box have changed, your old
project file can be used in your new version of the IAR Embedded Workbench IDE.

C language changes
In version 5.x, the compiler by default conforms to the C99 standard (ISO/IEC
9899:1999 including technical corrigendum No.3), hereafter referred to as Standard C
in this guide. Optionally, you can make the compiler conform to the C89 standard
instead (ISO 9899:1990 including all technical corrigenda and addenda). In C89 mode,
you cannot use any C99 language features or any C99 library symbols.

In version 3.x and 4.x, the compiler by default conforms to the C89 standard. Optionally,
you can use some C99 features.

To migrate to version 5.x, you must consider:

● Options for language support

● Options for language conformance

● Obsolete C89 features in your source code.

Category>Page Changes

C/C++ Compiler>Language See C language changes, page 6.

Linker The tabs are listed in a new order.

Linker>Processing The name of this page is now Checksum.

Table 1: Overview of changes in the Project options dialog box
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 5.x from 3.x or 4.x
OPTIONS FOR LANGUAGE SUPPORT

This table lists the differences in the options for enabling language support:

* C89 and C99, respectively, but with some minor exceptions. For more information, see the
compiler documentation.
† --c89 disables C99 library symbols and C99 language features.

Note: C99 mode does not allow variable length arrays (VLA) by default; use the
command line option --vla to enable such support. Embedded C++ has not changed.

OPTIONS FOR LANGUAGE CONFORMANCE

The options for C/C++ language conformance differ between the two versions; this table
lists these differences:

OBSOLETE C89 FEATURES IN YOUR SOURCE CODE

There are some C89 features that are accepted by the compiler in version 3.x and 4.x,
but which are not accepted by the compiler in version 5.x when you compile in C99
mode. Warnings or errors will be generated. To omit these diagnostic messages, you
must either compile the source code in C89 mode or rewrite your source code.

Language features In version 5.x In version 3.x/4.x

C89* --c89† Supported by default.

C99* (Standard C) Supported by default. Some features available when -e
is used.

Table 2: Enabling language features

In version 5.x

Option in IDE vs

on the command line

In version 3.x/4.x

Option in IDE vs

on the command line

Description

Standard with IAR
extensions
-e

Allow IAR extensions
-e

Accepts IAR extensions and IAR
relaxations to Standard C.

Standard
Supported by default on the
command line

Relaxed ISO/ANSI
Supported by default on the
command line

Accepts IAR relaxations to
Standard C.

Strict
--strict

Strict ISO/ANSI
--strict_ansi

Strict adherence to the standard.

Table 3: Options for language conformance
M430-2

7

8

Runtime library changes
These C89 features are not accepted by the compiler in version 5.x when compiling in
C99 mode:

● Implicit int variables

static k; /* k was implicit int. */

● Implicit int parameters

myFunction(i,j)
{
 /* i and j were implicit int. */
}

● Implicit int returns

myFunction()
{
 /* Returned implicit int 0. */
}

● Implicit returns

myFunction()
{
 /* Returned 0. */
}

● Implicit returns

myFunction()
{
 return; /* Returned 0. */
}

Runtime library changes
In version 5.x, the compiler and assembler automatically search for system header files
in a predestined directory (relative to the compiler/assembler executable file). In version
3.x and 4.x, you must specify the include file search paths explicitly.

In version 5.x, these compiler options are available for this:

--clib Uses CLIB system header files.

--dlib Uses DLIB system header files.

--dlib_config Uses DLIB system header files. The option also lets you
specify the runtime library configuration to use. In
version 3.x and 4.x, the option lets you specify a
runtime library configuration file, but in version 5.x the
option also accepts the argument none.
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 5.x from 3.x or 4.x
These corresponding assembler options are available:

For detailed reference information about these options, see the IAR C/C++ Compiler
Reference Guide for MSP430 and the MSP430 IAR Assembler Reference Guide.

--no_system_include Disables the automatic search for system header files.
You must specify the include file search path explicitly,
just as in version 3.x and 4.x. This option is useful if
you have well-established script files for building your
application project and you do not want to apply to the
new include file system immediately.

--system_include_dir Specifies the include directory explicitly, where the
compiler can find the system header files.

-g Disables the automatic search for system header files.
You must specify the include file search path explicitly,
just as in version 3.x and 4.x. This option is useful if
you have well-established script files for building your
application project and you do not want to apply to the
new include file system immediately.
M430-2

9

10

Runtime library changes
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 3.x or
4.x from version 2.x
This chapter gives hints for porting your application code and projects to
version 3.x or 4.x. Read this chapter first if you are migrating from version 2.x.
However, if you are migrating from the MSP430 IAR C Compiler version 1.x,
you must first read the chapter Migrating to version 2.x from version 1.x.

C or C++ source code that was originally written for the MSP430 IAR C
Compiler version 2.x can be used also with MSP430 IAR C/C++ Compiler
version 3.x or 4.x. However, some small modifications might be required.

This chapter presents the major differences between the MSP430 IAR
Embedded Workbench version 2.x and the MSP430 IAR Embedded
Workbench version 3.x or 4.x, and describes the migration considerations.

Migration considerations
To migrate your old project consider the following:

● IAR Embedded Workbench IDE

● Runtime library and object files considerations.

Note that not all items in the list may be relevant for your project. Consider carefully
what actions are needed in your case.

Note: It is important to be aware of the fact that code written for version 2.x might
generate warnings or errors in version 3.x or 4.x.

IAR Embedded Workbench IDE
Upgrading to version 3.x or 4.x of the IAR Embedded Workbench IDE should be a
smooth process as the improvements do not affect the compatibility between the
versions.
M430-2

11

12

Runtime library and object files considerations
WORKSPACE AND PROJECTS

The workpaces and projects you have created with 2.x are compatible with 3.x and 4.x,
except for debugger settings.

The first time you open an old project, it will be converted and a backup copy of the old
project is saved unchanged. When you have opened and converted the project, you must
review the settings and make any needed modifications in addition to making new
debugger settings.

C-SPY® LAYOUT FILES

Due to a new improved window management system, the C-SPY layout files support in
2.x has been removed. Any custom-made .lew files can safely be removed from your
projects.

Runtime library and object files considerations
In version 3.x and 4.x, two sets of runtime libraries are provided—CLIB and DLIB.
CLIB corresponds to the runtime library provided with version 2.x, and it can be used
in the same way as before.

To build code produced by version 3.x or 4.x of the compiler, you must use the runtime
environment components it provides. It is not possible to link object code produced
using version 3.x with components provided with version 2.x.

For information about how to migrate from CLIB to DLIB, see Migrating from CLIB to
DLIB, page 14. For more information about the two libraries, and the runtime
environment they provide, see the IAR C/C++ Compiler Reference Guide for MSP430.

COMPILING AND LINKING WITH THE DLIB RUNTIME
LIBRARY

In earlier versions, the choice of runtime library did not have any impact on the
compilation. In MSP430 IAR Embedded Workbench version 3.x and 4.x, this has
changed. Now you can configure the runtime library to contain the features that are
needed by your application.

One example is input and output. Perhaps an application uses the fprintf function for
terminal I/O (stdout), but does not use file I/O functionality on file descriptors
associated with the files. In this case the library can be configured so that code related
to file I/O is removed but still provides terminal I/O functionality.

This configuration involves the library header files, for example stdio.h. In other
words, when you build your application, the same header file setup must be used as
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 3.x or 4.x from version 2.x
when the library was built. The library setup is specified in a library configuration file,
which defines the library functionality.

When you build an application using the IAR Embedded Workbench IDE, there are
three library configuration alternatives to choose between: Normal, Full, and Custom.
Normal and Full are prebuilt library configurations delivered with the product, where
Normal should be used in the above example with file I/O. Custom is used for custom
built libraries. Note that the choice of the library configuration file is handled
automatically.

When building an application from the command line, you must use the same library
configuration file as when the library was built. For the prebuilt libraries (r43) there is
a corresponding library configuration file (h), which has the same name as the library.
The files are located in the 430\lib directory. The command lines for specifying the
library configuration file and library object file could look like this:

icc430 -D_DLIB_CONFIG_FILE=...\430\lib\dlib\dl430dn.h
xlink dl430dn.r43

To take advantage of the new features, it is recommended that you read about the
runtime environment in the IAR C/C++ Compiler Reference Guide for MSP430.

PROGRAM ENTRY

By default, the linker includes all root declared segment parts in program modules
when building an application. However, there is a new mechanism that affects the load
procedure.

The new linker option Entry label (-s) specifies a start label. By specifying the start
label, the linker will look in all modules for a matching start label, and start loading from
that point. As before, any program modules containing a root segment part will also be
loaded.

In version 3.x and 4.x, the default program entry label in cstartup.s43 is
__program_start, which means the linker will start loading from there. The
advantage of this new behavior is that it is much easier to override cstartup.s43.

If you build your application in the IAR Embedded Workbench IDE, you might simply
add a customized cstartup file to your project. It will then be used instead of the
cstartup module in the library. It is also possible to switch startup files just by
overriding the name of the program entry point.

If you build your application from the command line, the -s option must be explicitly
specified when you link a C/C++ application. If you link without the option, the
resulting output executable file will be empty, because no modules were referred to.
M430-2

13

14

Runtime library and object files considerations
SYSTEM INITIALIZATION—CSTARTUP

The content of the cstartup.s43 file has been split up into two files: cstartup.s43
and cexit.s43.

Now, the cstartup.s43 only contains exception vectors and initial startup code to
setup stacks and processor mode. Note that the cstartup.s43 file is the only one of
these three files that might require any modifications.

The cexit.s43 file contains termination code, for example, execution of C++
destructors.

For applications that use a modified copy of cstartup.s43, you must adapt it to the
new file structure.

MIGRATING FROM CLIB TO DLIB

There are some considerations to have in mind if you want to migrate from the CLIB,
the legacy C library, to the modern DLIB C/C++ library:

● The CLIB exp10 function defined in iccext.h is not available in DLIB.

● The DLIB library uses the low-level I/O routines __write and __read instead of
putchar and getchar.

● If the heap size in your version 2.x project (using CLIB) was defined in a file named
heap.c, you must now set the heap size either in the extended linker command file
(*.xcl) or in the Embedded Workbench IDE to use the DLIB library.

You should also see the chapter The DLIB runtime environment in the IAR C/C++
Compiler Reference Guide for MSP430.
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 2.x
from version 1.x
This chapter contains information about migrating from the MSP430 IAR
Embedded Workbench version 1.x to version 2.x. You must follow the
instructions in this chapter first if you are migrating from version 1.x, because
all the modifications described apply also to migration to later versions.

After you have read this chapter, you must read the chapter Migrating to version
3.x or 4.x from version 2.x, which contains information about migrating projects
from the MSP430 IAR Embedded Workbench version 2.x to version 3.x or 4.x.

Differences
The major differences between 1.x and 2.x are:

● In version 2.x, support for Embedded C++ became available

● Version 2.x adheres more strictly to the ISO/ANSI C standard; for example, it is
possible to use pragma directives instead of extended keywords for defining special
function registers (SFRs).

● The checking of data types now adheres more strictly to the ISO/ANSI C standard,
compared to version 1.x.

Note: It is important to be aware of the fact that code written for version 1.x might
generate warnings or errors in version 2.x.

The migration process
In short, to migrate from version 1.x to version 2.x, follow these steps:

1 If you have an IAR Embedded Workbench project file, you must first create a
workspace in your IAR Embedded Workbench IDE version 2.x. Add your version 1.x
project to the newly created workspace. The project will be automatically converted to
a version 2.x project file. The version 1.x project file will still be available.

2 Set the appropriate compiler options.

3 Replace version 1.x extended keywords in the source code with keywords available in
version 2.x.
M430-2

15

16

Compiler options
4 Replace version 1.x pragma directives with directives available in version 2.x. Note
that the behavior differs between the two products; see Pragma directives, page 21 for
detailed information.

5 Verify the usage of intrinsic functions in the source code. For more information, see
Intrinsic functions, page 23.

6 When building the project, make sure to use a linker command file supplied with
version 2.x. If you are using the Embedded Workbench IDE interface, the appropriate
linker command file is selected automatically when you choose
Project>Options>General Options and select a device from the Device drop-down
menu on the Target page. You might also consider updating any customizations made
to the version 1.x linker command file.

Note: Version 2.x will by default not accept preprocessor expressions containing any
of the following:

● Floating-point expressions
● Basic type names and sizeof
● All symbol names (including typedefs and variables).

If you use the option --migration_preprocessor_extensions, version 2.x will
accept such non-standard expressions.

Compiler options
The command line options in version 2.x follow two different syntax styles:

● Long option names containing one or more words prefixed with two dashes, and
sometimes followed by an equal sign and a modifier, for example --strict_ansi
and --module_name=test.

● Short option names consisting of a single letter prefixed with a single dash, and
sometimes followed by a modifier, for example -r.

Some options appear in one style only, while other options appear as synonyms in both
styles.

CONVERTING OPTION SETTINGS

Since the available options differ between version 1.x and version 2.x, you should verify
your option settings after you have converted a version 1.x project.

If you are using the command line interface, you can simply compare your makefile with
the option tables in this section, and modify the makefile accordingly.

If you are using the IAR Embedded Workbench IDE, all option settings are
automatically converted during the project conversion.
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 2.x from version 1.x
However, it is still recommended that you verify the options manually. Follow these
steps:

1 Open the version 1.x project in the IAR Embedded Workbench version 1.x.

2 In the project window, select the Target level.

3 To save the project settings to a file, right-click in the project window. On the context
menu that appears, choose Save As Text, and save the settings to an appropriate
destination.

4 Use this file and the option tables in this section to verify whether the options you used
in your version 1.x project are still available or needed. Also check whether you need
to use any of the new options.

Removed options

The following table shows the command line options that were removed:

Version 1.x option Description

-C Nested comments

-F Form-feed in list file after each function

-G Open standard input as source; replaced by - (dash) as source file name
in version 2.x

-g Global strict type checking; in version 2.x, global strict type checking is
always enabled

-gO No type information in object code

-i Add #include file text

-K ‘//’ comments; in version 2.x, ‘//’ comments are allowed unless
the option --strict_ansi is used

-pnn Lines/page

-T Active lines only

-t Tab spacing

-Usymb Undefined preprocessor symbol

-ua Enables odd address check

-X Explain C declarations

-x[DFT2] Cross-reference

-y Writable strings

Table 4: Version 1 compiler options not available in version 2.x
M430-2

17

18

Compiler options
Identical options

The following table shows the command line options that are identical in version 1.x and
version 2.x:

Note: For the optimization flags (-s and -z), only levels 2, 3, 6, and 9 are available in
version 2.x.

Renamed or modified options

The following version 1.x command line options were renamed and/or modified:

Option Comment

-Dsymb=value Define symbols

-e Language extensions

-f filename Extend the command line

-I Include paths (The syntax is more free in version 2.x)

-o filename Set object filename

-s[0–9] Optimize for speed

-z[0–9] Optimize for size

Table 5: Compiler options identical in both compiler versions

Version 1.x option Version 2.x option Description

-A

-a filename
-la .

-la filename

Assembler output; See Filenames, page 19

-b --library_module Makes an object a library module

-c --char_is_signed ‘char’ is ‘signed char’

-gA --strict_ansi Flags old-style functions

-Hname --module_name=name Sets object module name

-L[prefix], -l filename -l[c|C|a|A][N][H] filename Generates list file; the modifiers specify the
type of list file to create

-Nprefix, -n filename --preprocess=[c][n][l]

filename

Preprocessor output

-q -lA .

-lC .

Inserts mnemonics; list file syntax changed

-r[012][i][n][v] -r

--debug

Generates debug information; the
modifiers were removed

-S --silent Sets silent operation

Table 6: Renamed or modified options
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 2.x from version 1.x
Note: A number of new command line options were added.

FILENAMES

In version 1.x, file references can be made in either of the following ways:

● With a specific filename, and in some cases with a default extension added, using a
command line option such as -a filename (assembler output to named file).

● With a prefix string added to the default name, using a command line option such as
-A[prefix] (assembler output to prefixed filename).

In version 2.x, a file reference is always regarded as a file path that can be a directory,
which the compiler will check and then add a default filename to, or a filename.

The following table shows some examples where it is assumed that the source file is
named test.c, myfile is not a directory and mydir is a directory:

LIST FILES

In version 1.x, only one C list file and one assembler list file can be produced; in version
2.x there is no upper limit on the number of list files that can be generated. In version
2.x, the command line option -l[c|C|a|A][N][H] filename is used for specifying
the behavior of each list file.

-ur4 --lock_r4 Causes the compiler to generate ROM-
monitor-compatible code by not using
register R4

-ur5 --lock_r5 Causes the compiler to generate ROM-
monitor-compatible code by not using
register R5

-upic --pic Position-independent code, except function
pointers

-ufp --pic Position-independent function pointers

-w --no_warnings Disables warnings

Version 1.x option Version 2.x option Description

Table 6: Renamed or modified options (Continued)

Version 1.x command Version 2.x command Result

-l myfile -l myfile myfile.lst

-Lmyfile -l myfiletest myfiletest.lst

-L -l . test.lst

-Lmydir/ -l mydir mydir/test.lst

Table 7: Specifying filename and directory in version 1.x and version 2.x
M430-2

19

20

Extended keywords
Extended keywords
The set of extended keywords changed in version 2.x. Some keywords were added, some
keywords were removed, and for some of them the syntax changed. In addition, one
extension has a different interpretation if typedefs are used. This is described in the
following section.

In version 2.x, all extended keywords except asm start with two underscores, for
example __no_init.

The following table lists the version 1.x keywords, their version 2.x equivalents, and
additional keywords:

INTERRUPT FUNCTIONS AND VECTORS

The syntax for defining interrupt functions changed from version 1.x.

Version 1.x syntax

The syntax when defining interrupt functions using version 1.x:

interrupt [vector] void function_name(void);

where vector is the vector offset in the vector table.

Version 2.x syntax

The syntax when defining interrupt functions using version 2.x:

#pragma vector=vector
__interrupt void function_name(void);

where vector is the vector offset in the vector table.

Version 1.x keyword Version 2.x keyword

– asm

interrupt __interrupt

monitor __monitor

no_init __no_init

sfrb –

sfrw –

Table 8: Version 1.x and version 2.x extended keywords
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 2.x from version 1.x
ABSOLUTE LOCATED VARIABLES

In version 2.x you can:

● Locate any object at an absolute address by using the #pragma location directive,
or by using the locator operator @, for example:

__no_init long PORT @ 100;

● Use the volatile attribute on any type, for example:

__no_init volatile char PORT @ 100;

The extended keywords sfrb and sfrw are not available in version 2.x.

Version 1.x syntax

sfrb P0IN = 0x10;

Version 2.x syntax

__no_init volatile unsigned char P0IN @ 0x10;

Pragma directives
Version 1.x and version 2.x have different sets of pragma directives for specifying
attributes, and they also behave differently:

● In version 1.x, #pragma memory specified the default location of data objects, and
#pragma function specified the default location of functions. They changed the
default attribute to use for declared objects; they did not have an effect on pointer
types.

● In version 2.x, the #pragma type_attribute and #pragma object_attribute
directives only change the next declared object or typedef.

The following pragma directives were removed from version 1.x:

● codeseg
● function
● memory

● warnings

They are recognized and will give a diagnostic message but will not work in version 2.x.

Note: Instead of the #pragma codeseg directive, the #pragma location directive or
the @ operator can be used for specifying an absolute location.
M430-2

21

22

Pragma directives
The following table shows the mapping of pragma directives:

It is important to note that the version 2.x directives #pragma type_attribute,
#pragma object_attribute, and #pragma vector affect only the first of the
declarations that follow after the directive. In the following example, x is affected, but
z and y are not affected by the directive:

#pragma object_attribute=__no_init
int x,z;
int y;

Specific segment placement

In version 1.x, the #pragma memory directive supported a syntax that enabled
subsequent data objects that matched certain criteria to end up in a specified segment.
Each object found after the invocation of a segment placement directive was placed in
the segment, provided that it did not have a memory attribute placement, and that it had
the correct constant attribute. For constseg, it had to be a constant, while for dataseg,
it could not be declared const.

In version 2.x, the directive #pragma location and the @ operator are available for this
purpose.

Diagnostics

Instead of using the removed version 1.x pragma directive warnings, you can specify
diagnostics options on the compiler command line (see the Compiler options chapter in
the IAR C/C++ Compiler Reference Guide for MSP430) or by choosing
Project>Options>C/C++ Compiler>Diagnostics in the IDE.

Version 1.x directive Version 2.x directive

#pragma function=interrupt #pragma type_attribute=__interrupt

#pragma function=monitor #pragma type_attribute=__monitor

#pragma memory=constseg #pragma constseg, #pragma location

#pragma memory=dataseg #pragma dataseg, #pragma location

#message #pragma message

Table 9: Version 1.x and version 2.x pragma directives
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 2.x from version 1.x
Intrinsic functions
Version 2.x has a new naming convention for intrinsic functions, as well as a large
number of additional functions.

The intrinsic functions _args$ and _argt$ available in version 1.x were removed and
cannot be used in version 2.x. However, except for these two functions, all intrinsic
functions available in version 1.x can be used also in version 2.x.

To use the version 1.x intrinsic functions, include the file in430.h. To use the version
2.x intrinsic functions, include the file intrinsic.h.

The following table lists the version 1.x intrinsic functions and their version 2.x
equivalents, as well as the new intrinsic functions in version 2.x:

Version 1.x intrinsic

function
Version 2.x intrinsic function Description

_args$ – Returns an array of the
parameters to a function.

_argt$ – Returns the type of a parameter.

_BIC_SR __bic_SR_register Clears a bit in the status register.

_BIC_SR_IRQ __bic_SR_register_on_exit Ensures that bits are cleared in the
processor status register when an
interrupt or monitor function
returns.

_BIS_NMI_IE1 – Ensures that bits are set in the
interrupt enable control bits 1
(IE1 address 0x0000) when
the current interrupt or monitor
function returns.

_BIS_SR __bis_SR_register Sets a bit in the status register.

_BIS_SR_IRQ __bis_SR_register_on_exit Ensures that bits are set in the
processor status register when an
interrupt or monitor function
returns.

_DINT __disable_interrupt Disables interrupts by inserting
the DINT instruction.

_EINT __enable_interrupt Enables interrupts by inserting the
EINT instruction.

– __get_interrupt_state Returns the current interrupt
state.

Table 10: Version 1.x and version 2.x intrinsic functions
M430-2

23

24

Intrinsic functions
– __get_R4_register Returns the value of the R4
processor register.

– __get_R5_register Returns the value of the R5
processor register.

- __get_SR_register Returns the value of the processor
status register.

- __get_SR_register_on_exit Returns the value of the of the
processor status register when
the current interrupt or monitor
function returns.

– __low_power_moden Enters the MSP430 low power
modes, where n can be one of
0–4.

– __low_power_mode_off_on_exitTurns off low power mode when
monitor or interrupt function
returns.

_NOP __no_operation Generates a NOP instruction.

_OPC __op_code Inserts a DW const directive.

– __segment_begin Returns the start address of a
segment.

– __segment_end Returns the end address of a
segment.

– __set_interrupt_state Sets the current interrupt state.

– __set_R4_register Sets the value of the R4 processor
register.

– __set_R5_register Sets the value of the R5 processor
register.

_SWAP_BYTES __swap_bytes Executes the SWPB instruction.

Version 1.x intrinsic

function
Version 2.x intrinsic function Description

Table 10: Version 1.x and version 2.x intrinsic functions (Continued)
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 2.x from version 1.x
Segments
The segment naming convention changed since version 1.x. Some of the version 1.x
segments disappeared, and some new were introduced.

This table lists the version 1.x segment names, their counterparts in version 2.x, and
additional segments:

Note: * Segments ending in _AN and _AC contain data located at absolute addresses,
and should not be included in the linker command file.

Note: ** Version 2.x does not support placing strings in writable memory. Hence, the
version 1.x segments used for this task have no counterparts in version 2.x.

Assembler source code

If you have used any of the segments specific to version 1.x in assembler source code,
and if you want to port this assembler source code, you must replace all version 1.x
segment names with version 2.x segment names.

If your application is written entirely in assembler, you must use the option Ignore
CSTARTUP in library which can be found on the Include options page in the XLINK
category in version 2.x of the MSP430 IAR Embedded Workbench IDE.

Version 1.x segment Version 2.x segment

CCSTR** –

CDATA0 DATA16_ID

CODE CODE

CONST DATA16_C

CSTACK CSTACK

CSTR DATA16_C

ECSTR** –

IDATA0 DATA16_I

INTVEC INTVEC

NO_INIT DATA16_N

UDATA0 DATA16_Z

– DATA16_AC*

– DATA16_AN*

– HEAP

– DIFUNC

Table 11: Version 1.x and version 2.x segments
M430-2

25

26

Other changes
Other changes
This section describes changes related to:

● Object file format
● Predefined symbols
● Nested comments
● Sizeof in preprocessor directives
● Include files
● Runtime library.

OBJECT FILE FORMAT

In version 1.x, two types of source references could be generated in the object file. When
the command line option -r was used, the source statements were being referred to, and
when the command line option -re was used, the actual source code was embedded in
the object format.

In version 2.x, when the command line option -r or --debug is used, source file
references are always generated, that is, embedding of the source code is not supported.

PREDEFINED SYMBOLS

All predefined symbols supported in version 1.x are also supported in version 2.x.
Version 2.x, however, has additional ones.

The predefined symbol __IAR_SYSTEMS_ICC is provided only for compatibility with
version 1.x. Version 2.x also has the __IAR_SYSTEMS_ICC__ symbol.

NESTED COMMENTS

In version 1.x, nested comments were allowed if the option -C was used. In version 2.x,
nested comments are never allowed. For example, if a comment is used for removing a
statement as in the following example, it will not have the desired effect.

/*
/* x is a counter */
int x = 0;
*/

The variable x will still be defined, there will be a warning where the inner comment
begins, and there will be an error where the outer comment ends.

 /* x is a counter */
 ^
"c:\bar.c",2 Warning[Pe009]: nested comment is not allowed

 */
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

Migrating to version 2.x from version 1.x
 ^
"c:\bar.c",4 Error[Pe040]: expected an identifier

The solution is to use #if 0 to “hide” portions of the source code when compiling:

#if 0
/* x is a counter */
int x = 0;
#endif

Note: #if statements can be nested.

SIZEOF IN PREPROCESSOR DIRECTIVES

In version 1.x, sizeof could be used in #if directives, for example:

#if sizeof(int)==2
int i = 0;
#endif

In version 2.x, sizeof is not allowed in #if directives. The following error message
will be produced:

 #if sizeof(int)==2
 ^
"c:\bar.c",1 Error[Pe059]: function call is not allowed in a
constant expression.

Macros can be used instead, for example SIZEOF_INT. Macros can be defined using the
-D option, or a #define in the source code:

#if SIZEOF_INT==2
int i = 0;
#endif

To find the size of a predefined data type, see IAR C/C++ Compiler Reference Guide
for MSP430.

Complex data types can be computed using one of several methods:

● Write a small program and run it in the simulator, with terminal I/O:
#include <stdio.h>
struct s { char c; int a; };

void main(void)
{
 printf("sizeof(struct s)=%d \n", sizeof(struct s));
}

M430-2

27

28

Other changes
● Write a small program, compile it with the option -la . to get an assembler listing
in the current directory, and look for the definition of the constant x:
struct s { char c; int a; };
const int x = sizeof(struct s);

INCLUDE FILES

Version 2.x has two types of include files for SFR definitions:

RUNTIME LIBRARY

To build code produced by version 2.x, you must also use the runtime libraries it
provides. That is, it is not possible to link object code produced using version 2.x with
a runtime library provided with version 1.x.

In version 2.x, two sets of runtime libraries are provided—CLIB and DLIB. CLIB
corresponds to the runtime library provided with version 1.x. For more information
about the two libraries and the runtime environment, see the IAR C/C++ Compiler
Reference Guide for MSP430.

Support for the hardware multiplier

In version 1.x a dedicated runtime-library object file—cl430m.r43—had to be used to
support the hardware multiplier peripheral unit.

To enable support for the hardware multiplier in later versions, see the IAR C/C++
Compiler Reference Guide for MSP430 or the IAR Embedded Workbench® IDE for
MSP430 User Guide.

Floating-point arithmetic

In version 1.x, there was only support for 32-bit floating-point arithmetic. In version 2.x,
there is support for both 32- and 64-bit floating points.

In version 2.x, the IAR CLIB library had two different floating-point
implementations—one fully IEEE754-compliant and one not fully IEEE754-compliant
but instead more compact.

io430xxx.h New include files for I/O definitions with bitfields for bit access of SFRs

msp430xxx.h Provided for compatibility with version 1.x
M430-2

IAR Embedded Workbench®
Migration Guide for MSP430

	Migrating to version 5.x from 3.x or 4.x
	Migration considerations
	IAR Embedded Workbench IDE
	Installation directory
	Project settings in the Options dialog box
	Project files

	C language changes
	Options for language support
	Options for language conformance
	Obsolete C89 features in your source code

	Runtime library changes

	Migrating to version 3.x or 4.x from version 2.x
	Migration considerations
	IAR Embedded Workbench IDE
	Workspace and Projects
	C-SPY® layout files

	Runtime library and object files considerations
	Compiling and linking with the DLIB runtime library
	Program entry
	System initialization—cstartup
	Migrating from CLIB to DLIB

	Migrating to version 2.x from version 1.x
	Differences
	The migration process
	Compiler options
	Converting option settings
	Filenames
	List files

	Extended keywords
	Interrupt functions and vectors
	Absolute located variables

	Pragma directives
	Intrinsic functions
	Segments
	Other changes
	Object file format
	Predefined symbols
	Nested comments
	Sizeof in preprocessor directives
	Include files
	Runtime library

