
CAVR32-3

IAR Embedded Workbench®

IAR C/C++ Compiler User Guide

for Atmel® Corporation’s
AVR32 Microprocessor Family

AFE1_AFE2-1:1

2
IAR C/C++ Compiler User Guide
for AVR32

COPYRIGHT NOTICE
© 2002–2015 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, C-RUN, C-STAT, visualSTATE,
Focus on Your Code, IAR KickStart Kit, IAR Experiment!, I-jet, I-jet Trace, I-scope,
IAR Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Atmel is a registered trademark of Atmel® Corporation. AVR is a registered trademark
and AVR32 is a trademark, both of Atmel® Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Third edition: April 2015

Part number: CAVR32-3

This guide applies to version 4.x of IAR Embedded Workbench® for Atmel®
Corporation’s AVR32 microprocessor family.

Internal reference: M18, csrct2010.1, V_110411, IMAE.

AFE1_AFE2-1:1

 3

Brief contents
Tables .. 27

Preface .. 29

Part 1. Using the compiler ... 37

Introduction to the IAR build tools .. 39

Developing embedded applications ... 45

Data storage .. 59

Functions ... 71

Linking overview .. 89

Linking your application .. 105

The DLIB runtime environment .. 119

Assembler language interface ... 159

Using C .. 187

Using C++ .. 195

Application-related considerations ... 205

Efficient coding for embedded applications 211

Part 2. Reference information ... 229

External interface details .. 231

Compiler options ... 237

Data representation .. 275

Extended keywords ... 289

Pragma directives .. 305

AFE1_AFE2-1:1

4

Intrinsic functions ... 329

The preprocessor ... 347

Library functions ... 355

Segment reference ... 365

The stack usage control file .. 383

Implementation-defined behavior for Standard C 391

Implementation-defined behavior for C89 .. 407

Index ... 419

AFE1_AFE2-1:1

 5

Contents
Tables .. 27

Preface .. 29

Who should read this guide ... 29

Required knowledge .. 29

How to use this guide .. 29

What this guide contains ... 30

Part 1. Using the compiler .. 30

Part 2. Reference information .. 30

Other documentation ... 31

User and reference guides .. 31

The online help system .. 32

Further reading ... 33

Web sites .. 33

Document conventions .. 34

Typographic conventions ... 34

Naming conventions .. 35

Part 1. Using the compiler ... 37

Introduction to the IAR build tools .. 39

The IAR build tools—an overview ... 39

IAR C/C++ Compiler ... 39

IAR Assembler ... 40

The IAR XLINK Linker .. 40

External tools ... 40

IAR language overview ... 40

Device support ... 41

Supported AVR32 devices ... 41

Preconfigured support files .. 41

Examples for getting started .. 42

AFE1_AFE2-1:1

6

Special support for embedded systems .. 42

Extended keywords .. 42

Pragma directives ... 42

Predefined symbols .. 43

Accessing low-level features ... 43

Developing embedded applications ... 45

Developing embedded software using IAR build tools 45

CPU features and constraints ... 45

Mapping of memory ... 45

Communication with peripheral units .. 46

Event handling ... 46

System startup .. 46

Real-time operating systems .. 47

The build process—an overview .. 47

The translation process ... 47

The linking process .. 48

After linking ... 49

Application execution—an overview ... 50

The initialization phase .. 50

The execution phase ... 53

The termination phase .. 53

Building applications—an overview .. 54

Basic project configuration ... 54

Processor configuration .. 55

Data model ... 56

Code model .. 56

Optimization for speed and size ... 57

Runtime environment ... 57

Data storage .. 59

Introduction ... 59

Different ways to store data ... 59

Memory types ... 60

Introduction to memory types .. 60

AFE1_AFE2-1:1

Contents

7

Using data memory attributes .. 63

Structures and memory types .. 65

More examples ... 65

C++ and memory types ... 66

Data models .. 66

Specifying a data model ... 67

Storage of auto variables and parameters 68

The stack .. 68

Dynamic memory on the heap .. 69

Potential problems .. 69

Functions ... 71

Function-related extensions .. 71

Code models and memory attributes for function storage 71

Using function memory attributes .. 72

Primitives for interrupts, concurrency, and OS-related
programming .. 73

Interrupt functions ... 73

Exception handlers ... 75

ACALL functions .. 77

SCALL functions ... 78

Monitor functions ... 79

Execution in RAM ... 83

Implementing middleware using FlashVault™ 84

Implementing a single entry point API .. 85

Implementing a multiple entry point API .. 85

Locking down the firmware at download .. 86

Inlining functions ... 87

C versus C++ semantics ... 87

Features controlling function inlining .. 88

Linking overview .. 89

Linking—an overview .. 89

Segments and memory .. 90

What is a segment? .. 90

AFE1_AFE2-1:1

8

The linking process in detail .. 91

Placing code and data—the linker configuration file 92

The contents of the linker configuration file 93

Initialization at system startup ... 93

Static data memory segments ... 94

The initialization process ... 95

Stack usage analysis ... 95

Introduction to stack usage analysis ... 95

Performing a stack usage analysis ... 96

Result of an analysis—the map file contents 97

Specifying additional stack usage information 99

Limitations ... 100

Situations where warnings are issued .. 101

Call graph log ... 101

Linking your application .. 105

Linking considerations .. 105

Placing segments .. 106

Placing data .. 108

Setting up stack memory .. 109

Setting up heap memory .. 109

Placing code ... 110

Keeping modules .. 113

Keeping symbols and segments ... 113

Application startup ... 113

Interaction between XLINK and your application 113

Producing other output formats than UBROF 114

Linking for segment-translated systems 114

Segment-translated mode ... 115

Implications for the linker configuration file 115

Mapped memories .. 116

Verifying the linked result of code and data placement 117

Segment too long errors and range errors .. 117

Linker map file ... 118

AFE1_AFE2-1:1

Contents

9

The DLIB runtime environment .. 119

Introduction to the runtime environment 119

Runtime environment functionality ... 119

Setting up the runtime environment ... 120

Using prebuilt libraries ... 121

Choosing a library .. 122

Library filename syntax ... 122

Customizing a prebuilt library without rebuilding 122

Choosing formatters for printf and scanf 123

Choosing a printf formatter .. 123

Choosing a scanf formatter ... 124

Application debug support ... 125

Including C-SPY debugging support ... 126

The debug library functionality .. 126

The C-SPY Terminal I/O window ... 127

Low-level functions in the debug library ... 128

Adapting the library for target hardware 128

Library low-level interface ... 129

Overriding library modules ... 129

Building and using a customized library 130

Setting up a library project ... 130

Modifying the library functionality .. 131

Using a customized library .. 131

System startup and termination .. 131

System startup .. 132

System termination .. 134

Customizing system initialization ... 135

__low_level_init ... 135

Modifying the file cstartup.s82 ... 136

Library configurations ... 136

Choosing a runtime configuration .. 136

Standard streams for input and output 137

Implementing low-level character input and output 137

AFE1_AFE2-1:1

10

Configuration symbols for printf and scanf 139

Customizing formatting capabilities .. 140

File input and output ... 141

Locale ... 141

Locale support in prebuilt libraries .. 142

Customizing the locale support .. 142

Changing locales at runtime .. 143

Environment interaction ... 144

The getenv function ... 144

The system function ... 144

Signal and raise .. 145

Time ... 145

Strtod ... 146

Math functions ... 146

Smaller versions ... 146

More accurate versions .. 147

Assert ... 148

Managing a multithreaded environment 149

Multithread support in the DLIB library .. 149

Enabling multithread support ... 150

TLS in the linker configuration file ... 154

Checking module consistency ... 154

Runtime model attributes .. 154

Using runtime model attributes .. 155

Predefined runtime attributes .. 156

Assembler language interface ... 159

Mixing C and assembler ... 159

Intrinsic functions .. 159

Mixing C and assembler modules .. 160

Inline assembler .. 160

Reference information for inline assembler 162

An example of how to use clobbered memory 167

AFE1_AFE2-1:1

Contents

11

Calling assembler routines from C ... 167

Creating skeleton code ... 167

Compiling the skeleton code .. 168

Calling assembler routines from C++ .. 169

Calling convention .. 170

Function declarations .. 171

Using C linkage in C++ source code ... 171

Preserved versus scratch registers ... 172

Function entrance .. 173

Function exit ... 175

Calls in supervisor mode .. 176

Alternative calling convention for FlashVault

implementation functions ... 176

Examples .. 177

Function directives ... 178

Assembler instructions used for calling functions 178

Calling functions in the Small and medium code models 179

Calling functions in the Large code model 179

Memory access methods ... 180

The main memory access method (data21, data32) 181

Read-modify-write access method (data17) 181

The system and debug register access method 181

Call frame information ... 181

CFI directives ... 182

Creating assembler source with CFI support 183

Using C .. 187

C language overview ... 187

Extensions overview .. 188

Enabling language extensions .. 189

IAR C language extensions ... 189

Extensions for embedded systems programming 190

Relaxations to Standard C .. 192

AFE1_AFE2-1:1

12

Using C++ .. 195

Overview—EC++ and EEC++ .. 195

Embedded C++ .. 195

Extended Embedded C++ .. 196

Enabling support for C++ .. 197

EC++ feature descriptions .. 197

Using IAR attributes with Classes ... 197

Function types .. 198

Using static class objects in interrupts ... 199

Using New handlers ... 199

Templates .. 199

Debug support in C-SPY .. 199

EEC++ feature description ... 200

Templates ... 200

Variants of cast operators ... 200

Mutable .. 200

Namespace .. 200

The STD namespace .. 200

C++ language extensions ... 201

Application-related considerations ... 205

Stack considerations ... 205

Stack size considerations ... 205

Heap considerations .. 205

Heap segments in DLIB ... 206

Heap size and standard I/O .. 206

Interaction between the tools and your application 206

Checksum calculation ... 207

Calculating a checksum ... 208

Adding a checksum function to your source code 208

Things to remember ... 209

AFE1_AFE2-1:1

Contents

13

Efficient coding for embedded applications 211

Selecting data types ... 211

Using efficient data types ... 211

Floating-point types ... 211

Alignment of elements in a structure ... 212

Anonymous structs and unions .. 213

Controlling data and function placement in memory 214

Data placement at an absolute location .. 215

Data and function placement in segments 217

Controlling compiler optimizations ... 218

Scope for performed optimizations .. 218

Multi-file compilation units ... 219

Optimization levels .. 220

Speed versus size ... 221

Fine-tuning enabled transformations ... 221

Facilitating good code generation ... 223

Writing optimization-friendly source code 224

Saving stack space and RAM memory .. 224

Function prototypes .. 224

Integer types and bit negation .. 225

Protecting simultaneously accessed variables 226

Accessing special function registers .. 227

Passing values between C and assembler objects 228

Non-initialized variables .. 228

Part 2. Reference information ... 229

External interface details .. 231

Invocation syntax ... 231

Compiler invocation syntax ... 231

Passing options ... 232

Environment variables ... 232

Include file search procedure .. 232

AFE1_AFE2-1:1

14

Compiler output ... 233

Error return codes ... 234

Diagnostics .. 235

Message format .. 235

Severity levels .. 235

Setting the severity level .. 236

Internal error .. 236

Compiler options ... 237

Options syntax ... 237

Types of options ... 237

Rules for specifying parameters ... 237

Summary of compiler options .. 239

Descriptions of compiler options ... 243

--avr32_dsp_instructions .. 243

--avr32_flashvault .. 243

--avr32_fpu_instructions .. 244

--avr32_rmw_instructions .. 244

--avr32_simd_instructions ... 245

--c89 ... 245

--char_is_signed ... 246

--char_is_unsigned ... 246

--code_model ... 246

--core .. 247

--core_revision ... 247

--cpu ... 247

--cpu_info ... 248

-D ... 248

--data_model .. 249

--debug, -r ... 249

--dependencies ... 250

--diag_error .. 251

--diag_remark ... 251

--diag_suppress .. 251

AFE1_AFE2-1:1

Contents

15

--diag_warning ... 252

--diagnostics_tables .. 252

--disable_inline_asm_label_replacement ... 253

--discard_unused_publics ... 253

--dlib_config ... 253

-e .. 254

--ec++ ... 255

--eec++ ... 255

--enable_multibytes .. 255

--enable_restrict ... 256

--error_limit .. 256

-f ... 256

--fp_implementation ... 257

--guard_calls ... 257

--header_context ... 257

-I ... 258

-l ... 258

--library_module .. 259

--macro_positions_in_diagnostics ... 259

--mfc ... 260

--minimize_constant_tables ... 260

--module_name .. 260

--no_clustering ... 261

--no_code_motion .. 261

--no_cse .. 261

--no_inline .. 262

--no_path_in_file_macros .. 262

--no_scheduling .. 262

--no_size_constraints ... 263

--no_static_destruction ... 263

--no_system_include .. 263

--no_tbaa .. 264

--no_typedefs_in_diagnostics .. 264

--no_unroll ... 264

AFE1_AFE2-1:1

16

--no_warnings .. 265

--no_wrap_diagnostics ... 265

-O ... 265

--omit_types ... 266

--only_stdout .. 266

--output, -o ... 266

--pending_instantiations ... 267

--predef_macros ... 267

--preinclude ... 268

--preprocess .. 268

--public_equ ... 268

--relaxed_fp .. 269

--remarks .. 269

--require_prototypes ... 270

--silent .. 270

--strict ... 270

--system_include_dir .. 271

--unaligned_word_access ... 271

--use_c++_inline .. 272

--variable_enum_size ... 272

--vla .. 272

--warn_about_c_style_casts ... 273

--warnings_affect_exit_code .. 273

--warnings_are_errors .. 273

Data representation .. 275

Alignment .. 275

Basic data types—integer types .. 276

Integer types—an overview ... 276

Bool .. 276

The enum type .. 276

The char type ... 277

The wchar_t type ... 277

Bitfields .. 277

AFE1_AFE2-1:1

Contents

17

Basic data types—floating-point types 279

Floating-point environment .. 280

32-bit floating-point format ... 280

64-bit floating-point format ... 280

Representation of special floating-point numbers 280

Pointer types .. 281

Function pointers .. 281

Data pointers .. 281

Casting ... 282

Structure types ... 282

Alignment of structure types .. 283

General layout ... 283

Packed structure types ... 283

Type qualifiers .. 284

Declaring objects volatile .. 284

Declaring objects volatile and const .. 286

Declaring objects const .. 286

Data types in C++ ... 287

Extended keywords ... 289

General syntax rules for extended keywords 289

Type attributes .. 289

Object attributes .. 292

Summary of extended keywords ... 292

Descriptions of extended keywords ... 293

__acall .. 293

__code21 .. 294

__code32 .. 294

__data17 ... 295

__data21 ... 295

__data32 ... 296

__dbgreg .. 296

__exception .. 296

__flashvault .. 297

AFE1_AFE2-1:1

18

__flashvault_impl .. 297

__imported ... 298

__interrupt .. 298

__intrinsic .. 298

__monitor ... 298

__nested ... 299

__no_alloc, __no_alloc16 ... 299

__no_alloc_str, __no_alloc_str16 ... 300

__no_init .. 300

__noreturn .. 301

__packed .. 301

__ramfunc .. 302

__root ... 303

__scall .. 303

__sysreg ... 303

Pragma directives .. 305

Summary of pragma directives .. 305

Descriptions of pragma directives .. 307

bitfields ... 307

calls .. 308

call_graph_root .. 308

constseg .. 309

data_alignment ... 309

dataseg .. 310

default_function_attributes .. 310

default_variable_attributes ... 311

diag_default .. 312

diag_error ... 313

diag_remark ... 313

diag_suppress ... 313

diag_warning .. 314

error .. 314

exception .. 314

AFE1_AFE2-1:1

Contents

19

flashvault_vector .. 315

handler .. 315

include_alias ... 316

inline ... 317

language ... 317

location ... 318

message .. 319

object_attribute ... 319

optimize .. 320

pack ... 321

__printf_args .. 322

public_equ .. 322

required .. 322

rtmodel ... 323

__scanf_args .. 324

segment .. 324

shadow_registers .. 325

STDC CX_LIMITED_RANGE ... 326

STDC FENV_ACCESS ... 326

STDC FP_CONTRACT .. 327

type_attribute ... 327

vector .. 328

Intrinsic functions ... 329

Summary of intrinsic functions ... 329

Intrinsic inline functions .. 329

Summary and description of ETSI functions 331

Descriptions of intrinsic functions ... 333

__bit_reverse .. 333

__BREAKPOINT .. 333

__cache_control ... 334

__clear_status_flag .. 334

__COP .. 334

__COP_get_register32 ... 335

AFE1_AFE2-1:1

20

__COP_get_register64 ... 335

__COP_get_registers ... 335

__COP_set_registers .. 336

__COP_set_register32 ... 336

__COP_set_register64 ... 336

__count_leading_zeros .. 336

__count_trailing_zeros .. 337

__disable_interrupt .. 337

__enable_interrupt ... 337

__exchange_memory ... 337

__get_debug_register ... 338

__get_interrupt_state ... 338

__get_system_register ... 339

__get_user_context .. 339

__max .. 339

__min ... 339

__no_operation .. 340

__prefetch_cache ... 340

__read_TLB_entry ... 340

__search_TLB_entry ... 340

__set_debug_register ... 341

__set_interrupt_state .. 341

__set_status_flag .. 341

__set_system_register .. 342

__set_user_context .. 342

__signed_saturate .. 343

__sleep .. 343

__store_conditional .. 343

__swap_bytes ... 344

__swap_bytes_in_halfwords .. 344

__swap_halfwords ... 344

__synchronize_write_buffer .. 345

__test_status_flag .. 345

__unsigned_saturate .. 345

AFE1_AFE2-1:1

Contents

21

__write_TLB_entry ... 346

The preprocessor ... 347

Overview of the preprocessor .. 347

Description of predefined preprocessor symbols 348

__BASE_FILE__ .. 348

__BUILD_NUMBER__ .. 348

__CODE_MODEL__ .. 348

__CORE__ .. 348

__CORE_REVISION__ .. 348

__COUNTER__ .. 348

__cplusplus .. 349

__DATA_MODEL__ .. 349

__DATE__ .. 349

__DEFAULT_CODE_SEGMENT__ ... 349

__DEFAULT_CONST_SEGMENT__ ... 349

__DEFAULT_DATA_SEGMENT__ ... 349

__embedded_cplusplus .. 349

__FILE__ ... 350

__func__ .. 350

__FUNCTION__ ... 350

__HAS_DSP_INSTRUCTIONS__ ... 350

__HAS_FPU_INSTRUCTIONS__ ... 350

__HAS_RMW_INSTRUCTIONS__ .. 351

__HAS_SIMD_INSTRUCTIONS__ .. 351

__IAR_SYSTEMS_ICC__ ... 351

__ICCavr32__ ... 351

__LINE__ .. 351

__PART__ ... 351

__PRETTY_FUNCTION__ .. 352

__STDC__ ... 352

__STDC_VERSION__ ... 352

__SUBVERSION__ .. 352

__TIME__ ... 352

AFE1_AFE2-1:1

22

__TIMESTAMP__ .. 352

__VER__ ... 353

Descriptions of miscellaneous preprocessor extensions 353

NDEBUG .. 353

#warning message ... 353

Library functions ... 355

Library overview .. 355

Header files .. 355

Library object files ... 355

Alternative more accurate library functions 356

Reentrancy ... 356

The longjmp function ... 357

IAR DLIB Library .. 357

C header files ... 357

C++ header files ... 358

Library functions as intrinsic functions ... 361

Added C functionality .. 361

Symbols used internally by the library .. 362

Segment reference ... 365

Summary of segments .. 365

Descriptions of segments .. 367

ACTAB .. 367

CHECKSUM ... 368

CODE21 ... 368

CODE32 ... 368

CSTACK ... 369

DATA17_AC ... 369

DATA17_AN ... 369

DATA17_C .. 369

DATA17_I ... 370

DATA17_ID .. 370

DATA17_N .. 370

DATA17_Z .. 371

AFE1_AFE2-1:1

Contents

23

DATA21_AC ... 371

DATA21_AN ... 371

DATA21_C .. 371

DATA21_I ... 372

DATA21_ID .. 372

DATA21_N .. 372

DATA21_Z .. 373

DATA32_AC ... 373

DATA32_AN ... 373

DATA32_C .. 373

DATA32_I ... 374

DATA32_ID .. 374

DATA32_N .. 374

DATA32_Z .. 375

DBGREG_AC .. 375

DBGREG_AN ... 375

DIFUNCT .. 375

EVBYTES1 .. 376

EVBYTES2 .. 376

EVBYTES3 .. 376

EVSEG ... 377

EVTAB .. 377

EV100 .. 377

FVVEC ... 378

HEAP ... 378

HTAB ... 378

INITTAB .. 379

RAMCODE21 .. 379

RAMCODE21_ID ... 380

RAMCODE32 .. 380

RAMCODE32_ID ... 380

RESET ... 381

RESETCODE ... 381

SSTACK .. 381

AFE1_AFE2-1:1

24

SWITCH .. 382

SYSREG_AC ... 382

SYSREG_AN ... 382

TRACEBUFFER ... 382

The stack usage control file .. 383

Overview .. 383

C++ names ... 383

Stack usage control directives .. 383

call graph root directive ... 383

check that directive .. 384

exclude directive .. 384

function directive ... 385

max recursion depth directive .. 385

no calls from directive .. 386

possible calls directive ... 386

Syntactic components .. 387

category .. 387

func-spec .. 387

module-spec ... 387

name ... 388

call-info .. 388

stack-size .. 389

size .. 389

Implementation-defined behavior for Standard C 391

Descriptions of implementation-defined behavior 391

J.3.1 Translation ... 391

J.3.2 Environment .. 392

J.3.3 Identifiers ... 393

J.3.4 Characters .. 393

J.3.5 Integers .. 394

J.3.6 Floating point ... 395

J.3.7 Arrays and pointers .. 396

J.3.8 Hints .. 396

AFE1_AFE2-1:1

Contents

25

J.3.9 Structures, unions, enumerations, and bitfields 397

J.3.10 Qualifiers ... 397

J.3.11 Preprocessing directives .. 397

J.3.12 Library functions ... 399

J.3.13 Architecture ... 404

J.4 Locale ... 404

Implementation-defined behavior for C89 .. 407

Descriptions of implementation-defined behavior 407

Translation ... 407

Environment ... 407

Identifiers ... 408

Characters ... 408

Integers ... 409

Floating point ... 410

Arrays and pointers .. 410

Registers ... 411

Structures, unions, enumerations, and bitfields 411

Qualifiers .. 411

Declarators ... 412

Statements .. 412

Preprocessing directives ... 412

IAR DLIB Library functions .. 414

Index ... 419

AFE1_AFE2-1:1

26

AFE1_AFE2-1:1

 27

Tables
1: Typographic conventions used in this guide ... 34

2: Naming conventions used in this guide .. 35

3: Memory types and their corresponding memory attributes 63

4: Data model characteristics .. 67

5: Function memory attributes .. 72

6: segments holding initialized data .. 94

7: Mapped memory, example of ... 117

8: Customizable items ... 123

9: Formatters for printf .. 124

10: Formatters for scanf .. 125

11: Levels of debugging support in runtime libraries ... 126

12: Functions with special meanings when linked with debug library 128

13: Library configurations ... 136

14: Descriptions of printf configuration symbols ... 140

15: Descriptions of scanf configuration symbols .. 140

16: Low-level I/O files .. 141

17: Library objects using TLS ... 149

18: Macros for implementing TLS allocation ... 152

19: Example of runtime model attributes .. 154

20: Predefined runtime model attributes ... 156

21: Inline assembler operand constraints .. 163

22: Supported constraint modifiers ... 164

23: Operand modifiers and transformations .. 165

24: List of valid clobbers ... 166

25: Registers used for passing parameters .. 174

26: Registers used for returning values ... 175

27: Call frame information resources defined in a names block 182

28: Language extensions ... 189

29: Compiler optimization levels .. 220

30: Compiler environment variables ... 232

31: Error return codes .. 234

AFE1_AFE2-1:1

28

32: Compiler options summary ... 239

33: Integer types .. 276

34: Floating-point types .. 279

35: Function pointers ... 281

36: Data pointers ... 281

37: Volatile accesses ... 286

38: Extended keywords summary ... 292

39: Pragma directives summary .. 305

40: Intrinsic functions summary .. 329

41: ETSI functions summary ... 331

42: Traditional Standard C header files—DLIB ... 357

43: C++ header files .. 359

44: Standard template library header files ... 359

45: New Standard C header files—DLIB ... 360

46: Segment summary ... 365

47: Message returned by strerror()—IAR DLIB library ... 406

48: Message returned by strerror()—IAR DLIB library ... 417

AFE1_AFE2-1:1

29

Preface
Welcome to the IAR C/C++ Compiler User Guide for AVR32. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the compiler to best suit your application requirements. This guide also
gives you suggestions on coding techniques so that you can develop
applications with maximum efficiency.

Who should read this guide
Read this guide if you plan to develop an application using the C or C++ language for
the AVR32 microprocessor and need detailed reference information on how to use the
compiler. You should have working knowledge of:

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

● The architecture and instruction set of the AVR32 microprocessor (refer to the chip
manufacturer's documentation)

● The C or C++ programming language

● Application development for embedded systems

● The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 31.

How to use this guide
When you start using the IAR C/C++ Compiler for AVR32, you should read Part 1.
Using the compiler in this guide.

When you are familiar with the compiler and have already configured your project, you
can focus more on Part 2. Reference information.

If you are new to using this product, we suggest that you first read the guide Getting
Started with IAR Embedded Workbench® for an overview of the tools and the features
that the IDE offers. The tutorials, which you can find in IAR Information Center, will
help you get started using IAR Embedded Workbench.

AFE1_AFE2-1:1

30

What this guide contains

IAR C/C++ Compiler User Guide
for AVR32

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

PART 1. USING THE COMPILER

● Introduction to the IAR build tools gives an introduction to the IAR build tools,
which includes an overview of the tools, the programming languages, the available
device support, and extensions provided for supporting specific features of the
AVR32 microprocessor.

● Developing embedded applications gives the information you need to get started
developing your embedded software using the IAR build tools.

● Data storage describes how to store data in memory.

● Functions gives a brief overview of function-related extensions—mechanisms for
controlling functions—and describes some of these mechanisms in more detail.

● Linking overview describes the linking process using the IAR XLINK Linker and
the related concepts.

● Linking your application lists aspects that you must consider when linking your
application, including using XLINK options and tailoring the linker configuration
file.

● The DLIB runtime environment describes the DLIB runtime environment in which
an application executes. It covers how you can modify it by setting options,
overriding default library modules, or building your own library. The chapter also
describes system initialization introducing the file cstartup, how to use modules
for locale, and file I/O.

● Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

● Using C gives an overview of the two supported variants of the C language and an
overview of the compiler extensions, such as extensions to Standard C.

● Using C++ gives an overview of the two levels of C++ support: The
industry-standard EC++ and IAR Extended EC++.

● Application-related considerations discusses a selected range of application issues
related to using the compiler and linker.

● Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

PART 2. REFERENCE INFORMATION

● External interface details provides reference information about how the compiler
interacts with its environment—the invocation syntax, methods for passing options
to the compiler, environment variables, the include file search procedure, and the

AFE1_AFE2-1:1

Preface

31

different types of compiler output. The chapter also describes how the compiler’s
diagnostic system works.

● Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

● Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

● Extended keywords gives reference information about each of the AVR32-specific
keywords that are extensions to the standard C/C++ language.

● Pragma directives gives reference information about the pragma directives.

● Intrinsic functions gives reference information about functions to use for accessing
AVR32-specific low-level features.

● The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

● Library functions gives an introduction to the C or C++ library functions, and
summarizes the header files.

● Segment reference gives reference information about the compiler’s use of
segments.

● The stack usage control file describes the syntax and semantics of stack usage
control files.

● Implementation-defined behavior for Standard C describes how the compiler
handles the implementation-defined areas of Standard C.

● Implementation-defined behavior for C89 describes how the compiler handles the
implementation-defined areas of the C language standard C89.

Other documentation
User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

● System requirements and information about how to install and register the IAR
Systems products, is available in the booklet Quick Reference (available in the
product box) and the Installation and Licensing Guide.

AFE1_AFE2-1:1

32

Other documentation

IAR C/C++ Compiler User Guide
for AVR32

● Getting started using IAR Embedded Workbench and the tools it provides, is
available in the guide Getting Started with IAR Embedded Workbench®.

● Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide for AVR32.

● Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide for
AVR32.

● Programming for the IAR C/C++ Compiler for AVR32, is available in the IAR
C/C++ Compiler User Guide for AVR32.

● Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, is available in the IAR Linker and Library Tools Reference Guide.

● Programming for the IAR Assembler for AVR32, is available in the IAR Assembler
User Guide for AVR32.

● Using the IAR DLIB Library, is available in the DLIB Library Reference
information, available in the online help system.

● Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

● Developing safety-critical applications using the MISRA C guidelines, is available
in the IAR Embedded Workbench® MISRA C:2004 Reference Guide or the IAR
Embedded Workbench® MISRA C:1998 Reference Guide.

● Porting application code and projects created with a previous version of the IAR
Embedded Workbench for AVR32, is available in the IAR Embedded Workbench®
Migration Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

● Information about project management, editing, and building in the IDE

● Information about debugging using the IAR C-SPY® Debugger

● Reference information about the menus, windows, and dialog boxes in the IDE

● Compiler reference information

● Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1.

AFE1_AFE2-1:1

Preface

33

FURTHER READING

These books might be of interest to you when using the IAR Systems development tools:

● Atmel® AVR32 Architecture document provided by Atmel® Corporation.

● Atmel® AVR32UC Technical Reference Manual provided by Atmel® Corporation.

● Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++ . O’Reilly & Associates.

● Harbison, Samuel P. and Guy L. Steele (contributor). C: A Reference Manual.
Prentice Hall.

● Josuttis, Nicolai M. The C++ Standard Library: A Tutorial and Reference.
Addison-Wesley.

● Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice Hall.

● Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

● Lippman, Stanley B. and Josée Lajoie. C++ Primer. Addison-Wesley.

● Mann, Bernhard. C für Mikrocontroller. Franzis-Verlag. [Written in German.]

● Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and
Designs. Addison-Wesley.

● Meyers, Scott. More Effective C++. Addison-Wesley.

● Meyers, Scott. Effective STL. Addison-Wesley.

● Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley.

● Stroustrup, Bjarne. Programming Principles and Practice Using C++.
Addison-Wesley.

● Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems,
and Solutions. Addison-Wesley.

WEB SITES

Recommended web sites:

● The Atmel® Corporation web site, www.atmel.com, that contains information and
news about the Atmel AVR32 microprocessors.

● The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

● The web site of the C standardization working group,
www.open-std.org/jtc1/sc22/wg14.

● The web site of the C++ Standards Committee, www.open-std.org/jtc1/sc22/wg21.

AFE1_AFE2-1:1

34

Document conventions

IAR C/C++ Compiler User Guide
for AVR32

● Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, that contains information about the Embedded C++
standard.

Document conventions
When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example avr32\doc, the
full path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench 7.n\avr32\doc.

TYPOGRAPHIC CONVENTIONS

The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a directive, where [and] are not part of the actual
directive, but any [,], {, or } are part of the directive syntax.

{option} A mandatory part of a directive, where { and } are not part of the
actual directive, but any [,], {, or } are part of the directive syntax.

[option] An optional part of a command.

[a|b|c] An optional part of a command with alternatives.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Table 1: Typographic conventions used in this guide

AFE1_AFE2-1:1

Preface

35

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

Identifies helpful tips and programming hints.

Identifies warnings.

Brand name Generic term

IAR Embedded Workbench® for AVR32 IAR Embedded Workbench®

IAR Embedded Workbench® IDE for AVR32 the IDE

IAR C-SPY® Debugger for AVR32 C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for AVR32 the compiler

IAR Assembler™ for AVR32 the assembler

IAR XLINK Linker™ XLINK, the linker

IAR XAR Library Builder™ the library builder

IAR XLIB Librarian™ the librarian

IAR DLIB Library™ the DLIB library

Table 2: Naming conventions used in this guide

Style Used for

Table 1: Typographic conventions used in this guide (Continued)

AFE1_AFE2-1:1

36

Document conventions

IAR C/C++ Compiler User Guide
for AVR32

37

Part 1. Using the compiler
This part of the IAR C/C++ Compiler User Guide for AVR32 includes these
chapters:

● Introduction to the IAR build tools

● Developing embedded applications

● Data storage

● Functions

● Linking overview

● Linking your application

● The DLIB runtime environment

● Assembler language interface

● Using C

● Using C++

● Application-related considerations

● Efficient coding for embedded applications.

38

AFE1_AFE2-1:1

 39

Introduction to the IAR
build tools
● The IAR build tools—an overview

● IAR language overview

● Device support

● Special support for embedded systems

The IAR build tools—an overview
In the IAR product installation you can find a set of tools, code examples, and user
documentation, all suitable for developing software for AVR32-based embedded
applications. The tools allow you to develop your application in C, C++, or in assembler
language.

IAR Embedded Workbench® is a very powerful Integrated Development Environment
(IDE) that allows you to develop and manage complete embedded application projects.
It provides an easy-to-learn and highly efficient development environment with
maximum code inheritance capabilities, comprehensive and specific target support. IAR
Embedded Workbench promotes a useful working methodology, and thus a significant
reduction of the development time.

For information about the IDE, see the IDE Project Management and Building Guide
for AVR32.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

IAR C/C++ COMPILER

The IAR C/C++ Compiler for AVR32 is a state-of-the-art compiler that offers the
standard features of the C and C++ languages, plus extensions designed to take
advantage of the AVR32-specific facilities.

AFE1_AFE2-1:1

40

IAR language overview

IAR C/C++ Compiler User Guide
for AVR32

IAR ASSEMBLER

The IAR Assembler for AVR32 is a powerful relocating macro assembler with a
versatile set of directives and expression operators. The assembler features a built-in C
language preprocessor and supports conditional assembly.

The IAR Assembler for AVR32 uses the same mnemonics and operand syntax as the
Atmel® Corporation AVR32 Assembler, which simplifies the migration of existing
code. For more information, see the IAR Assembler User Guide for AVR32.

THE IAR XLINK LINKER

The IAR XLINK Linker is a powerful, flexible software tool for use in the development
of embedded controller applications. It is equally well suited for linking small,
single-file, absolute assembler programs as it is for linking large, relocatable input,
multi-module, C/C++, or mixed C/C++ and assembler programs.

To handle libraries, the library tools XAR and XLIB are included.

EXTERNAL TOOLS

For information about how to extend the tool chain in the IDE, see the IDE Project
Management and Building Guide for AVR32.

IAR language overview
The IAR C/C++ Compiler for AVR32 supports:

● C, the most widely used high-level programming language in the embedded systems
industry. You can build freestanding applications that follow these standards:

● Standard C—also known as C99. Hereafter, this standard is referred to as
Standard C in this guide.

● C89—also known as C94, C90, C89, and ANSI C. This standard is required
when MISRA C is enabled.

● C++, a modern object-oriented programming language with a full-featured library
well suited for modular programming. Any of these standards can be used:

● Embedded C++ (EC++)—a subset of the C++ programming standard, which is
intended for embedded systems programming. It is defined by an industry
consortium, the Embedded C++ Technical committee. See the chapter Using
C++.

● IAR Extended Embedded C++ (EEC++)—EC++ with additional features such
as full template support, multiple inheritance, namespace support, the new cast
operators, as well as the Standard Template Library (STL).

AFE1_AFE2-1:1

Introduction to the IAR build tools

41

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some common deviations from the standard.

For more information about C, see the chapter Using C.

For more information about Embedded C++ and Extended Embedded C++, see the
chapter Using C++.

For information about how the compiler handles the implementation-defined areas of
the languages, see the chapter Implementation-defined behavior for Standard C.

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the IAR Assembler User Guide for AVR32.

Device support
To get a smooth start with your product development, the IAR product installation
comes with a wide range of device-specific support.

SUPPORTED AVR32 DEVICES

The IAR C/C++ Compiler for AVR32 supports all devices based on the standard
Atmel® Corporation AVR32 cores, such as the UC3 and AP7 families

PRECONFIGURED SUPPORT FILES

The IAR product installation contains preconfigured files for supporting different
devices. If you need additional files for device support, they can be created using one of
the provided ones as a template.

Header files for I/O

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h.The product package supplies I/O files for all publicly available
devices at the time of the product release.

Linker configuration files

The avr32\config directory contains ready-made linker configuration files for all
supported devices. The files have the filename extension xcl and contain the
information required by the linker. For more information about the linker configuration
file, see Placing code and data—the linker configuration file, page 92 as well as the IAR
Linker and Library Tools Reference Guide.

AFE1_AFE2-1:1

42

Special support for embedded systems

IAR C/C++ Compiler User Guide
for AVR32

Device description files

The debugger handles several of the device-specific requirements, such as definitions of
available memory areas, peripheral registers and groups of these, by using device
description files. These files are located in the avr32\config directory and they have
the filename extension ddf. The peripheral registers and groups of these can be defined
in separate files (filename extension sfr), which in that case are included in the ddf file.
For more information about these files, see the C-SPY® Debugging Guide for AVR32.

EXAMPLES FOR GETTING STARTED

The avr32\examples directory contains several hundreds of examples of working
applications to give you a smooth start with your development. The complexity of the
examples ranges from simple LED blink to USB mass storage controllers. Examples are
provided for most of the supported devices.

Special support for embedded systems
This section briefly describes the extensions provided by the compiler to support
specific features of the AVR32 microprocessor.

EXTENDED KEYWORDS

The compiler provides a set of keywords that can be used for configuring how the code
is generated. For example, there are keywords for controlling the memory type for
individual variables as well as for declaring special function types.

By default, language extensions are enabled in the IDE.

The command line option -e makes the extended keywords available, and reserves them
so that they cannot be used as variable names. See, -e, page 254 for additional
information.

For more information about the extended keywords, see the chapter Extended keywords.
See also, Data storage, page 59 and Functions, page 71.

PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the compiler. They are consistent with
standard C, and are very useful when you want to make sure that the source code is
portable.

For more information about the pragma directives, see the chapter Pragma directives.

AFE1_AFE2-1:1

Introduction to the IAR build tools

43

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example time of compilation or the build number of the compiler.

For more information about the predefined symbols, see the chapter The preprocessor.

ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The compiler supports several ways of doing this: intrinsic functions, mixing C and
assembler modules, and inline assembler. For information about the different methods,
see Mixing C and assembler, page 159.

AFE1_AFE2-1:1

44

Special support for embedded systems

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

 45

Developing embedded
applications
● Developing embedded software using IAR build tools

● The build process—an overview

● Application execution—an overview

● Building applications—an overview

● Basic project configuration

Developing embedded software using IAR build tools
Typically, embedded software written for a dedicated microcontroller is designed as an
endless loop waiting for some external events to happen. The software is located in
ROM and executes on reset. You must consider several hardware and software factors
when you write this kind of software. To your help, you have compiler options, extended
keywords, pragma directives, etc.

CPU FEATURES AND CONSTRAINTS

Some of the basic features of the AVR32 microprocessor are:

● DSP instruction set extension

● FPU instruction set extension

● RMW instruction set extension

● SIMD instruction set extension

● FlashVault/Secure State extension

The compiler supports this by means of compiler options, extended keywords, pragma
directives, etc.

MAPPING OF MEMORY

Embedded systems typically contain various types of memory, such as on-chip RAM,
external DRAM or SRAM, ROM, EEPROM, or flash memory.

AFE1_AFE2-1:1

46

Developing embedded software using IAR build tools

IAR C/C++ Compiler User Guide
for AVR32

As an embedded software developer, you must understand the features of the different
types of memory. For example, on-chip RAM is often faster than other types of
memories, and variables that are accessed often would in time-critical applications
benefit from being placed here. Conversely, some configuration data might be accessed
seldom but must maintain their value after power off, so they should be saved in
EEPROM or flash memory.

For efficient memory usage, the compiler provides several mechanisms for controlling
placement of functions and data objects in memory. For more information, see
Controlling data and function placement in memory, page 214. The linker places
sections of code and data in memory according to the directives you specify in the linker
configuration file, see Placing code and data—the linker configuration file, page 92.

COMMUNICATION WITH PERIPHERAL UNITS

If external devices are connected to the microcontroller, you might need to initialize and
control the signalling interface, for example by using chip select pins, and detect and
handle external interrupt signals. Typically, this must be initialized and controlled at
runtime. The normal way to do this is to use special function registers (SFR). These are
typically available at dedicated addresses, containing bits that control the chip
configuration.

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. See Device support, page 41. For an example, see Accessing
special function registers, page 227.

EVENT HANDLING

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button was pressed. In general, when an
interrupt occurs in the code, the microprocessor immediately stops executing the code
it runs, and starts executing an interrupt routine instead.

The compiler provides various primitives for managing hardware and software
interrupts, which means that you can write your interrupt routines in C, see Primitives
for interrupts, concurrency, and OS-related programming, page 73.

SYSTEM STARTUP

In all embedded systems, system startup code is executed to initialize the system—both
the hardware and the software system—before the main function of the application is
called.

As an embedded software developer, you must ensure that the startup code is located at
the dedicated memory addresses, or can be accessed using a pointer from the vector

AFE1_AFE2-1:1

Developing embedded applications

47

table. This means that startup code and the initial vector table must be placed in
non-volatile memory, such as ROM, EPROM, or flash.

A C/C++ application further needs to initialize all global variables. This initialization is
handled by the linker and the system startup code in conjunction. For more information,
see Application execution—an overview, page 50.

REAL-TIME OPERATING SYSTEMS

In many cases, the embedded application is the only software running in the system.
However, using an RTOS has some advantages.

For example, the timing of high-priority tasks is not affected by other parts of the
program which are executed in lower priority tasks. This typically makes a program
more deterministic and can reduce power consumption by using the CPU efficiently and
putting the CPU in a lower-power state when idle.

Using an RTOS can make your program easier to read and maintain, and in many cases
smaller as well. Application code can be cleanly separated in tasks which are truly
independent of each other. This makes teamwork easier, as the development work can
be easily split into separate tasks which are handled by one developer or a group of
developers.

Finally, using an RTOS reduces the hardware dependence and creates a clean interface
to the application, making it easier to port the program to different target hardware.

The build process—an overview
This section gives an overview of the build process; how the various build
tools—compiler, assembler, and linker—fit together, going from source code to an
executable image.

To get familiar with the process in practice, you should run one or more of the tutorials
available from the IAR Information Center.

THE TRANSLATION PROCESS

There are two tools in the IDE that translate application source files to intermediary
object files. The IAR C/C++ Compiler and the IAR Assembler. Both produce
relocatable object files in the IAR UBROF format.

Note: The compiler can also be used for translating C/C++ source code into assembler
source code. If required, you can modify the assembler source code which then can be
assembled into object code. For more information about the IAR Assembler, see the IAR
Assembler User Guide for AVR32.

AFE1_AFE2-1:1

48

The build process—an overview

IAR C/C++ Compiler User Guide
for AVR32

This illustration shows the translation process:

After the translation, you can choose to pack any number of modules into an archive, or
in other words, a library. The important reason you should use libraries is that each
module in a library is conditionally linked in the application, or in other words, is only
included in the application if the module is used directly or indirectly by a module
supplied as an object file. Optionally, you can create a library; then use the IAR XAR
Library Builder or the IAR XLIB Librarian.

THE LINKING PROCESS

The relocatable modules, in object files and libraries, produced by the IAR compiler and
assembler cannot be executed as is. To become an executable application, they must be
linked.

The IAR XLINK Linker (xlink.exe) is used for building the final application.
Normally, the linker requires the following information as input:

● Several object files and possibly certain libraries

● The standard library containing the runtime environment and the standard language
functions

● A program start label (set by default)

● The linker configuration file that describes placement of code and data in the
memory of the target system

● Information about the output format.

The IAR XLINK Linker produces output according to your specifications. Choose
the output format that suits your purpose. You might want to load the output to a

AFE1_AFE2-1:1

Developing embedded applications

49

debugger—which means that you need output with debug information. Alternatively,
you might want to load output to a flash loader or a PROM programmer—in which
case you need output without debug information, such as Intel hex or Motorola
S–records. The option -F can be used for specifying the output format.

This illustration shows the linking process:

Note: The Standard C/C++ library contains support routines for the compiler, and the
implementation of the C/C++ standard library functions.

During the linking, the linker might produce error messages and logging messages on
stdout and stderr. The log messages are useful for understanding why an application
was linked the way it was, for example, why a module was included or a section
removed.

For more information about the procedure performed by the linker, see the IAR Linker
and Library Tools Reference Guide.

AFTER LINKING

The IAR XLINK Linker produces an absolute object file in the output format you
specify. After linking, the produced absolute executable image can be used for:

● Loading into the IAR C-SPY Debugger or any other compatible external debugger
that reads UBROF.

● Programming to a flash/PROM using a flash/PROM programmer.

AFE1_AFE2-1:1

50

Application execution—an overview

IAR C/C++ Compiler User Guide
for AVR32

This illustration shows the possible uses of the absolute output files:

Application execution—an overview
This section gives an overview of the execution of an embedded application divided into
three phases, the

● Initialization phase

● Execution phase

● Termination phase.

THE INITIALIZATION PHASE

Initialization is executed when an application is started (the CPU is reset) but before the
main function is entered. The initialization phase can for simplicity be divided into:

● Hardware initialization, which generally at least initializes the stack pointer.

The hardware initialization is typically performed in the system startup code
cstartup.s82 and if required, by an extra low-level routine that you provide. It
might include resetting/starting the rest of the hardware, setting up the CPU, etc, in
preparation for the software C/C++ system initialization.

● Software C/C++ system initialization

Typically, this includes assuring that every global (statically linked) C/C++ symbol
receives its proper initialization value before the main function is called.

● Application initialization

This depends entirely on your application. It can include setting up an RTOS kernel
and starting initial tasks for an RTOS-driven application. For a bare-bone application,

AFE1_AFE2-1:1

Developing embedded applications

51

it can include setting up various interrupts, initializing communication, initializing
devices, etc.

For a ROM/flash-based system, constants and functions are already placed in ROM. All
symbols placed in RAM must be initialized before the main function is called. The
linker has already divided the available RAM into different areas for variables, stack,
heap, etc.

The following sequence of illustrations gives a simplified overview of the different
stages of the initialization.

1 When an application is started, the system startup code first performs hardware
initialization, such as initialization of the stack pointer to point at the end of the
predefined stack area:

AFE1_AFE2-1:1

52

Application execution—an overview

IAR C/C++ Compiler User Guide
for AVR32

2 Then, memories that should be zero-initialized are cleared, in other words, filled with
zeros:

Typically, this is data referred to as zero-initialized data; variables declared as, for
example, int i = 0;

3 For initialized data, data declared, for example, like int i = 6; the initializers are
copied from ROM to RAM:

AFE1_AFE2-1:1

Developing embedded applications

53

4 Finally, the main function is called:

For more information about each stage, see System startup and termination, page 131.
For more information about initialization of data, see Initialization at system startup,
page 93.

THE EXECUTION PHASE

The software of an embedded application is typically implemented as a loop which is
either interrupt-driven or uses polling for controlling external interaction or internal
events. For an interrupt-driven system, the interrupts are typically initialized at the
beginning of the main function.

In a system with real-time behavior and where responsiveness is critical, a multi-task
system might be required. This means that your application software should be
complemented with a real-time operating system. In this case, the RTOS and the
different tasks must also be initialized at the beginning of the main function.

THE TERMINATION PHASE

Typically, the execution of an embedded application should never end. If it does, you
must define a proper end behavior.

To terminate an application in a controlled way, either call one of the Standard C library
functions exit, _Exit, or abort, or return from main. If you return from main, the
exit function is executed, which means that C++ destructors for static and global
variables are called (C++ only) and all open files are closed.

AFE1_AFE2-1:1

54

Building applications—an overview

IAR C/C++ Compiler User Guide
for AVR32

Of course, in case of incorrect program logic, the application might terminate in an
uncontrolled and abnormal way—a system crash.

For more information about this, see System termination, page 134.

Building applications—an overview
In the command line interface, this line compiles the source file myfile.c into the
object file myfile.r82 using the default settings:

iccavr32 myfile.c

You must also specify some critical options, see Basic project configuration, page 54.

On the command line, this line can be used for starting the linker:

xlink myfile.r82 myfile2.r82 -o a.d82 -f my_configfile.xcl -r

In this example, myfile.r82 and myfile2.r82 are object files, and
my_configfile.xcl is the linker configuration file. The option -o specifies the name
of the output file. The option -r is used for specifying the output format UBROF, which
can be used for debugging in C-SPY®.

Note: By default, the label where the application starts is __program_start. You can
use the -s command line option to change this.

When building a project, the IAR Embedded Workbench IDE can produce extensive
build information in the Build messages window. This information can be useful, for
example, as a base for producing batch files for building on the command line. You can
copy the information and paste it in a text file. To activate extensive build information,
choose Tools>Options> Messages and select the option Show build messages: All.

Basic project configuration
This section gives an overview of the basic settings for the project setup that are needed
to make the compiler and linker generate the best code for the AVR32 device you are
using. You can specify the options either from the command line interface or in the IDE.

You need to make settings for:

● Processor configuration

● Data model

● Code model

● Optimization settings

● Runtime environment

AFE1_AFE2-1:1

Developing embedded applications

55

● Customizing the XLINK configuration, see the chapter Linking your application.

In addition to these settings, many other options and settings can fine-tune the result
even further. For information about how to set options and for a list of all available
options, see the chapter Compiler options and the IDE Project Management and
Building Guide for AVR32, respectively.

PROCESSOR CONFIGURATION

To make the compiler generate optimum code, you should configure it for the AVR32
microprocessor you are using.

Core

The compiler supports both the avr32a and the avr32b micro architectures. This option
has implications for the options used for enabling and disabling the available instruction
set extensions, see Instruction set extensions, page 56.

Use the --core option to select the micro architecture for which the code will be
generated.

In the IDE, choose Project>Options>General Options>Target and choose an
appropriate device from the Device drop-down list. The core and device options will
then be automatically selected.

Note: Device-specific configuration files for the linker and the debugger will also be
automatically selected.

Device

The --cpu option is used for declaring the specific device that is used, in Atmel’s
nomenclature referred to as part; or for a family of devices, referred to as a platform. It
is not possible to used both --core and --cpu at the same time.

For a list of supported devices, see the supported_devices.htm file available in the
doc directory.

Use the --cpu option to select the device for which the code will be generated.

In the IDE, choose Project>Options>General Options>Target and choose an
appropriate device from the Device drop-down list. The core and device options will
then be automatically selected.

Note: Device-specific configuration files for the linker and the debugger will also be
automatically selected.

AFE1_AFE2-1:1

56

Basic project configuration

IAR C/C++ Compiler User Guide
for AVR32

Instruction set extensions

These options can be used for enabling the fpu, simd, rmw, dsp, and flashvault
blocks of instructions:

 --avr32_fpu_instructions
 --avr32_simd_instructions
 --avr32_rmw_instructions
 --avr32_dsp_instructions
 --avr32_flashvault

These options can be used together with the --core option to control the generated
code. By default, the simd and dsp blocks of instructions are enabled when compiling
for the avr32b architecture, and the rmw block of instructions is enabled when compiling
for the avr32a architecture.

Hard and soft alignment

By default, the compiler generates code that adheres to the default alignment for each
basic type. Use the --unaligned_word_access option to allow the compiler to use
the instructions LD.W and ST.W to access unaligned data, for example when performing
parallel path recombination.

For more information about alignment, see Extensions for embedded systems
programming, page 190.

DATA MODEL

In the compiler, you can set a default memory access method by selecting a data model.
These data models are supported:

● The small data model can access the lower and upper 1 Mbyte of memory.

● The large data model can access the entire address range.

The chapter Data storage covers data models in greater detail and how to override the
default access method for individual variables.

CODE MODEL

The compiler supports code models that you can set on file- or function-level to control
which function calls are generated by default, which determines the size of the linked
application. These code models are available:

● The small code model can access the lower 1Mbyte of memory.

● The medium code model allows an application no larger than 1 Mbyte to be placed
anywhere in memory.

● The large code model can access the entire memory.

AFE1_AFE2-1:1

Developing embedded applications

57

For more information about the code models, see the chapter Functions.

OPTIMIZATION FOR SPEED AND SIZE

The compiler’s optimizer performs, among other things, dead-code elimination,
constant propagation, inlining, common sub-expression elimination, peephole
transformations, parallel data path recombination, and precision reduction. It also
performs loop optimizations, such as unrolling and induction variable elimination.

You can decide between several optimization levels and for the highest level you can
choose between different optimization goals—size, speed, or balanced. Most
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

For information about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.

RUNTIME ENVIRONMENT

To create the required runtime environment you should choose a runtime library and set
library options. You might also need to override certain library modules with your own
customized versions. The runtime library provided is the IAR DLIB Library.

To set up an efficient runtime environment you need a good understanding of the various
features, see the chapter The DLIB runtime environment.

Setting up for the runtime environment in the IDE

The library is automatically chosen according to the settings you make in
Project>Options>General Options, on the pages Target, Library Configuration,
Library Options. A correct include path is automatically set up for the system header
files and for the device-specific include files.

Note that for the DLIB library there are different configurations— Normal and
Full—which include different levels of support for locale, file descriptors, multibyte
characters, etc. See Library configurations, page 136, for more information.

Setting up for the runtime environment from the command line

On the linker command line, you must specify which runtime library object file to be
used. The linker command line can looks like this:

dl_libname.r82

AFE1_AFE2-1:1

58

Basic project configuration

IAR C/C++ Compiler User Guide
for AVR32

In addition to these options you might want to specify any application-specific linker
options or the include path to application-specific header files by using the -I option,
for example:

-I MyApplication\inc

For information about the prebuilt library object files, see Using prebuilt libraries, page
121. Make sure to use the object file that matches your other project options.

Setting library and runtime environment options

You can set certain options to reduce the library and runtime environment size:

● The formatters used by the functions printf, scanf, and their variants, see
Choosing formatters for printf and scanf, page 123.

● The size of the stack and the heap, see Setting up stack memory, page 109, and
Setting up heap memory, page 109, respectively.

AFE1_AFE2-1:1

 59

Data storage
● Introduction

● Memory types

● Storage of auto variables and parameters

● Dynamic memory on the heap

Introduction
The AVR32 microprocessor has one continuous main memory space of 4 Gbytes shared
between code and data. The direct cost of accessing data is the same regardless of where
the data is located. However, the location of the data within the main memory still
determines the access cost indirectly, because an address within the first and last
megabyte of memory can be handled directly by some instructions.

Different types of physical memory can be placed anywhere in the memory range. A
typical application will have both read-only memory (ROM) and read/write memory
(RAM). In addition, some parts of the memory range contain processor control registers
and peripheral units.

The AVR32 microprocessor also has two separate sets of registers—the system register
file and the debug register file—which can be accessed using special instructions. These
registers cannot be accessed through the main memory. The system register file is used
for storing information about the microprocessor core whereas the debug registers give
access to registers used, for example, by the JTAG debug interface.

Note: Some devices have an MMU which uses segment translation. For information
about how to use the linker for such a system, see Linking for segment-translated
systems, page 114.

DIFFERENT WAYS TO STORE DATA

In a typical application, data can be stored in memory in three different ways:

● Auto variables

All variables that are local to a function, except those declared static, are stored either
in registers or on the stack. These variables can be used as long as the function
executes. When the function returns to its caller, the memory space is no longer valid.
For more information, see Storage of auto variables and parameters, page 68.

AFE1_AFE2-1:1

60

Memory types

IAR C/C++ Compiler User Guide
for AVR32

● Global variables, module-static variables, and local variables declared static

In this case, the memory is allocated once and for all. The word static in this context
means that the amount of memory allocated for this kind of variables does not change
while the application is running. For more information, see Data models, page 66 and
Memory types, page 60.

● Dynamically allocated data.

An application can allocate data on the heap, where the data remains valid until it is
explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes. Note
that there are potential risks connected with using dynamically allocated data in
systems with a limited amount of memory, or systems that are expected to run for a
long time. For more information, see Dynamic memory on the heap, page 69.

Memory types
This section describes the concept of memory types used for accessing data by the
compiler. It also discusses pointers in the presence of multiple memory types. For each
memory type, the capabilities and limitations are discussed.

INTRODUCTION TO MEMORY TYPES

The compiler uses different memory types to access data that is placed in different areas
of the memory. There are different methods for reaching memory areas, and they have
different costs when it comes to code space, execution speed, and register usage. The
access methods range from generic but expensive methods that can access the full
memory space, to cheap methods that can access limited memory areas. Each memory
type corresponds to one memory access method. If you map different memories—or
part of memories—to memory types, the compiler can generate code that can access
data efficiently.

For example, the memory accessed using the data21 memory access method is called
memory of data21 type, or simply data21 memory.

To choose a default memory type that your application will use, select a data model.
However, it is possible to specify—for individual variables or pointers—different
memory types by using dedicated memory attributes. This makes it possible to create an
application that can contain a large amount of data, and at the same time make sure that
variables that are used often are placed in memory that can be efficiently accessed.

Below is an overview of the various memory types.

AFE1_AFE2-1:1

Data storage

61

Data17

The data17 memory consists of the lower and upper 128 Kbytes of data memory. In
hexadecimal notation, this is the address range 0x00000000-0x0001FFFF and
0xFFFE0000-0xFFFFFFFF.

The size of a data17 object is only limited by the allowed memory range, data17 is only
available when the RMW instruction set extensions are available, see
--avr32_rmw_instructions, page 244.

For more information, see __data17, page 295 and Memory access methods, page 180.

Data21

The data21 memory consists of the lower and upper 1 Mbyte of memory. In hexadecimal
notation, this is the address range 0x00000000-0x000FFFFF and
0xFFF00000-0xFFFFFFFF. To locate a variable explicitly in data21 memory, use the
__data21 memory attribute. Data21 memory is the default memory in the small data
model.

The size of a data21 object is only limited by the allowed memory range.

For more information, see __data21, page 295 and Memory access methods, page 180.

Data32

Using this memory type, you can place the data objects anywhere in the 4 Gbytes of
memory. To locate a variable explicitly in data32 memory, use the __data32 memory
attribute. Data32 memory is the default memory in the large data model.

The __data32 extended keyword is most useful when you use the small data model,
but cannot fit all variables or constants into the first megabyte of memory. You can select
some of the variables or constants to be placed above address 0x100000 and declare
them with the __data32 keyword. Because you will mainly benefit from locating
variables below address 0x100000 (using the keyword __data21) when the variable is
accessed directly, variables or constants that are mainly accessed via pointers are
especially suited for declaration with the __data32 keyword.

For more information, see __data32, page 296 and Memory access methods, page 180.

System register file

The __sysreg keyword is used for declaring variables placed in the system register file.
Variables declared in the system register file give you an intuitive way of accessing the
parameters that control the execution behavior of the AVR32 microprocessor; for
example the location of the exception vector table is controlled by the system register
EVBA.

AFE1_AFE2-1:1

62

Memory types

IAR C/C++ Compiler User Guide
for AVR32

It is not possible to create a pointer type that points at the system register file as there
are no instructions that can access the system register file indirectly. Therefore, all
variables declared with the __sysreg keyword must be located (see Data placement at
an absolute location, page 215). The AVR32 microprocessor also requires that the
variables placed in the system register file are accessed 32 bits at a time, which in turn
forces all variables to be aligned to an even word boundary (alignment 4). Also note that
the Atmel AVR32 Architecture Document sometimes refers to the system registers by
using the register number instead of the register address. To get the address of a system
register from the register number, simply multiply the register number by 4.

Declaring a variable that accesses, for example, the CPU Control Register CPUCR
register (register number 3 and register address 12) could look like this:

__no_init __sysreg unsigned int CPUCR @ 0x00C;

The following code can be used for checking whether the return stack feature is
available in the current device:

if (CPUCR & 0x00000008)
{
 /* Code to run if the return stack is available */
}

In practice, you will most likely access the system registers using a predefined include
file, so the declaration of system variables is already handled for you. See Accessing
special function registers, page 227.

Debug register file

The __dbgreg keyword is used for declaring variables placed in the debug register file.
Variables declared in the debug register file give you an intuitive way of accessing the
registers that control the behavior of the OCD-System (On Chip Debug). Normally, you
do not need this keyword, except if you develop system code that should be an interface
to external debug hardware like emulators and JTAG probes.

It is not possible to create a pointer type that points at the debug register file as there are
no instructions that can access the debug register file indirectly. Therefore, all variables
declared with the __dbgreg keyword must be located (see Data placement at an
absolute location, page 215). The AVR32 microprocessor also requires that the
variables placed in the system register file are accessed 32 bits at a time, which in turn
forces all variables to be aligned to an even word boundary (alignment 4). Also note that
the Atmel AVR32 Architecture Document sometimes refers to the system registers by
using the register number instead of the register address. To get the address of a system
register from the register number, simply multiply the register number by 4.

AFE1_AFE2-1:1

Data storage

63

USING DATA MEMORY ATTRIBUTES

The compiler provides a set of extended keywords, which can be used as data memory
attributes. These keywords let you override the default memory type for individual data
objects and pointers, which means that you can place data objects in other memory areas
than the default memory. This also means that you can fine-tune the access method for
each individual data object, which results in smaller code size.

This table summarizes the available memory types and their corresponding keywords:

The keywords are only available if language extensions are enabled in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 254 for
additional information.

For more information about each keyword, see Descriptions of extended keywords, page
293.

Syntax for type attributes used on data objects

Type attributes use almost the same syntax rules as the type qualifiers const and
volatile. For example:

__data17 int i;
int __data17 j;

Memory type Keyword Address range Pointer size
Default in

data model

Data17 __data17 0x0-0x0001FFFF,
0xFFFE0000-0xFFFFFFFF

32 bits --

Data21 __data21 0x0-0x000FFFFF,
0xFFF00000-0xFFFFFFFF

32 bits Small

Data32 __data32 0x0-0xFFFFFFFF 32 bits Large

System
register file

__sysreg 0x0-0x3FC -- --

Debug
register file

__dbreg 0x0-0x3FC -- --

Table 3: Memory types and their corresponding memory attributes

AFE1_AFE2-1:1

64

Memory types

IAR C/C++ Compiler User Guide
for AVR32

Both i and j are placed in data17 memory.

Unlike const and volatile, when a type attribute is used before the type specifier in
a derived type, the type attribute applies to the object, or typedef itself.

The integer pointed to by p1 is in data17 memory. The variable p2 is placed in data17
memory, as is the variable p3. In the first two cases, the type attribute behaves in the
same way as const and volatile would.

In all cases, if a memory attribute is not specified, an appropriate default memory type
is used.

Using a type definition can sometimes make the code clearer:

typedef __data17 d16_int;
d16_int *q1;

d16_int is a typedef for integers in data17 memory. The variable q1 can point to such
integers.

You can also use the #pragma type_attributes directive to specify type attributes
for a declaration. The type attributes specified in the pragma directive are applied to teh
data object or typedef being declared.

#pragma type_attribute=__data17
int * q2;

The variable q2 is placed in data17 memory.

For more examples of using memory attributes, see More examples, page 65.

int __data17 * p; /* integer in data17 memory */

int * __data17 p; /* pointer in data17 memory */

__data17 int * p; /* variable in data17 memory */

AFE1_AFE2-1:1

Data storage

65

Type definitions

Storage can also be specified using type definitions. These two declarations are
equivalent:

/* Defines via a typedef */
typedef char __data21 Byte;
typedef Byte *BytePtr;
Byte aByte;
BytePtr aBytePointer;

/* Defines directly */
__data21 char aByte;
char __data21 *aBytePointer;

STRUCTURES AND MEMORY TYPES

For structures, the entire object is placed in the same memory type. It is not possible to
place individual structure members in different memory types.

In the example below, the variable gamma is a structure placed in data17 memory.

struct MyStruct
{
 int mAlpha;
 int mBeta;
};

__data21 struct MyStruct gamma;

This declaration is incorrect:

struct MyStruct
{
 int mAlpha;
 __data21 int mBeta; /* Incorrect declaration */
};

MORE EXAMPLES

The following is a series of examples with descriptions. First, some integer variables are
defined and then pointer variables are introduced. Finally, a function accepting a pointer
to an integer in data17 memory is declared. The function returns a pointer to an integer

AFE1_AFE2-1:1

66

Data models

IAR C/C++ Compiler User Guide
for AVR32

in data21 memory. It makes no difference whether the memory attribute is placed before
or after the data type.

C++ AND MEMORY TYPES

Instances of C++ classes are placed into a memory (just like all other objects) either
implicitly, or explicitly using memory type attributes or other IAR language extensions.
Non-static member variables, like structure fields, are part of the larger object and
cannot be placed individually into specified memories.

In non-static member functions, the non-static member variables of a C++ object can be
referenced via the this pointer, explicitly or implicitly. The this pointer is of the
default data pointer type unless class memory is used, see Using IAR attributes with
Classes, page 197.

Static member variables can be placed individually into a data memory in the same way
as free variables.

All member functions except for constructors and destructors can be placed individually
into a code memory in the same way as free functions.

For more information about C++ classes, see Using IAR attributes with Classes, page
197.

Because all pointers have data32 representation, there are no restrictions in placement.

Data models
Technically, the data model specifies the default memory type for non-constant objects.
This means that the data model controls the placement of static and global variables. The
pointer size is the same for all memory types. Dynamically allocated data and data
located on the runtime stack are not affected by the data model and can be located
anywhere in the 32-bit address space.

Note: The placement of const declared objects is determined by the selected code
model.

int myA; A variable defined in default memory
determined by the data model in use.

int __data17 myB; A variable in data17 memory.

__data21 int myC; A variable in data21 memory.

int * myD; A pointer stored in default memory. The
pointer points to an integer in default memory.

AFE1_AFE2-1:1

Data storage

67

The data model only specifies the default memory type. It is possible to override this for
individual variables and pointers. For information about how to specify a memory type
for individual objects, see Using data memory attributes, page 63.

SPECIFYING A DATA MODEL

Two data models are implemented: Small, and Large. These models are controlled by
the --data_model option. Each model has a default memory type and a default pointer
size. If you do not specify a data model option, the compiler will use the Small data
model for AVR32A devices and the Large data model for AVR32B devices.

Your project can only use one data model at a time, and the same model must be used
by all user modules and all library modules. However, you can override the default
memory type for individual data objects and pointers by explicitly specifying a memory
attribute, see Using data memory attributes, page 63.

This table summarizes the different data models:

See the IDE Project Management and Building Guide for AVR32 for information about
setting options in the IDE.

Use the --data_model option to specify the data model for your project; see
--data_model, page 249.

The small data model

The small data model places data in the first 64 Kbytes of memory. This is the only
memory that can be accessed using 16-bit pointers. The advantage is that only 16 bits
are needed for pointer storage. The default pointer type passed as a parameter will use
one register or 2 bytes on the stack.

The large data model

The large data model places data in the first 16 Mbytes of memory. This is the only
memory that can be accessed using 24-bit pointers. The default pointer type passed as a
parameter will use one register or 3 bytes on the stack.

Data model name
Default memory

attribute

Default pointer

attribute
Placement of data

Small (default) __data21 __data32 The lower and upper 1
Mbyte of memory

Large __data32 __data32 The entire 4 Gbytes of
memory

Table 4: Data model characteristics

AFE1_AFE2-1:1

68

Storage of auto variables and parameters

IAR C/C++ Compiler User Guide
for AVR32

Storage of auto variables and parameters
Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A few of these variables are placed in processor registers;
the rest are placed on the stack. From a semantic point of view, this is equivalent. The
main differences are that accessing registers is faster, and that less memory is required
compared to when variables are located on the stack.

Auto variables can only live as long as the function executes; when the function returns,
the memory allocated on the stack is released.

THE STACK

The stack can contain:

● Local variables and parameters not stored in registers

● Temporary results of expressions

● The return value of a function (unless it is passed in registers)

● Processor state during interrupts

● Processor registers that should be restored before the function returns (callee-save
registers).

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the top of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

See also Stack considerations, page 205 and Setting up stack memory, page 109.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself either directly or indirectly—a recursive
function—and each invocation can store its own data on the stack.

AFE1_AFE2-1:1

Data storage

69

Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function returns. The following function demonstrates a common programming
mistake. It returns a pointer to the variable x, a variable that ceases to exist when the
function returns.

int *MyFunction()
{
 int x;
 /* Do something here. */
 return &x; /* Incorrect */
}

Another problem is the risk of running out of stack. This will happen when one function
calls another, which in turn calls a third, etc., and the sum of the stack usage of each
function is larger than the size of the stack. The risk is higher if large data objects are
stored on the stack, or when recursive functions are used.

Dynamic memory on the heap
Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is very useful for applications where the amount
of data is not known until runtime.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, a special keyword, new, allocates memory and runs constructors. Memory
allocated with new must be released using the keyword delete.

See also Setting up heap memory, page 109 .

POTENTIAL PROBLEMS

Applications that are using heap-allocated objects must be designed very carefully,
because it is easy to end up in a situation where it is not possible to allocate objects on
the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use was not released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation; this means a heap where small sections of free
memory is separated by memory used by allocated objects. It is not possible to allocate

AFE1_AFE2-1:1

70

Dynamic memory on the heap

IAR C/C++ Compiler User Guide
for AVR32

a new object if no piece of free memory is large enough for the object, even though the
sum of the sizes of the free memory exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

AFE1_AFE2-1:1

 71

Functions
● Function-related extensions

● Code models and memory attributes for function storage

● Primitives for interrupts, concurrency, and OS-related programming

● Execution in RAM

● Implementing middleware using FlashVault™

● Inlining functions

Function-related extensions
In addition to supporting Standard C, the compiler provides several extensions for
writing functions in C. Using these, you can:

● Control the storage of functions in memory

● Use primitives for interrupts, concurrency, and OS-related programming

● Control function inlining

● Facilitate function optimization

● Access hardware features.

The compiler uses compiler options, extended keywords, pragma directives, and
intrinsic functions to support this.

For more information about optimizations, see Efficient coding for embedded
applications, page 211. For information about the available intrinsic functions for
accessing hardware operations, see the chapter Intrinsic functions.

Code models and memory attributes for function storage
Use code models to specify in which part of memory the compiler should place
functions by default. Technically, the code models control the following:

● The possible memory range for storing the functions

● The default memory attribute

● The placement of const declared variables.

AFE1_AFE2-1:1

72

Code models and memory attributes for function storage

IAR C/C++ Compiler User Guide
for AVR32

Your project can only use one code model at a time, and the same model must be used
by all user modules and all library modules.

If you do not specify a code model, the compiler will use the Small code model as
default for the AVR32B architecture, and the Medium code model for the AVR32A
architecture.

See the IDE Project Management and Building Guide for AVR32 for information about
specifying a code model in the IDE.

Use the --code_model option to specify the code model for your project; see
--code_model, page 246.

USING FUNCTION MEMORY ATTRIBUTES

It is possible to override the default placement for individual functions. Use the
appropriate function memory attribute to specify this. These attributes are available:

Pointers with function memory attributes have restrictions in implicit and explicit casts
between pointers and between pointers and integer types. For information about the
restrictions, see Casting, page 282.

The __code32 extended keyword is most useful when you use the Small code model,
but cannot fit all functions into the first megabyte of memory. You can then select some
of the functions to be placed above address 0x100000 and declare them with the
__code32 keyword.

For syntax information and for more information about each attribute, see the chapter
Extended keywords.

Function

memory

attribute

Address range Pointer size
Default in

code model
Description

__code21 0-0x000FFFFF,
0xFFF00000-

0xFFFFFFFF

4 bytes Small Functions can be placed in
the lower 1 Mbyte of
memory. The upper 1 Mbyte
of memory is used for special
function registers.

__code32 0-0xFFFFFFFF 4 bytes Large
Medium

Functions can be placed
anywhere in the 4 Gbytes of
memory.

Table 5: Function memory attributes

AFE1_AFE2-1:1

Functions

73

Primitives for interrupts, concurrency, and OS-related programming
The IAR C/C++ Compiler for AVR32 provides the following primitives related to
writing interrupt functions, concurrent functions, and OS-related functions:

● The extended keywords: __interrupt, __exception, __acall, __scall,
__flashvault, __flashvault_impl, __nested, __imported and ,
__monitor

● The pragma directive #pragma exception, #pragma flashvault_vector,
#pragma handler, and #pragma shadow_registers

● The intrinsic functions: __enable_interrupt, __disable_interrupt,
__get_interrupt_state, __set_interrupt_state.

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button was pressed.

Interrupt service routines

In general, when an interrupt occurs in the code, the microprocessor immediately stops
executing the code it runs, and starts executing an interrupt routine instead. It is
important that the environment of the interrupted function is restored after the interrupt
is handled (this includes the values of processor registers and the processor status
register). This makes it possible to continue the execution of the original code after the
code that handled the interrupt was executed.

The AVR32 microprocessor supports many interrupt sources and allows great flexibility
with regard to interrupt levels and handlers. One or several interrupt sources are
associated with a group and for each group an interrupt routine can be written. Each
interrupt routine is associated with a group number and an interrupt level number, which
are specified in the AVR32 microprocessor documentation from the chip manufacturer.
An interrupt handler can service one or more interrupt groups. For the AVR32
microprocessor, the interrupt handlers must be located within the 16 Mbyte of memory
starting from the address in the EVBA register.

For more information about the runtime environment used by interrupt routines, see the
chapter Assembler language interface. See also shadow_registers, page 325, for
information about how an interrupt routine can execute without having to save the
contents of registers that are used.

Interrupt vectors and the interrupt vector table

For the AVR32 microprocessor, the exception table always starts at the address stored
in the EVBA system register. The exception table contains functions that handle

AFE1_AFE2-1:1

74

Primitives for interrupts, concurrency, and OS-related programming

IAR C/C++ Compiler User Guide
for AVR32

exceptional processor states, for example unaligned accesses, illegal instructions, and
privilege violations. There is no interrupt vector table; instead this information is stored
directly in the interrupt controller by the startup code, see System startup, page 132.

If a vector is specified in the definition of an interrupt function, an entry is added to the
interrupt controller initialization table in the HTAB linker segment. This table is parsed
during the system startup process, see System startup, page 132.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing interrupt groups.

Defining an interrupt function—an example

To define an interrupt function, the __interrupt keyword and the #pragma handler
directive can be used. For example:

#include <avr32\iouc3a0512.h>

#pragma handler = AVR32_EIC_IRQ_GROUP,1/* Symbol defined in I/O
header file */
__interrupt void MyInterruptRoutine(void)
{
 /* Do something */
}

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

Nested interrupts

When the AVR32 microprocessor handles an interrupt, it immediately disables all other
interrupt sources of equal or lower priority to prevent nesting of interrupts (the activation
of the same interrupt before the current interrupt handler has completed). However, it is
sometimes desirable to allow nesting of interrupts, for example when an interrupt
handler needs to handle both timing-critical and non-critical processing. An example is
when data needs to be fetched from a peripheral unit as quickly as possible but the
processing of the data is not timing-critical. The system can then install the handler as a
high-priority interrupt and allow nesting. Once the timing-critical part has been
executed, the handler can lower the interrupt level to allow other interrupts to activate.

AFE1_AFE2-1:1

Functions

75

To declare a nestable interrupt handler, add the __nested keyword to the interrupt
declaration. For example:

#pragma handler = 12,3
__nested __interrupt void PORT_Handler()
{
 /* Do timing-critical processing here */
 /* Enable all interrupts by clearing the */
 /* interrupt and general mask bits */
 SR = SR & ~0x1F0000UL;

 /* Do non-critical processing here */
} /* Interrupt masks will automatically be restored here */

Unhandled interrupts

For an application that has more interrupt sources than it actually uses, it is important to
make sure that any spurious interrupts from the unused interrupt sources do not cause
the system to crash. One way to achieve this is to install one handler for all unhandled
interrupts. A default interrupt handler __unhandled_interrupt can be found in the
avr32\src\lib directory.

To use this special interrupt handler in the IAR Embedded Workbench IDE, choose
Project>Options>General Options>Runtime and select the option Handle
unhandled interrupts.

To alter the normal startup code and use this special handler from the command line, use
the XLINK command line option --g__init_all_ihandlers.

EXCEPTION HANDLERS

If the AVR32 microprocessor encounters a condition that it cannot handle, for example
if unaligned data is accessed or an illegal instruction is executed, the processor throws
an exception. These exceptions can then be caught by one of the exception handlers
installed in the application. This handler should rectify the problem and return to the
application that caused the exception or, if the problem cannot be corrected, terminate
the execution.

To declare an exception handler, use the __exception keyword like this:

#pragma exception=0x50,0x10
__exception void ITLB_Miss()
{
 /* Code for handling missing ITLB entry */
}

AFE1_AFE2-1:1

76

Primitives for interrupts, concurrency, and OS-related programming

IAR C/C++ Compiler User Guide
for AVR32

An exception handler can have an optional parameter. In that case, this parameter
contains the PC of the instruction that caused the exception. The handler may also return
a 32-bit value in which case this value is used as return address. For example:

#pragma exception=0x20,4
__exception unsigned long IllegalOpcode(unsigned long LR)
{
 if((*(unsigned short *)LR) &0xE000 == 0xE000)
 {
 return LR + 4;
 }
 else
 {
 return LR + 2;
 }
}

Note specifically the handler of the SCALL instruction (used for implementing __scall
functions). The runtime library does not support a default implementation of this
handler.

The standard startup code will initialize the EVBA register if one or more exception
handlers are present in the application.

Unhandled exceptions

Most applications will not handle any exceptions, or will only handle a small subset of
the possible exceptions. In these cases, it is good programming practice to install a
default exception handler which will be activated if anything unintended occurs. This
handler can then make sure that the application terminates in an orderly way before
restarting the system.

A prototype for such a handler can be found in the include file intrinsics.h:

__exception
void _ _unhandled_exception(unsigned int exception_number,
 void * offending_PC);

To install this default exception handler in the IAR Embedded Workbench IDE, choose
Project>Options>General Options>Runtime and select the option Handle
unhandled exceptions.

To use this special exception handler from the command line, use the XLINK command
line option --g__handle_all_exceptions.

AFE1_AFE2-1:1

Functions

77

ACALL FUNCTIONS

The AVR32 microprocessor supports compact function calls via a small special function
pointer table. The advantages of these calls, performed by using the ACALL instruction,
are that:

● Frequently called functions can use a more compact instruction leading to smaller
code size

● an application can get access to operating system functions without the application
knowing the exact location of those functions.

To make a function use the ACALL instruction, declare the function using the __acall
keyword. The address of the function is stored in the linker segment ACTAB and the
normal system startup code will automatically initialize the ACBA register to point at the
ACTAB segment.

Normally, the actual location (and thus the vector number) in the ACTAB segment is
determined at link time and there is no need to explicitly assign a vector number to a
function declared with the __acall keyword. However, there are times when the exact
vector must be specified by using the #pragma vector directive before the function
declaration.

Note: The ACTAB segment is bypassed when assigning the address of an ACALL function
to a function pointer.

Using ACALL functions to allow in-system upgrades

One reason to specify the exact vector numbers is to allow in-system upgrades of an
application. To upgrade a function or a number of functions, the application would only
need to alter the table in the ACTAB segment.

/* Replaceable function */
#pragma vector=0x20
__acall void ReplaceableFunction();

Using ACALL functions to access an API

Another case when the exact vector number should be specified in conjunction with the
function declaration is when you use ACALL functions for accessing an API which is for
example implemented by a third-party vendor, or in a case where the function is present
in a masked ROM or in a special boot section of the code memory. In these cases, it is
important to also let the compiler and linker know that the function is not a part of your
application, This is achieved by using the __imported keyword in the function
declaration.

AFE1_AFE2-1:1

78

Primitives for interrupts, concurrency, and OS-related programming

IAR C/C++ Compiler User Guide
for AVR32

For example, an API can look something like this:

/* Download API */
#pragma vector=0x40
__acall __imported void InitializeDownload();

#pragma vector=0x41
__acall __imported bool StartDownload(void * address,
 int length);

#pragma vector=0x42
__acall __imported bool IsDownloadFinished();

SCALL FUNCTIONS

To protect operating system functions, the AVR32 microprocessor supports an
application mode and several supervisor modes. For more information about these
modes, refer to the hardware reference manual. Many resources and instructions are
limited to the supervisor modes and it might therefore be necessary to allow an
application that runs in the non-privileged application mode to temporarily gain access
to the privileged supervisor modes. This is achieved by using SCALL functions. An
SCALL function causes the processor to enter the supervisor mode and to start executing
the exception handler (see __exception, page 296) at offset 0x100.

Note: All function parameters to an SCALL function must be passed in registers, which
means that SCALL functions use a more restricted calling convention than normal
functions, see Calling convention, page 170.

To declare an SCALL function, use the __scall keyword in the function definition and
declaration. Also, because there is only one exception handler for SCALL functions, it is
imperative that the handler can deduce which function is being called. Typically, this is
achieved by using the first parameter to enumerate the required function, for example:

/* Example of an SCALL OS interface */
__scall void * OS_API_AllocMemory(int funcNum,
 unsigned int size);
__scall void OS_API_FreeMemory(int funcNum, void * pointer,
unsigned int size);

#define OS_AllocMemory(size) OS_API_AllocMemory(0x17, size)
#define OS_FreeMemory(ptr, size) OS_API_FreeMemory (0x18, ptr,
 size)

AFE1_AFE2-1:1

Functions

79

The SCALL handler will then use the first parameter to deduce which function is actually
requested:

#pragma exception=0x100:0
__exception unsigned int scall_handler(int funcNum,
 unsigned int p1,
 unsigned int p2,
 unsigned int p3,
 unsigned int p4)
{
 switch(funcNum)
 {
 ...
 case 0x17: return OS_IMPL_AllocMemory(p1);
 case 0x18: return OS_IMPL_FreeMemory(p1, p2);
 ...
 }
}

MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function. At
function entry, the status register is saved and interrupts are disabled. At function exit,
the original status register is restored, and thereby the interrupt status that existed before
the function call is also restored. Note that the individual interrupt masks I0M–I3M are
not restored, so changes to these bits inside the monitor function will apply after the
function has exited.

To define a monitor function, you can use the __monitor keyword. For more
information, see __monitor, page 298.

Avoid using the __monitor keyword on large functions, since the interrupt will
otherwise be turned off for too long.

Example of implementing a semaphore in C

In the following example, a binary semaphore—that is, a mutex—is implemented using
one static variable and two monitor functions. A monitor function works like a critical
region, that is no interrupt can occur and the process itself cannot be swapped out. A
semaphore can be locked by one process, and is used for preventing processes from
simultaneously using resources that can only be used by one process at a time, for
example a USART. The __monitor keyword assures that the lock operation is atomic;
in other words it cannot be interrupted.

Note: Semaphores can also be implemented using assembler-written routines that use
the XCHG instruction, or C functions that use the __exchange_memory or the
__store_conditional intrinsic functions.

AFE1_AFE2-1:1

80

Primitives for interrupts, concurrency, and OS-related programming

IAR C/C++ Compiler User Guide
for AVR32

/* This is the lock-variable. When non-zero, someone owns it. */
static volatile unsigned int sTheLock = 0;

/* Function to test whether the lock is open, and if so take it.
 * Returns 1 on success and 0 on failure.
 */

__monitor int TryGetLock(void)
{
 if (sTheLock == 0)
 {
 /* Success, nobody has the lock. */

 sTheLock = 1;
 return 1;
 }
 else
 {
 /* Failure, someone else has the lock. */

 return 0;
 }
}

/* Function to unlock the lock.
 * It is only callable by one that has the lock.
 */

__monitor void ReleaseLock(void)
{
 sTheLock = 0;
}

/* Function to take the lock. It will wait until it gets it. */

void GetLock(void)
{
 while (!TryGetLock())
 {
 /* Normally, a sleep instruction is used here. */
 }
}

AFE1_AFE2-1:1

Functions

81

/* An example of using the semaphore. */

void MyProgram(void)
{
 GetLock();

 /* Do something here. */

 ReleaseLock();
}

Example of implementing a semaphore in C++

In C++, it is common to implement small methods with the intention that they should be
inlined. However, the compiler does not support inlining of functions and methods that
are declared using the __monitor keyword.

In the following example in C++, an auto object is used for controlling the monitor
block, which uses intrinsic functions instead of the __monitor keyword.

AFE1_AFE2-1:1

82

Primitives for interrupts, concurrency, and OS-related programming

IAR C/C++ Compiler User Guide
for AVR32

#include <intrinsics.h>

// Class for controlling critical blocks.

class Mutex
{
public:
 Mutex()
 {
 // Get hold of current interrupt state.
 mState = __get_interrupt_state();

 // Disable all interrupts.
 __disable_interrupt();
 }

 ~Mutex()
 {
 // Restore the interrupt state.
 __set_interrupt_state(mState);
 }

private:
 __istate_t mState;
};

class Tick
{
public:
 // Function to read the tick count safely.
 static long GetTick()
 {
 long t;

 // Enter a critical block.
 {
 Mutex m; // Interrupts are disabled while m is in scope.

 // Get the tick count safely,
 t = smTickCount;
 }
 // and return it.
 return t;
 }

private:
 static volatile long smTickCount;

AFE1_AFE2-1:1

Functions

83

};

volatile long Tick::smTickCount = 0;

extern void DoStuff();

void MyMain()
{
 static long nextStop = 100;

 if (Tick::GetTick() >= nextStop)
 {
 nextStop += 100;
 DoStuff();
 }
}

Execution in RAM
The __ramfunc keyword makes a function execute in RAM. In other words it places
the function in a segment placed in RAM. The function is copied from ROM to RAM at
system startup just like any initialized variable, see System startup, page 132 and System
termination, page 134.

The keyword is specified before the return type:

__ramfunc void my_func(void);

If a __ramfunc declared function tries to access ROM, the compiler issues a warning.

If the whole memory area used for code and constants is disabled—for example, when
the whole flash memory is being erased—only functions and data stored in RAM may
be used. Interrupts must be disabled unless the interrupt vector and the interrupt service
routines are also stored in RAM.

String literals and other constants can be avoided by using initialized variables. For
example, the following lines:

__ramfunc void test()
{
 /* myc: initializer in ROM */
 const int myc[] = { 10, 20 };

 /* string literal in ROM */
 msg("Hello");
}

can be rewritten as:

AFE1_AFE2-1:1

84

Implementing middleware using FlashVault™

IAR C/C++ Compiler User Guide
for AVR32

__ramfunc void test()
{
 /* myc: initialized by cstartup */
 static int myc[] = { 10, 20 };

 /* hello: initialized by cstartup */
 static char hello[] = "Hello";

 msg(hello);
}

Implementing middleware using FlashVault™
FlashVault is a technology that allows firmware to be developed and distributed in such
a manner that intellectual property is protected. The protection is implemented on
hardware level, thus preventing accidental or intentional read-out of the firmware from
the device. For more information about FlashVault and the protection and features it
offers, contact Atmel representatives.

A FlashVault application consists of two parts, the secured firmware and the application
itself. The firmware developer should write an API that allows the application developer
to tap into the functionality of the firmware. To trap into and out of the secured state,
special call instructions are used: the SSCALL and RETSS instructions. There are also a
number of FlashVault-specific exception vectors; for information about your specific
device, see the documentation from Atmel.

When you design FlashVault-based firmware, you must consider how the application
part will interact with the firmware: the API. From the application’s point of view, the
API is defined through include files that contain function declarations and type
definitions. Because there is only a single gateway between the secure mode and the
application mode, take care to design the API to allow all interaction through this single
link of communication.

Stack parameters cannot be used in the firmware API because the secure mode operation
has its own stack pointer. In most cases, five parameter registers will be enough. Passing
a pointer to a structure containing additional input or output fields can expand the API
to an extremely large number of parameters.

The compiler implements FlashVault support by adding two function type attributes,
__flashvault and __flashvault_impl, and two pragma directives, #pragma
vector and #pragma flashvault_vector. For more information, see __flashvault,
page 297, __flashvault_impl, page 297, vector, page 328, and flashvault_vector, page
315.

AFE1_AFE2-1:1

Functions

85

IMPLEMENTING A SINGLE ENTRY POINT API

To implement a single entry point API, you design one API function that uses command
enumerations to select between the various operations. Data can be transferred either
using parameters or by placing data in structures and sending it to the function. For
example:

extern __flashvault int Decrypt_API(int cmd,
 void const * input, void * output);

When you implement an API this way, all parameters are passed directly to the function.
Note that stack parameters cannot be used. If the five available parameter registers are
not enough, multiple parameters can be written to a structure and the address to that
structure is passed as a pointer parameter:

typedef struct {
 int command;
 void const * source_pointer;
 void * destination_pointer;
} command_struct_t;
extern __flashvault int Decrypt_API(
 command_struct_t * parameter_block);

If the compiler detects a __flashvault declared function definition, it automatically
generates a FlashVault exception vector for the SSCALL instruction vector. All calls to
such functions are made using the SSCALL instruction and the function returns using the
RETSS instruction. It is important to remember that the SSCALL instruction cannot be
used while in secure state—this means that the API function cannot be used from within
the firmware code.

IMPLEMENTING A MULTIPLE ENTRY POINT API

Another way to implement the API is to let the compiler help with differentiating
between the API entry points. Adding a #pragma vector directive tells the compiler
to place the vector number in R8 before issuing the SSCALL instruction. This allows an
SSCALL handler to use the vector number to determine which API function
implementation to actually call. Once that function returns, the handler uses RETSS to
return to the caller in non-secure mode. This actual API function implementation should
return using a normal RET instruction:

#pragma vector=0
extern __flashvault unsigned int API_Decode(void const * input,
 void * output);

#pragma vector=1
extern __flashvault unsigned int API_Encode(void const * input,
 void * output);

AFE1_AFE2-1:1

86

Implementing middleware using FlashVault™

IAR C/C++ Compiler User Guide
for AVR32

On the application side, whenever a call to a __flashvault declared function with a
#pragma vector is encountered in the source code, the vector number is automatically
loaded into R8 and the function is called using the SSCALL instruction.

When you develop the firmware, you should replace the __flashvault keyword with
the __flashvault_impl keyword, allowing the compiler to automatically generate a
function entry table in the FVVEC segment for all defined functions and pull in a special
handler for the SSCALL instruction from the runtime library. The default handler can be
found in the file src\lib\FlashVault.s82, especially note the __bad_sscall
exception handler function that is called if the vector number is out of range. This
example shows how to use the C preprocessor so that a common API file can be used:

/* Define the symbol FIRMWARE in the firmware project *(
#ifdef FIRMWARE
#define FLASHVAULT __flashvault_impl
#else
#define FLASHVAULT __flashvault
#endif

#pragma vector=0
FLASHVAULT unsigned int Initialize(int mode);

#pragma vector=1
FLASHVAULT unsigned int Encode(unsigned int key,
 unsigned int data);

LOCKING DOWN THE FIRMWARE AT DOWNLOAD

To enable the FlashVault function in the hardware, you must configure a number of fuse
bits in the Fuse Handler dialog box; for more information, see the C-SPY® Debugging
Guide for AVR32. When these bits are correctly set, the device will boot in secure mode.
The secured area is protected by two configuration registers, SSADRR and SSADRF,
which control the size of the protected RAM and flash areas:

__root const struct {
 unsigned int SSADRR : 16;
 unsigned int SSADRF : 16;
} FlashVaultConfig @ 0x8080004 =
{
 1 /* Assign 1024 bytes of RAM for the secure mode */,
 8 /* Assign 8192 bytes of FLASH for the secure mode */
};

See the documentation for your device for addresses and scales of these registers.

AFE1_AFE2-1:1

Functions

87

Inlining functions
Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the function call. This
optimization, which is performed at optimization level High, normally reduces
execution time, but might increase the code size. The resulting code might become more
difficult to debug. Whether the inlining actually occurs is subject to the compiler’s
heuristics.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.
Normally, code size does not increase when optimizing for size.

C VERSUS C++ SEMANTICS

In C++, all definitions of a specific inline function in separate translation units must be
exactly the same. If the function is not inlined in one or more of the translation units,
then one of the definitions from these translation units will be used as the function
implementation.

In C, you must manually select one translation unit that includes the non-inlined version
of an inline function. You do this by explicitly declaring the function as extern in that
translation unit. If you declare the function as extern in more than one translation unit,
the linker will issue a multiple definition error. In addition, in C, inline functions cannot
refer to static variables or functions.

For example:

// In a header file.
static int sX;
inline void F(void)
{
 //static int sY; // Cannot refer to statics.
 //sX; // Cannot refer to statics.
}

// In one source file.
// Declare this F as the non-inlined version to use.
extern inline void F();

AFE1_AFE2-1:1

88

Inlining functions

IAR C/C++ Compiler User Guide
for AVR32

FEATURES CONTROLLING FUNCTION INLINING

There are several mechanisms for controlling function inlining:

● The inline keyword advises the compiler that the function defined immediately
after the directive should be inlined.

If you compile your function in C or C++ mode, the keyword will be interpreted
according to its definition in Standard C or Standard C++, respectively.

The main difference in semantics is that in Standard C you cannot (in general) simply
supply an inline definition in a header file. You must supply an external definition in
one of the compilation units, by designating the inline definition as being external in
that compilation unit.

● #pragma inline is similar to the inline keyword, but with the difference that the
compiler always uses C++ inline semantics.

By using the #pragma inline directive you can also disable the compiler’s
heuristics to either force inlining or completely disable inlining. For more
information, see inline, page 317.

● --use_c++_inline forces the compiler to use C++ semantics when compiling a
Standard C source code file.

● --no_inline, #pragma optimize=no_inline, and #pragma inline=never
all disable function inlining. By default, function inlining is enabled at optimization
level High.

The compiler can only inline a function if the definition is known. Normally, this is
restricted to the current translation unit. However, when the --mfc compiler option for
multi-file compilation is used, the compiler can inline definitions from all translation
units in the multi-file compilation unit. For more information, see Multi-file compilation
units, page 219.

For more information about the function inlining optimization, see Function inlining,
page 222.

AFE1_AFE2-1:1

 89

Linking overview
● Linking—an overview

● Segments and memory

● The linking process in detail

● Placing code and data—the linker configuration file

● Initialization at system startup

● Stack usage analysis

Linking—an overview
The IAR XLINK Linker is a powerful, flexible software tool for use in the development
of embedded applications. It is equally well suited for linking small, single-file, absolute
assembler programs as it is for linking large, relocatable, multi-module, C/C++, or
mixed C/C++ and assembler programs.

The linker combines one or more relocatable object files—produced by the IAR
Systems compiler or assembler—with required parts of object libraries to produce an
executable image containing machine code for the microprocessor you are using.
XLINK can generate more than 30 industry-standard loader formats, in addition to the
proprietary format UBROF which is used by the C-SPY debugger.

The linker will automatically load only those library modules that are actually needed
by the application you are linking. Further, the linker eliminates segment parts that are
not required. During linking, the linker performs a full C-level type checking across all
modules.

The linker uses a configuration file where you can specify separate locations for code
and data areas of your target system memory map.

The final output produced by the linker is an absolute, target-executable object file that
can be downloaded to the microcontroller, to C-SPY, or to a compatible hardware
debugging probe. Optionally, the output file can contain debug information depending
on the output format you choose.

To handle libraries, the library tools XAR and XLIB can be used.

AFE1_AFE2-1:1

90

Segments and memory

IAR C/C++ Compiler User Guide
for AVR32

Segments and memory
In an embedded system, there might be many different types of physical memory. Also,
it is often critical where parts of your code and data are located in the physical memory.
For this reason it is important that the development tools meet these requirements.

WHAT IS A SEGMENT?

A segment is a container for pieces of data or code that should be mapped to a location
in physical memory. Each segment consists of one or more segment parts. Normally,
each function or variable with static storage duration is placed in its own segment part.
A segment part is the smallest linkable unit, which allows the linker to include only
those segment parts that are referred to. A segment can be placed either in RAM or in
ROM. Segments that are placed in RAM generally do not have any content, they only
occupy space.

Note: Here, ROM memory means all types of read-only memory, including flash
memory.

The compiler uses several predefined segments for different purposes. Each segment is
identified by a name that typically describes the contents of the segment, and has a
segment memory type that denotes the type of content. In addition to the predefined
segments, you can also define your own segments.

At compile time, the compiler assigns code and data to the various segments. The IAR
XLINK Linker is responsible for placing the segments in the physical memory range, in
accordance with the rules specified in the linker configuration file. Ready-made linker
configuration files are provided, but, if necessary, they can be modified according to the
requirements of your target system and application. It is important to remember that,
from the linker's point of view, all segments are equal; they are simply named parts of
memory.

Segment memory type

Each segment always has an associated segment memory type. In some cases, an
individual segment has the same name as the segment memory type it belongs to, for
example CODE. Make sure not to confuse the segment name with the segment memory
type in those cases.

XLINK supports more segment memory types than the ones described above. However,
they exist to support other types of microprocessors.

For more information about individual segments, see the chapter Segment reference.

AFE1_AFE2-1:1

Linking overview

91

The linking process in detail
The relocatable modules in object files and libraries, produced by the IAR compiler and
assembler, cannot be executed as is. To make an application executable, the object files
must be linked.

The IAR XLINK Linker is used for the link process. It normally performs the following
procedure (note that some of the steps can be turned off by command line options or by
directives in the linker configuration file):

● Determines which modules to include in the application. Program modules are
always included. Library modules are only included if they provide a definition for
a global symbol that is referenced from an included module. If the object files
containing library modules contain multiple definitions of variables or functions,
only the first definition will be included. This means that the linking order of the
object files is important.

● Determines which segment parts from the included modules to include in the
application. Only those segments that are actually needed by the application are
included. There are several ways to determine of which segment parts that are
needed, for example, the __root object attribute, the #pragma required
directive, and the -g linker option.

● Divides each segment that will be initialized by copying into two segments, one for
the ROM part and one for the RAM part. The RAM part contains the label and the
ROM part the actual bytes. The bytes are conceptually linked as residing in RAM.

● Determines where to place each segment according to the segment placement
directives in the linker configuration file.

● Produces an absolute file that contains the executable image and any debug
information. The contents of each needed segment in the relocatable input files is
calculated using the relocation information supplied in its file and the addresses
determined when placing segments. This process can result in one or more range
errors if some of the requirements for a particular segment are not met, for instance
if placement resulted in the destination address for a PC-relative jump instruction
being out of range for that instruction.

● Optionally, produces a map file that lists the result of the segment placement, the
address of each global symbol, and finally, a summary of memory usage for each
module.

AFE1_AFE2-1:1

92

Placing code and data—the linker configuration file

IAR C/C++ Compiler User Guide
for AVR32

This illustration shows the linking process:

During the linking, XLINK might produce error messages and optionally a map file. In
the map file you can see the result of the actual linking and is useful for understanding
why an application was linked the way it was, for example, why a segment part was
included. If a segment part is not included although you expect it to be, the reason is
always that the segment part was not referenced to from an included part.

Note: To inspect the actual content of the object files, use XLIB. See the IAR Linker and
Library Tools Reference Guide.

Placing code and data—the linker configuration file
The placement of segments in memory is performed by the IAR XLINK Linker. It uses
a linker configuration file that contains command line options which specify the
locations where the segments can be placed, thereby assuring that your application fits
on the target microcontroller. To use the same source code with different devices, just
rebuild the code with the appropriate linker configuration file.

In particular, the linker configuration file specifies:

● The placement of segments in memory

● The maximum stack size

AFE1_AFE2-1:1

Linking overview

93

● The maximum heap size.

The file consists of a sequence of linker commands. This means that the linking process
will be governed by all commands in sequence.

THE CONTENTS OF THE LINKER CONFIGURATION FILE

Among other things, the linker configuration file contains three different types of
XLINK command line options:

● The CPU used:

-cavr32

This specifies your target microprocessor.

● Definitions of constants used in the file. These are defined using the XLINK option
-D. Symbols defined using -D can also be accessed from your application.

● The placement directives (the largest part of the linker configuration file). Segments
can be placed using the -Z and -P options. The former will place the segment parts
in the order they are found, while the latter will try to rearrange them to make better
use of the memory. The -P option is useful when the memory where the segment
should be placed is not continuous.

In the linker configuration file, numbers are generally specified in hexadecimal format.
However, neither the prefix 0x nor the suffix h is necessarily used.

Note: The supplied linker configuration file includes comments explaining the contents.

For more information about the linker configuration file and how to customize it, see
Linking considerations, page 105.

See also the IAR Linker and Library Tools Reference Guide.

Initialization at system startup
In Standard C, all static variables—variables that are allocated at a fixed memory
address—must be initialized by the runtime system to a known value at application
startup. Static variables can be divided into these categories:

● Variables that are initialized to a non-zero value

● Variables that are initialized to zero

● Variables that are located by use of the @ operator or the #pragma location
directive

● Variables that are declared as const and therefore can be stored in ROM

● Variables defined with the __no_init keyword, meaning that they should not be
initialized at all.

AFE1_AFE2-1:1

94

Initialization at system startup

IAR C/C++ Compiler User Guide
for AVR32

STATIC DATA MEMORY SEGMENTS

The compiler generates a specific type of segment for each type of variable
initialization.

The names of the segments consist of two parts—the segment group name and a
suffix—for instance, DATA17_Z. There is a segment group for each memory type, where
each segment in the group holds different categories of declared data. The names of the
segment groups are derived from the memory type and the corresponding keyword, for
example DATA17 and __data17.

Some of the declared data is placed in non-volatile memory, for example ROM/flash,
and some of the data is placed in RAM. For this reason, it is also important to know the
XLINK segment memory type of each segment. For more information about segment
memory types, see Segment memory type, page 90.

This table summarizes the different suffixes, which XLINK segment memory type they
are, and which category of declared data they denote:

* The actual segment group name—MEMATTR—depends on the memory where the
variable is placed. See Memory types, page 60.

Categories of

declared data
Source Segment type Segment name*

Segment

content

Zero-initialized
data

int i; Read/write
data, zero-init

MEMATTR_Z None

Zero-initialized
data

int i = 0; Read/write
data, zero-init

MEMATTR_Z None

Initialized data
(non-zero)

int i = 6; Read/write
data

MEMATTR_I None

Initialized data
(non-zero)

int i = 6; Read/write
data

MEMATTR_ID Initializer data
for
MEMATTR_I

Non-initialized
data

__no_init int i; Read/write
data

MEMATTR_N None

Non-initialized
absolute
addressed data

__no_init int
 i @ 0x200;

Read/write
data

MEMATTR_AN None

Constant
absolute
addressed data

const int
 i @ 0x200 =
10000;

Read-only data MEMATTR_AC The constant

Constants const int i = 6; Read-only data MEMATTR_C The constant

Table 6: segments holding initialized data

AFE1_AFE2-1:1

Linking overview

95

For more information about each segment, see the chapter Segment reference.

THE INITIALIZATION PROCESS

Initialization of data is handled by the system startup code. If you add more segments,
you must update the system startup code accordingly.

To configure the initialization of variables, you must consider these issues:

● Segments that should be zero-initialized should only be placed in RAM.

● Segments that should be initialized, except for zero-initialized segments:

The system startup code initializes the non-zero variables by copying a block of
ROM to the location of the variables in RAM. This means that the data in the ROM
segment with the suffix ID is copied to the corresponding I segment.

This works when both segments are placed in continuous memory. However, if one
of the segments is divided into smaller pieces, it is very important that:

● The other segment is divided in exactly the same way

● It is legal to read and write the memory that represents the gaps in the sequence.

● Segments that contain constants do not need to be initialized; they should only be
placed in flash/ROM

● Segments holding __no_init declared variables should not be initialized.

● Finally, global C++ object constructors are called.

For more information about and examples of how to configure the initialization, see
Linking considerations, page 105.

Stack usage analysis
This section describes how to perform a stack usage analysis using the linker.

In the AVR32\src directory, you can find an example project that demonstrates stack
usage analysis.

INTRODUCTION TO STACK USAGE ANALYSIS

Under the right circumstances, the linker can accurately calculate the maximum stack
usage for each call graph, starting from the program start, interrupt functions, tasks etc.
(each function that is not called from another function, in other words, the root).

If you enable stack usage analysis, a stack usage chapter will be added to the linker map
file, listing for each call graph root the particular call chain which results in the
maximum stack depth.

AFE1_AFE2-1:1

96

Stack usage analysis

IAR C/C++ Compiler User Guide
for AVR32

The analysis is only accurate if there is accurate stack usage information for each
function in the application.

In general, the compiler will generate this information for each C function, but if there
are indirect calls (calls using function pointers) in your application, you must supply a
list of possible functions that can be called from each calling function.

If you use a stack usage control file, you can also supply stack usage information for
functions in modules that do not have stack usage information.

You can use the check that directive in your linker configuration file to check that the
stack usage calculated by the linker does not exceed the stack space you have allocated.

PERFORMING A STACK USAGE ANALYSIS

1 Enable stack usage analysis:

In the IDE, choose Project>Options>Linker>Advanced>Enable stack usage
analysis

On the command line, use the linker option --enable_stack_usage

See the IAR Linker and Library Tools Reference Guide for information about the linker
option --enable_stack_usage.

2 Enable the linker map file:

In the IDE, choose Project>Options>Linker>List>Generate linker listing

On the command line, use the linker option -l

3 Link your project. Note that the linker will issue warnings related to stack usage under
certain circumstances, see Situations where warnings are issued, page 101.

4 Review the linker map file, which now contains a stack usage chapter with a summary
of the stack usage for each call graph root. For more information, see Result of an
analysis—the map file contents, page 97.

5 For more details, analyze the call graph log, see Call graph log, page 101.

Note that there are limitations and sources of inaccuracy in the analysis, see Limitations,
page 100.

You might need to specify more information to the linker to get a more representative
result. See Specifying additional stack usage information, page 99

In the IDE, choose Project>Options>Linker>Advanced>Enable stack usage
analysis>Control file

AFE1_AFE2-1:1

Linking overview

97

On the command line, use the linker option --stack_usage_control

See the IAR Linker and Library Tools Reference Guide for information about the linker
option --stack_usage_control.

6 To add an automatic check that you have allocated memory enough for the stack, use
the check that directive in your stack usage control file. For example, assuming a
stack segment named MY_STACK, you can write like this:

check that size("MY_STACK") >=maxstack("Program entry")
 + totalstack("interrupt") + 100;

When linking, the linker emits an error if the expression is false (zero). In this example,
an error will be emitted if the sum of the following exceeds the size of the MY_STACK
segment:

● The maximum stack usage in the category Program entry (the main program).

● The sum of each individual maximum stack usage in the category interrupt
(assuming that all interrupt routines need space at the same time).

● A safety margin of 100 bytes (to account for stack usage not visible to the analysis).

See check that directive, page 384.

RESULT OF AN ANALYSIS—THE MAP FILE CONTENTS

When stack usage analysis is enabled, the linker map file contains a stack usage chapter
with a summary of the stack usage for each call graph root category, and lists the call

AFE1_AFE2-1:1

98

Stack usage analysis

IAR C/C++ Compiler User Guide
for AVR32

chain that results in the maximum stack depth for each call graph root. This is an
example of what the stack usage chapter in the map file might look like:

* *
* STACK USAGE ANALYSIS *
* *

 Call Graph Root Category Max Use Total Use
 ------------------------ ------- ---------
 interrupt 4 4
 Program entry 350 350

Program entry
 "__program_start": 0x0000c0f8

 Maximum call chain 350 bytes

 "__program_start" 0
 "main" 4
 "WriteObject" 24
 "DumpObject" 0
 "PrintObject" 8
 "fprintf" 4
 "_PrintfLarge" 126
 "_PutstrLarge" 100
 "pad" 14
 "_PutcharsLarge" 10
 "_FProut" 6
 "fputc" 6
 "_Fwprep" 6
 "fseek" 4
 "_Fspos" 14
 "fflush" 6
 "fflushOne" 6
 "__write" 0
 "__dwrite" 10
 "__DebugBreak" 2

interrupt
 "DoStuff()": 0x0000e9ee

 Maximum call chain 4 bytes

 "DoStuff()" 4

AFE1_AFE2-1:1

Linking overview

99

The summary contains the depth of the deepest call chain in each category as well as the
sum of the depths of the deepest call chains in that category.

Each call graph root belongs to a call graph root category to enable convenient
calculations in check that directives.

SPECIFYING ADDITIONAL STACK USAGE INFORMATION

To specify additional stack usage information you can use either a stack usage control
file (suc) where you specify stack usage control directives or annotate the source code.

You can:

● Specify complete stack usage information (call graph root category, stack usage,
and possible calls) for a function, by using the stack usage control directive
function. Typically, you do this if stack usage information is missing, for example
in an assembler module. In your suc file you can for example write like this:

function MyFunc: 32,
 calls MyFunc2,
 calls MyFunc3, MyFunc4: 16;

function [interrupt] MyInterruptHandler: 44;

See also function directive, page 385.

● Exclude certain functions from stack usage analysis, by using the stack usage
control directive exclude. In your suc file you can for example write like this:

exclude MyFunc5, MyFunc6;

See also exclude directive, page 384.

● Specify a list of possible destinations for indirect calls in a function, by using the
stack usage control directive possible calls. Use this for functions which are
known to perform indirect calls and where you know exactly which functions that
might be called in this particular application. In your suc file you can for example
write like this:

possible calls MyFunc7: MyFunc8, MyFunc9;

If the information about which functions that might be called is available at compile
time, consider using the #pragma calls directive instead.

See also possible calls directive, page 386 and calls, page 308.

● Specify that functions are call graph roots, including an optional call graph root
category, by using the stack usage control directive call graph root or the
#pragma call_graph_root directive. In your suc file you can for example write
like this:

call graph root [task]: MyFunc10, MyFunc11;

AFE1_AFE2-1:1

100

Stack usage analysis

IAR C/C++ Compiler User Guide
for AVR32

If your interrupt functions have not already been designated as call graph roots by the
compiler, you must do so manually. You can do this either by using the #pragma
call_graph_root directive in your source code or by specifying a directive in your
suc file, for example:

call graph root [interrupt]: Irq1Handler, Irq2Handler;

See also call graph root directive, page 383 and call_graph_root, page 308.

● Specify a maximum number of iterations through any of the cycles in the recursion
nest of which the function is a member. In your suc file you can for example write
like this:

max recursion depth MyFunc12: 10;

● Selectively suppress the warning about unmentioned functions referenced by a
module for which you have supplied stack usage information in the stack usage
control file. Use the no calls from directive in your suc file, for example like
this:

no calls from [file.r82] to MyFunc13, MyFunc14;

For more information, see the chapter The stack usage control file.

LIMITATIONS

Apart from missing or incorrect stack usage information, there are also other sources of
inaccuracy in the analysis:

● The linker cannot always identify all functions in object modules that lack stack
usage information. In particular, this might be a problem with object modules
written in assembly language. You can provide stack usage information for such
modules using a stack usage control file, and for assembly language modules you
can also annotate the assembler source code with CFI directives to provide stack
usage information. See the IAR Assembler User Guide for AVR32.

● If you use inline assembler to change the frame size or to perform function calls,
this will not be reflected in the analysis.

● Extra space consumed by other sources (the processor, an operating system, etc) is
not accounted for.

● C++ source code that uses virtual function calls is not supported.

● If you use other forms of function calls, they will not be reflected in the call graph.

● Using multi-file compilation (--mfc) can interfere with using a stack usage control
file to specify properties of module-local functions in the involved files.

Note that stack usage analysis produces a worst case result. The program might not
actually ever end up in the maximum call chain, by design, or by coincidence.

Stack usage analysis is only a complement to actual measurement. If the result is
important, you need to perform independent validation of the results of the analysis.

AFE1_AFE2-1:1

Linking overview

101

SITUATIONS WHERE WARNINGS ARE ISSUED

When stack usage analysis is enabled in the linker, warnings will be generated in the
following circumstances:

● There is a function without stack usage information.

● There is an indirect call site in the application for which a list of possible called
functions has not been supplied.

● There are no known indirect calls, but there is an uncalled function that is not
known to be a call graph root.

● The application contains recursion (a cycle in the call graph) for which no
maximum recursion depth has been supplied, or which is of a form for which the
linker is unable to calculate a reliable estimate of stack usage.

● There are calls to a function declared as a call graph root.

● You have used the stack usage control file to supply stack usage information for
functions in a module that does not have such information, and there are functions
referenced by that module which have not been mentioned as being called in the
stack usage control file.

CALL GRAPH LOG

To help you interpret the results of the stack usage analysis, there is a log output option
that produces a simple text representation of the call graph (--log stack_usage).

AFE1_AFE2-1:1

102

Stack usage analysis

IAR C/C++ Compiler User Guide
for AVR32

Example output:

 Program entry:
 0 __program_start [350]
 0 __data16_memzero [2]
 2 - [0]
 0 __data16_memcpy [2]
 0 memcpy [2]
 2 - [0]
 2 - [0]
 0 main [350]
 4 ParseObject [52]
 28 GetObject [28]
 34 getc [22]
 38 _Frprep [18]
 44 malloc [12]
 44 __data16_malloc [12]
 48 __data16_findmem [8]
 52 __data16_free [4]
 56 - [0]
 52 __data16GetMemChunk [2]
 54 - [0]
 46 - [0]
 44 __read [12]
 54 __DebugBreak [2]
 56 - [0]
 36 - [0]
 34 CreateObject [18]
 40 malloc [12] ***
 4 ProcessObject [326]
 8 ProcessHigh [76]
 34 ProcesMedium [50]
 60 ProcessLow [24]
 84 - [0]
 8 DumpObject [322]
 8 PrintObject [322]
 16 fprintf [314]
 20 _PrintfLarge [310]
 10 - [0]
 4 WriteObject [346]
 28 DumpObject [322] ***
 4 DestroyObject [28]
 28 free [4]
 28 __data16_free [4] ***
 30 - [0]
 0 exit [38]
 0 _exit [38]
 4 _Close_all [34]

AFE1_AFE2-1:1

Linking overview

103

 8 fclose [30]
 14 _Fofree [4]
 14 free [4] ***
 16 - [0]
 14 fflush [24] ***
 14 free [4] ***
 14 __close [8]
 20 __DebugBreak [2] ***
 14 remove [8]
 20 __DebugBreak [2] ***
 8 __write [12] ***
 2 __exit [8]
 8 __DebugBreak [2] ***
 2 - [0]

Each line consists of this information:

● The stack usage at the point of call of the function

● The name of the function, or a single '-' to indicate usage in a function at a point
with no function call (typically in a leaf function)

● The stack usage along the deepest call chain from that point. If no such value could
be calculated, "[---]" is output instead. "***" marks functions that have already
been shown.

AFE1_AFE2-1:1

104

Stack usage analysis

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

 105

Linking your application
● Linking considerations

● Linking for segment-translated systems

● Verifying the linked result of code and data placement

Linking considerations
When you set up your project in the IAR Embedded Workbench IDE, a default linker
configuration file is automatically used based on your project settings and you can
simply link your application. For the majority of all projects it is sufficient to configure
the vital parameters that you find in Project>Options>Linker>Config.

When you build from the command line, you can use a ready-made linker command file
provided with your product package.

The config directory contains the information required by XLINK, and are ready to
be used as is. The only change, if any, you will normally have to make to the supplied
configuration file is to customize it so it fits the target system memory map. If, for
example, your application uses additional external RAM, you must also add details
about the external RAM memory area.

To edit a linker configuration file, use the editor in the IDE, or any other suitable editor.
Do not change the original template file. We recommend that you make a copy in the
working directory, and modify the copy instead.

If you find that the default linker configuration file does not meet your requirements, you
might want to consider:

● Placing segments

● Placing data

● Setting up stack memory

● Setting up heap memory

● Placing code

● Keeping modules

● Keeping symbols and segments

● Application startup

● Interaction between XLINK and your application

● Producing other output formats than UBROF

AFE1_AFE2-1:1

106

Linking considerations

IAR C/C++ Compiler User Guide
for AVR32

PLACING SEGMENTS

The placement of segments in memory is performed by the IAR XLINK Linker.

This section describes the most common linker commands and how to customize the
linker configuration file to suit the memory layout of your target system. In
demonstrating the methods, fictitious examples are used.

In demonstrating the methods, fictitious examples are used based on this memory
layout:

● There is 1 Mbyte addressable memory.

● There is ROM memory in the address ranges 0x0000–0x1FFF, 0x3000–0x4FFF,
and 0x10000–0x1FFFF.

● There is RAM memory in the address ranges 0x8000–0xAFFF, 0xD000–0xFFFF,
and 0x20000–0x27FFF.

● There are two addressing modes for data, one for data17 memory and one for
data21 memory.

● There is one stack and one heap.

● There are two addressing modes for code, one for code21 memory and one for
code32 memory.

Note: Even though you have a different memory map, for example if you have
additional memory spaces (EEPROM) and additional segments, you can still use the
methods described in the following examples.

The ROM can be used for storing CONST and CODE segment memory types. The RAM
memory can contain segments of DATA type. The main purpose of customizing the linker
configuration file is to verify that your application code and data do not cross the
memory range boundaries, which would lead to application failure.

For the result of each placement directive after linking, inspect the segment map in the
list file (created by using the command line option -x).

General hints for placing segments

When you consider where in memory you should place your segments, it is typically a
good idea to start placing large segments first, then placing small segments.

In addition, you should consider these aspects:

● Start placing the segments that must be placed on a specific address. This is, for
example, often the case with the segment holding the reset vector.

● Then consider placing segments that hold content that requires continuous memory
addresses, for example the segments for the stack and heap.

AFE1_AFE2-1:1

Linking your application

107

● When placing code and data segments for different addressing modes, make sure to
place the segments in size order (the smallest memory type first).

Note: Before the linker places any segments in memory, the linker will first place the
absolute segments.

Using the -Z command for sequential placement

Use the -Z command when you must keep a segment in one consecutive chunk, when
you must preserve the order of segment parts in a segment, or, more unlikely, when you
must put segments in a specific order.

The following illustrates how to use the -Z command to place the segment MYSEGMENTA
followed by the segment MYSEGMENTB in CONST memory (that is, ROM) in the memory
range 0x0000-0x1FFF.

-Z(CONST)MYSEGMENTA,MYSEGMENTB=0000-1FFF

To place two segments of different types continuous in the same memory area, do not
specify a range for the second segment. In the following example, the MYSEGMENTA
segment is first located in memory. Then, the rest of the memory range could be used by
MYCODE.

-Z(CONST)MYSEGMENTA=0000-1FFF
-Z(CODE)MYCODE

Two memory ranges can overlap. This allows segments with different placement
requirements to share parts of the memory space; for example:

-Z(CONST)MYSMALLSEGMENT=0000-01FF
-Z(CONST)MYLARGESEGMENT=0000-1FFF

Even though it is not strictly required, make sure to always specify the end of each
memory range. If you do this, the IAR XLINK Linker will alert you if your segments do
not fit in the available memory.

Using the -P command for packed placement

The -P command differs from -Z in that it does not necessarily place the segments (or
segment parts) sequentially. With -P it is possible to put segment parts into holes left by
earlier placements.

The following example illustrates how the XLINK -P option can be used for making
efficient use of the memory area. This command will place the data segment MYDATA in
DATA memory (that is, in RAM) in a fictitious memory range:

-P(DATA)MYDATA=8000-AFFF,D000-FFFF

AFE1_AFE2-1:1

108

Linking considerations

IAR C/C++ Compiler User Guide
for AVR32

If your application has an additional RAM area in the memory range 0x6000-0x67FF,
you can simply add that to the original definition:

-P(DATA)MYDATA=8000-AFFF,D000-FFFF,6000–67FF

The linker can then place some parts of the MYDATA segment in the first range, and some
parts in the second range. If you had used the -Z command instead, the linker would
have to place all segment parts in the same range.

Note: Copy initialization segments—BASENAME_I and BASENAME_ID—and dynamic
initialization segments must be placed using -Z.

PLACING DATA

Static memory is memory that contains variables that are global or declared static.

Placing static memory data segments

Depending on their memory attribute, static data is placed in specific segments. For
information about the segments used by the compiler, see Static data memory segments,
page 94.

For example, these commands can be used to place the static data segments:

/* First, the segments to be placed in ROM are defined. */
-Z(CONST)DATA17_C=0000-1FFF,3000-4FFF
-Z(CONST)DATA17_C=0000-1FFF,3000-4FFF,10000-1FFFF
-Z(CONST)DATA17_ID,DATA21_ID=010000-1FFFF

/* Then, the RAM data segments are placed in memory. */
-Z(DATA)DATA17_I,DATA16_Z,DATA17_N=8000-AFFF
-Z(DATA)DATA21_I,DATA21_Z,DATA21_N=20000-27FFF

All the data segments are placed in the area used by on-chip RAM.

Placing located data

A variable that is explicitly placed at an address, for example by using the #pragma
location directive or the @ operator, is placed in for example either the DATA17_AC or
the DATA17_AN segment. The former is used for constant-initialized data, and the latter
for items declared as __no_init. The individual segment part of the segment knows its
location in the memory space, and it does not have to be specified in the linker
configuration file.

Placing user-defined segments

If you create your own segments by using for example the #pragma location directive
or the @ operator, these segments must also be defined in the linker configuration file
using the -Z or -P segment control directives.

AFE1_AFE2-1:1

Linking your application

109

SETTING UP STACK MEMORY

In this example, the data segment for holding the stack is called CSTACK. The system
startup code initializes the stack pointer to point to the end of the stack segment.

Allocating a memory area for the stack is performed differently when using the
command line interface, as compared to when using the IDE.

For more information about stack memory, see Stack considerations, page 205.

Stack size allocation in the IDE

Choose Project>Options. In the General Options category, click the System tab.

Add the required stack size in the dedicated text box.

Stack size allocation from the command line

The size of the CSTACK segment is defined in the linker configuration file.

The linker configuration file sets up a constant, representing the size of the stack, at the
beginning of the file. Specify the appropriate size for your application, in this example
512 bytes:

-D_CSTACK_SIZE=200 /* 512 bytes of stack size */

Note that the size is written hexadecimally, but not necessarily with the 0x notation.

In many linker configuration files provided with IAR Embedded Workbench, this line is
prefixed with the comment character // because the IDE controls the stack size
allocation. To make the directive take effect, remove the comment character.

Placing the stack segment

Further down in the linker configuration file, the actual stack segment is defined in the
memory area available for the stack:

-Z(DATA)CSTACK+_CSTACK_SIZE=8000-AFFF

Note:

● This range does not specify the size of the stack; it specifies the range of the
available memory.

SETTING UP HEAP MEMORY

The heap contains dynamic data allocated by the C function malloc (or a corresponding
function) or the C++ operator new.

AFE1_AFE2-1:1

110

Linking considerations

IAR C/C++ Compiler User Guide
for AVR32

If your application uses dynamic memory allocation, you should be familiar with:

● The linker segment used for the heap, see HEAP, page 378 (DLIB)

● The steps for allocating the heap size, which differs depending on which build
interface you are using

● The steps involved for placing the heap segments in memory.

See also Heap considerations, page 205.

In this example, the data segment for holding the heap is called HEAP.

Heap size allocation in the IDE

Choose Project>Options. In the General Options category, click the Stack/Heap tab.

Add the required heap size in the dedicated text box.

Heap size allocation from the command line

The size of the HEAP segment is defined in the linker configuration file.

The linker configuration file sets up a constant, representing the size of the heap, at the
beginning of the file. Specify the appropriate size for your application, in this example
1024 bytes:

-D_HEAP_SIZE=400 /* 1024 bytes for heap memory */

Note that the size is written hexadecimally, but not necessarily with the 0x notation.

In many linker configuration files provided with IAR Embedded Workbench, these lines
are prefixed with the comment character // because the IDE controls the heap size
allocation. To make the directive take effect, remove the comment character.

 If you use a heap, you should allocate at least 512 bytes for it, to make it work properly.

Placing the heap segment

The actual HEAP segment is allocated in the memory area available for the heap:

-Z(DATA)HEAP+_HEAP_SIZE=8000-AFFF

Note: This range does not specify the size of the heap; it specifies the range of the
available memory.

PLACING CODE

This section contains descriptions of the segments used for storing code and the
interrupt vector table. For information about all segments, see Summary of segments,
page 365.

AFE1_AFE2-1:1

Linking your application

111

Startup code

In this example, the segment CSTART contains code used during system startup and
termination, see System startup and termination, page 131. The system startup code
should be placed at the location where the chip starts executing code after a reset.

This line will place the CSTART segment at the address 0x0100:

-Z(CODE)CSTART=0100–1FFF

Normal code

Depending on their memory attribute, functions are placed in various segments, in this
example CODE21 and CODE32.

Placing the segments is a simple operation in the linker configuration file:

-P(CODE)CODE21=0000-1FFF,3000-4FFF
-P(CODE)CODE32=0000-1FFF,3000-4FFF,10000-1FFFF

Here, the -P linker directive is used for allowing XLINK to split up the segments and
pack their contents more efficiently. This is also useful if the memory range is
non-continuous.

For information about segments holding normal code, see the chapter Segment
reference.

ACALL jump table

The ACALL instructions, supported by the keyword __acall, require a table with
function addresses. The table is generated automatically by the compiler. For acall calls,
the instruction will make a direct call to the function using a table index coded into the
ACALL instructions. See ACALL functions, page 77.

The function tables for functions declared __acall are stored in a segment named
ACTAB. In the linker command file, the linker directive for segment placement can look
like this:

-Z(CONST)ACTAB=0-FFFFFFFF

Exception handlers

The exception handlers—functions declared __exception—are located in the
segments EVTAB, EV100, and EVSEG, where:

● EVTAB holds the exception handlers that are only four bytes large, and entries that
contain an RJMP instruction to the handlers that are larger than four bytes. The EVBA
register should point at the EVTAB segment

● EV100 holds the scall exception handler at EVBA + 0x100

AFE1_AFE2-1:1

112

Linking considerations

IAR C/C++ Compiler User Guide
for AVR32

● EVSEG holds the exception handlers that are too large to fit the table entries in the
EVTAB segment.

The exception handler code is located at address 0x80000000 and upwards. By using
the special -Z@ directive, the placement is guaranteed to start from start address and
onwards. In the linker command file, the linker directives for segment placement can
look like this:

-Z@(CODE)EVTAB=80000000–80FFFFFF
-Z@(CODE)EV100=80000100–80FFFFFF
-P(CODE)EVSEG=80000000–80FFFFFF

For more information, see Linking for segment-translated systems, page 114.

Switch tables

In some cases, a switch statement in C can be implemented as a data structure containing
the different case values, and the program locations to jump to for these values. If there
are such data structures present, they are placed in a separate (constant data) segment
named SWITCH. This segment is placed at the desired address in the same way as for
other constant segments. The segment may be placed anywhere in main memory, for
example:

-Z(CONST)SWITCH=0-FFFFFFFE

Interrupt vectors

The interrupt vector table contains pointers to interrupt routines, including the reset
routine. In this example, the table is placed in the segment INTVEC. The linker directive
would then look like this:

-Z(CONST)INTVEC=0000-00FF

For more information about the interrupt vectors, see Interrupt vectors and the interrupt
vector table, page 73.

C++ dynamic initialization

In C++, all global objects are created before the main function is called. The creation of
objects can involve the execution of a constructor.

The DIFUNCT segment contains a vector of addresses that point to initialization code.
All entries in the vector are called when the system is initialized.

For example:

-Z(CONST)DIFUNCT=0000-1FFF,3000-4FFF

DIFUNCT must be placed using -Z. For more information, see DIFUNCT, page 375.

AFE1_AFE2-1:1

Linking your application

113

KEEPING MODULES

If a module is linked as a program module, it is always kept. That is, it will contribute
to the linked application. However, if a module is linked as a library module, it is
included only if it is symbolically referred to from other parts of the application that
have been included. This is true, even if the library module contains a root symbol. To
assure that such a library module is always included, use -A to make all modules in the
file be treaded as if they were program modules:

-A file.r82

Use -C to makes all modules in the file be treated as if they were library modules:

-C file.r82

KEEPING SYMBOLS AND SEGMENTS

By default, XLINK removes any segments, segment parts, and global symbols that are
not needed by the application. To retain a symbol that does not appear to be needed—or
actually, the segment part it is defined in—you can either use the __root attribute on
the symbol in your C/C++ source code or ROOT in your assembler source code, or use
the XLINK option -g.

For information about included and excluded symbols and segment parts, inspect the
map file (created by using the XLINK option -xm).

For more information about the linking procedure for keeping symbols and sections, see
The linking process in detail, page 91.

APPLICATION STARTUP

By default, the point where the application starts execution is defined by the
__program_start label, . The label is also communicated via the debugger
information to any debugger.

To change the start point of the application to another label, use the XLINK option -s.

INTERACTION BETWEEN XLINK AND YOUR APPLICATION

Use the XLINK option -D to define symbols that can be used for controlling your
application. You can also use symbols to represent the start and end of a continuous
memory area that is defined in the linker configuration file.

To change a reference to one symbol to another symbol, use the XLINK command line
option -e. This is useful, for example, to redirect a reference from a non-implemented
function to a stub function, or to choose one of several different implementations of a
certain function.

AFE1_AFE2-1:1

114

Linking for segment-translated systems

IAR C/C++ Compiler User Guide
for AVR32

For information about the addresses and sizes of all global (statically linked) symbols,
inspect the entry list in the map file (the XLINK option -xm).

PRODUCING OTHER OUTPUT FORMATS THAN UBROF

XLINK can generate more than 30 industry-standard loader formats, in addition to the
proprietary format UBROF which is used by the C-SPY debugger. For a complete list,
see the IAR Linker and Library Tools Reference Guide. To specify a different output
format than the default, use the XLINK option -F. For example:

-F intel-standard

Note that it can be useful to use the XLINK -O option to produce two output files, one
for debugging and one for burning to ROM/flash.

Note also that if you choose to enable debug support using the -r option for certain
low-level I/O functionality for mechanisms like file operations on the host computer etc,
such debug support might have an impact on the performance and responsiveness of
your application. In this case, the debug build will differ from your release build due to
the debug modules included.

Linking for segment-translated systems
Some of the AVR32 devices have a memory management unit (MMU) which allows an
application to define an alternative address space for the application. This means that
there are two fundamentally different address spaces: the physical address space and the
virtual address space.

The physical address space is related to how the AVR32 microprocessor accesses the
physical memories. The physical layout is important because it describes where the
actual code and data bytes should be downloaded into the system, and it is also
important when creating a ROM image using XLINK. Addresses in the physical address
space are called physical addresses.

The virtual address space defines how the application, and thus also the debugger,
accesses memory. Addresses in the virtual address space are called virtual addresses.
An application always executes in this address space and the placement restrictions for
the different memory types apply to the virtual addresses, see Using data memory
attributes, page 63. This makes the virtual view very important when choosing code and
data models, see Basic project configuration, page 54.

AFE1_AFE2-1:1

Linking your application

115

SEGMENT-TRANSLATED MODE

AVR32 devices that feature an MMU usually start executing after reset in a mode called
segment-translated mode. In this mode, the physical and virtual address spaces differ in
three regions:

As you can see in the figure, there are three areas—P1, P2, and P3—in the virtual
address space that do not map directly to the physical address space. These three areas
are instead mapped by the hardware so that all accesses to the virtual addresses
0x80000000, 0xA0000000, or 0xC0000000 are actually performed against the
physical address 0x00000000. This transformation is linear in the entire 512-Mbyte
regions, that is 0x80000010 is translated to 0x00000010 and so on.

IMPLICATIONS FOR THE LINKER CONFIGURATION FILE

The segment translation implies that the linker needs to place all symbols according to
the virtual addresses, and store code and data according to the physical addresses. To
achieve this, you should for each segment placed in a translated virtual range:

● define an additional segment that will contain the actual bytes

● connect the segments using the -Q linker directive.

For example, the segment that contains the code executed at reset is called RESET and it
must be placed at the virtual address 0xA0000000; the segment translation process will
map this to the physical address 0x00000000. The additional segment RESETCODE is
created to contain the actual bytes for the RESET segment.

0xFFFFFFFF

0xE0000000
P4 512 MB system space,

non-cacheable

P3
0xC0000000

512 MB translated space
cacheable

0xA0000000
P2 512 MB non-translated

space, non-cacheable

P1
0x80000000

512 MB non-translated
space, cacheable

2 GB translated space
cacheable

0x00000000

P0/U0

Virtual address space Physical address space
0xFFFFFFFF

0xE0000000

0x80000000

0x00000000

0x20000000

512 MB physical address
space

2 GB physical address
space

Segment
translation

AFE1_AFE2-1:1

116

Linking for segment-translated systems

IAR C/C++ Compiler User Guide
for AVR32

These linker directives are needed:

-QRESET=RESETCODE
-Z(CODE)RESET=A0000000–A00003FF
-Z(CODE)RESETCODE=0–3FF

The same process must be used for the exception and interrupt handlers located in the
three segments EVTAB, EV100, and EVSEG.

-QEVTAB=EVBYTES1
-QEV100=EVBYTES2
-QEVSEG=EVBYTES3

-Z@(CODE)EVTAB=80000400–8007FFFF
-Z@(CODE)EV100=80000500–8007FFFF
-P(CODE)EVSEG=80000400–8007FFFF

-Z@(CODE)EVBYTES1=00000400–0007FFFF
-Z@(CODE)EVBYTES2=00000500–0007FFFF
-P(CODE)EVBYTES3=00000400–0007FFFF

Because the virtual addresses are translated, it is imperative that the placement within
each translated region—P1, P2, and P3—must exactly match the placement within the
destination region (0x00000000–0x1FFFFFFF). A function placed at the virtual
address 0x800003C0 must have its code bytes placed at 0x000003C0 or the application
will malfunction. To ensure this, all segment-translated linker segments should be linked
before any other segments.

MAPPED MEMORIES

In addition to segment translation, memory in the physical address space can be mapped.
A mapped memory range is simply an additional window through which the actual
memory can be viewed. Mapped memory is also said to be mirrored. The difference
between a mapped memory and the segment translation process is that the memory
mirror exists in the physical address space whereas segment translation goes from the
virtual address space to the physical address space.

An AVR32 system can contain one or more memory mirrors that are configured either
by external hardware or through special configuration bits which are programmed
during application download. For more details, refer to the hardware documentation.

AFE1_AFE2-1:1

Linking your application

117

To link an application that should run on a system with mapped memory, it is important
to choose which view that the application should use. To illustrate this, assume that the
memory layout looks like this:

When linking for this system, the linker must be informed that code and data placed in
the physical address range 0x00000000–0x0007FFFF should also occupy space in the
range 0x40000000–0x4007FFFF. To achieve this, you should add the -U linker option
to the command line:

-U00000000–0007FFFF=04000000–0407FFFF

For more information about the -U option, see the IAR Linker and Library Tools
Reference Guide.

Note: A system can be segment-translated and mapped at the same time and in that case
both linker techniques must be used independently of each other.

Verifying the linked result of code and data placement
The linker has several features that help you to manage code and data placement, for
example, messages at link time and the linker map file.

SEGMENT TOO LONG ERRORS AND RANGE ERRORS

Code or data that is placed in a relocatable segment will have its absolute address
resolved at link time. Note that it is not known until link time whether all segments will
fit in the reserved memory ranges. If the contents of a segment do not fit in the address
range defined in the linker configuration file, XLINK will issue a segment too long error.

Some instructions do not work unless a certain condition holds after linking, for
example that a branch must be within a certain distance or that an address must be even.
XLINK verifies that the conditions hold when the files are linked. If a condition is not
satisfied, XLINK generates a range error or warning and prints a description of the
error.

For more information about these types of errors, see the IAR Linker and Library Tools
Reference Guide.

Memory type Address Size Comment

Flash 0x00000000 256 Kbytes This is the mapped area of the actual
memory at address 0x40000000

RAM 0x08000000 32 Kbytes

Flash 0x40000000 256 Kbytes

Table 7: Mapped memory, example of

AFE1_AFE2-1:1

118

Verifying the linked result of code and data placement

IAR C/C++ Compiler User Guide
for AVR32

LINKER MAP FILE

XLINK can produce an extensive cross-reference listing, which can optionally contain
the following information:

● A segment map which lists all segments in address order

● A module map which lists all segments, local symbols, and entries (public symbols)
for every module in the program. All symbols not included in the output can also be
listed

● A module summary which lists the contribution (in bytes) from each module

● A symbol list which contains every entry (global symbol) in every module.

Use the option Generate linker listing in the IDE, or the option -x on the command
line, and one of their suboptions to generate a linker listing.

Normally, XLINK will not generate an output file if any errors, such as range errors,
occur during the linking process. Use the option Always generate output in the IDE,
or the option -B on the command line, to generate an output file even if a non-fatal error
was encountered.

For more information about the listing options and the linker listing, see the IAR Linker
and Library Tools Reference Guide, and the IDE Project Management and Building
Guide for AVR32.

AFE1_AFE2-1:1

 119

The DLIB runtime
environment
The DLIB runtime environment describes the runtime environment in which an
application executes. In particular, the chapter covers the DLIB runtime library
and how you can optimize it for your application.

Introduction to the runtime environment
The runtime environment is the environment in which your application executes. The
runtime environment depends on the target hardware, the software environment, and the
application code.

RUNTIME ENVIRONMENT FUNCTIONALITY

The runtime environment supports Standard C and C++, including the standard template
library. The runtime environment consists of the runtime library, which contains the
functions defined by the C and the C++ standards, and include files that define the
library interface (the system header files).

The runtime library is delivered both as prebuilt libraries and (depending on your
product package) as source files, and you can find them in the product subdirectories
avr32\lib and avr32\src\lib, respectively.

The runtime environment also consists of a part with specific support for the target
system, which includes:

● Support for hardware features:

● Direct access to low-level processor operations by means of intrinsic functions,
such as functions for interrupt mask handling

● Peripheral unit registers and interrupt definitions in include files

● Target-specific dsp instructions

● FlashVault.

● Runtime environment support, that is, startup and exit code and low-level interface
to some library functions.

● A floating-point environment (fenv) that contains floating-point arithmetics support,
see fenv.h, page 361.

● Special compiler support, for instance functions for switch handling or integer
arithmetics.

AFE1_AFE2-1:1

120

Introduction to the runtime environment

IAR C/C++ Compiler User Guide
for AVR32

For more information about the library, see the chapter Library functions.

SETTING UP THE RUNTIME ENVIRONMENT

The IAR DLIB runtime environment can be used as is together with the debugger.
However, to run the application on hardware, you must adapt the runtime environment.
Also, to configure the most code-efficient runtime environment, you must determine
your application and hardware requirements. The more functionality you need, the
larger your code will become.

This is an overview of the steps involved in configuring the most efficient runtime
environment for your target hardware:

● Choose which runtime library object file to use

The IDE will automatically choose a runtime library based on your project settings.
If you build from the command line, you must specify the object file explicitly. See
Using prebuilt libraries, page 121.

● Choose which predefined runtime library configuration to use—Normal or Full

You can configure the level of support for certain library functionality, for example,
locale, file descriptors, and multibyte characters. If you do not specify anything, a
default library configuration file that matches the library object file is automatically
used. To specify a library configuration explicitly, use the --dlib_config compiler
option. See Library configurations, page 136.

● Optimize the size of the runtime library

You can specify the formatters used by the functions printf, scanf, and their
variants, see Choosing formatters for printf and scanf, page 123.

You can also specify stack and heap size and placement, see Setting up stack memory,
page 109, and Setting up heap memory, page 109, respectively.

● Include debug support for runtime and I/O debugging

The library offers support for mechanisms like redirecting standard input and output
to the C-SPY Terminal I/O window and accessing files on the host computer, see
Application debug support, page 125.

● Adapt the library for target hardware

The library uses a set of low-level functions for handling accesses to your target
system. To make these accesses work, you must implement your own version of these
functions. For example, to make printf write to an LCD display on your board, you
must implement a target-adapted version of the low-level function __write, so that
it can write characters to the display. To customize such functions, you need a good
understanding of the library low-level interface, see Adapting the library for target
hardware, page 128.

AFE1_AFE2-1:1

The DLIB runtime environment

121

● Override library modules

If you have customized the library functionality, you need to make sure your versions
of the library modules are used instead of the default modules. This can be done
without rebuilding the entire library, see Overriding library modules, page 129.

● Customize system initialization

It is likely that you need to customize the source code for system initialization, for
example, your application might need to initialize memory-mapped special function
registers, or omit the default initialization of data segments. You do this by
customizing the routine __low_level_init, which is executed before the data
segments are initialized. See System startup and termination, page 131 and
Customizing system initialization, page 135.

● Configure your own library configuration files

In addition to the prebuilt library configurations, you can make your own library
configuration, but that requires that you rebuild the library. This gives you full
control of the runtime environment. See Building and using a customized library,
page 130.

● Manage a multithreaded environment

In a multithreaded environment, you must adapt the runtime library to treat all library
objects according to whether they are global or local to a thread. See Managing a
multithreaded environment, page 149.

● Check module consistency

You can use runtime model attributes to ensure that modules are built using
compatible settings, see Checking module consistency, page 154.

Using prebuilt libraries
The prebuilt runtime libraries are configured for different combinations of these
features:

● Core

● Code model

● Data model

● Unaligned access

● Floating-point implementation

● Library configuration—Normal or Full.

AFE1_AFE2-1:1

122

Using prebuilt libraries

IAR C/C++ Compiler User Guide
for AVR32

CHOOSING A LIBRARY

The IDE will include the correct library object file and library configuration file based
on the options you select. See the IDE Project Management and Building Guide for
AVR32 for more information.

If you build your application from the command line, make the following settings:

● Specify which library object file to use on the XLINK command line, like:

dllibname.r82

● If you do not specify a library configuration, the default will be used. However, you
can specify the library configuration explicitly for the compiler:

--dlib_config C:\...\dllibname.h

Note: All modules in the library have a name that starts with the character ? (question
mark).

You can find the library object files and the library configuration files in the subdirectory
avr32\lib\.

LIBRARY FILENAME SYNTAX

The names of the libraries are constructed from these elements:

For example, the library dlavr32alsasn.r82 is configured for the large code model,
the small data model, aligned access, software implementation, and for the normal
library configuration.

CUSTOMIZING A PREBUILT LIBRARY WITHOUT REBUILDING

The prebuilt libraries delivered with the compiler can be used as is. However, you can
customize parts of a library without rebuilding it.

{library} is dl for the IAR DLIB runtime environment

{core} is one of avr32a or avr32b

{code_model} is one of s, m, or l for small, medium, and large code model,
respectively

{data_model} is one of s or l for small and large data model, respectively

{unaligned_access} is one of a or u for aligned and unaligned access,
respectively

{float_impl} is one of s or h for software implementation and hardware
implementation (FPU)

{lib_config} is one of n or f for Normal and Full, respectively.

AFE1_AFE2-1:1

The DLIB runtime environment

123

These items can be customized:

For information about how to override library modules, see Overriding library modules,
page 129.

Choosing formatters for printf and scanf
The linker automatically chooses an appropriate formatter for printf- and
scanf-related function based on information from the compiler. If that information is
missing or insufficient, for example if printf is used through a function pointer, if the
object file is old, etc, then the automatic choice is the Full formatter. In this case you
might want to choose a formatter manually.

To override the default formatter for all the printf- and scanf-related functions,
except for wprintf and wscanf variants, you simply set the appropriate library
options. This section describes the different options available.

Note: If you rebuild the library, you can optimize these functions even further, see
Configuration symbols for printf and scanf, page 139.

CHOOSING A PRINTF FORMATTER

The printf function uses a formatter called _Printf. The full version is quite large,
and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided in the
Standard C/EC++ library.

Items that can be customized Described in

Formatters for printf and scanf Choosing formatters for printf and scanf, page 123

Startup and termination code System startup and termination, page 131

Low-level input and output Standard streams for input and output, page 137

File input and output File input and output, page 141

Low-level environment functions Environment interaction, page 144

Low-level signal functions Signal and raise, page 145

Low-level time functions Time, page 145

Some library math functions Math functions, page 146

Size of heaps, stacks, and segments Linking your application, page 105

Table 8: Customizable items

AFE1_AFE2-1:1

124

Choosing formatters for printf and scanf

IAR C/C++ Compiler User Guide
for AVR32

This table summarizes the capabilities of the different formatters:

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 139.

Manually specifying the print formatter in the IDE

To specify a formatter manually, choose Project>Options and select the General
Options category. Select the appropriate option on the Library options page.

Manually specifying the printf formatter from the command line

To specify a formatter manually, add one of these lines in the linker configuration file
you are using:

-e_PrintfFull=_Printf
-e_PrintfFullNoMb=_Printf
-e_PrintfLarge=_Printf
-e_PrintfLargeNoMb=_Printf
_e_PrintfSmall=_Printf
-e_PrintfSmallNoMb=_Printf
-e_PrintfTiny=_Printf
-e_PrintfTinyNoMb=_Printf

CHOOSING A SCANF FORMATTER

In a similar way to the printf function, scanf uses a common formatter, called
_Scanf. The full version is quite large, and provides facilities that are not required in
many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided in the Standard C/C++ library.

Formatting capabilities Tiny
Small/

SmallNoMb

Large/

LargeNoMb

Full/

FullNoMb

Basic specifiers c, d, i, o, p, s, u, X, x, and % Yes Yes Yes Yes

Multibyte support No Yes/No Yes/No Yes/No

Floating-point specifiers a, and A No No No Yes

Floating-point specifiers e, E, f, F, g, and G No No Yes Yes

Conversion specifier n No No Yes Yes

Format flag +, -, #, 0, and space No Yes Yes Yes

Length modifiers h, l, L, s, t, and Z No Yes Yes Yes

Field width and precision, including * No Yes Yes Yes

long long support No No Yes Yes

Table 9: Formatters for printf

AFE1_AFE2-1:1

The DLIB runtime environment

125

This table summarizes the capabilities of the different formatters:

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 139.

Manually specifying the scanf formatter in the IDE

To specify a formatter manually, choose Project>Options and select the General
Options category. Select the appropriate option on the Library options page.

Manually specifying the scanf formatter from the command line

To specify a formatter manually, add one of these lines in the linker configuration file
you are using:

-e_ScanfFull=_Scanf
-e_ScanfFullNoMb=_Scanf
-e_ScanfLarge=_Scanf
-e_ScanfLargeNoMb=_Scanf
_e_ScanfSmall=_Scanf
_e_ScanfSmallNoMb=_Scanf

Application debug support
In addition to the tools that generate debug information, there is a debug version of the
library low-level interface (typically, I/O handling and basic runtime support). Using the
debug library, your application can perform things like opening a file on the host
computer and redirecting stdout to the C-SPY Terminal I/O window.

Formatting capabilities
Small/

SmallNoMB

Large/

LargeNoMb

Full/

FullNoMb

Basic specifiers c, d, i, o, p, s, u, X, x, and % Yes Yes Yes

Multibyte support Yes/No Yes/No Yes/No

Floating-point specifiers a, and A No No Yes

Floating-point specifiers e, E, f, F, g, and G No No Yes

Conversion specifier n No No Yes

Scan set [and] No Yes Yes

Assignment suppressing * No Yes Yes

long long support No No Yes

Table 10: Formatters for scanf

AFE1_AFE2-1:1

126

Application debug support

IAR C/C++ Compiler User Guide
for AVR32

INCLUDING C-SPY DEBUGGING SUPPORT

You can make the library provide different levels of debugging support—basic, runtime,
and I/O debugging.

This table describes the different levels of debugging support:

* If you build your application project with this level of debugging support, certain
functions in the library are replaced by functions that communicate with C-SPY. For
more information, see The debug library functionality, page 126.

In the IDE, choose Project>Options>Linker. On the Output page, select the
appropriate Format option.

On the command line, use any of the linker options -r or -rt.

THE DEBUG LIBRARY FUNCTIONALITY

The debug library is used for communication between the application being debugged
and the debugger itself. The debugger provides runtime services to the application via
the low-level DLIB interface; services that allow capabilities like file and terminal I/O
to be performed on the host computer.

These capabilities can be valuable during the early development of an application, for
example in an application that uses file I/O before any flash file system I/O drivers are
implemented. Or, if you need to debug constructions in your application that use stdin

Debugging

support

Linker option in

the IDE

Linker

command line

option

Description

Basic debugging Debug
information for
C-SPY

-Fubrof Debug support for C-SPY without
any runtime support

Runtime
debugging*

With runtime
control
modules

-r The same as -Fubrof, but also
includes debugger support for
handling program abort, exit, and
assertions.

I/O debugging* With I/O
emulation
modules

-rt The same as -r, but also includes
debugger support for I/O handling,
which means that stdin and
stdout are redirected to the
C-SPY Terminal I/O window, and
that it is possible to access files on
the host computer during debugging.

Table 11: Levels of debugging support in runtime libraries

AFE1_AFE2-1:1

The DLIB runtime environment

127

and stdout without the actual hardware device for input and output being available.
Another use is producing debug printouts.

The mechanism used for implementing this feature works as follows:

The debugger will detect the presence of the function __DebugBreak, which will be
part of the application if you linked it with the XLINK option for C-SPY debugging
support. In this case, the debugger will automatically set a breakpoint at the
__DebugBreak function. When the application calls, for example, open, the
__DebugBreak function is called, which will cause the application to break and
perform the necessary services. The execution will then resume.

THE C-SPY TERMINAL I/O WINDOW

To make the Terminal I/O window available, the application must be linked with
support for I/O debugging. This means that when the functions __read or __write are
called to perform I/O operations on the streams stdin, stdout, or stderr, data will
be sent to or read from the C-SPY Terminal I/O window.

Note: The Terminal I/O window is not opened automatically just because __read or
__write is called; you must open it manually.

For more information about the Terminal I/O window, see the C-SPY® Debugging
Guide for AVR32.

Speeding up terminal output

On some systems, terminal output might be slow because the host computer and the
target hardware must communicate for each character.

For this reason, a replacement for the __write function called __write_buffered is
included in the DLIB library. This module buffers the output and sends it to the debugger
one line at a time, speeding up the output. Note that this function uses about 80 bytes of
RAM memory.

To use this feature you can either choose Project>Options>Linker>Output and select
the option Buffered terminal output in the IDE, or add this to the linker command line:

-e__write_buffered=__write

AFE1_AFE2-1:1

128

Adapting the library for target hardware

IAR C/C++ Compiler User Guide
for AVR32

LOW-LEVEL FUNCTIONS IN THE DEBUG LIBRARY

The debug library contains implementations of the following low-level functions:

* The linker option With I/O emulation modules is not required for these functions.

Note: You should not use the low-level interface functions prefixed with _ or__ directly
in your application. Instead you should use the high-level functions that use these
functions. For more information, see Library low-level interface, page 129.

Adapting the library for target hardware
The library uses a set of low-level functions for handling accesses to your target system.
To make these accesses work, you must implement your own version of these functions.
These low-level functions are referred to as the library low-level interface.

When you have implemented your low-level interface, you must add your version of
these functions to your project. For information about this, see Overriding library
modules, page 129.

Function in DLIB low-level

interface
Response by C-SPY

abort Notifies that the application has called abort *

clock Returns the clock on the host computer

__close Closes the associated host file on the host computer

__exit Notifies that the end of the application was reached *

__lseek Searches in the associated host file on the host computer

__open Opens a file on the host computer

__read Directs stdin, stdout, and stderr to the Terminal I/O
window. All other files will read the associated host file

remove Writes a message to the Debug Log window and returns -1

rename Writes a message to the Debug Log window and returns -1

_ReportAssert Handles failed asserts *

system Writes a message to the Debug Log window and returns -1

time Returns the time on the host computer

__write Directs stdin, stdout, and stderr to the Terminal I/O
window. All other files will write to the associated host file

Table 12: Functions with special meanings when linked with debug library

AFE1_AFE2-1:1

The DLIB runtime environment

129

LIBRARY LOW-LEVEL INTERFACE

The library uses a set of low-level functions to communicate with the target system. For
example, printf and all other standard output functions use the low-level function
__write to send the actual characters to an output device. Most of the low-level
functions, like __write, have no implementation. Instead, you must implement them
yourself to match your hardware.

However, the library contains a debug version of the library low-level interface, where
the low-level functions are implemented so that they interact with the host computer via
the debugger, instead of with the target hardware. If you use the debug library, your
application can perform tasks like writing to the Terminal I/O window, accessing files
on the host computer, getting the time from the host computer, etc. For more
information, see The debug library functionality, page 126.

Note that your application should not use the low-level functions directly. Instead you
should use the corresponding standard library function. For example, to write to
stdout, you should use standard library functions like printf or puts, instead of
__write.

The library files that you can override with your own versions are located in the
avr32\src\lib directory.

The low-level interface is further described in these sections:

● Standard streams for input and output, page 137

● File input and output, page 141

● Signal and raise, page 145

● Time, page 145

● Assert, page 148.

Overriding library modules
To use a library low-level interface that you have implemented, add it to your
application. See Adapting the library for target hardware, page 128. Or, you might want
to override a default library routine with your customized version. In both cases, follow
this procedure:

1 Use a template source file—a library source file or another template—and copy it to
your project directory.

2 Modify the file.

3 Add the customized file to your project, like any other source file.

AFE1_AFE2-1:1

130

Building and using a customized library

IAR C/C++ Compiler User Guide
for AVR32

Note: If you have implemented a library low-level interface and added it to a project that
you have built with debug support, your low-level functions will be used and not the
C-SPY debug support modules. For example, if you replace the debug support module
__write with your own version, the C-SPY Terminal I/O window will not be
supported.

To override the functions in a module, you must provide alternative implementations for
all the needed symbols in the overridden module. Otherwise you will get duplicate
definition errors.

The library files that you can override with your own versions are located in the
avr32\src\lib directory.

Building and using a customized library
Building a customized library is a complex process. Therefore, consider carefully
whether it is really necessary. You must build your own library when:

● There is no prebuilt library for the required combination of compiler options or
hardware support

● You want to define your own library configuration with support for locale, file
descriptors, multibyte characters, etc.

In those cases, you must:

● Set up a library project

● Make the required library modifications

● Build your customized library

● Finally, make sure your application project will use the customized library.

Note: To build IAR Embedded Workbench projects from the command line, use the
IAR Command Line Build Utility (iarbuild.exe). However, no make or batch files
for building the library from the command line are provided.

For information about the build process and the IAR Command Line Build Utility, see
the IDE Project Management and Building Guide for AVR32.

SETTING UP A LIBRARY PROJECT

The IDE provides a library project template which can be used for customizing the
runtime environment configuration. This library template uses the Full library
configuration, see Table 13, Library configurations.

In the IDE, modify the generic options in the created library project to suit your
application, see Basic project configuration, page 54.

AFE1_AFE2-1:1

The DLIB runtime environment

131

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

MODIFYING THE LIBRARY FUNCTIONALITY

You must modify the library configuration file and build your own library if you want
to modify support for, for example, locale, file descriptors, and multibyte characters.
This will include or exclude certain parts of the runtime environment.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file DLib_Defaults.h. This read-only file
describes the configuration possibilities. Your library also has its own library
configuration file dlavr32Custom.h, which sets up that specific library with the
required library configuration. For more information, see Customizing a prebuilt library
without rebuilding, page 122.

The library configuration file is used for tailoring a build of the runtime library, and for
tailoring the system header files.

Modifying the library configuration file

In your library project, open the file dlavr32Custom.h and customize it by setting the
values of the configuration symbols according to the application requirements.

When you are finished, build your library project with the appropriate project options.

USING A CUSTOMIZED LIBRARY

After you build your library, you must make sure to use it in your application project.

In the IDE you must do these steps:

1 Choose Project>Options and click the Library Configuration tab in the General
Options category.

2 Choose Custom DLIB from the Library drop-down menu.

3 In the Library file text box, locate your library file.

4 In the Configuration file text box, locate your library configuration file.

System startup and termination
This section describes the runtime environment actions performed during startup and
termination of your application.

AFE1_AFE2-1:1

132

System startup and termination

IAR C/C++ Compiler User Guide
for AVR32

The code for handling startup and termination is located in the source files
cstartup.s82, cmain.s82, cexit.s82, and low_level_init.c or
low_level_init.s82 located in the avr32\src\lib directory.

For information about how to customize the system startup code, see Customizing
system initialization, page 135.

SYSTEM STARTUP

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs initializations required for the target hardware and
the C/C++ environment.

For the hardware initialization, it looks like this:

● When the CPU is reset it will jump to the device-specific reset location—the
program entry label __program_start in the system startup code.

● The supervisor stack pointer (R13) is initialized to the end of the SSTACK
(supervisor stack) segment.

● If any ACALL functions are called in the application, the Application Call Base
Address register (ACBA) is initialized to the start address of the ACTAB segment.

● If the application contains interrupt or exception handlers, the Exception Vector
Base Address register (EVBA) is initialized to the start address of the EVSEG segment
(the exception handler segment).

● If the application contains interrupt handlers, the __init_ihandlers function is
called, which initializes the interrupt controller with information located in the
HTAB segment.

● The function __low_level_init is called if you defined it, giving the application
a chance to perform early initializations.

AFE1_AFE2-1:1

The DLIB runtime environment

133

For the C/C++ initialization, it looks like this:

● Static and global variables are initialized. That is, zero-initialized variables are
cleared and the values of other initialized variables are copied from ROM to RAM
memory. This step is skipped if __low_level_init returns zero. For more
information, see Initialization at system startup, page 93

● Static C++ objects are constructed

● The main function is called, which starts the application.

Stack initialization

The cstartup module initializes the supervisor stack pointer to the end of the
supervisor stack segment, called SSTACK.

The application stack pointer is not by default initialized to point to the application stack
segment CSTACK. In an application that uses both the supervisor stack and the
application stack, the application stack should normally be set up in a special way. Use
the LDMTS instruction to set up the application stack pointer.

AFE1_AFE2-1:1

134

System startup and termination

IAR C/C++ Compiler User Guide
for AVR32

SYSTEM TERMINATION

This illustration shows the different ways an embedded application can terminate in a
controlled way:

An application can terminate normally in two different ways:

● Return from the main function

● Call the exit function.

Because the C standard states that the two methods should be equivalent, the system
startup code calls the exit function if main returns. The parameter passed to the exit
function is the return value of main.

The default exit function is written in C. It calls a small assembler function _exit that
will perform these operations:

● Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard function atexit

● Close all open files

● Call __exit

● When __exit is reached, stop the system.

An application can also exit by calling the abort or the _Exit function. The abort
function just calls __exit to halt the system, and does not perform any type of cleanup.
The _Exit function is equivalent to the abort function, except for the fact that _Exit
takes an argument for passing exit status information.

If you want your application to do anything extra at exit, for example resetting the
system, you can write your own implementation of the __exit(int) function.

AFE1_AFE2-1:1

The DLIB runtime environment

135

C-SPY interface to system termination

If your project is linked with the XLINK options With runtime control modules or
With I/O emulation modules, the normal __exit and abort functions are replaced
with special ones. C-SPY will then recognize when those functions are called and can
take appropriate actions to simulate program termination. For more information, see
Application debug support, page 125.

Customizing system initialization
It is likely that you need to customize the code for system initialization. For example,
your application might need to initialize memory-mapped special function registers
(SFRs), or omit the default initialization of data segments performed by cstartup.

You can do this by providing a customized version of the routine __low_level_init,
which is called from cmain.s before the data segments are initialized. Modifying the
file cstartup.s82 directly should be avoided.

The code for handling system startup is located in the source files cstartup.s82 and
low_level_init.c, located in the avr32\src\lib directory.

Note: Normally, you do not need to customize either of the files cmain.s82 or
cexit.s82.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 130.

Note: Regardless of whether you modify the routine __low_level_init or the file
cstartup.s82, you do not have to rebuild the library.

__LOW_LEVEL_INIT

Two skeleton low-level initialization files are supplied with the product: a C source file,
low_level_init.c and an alternative assembler source file, low_level_init.s82.
The latter is part of the prebuilt runtime environment. The only limitation using the C
source version is that static initialized variables cannot be used within the file, as
variable initialization has not been performed at this point.

The value returned by __low_level_init determines whether or not data segments
should be initialized by the system startup code. If the function returns 0, the data
segments will not be initialized.

Note: The file intrinsics.h must be included by low_level_init.c to assure
correct behavior of the __low_level_init routine.

AFE1_AFE2-1:1

136

Library configurations

IAR C/C++ Compiler User Guide
for AVR32

MODIFYING THE FILE CSTARTUP.S82

As noted earlier, you should not modify the file cstartup.s82 if a customized version
of __low_level_init is enough for your needs. However, if you do need to modify
the file cstartup.s82, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 129.

Note that you must make sure that the linker uses the start label used in your version of
cstartup.s82. For information about how to change the start label used by the linker,
read about the -s option in the IAR Linker and Library Tools Reference Guide.

Library configurations
It is possible to configure the level of support for, for example, locale, file descriptors,
multibyte characters.

The runtime library configuration is defined in the library configuration file. It contains
information about what functionality is part of the runtime environment. The
configuration file is used for tailoring a build of a runtime library, and tailoring the
system header files used when compiling your application. The less functionality you
need in the runtime environment, the smaller it becomes.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file DLib_Defaults.h. This read-only file
describes the configuration possibilities.

These predefined library configurations are available:

CHOOSING A RUNTIME CONFIGURATION

To choose a runtime configuration, use one of these methods:

● Default prebuilt configuration—if you do not specify a library configuration
explicitly you will get the default configuration. A configuration file that matches
the runtime library object file will automatically be used.

Library configuration Description

Normal DLIB (default) No locale interface, C locale, no file descriptor support, no multibyte
characters in printf and scanf, and no hexadecimal floating-point
numbers in strtod.

Full DLIB Full locale interface, C locale, file descriptor support, multibyte
characters in printf and scanf, and hexadecimal floating-point
numbers in strtod.

Table 13: Library configurations

AFE1_AFE2-1:1

The DLIB runtime environment

137

● Prebuilt configuration of your choice—to specify a runtime configuration explicitly,
use the --dlib_config compiler option. See --dlib_config, page 253.

● Your own configuration—you can define your own configurations, which means
that you must modify the configuration file. Note that the library configuration file
describes how a library was built and thus cannot be changed unless you rebuild the
library. For more information, see Building and using a customized library, page
130.

The prebuilt libraries are based on the default configurations.

Standard streams for input and output
Standard communication channels (streams) are defined in stdio.h. If any of these
streams are used by your application, for example by the functions printf and scanf,
you must customize the low-level functionality to suit your hardware.

There are low-level I/O functions, which are the fundamental functions through which
C and C++ performs all character-based I/O. For any character-based I/O to be available,
you must provide definitions for these functions using whatever facilities the hardware
environment provides. For more information about implementing low-level functions,
see Adapting the library for target hardware, page 128.

IMPLEMENTING LOW-LEVEL CHARACTER INPUT AND
OUTPUT

To implement low-level functionality of the stdin and stdout streams, you must write
the functions __read and __write, respectively. You can find template source code for
these functions in the avr32\src\lib directory.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 130. Note that customizing
the low-level routines for input and output does not require you to rebuild the library.

Note: If you write your own variants of __read or __write, special considerations for
the C-SPY runtime interface are needed, see Application debug support, page 125.

AFE1_AFE2-1:1

138

Standard streams for input and output

IAR C/C++ Compiler User Guide
for AVR32

Example of using __write

The code in this example uses memory-mapped I/O to write to an LCD display, whose
port is assumed to be located at address 0xFFFF0008:

#include <stddef.h>

__no_init volatile unsigned char lcdIO @ 0xFFFF0008;

size_t __write(int handle,
 const unsigned char *buf,
 size_t bufSize)
{
 size_t nChars = 0;

 /* Check for the command to flush all handles */
 if (handle == -1)
 {
 return 0;
 }

 /* Check for stdout and stderr
 (only necessary if FILE descriptors are enabled.) */
 if (handle != 1 && handle != 2)
 {
 return -1;
 }

 for (/* Empty */; bufSize > 0; --bufSize)
 {
 lcdIO = *buf;
 ++buf;
 ++nChars;
 }

 return nChars;
}

Note: When DLIB calls __write, DLIB assumes the following interface: a call to
__write where buf has the value NULL is a command to flush the stream. When the
handle is -1, all streams should be flushed.

AFE1_AFE2-1:1

The DLIB runtime environment

139

Example of using __read

The code in this example uses memory-mapped I/O to read from a keyboard, whose port
is assumed to be located at 0xFFFF0010:

#include <stddef.h>

__no_init volatile unsigned char kbIO @ 0xFFFF0010;

size_t __read(int handle,
 unsigned char *buf,
 size_t bufSize)
{
 size_t nChars = 0;

 /* Check for stdin
 (only necessary if FILE descriptors are enabled) */
 if (handle != 0)
 {
 return -1;
 }

 for (/*Empty*/; bufSize > 0; --bufSize)
 {
 unsigned char c = kbIO;
 if (c == 0)
 break;

 *buf++ = c;
 ++nChars;
 }

 return nChars;
}

For information about the @ operator, see Controlling data and function placement in
memory, page 214.

Configuration symbols for printf and scanf
When you set up your application project, you typically need to consider what printf
and scanf formatting capabilities your application requires, see Choosing formatters
for printf and scanf, page 123.

If the provided formatters do not meet your requirements, you can customize the full
formatters. However, that means you must rebuild the runtime library.

AFE1_AFE2-1:1

140

Configuration symbols for printf and scanf

IAR C/C++ Compiler User Guide
for AVR32

The default behavior of the printf and scanf formatters are defined by configuration
symbols in the file DLib_Defaults.h.

These configuration symbols determine what capabilities the function printf should
have:

When you build a library, these configurations determine what capabilities the function
scanf should have:

CUSTOMIZING FORMATTING CAPABILITIES

To customize the formatting capabilities, you must;

1 Set up a library project, see Building and using a customized library, page 130.

2 Define the configuration symbols according to your application requirements.

Printf configuration symbols Includes support for

_DLIB_PRINTF_MULTIBYTE Multibyte characters

_DLIB_PRINTF_LONG_LONG Long long (ll qualifier)

_DLIB_PRINTF_SPECIFIER_FLOAT Floating-point numbers

_DLIB_PRINTF_SPECIFIER_A Hexadecimal floating-point numbers

_DLIB_PRINTF_SPECIFIER_N Output count (%n)

_DLIB_PRINTF_QUALIFIERS Qualifiers h, l, L, v, t, and z

_DLIB_PRINTF_FLAGS Flags -, +, #, and 0

_DLIB_PRINTF_WIDTH_AND_PRECISION Width and precision

_DLIB_PRINTF_CHAR_BY_CHAR Output char by char or buffered

Table 14: Descriptions of printf configuration symbols

Scanf configuration symbols Includes support for

_DLIB_SCANF_MULTIBYTE Multibyte characters

_DLIB_SCANF_LONG_LONG Long long (ll qualifier)

_DLIB_SCANF_SPECIFIER_FLOAT Floating-point numbers

_DLIB_SCANF_SPECIFIER_N Output count (%n)

_DLIB_SCANF_QUALIFIERS Qualifiers h, j, l, t, z, and L

_DLIB_SCANF_SCANSET Scanset ([*])

_DLIB_SCANF_WIDTH Width

_DLIB_SCANF_ASSIGNMENT_SUPPRESSING Assignment suppressing ([*])

Table 15: Descriptions of scanf configuration symbols

AFE1_AFE2-1:1

The DLIB runtime environment

141

File input and output
The library contains a large number of powerful functions for file I/O operations, such
as fopen, fclose, fprintf, fputs, etc. All these functions call a small set of
low-level functions, each designed to accomplish one particular task; for example,
__open opens a file, and __write outputs characters. Before your application can use
the library functions for file I/O operations, you must implement the corresponding
low-level function to suit your target hardware. For more information, see Adapting the
library for target hardware, page 128.

Note that file I/O capability in the library is only supported by libraries with the full
library configuration, see Library configurations, page 136. In other words, file I/O is
supported when the configuration symbol __DLIB_FILE_DESCRIPTOR is enabled. If
not enabled, functions taking a FILE * argument cannot be used.

Template code for these I/O files is included in the product:

The low-level functions identify I/O streams, such as an open file, with a file descriptor
that is a unique integer. The I/O streams normally associated with stdin, stdout, and
stderr have the file descriptors 0, 1, and 2, respectively.

Note: If you link your application with I/O debug support, C-SPY variants of the
low-level I/O functions are linked for interaction with C-SPY. For more information, see
Application debug support, page 125.

Locale
Locale is a part of the C language that allows language- and country-specific settings for
several areas, such as currency symbols, date and time, and multibyte character
encoding.

I/O function File Description

__close close.c Closes a file.

__lseek lseek.c Sets the file position indicator.

__open open.c Opens a file.

__read read.c Reads a character buffer.

__write write.c Writes a character buffer.

remove remove.c Removes a file.

rename rename.c Renames a file.

Table 16: Low-level I/O files

AFE1_AFE2-1:1

142

Locale

IAR C/C++ Compiler User Guide
for AVR32

Depending on what runtime library you are using you get different level of locale
support. However, the more locale support, the larger your code will get. It is therefore
necessary to consider what level of support your application needs.

The DLIB library can be used in two main modes:

● With locale interface, which makes it possible to switch between different locales
during runtime

● Without locale interface, where one selected locale is hardwired into the
application.

LOCALE SUPPORT IN PREBUILT LIBRARIES

The level of locale support in the prebuilt libraries depends on the library configuration.

● All prebuilt libraries support the C locale only

● All libraries with full library configuration have support for the locale interface. For
prebuilt libraries with locale interface, it is by default only supported to switch
multibyte character encoding at runtime.

● Libraries with normal library configuration do not have support for the locale
interface.

If your application requires a different locale support, you must rebuild the library.

CUSTOMIZING THE LOCALE SUPPORT

If you decide to rebuild the library, you can choose between these locales:

● The Standard C locale

● The POSIX locale

● A wide range of European locales.

Locale configuration symbols

The configuration symbol _DLIB_FULL_LOCALE_SUPPORT, which is defined in the
library configuration file, determines whether a library has support for a locale interface
or not. The locale configuration symbols _LOCALE_USE_LANG_REGION and
_ENCODING_USE_ENCODING define all the supported locales and encodings:

#define _DLIB_FULL_LOCALE_SUPPORT 1
#define _LOCALE_USE_C /* C locale */
#define _LOCALE_USE_EN_US /* American English */
#define _LOCALE_USE_EN_GB /* British English */
#define _LOCALE_USE_SV_SE /* Swedish in Sweden */

See DLib_Defaults.h for a list of supported locale and encoding settings.

AFE1_AFE2-1:1

The DLIB runtime environment

143

If you want to customize the locale support, you simply define the locale configuration
symbols required by your application. For more information, see Building and using a
customized library, page 130.

Note: If you use multibyte characters in your C or assembler source code, make sure
that you select the correct locale symbol (the local host locale).

Building a library without support for locale interface

The locale interface is not included if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 0 (zero). This means that a hardwired locale
is used—by default the Standard C locale—but you can choose one of the supported
locale configuration symbols. The setlocale function is not available and can
therefore not be used for changing locales at runtime.

Building a library with support for locale interface

Support for the locale interface is obtained if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 1. By default, the Standard C locale is used,
but you can define as many configuration symbols as required. Because the setlocale
function will be available in your application, it will be possible to switch locales at
runtime.

CHANGING LOCALES AT RUNTIME

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern LC_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang_REGION

or

lang_REGION.encoding

The lang part specifies the language code, and the REGION part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.

The lang_REGION part matches the _LOCALE_USE_LANG_REGION preprocessor
symbols that can be specified in the library configuration file.

AFE1_AFE2-1:1

144

Environment interaction

IAR C/C++ Compiler User Guide
for AVR32

Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.Utf8");

Environment interaction
According to the C standard, your application can interact with the environment using
the functions getenv and system.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

THE GETENV FUNCTION

The getenv function searches the string, pointed to by the global variable __environ,
for the key that was passed as argument. If the key is found, the value of it is returned,
otherwise 0 (zero) is returned. By default, the string is empty.

To create or edit keys in the string, you must create a sequence of null terminated strings
where each string has the format:

key=value\0

End the string with an extra null character (if you use a C string, this is added
automatically). Assign the created sequence of strings to the __environ variable.

For example:

const char MyEnv[] = ”Key=Value\0Key2=Value2\0”;
__environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function. This does not require that you rebuild
the library. You can find source templates in the files getenv.c and environ.c in the
avr32\src\lib directory. For information about overriding default library modules,
see Overriding library modules, page 129.

THE SYSTEM FUNCTION

If you need to use the system function, you must implement it yourself. The system
function available in the library simply returns -1.

If you decide to rebuild the library, you can find source templates in the library project
template. For more information, see Building and using a customized library, page 130.

AFE1_AFE2-1:1

The DLIB runtime environment

145

Note: If you link your application with support for I/O debugging, the functions getenv
and system are replaced by C-SPY variants. For more information, see Application
debug support, page 125.

Signal and raise
Default implementations of the functions signal and raise are available. If these
functions do not provide the functionality that you need, you can implement your own
versions.

This does not require that you rebuild the library. You can find source templates in the
files signal.c and raise.c in the avr32\src\lib directory. For information about
overriding default library modules, see Overriding library modules, page 129.

If you decide to rebuild the library, you can find source templates in the library project
template. For more information, see Building and using a customized library, page 130.

Time
To make the __time32, __time64, and date functions work, you must implement the
functions clock, __time32, __time64, and __getzone. Whether you use __time32
or __time64 depends on which interface you use for time_t, see time.h, page 362.

To implement these functions does not require that you rebuild the library. You can find
source templates in the files clock.c, time.c, time64.c, and getzone.c in the
avr32\src\lib directory. For information about overriding default library modules,
see Overriding library modules, page 129.

If you decide to rebuild the library, you can find source templates in the library project
template. For more information, see Building and using a customized library, page 130.

The default implementation of __getzone specifies UTC (Coordinated Universal
Time) as the time zone.

Note: If you link your application with support for I/O debugging, the functions clock
and time are replaced by C-SPY variants that return the host clock and time
respectively. For more information, see Application debug support, page 125.

AFE1_AFE2-1:1

146

Strtod

IAR C/C++ Compiler User Guide
for AVR32

Strtod
The function strtod does not accept hexadecimal floating-point strings in libraries
with the normal library configuration. To make strtod accept hexadecimal
floating-point strings, you must:

1 Enable the configuration symbol _DLIB_STRTOD_HEX_FLOAT in the library
configuration file.

2 Rebuild the library, see Building and using a customized library, page 130.

Math functions
Some library math functions are also available in size-optimized versions, and in more
accurate versions.

SMALLER VERSIONS

The functions cos, exp, log, log2, log10, __iar_Log (a help function for log, log2,
and log10), pow, sin, tan, and __iar_Sin (a help function for sin and cos) exist in
additional, smaller versions in the library. They are about 20% smaller and about 20%
faster than the default versions. The functions handle INF and NaN values. The
drawbacks are that they almost always lose some precision and they do not have the
same input range as the default versions.

The names of the functions are constructed like:

__iar_xxx_small<f|l>

where f is used for float variants, l is used for long double variants, and no suffix
is used for double variants.

To use these functions, the default function names must be redirected to these names
when linking, using the following options:

-e__iar_sin_small=sin
-e__iar_cos_small=cos
-e__iar_tan_small=tan
-e__iar_log_small=log
-e__iar_log2_small=log2
-e__iar_log10_small=log10
-e__iar_exp_small=exp
-e__iar_pow_small=pow
-e__iar_Sin_small=__iar_Sin
-e__iar_Log_small=__iar_Log

AFE1_AFE2-1:1

The DLIB runtime environment

147

-e__iar_sin_smallf=sinf
-e__iar_cos_smallf=cosf
-e__iar_tan_smallf=tanf
-e__iar_log_smallf=logf
-e__iar_log2_smallf=log2f
-e__iar_log10_smallf=log10f
-e__iar_exp_smallf=expf
-e__iar_pow_smallf=powf
-e__iar_Sin_smallf=__iar_Sinf
-e__iar_Log_smallf=__iar_Logf

-e__iar_sin_smalll=sinl
-e__iar_cos_smalll=cosl
-e__iar_tan_smalll=tanl
-e__iar_log_smalll=logl
-e__iar_log2_smalll=log2l
-e__iar_log10_smalll=log10l
-e__iar_exp_smalll=expl
-e__iar_pow_smalll=powl
-e__iar_Sin_smalll=__iar_Sinl
-e__iar_Log_smalll=__iar_Logl

Note that if you want to redirect any of the functions sin, cos, or __iar_Sin, you must
redirect all three functions.

Note that if you want to redirect any of the functions log, log2, log10, or __iar_Log,
you must redirect all four functions.

MORE ACCURATE VERSIONS

The functions cos, pow, sin, and tan, and the help functions __iar_Sin and
__iar_Pow exist in versions in the library that are more exact and can handle larger
argument ranges. The drawback is that they are larger and slower than the default
versions.

The names of the functions are constructed like:

__iar_xxx_accurate<f|l>

where f is used for float variants, l is used for long double variants, and no suffix
is used for double variants.

AFE1_AFE2-1:1

148

Assert

IAR C/C++ Compiler User Guide
for AVR32

To use these functions, the default function names must be redirected to these names
when linking, using the following options:

-e__iar_sin_accurate=sin
-e__iar_cos_accurate=cos
-e__iar_tan_accurate=tan
-e__iar_pow_accurate=pow
-e__iar_Sin_accurate=__iar_Sin
-e__iar_Pow_accurate=__iar_Pow

-e__iar_sin_accuratef=sinf
-e__iar_cos_accuratef=cosf
-e__iar_tan_accuratef=tanf
-e__iar_pow_accuratef=powf
-e__iar_Sin_accuratef=__iar_Sinf
-e__iar_Pow_accuratef=__iar_Powf

-e__iar_sin_accuratel=sinl
-e__iar_cos_accuratel=cosl
-e__iar_tan_accuratel=tanl
-e__iar_pow_accuratel=powl
-e__iar_Sin_accuratel=__iar_Sinl
-e__iar_Pow_accuratel=__iar_Powl

Note that if you want to redirect any of the functions sin, cos, or __iar_Sin, you must
redirect all three functions.

Note that if you want to redirect any of the functions pow or __iar_Pow, you must
redirect both functions.

Assert
If you linked your application with the option With I/O emulation modules, C-SPY
will be notified about failed asserts. If this is not the behavior you require, you can add
the source file xreportassert.c to your application project. Alternatively, you can
rebuild the library. The __ReportAssert function generates the assert notification.
You can find template code in the avr32\src\lib directory. For more information, see
Overriding library modules, page 129. To turn off assertions, you must define the
symbol NDEBUG.

In the IDE, this symbol NDEBUG is by default defined in a Release project and not
defined in a Debug project. If you build from the command line, you must explicitly
define the symbol according to your needs. See NDEBUG, page 353.

AFE1_AFE2-1:1

The DLIB runtime environment

149

Managing a multithreaded environment
In a multithreaded environment, the standard library must treat all library objects
according to whether they are global or local to a thread. If an object is a true global
object, any updates of its state must be guarded by a locking mechanism to make sure
that only one thread can update it at any given time. If an object is local to a thread, the
static variables containing the object state must reside in a variable area local to that
thread. This area is commonly named thread-local storage (TLS).

To configure a customized library with multithread support, add the line #define
_DLIB_THREAD_SUPPORT 3 in the library configuration file and rebuild your library

The low-level implementations of locks and TLS are system-specific, and is not
included in the DLIB library. If you are using an RTOS, check if it provides some or all
of the required functions. Otherwise, you must provide your own.

MULTITHREAD SUPPORT IN THE DLIB LIBRARY

The DLIB library uses two kinds of locks—system locks and file stream locks. The file
stream locks are used as guards when the state of a file stream is updated, and are only
needed in the Full library configuration. The following objects are guarded with system
locks:

● The heap, in other words when malloc, new, free, delete, realloc, or calloc
is used.

● The file system (only available in the Full library configuration), but not the file
streams themselves. The file system is updated when a stream is opened or closed,
in other words when fopen, fclose, fdopen, fflush, or freopen is used.

● The signal system, in other words when signal is used.

● The temporary file system, in other words when tmpnam is used.

● Dynamically initialized function local objects with static storage duration.

These library objects use TLS:

Library objects using TLS When these functions are used

Error functions errno, strerror

Locale functions localeconv, setlocale

Time functions asctime, localtime, gmtime, mktime

Multibyte functions mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb,
wcsrtomb, wctomb

Rand functions rand, srand

Table 17: Library objects using TLS

AFE1_AFE2-1:1

150

Managing a multithreaded environment

IAR C/C++ Compiler User Guide
for AVR32

Note: If you are using printf/scanf (or any variants) with formatters, each individual
formatter will be guarded, but the complete printf/scanf invocation will not be
guarded.

If one of the C++ variants is used together with a DLIB library with multithread support,
the compiler option --guard_calls must be used to make sure that function-static
variables with dynamic initializers are not initialized simultaneously by several threads.

ENABLING MULTITHREAD SUPPORT

To configure the runtime environment on the command line, for use with threaded
applications, use the linker option --threaded_lib.

To configure the runtime environment in the IDE for use with threaded applications,
choose Project>Options>Linker>Extra Options and specify the linker option
--threaded_lib. If you are using C++, you must also choose
Project>Options>C/C++ Compiler>Extra Options and specify the compiler option
--guard_calls.

To complement the built-in multithreaded support in the library, you must also:

● Implement code for the library’s system locks interface

● If file streams are used, implement code for the library’s file stream locks interface
or redirect the interface to the system locks interface (using the linker option -e)

● Implement code that handles thread creation, thread destruction, and TLS access
methods for the library

● Modify the linker configuration file accordingly.

You can find the required declaration of functions and definitions of macros in the
DLib_Threads.h file, which is included by yvals.h.

Note: If you are using a third-party RTOS, check their guidelines for how to enable
multithread support with IAR Systems tools.

Miscellaneous functions atexit, strtok

Library objects using TLS When these functions are used

Table 17: Library objects using TLS (Continued)

AFE1_AFE2-1:1

The DLIB runtime environment

151

System locks interface

This interface must be fully implemented for system locks to work:

typedef void *__iar_Rmtx; /* Lock info object */

void __iar_system_Mtxinit(__iar_Rmtx *); /* Initialize a system
 lock */
void __iar_system_Mtxdst(__iar_Rmtx *);/*Destroy a system lock */
void __iar_system_Mtxlock(__iar_Rmtx *); /* Lock a system lock */
void __iar_system_Mtxunlock(__iar_Rmtx *); /* Unlock a system
 lock */

The lock and unlock implementation must survive nested calls.

File streams locks interface

This interface is only needed for the Full library configuration. If file streams are used,
they can either be fully implemented or they can be redirected to the system locks
interface. This interface must be implemented for file streams locks to work:

typedef void *__iar_Rmtx; /* Lock info object */

void __iar_file_Mtxinit(__iar_Rmtx *);/*Initialize a file lock */
void __iar_file_Mtxdst(__iar_Rmtx *); /* Destroy a file lock */
void __iar_file_Mtxlock(__iar_Rmtx *); /* Lock a file lock */
void __iar_file_Mtxunlock(__iar_Rmtx *); /* Unlock a file lock */

The lock and unlock implementation must survive nested calls.

DLIB lock usage

The number of locks that the DLIB library assumes exist are:

● _FOPEN_MAX—the maximum number of file stream locks. These locks are only
used in the Full library configuration, in other words only if both the macro symbols
_DLIB_FILE_DESCRIPTOR and _FILE_OP_LOCKS are true.

● _MAX_LOCK—the maximum number of system locks.

Note that even if the application uses fewer locks, the DLIB library will initialize and
destroy all of the locks above.

For information about the initialization and destruction code, see xsyslock.c.

TLS handling

The DLIB library supports TLS memory areas for two types of threads: the main thread
(the main function including the system startup and exit code) and secondary threads.

AFE1_AFE2-1:1

152

Managing a multithreaded environment

IAR C/C++ Compiler User Guide
for AVR32

The main thread’s TLS memory area:

● Is automatically created and initialized by your application’s startup sequence

● Is automatically destructed by the application’s destruct sequence

● Is located in the segment __DLIB_PERTHREAD

● Exists also for non-threaded applications.

Each secondary thread’s TLS memory area:

● Must be manually created and initialized

● Must be manually destructed

● Is located in a manually allocated memory area.

If you need the runtime library to support secondary threads, you must override the
function:

void *__iar_dlib_perthread_access(void *symbp);

The parameter is the address to the TLS variable to be accessed—in the main thread’s
TLS area—and it should return the address to the symbol in the current TLS area.

Two interfaces can be used for creating and destroying secondary threads. You can use
the following interface that allocates a memory area on the heap and initializes it. At
deallocation, it destroys the objects in the area and then frees the memory.

void *__iar_dlib_perthread_allocate(void);
void __iar_dlib_perthread_deallocate(void *);

Alternatively, if the application handles the TLS allocation, you can use this interface
for initializing and destroying the objects in the memory area:

void __iar_dlib_perthread_initialize(void *);
void __iar_dlib_perthread_destroy(void *);

These macros can be helpful when you implement an interface for creating and
destroying secondary threads:

Macro Description

__IAR_DLIB_PERTHREAD_SIZE The size needed for the TLS memory area.

__IAR_DLIB_PERTHREAD_INIT_SIZE The initializer size for the TLS memory area.
You should initialize the rest of the TLS
memory area, up to
__IAR_DLIB_PERTHREAD_SIZE to zero.

__IAR_DLIB_PERTHREAD_SYMBOL_

OFFSET(symbolptr)

The offset to the symbol in the TLS memory
area.

Table 18: Macros for implementing TLS allocation

AFE1_AFE2-1:1

The DLIB runtime environment

153

Note that the size needed for TLS variables depends on which DLIB resources your
application uses.

This is an example of how you can handle threads:

#include <yvals.h>

/* A thread's TLS pointer */
void _DLIB_TLS_MEMORY *TLSp;

/* Are we in a secondary thread? */
int InSecondaryThread = 0;

/* Allocate a thread-local TLS memory
 area and store a pointer to it in TLSp. */
void AllocateTLS()
{
 TLSp = __iar_dlib_perthread_allocate();
}

/* Deallocate the thread-local TLS memory area. */
void DeallocateTLS()
{
 __iar_dlib_perthread_deallocate(TLSp);
}

/* Access an object in the
 thread-local TLS memory area. */
void _DLIB_TLS_MEMORY *__iar_dlib_perthread_access(
 void _DLIB_TLS_MEMORY *symbp)
{
 char _DLIB_TLS_MEMORY *p = 0;
 if (InSecondaryThread)
 p = (char _DLIB_TLS_MEMORY *) TLSp;
 else
 p = (char _DLIB_TLS_MEMORY *)
 __segment_begin("__DLIB_PERTHREAD");

 p += __IAR_DLIB_PERTHREAD_SYMBOL_OFFSET(symbp);
 return (void _DLIB_TLS_MEMORY *) p;
}

The TLSp variable is unique for each thread, and must be exchanged by the RTOS or
manually whenever a thread switch occurs.

AFE1_AFE2-1:1

154

Checking module consistency

IAR C/C++ Compiler User Guide
for AVR32

TLS IN THE LINKER CONFIGURATION FILE

If threads are used, the main thread’s TLS memory area must be initialized by plain
copying because the initializers are used for each secondary thread’s TLS memory area
as well. This is controlled by the following statement in your linker configuration file:

-Q__DLIB_PERTHREAD=__DLIB_PERTHREAD_init

Both the DLIB_PERTHREAD segment and the __DLIB_PERTHREAD_init segment must
be placed in default memory for RAM and ROM, respectively.

The startup code will copy __DLIB_PERTHREAD_init to DLIB_PERTHREAD.

Checking module consistency
This section introduces the concept of runtime model attributes, a mechanism used by
the tools provided by IAR Systems to ensure that modules that are linked into an
application are compatible, in other words, are built using compatible settings. The tools
use a set of predefined runtime model attributes. You can use these predefined attributes
or define your own to ensure that incompatible modules are not used together.

For example, in the compiler, it is possible to specify for which core the code should be
generated. If you write a routine that only works for the AVR32A core, it is possible to
check that the routine is not used in an application built for the AVR32B core.

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. Two
modules can only be linked together if they have the same value for each key that they
both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that
property.

Example

In this table, the object files could (but do not have to) define the two runtime attributes
color and taste:

Object file Color Taste

file1 blue not defined

file2 red not defined

Table 19: Example of runtime model attributes

AFE1_AFE2-1:1

The DLIB runtime environment

155

In this case, file1 cannot be linked with any of the other files, since the runtime
attribute color does not match. Also, file4 and file5 cannot be linked together,
because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
file4 or file5, but not with both.

USING RUNTIME MODEL ATTRIBUTES

To ensure module consistency with other object files, use the #pragma rtmodel
directive to specify runtime model attributes in your C/C++ source code. For example,
if you have a UART that can run in two modes, you can specify a runtime model
attribute, for example uart. For each mode, specify a value, for example mode1 and
mode2. Declare this in each module that assumes that the UART is in a particular mode.
This is how it could look like in one of the modules:

#pragma rtmodel="uart", "mode1"

Alternatively, you can also use the rtmodel assembler directive to specify runtime
model attributes in your assembler source code. For example:

 rtmodel "uart", "mode1"

Note that key names that start with two underscores are reserved by the compiler. For
more information about the syntax, see rtmodel, page 323 and the IAR Assembler User
Guide for AVR32, respectively.

Note: The predefined runtime attributes all start with two underscores. Any attribute
names you specify yourself should not contain two initial underscores in the name, to
eliminate any risk that they will conflict with future IAR runtime attribute names.

At link time, the IAR XLINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

file3 red *

file4 red spicy

file5 red lean

Object file Color Taste

Table 19: Example of runtime model attributes (Continued)

AFE1_AFE2-1:1

156

Checking module consistency

IAR C/C++ Compiler User Guide
for AVR32

PREDEFINED RUNTIME ATTRIBUTES

The table below shows the predefined runtime model attributes that are available for the
compiler. These can be included in assembler code or in mixed C/C++ and assembler
code.

The easiest way to find the proper settings of the RTMODEL directive is to compile a C or
C++ module to generate an assembler file, and then examine the file.

If you are using assembler routines in the C or C++ code, see the chapter Assembler
directives in the IAR Assembler User Guide for AVR32.

Example

The following assembler source code provides a function that counts the number of
times it has been called by increasing the register R4. The routine assumes that the
application does not use R4 for anything else, that is, the register has been locked for
usage. To ensure this, a runtime module attribute, __reg_r4, has been defined with a
value counter. This definition will ensure that this specific module can only be linked
with either other modules containing the same definition, or with modules that do not

Runtime model attribute Value Description

__rt_version This runtime key is always present in all
modules generated by the compiler. If a
major change in the runtime characteristics
occurs, the value of this key changes.

__code_model small, medium, or
large

Reflects the --code_model option used
in the project.

__core avr32a or
avr32b

Reflects the --core option in use.

__data_model small or
large

Reflects the --data_model option used
in the project.

__enum_size variable or
fixed

Reflects the --variable_enum_size
option in use.

__unaligned_word_a

ccess

enabled or
disabled

Reflects the
--unaligned_word_access option in
use.

Table 20: Predefined runtime model attributes

AFE1_AFE2-1:1

The DLIB runtime environment

157

set this attribute. Note that the compiler sets this attribute to free, unless the register is
locked.

 module myCounter
 public myCounter
 section CODE:CODE
 rtmodel "__reg_r4", "counter"
myCounter: sub r4, -1
 ret r12
 end

If this module is used in an application that contains modules where the register R4 has
not been locked, an error message is issued by the linker:

Error[e117]: Incompatible runtime models. Module myCounter

specifies that '__reg_r4' must be 'counter', but module part1 has

the value 'free'

AFE1_AFE2-1:1

158

Checking module consistency

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

 159

Assembler language
interface
● Mixing C and assembler

● Calling assembler routines from C

● Calling assembler routines from C++

● Calling convention

● Assembler instructions used for calling functions

● Memory access methods

● Call frame information

Mixing C and assembler
The IAR C/C++ Compiler for AVR32 provides several ways to access low-level
resources:

● Modules written entirely in assembler

● Intrinsic functions (the C alternative)

● Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a few predefined functions that allow direct access to low-level
processor operations without having to use the assembler language. These functions are
known as intrinsic functions. They can be very useful in, for example, time-critical
routines.

An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

AFE1_AFE2-1:1

160

Mixing C and assembler

IAR C/C++ Compiler User Guide
for AVR32

For more information about the available intrinsic functions, see the chapter Intrinsic
functions.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules.

This causes some overhead in the form of function call and return instruction sequences,
and the compiler will regard some registers as scratch registers.

An important advantage is that you will have a well-defined interface between what the
compiler produces and what you write in assembler. When using inline assembler, you
will not have any guarantees that your inline assembler lines do not interfere with the
compiler generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with several questions:

● How should the assembler code be written so that it can be called from C?

● Where does the assembler code find its parameters, and how is the return value
passed back to the caller?

● How should assembler code call functions written in C?

● How are global C variables accessed from code written in assembler language?

● Why does not the debugger display the call stack when assembler code is being
debugged?

The first question is discussed in the section Calling assembler routines from C, page
167. The following two are covered in the section Calling convention, page 170.

For information about how data in memory is accessed, see Memory access methods,
page 180.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 181.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 167, and Calling assembler routines from
C++, page 169, respectively.

INLINE ASSEMBLER

Inline assembler can be used for inserting assembler instructions directly into a C or
C++ function. Typically, this can be useful if you need to:

AFE1_AFE2-1:1

Assembler language interface

161

● Access hardware resources that are not accessible in C (in other words, when there
is no definition for an SFR or there is no suitable intrinsic function available).

● Manually write a time-critical sequence of code that if written in C will not have the
right timing.

● Manually write a speed-critical sequence of code that if written in C will be too
slow.

An inline assembler statement is similar to a C function in that it can take input
arguments (input operands), have return values (output operands), and read or write to
C symbols (via the operands). An inline assembler statement can also declare clobbered
resources (that is, values in registers and memory that have been overwritten).

Limitations

Most things you can to do in normal assembler language are also possible with inline
assembler, with the following differences:

● Alignment cannot be controlled; this means, for example, that DC32 directives
might be misaligned.

● The only accepted register synonyms are SP (for R13), LR (for R14), and PC (for
R15).

● In general, assembler directives will cause errors or have no meaning. However,
data definition directives will work as expected.

● Resources used (registers, memory, etc) that are also used by the C compiler must
be declared as operands or clobbered resources.

● If you do not want to risk that the inline assembler statement to be optimized away
by the compiler, you must declare it volatile.

● Accessing a C symbol or using a constant expression requires the use of operands.

● Dependencies between the expressions for the operands might result in an error.

Risks with inline assembler

Without operands and clobbered resources, inline assembler statements have no
interface with the surrounding C source code. This makes the inline assembler code
fragile, and might also become a maintenance problem if you update the compiler in the
future. There are also several limitations to using inline assembler without operands and
clobbered resources:

● The compiler’s various optimizations will disregard any effects of the inline
statements, which will not be optimized at all.

● The inline assembler statement will be volatile and clobbered memory is not
implied. This means that the compiler will not remove the assembler statement. It
will simply be inserted at the given location in the program flow. The consequences

AFE1_AFE2-1:1

162

Mixing C and assembler

IAR C/C++ Compiler User Guide
for AVR32

or side-effects that the insertion might have on the surrounding code are not taken
into consideration. If, for example, registers or memory locations are altered, they
might have to be restored within the sequence of inline assembler instructions for
the rest of the code to work properly.

The following example demonstrates the risks of using the asm keyword without
operands and clobbers:

int Add(int term1, int term2)
{
 asm("add r0,r0,r1");
 return term1;
}

In this example:

● The function Add assumes that values are passed and returned in registers in a way
that they might not always be, for example if the function is inlined.

● The add instruction updates the condition flags, which should be specified using the
cc clobber operand. Otherwise, the compiler will assume that the condition flags
are not modified.

Inline assembler without using operands or clobbered resources is therefore often best
avoided.

Reference information for inline assembler

The asm and __asm keywords both insert inline assembler instructions. However, when
you compile C source code, the asm keyword is not available when the option
--strict is used. The __asm keyword is always available.

Syntax The syntax of an inline assembler statement is (similar to the one used by GNU gcc):

asm [volatile](string [assembler-interface])

string can contain one or more valid assembler instructions or data definition
assembler directives, separated by \n.

For example:

asm("label:nop\n"
 "rjmp label");

Note that you can define and use local labels in inline assembler instructions.

assembler-interface is:

AFE1_AFE2-1:1

Assembler language interface

163

 : comma-separated list of output operands /* optional */
 : comma-separated list of input operands /* optional */
 : comma-separated list of clobbered resources /* optional */

Operands An inline assembler statement can have one input and one output comma-separated list
of operands. Each operand consists of an optional symbolic name in brackets, a quoted
constraint, followed by a C expression in parentheses.

Syntax of operands [[symbolic-name]] "[modifiers]constraint" (expr)

For example:

int Add(int term1, int term2)
{
 int sum;

 asm("add %0,%1,%2"
 : "=r"(sum)
 : "r" (term1), "r" (term2)
 : "cc");

 return sum;
}

In this example, the assembler instruction uses one output operand, sum, two input
operands, term1 and term2, and clobbers the condition flags.

It is possible to omit any list by leaving it empty. For example:

int matrix[M][N];

void MatrixPreloadRow(int row)
{
 asm volatile ("pref %0 [0]" : : "r" (&matrix[row][0]));
}

Operand constraints

Constraint modifiers Constraint modifiers can be used together with a constraint to modify its meaning. This
table lists the supported constraint modifiers:

Constraint Description

r Uses a general purpose register for the expression:
R0-R12, R14

Rp Uses an aligned pair of general purpose register for the expression:
R1:R0-R11:R10

i A symbolic or numerical constant. Only valid for input operands.

Table 21: Inline assembler operand constraints

AFE1_AFE2-1:1

164

Mixing C and assembler

IAR C/C++ Compiler User Guide
for AVR32

Referring to operands Assembler instructions refer to operands by prefixing their order number with %. The
first operand has order number 0 and is referred to by %0.

If the operand has a symbolic name, you can refer to it using the syntax
%[operand.name]. Symbolic operand names are in a separate namespace from C/C++
code and can be the same as a C/C++ variable names. Each operand name must however
be unique in each assembler statement. For example:

int Add(int term1, int term2)
{
 int sum;

 asm("add %[Rd],%[Rn],%[Rm]"
 : [Rd]"=r"(sum)
 : [Rn]"r" (term1), [Rm]"r" (term2)
 : "cc");

 return sum;
}

Operand modifiers An operand modifier is a single letter between the % and the operand number, which is
used for transforming the operand.

In the example below, the modifiers L and H are used for accessing the least and most
significant register, respectively, of a register pair:

unsigned long long Mul64x64(unsigned long long x, unsigned long
long y)
{
 unsigned long long res;
 asm("mulu.d %0,%L1,%L2\n"
 "mac %M0,%L1,%M2\n"
 "mac %M0,%M1,%L2\n"
 : "=&Rp" (res)
 : "Rp" (x), "Rp" (y));
 return res;
}

Modifier Desciption

= Write-only operand

+ Read-write operand

& Early clobber output operand which is written to before the instruction
has processed all the input operands.

Table 22: Supported constraint modifiers

AFE1_AFE2-1:1

Assembler language interface

165

Some operand modifiers can be combined, in which case each letter will transform the
result from the previous modifier. This table describes the transformation performed by
each valid modifier:

Input operands Input operands cannot have any modifiers, but they can have any valid C expression as
long as the type of the expression fits the register.

The C expression will be evaluated just before any of the assembler instructions in the
inline assembler statement and assigned to the constraint, for example a register.

Output operands Output operands must have = as a modifier and the C expression must be an l-value and
specify a writable location. For example, =r for a write-only general purpose register.
The constraint will be assigned to the evaluated C expression (as an l-value)
immediately after the last assembler instruction in the inline assembler statement. Input
operands are assumed to be consumed before output is produced and the compiler may
use the same register for an input and output operand. To prohibit this, prefix the output
constraint with & to make it an early clobber resource, for example =&r. This will ensure
that the output operand will be allocated in a different register than the input operands.

Input/output operands An operand that should be used both for input and output must be listed as an output
operand and have the + modifier. The C expression must be an l-value and specify a
writable location. The location will be read immediately before any assembler
instructions and it will be written to right after the last assembler instruction.

This is an example of using a read-write operand:

int Double(int value)
{
 asm("add %0,%0,%0" : "+r"(value) : : "cc");

 return value;
}

In the example above, the input value for value will be placed in a general purpose
register. After the assembler statement, the result from the ADD instruction will be placed
in the same register.

Modifier Description

L The least significant register of a register pair.

M The most significant register of a register pair.

Q The quotient part of a register pair as defined by DIV[S|U].

R The result part of a register pair as defined by DIV[S|U].

Table 23: Operand modifiers and transformations

AFE1_AFE2-1:1

166

Mixing C and assembler

IAR C/C++ Compiler User Guide
for AVR32

Clobbered resources An inline assembler statement can have a list of clobbered resources.

"resource1", "resource2", ...

Specify clobbered resources to inform the compiler about which resources the inline
assembler statement destroys. Any value that resides in a clobbered resource and that is
needed after the inline assembler statement will be reloaded.

Clobbered resources will not be used as input or output operands.

This is an example of how to use clobbered resources:

int Add(int term1, int term2)
{
 int sum;

 asm("add %0,%1,%2"
 : "=r"(sum)
 : "r" (term1), "r" (term2)
 : "cc");

 return sum;
}

In this example, the condition codes will be modified by the ADDS instruction.
Therefore, "cc" must be listed in the clobber list.

This table lists valid clobbered resources:

Clobber Description

R0-R12, R14 General purpose registers.

cc The condition flags (N, Z, V, and C).

memory To be used if the instructions modify any memory. This will
avoid keeping memory values cached in registers across the
inline assembler statement.

Table 24: List of valid clobbers

AFE1_AFE2-1:1

Assembler language interface

167

AN EXAMPLE OF HOW TO USE CLOBBERED MEMORY

int StoreExclusive(unsigned long * location, unsigned long value)
{
 int failed;

 asm("stcond %1 [0],%2\n"
 "srne %0"
 : "=&r"(failed)
 : "r"(location), "r"(value)
 : "memory");

 return failed;
}

Calling assembler routines from C
An assembler routine that will be called from C must:

● Conform to the calling convention

● Have a PUBLIC entry-point label

● Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in these examples:

extern int foo(void);

or

extern int foo(int i, int j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.
Note that you must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the

AFE1_AFE2-1:1

168

Calling assembler routines from C

IAR C/C++ Compiler User Guide
for AVR32

variables required and perform simple accesses to them. In this example, the assembler
routine takes an int and a char, and then returns an int:

extern int gInt;
extern char gChar;

int Func(int arg1, char arg2)
{
 int locInt = arg1;
 gInt = arg1;
 gChar = arg2;
 return locInt;
}

int main()
{
 int locInt = gInt;
 gInt = Func(locInt, gChar);
 return 0;
}

Note: In this example we use a low optimization level when compiling the code to show
local and global variable access. If a higher level of optimization is used, the required
references to local variables could be removed during the optimization. The actual
function declaration is not changed by the optimization level.

COMPILING THE SKELETON CODE

In the IDE, specify list options on file level. Select the file in the workspace window.
Then choose Project>Options. In the C/C++ Compiler category, select Override
inherited settings. On the List page, deselect Output list file, and instead select the
Output assembler file option and its suboption Include source. Also, be sure to specify
a low level of optimization.

Use these options to compile the skeleton code:

iccavr32 skeleton.c -lA . -On -e

The -lA option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s82. The -On option means that no optimization will be used and -e enables
language extensions. In addition, make sure to use relevant compiler options, usually the
same as you use for other C or C++ source files in your project.

The result is the assembler source output file skeleton.s82.

AFE1_AFE2-1:1

Assembler language interface

169

Note: The -lA option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file.

In the IDE, choose Project>Options>C/C++ Compiler>List and deselect the
suboption Include call frame information.

On the command line, use the option -lB instead of -lA. Note that CFI information must
be included in the source code to make the C-SPY Call Stack window work.

The output file

The output file contains the following important information:

● The calling convention

● The return values

● The global variables

● The function parameters

● How to create space on the stack (auto variables)

● Call frame information (CFI).

The CFI directives describe the call frame information needed by the Call Stack
window in the debugger. For more information, see Call frame information, page 181.

Calling assembler routines from C++
The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine can therefore be called from C++ when declared in
this manner:

extern "C"
{
 int MyRoutine(int);
}

AFE1_AFE2-1:1

170

Calling convention

IAR C/C++ Compiler User Guide
for AVR32

In C++, data structures that only use C features are known as PODs (“plain old data
structures”), they use the same memory layout as in C. However, we do not recommend
that you access non-PODs from assembler routines.

The following example shows how to achieve the equivalent to a non-static member
function, which means that the implicit this pointer must be made explicit. It is also
possible to “wrap” the call to the assembler routine in a member function. Use an inline
member function to remove the overhead of the extra call—this assumes that function
inlining is enabled:

class MyClass;

extern "C"
{
 void DoIt(MyClass *ptr, int arg);
}

class MyClass
{
public:
 inline void DoIt(int arg)
 {
 ::DoIt(this, arg);
 }
};

Note: Support for C++ names from assembler code is extremely limited. This means
that:

● Assembler list files resulting from compiling C++ files cannot, in general, be passed
through the assembler.

● It is not possible to refer to or define C++ functions that do not have C linkage in
assembler.

Calling convention
A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

AFE1_AFE2-1:1

Assembler language interface

171

This section describes the calling convention used by the compiler. These items are
examined:

● Function declarations

● C and C++ linkage

● Preserved versus scratch registers

● Function entrance

● Function exit

● Return address handling.

At the end of the section, some examples are shown to describe the calling convention
in practice.

The compiler follows the ABI defined by the procedure call standard for the AVR32
microprocessor. ABI stands for Application Binary Interface and it defines how
functions and modules should interact.

FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int MyFunction(int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.

USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++, it is easiest if you make the C++ function have C linkage.

This is an example of a declaration of a function with C linkage:

extern "C"
{
 int F(int);
}

AFE1_AFE2-1:1

172

Calling convention

IAR C/C++ Compiler User Guide
for AVR32

It is often practical to share header files between C and C++. This is an example of a
declaration that declares a function with C linkage in both C and C++:

#ifdef __cplusplus
extern "C"
{
#endif

int F(int);

#ifdef __cplusplus
}
#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general AVR32 CPU registers are divided into three separate sets, which are
described in this section.

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example on the stack.

Any of the registers R8 to R12 can be used as a scratch register by the function. This
means that the original value does not have to be preserved. However, there is one
exception: A return value pointer in R12 must be preserved.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. The called
function can use the register for other purposes, but must save the value before using the
register and restore it at the exit of the function.

The registers R0 through to R7 are preserved registers, as well as a return value pointer
in R12.

Special registers

For some registers, you must consider certain prerequisites:

● The stack pointer register must at all times point to or below the last element on the
stack. In the eventuality of an interrupt, everything below the point the stack pointer
points to, will be destroyed.

● The return address register LR holds the return address at the entrance of the
function.

AFE1_AFE2-1:1

Assembler language interface

173

FUNCTION ENTRANCE

Parameters can be passed to a function using one of these basic methods:

● In registers

● On the stack

It is much more efficient to use registers than to take a detour via memory, so the calling
convention is designed to use registers as much as possible. Only a limited number of
registers can be used for passing parameters; when no more registers are available, the
remaining parameters are passed on the stack. The parameters are also passed on the
stack in these cases:

● Aggregate types—such as structures, unions, arrays, and classes—unless their size
and alignment have a matching scalar type

● Unnamed parameters to variable length (variadic) functions; in other words,
functions declared as foo(param1, ...), for example printf.

Note:

● Interrupt functions cannot take any parameters.

● For __scall declared functions, all parameters must be passed in registers. If any
parameter does not fit in the available registers, an error message will be issued.

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters:

● If the function returns a structure that does not fulfill the conditions specified in
Function entrance, page 173, the memory location where to store the structure is
passed in the register R12 as a hidden parameter.

● If the function is a non-static Embedded C++ member function, then the this
pointer is passed as a parameter. The reason for the requirement that the member
function must be non-static is that static member methods do not have a this
pointer.

Note: The register used for passing the this pointer is an internal property of the
compiler and as such subject to change.

AFE1_AFE2-1:1

174

Calling convention

IAR C/C++ Compiler User Guide
for AVR32

Register parameters

The registers available for passing parameters are R12-R8, in that order:

Note: When a parameter is passed in a register pair, the most significant word is placed
in the register with the highest number, R11 or R9.

The procedure call standard defines the following process for assigning registers to
parameters:

The assignment of registers to parameters is a straightforward process. Traversing the
parameters from left to right (first to last), the parameter is assigned to the first available
register or register pair. Should there be no suitable register available, the parameter is
passed on the stack. All parameters are considered until no more parameters are left.

Stack parameters and layout

Stack parameters are stored in the main memory, starting at the location pointed to by
the stack pointer. Below the stack pointer (toward low memory) there is free space that
the called function can use. The first stack parameter is stored at the location pointed to
by the stack pointer. The next one is stored at the next location on the stack that is
divisible by four, etc.

Parameters Passed in registers

8-bit values R12, R11, R10, R9, R8

16-bit values R12, R11, R10, R9, R8

24-bit values R12, R11, R10, R9, R8

32-bit values R10:R11, R8:R9

Table 25: Registers used for passing parameters

AFE1_AFE2-1:1

Assembler language interface

175

This figure illustrates how parameters are stored on the stack:

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure.

Registers used for returning values

The registers available for returning values are R12 and R10:R11:

When returning an integer or pointer in R12, the status flags are also set according to a
cp.w R12,0 instruction.

Stack layout at function exit

It is the responsibility of the caller to clean the stack after the called function has
returned.

Return values Passed in registers

8-bit values (if word alignment >= 1) R12

16-bit values (if word alignment >= 2) R12

32-bit values (if word alignment >= 4 or
unaligned word access is enabled)

R12

64-bit values (if word alignment >= 4) R10:R11

Table 26: Registers used for returning values

AFE1_AFE2-1:1

176

Calling convention

IAR C/C++ Compiler User Guide
for AVR32

Return address handling

A function written in assembler language should, when finished, return to the caller. At
a function call, the return address is stored in the return address register LR.

Typically, a function returns by using the ret or popm instruction, for example:

 ret r12

If a function is to call another function, the original return address must be stored
somewhere. This is normally done on the stack, for example:

 name call
 section CODE:CODE
 extern func

 st.w --sp,lr
 rcall func
 ld.w lr,sp++

 ; Do something here.

 ret
 end

The return address is restored directly from the stack with the popm or ldm instructions.

CALLS IN SUPERVISOR MODE

When a call is made to a function declared __scall, the calling convention described
above cannot be followed.

Parameters cannot be passed on the stack, because the stack used before the call (the
application stack) is not the same as the stack used inside the __scall function (the
system stack).

This means that the following restrictions apply when calling an __scall function:

● Parameters will be assigned to registers, just as for a call to a normal function, but
only the registers R12–R8 are available

● All parameters must be passed in registers. If any parameter does not fit in the
available registers, an error message will be issued.

ALTERNATIVE CALLING CONVENTION FOR FLASHVAULT
IMPLEMENTATION FUNCTIONS

A function declared with the extended keyword __flashvault_impl adjusts the
calling convention of the function by inserting 4 extra bytes on the stack, placed after
(below) all stack parameters.

AFE1_AFE2-1:1

Assembler language interface

177

These 4 extra bytes are used by the secure state API handler to save the actual return
address before calling the API implementation function. The compiler automatically
adjusts the stack when a __flashvault_impl declared function is called directly, that
is from within the secure state code.

For more information, see Implementing middleware using FlashVault™, page 84.

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases toward the end.

Example 1

Assume this function declaration:

int add1(int);

This function takes one parameter in the register R12, and the return value is passed back
to its caller in the register R12.

This assembler routine is compatible with the declaration; it will return a value that is
one number higher than the value of its parameter:

 name return
 section CODE:CODE
 sub r12, -1
 ret r12
 end

Example 2

This example shows how structures are passed on the stack. Assume these declarations:

struct MyStruct
{
 short a;
 short b;
 short c;
 short d;
 short e;
};

int MyFunction(struct MyStruct x, int y);

The integer parameter y is passed in the register R12 and the structure parameter x is
passed on the stack. The return value is passed back to its caller in the register R12.

AFE1_AFE2-1:1

178

Assembler instructions used for calling functions

IAR C/C++ Compiler User Guide
for AVR32

Example 3

The function below will return a structure of type struct MyStruct.

struct MyStruct
{
 int mA[20];
};

struct MyStruct MyFunction(int x);

It is the responsibility of the calling function to allocate a memory location for the return
value and pass a pointer to it as a hidden first parameter. The pointer to the location
where the return value should be stored is passed in R12. The caller assumes that these
registers remain untouched. The parameter x is passed in R11.

Assume that the function instead was declared to return a pointer to the structure:

struct MyStruct *MyFunction(int x);

In this case, the return value is a scalar, so there is no hidden parameter. The parameter
x is passed in R12, and the return value is returned in R12.

FUNCTION DIRECTIVES

The function directives FUNCTION, ARGFRAME, LOCFRAME, and FUNCALL are generated
by the compiler to pass information about functions and function calls to the IAR
XLINK Linker. These directives can be seen if you use the compiler option Assembler
file (-lA) to create an assembler list file.

For more information about the function directives, see the IAR Assembler User Guide
for AVR32.

Assembler instructions used for calling functions
This section presents the assembler instructions that can be used for calling and
returning from functions on the AVR32 microprocessor.

Functions can be called in different ways—directly, or via a function pointer. In this
section we will discuss how these types of calls will be performed for each code model.

AFE1_AFE2-1:1

Assembler language interface

179

The normal function calling instructions are the relative call, the memory call, and the
pseudo-memory call instructions:

 rcall func
 mcall ??func
 _pcall func,??func

 align 2
??func dc32 func

The location that the called function should return to (that is, the location immediately
after this instruction) is stored in the link register, lr.

The pseudo-instruction _pcall will either assemble as an rcall instruction, if the
destination label is within ±1Mbyte of the call site, or as an mcall instruction using a
constant table entry to hold a full 32-bit address. Note that the table entry will always be
generated even if an rcall instruction is generated.

The following sections illustrates how the different code models perform function calls.

CALLING FUNCTIONS IN THE SMALL AND MEDIUM CODE
MODELS

A direct call using these code models is simply:

 rcall function

The relative call instruction, rcall, can only reach ±1Mbyte, which effectively limits
the application size to 1 Mbyte. In the small code model, the __data32 keyword can be
used for forcing a long call (the _pcall pseudo-instruction) to be used.

The main difference between the small and medium code models are that the small code
model uses the mov, sub, and cp instructions to handle function addresses, while the
medium code model uses constant table entries or a combination of mov and orh
instructions:

 mov r12,lwrd(x)
 orh r12,hwrd(x)

CALLING FUNCTIONS IN THE LARGE CODE MODEL

A direct call using this code model is:

 _pcall function,??func
 ...
 align 2
??func dc32 function

The _pcall pseudo-instruction will generate either an rcall or an mcall instruction,
depending on the distance to the called function.

AFE1_AFE2-1:1

180

Memory access methods

IAR C/C++ Compiler User Guide
for AVR32

When a function call is made via a function pointer—an indirect function call—this
code will be generated:

 name callFuncPtr
 segment CODE:CODE
 extern funcPtr

 mov r12,funcPtr ; Location of function pointer
 ld.w r11,r12[0] ; Load function address
 icall r11 ; Make function call
 end

The address is stored in a register and is then used for calling the function. Calls via a
function pointer reach the whole 32-bit address space.

Memory access methods
This section describes the different memory types presented in the chapter Data storage.
In addition to presenting the assembler code used for accessing data, this section will
explain the reason behind the different memory types.

You should be familiar with the AVR32 instruction set, in particular the different
addressing modes used by the instructions that can access memory.

For each of the access methods described in the following sections, there are three
examples:

● Accessing a global variable

● Accessing a global array using an unknown index

● Accessing a structure using a pointer.

These three examples can be illustrated by this C program:

char myVar;
char MyArr[10];

struct MyStruct
{
 long mA;
 char mB;
};

char Foo(int i, struct MyStruct *p)
{
 return myVar + MyArr[i] + p->mB;
}

AFE1_AFE2-1:1

Assembler language interface

181

THE MAIN MEMORY ACCESS METHOD (DATA21, DATA32)

Most instructions can address the entire main memory, and can be used irrespective of
whether the variable has been declared with the __data21 keyword or the __data32
keyword (in analogy with using the Small or the Large data model). The only difference
is that some instructions can handle a short direct address directly, like
mov Rd, address, cp Rd, address, and sub Rd, address.

An indirect access is always equivalent irrespective of which of the two main memory
keywords that has been used to declare a variable.

Both a pointer and the index type of an array have a size of 32 bits.

READ-MODIFY-WRITE ACCESS METHOD (DATA17)

If the processor supports the RMW instruction set extension and you have enabled the
use of these instructions (see --avr32_rmw_instructions, page 190), the variables
declared in data17 memory can use these instructions for efficient bit manipulation.
There are three instructions in the RMW instruction set extension: memc which clears a bit,
mems which sets a bit, and memt which toggles a bit.

There is no reason to use the __data17 attribute when the RMW instruction set extension
is not available.

THE SYSTEM AND DEBUG REGISTER ACCESS METHOD

To access variables declared with the __sysreg keyword, the special instructions mfsr
and mtsr must be used. For variables declared __dbgreg, the special instructions mtdr
and mfdr must be used. Only direct accesses are possible, as you cannot take the address
of a system register variable.

Examples

These examples access data17 memory in different ways:

 mems x,31 ; Direct access of x.

 mov r9,y ; Access the global variable y.
 ld.b r8,r9[0]

 mov r12,z ; Access an array
 ld.sh r10,r12[r11<<1]

Call frame information
When you debug an application using C-SPY, you can view the call stack, that is, the
chain of functions that called the current function. To make this possible, the compiler

AFE1_AFE2-1:1

182

Call frame information

IAR C/C++ Compiler User Guide
for AVR32

supplies debug information that describes the layout of the call frame, in particular
information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the IAR Assembler
User Guide for AVR32.

CFI DIRECTIVES

The CFI directives provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice.

When describing the call frame information, the following three components must be
present:

● A names block describing the available resources to be tracked

● A common block corresponding to the calling convention

● A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

This table lists all the resources defined in the names block used by the compiler:

Resource Description

CFA The call frame on the stack. It is associated with the contents of
the stack pointer SP.

RAR The return address register which holds the return address for
interrupt and exception handlers.

RAR_DBG The return address register which holds the return address for
debug exception functions.

?RET The return address. The return address is initially found in the
register LR, but can be moved on the stack later on.

RSR The return status register which holds a copy of the status
register that will be restored at exit from interrupt and exception
handlers.

Table 27: Call frame information resources defined in a names block

AFE1_AFE2-1:1

Assembler language interface

183

CREATING ASSEMBLER SOURCE WITH CFI SUPPORT

The recommended way to create an assembler language routine that handles call frame
information correctly is to start with an assembler language source file created by the
compiler.

1 Start with suitable C source code, for example:

int F(int);
int cfiExample(int i)
{
 return i + F(i);
}

2 Compile the C source code, and make sure to create a list file that contains call frame
information—the CFI directives.

On the command line, use the option -lA.

In the IDE, choose Project>Options>C/C++ Compiler>List and make sure the
suboption Include call frame information is selected.

RSR_DBG The return status register which holds a copy of the status
register that will be restored at exit from a debug exception
handler.

R0–R12 The ordinary data registers.

SP The stack pointer.

SR The status register.

LR The link register.

Resource Description

Table 27: Call frame information resources defined in a names block (Continued)

AFE1_AFE2-1:1

184

Call frame information

IAR C/C++ Compiler User Guide
for AVR32

For the source code in this example, the list file looks like this:

 NAME Cfi

 RTMODEL "__SystemLibrary", "DLib"
 RTMODEL "__code_model", "medium"
 RTMODEL "__core", "avr32a"
 RTMODEL "__data_model", "small"
 RTMODEL "__enum_size", "fixed"
 RTMODEL "__rt_version", "2"
 RTMODEL "__unaligned_word_access", "disabled"

 RSEG CSTACK:DATA:REORDER:NOROOT(2)

 PUBLIC cfiExample

 FUNCTION cfiExample,021203H
 ARGFRAME CSTACK, 0, STACK
 LOCFRAME CSTACK, 8, STACK

 CFI Names cfiNames0
 CFI StackFrame CFA SP DATA
 CFI VirtualResource ?RET:32
 CFI Resource R0:32, R1:32, R2:32, R3:32, R4:32, R5:32,
R6:32, R7:32
 CFI Resource RSR:32, RAR:32, RSR_DBG:32, RAR_DBG:32
 CFI EndNames cfiNames0

 CFI Common cfiCommon0 Using cfiNames0
 CFI CodeAlign 2
 CFI DataAlign 4
 CFI ReturnAddress ?RET CODE
 CFI CFA SP+0
 CFI ?RET LR
 CFI R0 SameValue
 CFI R1 SameValue
 CFI R2 SameValue
 CFI R3 SameValue
 CFI R4 SameValue
 CFI R5 SameValue
 CFI R6 SameValue
 CFI R7 SameValue

AFE1_AFE2-1:1

Assembler language interface

185

 CFI R8 Undefined
 CFI R9 Undefined
 CFI R10 Undefined
 CFI R11 Undefined
 CFI R12 Undefined
 CFI LR Undefined
 CFI SR SameValue
 CFI RSR SameValue
 CFI RAR SameValue
 CFI RSR_DBG SameValue
 CFI RAR_DBG SameValue
 CFI EndCommon cfiCommon0

 EXTERN F
 FUNCTION F,0202H

 RSEG CODE32:CODE:REORDER:NOROOT(2)
 CFI Block cfiBlock0 Using cfiCommon0
 CFI Function cfiExample
 CODE
cfiExample:
 FUNCALL cfiExample, F
 LOCFRAME CSTACK, 8, STACK
 STM --SP,R7,LR
 CFI R7 Frame(CFA, -4)
 CFI ?RET Frame(CFA, -8)
 CFI CFA SP+8
 MOV R7,R12
 MOV R12,R7
 RCALL F:E
 ADD R7,R12
 MOV R12,R7
 LDM SP++,R7,PC
 CFI EndBlock cfiBlock0

 END

Note: The header file cfi.m82 contains the macros CFI_NAMES and
CFI_COMMON_DEFAULT, which declare a typical names block and a typical common
block. These two macros declare several resources, both concrete and virtual.

AFE1_AFE2-1:1

186

Call frame information

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

 187

Using C
● C language overview

● Extensions overview

● IAR C language extensions

C language overview
The IAR C/C++ Compiler for AVR32 supports the ISO/IEC 9899:1999 standard
(including up to technical corrigendum No.3), also known as C99. In this guide, this
standard is referred to as Standard C and is the default standard used in the compiler.
This standard is stricter than C89.

In addition, the compiler also supports the ISO 9899:1990 standard (including all
technical corrigenda and addenda), also known as C94, C90, C89, and ANSI C. In this
guide, this standard is referred to as C89. Use the --c89 compiler option to enable this
standard.

The C99 standard is derived from C89, but adds features like these:

● The inline keyword advises the compiler that the function defined immediately
after the keyword should be inlined

● Declarations and statements can be mixed within the same scope

● A declaration in the initialization expression of a for loop

● The bool data type

● The long long data type

● The complex floating-point type

● C++ style comments

● Compound literals

● Incomplete arrays at the end of structs

● Hexadecimal floating-point constants

● Designated initializers in structures and arrays

● The preprocessor operator _Pragma()

● Variadic macros, which are the preprocessor macro equivalents of printf style
functions

● VLA (variable length arrays) must be explicitly enabled with the compiler option
--vla

AFE1_AFE2-1:1

188

Extensions overview

IAR C/C++ Compiler User Guide
for AVR32

● Inline assembler using the asm or the __asm keyword, see .

Note: Even though it is a C99 feature, the IAR C/C++ Compiler for AVR32 does not
support UCNs (universal character names).

Extensions overview
The compiler offers the features of Standard C and a wide set of extensions, ranging
from features specifically tailored for efficient programming in the embedded industry
to the relaxation of some minor standards issues.

This is an overview of the available extensions:

● IAR C language extensions

For information about available language extensions, see IAR C language extensions,
page 189. For more information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions; see the chapter Using C++.

● Pragma directives

The #pragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source code is
still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler. For
several of them there is also a corresponding C/C++ language extension. For
information about available pragma directives, see the chapter Pragma directives.

● Preprocessor extensions

The preprocessor of the compiler adheres to Standard C. The compiler also makes
several preprocessor-related extensions available to you. For more information, see
the chapter The preprocessor.

● Intrinsic functions

The intrinsic functions provide direct access to low-level processor operations and
can be very useful in, for example, time-critical routines. The intrinsic functions
compile into inline code, either as a single instruction or as a short sequence of
instructions. For more information about using intrinsic functions, see Mixing C and
assembler, page 159. For information about available functions, see the chapter
Intrinsic functions.

AFE1_AFE2-1:1

Using C

189

● Library functions

The IAR DLIB Library provides the C and C++ library definitions that apply to
embedded systems. For more information, see IAR DLIB Library, page 357.

Note: Any use of these extensions, except for the pragma directives, makes your source
code inconsistent with Standard C.

ENABLING LANGUAGE EXTENSIONS

You can choose different levels of language conformance by means of project options:

* In the IDE, choose Project>Options>C/C++ Compiler>Language>Language
conformance and select the appropriate option. Note that language extensions are
enabled by default.

IAR C language extensions
The compiler provides a wide set of C language extensions. To help you to find the
extensions required by your application, they are grouped like this in this section:

● Extensions for embedded systems programming—extensions specifically tailored
for efficient embedded programming for the specific microprocessor you are using,
typically to meet memory restrictions

● Relaxations to Standard C—that is, the relaxation of some minor Standard C issues
and also some useful but minor syntax extensions, see Relaxations to Standard C,
page 192.

Command line IDE* Description

--strict Strict All IAR C language extensions are disabled;
errors are issued for anything that is not part
of Standard C.

None Standard All extensions to Standard C are enabled, but no
extensions for embedded systems programming.
For information about extensions, see IAR C
language extensions, page 189.

-e Standard with IAR
extensions

All IAR C language extensions are enabled.

Table 28: Language extensions

AFE1_AFE2-1:1

190

IAR C language extensions

IAR C/C++ Compiler User Guide
for AVR32

EXTENSIONS FOR EMBEDDED SYSTEMS PROGRAMMING

The following language extensions are available both in the C and the C++
programming languages and they are well suited for embedded systems programming:

● Memory attributes, type attributes, and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.

● Placement at an absolute address or in a named segment

The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named
segment. For more information about using these features, see Controlling data and
function placement in memory, page 214, and location, page 318.

● Alignment control

Each data type has its own alignment; for more information, see Alignment, page
275. If you want to change the alignment, the __packed data type attribute, the
#pragma pack, and the #pragma data_alignment directives are available. If you
want to check the alignment of an object, use the __ALIGNOF__() operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

● __ALIGNOF__ (type)

● __ALIGNOF__ (expression)

In the second form, the expression is not evaluated.

● Anonymous structs and unions

C++ includes a feature called anonymous unions. The compiler allows a similar
feature for both structs and unions in the C programming language. For more
information, see Anonymous structs and unions, page 213.

● Bitfields and non-standard types

In Standard C, a bitfield must be of the type int or unsigned int. Using IAR C
language extensions, any integer type or enumeration can be used. The advantage is
that the struct will sometimes be smaller. For more information, see Bitfields, page
277.

● static_assert()

The construction static_assert(const-expression,"message"); can be
used in C/C++. The construction will be evaluated at compile time and if
const-expression is false, a message will be issued including the message
string.

AFE1_AFE2-1:1

Using C

191

● Parameters in variadic macros

Variadic macros are the preprocessor macro equivalents of printf style functions.
The preprocessor accepts variadic macros with no arguments, which means if no
parameter matches the ... parameter, the comma is then deleted in the ",
##__VA_ARGS__" macro definition. According to Standard C, the ... parameter
must be matched with at least one argument.

Dedicated segment operators

The compiler supports getting the start address, end address, and size for a segment with
these built-in segment operators:

The operators can be used on named segments defined in the linker configuration file.

These operators behave syntactically as if declared like:

void * __segment_begin(char const * segment)
void * __segment_end(char const * segment)
size_t __segment_size(char const * segment)

When you use the @ operator or the #pragma location directive to place a data object
or a function in a user-defined segment in the linker configuration file, the segment
operators can be used for getting the start and end address of the memory range where
the segments were placed.

The named segment must be a string literal and it must have been declared earlier with
the #pragma segment directive. If the segment was declared with a memory attribute
memattr, the type of the __segment_begin operator is a pointer to memattr void.
Otherwise, the type is a default pointer to void. Note that you must enable language
extensions to use these operators.

Example

In this example, the type of the __segment_begin operator is void __data17 *.

#pragma segment="MYSEGMENT" __data17
...
segment_start_address = __segment_begin("MYSEGMENT");

See also segment, page 324, and location, page 318.

__segment_begin Returns the address of the first byte of the named segment.

__segment_end Returns the address of the first byte after the named segment.

__segment_size Returns the size of the named segment in bytes.

AFE1_AFE2-1:1

192

IAR C language extensions

IAR C/C++ Compiler User Guide
for AVR32

RELAXATIONS TO STANDARD C

This section lists and briefly describes the relaxation of some Standard C issues and also
some useful but minor syntax extensions:

● Arrays of incomplete types

An array can have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

● Forward declaration of enum types

The extensions allow you to first declare the name of an enum and later resolve it by
specifying the brace-enclosed list.

● Accepting missing semicolon at the end of a struct or union specifier

A warning—instead of an error—is issued if the semicolon at the end of a struct
or union specifier is missing.

● Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In Standard C, some operators allow this kind
of behavior, while others do not allow it.

● Casting pointers to integers in static initializers

In an initializer, a pointer constant value can be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 282.

● Taking the address of a register variable

In Standard C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

● long float means double

The type long float is accepted as a synonym for double.

● Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

● Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical; for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning is issued.

AFE1_AFE2-1:1

Using C

193

● Non-top level const

Assignment of pointers is allowed in cases where the destination type has added type
qualifiers that are not at the top level (for example, int ** to int const **).
Comparing and taking the difference of such pointers is also allowed.

● Non-lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.

● Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled unless the strict Standard C mode is used. The purpose of this language
extension is to support compilation of legacy code; we do not recommend that you
write new code in this fashion.

● An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict Standard C
mode, a warning is issued.

● A label preceding a }

In Standard C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. The compiler allows this, but issues a
warning.

Note that this also applies to the labels of switch statements.

● Empty declarations

An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

● Single-value initialization

Standard C requires that all initializer expressions of static arrays, structs, and unions
are enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is
issued. The compiler accepts this expression:

struct str
{
 int a;
} x = 10;

AFE1_AFE2-1:1

194

IAR C language extensions

IAR C/C++ Compiler User Guide
for AVR32

● Declarations in other scopes

External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the if statement. A warning is issued.

int test(int x)
{
 if (x)
 {
 extern int y;
 y = 1;
 }

 return y;
}

● Expanding function names into strings with the function as context

Use any of the symbols __func__ or __FUNCTION__ inside a function body to
make the symbol expand into a string that contains the name of the current function.
Use the symbol __PRETTY_FUNCTION__ to also include the parameter types and
return type. The result might, for example, look like this if you use the
__PRETTY_FUNCTION__ symbol:

"void func(char)"

These symbols are useful for assertions and other trace utilities and they require that
language extensions are enabled, see -e, page 254.

● Static functions in function and block scopes

Static functions may be declared in function and block scopes. Their declarations are
moved to the file scope.

● Numbers scanned according to the syntax for numbers

Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Thus, 0x123e+1 is scanned as three tokens instead of one valid
token. (If the --strict option is used, the pp-number syntax is used instead.)

AFE1_AFE2-1:1

 195

Using C++
● Overview—EC++ and EEC++

● Enabling support for C++

● EC++ feature descriptions

● EEC++ feature description

● C++ language extensions

Overview—EC++ and EEC++
IAR Systems supports the C++ language. You can choose between the
industry-standard Embedded C++ and Extended Embedded C++. Using C++ describes
what you need to consider when using the C++ language.

Embedded C++ is a proper subset of the C++ programming language which is intended
for embedded systems programming. It was defined by an industry consortium, the
Embedded C++ Technical Committee. Performance and portability are particularly
important in embedded systems development, which was considered when defining the
language. EC++ offers the same object-oriented benefits as C++, but without some
features that can increase code size and execution time in ways that are hard to predict.

EMBEDDED C++

These C++ features are supported:

● Classes, which are user-defined types that incorporate both data structure and
behavior; the essential feature of inheritance allows data structure and behavior to
be shared among classes

● Polymorphism, which means that an operation can behave differently on different
classes, is provided by virtual functions

● Overloading of operators and function names, which allows several operators or
functions with the same name, provided that their argument lists are sufficiently
different

● Type-safe memory management using the operators new and delete

● Inline functions, which are indicated as particularly suitable for inline expansion.

AFE1_AFE2-1:1

196

Overview—EC++ and EEC++

IAR C/C++ Compiler User Guide
for AVR32

C++ features that are excluded are those that introduce overhead in execution time or
code size that are beyond the control of the programmer. Also excluded are features
added very late before Standard C++ was defined. Embedded C++ thus offers a subset
of C++ which is efficient and fully supported by existing development tools.

Embedded C++ lacks these features of C++:

● Templates

● Multiple and virtual inheritance

● Exception handling

● Runtime type information

● New cast syntax (the operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

● Namespaces

● The mutable attribute.

The exclusion of these language features makes the runtime library significantly more
efficient. The Embedded C++ library furthermore differs from the full C++ library in
that:

● The standard template library (STL) is excluded

● Streams, strings, and complex numbers are supported without the use of templates

● Library features which relate to exception handling and runtime type information
(the headers except, stdexcept, and typeinfo) are excluded.

Note: The library is not in the std namespace, because Embedded C++ does not
support namespaces.

EXTENDED EMBEDDED C++

IAR Systems’ Extended EC++ is a slightly larger subset of C++ which adds these
features to the standard EC++:

● Full template support

● Multiple and virtual inheritance

● Namespace support

● The mutable attribute

● The cast operators static_cast, const_cast, and reinterpret_cast.

All these added features conform to the C++ standard.

To support Extended EC++, this product includes a version of the standard template
library (STL), in other words, the C++ standard chapters utilities, containers, iterators,
algorithms, and some numerics. This STL is tailored for use with the Extended EC++

AFE1_AFE2-1:1

Using C++

197

language, which means no exceptions and no support for runtime type information
(rtti). Moreover, the library is not in the std namespace.

Note: A module compiled with Extended EC++ enabled is fully link-compatible with a
module compiled without Extended EC++ enabled.

Enabling support for C++
In the compiler, the default language is C.

To compile files written in Embedded C++, use the --ec++ compiler option. See
--ec++, page 255.

To take advantage of Extended Embedded C++ features in your source code, use the
--eec++ compiler option. See --eec++, page 255.

To enable EC++ or EEC++ in the IDE, choose Project>Options>C/C++
Compiler>Language and select the appropriate standard.

EC++ feature descriptions
When you write C++ source code for the IAR C/C++ Compiler for AVR32, you must
be aware of some benefits and some possible quirks when mixing C++ features—such
as classes, and class members—with IAR language extensions, such as IAR-specific
attributes.

USING IAR ATTRIBUTES WITH CLASSES

Static data members of C++ classes are treated the same way global variables are, and
can have any applicable IAR type, memory, and object attribute.

Member functions are in general treated the same way free functions are, and can have
any applicable IAR type, memory, and object attributes. Virtual member functions can
only have attributes that are compatible with default function pointers, and constructors
and destructors cannot have any such attributes.

The location operator @ and the #pragma location directive can be used on static data
members and with all member functions.

AFE1_AFE2-1:1

198

EC++ feature descriptions

IAR C/C++ Compiler User Guide
for AVR32

Example of using attributes with classes

class MyClass
{
public:
 // Locate a static variable in __sysreg memory at address 60
 static __sysreg __no_init int mI @ 60;

 // Locate a static function in __code21 memory
 static __code21 void F();

 // Locate a function in __code21 memory
 __code21 void G();

 // Locate a virtual function in __code21 memory
 virtual __code21 void H();

 // Locate a virtual function into SPECIAL
 virtual void M() const volatile @ "SPECIAL";
};

FUNCTION TYPES

A function type with extern "C" linkage is compatible with a function that has C++
linkage.

Example

extern "C"
{
 typedef void (*FpC)(void); // A C function typedef
}

typedef void (*FpCpp)(void); // A C++ function typedef

FpC F1;
FpCpp F2;
void MyF(FpC);

void MyG()
{
 MyF(F1); // Always works
 MyF(F2); // FpCpp is compatible with FpC
}

AFE1_AFE2-1:1

Using C++

199

USING STATIC CLASS OBJECTS IN INTERRUPTS

If interrupt functions use static class objects that need to be constructed (using
constructors) or destroyed (using destructors), your application will not work properly
if the interrupt occurs before the objects are constructed, or, during or after the objects
are destroyed.

To avoid this, make sure that these interrupts are not enabled until the static objects have
been constructed, and are disabled when returning from main or calling exit. For
information about system startup, see System startup and termination, page 131.

Function local static class objects are constructed the first time execution passes through
their declaration, and are destroyed when returning from main or when calling exit.

USING NEW HANDLERS

To handle memory exhaustion, you can use the set_new_handler function.

New handlers in Embedded C++

If you do not call set_new_handler, or call it with a NULL new handler, and
operator new fails to allocate enough memory, it will call abort. The nothrow
variant of the new operator will instead return NULL.

If you call set_new_handler with a non-NULL new handler, the provided new
handler will be called by operator new if operator new fails to allocate memory. The
new handler must then make more memory available and return, or abort execution in
some manner. The nothrow variant of operator new will never return NULL in the
presence of a new handler.

TEMPLATES

Extended EC++ supports templates according to the C++ standard, but not the export
keyword. The implementation uses a two-phase lookup which means that the keyword
typename must be inserted wherever needed. Furthermore, at each use of a template,
the definitions of all possible templates must be visible. This means that the definitions
of all templates must be in include files or in the actual source file.

DEBUG SUPPORT IN C-SPY

C-SPY® has built-in display support for the STL containers. The logical structure of
containers is presented in the watch views in a comprehensive way that is easy to
understand and follow.

For more information about this, see the C-SPY® Debugging Guide for AVR32.

AFE1_AFE2-1:1

200

EEC++ feature description

IAR C/C++ Compiler User Guide
for AVR32

EEC++ feature description
This section describes features that distinguish Extended EC++ from EC++.

TEMPLATES

The compiler supports templates with the syntax and semantics as defined by Standard
C++. However, note that the STL (standard template library) delivered with the product
is tailored for Extended EC++, see Extended Embedded C++, page 196.

VARIANTS OF CAST OPERATORS

In Extended EC++ these additional variants of C++ cast operators can be used:

const_cast<to>(from)
static_cast<to>(from)
reinterpret_cast<to>(from)

MUTABLE

The mutable attribute is supported in Extended EC++. A mutable symbol can be
changed even though the whole class object is const.

NAMESPACE

The namespace feature is only supported in Extended EC++. This means that you can
use namespaces to partition your code. Note, however, that the library itself is not placed
in the std namespace.

THE STD NAMESPACE

The std namespace is not used in either standard EC++ or in Extended EC++. If you
have code that refers to symbols in the std namespace, simply define std as nothing;
for example:

#define std

You must make sure that identifiers in your application do not interfere with identifiers
in the runtime library.

AFE1_AFE2-1:1

Using C++

201

C++ language extensions
When you use the compiler in any C++ mode and enable IAR language extensions, the
following C++ language extensions are available in the compiler:

● In a friend declaration of a class, the class keyword can be omitted, for example:

class B;
class A
{
 friend B; //Possible when using IAR language
 //extensions
 friend class B; //According to the standard
};

● Constants of a scalar type can be defined within classes, for example:

class A
{
 const int mSize = 10; //Possible when using IAR language
 //extensions
 int mArr[mSize];
};

According to the standard, initialized static data members should be used instead.

● In the declaration of a class member, a qualified name can be used, for example:

struct A
{
 int A::F(); // Possible when using IAR language extensions
 int G(); // According to the standard
};

● It is permitted to use an implicit type conversion between a pointer to a function
with C linkage (extern "C") and a pointer to a function with C++ linkage
(extern "C++"), for example:

extern "C" void F(); // Function with C linkage
void (*PF)() // PF points to a function with C++ linkage
 = &F; // Implicit conversion of function pointer.

According to the standard, the pointer must be explicitly converted.

● If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals (which in C++ are constants), the operands can
be implicitly converted to char * or wchar_t *, for example:

bool X;

char *P1 = X ? "abc" : "def"; //Possible when using IAR
 //language extensions
char const *P2 = X ? "abc" : "def";//According to the standard

AFE1_AFE2-1:1

202

C++ language extensions

IAR C/C++ Compiler User Guide
for AVR32

● Default arguments can be specified for function parameters not only in the top-level
function declaration, which is according to the standard, but also in typedef
declarations, in pointer-to-function function declarations, and in pointer-to-member
function declarations.

● In a function that contains a non-static local variable and a class that contains a
non-evaluated expression (for example a sizeof expression), the expression can
reference the non-static local variable. However, a warning is issued.

● An anonymous union can be introduced into a containing class by a typedef name.
It is not necessary to first declare the union. For example:

typedef union
{
 int i,j;
} U; // U identifies a reusable anonymous union.

class A
{
public:
 U; // OK -- references to A::i and A::j are allowed.
};

In addition, this extension also permits anonymous classes and anonymous structs,
as long as they have no C++ features (for example, no static data members or member
functions, and no non-public members) and have no nested types other than other
anonymous classes, structs, or unions. For example:

struct A
{
 struct
 {
 int i,j;
 }; // OK -- references to A::i and A::j are allowed.
};

● The friend class syntax allows nonclass types as well as class types expressed
through a typedef without an elaborated type name. For example:

typedef struct S ST;

class C
{
public:
 friend S; // Okay (requires S to be in scope)
 friend ST; // Okay (same as "friend S;")
 // friend S const; // Error, cv-qualifiers cannot
 // appear directly
};

AFE1_AFE2-1:1

Using C++

203

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.

AFE1_AFE2-1:1

204

C++ language extensions

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

 205

Application-related
considerations
● Stack considerations

● Heap considerations

● Interaction between the tools and your application

● Checksum calculation

Stack considerations
To make your application use stack memory efficiently, there are some considerations
to be made.

STACK SIZE CONSIDERATIONS

The required stack size depends heavily on the application’s behavior. If the given stack
size is too large, RAM will be wasted. If the given stack size is too small, one of two
things can happen, depending on where in memory you located your stack:

● Variable storage will be overwritten, leading to undefined behavior

● The stack will fall outside of the memory area, leading to an abnormal termination
of your application.

Both alternatives are likely to result in application failure. Because the second
alternative is easier to detect, you should consider placing your stack so that it grows
toward the end of the memory.

For more information about the stack size, see Setting up stack memory, page 109, and
Saving stack space and RAM memory, page 224.

Heap considerations
The heap contains dynamic data allocated by use of the C function malloc (or a
corresponding function) or the C++ operator new.

If your application uses dynamic memory allocation, you should be familiar with:

● Linker segments used for the heap

AFE1_AFE2-1:1

206

Interaction between the tools and your application

IAR C/C++ Compiler User Guide
for AVR32

● Allocating the heap size, see Setting up heap memory, page 109.

HEAP SEGMENTS IN DLIB

The memory allocated to the heap is placed in the segment HEAP, which is only included
in the application if dynamic memory allocation is actually used.

HEAP SIZE AND STANDARD I/O

If you excluded FILE descriptors from the DLIB runtime environment, as in the Normal
configuration, there are no input and output buffers at all. Otherwise, as in the Full
configuration, be aware that the size of the input and output buffers is set to 512 bytes
in the stdio library header file. If the heap is too small, I/O will not be buffered, which
is considerably slower than when I/O is buffered. If you execute the application using
the simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the speed
penalty, but it is quite noticeable when the application runs on an AVR32
microprocessor. If you use the standard I/O library, you should set the heap size to a
value which accommodates the needs of the standard I/O buffer.

Interaction between the tools and your application
The linking process and the application can interact symbolically in four ways:

● Creating a symbol by using the linker command line option -D. The linker will
create a public absolute constant symbol that the application can use as a label, as a
size, as setup for a debugger, etc.

● Using the compiler operators __segment_begin, __segment_end, or
__segment_size, or the assembler operators SFB, SFE, or SIZEOF on a named
segment. These operators provide access to the start address, end address, and size
of a contiguous sequence of segments with the same name

● The command line option -s informs the linker about the start label of the
application. It is used by the linker as a root symbol and to inform the debugger
where to start execution.

The following lines illustrate how to use -D to create a symbol. If you need to use this
mechanism, add these options to your command line like this:

-Dmy_symbol=A
-DMY_HEAP_SIZE=400

The linker configuration file can look like this:

-Z(DATA)MyHeap+MY_HEAP_SIZE=20000–2FFFF

AFE1_AFE2-1:1

Application-related considerations

207

Add these lines to your application source code:

#include <stdlib.h>

/* Use symbol defined by an XLINK option to dynamically allocate
an array of elements with specified size. The value takes the
form of a label.
 */
extern int NrOfElements;

typedef char Elements;
Elements *GetElementArray()
{
 return malloc(sizeof(Elements) * (long) &NrOfElements);
}

/* Use a symbol defined by an XLINK option, a symbol that in the
 * configuration file was made available to the application.
 */
extern char HeapSize;

/* Declare the section that contains the heap. */
#pragma segment = "MYHEAP"

char *MyHeap()
{
 /* First get start of statically allocated section, */
 char *p = __segment_begin("MYHEAP");

 /* ...then we zero it, using the imported size. */
 for (int i = 0; i < (int) &HeapSize; ++i)
 {
 p[i] = 0;
 }
 return p;
}

Checksum calculation
To use checksumming to verify the integrity of your application, you must:

● Choose a checksum algorithm by setting the command line option -J, and include
source code for the algorithm in your application

● Decide which memory ranges to verify and set up the linker by using the command
line option -J, and the source code for it in your application source code.

AFE1_AFE2-1:1

208

Checksum calculation

IAR C/C++ Compiler User Guide
for AVR32

● Make sure your application refers to the checksum symbol (see -J in the IAR Linker
and Library Tools Reference Guide) to ensure that is included.

In the IDE, choose Project>Options>Linker>Checksum.

CALCULATING A CHECKSUM

In this example, a checksum is calculated for ROM memory at 0x8002 up to 0x8FFF
and the 2-byte calculated checksum is placed at 0x8000.

ADDING A CHECKSUM FUNCTION TO YOUR SOURCE CODE

To check the value of the generated checksum, it must be compared with a checksum
that your application calculated. This means that you must add a function for checksum
calculation (that uses the same algorithm as the -J option) to your application source
code. Your application must also include a call to this function.

A function for checksum calculation

This function—a slow variant but with small memory footprint—uses the crc16
algorithm:

unsigned short SlowCrc16(unsigned short sum,
 unsigned char *p,
 unsigned int len)
{
 while (len--)
 {
 int i;
 unsigned char byte = *(p++);

 for (i = 0; i < 8; ++i)
 {
 unsigned long oSum = sum;
 sum <<= 1;
 if (byte & 0x80)
 sum |= 1;
 if (oSum & 0x8000)
 sum ^= 0x1021;
 byte <<= 1;
 }
 }
 return sum;
}

You can find the source code for the checksum algorithms in the avr32\src\linker
directory of your product installation.

AFE1_AFE2-1:1

Application-related considerations

209

Example of checksum calculation

This code gives an example of how the checksum can be calculated:

/* The checksum calculated
 * (note that it is located on address 0x8000)
 */
extern unsigned short const __checksum;

void TestChecksum()
{
 unsigned short calc = 0;
 unsigned char zeros[2] = {0, 0};

 /* Run the checksum algorithm */
 calc = SlowCrc16(0,
 (unsigned char *) checksumStart,
 (checksumEnd - checksumStart+1));

 /* Rotate out the answer */
 calc = SlowCrc16(calc, zeros, 2);

 /* Test the checksum */
 if (calc != __checksum)
 {
 abort(); /* Failure */
 }
}

THINGS TO REMEMBER

When calculating a checksum, you must remember that:

● Typically, the checksum must be calculated from the lowest to the highest address
for every memory range

● Each memory range must be verified in the same order as defined (ABC is not the
same as ACB)

● It is OK to have several ranges for one checksum

● If several checksums are used, you should place them in sections with unique names
and use unique symbol names

● If the a slow function variant is used, you must make a final call to the checksum
calculation with as many bytes (with the value 0x00) as there are bytes in the
checksum.

● Never calculate a checksum on a location that contains a checksum.

AFE1_AFE2-1:1

210

Checksum calculation

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

 211

Efficient coding for
embedded applications
● Selecting data types

● Controlling data and function placement in memory

● Controlling compiler optimizations

● Facilitating good code generation

Selecting data types
For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.

● Use 32-bit data types (signed or unsigned int or long), unless memory is
restricted.

● Try to avoid 64-bit data types, such as double and long long.

● When using arrays, it is more efficient if the type of the index expression matches
the index type of the memory of the array, that is int.

● Using floating-point types on a microprocessor without a math co-processor is very
inefficient, both in terms of code size and execution speed.

● Declaring a pointer parameter to point to const data tells the calling function that
the data pointed to will not change, which opens for better optimizations.

For information about representation of supported data types, pointers, and structures
types, see the chapter Data representation.

FLOATING-POINT TYPES

Using floating-point types on a microprocessor without a math coprocessor is very
inefficient, both in terms of code size and execution speed. Thus, you should consider
replacing code that uses floating-point operations with code that uses integers, because
these are more efficient.

AFE1_AFE2-1:1

212

Selecting data types

IAR C/C++ Compiler User Guide
for AVR32

The compiler supports two floating-point formats—32 and 64 bits. The 32-bit
floating-point type float is more efficient in terms of code size and execution speed.
However, the 64-bit format double supports higher precision and larger numbers.

In the compiler, the floating-point type float always uses the 32-bit format, and the
type double always uses the 64-bit format.

By default, a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision. In the example below a is converted from a float to a double, the double
constant 1.0 is added and the result is converted back to a float:

double Test(float a)
{
 return a + 1.0;
}

To treat a floating-point constant as a float rather than as a double, add the suffix f
to it, for example:

double Test(float a)
{
 return a + 1.0f;
}

For more information about floating-point types, see Basic data types—floating-point
types, page 279.

ALIGNMENT OF ELEMENTS IN A STRUCTURE

The AVR32 microprocessor requires that when accessing data in memory, the data must
be aligned. Each element in a structure must be aligned according to its specified type
requirements. This means that the compiler might need to insert pad bytes to keep the
alignment correct.

There are situations when this can be a problem:

● There are external demands; for example, network communication protocols are
usually specified in terms of data types with no padding in between

● You need to save data memory.

For information about alignment requirements, see Alignment, page 275.

Use the #pragma pack directive or the __packed data type attribute for a tighter
layout of the structure. The drawback is that each access to an unaligned element in the
structure will use more code.

Alternatively, write your own customized functions for packing and unpacking
structures. This is a more portable way, which will not produce any more code apart

AFE1_AFE2-1:1

Efficient coding for embedded applications

213

from your functions. The drawback is the need for two views on the structure
data—packed and unpacked.

For more information about the #pragma pack directive, see pack, page 321.

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Anonymous structures are part of the C++ language; however, they are not part of the C
standard. In the IAR C/C++ Compiler for AVR32 they can be used in C if language
extensions are enabled.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 254, for
additional information.

Example

In this example, the members in the anonymous union can be accessed, in function F,
without explicitly specifying the union name:

struct S
{
 char mTag;
 union
 {
 long mL;
 float mF;
 };
} St;

void F(void)
{
 St.mL = 5;
}

AFE1_AFE2-1:1

214

Controlling data and function placement in memory

IAR C/C++ Compiler User Guide
for AVR32

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in this example:

__no_init volatile
union
{
 unsigned char IOPORT;
 struct
 {
 unsigned char way: 1;
 unsigned char out: 1;
 };
} @ 0xFFF00100;

/* The variables are used here. */
void Test(void)
{
 IOPORT = 0;
 way = 1;
 out = 1;
}

This declares an I/O register byte IOPORT at address 0xFFF00100. The I/O register has
2 bits declared, way and out. Note that both the inner structure and the outer union are
anonymous.

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _A_ to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_IOPORT.

Controlling data and function placement in memory
The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms and know which one is best suited for different situations. You can use:

● Code models

By selecting a code model, you can control the default memory placement of
functions. For more information, see Code models and memory attributes for
function storage, page 71.

AFE1_AFE2-1:1

Efficient coding for embedded applications

215

● Data models

By selecting a data model, you can control the default memory placement of
variables and constants. For more information, see Data models, page 66.

● Memory attributes

Using IAR-specific keywords or pragma directives, you can override the default
placement of functions and data objects. For more information, see Using function
memory attributes, page 72 and Using data memory attributes, page 63.

● The @ operator and the #pragma location directive for absolute placement.

Using the @ operator or the #pragma location directive, you can place individual
global and static variables at absolute addresses. Note that it is not possible to use this
notation for absolute placement of individual functions. For more information, see
Data placement at an absolute location, page 215.

● The @ operator and the #pragma location directive for segment placement.

Using the @ operator or the #pragma location directive, you can place individual
functions, variables, and constants in named segments. The placement of these
segments can then be controlled by linker directives. For more information, see Data
and function placement in segments, page 217

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses.

● __no_init

● __no_init and const (without initializers)

● const (with initializers)

To place a variable at an absolute address, the argument to the @ operator and the
#pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfill the alignment requirement for the variable
that should be located.

Note: All declarations of variables placed at an absolute address are tentative
definitions. Tentatively defined variables are only kept in the output from the compiler
if they are needed in the module being compiled. Such variables will be defined in all
modules in which they are used, which will work as long as they are defined in the same
way. The recommendation is to place all such declarations in header files that are
included in all modules that use the variables.

AFE1_AFE2-1:1

216

Controlling data and function placement in memory

IAR C/C++ Compiler User Guide
for AVR32

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ 0xFFF2000;/* OK */

The next example contains two const declared objects. The first one is not initialized,
and the second one is initialized to a specific value. Both objects are placed in ROM.
This is useful for configuration parameters, which are accessible from an external
interface. Note that in the second case, the compiler is not obliged to actually read from
the variable, because the value is known.

#pragma location=0xFFF20004
__no_init const int beta; /* OK */

const int gamma @ 0xFFF20008 = 3; /* OK */

In the first case, the value is not initialized by the compiler; the value must be set by
other means. The typical use is for configurations where the values are loaded to ROM
separately, or for special function registers that are read-only.

This shows incorrect usage:

int delta @ 0xFFF2000C; /* Error, neither */
 /* "__no_init" nor "const".*/
__no_init int epsilon @ 0xFFF2000D; /* Error, misaligned. */

C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain
a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x100; /* Bad in C++ */

the linker will report that more than one variable is located at address 0x100.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

/* The extern keyword makes x public. */
extern volatile const __no_init int x @ 0x100;

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.

AFE1_AFE2-1:1

Efficient coding for embedded applications

217

DATA AND FUNCTION PLACEMENT IN SEGMENTS

The following method can be used for placing data or functions in named segments other
than default:

● The @ operator, alternatively the #pragma location directive, can be used for
placing individual variables or individual functions in named segments. The named
segment can either be a predefined segment, or a user-defined segment. The
variables must be declared either __no_init or const. If declared const, they
can have initializers.

C++ static member variables can be placed in named segments just like any other static
variable.

If you use your own segments, in addition to the predefined segments, the segments
must also be defined in the linker configuration file using the -Z or the -P segment
control directives.

Note: Take care when explicitly placing a variable or function in a predefined segment
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
a malfunctioning application. Carefully consider the circumstances; there might be strict
requirements on the declaration and use of the function or variable.

The location of the segments can be controlled from the linker configuration file.

For more information about segments, see the chapter Segment reference.

Examples of placing variables in named segments

In the following examples, a data object is placed in a user-defined segment. If no
memory attribute is specified, the variable will, like any other variable, be treated as if
it is located in the default memory. Note that you must as always ensure that the segment
is placed in the appropriate memory area when linking.

__no_init int alpha @ "MY_NOINIT"; /* OK */

#pragma location="MY_CONSTANTS"
const int beta = 42; /* OK */

const int gamma @ "MY_CONSTANTS" = 17;/* OK */
int theta @ "MY_ZEROS"; /* OK */
int phi @ "MY_INITED" = 4711; /* OK */

The compiler will warn that segments that contain zero-initialized and initialized data
must be handled manually. To do this, you must use the linker option -Q to separate the
initializers into one separate segment and the symbols to be initialized to a different
segment. You must then write source code that copies the initializer segment to the
initialized segment, and zero-initialized symbols must be cleared before they are used.

AFE1_AFE2-1:1

218

Controlling compiler optimizations

IAR C/C++ Compiler User Guide
for AVR32

As usual, you can use memory attributes to select a memory for the variable. Note that
you must as always ensure that the segment is placed in the appropriate memory area
when linking.

__data17 __no_init int alpha @ "MY_DATA17_NOINIT";/* Placed in
 data17*/

This example shows incorrect usage:

int delta @ "MY_ZEROS"; /* Error, neither */
/* "__no_init" nor "const" */

Examples of placing functions in named segments

void f(void) @ "MY_FUNCTIONS";

void g(void) @ "MY_FUNCTIONS"
{
}

#pragma location="MY_FUNCTIONS"
void h(void);

Specify a memory attribute to direct the function to a specific memory, and then modify
the segment placement in the linker configuration file accordingly:

__code21 void f(void) @ "MY_CODE21_FUNCTIONS";

Controlling compiler optimizations
The compiler performs many transformations on your application to generate the best
possible code. Examples of such transformations are storing values in registers instead
of memory, removing superfluous code, reordering computations in a more efficient
order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, because
some optimizations are performed by the linker. For instance, all unused functions and
variables are removed and not included in the final output.

SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute very quickly into a separate file and compile it
for minimal execution time, and the rest of the code for minimal code size. This will give
a small program, which is still fast enough where it matters.

AFE1_AFE2-1:1

Efficient coding for embedded applications

219

You can also exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. See optimize, page 320, for
information about the pragma directive.

MULTI-FILE COMPILATION UNITS

In addition to applying different optimizations to different source files or even functions,
you can also decide what a compilation unit consists of—one or several source code
files.

By default, a compilation unit consists of one source file, but you can also use multi-file
compilation to make several source files in a compilation unit. The advantage is that
interprocedural optimizations such as inlining and cross jump have more source code to
work on. Ideally, the whole application should be compiled as one compilation unit.
However, for large applications this is not practical because of resource restrictions on
the host computer. For more information, see --mfc, page 260.

Note: Only one object file is generated, and thus all symbols will be part of that object
file.

If the whole application is compiled as one compilation unit, it is very useful to make
the compiler also discard unused public functions and variables before the
interprocedural optimizations are performed. Doing this limits the scope of the
optimizations to functions and variables that are actually used. For more information,
see --discard_unused_publics, page 253.

AFE1_AFE2-1:1

220

Controlling compiler optimizations

IAR C/C++ Compiler User Guide
for AVR32

OPTIMIZATION LEVELS

The compiler supports different levels of optimizations. This table lists optimizations
that are typically performed on each level:

Note: Some of the performed optimizations can be individually enabled or disabled. For
more information about these, see Fine-tuning enabled transformations, page 221.

A high level of optimization might result in increased compile time, and will most likely
also make debugging more difficult, because it is less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope. At any time, if you experience difficulties when debugging your
code, try lowering the optimization level.

Optimization level Description

None (Best debug support) Variables live through their entire scope
Dead code elimination
Redundant label elimination
Redundant branch elimination

Low Same as above but variables only live for as long as they are
needed, not necessarily through their entire scope
Conditional returns

Medium Same as above, and:
Live-dead analysis and optimization
Code hoisting
Register content analysis and optimization
Common subexpression elimination
Static clustering

High (Balanced) Same as above, and:
Peephole optimization
Cross jumping
Instruction scheduling (when optimizing for speed)
Loop unrolling
Function inlining
Code motion
Type-based alias analysis

Table 29: Compiler optimization levels

AFE1_AFE2-1:1

Efficient coding for embedded applications

221

SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used; speed will trade size for
speed, whereas size will trade speed for size. Note that one optimization sometimes
enables other optimizations to be performed, and an application might in some cases
become smaller even when optimizing for speed rather than size.

If you use the optimization level High speed, the --no_size_constraints compiler
option relaxes the normal restrictions for code size expansion and enables more
aggressive optimizations.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IDE Function inlining, or
the #pragma optimize directive. These transformations can be disabled individually:

● Common subexpression elimination

● Loop unrolling

● Function inlining

● Code motion

● Type-based alias analysis

● Static clustering

● Instruction scheduling.

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_cse, page 261.

Loop unrolling

Loop unrolling means that the code body of a loop, whose number of iterations can be
determined at compile time, is duplicated. Loop unrolling reduces the loop overhead by
amortizing it over several iterations.

This optimization is most efficient for smaller loops, where the loop overhead can be a
substantial part of the total loop body.

AFE1_AFE2-1:1

222

Controlling compiler optimizations

IAR C/C++ Compiler User Guide
for AVR32

Loop unrolling, which can be performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Only relatively small loops
where the loop overhead reduction is noticeable will be unrolled. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To disable loop unrolling, use the command line option --no_unroll, see --no_unroll,
page 264.

Function inlining

Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the call. This
optimization normally reduces execution time, but might increase the code size.

For more information, see Inlining functions, page 87.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization
level Medium and above, normally reduces code size and execution time. The resulting
code might however be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

For more information about the command line option, see --no_code_motion, page 261.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

Type-based alias analysis optimization assumes that all accesses to an object are
performed using its declared type or as a char type. This assumption lets the compiler
detect whether pointers can reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For application code
conforming to standard C or C++ application code, this optimization can reduce code
size and execution time. However, non-standard C or C++ code might result in the
compiler producing code that leads to unexpected behavior. Therefore, it is possible to
turn this optimization off.

AFE1_AFE2-1:1

Efficient coding for embedded applications

223

Note: This option has no effect at optimization levels None, Low, and Medium.

For more information about the command line option, see --no_tbaa, page 264.

Example

short F(short *p1, long *p2)
{
 *p2 = 0;
 *p1 = 1;
 return *p2;
}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the long value that p2 points to. Thus, it is known at compile time
that this function returns 0. However, in non-standard-conforming C or C++ code these
pointers could overlap each other by being part of the same union. If you use explicit
casts, you can also force pointers of different pointer types to point to the same memory
location.

Static clustering

When static clustering is enabled, static and global variables that are defined within the
same module are arranged so that variables that are accessed in the same function are
stored close to each other. This makes it possible for the compiler to use the same base
pointer for several accesses.

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_clustering, page 261.

Instruction scheduling

The compiler features an instruction scheduler to increase the performance of the
generated code. To achieve that goal, the scheduler rearranges the instructions to
minimize the number of pipeline stalls emanating from resource conflicts within the
microprocessor.

For more information about the command line option, see --no_scheduling, page 262.

Facilitating good code generation
This section contains hints on how to help the compiler generate good code, for
example:

● Using efficient addressing modes

● Helping the compiler optimize

AFE1_AFE2-1:1

224

Facilitating good code generation

IAR C/C++ Compiler User Guide
for AVR32

● Generating more useful error message.

WRITING OPTIMIZATION-FRIENDLY SOURCE CODE

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

● Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions can modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

● Avoid taking the address of local variables using the & operator. This is inefficient
for two main reasons. First, the variable must be placed in memory, and thus cannot
be placed in a processor register. This results in larger and slower code. Second, the
optimizer can no longer assume that the local variable is unaffected over function
calls.

● Module-local variables—variables that are declared static—are preferred over
global variables (non-static). Also avoid taking the address of frequently accessed
static variables.

● The compiler is capable of inlining functions, see Function inlining, page 222. To
maximize the effect of the inlining transformation, it is good practice to place the
definitions of small functions called from more than one module in the header file
rather than in the implementation file. Alternatively, you can use multi-file
compilation. For more information, see Multi-file compilation units, page 219.

● Avoid using inline assembler without operands and clobbered resources. Instead,
use SFRs or intrinsic functions if available. Otherwise, use inline assembler with
operands and clobbered resources or write a separate module in assembler
language. For more information, see Mixing C and assembler, page 159.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that will, when followed, save
memory and stack space:

● If stack space is limited, avoid long call chains and recursive functions.

● Avoid using large non-scalar types, such as structures, as parameters or return type.
To save stack space, you should instead pass them as pointers or, in C++, as
references.

FUNCTION PROTOTYPES

It is possible to declare and define functions using one of two different styles:

AFE1_AFE2-1:1

Efficient coding for embedded applications

225

● Prototyped

● Kernighan & Ritchie C (K&R C)

Both styles are valid C, however it is strongly recommended to use the prototyped style,
and provide a prototype declaration for each public function in a header that is included
both in the compilation unit defining the function and in all compilation units using it.

The compiler will not perform type checking on parameters passed to functions declared
using K&R style. Using prototype declarations will also result in more efficient code in
some cases, as there is no need for type promotion for these functions.

To make the compiler require that all function definitions use the prototyped style, and
that all public functions have been declared before being defined, use the
Project>Options>C/C++ Compiler>Language 1>Require prototypes compiler
option (--require_prototypes).

Prototyped style

In prototyped function declarations, the type for each parameter must be specified.

int Test(char, int); /* Declaration */

int Test(char ch, int i) /* Definition */
{
 return i + ch;
}

Kernighan & Ritchie style

In K&R style—pre-Standard C—it is not possible to declare a function prototyped.
Instead, an empty parameter list is used in the function declaration. Also, the definition
looks different.

For example:

int Test(); /* Declaration */

int Test(ch, i) /* Definition */
char ch;
int i;
{
 return i + ch;
}

INTEGER TYPES AND BIT NEGATION

In some situations, the rules for integer types and their conversion lead to possibly
confusing behavior. Things to look out for are assignments or conditionals (test

AFE1_AFE2-1:1

226

Facilitating good code generation

IAR C/C++ Compiler User Guide
for AVR32

expressions) involving types with different size, and logical operations, especially bit
negation. Here, types also includes types of constants.

In some cases there might be warnings (for example, for constant conditional or
pointless comparison), in others just a different result than what is expected. Under
certain circumstances the compiler might warn only at higher optimizations, for
example, if the compiler relies on optimizations to identify some instances of constant
conditionals. In this example an 8-bit character, a 32-bit integer, and two’s complement
is assumed:

void F1(unsigned char c1)
{
 if (c1 == ~0x80)
 ;
}

Here, the test is always false. On the right hand side, 0x80 is 0x00000080, and
~0x00000080 becomes 0xFFFFFF7F. On the left hand side, c1 is an 8-bit unsigned
character, so it cannot be larger than 255. It also cannot be negative, which means that
the integral promoted value can never have the topmost 8 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example by interrupt routines or by code
executing in separate threads, must be properly marked and have adequate protection.
The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable (for example, keeping track of the variable in
registers), will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code.

For sequences of accesses to variables that you do not want to be interrupted, use the
__monitor keyword. This must be done for both write and read sequences, otherwise
you might end up reading a partially updated variable. Accessing a small-sized
volatile variable can be an atomic operation, but you should not rely on it unless you
continuously study the compiler output. It is safer to use the __monitor keyword to
ensure that the sequence is an atomic operation. For more information, see __monitor,
page 298.

For more information about the volatile type qualifier and the rules for accessing
volatile objects, see Declaring objects volatile, page 284.

AFE1_AFE2-1:1

Efficient coding for embedded applications

227

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several AVR32 devices are included in the IAR product
installation. The header files are named iodevice.h and define the processor-specific
special function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

SFRs with bitfields are declared in the header file, for example:

__no_init volatile union
{
 unsigned short mwctl2;
 struct
 {
 unsigned short edr: 1;
 unsigned short edw: 1;
 unsigned short lee: 2;
 unsigned short lemd: 2;
 unsigned short lepl: 2;
 } mwctl2bit;
} @ 0xFFF00100;

/* By including the appropriate include file in your code,
 * it is possible to access either the whole register or any
 * individual bit (or bitfields) from C code as follows.
 */

void Test()
{
 /* Whole register access */
 mwctl2 = 0x1234;

 /* Bitfield accesses */
 mwctl2bit.edw = 1;
 mwctl2bit.lepl = 3;
}

You can also use the header files as templates when you create new header files for other
AVR32 devices. For information about the @ operator, see Placing located data, page
108.

AFE1_AFE2-1:1

228

Facilitating good code generation

IAR C/C++ Compiler User Guide
for AVR32

PASSING VALUES BETWEEN C AND ASSEMBLER OBJECTS

The following example shows how you in your C source code can use inline assembler
to set and get values from a special purpose register:

unsigned long get_ACBA(void)
{
 unsigned long value;
 asm volatile("mfsr %0, 8 /* ACBA */" : "=r"(value));
 return value;
}

void set_ACBA(unsigned long value)
{
 asm volatile("mtsr 8 /* ACBA */, %0" :: "r"(value));
}

The general purpose register is used for getting and setting the value of the special
purpose register ACBA. The same method can be used also for accessing other special
purpose registers and specific instructions.

To read more about inline assembler, see Inline assembler, page 160.

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in a
separate segment, according to the specified memory keyword. See the chapter Linking
overview for more information.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a __no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For more information, see __no_init, page 300. Note that to use this keyword, language
extensions must be enabled; see -e, page 254. For more information, see also
object_attribute, page 319.

229

Part 2. Reference
information
This part of the IAR C/C++ Compiler User Guide for AVR32 contains these
chapters:

● External interface details

● Compiler options

● Data representation

● Extended keywords

● Pragma directives

● Intrinsic functions

● The preprocessor

● Library functions

● Segment reference

● The stack usage control file

● Implementation-defined behavior for Standard C

● Implementation-defined behavior for C89.

230

AFE1_AFE2-1:1

 231

External interface details
● Invocation syntax

● Include file search procedure

● Compiler output

● Diagnostics

Invocation syntax
You can use the compiler either from the IDE or from the command line. See the IDE
Project Management and Building Guide for AVR32 for information about using the
compiler from the IDE.

COMPILER INVOCATION SYNTAX

The invocation syntax for the compiler is:

iccavr32 [options] [sourcefile] [options]

For example, when compiling the source file prog.c, use this command to generate an
object file with debug information:

iccavr32 prog.c --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the
extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order as they are specified on the
command line.

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

AFE1_AFE2-1:1

232

Include file search procedure

IAR C/C++ Compiler User Guide
for AVR32

PASSING OPTIONS

There are three different ways of passing options to the compiler:

● Directly from the command line

Specify the options on the command line after the iccavr32 command, either
before or after the source filename; see Invocation syntax, page 231.

● Via environment variables

The compiler automatically appends the value of the environment variables to every
command line; see Environment variables, page 232.

● Via a text file, using the -f option; see -f, page 256.

For general guidelines for the option syntax, an options summary, and a detailed
description of each option, see the chapter Compiler options.

ENVIRONMENT VARIABLES

These environment variables can be used with the compiler:

Include file search procedure
This is a detailed description of the compiler’s #include file search procedure:

● If the name of the #include file is an absolute path specified in angle brackets or
double quotes, that file is opened.

● If the compiler encounters the name of an #include file in angle brackets, such as:

#include <stdio.h>

it searches these directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified, see -I, page 258.

2 The directories specified using the C_INCLUDE environment variable, if any; see
Environment variables, page 232.

3 The automatically set up library system include directories. See --dlib_config,
page 253.

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:
C_INCLUDE=c:\program files\iar systems\embedded

workbench .n\avr32\inc;c:\headers

QCCAVR32 Specifies command line options; for example: QCCAVR32=-lA
asm.lst

Table 30: Compiler environment variables

AFE1_AFE2-1:1

External interface details

233

● If the compiler encounters the name of an #include file in double quotes, for
example:

#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the compiler starts searching the directory of the file
that was last included, iterating upwards for each included file, searching the source file
directory last. For example:

src.c in directory dir\src
#include "src.h"
...

src.h in directory dir\include
#include "config.h"
...

When dir\exe is the current directory, use this command for compilation:

iccavr32 ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

For information about the syntax for including header files, see Overview of the
preprocessor, page 347.

Compiler output
The compiler can produce the following output:

● A linkable object file

The object files produced by the compiler use a proprietary format called UBROF,
which stands for Universal Binary Relocatable Object Format. By default, the object
file has the filename extension r82.

dir\include Current file is src.h.

dir\src File including current file (src.c).

dir\include As specified with the first -I option.

dir\debugconfig As specified with the second -I option.

AFE1_AFE2-1:1

234

Compiler output

IAR C/C++ Compiler User Guide
for AVR32

● Optional list files

Various kinds of list files can be specified using the compiler option -l, see -l, page
258. By default, these files will have the filename extension lst.

● Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option; by
default, the file will have the filename extension i.

● Diagnostic messages

Diagnostic messages are directed to the standard error stream and displayed on the
screen, and printed in an optional list file. For more information about diagnostic
messages, see Diagnostics, page 235.

● Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 234.

● Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to the standard output stream and displayed on the screen. Some
of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

ERROR RETURN CODES

The compiler returns status information to the operating system that can be tested in a
batch file.

These command line error codes are supported:

Code Description

0 Compilation successful, but there might have been warnings.

1 Warnings were produced and the option --warnings_affect_exit_code
was used.

2 Errors occurred.

3 Fatal errors occurred, making the compiler abort.

4 Internal errors occurred, making the compiler abort.

Table 31: Error return codes

AFE1_AFE2-1:1

External interface details

235

Diagnostics
This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

MESSAGE FORMAT

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename,linenumber level[tag]: message

with these elements:

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.

SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler finds a source code construct
that can possibly lead to erroneous behavior in the generated code. Remarks are by
default not issued, but can be enabled, see --remarks, page 269.

Warning

A diagnostic message that is produced when the compiler finds a potential programming
error or omission which is of concern, but which does not prevent completion of the
compilation. Warnings can be disabled by use of the command line option
--no_warnings, see --no_warnings, page 265.

filename The name of the source file in which the issue was encountered

linenumber The line number at which the compiler detected the issue

level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long

AFE1_AFE2-1:1

236

Diagnostics

IAR C/C++ Compiler User Guide
for AVR32

Error

A diagnostic message that is produced when the compiler finds a construct which clearly
violates the C or C++ language rules, such that code cannot be produced. An error will
produce a non-zero exit code.

Fatal error

A diagnostic message that is produced when the compiler finds a condition that not only
prevents code generation, but which makes further processing of the source code
pointless. After the message is issued, compilation terminates. A fatal error will produce
a non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

See the chapter Compiler options, for information about the compiler options that are
available for setting severity levels.

See the chapter Pragma directives, for information about the pragma directives that are
available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the compiler. It is produced using this form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Systems Technical Support. Include enough
information to reproduce the problem, typically:

● The product name

● The version number of the compiler, which can be seen in the header of the list files
generated by the compiler

● Your license number

● The exact internal error message text

● The source file of the application that generated the internal error

● A list of the options that were used when the internal error occurred.

AFE1_AFE2-1:1

 237

Compiler options
● Options syntax

● Summary of compiler options

● Descriptions of compiler options

Options syntax
Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IDE.

See the online help system for information about the compiler options available in the
IDE and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and long names.
Some options have both.

● A short option name consists of one character, and it can have parameters. You
specify it with a single dash, for example -e

● A long option name consists of one or several words joined by underscores, and it
can have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 232.

RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specifying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-O or -Oh

AFE1_AFE2-1:1

238

Options syntax

IAR C/C++ Compiler User Guide
for AVR32

For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), for example:

--misrac2004=n

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\src or -I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=MyDiagnostics.lst

or

--diagnostics_tables MyDiagnostics.lst

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

● For short options, optional parameters are specified without a preceding space

● For long options, optional parameters are specified with a preceding equal sign (=)

● For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-lA MyList.lst

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n PreprocOutput.lst

Rules for specifying a filename or directory as parameters

These rules apply for options taking a filename or directory as parameters:

● Options that take a filename as a parameter can optionally take a file path. The path
can be relative or absolute. For example, to generate a listing to the file List.lst
in the directory ..\listings\:

iccavr32 prog.c -l ..\listings\List.lst

AFE1_AFE2-1:1

Compiler options

239

● For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name was
specified with the option -o, in which case that name is used. For example:

iccavr32 prog.c -l ..\listings\

The produced list file will have the default name ..\listings\prog.lst

● The current directory is specified with a period (.). For example:

iccavr32 prog.c -l .

● / can be used instead of \ as the directory delimiter.

● By specifying -, input files and output files can be redirected to the standard input
and output stream, respectively. For example:

iccavr32 prog.c -l -

Additional rules

These rules also apply:

● When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes; this example will create a list file called -r:

iccavr32 prog.c -l ---r

● For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:

--diag_warning=Be0001,Be0002

Alternatively, the option can be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002

Summary of compiler options
This table summarizes the compiler command line options:

Command line option Description

--avr32_dsp_instructions Enables dsp instructions

--avr32_flashvault Enables secure mode instructions

--avr32_fpu_instructions Enables fpu instructions

--avr32_rmw_instructions Enables rmw instructions

--avr32_simd_instructions Enables simd instructions

Table 32: Compiler options summary

AFE1_AFE2-1:1

240

Summary of compiler options

IAR C/C++ Compiler User Guide
for AVR32

--c89 Specifies the C89 dialect

--char_is_signed Treats char as signed

--char_is_unsigned Treats char as unsigned

--code_model Specifies the code model

--core Specifies a CPU core

--core_revision Specifies the revision of the CPU core

--cpu Specifies a specific device

--cpu_info Reads device-specific configuration information
from a file

-D Defines preprocessor symbols

--data_model Specifies the data model

--debug Generates debug information

--dependencies Lists file dependencies

--diag_error Treats these as errors

--diag_remark Treats these as remarks

--diag_suppress Suppresses these diagnostics

--diag_warning Treats these as warnings

--diagnostics_tables Lists all diagnostic messages

--disable_inline_asm_label_re

placement

Disables label replacement in inline assembler
statements

--discard_unused_publics Discards unused public symbols

--dlib_config Uses the system include files for the DLIB library
and determines which configuration of the library
to use

-e Enables language extensions

--ec++ Specifies Embedded C++

--eec++ Specifies Extended Embedded C++

--enable_multibytes Enables support for multibyte characters in source
files

--enable_restrict Enables the Standard C keyword restrict

--error_limit Specifies the allowed number of errors before
compilation stops

-f Extends the command line

Command line option Description

Table 32: Compiler options summary (Continued)

AFE1_AFE2-1:1

Compiler options

241

--fp_implementation Selects the floating--point implementation to use

--guard_calls Enables guards for function static variable
initialization

--header_context Lists all referred source files and header files

-I Specifies include file path

-l Creates a list file

--library_module Creates a library module

--macro_positions_in

_diagnostics

Obtains positions inside macros in diagnostic
messages

--mfc Enables multi-file compilation

--minimize_constant_tables Minimizes the use of constant tables

--misrac1998 Enables error messages specific to MISRA-C:1998.
See the IAR Embedded Workbench® MISRA C:1998
Reference Guide.

--misrac2004 Enables error messages specific to MISRA-C:2004.
See the IAR Embedded Workbench® MISRA C:2004
Reference Guide.

--misrac_verbose IAR Embedded Workbench® MISRA C:1998
Reference Guide or the IAR Embedded Workbench®
MISRA C:2004 Reference Guide.

--module_name Sets the object module name

--no_clustering Disables static clustering optimizations

--no_code_motion Disables code motion optimization

--no_cse Disables common subexpression elimination

--no_inline Disables function inlining

--no_path_in_file_macros Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

--no_scheduling Disables the instruction scheduler

--no_size_constraints Relaxes the normal restrictions for code size
expansion when optimizing for speed.

--no_static_destruction Disables destruction of C++ static variables at
program exit

--no_system_include Disables the automatic search for system include
files

Command line option Description

Table 32: Compiler options summary (Continued)

AFE1_AFE2-1:1

242

Summary of compiler options

IAR C/C++ Compiler User Guide
for AVR32

--no_tbaa Disables type-based alias analysis

--no_typedefs_in_diagnostics Disables the use of typedef names in diagnostics

--no_unroll Disables loop unrolling

--no_warnings Disables all warnings

--no_wrap_diagnostics Disables wrapping of diagnostic messages

-O Sets the optimization level

-o Sets the object filename. Alias for --output.

--omit_types Excludes type information

--only_stdout Uses standard output only

--output Sets the object filename

--pending_instantiations Sets the maximum number of instantiations of a
given C++ template.

--predef_macros Lists the predefined symbols.

--preinclude Includes an include file before reading the source
file

--preprocess Generates preprocessor output

--public_equ Defines a global named assembler label

-r Generates debug information. Alias for --debug.

--relaxed_fp Relaxes the rules for optimizing floating-point
expressions

--remarks Enables remarks

--require_prototypes Verifies that functions are declared before they are
defined

--silent Sets silent operation

--strict Checks for strict compliance with Standard
C/C++

--system_include_dir Specifies the path for system include files

--unaligned_word_access Allows unaligned word access

--use_c++_inline Uses C++ inline semantics in C99

--variable_enum_size Enables enum size optimization

--vla Enables C99 VLA support

--warn_about_c_style_casts Makes the compiler warn when C-style casts are
used in C++ source code

Command line option Description

Table 32: Compiler options summary (Continued)

AFE1_AFE2-1:1

Compiler options

243

Descriptions of compiler options
The following section gives detailed reference information about each compiler option.

Note that if you use the options page Extra Options to specify specific command line
options, the IDE does not perform an instant check for consistency problems like
conflicting options, duplication of options, or use of irrelevant options.

--avr32_dsp_instructions

Syntax --avr32_dsp_instructions={enabled|disabled}

Parameters

Description Use this option to enable the dsp block of instructions. This option can be used together
with the --core option to control the generated code. By default, dsp instructions are
enabled when compiling for the avr32b architecture and disabled when compiling for
the avr32a architecture.

See also Instruction set extensions, page 56

Project>Options>General Options>Target>Enable DSP instructions

--avr32_flashvault

Syntax --avr32_flashvault={enabled|disabled}

Parameters

--warnings_affect_exit_code Warnings affect exit code

--warnings_are_errors Warnings are treated as errors

Command line option Description

Table 32: Compiler options summary (Continued)

enabled Enables the dsp block of instructions. (Default when
compiling for the avr32b architecture.)

disabled Disables the dsp block of instructions. (Default when
compiling for the avr32a architecture.)

enabled Enables secure mode instructions.

disabled Disables secure mode instructions.

AFE1_AFE2-1:1

244

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

Description Use this option to enable the use of secure mode instructions (FlashVault). This option
is only relevant when Project>Options>General Options>Target>Device is set to
either AVR32A (Generic) or AVR32B (Generic).

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--avr32_fpu_instructions

Syntax --avr32_fpu_instructions={enabled|disabled}

Parameters

Description Use this option to enable the fpu block of instructions. This option can be used together
with the --core option to control the generated code. fpu instructions are disabled by
default.

See also Instruction set extensions, page 56 and --fp_implementation, page 257

Project>Options>General Options>Target>Enable FPU instructions

--avr32_rmw_instructions

Syntax --avr32_rmw_instructions={enabled|disabled}

Parameters

Description Use this option to enable the rmw block of instructions. This option can be used together
with the --core option to control the generated code. By default, rmw instructions are
enabled when compiling for the avr32a architecture and disabled when compiling for
the avr32b architecture.

See also Instruction set extensions, page 56

enabled Enables the fpu block of instructions.

disabled Disables the fpu block of instructions.

enabled Enables the rmw block of instructions. (Default when
compiling for the avr32a architecture.)

disabled Disables the rmw block of instructions. (Default when
compiling for the avr32b architecture.)

AFE1_AFE2-1:1

Compiler options

245

Project>Options>General Options>Target>Enable RMW instructions

--avr32_simd_instructions

Syntax --avr32_simd_instructions={enabled|disabled}

Parameters

Description Use this option to enable the simd block of instructions. This option can be used
together with the --core option to control the generated code. By default, simd
instructions are enabled when compiling for the avr32b architecture and disabled when
compiling for the avr32a architecture.

See also Instruction set extensions, page 56

Project>Options>General Options>Target>Enable SIMD instructions

--c89

Syntax --c89

Description Use this option to enable the C89 C dialect instead of Standard C.

Note: This option is mandatory when the MISRA C checking is enabled.

See also C language overview, page 187.

Project>Options>C/C++ Compiler>Language 1>C dialect>C89

enabled Enables the simd block of instructions. (Default when
compiling for the avr32b architecture.)

disabled Disables the simd block of instructions. (Default when
compiling for the avr32a architecture.)

AFE1_AFE2-1:1

246

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

--char_is_signed

Syntax --char_is_signed

Description By default, the compiler interprets the plain char type as unsigned. Use this option to
make the compiler interpret the plain char type as signed instead. This can be useful
when you, for example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option and
cannot be used with code that is compiled with this option.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is

--char_is_unsigned

Syntax --char_is_unsigned

Description Use this option to make the compiler interpret the plain char type as unsigned. This is
the default interpretation of the plain char type.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is

--code_model

Syntax --code_model={small|medium|large}

Parameters

Description Use this option to select the code model, which means a default placement of functions.
If you do not select a code model, the compiler uses the default code model. Note that
all modules of your application must use the same code model.

See also Code models and memory attributes for function storage, page 71.

Project>Options>General Options>Target>Code model

small (default) Allows for up to 1 Mbyte of memory

medium Allows for up to 1 Mbyte of memory which can be
placed anywhere in the memory range

large Allows for up to 4 Gbytes of memory

AFE1_AFE2-1:1

Compiler options

247

--core

Syntax --core={avr32a|avr32b}

Parameters

Description Use this option to select the processor architecture for which the code will be generated.
If you do not use the option to specify a core, the compiler generates code for the avr32b
architecture by default. Note that all modules of your application must use the same
core.

The compiler supports the different AVR32 microprocessor architectures and
derivatives based on these architectures. The object code that the compiler generates for
the different architectures is binary compatible. However, it is not possible to link avr32a
code with avr32b code because of the different values of the runtime attribute.

Project>Options>General Options>Target>Device

--core_revision

Syntax --core_revision revision

Parameters

Description Use this option to generate code for the specified revision of the instruction set
architecture. This option cannot be used together with the --cpu option.

Project>Options>General Options>Target>Core revision

--cpu

Syntax --cpu=device

Parameters

avr32a (default) Generates code for the AVR32A architecture

avr32b Generates code for the AVR32B architecture

revision The revision to use. Valid numbers are 1 and up. Refer to the
hardware documentation to determine which core revision
your device has.

device Specifies a specific device

AFE1_AFE2-1:1

248

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

Description The compiler supports different devices, alternatively referred to as parts. Use this
option to select a specific device for which the code will be generated. If this option is
not specified, a generic AVR32A device is assumed.

Project>Options>General Options>Target>Device

--cpu_info

Syntax --cpu_info file

Parameters

Description Use this option to read a file containing configuration information about a specific
device. The compiler can then fine-tune the code generation for that target. The
--cpu_info option is only required when new devices are added in between releases
of IAR Embedded Workbench for AVR32. The compiler contains a database of all
devices known at release time.

See also --cpu, page 247

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

-D

Syntax -D symbol[=value]

Parameters

Description Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

The option -D has the same effect as a #define statement at the top of the source file:

-Dsymbol

file The path and filename of the file containing the
configuration information for the device

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol

AFE1_AFE2-1:1

Compiler options

249

is equivalent to:

#define symbol 1

To get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:

-DFOO=

Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--data_model

Syntax --data_model={small|large}

Parameters

Description Use this option to select the data model, which means a default placement of data
objects. If you do not select a data model, the compiler uses the default data model. Note
that all modules of your application must use the same data model.

See also Data models, page 66.

Project>Options>General Options>Target>Data model

--debug, -r

Syntax --debug
-r

Description Use the --debug or -r option to make the compiler include information in the object
modules required by the IAR C-SPY® Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

small (default in small code model) Accesses the lower and upper 1 Mbyte of
memory

large (default in the large code model) Accesses the entire 4 Gbytes of memory

AFE1_AFE2-1:1

250

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

--dependencies

Syntax --dependencies[=[i|m|n][s]] {filename|directory|+}

Parameters

See also Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to make the compiler list the names of all source and header files opened
for input into a file with the default filename extension i.

Example If --dependencies or --dependencies=i is used, the name of each opened input
file, including the full path, if available, is output on a separate line. For example:

 c:\iar\product\include\stdio.h
 d:\myproject\include\foo.h

If --dependencies=m is used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of an input file. For example:

 foo.r82: c:\iar\product\include\stdio.h
 foo.r82: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as gmake
(GNU make):

1 Set up the rule for compiling files to be something like:

 %.r82 : %.c
 $(ICC) $(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style (in this example, using the extension .d).

2 Include all the dependency files in the makefile using, for example:

 -include $(sources:.c=.d)

Because of the dash (-) it works the first time, when the .d files do not yet exist.

i (default) Lists only the names of files

m Lists in makefile style (multiple rules)

n Lists in makefile style (one rule)

s Suppresses system files

+ Gives the same output as -o, but with the filename extension d

AFE1_AFE2-1:1

Compiler options

251

This option is not available in the IDE.

--diag_error

Syntax --diag_error=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

--diag_remark

Syntax --diag_remark=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Note: By default, remarks are not displayed; use the --remarks option to display them.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress

Syntax --diag_suppress=tag[,tag,...]

tag The number of a diagnostic message, for example the
message number Pe117

tag The number of a diagnostic message, for example the
message number Pe177

AFE1_AFE2-1:1

252

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

Parameters

Description Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

--diag_warning

Syntax --diag_warning=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler
to stop before compilation is completed. This option may be used more than once on the
command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as warnings

--diagnostics_tables

Syntax --diagnostics_tables {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to list all possible diagnostic messages in a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

This option is not available in the IDE.

tag The number of a diagnostic message, for example the
message number Pe117

tag The number of a diagnostic message, for example the
message number Pe826

AFE1_AFE2-1:1

Compiler options

253

--disable_inline_asm_label_replacement

Syntax --disable_inline_asm_label_replacement

Description Use this option to disable label replacement in inline assembler statements. Disabling
label replacement will make labels shared between inline assembler statements within a
function, which means that one inline assembler statement can refer to a label in another
inline assembler statement.

Note: The compiler leaves no guarantees on the content of any register nor of the layout
of the stack frame upon entry of an inline assembler statement, unless you explicitly
request it through the use of inline assembler. Branching between two inline assembler
statements results in undefined behavior.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--discard_unused_publics

Syntax --discard_unused_publics

Description Use this option to discard unused public functions and variables when compiling with
the --mfc compiler option.

Note: Do not use this option only on parts of the application, as necessary symbols
might be removed from the generated output. Use the object attribute __root to keep
symbols that are used from outside the compilation unit, for example interrupt handlers.
If the symbol does not have the __root attribute and is defined in the library, the library
definition will be used instead.

See also --mfc, page 260 and Multi-file compilation units, page 219.

Project>Options>C/C++ Compiler>Discard unused publics

--dlib_config

Syntax --dlib_config filename.h|config

Parameters
filename A DLIB configuration header file, see Rules for specifying a

filename or directory as parameters, page 238.

AFE1_AFE2-1:1

254

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

Description Use this option to specify which library configuration to use, either by specifying an
explicit file or by specifying a library configuration—in which case the default file for
that library configuration will be used. Make sure that you specify a configuration that
corresponds to the library you are using. If you do not specify this option, the default
library configuration file will be used.

All prebuilt runtime libraries are delivered with corresponding configuration files. You
can find the library object files and the library configuration files in the directory
avr32\lib. For examples and information about prebuilt runtime libraries, see Using
prebuilt libraries, page 121.

If you build your own customized runtime library, you should also create a
corresponding customized library configuration file, which must be specified to the
compiler. For more information, see Building and using a customized library, page 130.

To set related options, choose:

Project>Options>General Options>Library Configuration

-e

Syntax -e

Description In the command line version of the compiler, language extensions are disabled by
default. If you use language extensions such as extended keywords and anonymous
structs and unions in your source code, you must use this option to enable them.

Note: The -e option and the --strict option cannot be used at the same time.

See also Enabling language extensions, page 189.

Project>Options>C/C++ Compiler>Language 1>Standard with IAR extensions

Note: By default, this option is selected in the IDE.

config The default configuration file for the specified configuration
will be used. Choose between:

none, no configuration will be used

normal, the normal library configuration will be used
(default)

full, the full library configuration will be used.

AFE1_AFE2-1:1

Compiler options

255

--ec++

Syntax --ec++

Description In the compiler, the default language is C. If you use Embedded C++, you must use this
option to set the language the compiler uses to Embedded C++.

Project>Options>C/C++ Compiler>Language 1>C++

and

Project>Options>C/C++ Compiler>Language 1>C++ dialect>Embedded C++

--eec++

Syntax --eec++

Description In the compiler, the default language is C. If you take advantage of Extended Embedded
C++ features like namespaces or the standard template library in your source code, you
must use this option to set the language the compiler uses to Extended Embedded C++.

See also Extended Embedded C++, page 196.

Project>Options>C/C++ Compiler>Language 1>C++

and

Project>Options>C/C++ Compiler>Language 1>C++ dialect>Extended
Embedded C++

--enable_multibytes

Syntax --enable_multibytes

Description By default, multibyte characters cannot be used in C or C++ source code. Use this option
to make multibyte characters in the source code be interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Project>Options>C/C++ Compiler>Language 2>Enable multibyte support

AFE1_AFE2-1:1

256

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

--enable_restrict

Syntax --enable_restrict

Description Enables the Standard C keyword restrict. This option can be useful for improving
analysis precision during optimization.

To set this option, use Project>Options>C/C++ Compiler>Extra options

--error_limit

Syntax --error_limit=n

Parameters

Description Use the --error_limit option to specify the number of errors allowed before the
compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IDE.

-f

Syntax -f filename

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to make the compiler read command line options from the named file,
with the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

n The number of errors before the compiler stops the
compilation. n must be a positive integer; 0 indicates no
limit.

AFE1_AFE2-1:1

Compiler options

257

--fp_implementation

Syntax --fp_implementation={default|small|fast|fpu}

Parameters

Description Use this option to select the floating-point implementation to use. Only one
floating-point implementation will be linked into the final application, with the fast
implementation taking precedence. This means that if at least one module that uses the
fast implementation is linked into the application, then all modules will use the fast
implementation.

Project>Options>C/C++ Compiler>Optimizations>Floating-point
implementation

--guard_calls

Syntax --guard_calls

Description Use this option to enable guards for function static variable initialization. This option
should be used in a threaded C++ environment.

See also Managing a multithreaded environment, page 149.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--header_context

Syntax --header_context

default The default alternative depends on the used optimization level.
High-speed optimization uses the fast implementation while all
other optimization levels use the small implementation.

If the option --avr32_fpu_instructions is enabled, fpu is
the default.

small Uses the small floating-point implementation.

fast Uses the fast floating-point implementation.

fpu Uses fpu instructions for floating-point values.

AFE1_AFE2-1:1

258

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

Description Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at
that point.

This option is not available in the IDE.

-I

Syntax -I path

Parameters

Description Use this option to specify the search paths for #include files. This option can be used
more than once on the command line.

See also Include file search procedure, page 232.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

-l

Syntax -l[a|A|b|B|c|C|D][N][H] {filename|directory}

Parameters

path The search path for #include files

a (default) Assembler list file

A Assembler list file with C or C++ source as comments

b Basic assembler list file. This file has the same contents as a
list file produced with -la, except that no extra
compiler-generated information (runtime model attributes,
call frame information, frame size information) is included *

B Basic assembler list file. This file has the same contents as a
list file produced with -lA, except that no extra compiler
generated information (runtime model attributes, call frame
information, frame size information) is included *

c C or C++ list file

AFE1_AFE2-1:1

Compiler options

259

* This makes the list file less useful as input to the assembler, but more useful for reading
by a human.

See also Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to generate an assembler or C/C++ listing to a file. Note that this option
can be used one or more times on the command line.

To set related options, choose:

Project>Options>C/C++ Compiler>List

--library_module

Syntax --library_module

Description Use this option to make the compiler generate a library module rather than a program
module. A program module is always included during linking. A library module will
only be included if it is referenced in your program.

Project>Options>C/C++ Compiler>Output>Module type>Library Module

--macro_positions_in_diagnostics

Syntax --macro_positions_in_diagnostics

Description Use this option to obtain position references inside macros in diagnostic messages. This
is useful for detecting incorrect source code constructs in macros.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

C (default) C or C++ list file with assembler source as comments

D C or C++ list file with assembler source as comments, but
without instruction offsets and hexadecimal byte values

N No diagnostics in file

H Include source lines from header files in output. Without this
option, only source lines from the primary source file are
included

AFE1_AFE2-1:1

260

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

--mfc

Syntax --mfc

Description Use this option to enable multi-file compilation. This means that the compiler compiles
one or several source files specified on the command line as one unit, which enhances
interprocedural optimizations.

Note: The compiler will generate one object file per input source code file, where the
first object file contains all relevant data and the other ones are empty. If you want only
the first file to be produced, use the -o compiler option and specify a certain output file.

Example iccavr32 myfile1.c myfile2.c myfile3.c --mfc

See also --discard_unused_publics, page 253, --output, -o, page 266, and Multi-file compilation
units, page 219.

Project>Options>C/C++ Compiler>Multi-file compilation

--minimize_constant_tables

Syntax --minimize_constant_tables={yes|no}

Parameters

Description Use this option to minimize the use of constant tables.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--module_name

Syntax --module_name=name

Parameters

yes The compiler tries to avoid constant table entries. (Default for
the AVR32A core)

no The compiler generates constant table entries as needed.
(Default for the AVR32B core)

name An explicit object module name

AFE1_AFE2-1:1

Compiler options

261

Description Normally, the internal name of the object module is the name of the source file, without
a directory name or extension. Use this option to specify an object module name
explicitly.

This option is useful when several modules have the same filename, because the
resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

Project>Options>C/C++ Compiler>Output>Object module name

--no_clustering

Syntax --no_clustering

Description Use this option to disable static clustering optimizations.

Note: This option has no effect at optimization.

See also Static clustering, page 223.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Static clustering

--no_code_motion

Syntax --no_code_motion

Description Use this option to disable code motion optimizations.

Note: This option has no effect at optimization levels below Medium.

See also Code motion, page 222.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Code motion

--no_cse

Syntax --no_cse

Description Use this option to disable common subexpression elimination.

Note: This option has no effect at optimization levels below Medium.

AFE1_AFE2-1:1

262

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

See also Common subexpression elimination, page 221.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Common subexpression elimination

--no_inline

Syntax --no_inline

Description Use this option to disable function inlining.

See also Inlining functions, page 87.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Function inlining

--no_path_in_file_macros

Syntax --no_path_in_file_macros

Description Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE__.

See also Description of predefined preprocessor symbols, page 348.

This option is not available in the IDE.

--no_scheduling

Syntax --no_scheduling

Description Use this option to disable the instruction scheduler.

Note: This option has no effect at optimization levels below High.

See also Instruction scheduling, page 223.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Instruction scheduling

AFE1_AFE2-1:1

Compiler options

263

--no_size_constraints

Syntax --no_size_constraints

Description Use this option to relax the normal restrictions for code size expansion when optimizing
for high speed.

Note: This option has no effect unless used with -Ohs.

See also Speed versus size, page 221.

Project>Options>C/C++ Compiler>Optimizations>Enable transformations>No
size constraints

--no_static_destruction

Syntax --no_static_destruction

Description Normally, the compiler emits code to destroy C++ static variables that require
destruction at program exit. Sometimes, such destruction is not needed.

Use this option to suppress the emission of such code.

See also System termination, page 134.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_system_include

Syntax --no_system_include

Description By default, the compiler automatically locates the system include files. Use this option
to disable the automatic search for system include files. In this case, you might need to
set up the search path by using the -I compiler option.

See also --dlib_config, page 253, and --system_include_dir, page 271.

Project>Options>C/C++ Compiler>Preprocessor>Ignore standard include
directories

AFE1_AFE2-1:1

264

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

--no_tbaa

Syntax --no_tbaa

Description Use this option to disable type-based alias analysis.

Note: This option has no effect at optimization levels below High.

See also Type-based alias analysis, page 222.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis

--no_typedefs_in_diagnostics

Syntax --no_typedefs_in_diagnostics

Description Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

Example typedef int (*MyPtr)(char const *);
MyPtr p = "My text string";

will give an error message like this:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

If the --no_typedefs_in_diagnostics option is used, the error message will be like
this:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "int (*)(char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_unroll

Syntax --no_unroll

Description Use this option to disable loop unrolling.

Note: This option has no effect at optimization levels below High.

AFE1_AFE2-1:1

Compiler options

265

See also Loop unrolling, page 221.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Loop unrolling

--no_warnings

Syntax --no_warnings

Description By default, the compiler issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

Syntax --no_wrap_diagnostics

Description By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

-O

Syntax -O[n|l|m|h|hs|hz]

Parameters

*The most important difference between None and Low is that at None, all non-static
variables will live during their entire scope.

n None* (Best debug support)

l (default) Low*

m Medium

h High, balanced

hs High, favoring speed

hz High, favoring size

AFE1_AFE2-1:1

266

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

Description Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level Low is used by
default. If only -O is used without any parameter, the optimization level High balanced
is used.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

See also Controlling compiler optimizations, page 218.

Project>Options>C/C++ Compiler>Optimizations

--omit_types

Syntax --omit_types

Description By default, the compiler includes type information about variables and functions in the
object output. Use this option if you do not want the compiler to include this type
information in the output, which is useful when you build a library that should not
contain type information. The object file will then only contain type information that is
a part of a symbol’s name. This means that the linker cannot check symbol references
for type correctness.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--only_stdout

Syntax --only_stdout

Description Use this option to make the compiler use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

--output, -o

Syntax --output {filename|directory}
-o {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 238.

AFE1_AFE2-1:1

Compiler options

267

Description By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension r82. Use this option to explicitly
specify a different output filename for the object code output.

This option is not available in the IDE.

--pending_instantiations

Syntax --pending_instantiations number

Parameters

Description Use this option to specify the maximum number of instantiations of a given C++
template that is allowed to be in process of being instantiated at a given time. This is
used for detecting recursive instantiations.

Project>Options>C/C++ Compiler>Extra Options

--predef_macros

Syntax --predef_macros {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to list the predefined symbols. When using this option, make sure to also
use the same options as for the rest of your project.

If a filename is specified, the compiler stores the output in that file. If a directory is
specified, the compiler stores the output in that directory, in a file with the predef
filename extension.

Note that this option requires that you specify a source file on the command line.

This option is not available in the IDE.

number An integer that specifies the limit, where 64 is default. If 0
is used, there is no limit.

AFE1_AFE2-1:1

268

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

--preinclude

Syntax --preinclude includefile

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to make the compiler read the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess

Syntax --preprocess[=[c][n][l]] {filename|directory}

Parameters

See also Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to generate preprocessed output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

--public_equ

Syntax --public_equ symbol[=value]

Parameters

Description This option is equivalent to defining a label in assembler language using the EQU
directive and exporting it using the PUBLIC directive. This option can be used more than
once on the command line.

c Preserve comments

n Preprocess only

l Generate #line directives

symbol The name of the assembler symbol to be defined

value An optional value of the defined assembler symbol

AFE1_AFE2-1:1

Compiler options

269

This option is not available in the IDE.

--relaxed_fp

Syntax --relaxed_fp

Description Use this option to allow the compiler to relax the language rules and perform more
aggressive optimization of floating-point expressions. This option improves
performance for floating-point expressions that fulfill these conditions:

● The expression consists of both single- and double-precision values

● The double-precision values can be converted to single precision without loss of
accuracy

● The result of the expression is converted to single precision.

Note that performing the calculation in single precision instead of double precision
might cause a loss of accuracy.

Example float F(float a, float b)
{
 return a + b * 3.0;
}

The C standard states that 3.0 in this example has the type double and therefore the
whole expression should be evaluated in double precision. However, when the
--relaxed_fp option is used, 3.0 will be converted to float and the whole expression
can be evaluated in float precision.

To set related options, choose:

Project>Options>C/C++ Compiler>Language 2>Floating-point semantics

--remarks

Syntax --remarks

Description The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

See also Severity levels, page 235.

AFE1_AFE2-1:1

270

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

--require_prototypes

Syntax --require_prototypes

Description Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

● A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

● A function definition of a public function with no previous prototype declaration

● An indirect function call through a function pointer with a type that does not include
a prototype.

Project>Options>C/C++ Compiler>Language 1>Require prototypes

--silent

Syntax --silent

Description By default, the compiler issues introductory messages and a final statistics report. Use
this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--strict

Syntax --strict

Description By default, the compiler accepts a relaxed superset of Standard C and C++. Use this
option to ensure that the source code of your application instead conforms to strict
Standard C and C++.

Note: The -e option and the --strict option cannot be used at the same time.

AFE1_AFE2-1:1

Compiler options

271

See also Enabling language extensions, page 189.

Project>Options>C/C++ Compiler>Language 1>Language conformance>Strict

--system_include_dir

Syntax --system_include_dir path

Parameters

Description By default, the compiler automatically locates the system include files. Use this option
to explicitly specify a different path to the system include files. This might be useful if
you have not installed IAR Embedded Workbench in the default location.

See also --dlib_config, page 253, and --no_system_include, page 263.

This option is not available in the IDE.

--unaligned_word_access

Syntax --unaligned_word_access={enabled|disabled}

Parameters

Description By default, the compiler uses hard alignment, in other words, misaligned accesses do
not work. Use this option to make the compiler use the ld.w and st.w instructions for
unaligned word accesses. This will increase the speed and reduce the size of applications
that uses packed structures. When this option is used, the calling convention used by the
compiler is affected for function calls; 4- and 8-byte aggregate objects with alignment
less than four bytes can be passed in registers.

See also Function entrance, page 173 and for information about alignment control, see
Extensions for embedded systems programming, page 190.

Project>Options>C/C++ Compiler>Optimizations>Allow unaligned word
accesses

path The path to the system include files, see Rules for specifying
a filename or directory as parameters, page 238.

enabled Allows the compiler to use unaligned word accesses.

disabled (default) Prohibits the compiler to use unaligned word accesses.

AFE1_AFE2-1:1

272

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

--use_c++_inline

Syntax --use_c++_inline

Description Standard C uses slightly different semantics for the inline keyword than C++ does.
Use this option if you want C++ semantics when you are using C.

See also Inlining functions, page 87

Project>Options>C/C++ Compiler>Language 1>C dialect>C99>C++ inline
semantics

--variable_enum_size

Syntax --variable_enum_size={enabled|disabled}

Parameters

Description Use this option to enable enum size optimization.

See also The enum type, page 276

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--vla

Syntax --vla

Description Use this option to enable support for C99 variable length arrays. Such arrays are located
on the heap. This option requires Standard C and cannot be used together with the
--c89 compiler option.

Note: --vla should not be used together with the longjmp library function, as that can
lead to memory leakages.

See also C language overview, page 187.

enabled Enables enum size optimization. enum types are
represented using the smallest possible type.

disabled Disables enum size optimization. enum types are
represented using 32-bit types or larger.

AFE1_AFE2-1:1

Compiler options

273

Project>Options>C/C++ Compiler>Language 1>C dialect>Allow VLA

--warn_about_c_style_casts

Syntax --warn_about_c_style_casts

Description Use this option to make the compiler warn when C-style casts are used in C++ source
code.

This option is not available in the IDE.

--warnings_affect_exit_code

Syntax --warnings_affect_exit_code

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors

Syntax --warnings_are_errors

Description Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

See also --diag_warning, page 252.

Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors

AFE1_AFE2-1:1

274

Descriptions of compiler options

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

 275

Data representation
● Alignment

● Basic data types—integer types

● Basic data types—floating-point types

● Pointer types

● Structure types

● Type qualifiers

● Data types in C++

See the chapter Efficient coding for embedded applications for information about
which data types provide the most efficient code for your application.

Alignment
Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time; in that environment, the
alignment for a 4-byte long integer might be 2.

A structure type will have the same alignment as the structure member with the most
strict alignment. To decrease the alignment requirements on the structure and its
members, use #pragma pack.

All data types must have a size that is a multiple of their alignment. Otherwise, only the
first element of an array would be guaranteed to be placed in accordance with the
alignment requirements. This means that the compiler might add pad bytes at the end of

AFE1_AFE2-1:1

276

Basic data types—integer types

IAR C/C++ Compiler User Guide
for AVR32

the structure. For more information about pad bytes, see Packed structure types, page
283.

Note that with the #pragma data_alignment directive you can increase the
alignment demands on specific variables.

Basic data types—integer types
The compiler supports both all Standard C basic data types and some additional types.

INTEGER TYPES—AN OVERVIEW

This table gives the size and range of each integer data type:

Signed variables are represented using the two’s complement form.

BOOL

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

THE ENUM TYPE

The compiler will always use the type long to hold enum constants, preferring signed
rather than unsigned, unless the --variable_enum_size option has been enabled.

Data type Size Range Alignment

bool 8 bits 0 to 1 1

char 8 bits 0 to 255 1

signed char 8 bits -128 to 127 1

unsigned char 8 bits 0 to 255 1

signed short 16 bits -32768 to 32767 2

unsigned short 16 bits 0 to 65535 2

signed int 32 bits -231 to 231-1 4

unsigned int 32 bits 0 to 232-1 4

signed long 32 bits -231 to 231-1 4

unsigned long 32 bits 0 to 232-1 4

signed long long 64 bits -263 to 263-1 4

unsigned long long 64 bits 0 to 264-1 4

Table 33: Integer types

AFE1_AFE2-1:1

Data representation

277

THE CHAR TYPE

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed. Note, however, that the library is compiled
with the char type as unsigned.

THE WCHAR_T TYPE

The wchar_t data type is an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified among the
supported locals.

The wchar_t data type is supported by default in the C++ language. To use the
wchar_t type also in C source code, you must include the file stddef.h from the
runtime library.

BITFIELDS

In Standard C, int, signed int, and unsigned int can be used as the base type for
integer bitfields. In standard C++, and in C when language extensions are enabled in the
compiler, any integer or enumeration type can be used as the base type. It is
implementation defined whether a plain integer type (char, short, int, etc) results in
a signed or unsigned bitfield.

In the IAR C/C++ Compiler for AVR32, plain integer types are treated as signed.

Bitfields in expressions are treated as int if int can represent all values of the bitfield.
Otherwise, they are treated as the bitfield base type.

Each bitfield is placed in the next container of its base type that has enough available
bits to accommodate the bitfield. Within each container, the bitfield is placed in the first
available byte or bytes, taking the byte order into account.

In addition, the compiler supports an alternative bitfield allocation strategy (disjoint
types), where bitfield containers of different types are not allowed to overlap. Using this
allocation strategy, each bitfield is placed in a new container if its type is different from
that of the previous bitfield, or if the bitfield does not fit in the same container as the
previous bitfield. Within each container, the bitfield is placed from the least significant
bit to the most significant bit (disjoint types) or from the most significant bit to the least
significant bit (reverse disjoint types). This allocation strategy will never use less space
than the default allocation strategy (joined types), and can use significantly more space
when mixing bitfield types.

Use the #pragma bitfield directive to choose which bitfield allocation strategy to
use, see bitfields, page 307.

AFE1_AFE2-1:1

278

Basic data types—integer types

IAR C/C++ Compiler User Guide
for AVR32

Assume this example:

struct BitfieldExample
{
 uint32_t a : 12;
 uint16_t b : 3;
 uint16_t c : 7;
 uint8_t d;
};

The example in the joined types bitfield allocation strategy

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the first and second bytes of the container.

For the second bitfield, b, a 16-bit container is needed and because there are still four
bits free at offset 0, the bitfield is placed there.

For the third bitfield, c, as there is now only one bit left in the first 16-bit container, a
new container is allocated at offset 2, and c is placed in the first byte of this container.

The fourth member, d, can be placed in the next available full byte, which is the byte at
offset 3.

In each case, each bitfield is allocated starting from the most significant free bit of its
container to ensure that it is placed into bytes from left to right.

The example in the disjoint types bitfield allocation strategy

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the least significant 12 bits of the container.

AFE1_AFE2-1:1

Data representation

279

To place the second bitfield, b, a new container is allocated at offset 4, because the type
of the bitfield is not the same as that of the previous one. b is placed into the least
significant three bits of this container.

The third bitfield, c, has the same type as b and fits into the same container.

The fourth member, d, is allocated into the byte at offset 6. d cannot be placed into the
same container as b and c because it is not a bitfield, it is not of the same type, and it
would not fit.

When using reverse order (reverse disjoint types), each bitfield is instead placed starting
from the most significant bit of its container.

This is the layout of bitfield_example in big-endian mode:

Basic data types—floating-point types
In the IAR C/C++ Compiler for AVR32, floating-point values are represented in
standard IEEE 754 format. The sizes for the different floating-point types are:

Type Size if double=32 Size if double=64

float 32 bits 32 bits

double 32 bits 64 bits

long double 32 bits 64 bits

Table 34: Floating-point types

AFE1_AFE2-1:1

280

Basic data types—floating-point types

IAR C/C++ Compiler User Guide
for AVR32

FLOATING-POINT ENVIRONMENT

Exception flags are not supported. The feraiseexcept function does not raise any
exceptions.

32-BIT FLOATING-POINT FORMAT

The representation of a 32-bit floating-point number as an integer is:

The exponent is 8 bits, and the mantissa is 23 bits.

The value of the number is:

(-1)S * 2(Exponent-127) * 1.Mantissa

The range of the number is at least:

±1.18E-38 to ±3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

64-BIT FLOATING-POINT FORMAT

The representation of a 64-bit floating-point number as an integer is:

The exponent is 11 bits, and the mantissa is 52 bits.

The value of the number is:

(-1)S * 2(Exponent-1023) * 1.Mantissa

The range of the number is at least:

±2.23E-308 to ±1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

REPRESENTATION OF SPECIAL FLOATING-POINT NUMBERS

This list describes the representation of special floating-point numbers:

● Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

● Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

AFE1_AFE2-1:1

Data representation

281

● Not a number (NaN) is represented by setting the exponent to the highest positive
value and the mantissa to a non-zero value. The value of the sign bit is ignored.

● Subnormal numbers are used for representing values smaller than what can be
represented by normal values. The drawback is that the precision will decrease with
smaller values. The exponent is set to 0 to signify that the number is subnormal,
even though the number is treated as if the exponent was 1. Unlike normal numbers,
subnormal numbers do not have an implicit 1 as the most significant bit (the MSB)
of the mantissa. The value of a subnormal number is:

(-1)S * 2(1-BIAS) * 0.Mantissa

where BIAS is 127.

Pointer types
The compiler has two basic types of pointers: function pointers and data pointers.

FUNCTION POINTERS

The size of function pointers is always 16 or 24 bits, and they can address the entire
memory. The internal representation of a function pointer is the actual address it refers
to divided by two.

These function pointers are available:

* The upper range is used for SFRs.

DATA POINTERS

Data pointers have three sizes: 8, 16, or 24 bits. These data pointers are available:

Keyword Address range Pointer size Alignment

__code21 0x0–0x000FFFF,
0xFFF0000-0xFFFFFFFF*

32 bits 4

__code32 0x0–0xFFFFFFFF 32 bits 4

Table 35: Function pointers

Keyword Pointer size Index type Address range

__data17 32 bits signed int 0x0–0x0001FFFF,
0xFFFE0000-0xFFFFFFFF

__data21 32 bits signed int 0x0–0x000FFFFF,
0xFFF00000-0xFFFFFFFF

__data32 32 bits signed int 0x0–0xFFFFFFFF

Table 36: Data pointers

AFE1_AFE2-1:1

282

Structure types

IAR C/C++ Compiler User Guide
for AVR32

Note: You cannot create pointers to variables declared with the __sysreg or the
__dbgreg keyword.

CASTING

Casts between pointers have these characteristics:

● Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

● Casting a value of an unsigned integer type to a pointer of a larger

● Casting a value of a signed integer type to a pointer of a larger type is performed by
sign extension

● Casting a pointer type to a smaller integer type is performed by truncation

● Casting a pointer type to a larger integer type is performed by zero extension

● Casting a data pointer to a function pointer and vice versa is illegal

● Casting a function pointer to an integer type gives an undefined result

size_t

size_t is the unsigned integer type of the result of the sizeof operator. In the IAR
C/C++ Compiler for AVR32, the type used for size_t is unsigned int.

ptrdiff_t

ptrdiff_t is the signed integer type of the result of subtracting two pointers. In the
IAR C/C++ Compiler for AVR32, the type used for ptrdiff_t is the signed integer
variant of the size_t type.

intptr_t

intptr_t is a signed integer type large enough to contain a void *. In the IAR C/C++
Compiler for AVR32, the type used for intptr_t is signed int.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types
The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

AFE1_AFE2-1:1

Data representation

283

ALIGNMENT OF STRUCTURE TYPES

The struct and union types have the same alignment as the member with the highest
alignment requirement. Note that this alignment requirement also applies to a member
that is a structure. To allow arrays of aligned structure objects, the size of a struct is
adjusted to an even multiple of the alignment.

GENERAL LAYOUT

Members of a struct are always allocated in the order specified in the declaration.
Each member is placed in the struct according to the specified alignment (offsets).

struct First
{
 char c;
 short s;
} s;

This diagram shows the layout in memory:

The alignment of the structure is 2 bytes, and a pad byte must be inserted to give
short s the correct alignment.

PACKED STRUCTURE TYPES

The #pragma pack directive is used for relaxing the alignment requirements of the
members of a structure. This changes the layout of the structure. The members are
placed in the same order as when declared, but there might be less pad space between
members.

Note that accessing an object that is not correctly aligned requires code that is both
larger and slower. If such structure members are accessed many times, it is usually better
to construct the correct values in a struct that is not packed, and access this struct
instead.

Special care is also needed when creating and using pointers to misaligned members.
For direct access to misaligned members in a packed struct, the compiler will emit the
correct (but slower and larger) code when needed. However, when a misaligned member
is accessed through a pointer to the member, the normal (smaller and faster) code is
used. In the general case, this will not work, because the normal code might depend on
the alignment being correct.

AFE1_AFE2-1:1

284

Type qualifiers

IAR C/C++ Compiler User Guide
for AVR32

This example declares a packed structure:

#pragma pack(1)
struct S
{
 char c;
 short s;
};

#pragma pack()

The structure S has this memory layout:

The next example declares a new non-packed structure, S2, that contains the structure s
declared in the previous example:

struct S2
{
 struct S s;
 long l;
};

The structure S2 has this memory layout

The structure S will use the memory layout, size, and alignment described in the
previous example. The alignment of the member l is 4, which means that alignment of
the structure S2 will become 4.

For more information, see Alignment of elements in a structure, page 212.

Type qualifiers
According to the C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

By declaring an object volatile, the compiler is informed that the value of the object
can change beyond the compiler’s control. The compiler must also assume that any

AFE1_AFE2-1:1

Data representation

285

accesses can have side effects—thus all accesses to the volatile object must be
preserved.

There are three main reasons for declaring an object volatile:

● Shared access; the object is shared between several tasks in a multitasking
environment

● Trigger access; as for a memory-mapped SFR where the fact that an access occurs
has an effect

● Modified access; where the contents of the object can change in ways not known to
the compiler.

Definition of access to volatile objects

The C standard defines an abstract machine, which governs the behavior of accesses to
volatile declared objects. In general and in accordance to the abstract machine:

● The compiler considers each read and write access to an object declared volatile
as an access

● The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:

char volatile a;
a = 5; /* A write access */
a += 6; /* First a read then a write access */

● An access to a bitfield is treated as an access to the underlying type

● Adding a const qualifier to a volatile object will make write accesses to the
object impossible. However, the object will be placed in RAM as specified by the C
standard.

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the IAR C/C++ Compiler for AVR32 are described
below.

Rules for accesses

In the IAR C/C++ Compiler for AVR32, accesses to volatile declared objects are
subject to these rules:

● All accesses are preserved

● All accesses are complete, that is, the whole object is accessed

● All accesses are performed in the same order as given in the abstract machine

● All accesses are atomic, that is, they cannot be interrupted.

AFE1_AFE2-1:1

286

Type qualifiers

IAR C/C++ Compiler User Guide
for AVR32

The compiler adheres to these rules for these combinations of memory types and data
types:

For all combinations of object types not listed, only the rule that states that all accesses
are preserved applies.

DECLARING OBJECTS VOLATILE AND CONST

If you declare a volatile object const, it will be write-protected but it will still be
stored in RAM memory as the C standard specifies.

To store the object in read-only memory instead, but still make it possible to access it as
a const volatile object, follow this example:

/* Header */
extern int const xVar;
#define x (*(int const volatile *) &xVar)

/* Source that uses x */
int DoSomething()
{
 return x;
}

/* Source that defines x */
#pragma segment = "FLASH"
int const xVar @ "FLASH" = 6;

The segment FLASH contains the initializers. They must be flashed manually when the
application starts up.

Thereafter, the initializers can be reflashed with other values at any time.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities

Memory type Data type Comment

__data17 8-, 16-, and 32-bit types RMW instructions may be used for
certain bit accesses and single bit
bitfield operations

__data21, __data32 8-, 16-, and 32-bit types

__dbgreg, __sysreg 32-bit types

Table 37: Volatile accesses

AFE1_AFE2-1:1

Data representation

287

to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const are allocated in ROM.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++
In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any Embedded C++ features are used for a type, no assumptions
can be made concerning the data representation. This means, for example, that it is not
supported to write assembler code that accesses class members.

AFE1_AFE2-1:1

288

Data types in C++

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

289

Extended keywords
● General syntax rules for extended keywords

● Summary of extended keywords

● Descriptions of extended keywords

General syntax rules for extended keywords
The compiler provides a set of attributes that can be used on functions or data objects to
support specific features of the AVR32 microprocessor. There are two types of
attributes—type attributes and object attributes:

● Type attributes affect the external functionality of the data object or function

● Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For more information about each attribute, see Descriptions of extended keywords, page
293. For information about how to use attributes to modify data, see the chapter Data
storage. For information about how to use attributes to modify functions, see the chapter
Functions.

Note: The extended keywords are only available when language extensions are enabled
in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 254.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.

You can either place the type attributes explicitly in your declarations, or use the pragma
directive #pragma type_attribute.

Type attributes can be further divided into memory type attributes and general type
attributes. Memory type attributes are referred to as simply memory attributes in the rest
of the documentation.

AFE1_AFE2-1:1

290

General syntax rules for extended keywords

IAR C/C++ Compiler User Guide
for AVR32

Memory attributes

A memory attribute corresponds to a certain logical or physical memory in the
microprocessor.

Available function memory attributes:

__code21, code32

Available data memory attributes:

__data17, __data21, __data32, __dbgreg, and __sysreg.

Data objects, functions, and destinations of pointers or C++ references always have a
memory attribute. If no attribute is explicitly specified in the declaration or by the
pragma directive #pragma type_attribute, an appropriate default attribute is
implicitly used by the compiler. You can specify one memory attribute for each level of
pointer indirection.

General type attributes

Available function type attributes (affect how the function should be called):

__acall, __exception, __flashvault, __flashvault_impl,
__imported__interrupt, __monitor, __nested, and __scall

Available data type attributes:

__packed, const, volatile

You can specify as many type attributes as required for each level of pointer indirection.

Syntax for type attributes used on data objects

Type attributes use almost the same syntax rules as the type qualifiers const and
volatile. For example:

__data17 int i;
int __data17 j;

Both i and j are placed in data17 memory.

Unlike const and volatile, when a type attribute is used before the type specifier in
a derived type, the type attribute applies to the object, or typedef itself, except in
structure member declarations.

int __data17 * p; /* integer in data17 memory */

int * __data17 p; /* pointer in data17 memory */

AFE1_AFE2-1:1

Extended keywords

291

In all cases, if a memory attribute is not specified, an appropriate default memory type
is used, which depends on the data model in use.

Using a type definition can sometimes make the code clearer:

typedef __data17 int d16_int;
d16_int *q1;

d16_int is a typedef for integers in data17 memory. The variable q1 can point to such
integers.

You can also use the #pragma type_attributes directive to specify type attributes
for a declaration. The type attributes specified in the pragma directive are applied to the
data object or typedef being declared.

#pragma type_attribute=__data17
int * q2;

The variable q2 is placed in data17 memory.

For more examples of using memory attributes, see More examples, page 65.

Syntax for type attributes used on functions

The syntax for using type attributes on functions differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, or in parentheses, for example:

__interrupt void my_handler(void);

or

void (__interrupt my_handler)(void);

This declaration of my_handler is equivalent with the previous one:

#pragma type_attribute=__interrupt
void my_handler(void);

To declare a function pointer, use this syntax:

int (__code21 * fp) (double);

After this declaration, the function pointer fp points to data17 memory.

An easier way of specifying storage is to use type definitions:

typedef __code21 void FUNC_TYPE(int);
typedef FUNC_TYPE *FUNC_PTR_TYPE;
FUNC_TYPE func();
FUNC_PTR_TYPE funcptr;

__data17 int * p; /* pointer in data17 memory */

AFE1_AFE2-1:1

292

Summary of extended keywords

IAR C/C++ Compiler User Guide
for AVR32

Note that #pragma type_attribute can be used together with a typedef
declaration.

OBJECT ATTRIBUTES

These object attributes are available:

● Object attributes that can be used for variables:

__no_alloc, __no_alloc16, __no_alloc_str, __no_alloc_str16,
__no_init

● Object attributes that can be used for functions and variables:

location, @, __root

● Object attributes that can be used for functions:

__intrinsic, __noreturn, __ramfunc, vector

You can specify as many object attributes as required for a specific function or data
object.

For more information about location and @, see Controlling data and function
placement in memory, page 214. For more information about vector, see vector, page
328.

Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray
in memory that is not initialized at startup:

__no_init int myarray[10];

The #pragma object_attribute directive can also be used. This declaration is
equivalent to the previous one:

#pragma object_attribute=__no_init
int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.

Summary of extended keywords
This table summarizes the extended keywords:

Extended keyword Description

__acall Supports application calls

__code21 Controls the storage of functions

Table 38: Extended keywords summary

AFE1_AFE2-1:1

Extended keywords

293

Descriptions of extended keywords
This section gives detailed information about each extended keyword.

__acall

Syntax See Syntax for type attributes used on functions, page 291.

__code32 Controls the storage of functions

__data17 Controls the storage of data objects

__data21 Controls the storage of data objects

__data32 Controls the storage of data objects

__dbgreg Controls the storage of data objects

__exception Supports exception handlers

__flashvault Supports FlashVault handlers

__flashvault_impl Supports FlashVault API. Supplementary to __flashvault.

__imported Signals that a function is not present in the application being
compiled and linked

__interrupt Specifies interrupt functions

__intrinsic Reserved for compiler internal use only

__monitor Specifies atomic execution of a function

__nested Supports nested interrupts

__no_alloc,

__no_alloc16

Makes a constant available in the execution file

__no_alloc_str,

__no_alloc_str16

Makes a string literal available in the execution file

__no_init Places a data object in non-volatile memory

__noreturn Informs the compiler that the function will not return

__packed Decreases data type alignment to 1

__ramfunc Makes a function execute in RAM

__root Ensures that a function or variable is included in the object code
even if unused

__scall Supports supervisor calls

__sysreg Controls the storage of data objects

Extended keyword Description

Table 38: Extended keywords summary (Continued)

AFE1_AFE2-1:1

294

Descriptions of extended keywords

IAR C/C++ Compiler User Guide
for AVR32

Description The __acall keyword makes it possible to use the ACALL instruction to call a function.
Such function calls can be more compact than a generic function call, and the generated
code can become smaller. An __acall function uses the same calling convention as
other functions.

The ACALL instruction calls the function through a function pointer table located in the
linker segment ACTAB. Each __acall function will occupy one of these entries. The
entry to be used is specified by a #pragma vector directive immediately before the
function declaration.

Note: If you do not specify a vector and not use the __imported keyword, the compiler
will automatically create an entry in the function pointer table.

Vector range 0x0-0x255

Example #pragma vector=7
__acall int my_acall_function(void);

See also __imported, page 298, ACALL functions, page 77, and ACALL jump table, page 111.

__code21

Syntax See Syntax for type attributes used on functions, page 291.

Description The __code21 memory attribute overrides the default storage of functions given by the
selected code model and places individual functions in code21 memory. You can also
use the __code21 attribute to create a pointer explicitly pointing to an object located in
the data17 memory.

Storage information ● Address range: 0x0–0xFFFFF and 0xFFF00000-0xFFFFFFFF

● Pointer size: 4 bytes

Example __code21 void myfunction(void);

See also Code models and memory attributes for function storage, page 71.

__code32

Syntax See Syntax for type attributes used on functions, page 291.

Description The __code32 memory attribute overrides the default storage of functions given by the
selected code model and places individual functions in code32 memory. You can also

AFE1_AFE2-1:1

Extended keywords

295

use the __code32 attribute to create a pointer explicitly pointing to an object located in
the data32 memory.

Storage information ● Address range: Anywhere in memory

● Pointer size: 4 bytes

Example __code32 void myfunction(void);

See also Code models and memory attributes for function storage, page 71.

__data17

Syntax See Syntax for type attributes used on data objects, page 290.

Description The __data17 memory attribute overrides the default storage of variables given by the
selected memory model and places individual variables and constants in data17
memory.

Storage information ● Address range: 0x0–0x0001FFFF, 0xFFFE0000-0xFFFFFFFF

● Pointer size: 4 bytes.

Example __data17 int x;

See also Memory types, page 60.

__data21

Syntax See Syntax for type attributes used on data objects, page 290.

Description The __data21 memory attribute overrides the default storage of variables given by the
selected memory model and places individual variables and constants in data21
memory.

Storage information ● Address range: 0x0–0x000FFFFF, 0xFFF00000-0xFFFFFFFF

● Pointer size: 4 bytes.

Example __data21 int x;

See also Memory types, page 60.

AFE1_AFE2-1:1

296

Descriptions of extended keywords

IAR C/C++ Compiler User Guide
for AVR32

__data32

Syntax See Syntax for type attributes used on data objects, page 290.

Description The __data32 memory attribute overrides the default storage of variables given by the
selected memory model and places individual variables and constants in data32
memory.

Storage information ● Address range: 0x0–0xFFFFFFFF

● Pointer size: 4 bytes.

Example __data32 int x;

See also Memory types, page 60.

__dbgreg

Syntax See Syntax for type attributes used on data objects, page 290.

Description The __dbgreg memory attribute overrides the default storage of variables given by the
selected memory model and places individual variables and constants in the debug
register file. It is not possible to create pointers to variables declared __dbgreg.

Storage information ● Address range: 0x0–0x3FC

● Maximum object size: 4 bytes

● Pointer size: N/A.

Example __dbgreg int x;

See also Memory types, page 60.

__exception

Syntax See Syntax for type attributes used on functions, page 291.

Description Use the __exception keyword to implement handlers for the exceptions that can
occur.

To associate the exception handler with a specific exception entry point, use the
#pragma exception directive immediately before the function declaration. Each
exception handler must be connected to at least one exception handler entry.

AFE1_AFE2-1:1

Extended keywords

297

Example __exception int my_exception(void);

See also Exception handlers, page 75 and exception, page 314. For information about the
exception handler offsets, see the AVR32 architecture documentation, supplied by
Atmel® Corporation.

__flashvault

Syntax See Syntax for type attributes used on functions, page 291.

Description A defined function declared with the keyword __flashvault returns using the retss
instruction. This allows a secure-mode handler to be implemented in C.

A function declared with the keyword __flashvault and an associated #pragma
vector is called using the sscall instruction. The compiler automatically initializes
R8 with the vector number of the function before the call. No other restrictions or
assumptions apply to the function. The secure mode handler can then use R8 to choose
between multiple functions. This allows you to create an API file which then can be used
when developing an application.

See also __flashvault_impl, page 297

__flashvault_impl

Syntax See Syntax for type attributes used on functions, page 291.

Description Use the __flashvault_impl keyword when implementing a secure code API. This
keyword adjusts the calling convention of a function so that a secure mode API handler
can be added between the caller and the called function.

A defined function declared with this keyword is called using normal call instructions
and returns using the ret instruction.

Note: This keyword affects the calling convention, see Calling convention, page 170.

Example #ifdef FLASHVAULT_PROJECT
#define FLASHVAULT __flashvault_impl
#else
#define FLASHVAULT __flashvault
#endif
#pragma vector=1
uint64_t FLASHVAULT decode_DES_CBC(uint64_t key, uint64_t data);

See also __flashvault, page 297

AFE1_AFE2-1:1

298

Descriptions of extended keywords

IAR C/C++ Compiler User Guide
for AVR32

__imported

Syntax See Syntax for type attributes used on functions, page 291.

Description Use the __imported keyword to signal that the declared function is not present in the
application being compiled and linked. It is up to the target operating system or target
hardware to make sure that the function is available and present in the table pointed at
by the ACBA system register.

Example __imported __acall int my_function(void);

See also ACALL functions, page 77, ACALL jump table, page 111, __acall, page 293, and vector,
page 328.

__interrupt

Syntax See Syntax for type attributes used on functions, page 291.

Description The __interrupt keyword specifies interrupt functions. To specify one or several
interrupt vectors, use the #pragma handler directive. The range of the interrupt
groups depends on the device used. It is possible to define an interrupt function using
the #pragma handler directive, but then the compiler will not generate an entry in the
interrupt vector table.

An interrupt function must have a void return type and cannot have any parameters.

Example #pragma vector=44,3 //group 44 with interrupt level 3
__interrupt void my_interrupt_handler(void);

See also Interrupt functions, page 73.

__intrinsic

Description The __intrinsic keyword is reserved for compiler internal use only.

__monitor

Syntax See Syntax for type attributes used on functions, page 291.

Description The __monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on

AFE1_AFE2-1:1

Extended keywords

299

semaphores that control access to resources by multiple processes. A function declared
with the __monitor keyword is equivalent to any other function in all other respects.

Example __monitor int get_lock(void);

See also Monitor functions, page 79. For information about related intrinsic functions, see
__disable_interrupt, page 337, __enable_interrupt, page 337, __get_interrupt_state,
page 338, and __set_interrupt_state, page 341, respectively.

__nested

Syntax See Syntax for type attributes used on functions, page 291.

Description Use the __nested keyword to implement a nested interrupt, in other words, an
interrupt that can be called multiple times.

A nested interrupt saves the interrupt level, the return address register, and the return
status register at function entry, and restores these registers at function exit. The
application can then lower the interrupt level to allow other interrupts to trigger.

Example __nested __interrupt void my_interrupt_routine(void);

See also __interrupt, page 298. For information about interrupt levels and the interrupt
controller, see the AVR32 architecture documentation, supplied by Atmel®
Corporation.

__no_alloc, __no_alloc16

Syntax See Syntax for object attributes, page 292.

Description Use the __no_alloc or __no_alloc16 object attribute on a constant to make the
constant available in the executable file without occupying any space in the linked
application.

You cannot access the contents of such a constant from your application. You can take
its address, which is an integer offset to the segment of the constant. The type of the
offset is unsigned long when __no_alloc is used, and unsigned short when
__no_alloc16 is used.

Example __no_alloc const struct MyData my_data @ "XXX" = {...};

See also __no_alloc_str, __no_alloc_str16, page 300.

AFE1_AFE2-1:1

300

Descriptions of extended keywords

IAR C/C++ Compiler User Guide
for AVR32

__no_alloc_str, __no_alloc_str16

Syntax __no_alloc_str(string_literal @ segment)

and

__no_alloc_str16(string_literal @ segment)

where

Description Use the __no_alloc_str or __no_alloc_str16 operators to make string literals
available in the executable file without occupying any space in the linked application.

The value of the expression is the offset of the string literal in the segment. For
__no_alloc_str, the type of the offset is unsigned long. For __no_alloc_str16,
the type of the offset is unsigned short.

Example #define MYSEG "YYY"
#define X(str) __no_alloc_str(str @ MYSEG)

extern void dbg_printf(unsigned long fmt, ...)

#define DBGPRINTF(fmt, ...) dbg_printf(X(fmt), __VA_ARGS__)

void
foo(int i, double d)
{
 DBGPRINTF("The value of i is: %d, the value of d is: %f",i,d);
}

Depending on your debugger and the runtime support, this could produce trace output
on the host computer. Note that there is no such runtime support in C-SPY, unless you
use an external plugin module.

See also __no_alloc, __no_alloc16, page 299.

__no_init

Syntax See Syntax for object attributes, page 292.

string_literal The string literal that you want to make available in the
executable file.

segment The name of the segment to place the string literal in.

AFE1_AFE2-1:1

Extended keywords

301

Description Use the __no_init keyword to place a data object in non-volatile memory. This means
that the initialization of the variable, for example at system startup, is suppressed.

Example __no_init int myarray[10];

See also Non-initialized variables, page 228.

__noreturn

Syntax See Syntax for object attributes, page 292.

Description The __noreturn keyword can be used on a function to inform the compiler that the
function will not return. If you use this keyword on such functions, the compiler can
optimize more efficiently. Examples of functions that do not return are abort and exit.

Note: At optimization levels medium or high, the __noreturn keyword might cause
incorrect call stack debug information at any point where it can be determined that the
current function cannot return.

Example __noreturn void terminate(void);

__packed

Syntax See Syntax for type attributes used on data objects, page 290. An exception is when the
keyword is used for modifying the structure type in a struct or union declarations,
see below.

Description Use the __packed keyword to specify a data alignment of 1 for a data type. __packed
can be used in two ways:

● When used before the struct or union keyword in a structure definition, the
maximum alignment of each member in the structure is set to 1, eliminating the
need for gaps between the members. The type of each member also receives the
__packed type attribute.

You can also use the __packed keyword with structure declarations, but it is illegal
to refer to a structure type defined without the __packed keyword using a structure
declaration with the __packed keyword.

● When used in any other position, it follows the syntax rules for type attributes, and
affects a type in its entirety. A type with the __packed type attribute is the same as
the type attribute without the __packed type attribute, except that it has a data
alignment of 1. Types that already have an alignment of 1 are not affected by the
__packed type attribute.

AFE1_AFE2-1:1

302

Descriptions of extended keywords

IAR C/C++ Compiler User Guide
for AVR32

A normal pointer can be implicitly converted to a pointer to __packed, but the reverse
conversion requires a cast.

Note: Accessing data types at other alignments than their natural alignment can result
in code that is significantly larger and slower.

Example /* No pad bytes in X: */
__packed struct X { char ch; int i; };
/* __packed is optional here: */
struct X * xp;

/* NOTE: no __packed: */
struct Y { char ch; int i; };
/* ERROR: Y not defined with __packed: */
__packed struct Y * yp ;

/* Member 'i' has alignment 1: */
struct Z { char ch; __packed int i; };

void Foo(struct X * xp)
{
 /* Error:"int *" -> "int __packed *" not allowed: */
 int * p1 = xp->1;
 /* OK: */
 int __packed * p2 = &xp->i;
 /* OK, char not affected */
 char * p3 = &xp->ch;
}

See also pack, page 321.

__ramfunc

Syntax See Syntax for object attributes, page 292.

Description The __ramfunc keyword makes a function execute in RAM. Two code segments will
be created: one for the RAM execution, and one for the ROM initialization. Functions
declared __ramfunc are by default stored in the segments named RAMCODE21 and
RAMCODE32 (depending on the memory type attribute of the function) with the
initialization data in the segments RAMCODE21_ID and RAMCODE32_ID.

Example __ramfunc int FlashPage(char * data, char * page);

See also For more information about __ramfunc declared functions in relation to breakpoints,
see the C-SPY® Debugging Guide for AVR32.

AFE1_AFE2-1:1

Extended keywords

303

__root

Syntax See Syntax for object attributes, page 292.

Description A function or variable with the __root attribute is kept whether or not it is referenced
from the rest of the application, provided its module is included. Program modules are
always included and library modules are only included if needed.

Example __root int myarray[10];

See also For more information about modules, segments, and the link process, see the IAR Linker
and Library Tools Reference Guide.

__scall

Syntax See Syntax for type attributes used on functions, page 291.

Description Use the __scall keyword to implement a function which will be executed in the
supervisor mode of the processor. The function will be called using the SCALL
instruction and execution will continue in the supervisor mode exception handler.

Example __scall void my_scall(void);

See also __exception, page 296 and SCALL functions, page 78. For information about execution
modes and the SCALL instruction, see the AVR32 architecture documentation, supplied
by Atmel® Corporation.

__sysreg

Syntax See Syntax for type attributes used on data objects, page 290.

Description The __sysreg memory attribute overrides the default storage of variables given by the
selected memory model and places individual variables and constants in the system
register file. It is not possible to create pointers to variables declared __sysreg.

Storage information ● Address range: 0x0–0x3FC

● Maximum object size: 4 bytes

● Pointer size: N/A.

Example __sysreg int x;

AFE1_AFE2-1:1

304

Descriptions of extended keywords

IAR C/C++ Compiler User Guide
for AVR32

See also Memory types, page 60.

AFE1_AFE2-1:1

 305

Pragma directives
● Summary of pragma directives

● Descriptions of pragma directives

Summary of pragma directives
The #pragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source code is still
portable.

The pragma directives control the behavior of the compiler, for example how it allocates
memory for variables and functions, whether it allows extended keywords, and whether
it outputs warning messages.

The pragma directives are always enabled in the compiler.

This table lists the pragma directives of the compiler that can be used either with the
#pragma preprocessor directive or the _Pragma() preprocessor operator:

Pragma directive Description

bitfields Controls the order of bitfield members.

calls Lists possible called functions for indirect calls.

call_graph_root Specifies that the function is a call graph root.

constseg Places constant variables in a named segment.

data_alignment Gives a variable a higher (more strict) alignment.

dataseg Places variables in a named segment.

default_function_attributes Sets default type and object attributes for
declarations and definitions of functions.

default_variable_attributes Sets default type and object attributes for
declarations and definitions of variables.

diag_default Changes the severity level of diagnostic messages.

diag_error Changes the severity level of diagnostic messages.

diag_remark Changes the severity level of diagnostic messages.

diag_suppress Suppresses diagnostic messages.

diag_warning Changes the severity level of diagnostic messages.

error Signals an error while parsing.

Table 39: Pragma directives summary

AFE1_AFE2-1:1

306

Summary of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

exception Connects an exception handler with its given
exception handler entry

flashvault_vector Makes the compiler emit a secure mode vector table
entry

handler Specifies the vector of an interrupt function

include_alias Specifies an alias for an include file.

inline Controls inlining of a function.

language Controls the IAR Systems language extensions.

location Specifies the absolute address of a variable, or places
groups of functions or variables in named segments.

message Prints a message.

object_attribute Adds object attributes to the declaration or
definition of a variable or function.

optimize Specifies the type and level of an optimization.

pack Specifies the alignment of structures and union
members.

__printf_args Verifies that a function with a printf-style format
string is called with the correct arguments.

public_equ Defines a public assembler label and gives it a value.

required Ensures that a symbol that is needed by another
symbol is included in the linked output.

rtmodel Adds a runtime model attribute to the module.

__scanf_args Verifies that a function with a scanf-style format
string is called with the correct arguments.

section This directive is an alias for #pragma segment.

segment Declares a segment name to be used by intrinsic
functions.

shadow_registers Indicates that the register file is shadowed

STDC CX_LIMITED_RANGE Specifies whether the compiler can use normal
complex mathematical formulas or not.

STDC FENV_ACCESS Specifies whether your source code accesses the
floating-point environment or not.

STDC FP_CONTRACT Specifies whether the compiler is allowed to contract
floating-point expressions or not.

Pragma directive Description

Table 39: Pragma directives summary (Continued)

AFE1_AFE2-1:1

Pragma directives

307

Note: For portability reasons, see also Recognized pragma directives (6.10.6), page
398.

Descriptions of pragma directives
This section gives detailed information about each pragma directive.

bitfields

Syntax #pragma bitfields=disjoint_types|joined_types|
 reversed_disjoint_types|reversed|default}

Parameters

Description Use this pragma directive to control the layout of bitfield members.

vector Specifies the vector of an acall function.

type_attribute Adds type attributes to a declaration or to
definitions.

Pragma directive Description

Table 39: Pragma directives summary (Continued)

disjoint_types Bitfield members are placed from the least significant
bit to the most significant bit in the container type.
Storage containers of bitfields with different base
types will not overlap.

joined_types Bitfield members are placed depending on the byte
order. Storage containers of bitfields will overlap other
structure members. For more information, see
Bitfields, page 277.

reversed_disjoint_types Bitfield members are placed from the most significant
bit to the least significant bit in the container type.
Storage containers of bitfields with different base
types will not overlap.

reversed This is an alias for reversed_disjoint_types.

default Restores to default layout of bitfield members. The
default behavior for the compiler is joined_types.

AFE1_AFE2-1:1

308

Descriptions of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

Example #pragma bitfields=disjoint_types
/* Structure that uses disjoint bitfield types. */
struct S
{
 unsigned char error : 1;
 unsigned char size : 4;
 unsigned short code : 10;
};
#pragma bitfields=default /* Restores to default setting. */

See also Bitfields, page 277.

calls

Syntax #pragma calls=function[, function...]

Parameters

Description Use this pragma directive to list the functions that can be indirectly called in the
following statement. This information can be used for stack usage analysis in the linker.

Note: For an accurate result, you must list all possible called functions.

Example void Fun1(), Fun2();

void Caller(void (*fp)(void))
{
#pragma calls = Fun1, Fun2
 (*fp)();
}

See also Stack usage analysis, page 95

call_graph_root

Syntax #pragma call_graph_root[=category]

Parameters

Description Use this pragma directive to specify that, for stack usage analysis purposes, the
immediately following function is a call graph root. You can also specify an optional

function Any declared function

category A string that identifies an optional call graph root category

AFE1_AFE2-1:1

Pragma directives

309

category. The compiler will usually automatically assign a call graph root category to
interrupt and task functions. If you use the #pragma call_graph_root directive on
such a function you will override the default category. You can specify any string as a
category.

Example #pragma call_graph_root="interrupt"

See also Stack usage analysis, page 95

constseg

Syntax #pragma constseg=[__memoryattribute]{SEGMENT_NAME|default}

Parameters

Description Use this pragma directive to place constant variables in a named segment. The segment
name cannot be a segment name predefined for use by the compiler and linker. The
setting remains active until you turn it off again with the #pragma constseg=default
directive.

Example #pragma constseg=__data17 MY_CONSTANTS
const int factorySettings[] = {42, 15, -128, 0};
#pragma constseg=default

data_alignment

Syntax #pragma data_alignment=expression

Parameters

Description Use this pragma directive to give a variable a higher (more strict) alignment of the start
address than it would otherwise have. This directive can be used on variables with static
and automatic storage duration.

__memoryattribute An optional memory attribute denoting in what memory the
segment will be placed; if not specified, default memory is
used.

SEGMENT_NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

default Uses the default segment for constants.

expression A constant which must be a power of two (1, 2, 4, etc.).

AFE1_AFE2-1:1

310

Descriptions of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

When you use this directive on variables with automatic storage duration, there is an
upper limit on the allowed alignment for each function, determined by the calling
convention used.

Note: Normally, the size of a variable is a multiple of its alignment. The
data_alignment directive only affects the alignment of the variable’s start address,
and not its size, and can thus be used for creating situations where the size is not a
multiple of the alignment.

dataseg

Syntax #pragma dataseg=[__memoryattribute]{SEGMENT_NAME|default}

Parameters

Description Use this pragma directive to place variables in a named segment. The segment name
cannot be a segment name predefined for use by the compiler and linker. The variable
will not be initialized at startup, and can for this reason not have an initializer, which
means it must be declared __no_init. The setting remains active until you turn it off
again with the #pragma dataseg=default directive.

Example #pragma dataseg=__data17 MY_SECTIONSEGMENT
__no_init char myBuffer[1000];
#pragma dataseg=default

default_function_attributes

Syntax #pragma default_function_attributes=[attribute...]

where attribute can be:

type_attribute
object_attribute
@ segment_name

__memoryattribute An optional memory attribute denoting in what memory the
segment will be placed; if not specified, default memory is
used.

SEGMENT_NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

default Uses the default segment.

AFE1_AFE2-1:1

Pragma directives

311

Parameters

Description Use this pragma directive to set default segment placement, type attributes, and object
attributes for function declarations and definitions. The default settings are only used for
declarations and definitions that do not specify type or object attributes or location in
some other way.

Specifying a default_function_attributes pragma directive with no attributes,
restores the initial state where no such defaults have been applied to function
declarations and definitions.

Example /* Place following functions in segment MYSEG" */
#pragma default_function_attributes = @ "MYSEG"
int fun1(int x) { return x + 1; }
int fun2(int x) { return x - 1;
/* Stop placing functions into MYSEG */
#pragma default_function_attributes =

has the same effect as:

int fun1(int x) @ "MYSEG" { return x + 1; }
int fun2(int x) @ "MYSEG" { return x - 1; }

See also location, page 318

object_attribute, page 319

type_attribute, page 327

default_variable_attributes

Syntax #pragma default_variable_attributes=[attribute...]

where attribute can be:

type_attribute
object_attribute
@ segment_name

Parameters

type_attribute See Type attributes, page 289.

object_attribute See Object attributes, page 292.

@ segment_name See Data and function placement in segments, page 217.

type_attribute See Type attributes, page 289.

object_attributes See Object attributes, page 292.

AFE1_AFE2-1:1

312

Descriptions of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

Description Use this pragma directive to set default segment placement, type attributes, and object
attributes for declarations and definitions of variables with static storage duration. The
default settings are only used for declarations and definitions that do not specify type or
object attributes or location in some other way.

Specifying a default_variable_attributes pragma with no attributes restores the
initial state of no such defaults being applied to variables with static storage duration.

Example /* Place following variables in segment MYSEG" */
#pragma default_variable_attributes = @ "MYSEG"
int var1 = 42;
int var2 = 17;
/* Stop placing variables into MYSEG */
#pragma default_variable_attributes =

has the same effect as:

int var1 @ "MYSEG" = 42;
int var2 @ "MYSEG" = 17;

See also location, page 318

object_attribute, page 319

type_attribute, page 327

diag_default

Syntax #pragma diag_default=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level back to the default, or to the
severity level defined on the command line by any of the options --diag_error,
--diag_remark, --diag_suppress, or --diag_warnings, for the diagnostic
messages specified with the tags.

See also Diagnostics, page 235.

@ segment_name See Data and function placement in segments, page 217.

tag The number of a diagnostic message, for example the
message number Pe177.

AFE1_AFE2-1:1

Pragma directives

313

diag_error

Syntax #pragma diag_error=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to error for the specified
diagnostics.

See also Diagnostics, page 235.

diag_remark

Syntax #pragma diag_remark=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to remark for the specified
diagnostic messages.

See also Diagnostics, page 235.

diag_suppress

Syntax #pragma diag_suppress=tag[,tag,...]

Parameters

Description Use this pragma directive to suppress the specified diagnostic messages.

See also Diagnostics, page 235.

tag The number of a diagnostic message, for example the
message number Pe177.

tag The number of a diagnostic message, for example the
message number Pe177.

tag The number of a diagnostic message, for example the
message number Pe117.

AFE1_AFE2-1:1

314

Descriptions of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

diag_warning

Syntax #pragma diag_warning=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to warning for the specified
diagnostic messages.

See also Diagnostics, page 235.

error

Syntax #pragma error message

Parameters

Description Use this pragma directive to cause an error message when it is parsed. This mechanism
is different from the preprocessor directive #error, because the #pragma error
directive can be included in a preprocessor macro using the _Pragma form of the
directive and only causes an error if the macro is used.

Example #if FOO_AVAILABLE
#define FOO ...
#else
#define FOO _Pragma("error\"Foo is not available\"")
#endif

If FOO_AVAILABLE is zero, an error will be signaled if the FOO macro is used in actual
source code.

exception

Syntax #pragma exception=group,level[,group,level,...]

Parameters

tag The number of a diagnostic message, for example the
message number Pe826.

message A string that represents the error message.

offset The offset from the address in the EVBA register

AFE1_AFE2-1:1

Pragma directives

315

Description Use this pragma directive immediately before an exception handler to connect it with
one or several exception handler entries. The exception handlers are placed relative to
the EVBA register and the offsets are documented in the AVR32 architecture
documentation.

Example #prgma exception=0x14,4
__exception void my_exception_handler(void)
{
...
}

See also Exception handlers, page 75 and __exception, page 296. For information about the
exception handler offsets, see the AVR32 architecture documentation, supplied by
Atmel® Corporation.

flashvault_vector

Syntax #pragma flashvault_vector={vector,...}

Parameters

Description A secure mode function defined with this pragma directive makes the compiler emit a
secure mode vector table entry at the given location.

Example This example adds a secure mode sscall handler:

#pragma flashvault_vector=0x14

handler

Syntax #pragma handler=group,level[,group,level,...]

Parameters

size The size of the exception handler. If the size is set to 0, the
size restriction of the handler is disabled, which forces the
handler to be generated in th exception table.

vector A FlashVault vector offset. For more information, see the
documentation from Atmel® Corporation.

group The interrupt group to which the handler is
connected, which can be 0-63

AFE1_AFE2-1:1

316

Descriptions of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

Description Use this pragma directive immediately before an interrupt function to connect it with its
interrupt vector, which is specified by a interrupt group number and an interrupt level.
If the interrupt function should handle several different interrupt sources, you can
specify several interrupt groups.

Example #pragma handler=35,2, 44,3 /*group 35 with interrupt level 2
 group 44 with interrupt level 3 */
__interrupt void my_interrupt_routine1(void)
{
...
}

__interrupt void my_interrupt_routine2(void)

See also Interrupt functions, page 73 and __interrupt, page 298.

include_alias

Syntax #pragma include_alias ("orig_header" , "subst_header")
#pragma include_alias (<orig_header> , <subst_header>)

Parameters

Description Use this pragma directive to provide an alias for a header file. This is useful for
substituting one header file with another, and for specifying an absolute path to a relative
file.

This pragma directive must appear before the corresponding #include directives and
subst_header must match its corresponding #include directive exactly.

Example #pragma include_alias (<stdio.h> , <C:\MyHeaders\stdio.h>)
#include <stdio.h>

This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

See also Include file search procedure, page 232.

level The interrupt level at which the handler
should be executed, which can be 0-3

orig_header The name of a header file for which you want to create an
alias.

subst_header The alias for the original header file.

AFE1_AFE2-1:1

Pragma directives

317

inline

Syntax #pragma inline[=forced|=never]

Parameters

Description Use #pragma inline to advise the compiler that the function defined immediately after
the directive should be inlined according to C++ inline semantics.

Specifying #pragma inline=forced will always inline the defined function. If the
compiler fails to inline the function for some reason, for example due to recursion, a
warning message is emitted.

Inlining is normally performed only on the High optimization level. Specifying
#pragma inline=forced will enable inlining of the function also on the Medium
optimization level.

See also Inlining functions, page 87.

language

Syntax #pragma language={extended|default|save|restore}

Parameters

Description Use this pragma directive to control the use of language extensions.

No parameter Has the same effect as the inline keyword.

forced Disables the compiler’s heuristics and forces inlining.

never Disables the compiler’s heuristics and makes sure that the
function will not be inlined.

extended Enables the IAR Systems language extensions from the first
use of the pragma directive and onward.

default From the first use of the pragma directive and onward,
restores the settings for the IAR Systems language
extensions to whatever that was specified by compiler
options.

save|restore Saves and restores, respectively, the IAR Systems language
extensions setting around a piece of source code.

Each use of save must be followed by a matching restore
in the same file without any intervening #include directive.

AFE1_AFE2-1:1

318

Descriptions of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

Example At the top of a file that needs to be compiled with IAR Systems extensions enabled:

#pragma language=extended
/* The rest of the file. */

Around a particular part of the source code that needs to be compiled with IAR Systems
extensions enabled, but where the state before the sequence cannot be assumed to be the
same as that specified by the compiler options in use:

#pragma language=save
#pragma language=extended
/* Part of source code. */
#pragma language=restore

See also -e, page 254 and --strict, page 270.

location

Syntax #pragma location={address|NAME}

Parameters

Description Use this pragma directive to specify the location—the absolute address—of the global
or static variable whose declaration follows the pragma directive. The variable must be
declared either __no_init or const. Alternatively, the directive can take a string
specifying a segment for placing either a variable or a function whose declaration
follows the pragma directive. Do not place variables that would normally be in different
segments (for example, variables declared as __no_init and variables declared as
const) in the same named segment.

address The absolute address of the global or static variable for which
you want an absolute location.

NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

AFE1_AFE2-1:1

Pragma directives

319

Example #pragma location=0xFFFF2000
__no_init volatile char PORT1; /* PORT1 is located at address
 0xFFFF2000 */

#pragma segment="FLASH"
#pragma location="FLASH"
__no_init char PORT2; /* PORT2 is located in segment FLASH */

/* A better way is to use a corresponding mechanism */
#define FLASH _Pragma("location=\"FLASH\"")
/* ... */
FLASH __no_init int i; /* i is placed in the FLASH segment */

See also Controlling data and function placement in memory, page 214 and Placing user-defined
segments, page 108.

message

Syntax #pragma message(message)

Parameters

Description Use this pragma directive to make the compiler print a message to the standard output
stream when the file is compiled.

Example #ifdef TESTING
#pragma message("Testing")
#endif

object_attribute

Syntax #pragma object_attribute=object_attribute[object_attribute...]

Parameters For information about object attributes that can be used with this pragma directive, see
Object attributes, page 292.

Description Use this pragma directive to add one or more IAR-specific object attributes to the
declaration or definition of a variable or function. Object attributes affect the actual
variable or function and not its type. When you define a variable or function, the union
of the object attributes from all declarations including the definition, is used.

message The message that you want to direct to the standard output
stream.

AFE1_AFE2-1:1

320

Descriptions of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

Example #pragma object_attribute=__no_init
char bar;

is equivalent to:

__no_init char bar;

See also General syntax rules for extended keywords, page 289.

optimize

Syntax #pragma optimize=[goal][level][no_optimization...]

Parameters

Description Use this pragma directive to decrease the optimization level, or to turn off some specific
optimizations. This pragma directive only affects the function that follows immediately
after the directive.

The parameters size, balanced, speed, and no_size_constraints only have
effect on the high optimization level and only one of them can be used as it is not
possible to optimize for speed and size at the same time. It is also not possible to use

goal Choose between:

size, optimizes for size

balanced, optimizes balanced between speed and size

speed, optimizes for speed.

no_size_constraints, optimizes for speed, but relaxes the
normal restrictions for code size expansion.

level Specifies the level of optimization; choose between none,
low, medium, or high.

no_optimization Disables one or several optimizations; choose between:

no_code_motion, disables code motion

no_cse, disables common subexpression elimination

no_inline, disables function inlining

no_tbaa, disables type-based alias analysis

no_unroll, disables loop unrolling

no_scheduling, disables instruction scheduling.

AFE1_AFE2-1:1

Pragma directives

321

preprocessor macros embedded in this pragma directive. Any such macro will not be
expanded by the preprocessor.

Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

Example #pragma optimize=speed
int SmallAndUsedOften()
{
 /* Do something here. */
}

#pragma optimize=size
int BigAndSeldomUsed()
{
 /* Do something here. */
}

See also Fine-tuning enabled transformations, page 221.

pack

Syntax #pragma pack(n)
#pragma pack()
#pragma pack({push|pop}[,name] [,n])

Parameters

Description Use this pragma directive to specify the maximum alignment of struct and union
members.

The #pragma pack directive affects declarations of structures following the pragma
directive to the next #pragma pack or the end of the compilation unit.

Note: This can result in significantly larger and slower code when accessing members
of the structure.

n Sets an optional structure alignment; one of: 1, 2, 4, 8, or 16

Empty list Restores the structure alignment to default

push Sets a temporary structure alignment

pop Restores the structure alignment from a temporarily pushed
alignment

name An optional pushed or popped alignment label

AFE1_AFE2-1:1

322

Descriptions of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

See also Structure types, page 282.

__printf_args

Syntax #pragma __printf_args

Description Use this pragma directive on a function with a printf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

Example #pragma __printf_args
int printf(char const *,...);

void PrintNumbers(unsigned short x)
{
 printf("%d", x); /* Compiler checks that x is an integer */
}

public_equ

Syntax #pragma public_equ="symbol",value

Parameters

Description Use this pragma directive to define a public assembler label and give it a value.

Example #pragma public_equ="MY_SYMBOL",0x123456

See also --public_equ, page 268.

required

Syntax #pragma required=symbol

Parameters

symbol The name of the assembler symbol to be defined (string).

value The value of the defined assembler symbol (integer constant
expression).

symbol Any statically linked function or variable.

AFE1_AFE2-1:1

Pragma directives

323

Description Use this pragma directive to ensure that a symbol which is needed by a second symbol
is included in the linked output. The directive must be placed immediately before the
second symbol.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example if a variable is only referenced indirectly through the segment
it resides in.

Example const char copyright[] = "Copyright by me";

#pragma required=copyright
int main()
{
 /* Do something here. */
}

Even if the copyright string is not used by the application, it will still be included by the
linker and available in the output.

rtmodel

Syntax #pragma rtmodel="key","value"

Parameters

Description Use this pragma directive to add a runtime model attribute to a module, which can be
used by the linker to check consistency between modules.

This pragma directive is useful for enforcing consistency between modules. All modules
that are linked together and define the same runtime attribute key must have the same
value for the corresponding key, or the special value *. It can, however, be useful to state
explicitly that the module can handle any runtime model.

A module can have several runtime model definitions.

Note: The predefined compiler runtime model attributes start with a double underscore.
To avoid confusion, this style must not be used in the user-defined attributes.

Example #pragma rtmodel="I2C","ENABLED"

"key" A text string that specifies the runtime model attribute.

"value" A text string that specifies the value of the runtime model
attribute. Using the special value * is equivalent to not
defining the attribute at all.

AFE1_AFE2-1:1

324

Descriptions of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

The linker will generate an error if a module that contains this definition is linked with
a module that does not have the corresponding runtime model attributes defined.

See also Checking module consistency, page 154.

__scanf_args

Syntax #pragma __scanf_args

Description Use this pragma directive on a function with a scanf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

Example #pragma __scanf_args
int scanf(char const *,...);

int GetNumber()
{
 int nr;
 scanf("%d", &nr); /* Compiler checks that
 the argument is a
 pointer to an integer */

 return nr;
}

segment

Syntax #pragma segment="NAME" [__memoryattribute] [align]

alias

#pragma section="NAME" [__memoryattribute] [align]

Parameters
NAME The name of the segment.

__memoryattribute An optional memory attribute identifying the memory the
segment will be placed in; if not specified, default memory is
used.

align Specifies an alignment for the segment. The value must be a
constant integer expression to the power of two.

AFE1_AFE2-1:1

Pragma directives

325

Description Use this pragma directive to define a segment name that can be used by the segment
operators __segment_begin, __segment_end, and __segment_size. All segment
declarations for a specific segment must have the same memory type attribute and
alignment.

The align and the__memoryattribute parameters are only relevant when used
together with the segment operators __segment_begin, __segment_end, and
__segment_size. If you consider using align on an individual variable to achieve a
higher alignment, you must instead use the #pragma data_alignment directive.

If an optional memory attribute is used, the return type of the segment operators
__segment_begin and __segment_end is:

void __memoryattribute *.

Note: To place variables or functions in a specific segment, use the #pragma
location directive or the @ operator.

Example #pragma segment="MYDATA17" __data17 4

See also Dedicated segment operators, page 191. For more information about segments, see the
chapters Linking overview and Linking your application.

shadow_registers

Syntax #pragma shadow_registers={none|half|full|mask}

Parameters

Description Use this pragma directive when declaring an interrupt function to specify whether any
shadow registers are available in the AVR32 device that is used. This means that the

none None of the registers are shadowed, except the stack pointer

half The registers R8-R12 and R14 are implemented as shadow
registers in hardware

full The registers R0-R12 and R14 are implemented as shadow
registers in hardware

mask A bitmask where each set bit represents a register that is
shadowed. For example, 0x5F00 is equivalent with the
parameter half, and 0x0001 means that only R0 is
shadowed. Supplying a bit mask with bit 13 or bit 15 set will
result in an error message.

AFE1_AFE2-1:1

326

Descriptions of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

interrupt routine can execute without having to save the contents of the registers that are
used, because the shadow registers replace the ordinary registers.

If an interrupt function is declared without a preceding #pragma shadow_registers
directive, the compiler will assume that no registers are shadowed, and that any used
registers must be saved. This reduces the code size and improves the execution speed of
the interrupt function.

Note: Not all shadowing modes are available for all devices and situations. For example,
the none shadowing mode is not available when AT32UC3A0512 is selected, because
registers are at least half-shadowed for all UC interrupt events. For this device,
specifying none as an argument to the pragma directive, by default sets the shadowing
mode to half.

The pc and sp registers are never shadowed.

Example #pragma shadow_registers=half
__interrupt my_interrupt(void)
{
...
}

STDC CX_LIMITED_RANGE

Syntax #pragma STDC CX_LIMITED_RANGE {ON|OFF|DEFAULT}

Parameters

Description Use this pragma directive to specify that the compiler can use the normal complex
mathematic formulas for * (multiplication), / (division), and abs.

Note: This directive is required by Standard C. The directive is recognized but has no
effect in the compiler.

STDC FENV_ACCESS

Syntax #pragma STDC FENV_ACCESS {ON|OFF|DEFAULT}

ON Normal complex mathematic formulas can be used.

OFF Normal complex mathematic formulas cannot be used.

DEFAULT Sets the default behavior, that is OFF.

AFE1_AFE2-1:1

Pragma directives

327

Parameters

Description Use this pragma directive to specify whether your source code accesses the
floating-point environment or not.

Note: This directive is required by Standard C.

STDC FP_CONTRACT

Syntax #pragma STDC FP_CONTRACT {ON|OFF|DEFAULT}

Parameters

Description Use this pragma directive to specify whether the compiler is allowed to contract
floating-point expressions or not. This directive is required by Standard C.

Example #pragma STDC FP_CONTRACT=ON

type_attribute

Syntax #pragma type_attribute=type_attr[type_attr...]

Parameters For information about type attributes that can be used with this pragma directive, see
Type attributes, page 289.

Description Use this pragma directive to specify IAR-specific type attributes, which are not part of
Standard C. Note however, that a given type attribute might not be applicable to all kind
of objects.

ON Source code accesses the floating-point environment. Note
that this argument is not supported by the compiler.

OFF Source code does not access the floating-point environment.

DEFAULT Sets the default behavior, that is OFF.

ON The compiler is allowed to contract floating-point
expressions.

OFF The compiler is not allowed to contract floating-point
expressions. Note that this argument is not supported by the
compiler.

DEFAULT Sets the default behavior, that is ON.

AFE1_AFE2-1:1

328

Descriptions of pragma directives

IAR C/C++ Compiler User Guide
for AVR32

This directive affects the declaration of the identifier, the next variable, or the next
function that follows immediately after the pragma directive.

Example In this example, an int object with the memory attribute __data17 is defined:

#pragma type_attribute=__data17
int x;

This declaration, which uses extended keywords, is equivalent:

__data17 int x;

See also The chapter Extended keywords.

vector

Syntax #pragma vector=vector1[, vector2, vector3, ...]

Parameters

Description Use this pragma directive to specify the vector(s) of an acall function whose
declaration follows the pragma directive. Note that several vectors can be defined for
each function.

Example #pragma vector=0x14
__acall void my_function(void);

vectorN The vector number(s) of an acall function.

AFE1_AFE2-1:1

 329

Intrinsic functions
● Summary of intrinsic functions

● Descriptions of intrinsic functions

Summary of intrinsic functions
There are two types of intrinsic functions available:

● Intrinsic inline functions

● ETSI macro functions

INTRINSIC INLINE FUNCTIONS

The intrinsic functions provide direct access to low-level processor operations and can
be very useful in, for example, time-critical routines. The intrinsic functions compile
into inline code, either as a single instruction or as a short sequence of instructions.

To use intrinsic functions in an application, include the header file intrinsics.h.

Note that the intrinsic function names start with double underscores, for example:

__disable_interrupt

This table summarizes the intrinsic functions:

Intrinsic function Description

__bit_reverse Inserts a bit reverse (BREV) instruction

__BREAKPOINT Inserts a breakpoint (BREAKPOINT)
instruction

__cache_control Inserts a cache control (CACHE) instruction

__clear_status_flag Inserts a clear status register flag (CSRF)
instruction

__COP Inserts a coprocessor (COP) instruction

__COP_get_register32 Inserts a read coprocessor register
(MVCR.w) instruction

__COP_get_register64 Inserts a read coprocessor register
(MVCR.d) instruction

__COP_get_registers Inserts a read multiple coprocessor register
(STCM.w) instruction

Table 40: Intrinsic functions summary

AFE1_AFE2-1:1

330

Summary of intrinsic functions

IAR C/C++ Compiler User Guide
for AVR32

__COP_set_registers Inserts a write coprocessor register
(MVRC.w) instruction

__COP_set_register32 Inserts a write coprocessor register
(MVRC.d) instruction

__COP_set_register64 Inserts a write multiple coprocessor register
(LDCM.w) instruction

__count_leading_zeros Returns the number of bits set to zero,
starting from the most significant bit

__count_trailing_zeros Returns the number of bits set to zero,
starting from the least significant bit.

__disable_interrupt Disables interrupts

__enable_interrupt Enables interrupts

__exchange_memory Inserts a memory exchange (XCHG)
instruction

__get_debug_register Inserts an MFDR instruction

__get_interrupt_state Returns the interrupt state

__get_system_register Inserts a read from system register (MFSR)
instruction

__get_user_context Inserts a store user context (STMTS)
instruction

__max Inserts a MAX instruction

__min Inserts a MIN instruction

__no_operation Inserts a NOP instruction

__prefetch_cache Inserts a cache prefetch (PREF) instruction

__read_TLB_entry Inserts an MMU table read (TLBR)
instruction

__search_TLB_entry Inserts an MMU table search (TLBS)
instruction

__set_debug_register Inserts an MTDR instruction

__set_interrupt_state Restores the interrupt state

__set_status_flag Insert a set status register flag (SSRF)
instruction

__set_system_register Inserts a write to system register (MTSR)
instruction

Intrinsic function Description

Table 40: Intrinsic functions summary (Continued)

AFE1_AFE2-1:1

Intrinsic functions

331

SUMMARY AND DESCRIPTION OF ETSI FUNCTIONS

The ETSI interface is designed for telecommunications applications, but can be used
with any type of application you are building. The preprocessor macros will expand to
C functions or intrinsic functions that correspond to the DSP operations of the AVR32
microprocessor.

The following table lists the ETSI functions:

__set_user_context Inserts a load user context (LDMTS)
instruction

__signed_saturate Saturates the first parameter so that it fits in
a word-size signed bitfield

__sleep Inserts a SLEEP instruction

__store_conditional Inserts a conditional store (STCOND)
instruction

__swap_bytes Inserts a SWAP.b instruction

__swap_bytes_in_halfwords Inserts a SWAP.bh instruction

__swap_halfwords Inserts a SWAP.h instruction

__synchronize_write_buffer Inserts a synchronize write buffer (SYNC)
instruction

__test_status_flag Insert a get status register flag (CSRFCZ)
instruction

__unsigned_saturate Saturates the first parameter so that it fits in
a word-size unsigned bitfield

__write_TLB_entry Inserts an MMU table write (TLBW)
instruction

ETSI function Syntax Description

abs_s q15 abs_s(q15 x); Saturated 16-bit absolute value of
x

add q15 add(q15 x, q15 y); Saturated 16-bit addition

div_s q15 div_s(q15 x, q15 y); Saturated 16-bit division

extract_h unsigned short

extract_h(unsigned int);

Extracts high 16-bit part of 32-bit
word

extract_l unsigned short

extract_l(unsigned int);

Extracts low 16-bit part of 32-bit
word

Table 41: ETSI functions summary

Intrinsic function Description

Table 40: Intrinsic functions summary (Continued)

AFE1_AFE2-1:1

332

Summary of intrinsic functions

IAR C/C++ Compiler User Guide
for AVR32

L_abs q31 L_abs(q31 x); Saturated 32-bit absolute value of
x

L_add q31 L_add(q31 x, q31 y); Saturated 32-bit addition

L_add_c q31 L_add_c(q31 x,

 q31 y);

32-bit add with carry and overflow

L_deposit_

h

unsigned int

L_deposit_h(unsigned short);

Deposits value in high 16-bit part
of result

L_deposit_

l

unsigned int

L_deposit_l(unsigned short);

Deposits value in low 16-bit part of
result

L_mac q31 L_mac(q31 x, q15 y,

 q15 z);

Saturated multiply/accumulate

L_macNs q31 L_macNs(q31 x, q15 y,

 q15 z);

Multiply/accumulate with carry and
overflow

L_msu q31 L_msu(q31 x, q15 y,

 q15 z);

Saturated multiply/subtract

L_msuNs q31 L_msuNs(q31 x, q15 y,

 q15 z);

Multiply/subtract with carry and
overflow

L_mult q31 L_mult(q15 x, q15 y); Saturated 16-bit multiplication with
32-bit product

L_negate q31 L_negate(q31 x); Saturated 32-bit negation

L_sat q31 L_sat(q31 x); Saturate value depending on
previous overflow and carry

L_shl q31 L_shl(q31 x, short y); Saturated 32-bit left shift

L_shr q31 L_shr(q31 x, short y); Saturated 32-bit right shift

L_shr_r q31 L_shr_r(q31 x,

 short y);

Saturated rounded 32-bit right shift

L_sub q31 L_sub(q31 x, q15 y); Saturated 32-bit subtraction

L_sub_c q31 L_sub_c(q31 x,

 q31 y);

32-bit subtract with carry and
overflow

mac_r q15 mac_r(q31 x, q15 y,

 q15 z);

Saturated rounded
multiply/accumulate

msu_r q15 msu_r(q31 x, q15 y,

 q15 z);

Saturated rounded
multiply/subtract

mult q15 mult(q15 x, q15 y); Saturated 16-bit multiplication

ETSI function Syntax Description

Table 41: ETSI functions summary (Continued)

AFE1_AFE2-1:1

Intrinsic functions

333

Note: In the table, q15 represents a 16-bit fixed-point value stored in a variable of type
int16_t and q31 represents a 32-bit fixed-point value stored in a variable of type
int32_t.

To use ETSI functions in an application, include the header file etsi.h.

Descriptions of intrinsic functions
This section gives reference information about each intrinsic function.

__bit_reverse

Syntax unsigned int __bit_reverse(unsigned int);

Description Inserts a bit reverse (BREV) instruction which reverses the bit pattern of the argument.

Note: The compiler constant-folds the parameter at optimization levels above Low.

Example unsigned int x = 0x12345678;
x = __bit_reverse(x);
/* x now has the value 0x1E6A2C48 */

__BREAKPOINT

Syntax void __BREAKPOINT(void);

mult_r q15 mult_r(q15 x, q15 y); Saturated rounded 16-bit
multiplication

negate q15 negate(q15 x); Saturated 16-bit negation

norm_s q15 norm_s(q15 x); Normalizes 16-bit

norm_l q15 norm_l(q31 x); Normalizes 32-bit

round q15 round(q31 x); Rounds biased

shl q15 shl(q15 x, short y); Saturated 16-bit left shift

shr q15 shr(q15 x, short y); Saturated 16-bit right shift

shr_r q15 shr_r(q15 x, short y); Saturated rounded 16-bit right shift

sub q15 sub(q15 x, q15 y); Saturated 16-bit subtraction

ETSI function Syntax Description

Table 41: ETSI functions summary (Continued)

AFE1_AFE2-1:1

334

Descriptions of intrinsic functions

IAR C/C++ Compiler User Guide
for AVR32

Description Inserts a BREAKPOINT instruction. In a hardware debug environment, the BREAKPOINT
instruction will switch to debug mode.

In all normal cases your debug environment should set breakpoints for you, so do not
expect breakpoint instructions that you place in your application code to work properly
with the debug environment unless specified in the documentation.

__cache_control

Syntax void __cache_control(void __data32 *, unsigned int);

Description Inserts a cache control (CACHE) instruction. The two arguments will be passed over to
the CACHE instruction unchanged.

For details about the how the CACHE instruction works, see the chip manufacturer’s
documentation.

Example /* Second argument specifies data cache */
__cache_control(myPointer, (1 << 3));

__clear_status_flag

Syntax void __clear_status_flag(unsigned int);

Description Insert a clear status register flag (CSRF) instruction. The instruction can be used for
clearing a selected flag bit in the status register. Note that many bits are modified
naturally during execution, for instance, the C and Z bits. If you clear these bits, you
cannot rely on them to keep their values. This intrinsic function is best suited for
modifying special bits like the interrupt level mask bits.

The argument is the bit number, where bit 0 is the least significant bit (the carry flag).
The possible argument range is 0–31.

Note: The status register can also be accessed as a special function register (SFR) if you
use the provided include files, for example, ioavr32.h.

__COP

Syntax void __COP(unsigned char coproNumber, unsigned char CPdestReg,
 unsigned char CPsrcReg1, unsigned char CPsrcReg2,
 unsigned char CPoperation);

AFE1_AFE2-1:1

Intrinsic functions

335

Description Inserts a coprocessor (COP) instruction. The coprocessor instructions are highly specific
to the coprocessor in question. For details, read the documentation for your coprocessor.

Example __COP(0 /* coprocessor number */,
 3 /* destination register in coprocessor */,
 6, 7 /* source registers in coprocessor */,
 5 /* operation number in coprocessor */);

__COP_get_register32

Syntax long __COP_get_register32(unsigned char coproNumber,
 unsigned char CPsrcReg);

Description Inserts a read coprocessor register (MVCR.w) instruction. The contents of the specified
32-bit coprocessor register will be read and returned as a function value.

Example /* Read register 3 of coprocessor 0 */
long x = __COP_get_register32(0, 3);

__COP_get_register64

Syntax long long __COP_get_register64(unsigned char coproNumber,
 unsigned char CPsrcReg);

Description Inserts a read coprocessor register (MVCR.d) instruction. The contents of the specified
pair of 32-bit coprocessor registers will be read and returned as a 64-bit function value.

Example /* Read register 4 and 5 of coprocessor 0 */
long long x = __COP_get_register64(0, 4);

__COP_get_registers

Syntax void __COP_get_registers(unsigned char coproNumber,
 unsigned short CPregMask,
 long __data32 * destination);

Description Inserts a write multiple coprocessor register (STCM.w) instruction. The registers
specified in the mask will be read and stored in the destination buffer.

Example /* Transfer the contents of registers 2 - 5 of coprocessor 0 to
buf */
long buf[4];
__COP_get_registers(0, 0x3C /* 00111100b */, buf);

AFE1_AFE2-1:1

336

Descriptions of intrinsic functions

IAR C/C++ Compiler User Guide
for AVR32

__COP_set_registers

Syntax void __COP_set_registers(unsigned char coproNumber,
 unsigned short CPregMask,
 long __data32 * destination);

Description Inserts a write multiple coprocessor register (STCM.w) instruction. The registers
specified in the mask will be read and stored in the destination buffer.

Example /* Transfer the contents of registers 2 - 5 of coprocessor 0 to
buf */
long buf[4];
__COP_get_registers(0, 0x3C /* 00111100b */, buf);

__COP_set_register32

Syntax void __COP_set_register32(unsigned char coproNumber,
unsigned char CPsrcReg, long value);

Description Inserts a write coprocessor register (MVRC.w) instruction. The contents of the specified
32-bit coprocessor register will be set to the specified value.

Example /* Set a new value on register 3 of coprocessor 0 */
__COP_set_register32(0, 3, 0x01234567L);

__COP_set_register64

Syntax void __COP_set_register64(unsigned char coproNumber,
unsigned char CPsrcReg, long long value);

Description Inserts a write coprocessor register (MVRC.d) instruction. The contents of the specified
pair of 32-bit coprocessor registers will be set to the specified value. Remember that a
long long constant must have the suffix LL or ll.

Example /* Set a new value on register 4 and 5 of coprocessor 0 */
__COP_set_register64(0, 3, 0x0123456789ABCDEFLL);

__count_leading_zeros

Syntax unsigned int __count_leading_zeros(unsigned int);

AFE1_AFE2-1:1

Intrinsic functions

337

Description Returns the number of bits set to zero, starting from the most significant bit until it
reaches a 1.

Note: The compiler constant-folds the parameter at optimization levels above Low.

Example __count_leading_zeros(0xFFFFFFFF)=0
__count_leading_zeros(0x08000000)=4
__count_leading_zeros(0x00000000)=32

__count_trailing_zeros

Syntax unsigned int __count_trailing_zeros(unsigned int);

Description Returns the number of bits set to zero, starting from the least significant bit until it
reaches a 1.

Note: The compiler constant-folds the parameter at optimization levels above Low.

Example __count_trailing_zeros(0xFFFFFFFF)=0
__count_trailing_zeros(0x08000000)=27
__count_trailing_zeros(0x00000000)=32

__disable_interrupt

Syntax void __disable_interrupt(void);

Description Disables interrupts by inserting the DI instruction.

__enable_interrupt

Syntax void __enable_interrupt(void);

Description Enables interrupts by inserting the EI instruction.

__exchange_memory

Syntax unsigned int __exchange_memory(unsigned int __data32 *,
unsigned int);

Description Inserts a memory exchange (XCHG) instruction. The value of the second parameter is
stored at the specified address, and the function returns the previous value of the word

AFE1_AFE2-1:1

338

Descriptions of intrinsic functions

IAR C/C++ Compiler User Guide
for AVR32

specified by the address. Because this instruction will both read and update a variable in
memory in one atomic operation, it can be used to implement a semaphore.

Example enum semaphoreValue = {busy, free);
extern unsigned int mySemaphore;
semaphoreValue temp;
temp = (semaphoreValue) __exchange_memory(&mySemaphore, busy);
if (temp == free)
{
 /* Semaphore was free, we can do the operation
 that was guarded by the semaphore */
}

__get_debug_register

Syntax unsigned int __get_debug_register(unsigned short);

Description Inserts an MFDR instruction.

__get_interrupt_state

Syntax __istate_t __get_interrupt_state(void);

Description Returns the global interrupt state. The return value can be used as an argument to the
__set_interrupt_state intrinsic function, which will restore the interrupt state.

Example #include "intrinsics.h"

void CriticalFn()
{
 __istate_t s = __get_interrupt_state();
 __disable_interrupt();

 /* Do something here. */

 __set_interrupt_state(s);
}

The advantage of using this sequence of code compared to using
__disable_interrupt and __enable_interrupt is that the code in this example
will not enable any interrupts disabled before the call of __get_interrupt_state.

AFE1_AFE2-1:1

Intrinsic functions

339

__get_system_register

Syntax unsigned int __get_system_register(unsigned short);

Description Inserts a read from system register (MFSR) instruction. The argument is the system
register address (0, 4, 8, … up to 1020), not the register number (0, 1, 2, …), in exactly
the same way as the argument to the assembler instruction MFSR.

Note: Many system registers can also be accessed as a special function register (SFR) if
you use the provided include files, for example, ioavr32.h.

Example /* EVBA has number 8, address 32 */
unsigned int evba = __get_system_register(32);

__get_user_context

Syntax void __get_user_context(unsigned short,
 unsigned long __data32 *);

Description Inserts a store user context (STMTS) instruction. The STMTS instruction will transfer the
contents of the specified application context registers to the specified buffer. It is
typically used within an operating system when performing a task switch to save the
values of the application mode registers of the previously executing task.

Note: You should call this intrinsic function within an environment where banked
registers are used, to avoid the currently executing C code to modify the application
context registers.

Example unsigned long registerFile[16];
__get_user_context(0xFFFF, registerFile);

__max

Syntax signed int __max(signed int, signed int);

Description Inserts a MAX instruction.

Note: The compiler constant-folds the parameter at optimization levels above Low.

__min

Syntax signed int __min(signed int, signed int);

AFE1_AFE2-1:1

340

Descriptions of intrinsic functions

IAR C/C++ Compiler User Guide
for AVR32

Description Inserts a MIN instruction.

Note: The compiler constant-folds the parameter at optimization levels above Low.

__no_operation

Syntax void __no_operation(void);

Description Inserts a NOP instruction.

__prefetch_cache

Syntax void __prefetch_cache(void __data32 *);

Description Inserts a cache prefetch (PREF) instruction. The PREF instruction can be used to direct
the cache, if present, to prefetch information from memory. For details, see the chip
manufacturer’s documentation.

Example char buffer[8192];
__prefetch_cache(buffer);

__read_TLB_entry

Syntax void __read_TLB_entry(void);

Description Inserts an MMU table read (TLBR) instruction. For details about how to use the MMU,
see the chip manufacturer’s documentation.

Example /* Use SFR declarations from ioavr32.h */
#include <ioavr32.h>
/* Read from instruction TLB */
TLBEHI_bit.I = 1;
/* We want to read entry 30 from the instruction TLB */
MMUCR_bit.IRP = 30;
/* Read the TLB entry */
__read_TLB_entry();
/* The entry has now been transferred to TLBEHI and TLBELO */

__search_TLB_entry

Syntax void __search_TLB_entry(void);

AFE1_AFE2-1:1

Intrinsic functions

341

Description Inserts an MMU table search (TLBS) instruction. The entry to search for is specified by
first writing to the MMU interface registers TLBEHI and TLBELO.

For details about how to use the MMU, see the chip manufacturer’s documentation.

Example /* Use SFR declarations from ioavr32.h */
#include <ioavr32.h>
/* Set up the values to search for */
TLBEHI = ...
TLBELO = ...
/* Search instruction TLB */
TLBEHI_bit.I = 1;
/* Search for a matching TLB entry */
__search_TLB_entry();
/* Check if desired entry found */
if (MMUCR_bit.N == 0)
{
 /* The entry was found */
}

__set_debug_register

Syntax void __set_debug_register(unsigned short, unsigned int);

Description Inserts an MTDR instruction.

__set_interrupt_state

Syntax void __set_interrupt_state(__istate_t);

Description Restores the interrupt state to a value previously returned by the
__get_interrupt_state function.

For information about the __istate_t type, see __get_interrupt_state, page 338.

__set_status_flag

Syntax void __set_status_flag(unsigned int);

Description Inserts a set status register flag (SSRF) instruction. The instruction can be used to set a
selected flag bit in the status register. Note that many bits are modified naturally during
execution, for instance, the C and Z bits. If you set these bits, you cannot rely on them to

AFE1_AFE2-1:1

342

Descriptions of intrinsic functions

IAR C/C++ Compiler User Guide
for AVR32

keep the value. This intrinsic function is best suited for modifying special bits like the
interrupt level mask bits.

The argument is the bit number, where bit 0 is the least significant bit (the carry flag).
The possible argument range is 0–31.

Note: The status register can also be accessed as a special function register (SFR) if you
use the provided include files, for example, ioavr32.h.

Example /* Set interrupt level 0 mask */
__set_status_flag(17);

__set_system_register

Syntax void __set_status_flag(unsigned short, unsigned int);

Description Inserts a write to system register (MTSR) instruction. The first argument is the system
register address (0, 4, 8, … up to 1020), not the register number (0, 1, 2, …), in exactly
the same way as the argument to the assembler instruction MTSR. The second argument
is the new value to write to the system register.

Note: Many system registers can also be accessed as a special function register (SFR) if
you use the provided include files, for example, ioavr32.h.

Example /* EVBA has number 8, address 32 */
unsigned int evba = 0xFFFF00;
__set_system_register(32, evba);

__set_user_context

Syntax void __set_user_context(unsigned short,
 unsigned long __data32 *);

Description Inserts a load user context (LDMTS) instruction. The LDMTS instruction will transfer the
contents of the specified buffer to the specified application context registers. It is
typically used within an operating system when performing a task switch to restore the
previous values of the application mode registers of the task to switch to.

Note: You should call this intrinsic function within an environment where banked
registers are used, to avoid the currently executing C code to modify the restored
registers.

Example unsigned long registerFile[16];
__set_user_context(0xFFFF, registerFile);

AFE1_AFE2-1:1

Intrinsic functions

343

__signed_saturate

Syntax signed int __signed_saturate(signed int x, unsigned char w);

Description Saturates the first parameter so that it fits in a word-size signed bitfield. That is, the
range of the result will be -2^(N-1) ... 2^(N-1)-1.

The compiler tries to generate either a SATS instruction or a SATRNDS instruction. It also
tries to incorporate an arithmetic right shift into the generated instruction.

Example __signed_saturate((x + (1 << 2)) >> 3, 16);

This should generate (assuming that a copy of x is in R0):

SATRNDS R0 >> 3, 16

__sleep

Syntax void __sleep(void);

Description Inserts a SLEEP instruction.

__store_conditional

Syntax bool __store_conditional(unsigned int * addr, unsigned int val);

Description Inserts a STCOND instruction and returns true if the store was performed. This function
can be used for implementing atomic operations.

To work, the application must first have set the L flag in the status register to 1 by calling
the __set_status_flag intrinsic function.

AFE1_AFE2-1:1

344

Descriptions of intrinsic functions

IAR C/C++ Compiler User Guide
for AVR32

Example unsigned int timer;
bool flag = false;
extern volatile unsigned int my_volatile_timer;
do
{
 __set_status_flag(5 /* The L flag */);
 timer = my_volatile_counter;
 flag = false;
 if (--timer == 0)
 {
 flag = true;
 timer = TIMER_VALUE;
 }
 // Conditionally write back the new timer value
 // unless an interrupt or exception has occurred,
 // in which case we redo the code above.
} while(!__store_conditional(&my_volatile_timer, timer));

__swap_bytes

Syntax unsigned int __swap_bytes(unsigned int);

Description Inserts a SWAP.b instruction.

Note: The compiler constant-folds the parameter at optimization levels above Low.

__swap_bytes_in_halfwords

Syntax unsigned int __swap_bytes_in_halfwords(unsigned int);

Description Inserts a SWAP.bh instruction.

Note: The compiler constant-folds the parameter at optimization levels above Low.

__swap_halfwords

Syntax unsigned int __swap_halfwords(unsigned int);

Description Inserts a SWAP.h instruction.

Note: The compiler constant-folds the parameter at optimization levels above Low.

AFE1_AFE2-1:1

Intrinsic functions

345

__synchronize_write_buffer

Syntax void __synchronize_write_buffer(unsigned char);

Description Inserts a synchronize write buffer (SYNC) instruction. The argument is
implementation-defined. See the chip manufacturer’s documentation for details.

Example __synchronize_write_buffer(3);

__test_status_flag

Syntax int __test_status_flag(unsigned int);

Description Insert a get status register flag (CSRFCZ) instruction. The instruction can be used to test
the value of a selected flag bit in the status register. Note that many bits are modified
naturally during execution, for instance, the C and Z bits. Even if you test the value of
these bits, you cannot draw any meaningful conclusion from the result. This intrinsic
function is best suited for testing special bits like the interrupt level mask bits.

The argument is the bit number, where bit 0 is the least significant bit (the carry flag).
The possible argument range is 0–31.

Note: The status register can also be accessed as a special function register (SFR) if you
use the provided include files, for example, ioavr32.h.

Example /* Check interrupt level 0 mask */
int i0m = __test_status_flag(17);

__unsigned_saturate

Syntax unsigned int __unsigned_saturate(signed int x, unsigned char w);

Description Saturates the first parameter so that it fits in a word-size unsigned bitfield. That is, the
range of the result will be 0 ... 2^(N-1)-1.

The compiler tries to generate either a SATU instruction or a SATRNDU instruction. It also
tries to incorporate an arithmetic right shift into the generated instruction.

Example __unsigned_saturate((x >> 5, 16);

This should generate (assuming that a copy of x is in R0):

SATU R0 >> 5, 16

AFE1_AFE2-1:1

346

Descriptions of intrinsic functions

IAR C/C++ Compiler User Guide
for AVR32

__write_TLB_entry

Syntax void __write_TLB_entry(void);

Description Inserts an MMU table write (TLBW) instruction. The value to write to the TLB is specified
by first writing to the MMU interface registers TLBEHI and TLBELO.

For details about how to use the MMU, see the chip manufacturer’s documentation.

Example /* Use SFR declarations from ioavr32.h */
#include <ioavr32.h>
/* Set up the values to enter into the TLB */
TLBEHI = ...
TLBELO = ...
/* Write to the instruction TLB */
TLBEHI_bit.I = 1;
/* Write the new entry to the TLB */
__write_TLB_entry();

AFE1_AFE2-1:1

 347

The preprocessor
● Overview of the preprocessor

● Description of predefined preprocessor symbols

● Descriptions of miscellaneous preprocessor extensions

Overview of the preprocessor
The preprocessor of the IAR C/C++ Compiler for AVR32 adheres to Standard C. The
compiler also makes these preprocessor-related features available to you:

● Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example the
time and date of compilation. For more information, see Description of predefined
preprocessor symbols, page 348.

● User-defined preprocessor symbols defined using a compiler option

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D, see -D, page 248.

● Preprocessor extensions

There are several preprocessor extensions, for example many pragma directives; for
more information, see the chapter Pragma directives. For information about the
corresponding _Pragma operator and the other extensions related to the
preprocessor, see Descriptions of miscellaneous preprocessor extensions, page 353.

● Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 268.

To specify a path for an include file, use forward slashes:

#include "mydirectory/myfile"

In source code, use forward slashes:

file = fopen("mydirectory/myfile","rt");

Note that backslashes can also be used. In this case, use one in include file paths and two
in source code strings.

AFE1_AFE2-1:1

348

Description of predefined preprocessor symbols

IAR C/C++ Compiler User Guide
for AVR32

Description of predefined preprocessor symbols
This section lists and describes the preprocessor symbols.

__BASE_FILE__

Description A string that identifies the name of the base source file (that is, not the header file), being
compiled.

See also __FILE__, page 350, and --no_path_in_file_macros, page 262.

__BUILD_NUMBER__

Description A unique integer that identifies the build number of the compiler currently in use. The
build number does not necessarily increase with a compiler that is released later.

__CODE_MODEL__

Description An integer that identifies the code model in use. The value reflects the setting of the
--code_model option and is defined to __CODE_MODEL_SMALL__,
__CODE_MODEL_MEDIUM__, or __CODE_MODEL_LARGE__. These symbolic names can
be used when testing the __CODE_MODEL__ symbol.

__CORE__

Description An integer that identifies the chip core in use. The value reflects the setting of the
--core option and is defined to __AVR32A__ or __AVR32B__. These symbolic names
can be used when testing the __CORE__ symbol.

__CORE_REVISION__

Description An integer that corresponds to the core revision of the selected CPU or core. The symbol
reflects the --core_revision option.

__COUNTER__

Description A macro that expands to a new integer each time it is expanded, starting at zero (0) and
counting up.

AFE1_AFE2-1:1

The preprocessor

349

__cplusplus

Description An integer which is defined when the compiler runs in any of the C++ modes, otherwise
it is undefined. When defined, its value is 199711L. This symbol can be used with
#ifdef to detect whether the compiler accepts C++ code. It is particularly useful when
creating header files that are to be shared by C and C++ code.

This symbol is required by Standard C.

__DATA_MODEL__

Description An integer that identifies the data model in use. The value reflects the setting of the
--data_model option and is defined to __MODEL_SMALL__ or __MODEL_LARGE__.

__DATE__

Description A string that identifies the date of compilation, which is returned in the form "Mmm dd
yyyy", for example "Oct 30 2014"

This symbol is required by Standard C.

__DEFAULT_CODE_SEGMENT__

Description Defined to be the default code memory type attribute, depending on the code model.

__DEFAULT_CONST_SEGMENT__

Description Defined to be the default data memory type attribute used for constant objects,
depending on the code model.

__DEFAULT_DATA_SEGMENT__

Description Defined to be the default data memory type attribute used for non-constant objects,
depending on the data model.

__embedded_cplusplus

Description An integer which is defined to 1 when the compiler runs in any of the C++ modes,
otherwise the symbol is undefined. This symbol can be used with #ifdef to detect

AFE1_AFE2-1:1

350

Description of predefined preprocessor symbols

IAR C/C++ Compiler User Guide
for AVR32

whether the compiler accepts C++ code. It is particularly useful when creating header
files that are to be shared by C and C++ code.

This symbol is required by Standard C.

__FILE__

Description A string that identifies the name of the file being compiled, which can be both the base
source file and any included header file.

This symbol is required by Standard C.

See also __BASE_FILE__, page 348, and --no_path_in_file_macros, page 262.

__func__

Description A predefined string identifier that is initialized with the name of the function in which
the symbol is used. This is useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled.

This symbol is required by Standard C.

See also -e, page 254 and __PRETTY_FUNCTION__, page 352.

__FUNCTION__

Description A predefined string identifier that is initialized with the name of the function in which
the symbol is used. This is useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled.

See also -e, page 254 and __PRETTY_FUNCTION__, page 352.

__HAS_DSP_INSTRUCTIONS__

Description An integer that is defined to 1 if DSP instructions are enabled. The symbol reflects the
--core option, --cpu option, or the --avr32_dsp_instructions=enabled option.

__HAS_FPU_INSTRUCTIONS__

Description An integer that is defined to a non-zero value if FPU instructions are enabled. The
symbol reflects the --avr32_fpu_instructions=enabled option.

AFE1_AFE2-1:1

The preprocessor

351

__HAS_RMW_INSTRUCTIONS__

Description An integer that is defined to 1 if RMW instructions are enabled. The symbol reflects the
--core option, --cpu option, or the --avr32_rmw_instructions=enabled option.

__HAS_SIMD_INSTRUCTIONS__

Description An integer that is defined to 1 if SIMD instructions are enabled. The symbol reflects the
--core option, --cpu option, or the --avr32_simd_instructions=enabled
option.

__IAR_SYSTEMS_ICC__

Description An integer that identifies the IAR compiler platform. The current value is . Note that the
number could be higher in a future version of the product. This symbol can be tested
with #ifdef to detect whether the code was compiled by a compiler from IAR Systems.

__ICCAVR32__

Description An integer that is set to 1 when the code is compiled with the IAR C/C++ Compiler for
AVR32.

__LINE__

Description An integer that identifies the current source line number of the file being compiled,
which can be both the base source file and any included header file.

This symbol is required by Standard C.

__PART__

Description An integer that identifies the AVR32 part in use. The symbol reflects the --cpu option
and is defined to a symbolic name __PART-NAME__, reflecting the part. These symbolic
names can be used when testing the __PART__ symbol. For a list of supported parts, see
the supported_devices.html file available in the doc directory.

AFE1_AFE2-1:1

352

Description of predefined preprocessor symbols

IAR C/C++ Compiler User Guide
for AVR32

__PRETTY_FUNCTION__

Description A predefined string identifier that is initialized with the function name, including
parameter types and return type, of the function in which the symbol is used, for
example "void func(char)". This symbol is useful for assertions and other trace
utilities. The symbol requires that language extensions are enabled.

See also -e, page 254 and__func__, page 350.

__STDC__

Description An integer that is set to 1, which means the compiler adheres to Standard C. This symbol
can be tested with #ifdef to detect whether the compiler in use adheres to Standard C.*

This symbol is required by Standard C.

__STDC_VERSION__

Description An integer that identifies the version of the C standard in use. The symbol expands to
199901L,unless the --c89 compiler option is used in which case the symbol expands
to 199409L. This symbol does not apply in EC++ mode.

This symbol is required by Standard C.

__SUBVERSION__

Description An integer that identifies the subversion number of the compiler version number, for
example 3 in 1.2.3.4.

__TIME__

Description A string that identifies the time of compilation in the form "hh:mm:ss".

This symbol is required by Standard C.

__TIMESTAMP__

Description A string constant that identifies the date and time of the last modification of the current
source file. The format of the string is the same as that used by the asctime standard
function (in other words, "Tue Sep 16 13:03:52 2014").

AFE1_AFE2-1:1

The preprocessor

353

__VER__

Description An integer that identifies the version number of the IAR compiler in use. The value of
the number is calculated in this way: (100 * the major version number + the
minor version number). For example, for compiler version 3.34, 3 is the major
version number and 34 is the minor version number. Hence, the value of __VER__ is
334.

Descriptions of miscellaneous preprocessor extensions
This section gives reference information about the preprocessor extensions that are
available in addition to the predefined symbols, pragma directives, and Standard C
directives.

NDEBUG

Description This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

● defined, the assert code will not be included

● not defined, the assert code will be included

This means that if you write any assert code and build your application, you should
define this symbol to exclude the assert code from the final application.

Note that the assert macro is defined in the assert.h standard include file.

In the IDE, the NDEBUG symbol is automatically defined if you build your application in
the Release build configuration.

See also Assert, page 148.

#warning message

Syntax #warning message

where message can be any string.

Description Use this preprocessor directive to produce messages. Typically, this is useful for
assertions and other trace utilities, similar to the way the Standard C #error directive
is used. This directive is not recognized when the --strict compiler option is used.

AFE1_AFE2-1:1

354

Descriptions of miscellaneous preprocessor extensions

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

 355

Library functions
● Library overview

● IAR DLIB Library

For detailed reference information about the library functions, see the online
help system.

Library overview
The IAR DLIB Library is a complete library, compliant with Standard C and C++.
This library also supports floating-point numbers in IEEE 754 format and it can be
configured to include different levels of support for locale, file descriptors, multibyte
characters, etc.

For more information about customization, see the chapter The DLIB runtime
environment.

For detailed information about the library functions, see the online documentation
supplied with the product. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

For more information about library functions, see the chapter Implementation-defined
behavior for Standard C in this guide.

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into several
different header files, each covering a particular functional area, letting you include just
those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
choose a runtime library, see Basic project configuration, page 54 . The linker will

AFE1_AFE2-1:1

356

Library overview

IAR C/C++ Compiler User Guide
for AVR32

include only those routines that are required—directly or indirectly—by your
application.

ALTERNATIVE MORE ACCURATE LIBRARY FUNCTIONS

The default implementation of cos, sin, tan, and pow is designed to be fast and small.
As an alternative, there are versions designed to provide better accuracy. They are
named __iar_xxx_accuratef for float variants of the functions and
__iar_xxx_accuratel for long double variants of the functions, and where xxx is
cos, sin, etc.

To use any of these more accurate versions, use the -e linker option.

REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant.

Most parts of the DLIB library are reentrant, but the following functions and parts are
not reentrant because they need static data:

● Heap functions—malloc, free, realloc, calloc, and the C++ operators new
and delete

● Locale functions—localeconv, setlocale

● Multibyte functions—mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb,
wcsrtomb, wctomb

● Rand functions—rand, srand

● Time functions—asctime, localtime, gmtime, mktime

● The miscellaneous functions atexit, strerror, strtok

● Functions that use files or the heap in some way. This includes scanf, sscanf,
getchar, and putchar. In addition, if you are using the options
--enable_multibyte and --dlib_config=Full, the printf and sprintf
functions (or any variants) can also use the heap.

Functions that can set errno are not reentrant, because an errno value resulting from
one of these functions can be destroyed by a subsequent use of the function before it is
read. This applies to math and string conversion functions, among others.

Remedies for this are:

● Do not use non-reentrant functions in interrupt service routines

● Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

AFE1_AFE2-1:1

Library functions

357

THE LONGJMP FUNCTION

A longjmp is in effect a jump to a previously defined setjmp. Any variable length
arrays or C++ objects residing on the stack during stack unwinding will not be
destroyed. This can lead to resource leaks or incorrect application behavior.

IAR DLIB Library
The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. These are of the following types:

● Adherence to a free-standing implementation of Standard C. The library supports
most of the hosted functionality, but you must implement some of its base
functionality. For additional information, see the chapter Implementation-defined
behavior for Standard C in this guide.

● Standard C library definitions, for user programs.

● C++ library definitions, for user programs.

● CSTARTUP, the module containing the start-up code, see the chapter The DLIB
runtime environment in this guide.

● Runtime support libraries; for example low-level floating-point routines.

● Intrinsic functions, allowing low-level use of AVR32 features. See the chapter
Intrinsic functions for more information.

In addition, the IAR DLIB Library includes some added C functionality, see Added C
functionality, page 361.

C HEADER FILES

This section lists the header files specific to the DLIB library C definitions. Header files
may additionally contain target-specific definitions; these are documented in the chapter
Using C.

This table lists the C header files:

Header file Usage

assert.h Enforcing assertions when functions execute

complex.h Computing common complex mathematical functions

ctype.h Classifying characters

errno.h Testing error codes reported by library functions

fenv.h Floating-point exception flags

float.h Testing floating-point type properties

Table 42: Traditional Standard C header files—DLIB

AFE1_AFE2-1:1

358

IAR DLIB Library

IAR C/C++ Compiler User Guide
for AVR32

C++ HEADER FILES

This section lists the C++ header files:

● The C++ library header files

The header files that constitute the Embedded C++ library.

● The C++ standard template library (STL) header files

The header files that constitute STL for the Extended Embedded C++ library.

● The C++ C header files

The C++ header files that provide the resources from the C library.

inttypes.h Defining formatters for all types defined in stdint.h

iso646.h Using Amendment 1—iso646.h standard header

limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions

setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions

stdarg.h Accessing a varying number of arguments

stdbool.h Adds support for the bool data type in C.

stddef.h Defining several useful types and macros

stdint.h Providing integer characteristics

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

tgmath.h Type-generic mathematical functions

time.h Converting between various time and date formats

uchar.h Unicode functionality (IAR extension to Standard C)

wchar.h Support for wide characters

wctype.h Classifying wide characters

Header file Usage

Table 42: Traditional Standard C header files—DLIB (Continued)

AFE1_AFE2-1:1

Library functions

359

The C++ library header files

This table lists the header files that can be used in Embedded C++:

The C++ standard template library (STL) header files

The following table lists the standard template library (STL) header files that can be
used in Extended Embedded C++:

Header file Usage

complex Defining a class that supports complex arithmetic

fstream Defining several I/O stream classes that manipulate external files

iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams classes

iosfwd Declaring several I/O stream classes before they are necessarily defined

iostream Declaring the I/O stream objects that manipulate the standard streams

istream Defining the class that performs extractions

new Declaring several functions that allocate and free storage

ostream Defining the class that performs insertions

sstream Defining several I/O stream classes that manipulate string containers

streambuf Defining classes that buffer I/O stream operations

string Defining a class that implements a string container

strstream Defining several I/O stream classes that manipulate in-memory character
sequences

Table 43: C++ header files

Header file Description

algorithm Defines several common operations on sequences

deque A deque sequence container

functional Defines several function objects

hash_map A map associative container, based on a hash algorithm

hash_set A set associative container, based on a hash algorithm

iterator Defines common iterators, and operations on iterators

list A doubly-linked list sequence container

map A map associative container

memory Defines facilities for managing memory

numeric Performs generalized numeric operations on sequences

Table 44: Standard template library header files

AFE1_AFE2-1:1

360

IAR DLIB Library

IAR C/C++ Compiler User Guide
for AVR32

Using Standard C libraries in C++

The C++ library works in conjunction with some of the header files from the Standard
C library, sometimes with small alterations. The header files come in two forms—new
and traditional—for example, cassert and assert.h.

This table shows the new header files:

queue A queue sequence container

set A set associative container

slist A singly-linked list sequence container

stack A stack sequence container

utility Defines several utility components

vector A vector sequence container

Header file Usage

cassert Enforcing assertions when functions execute

cctype Classifying characters

cerrno Testing error codes reported by library functions

cfloat Testing floating-point type properties

cinttypes Defining formatters for all types defined in stdint.h

climits Testing integer type properties

clocale Adapting to different cultural conventions

cmath Computing common mathematical functions

csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions

cstdarg Accessing a varying number of arguments

cstdbool Adds support for the bool data type in C.

cstddef Defining several useful types and macros

cstdint Providing integer characteristics

cstdio Performing input and output

cstdlib Performing a variety of operations

cstring Manipulating several kinds of strings

ctime Converting between various time and date formats

Table 45: New Standard C header files—DLIB

Header file Description

Table 44: Standard template library header files (Continued)

AFE1_AFE2-1:1

Library functions

361

LIBRARY FUNCTIONS AS INTRINSIC FUNCTIONS

Certain C library functions will under some circumstances be handled as intrinsic
functions and will generate inline code instead of an ordinary function call, for example
memcpy, memset, and strcat.

ADDED C FUNCTIONALITY

The IAR DLIB Library includes some added C functionality.

The following include files provide these features:

● fenv.h

● stdio.h

● stdlib.h

● string.h

● time.h

fenv.h

In fenv.h, trap handling support for floating-point numbers is defined with the
functions fegettrapenable and fegettrapdisable.

stdio.h

These functions provide additional I/O functionality:

cwchar Support for wide characters

cwctype Classifying wide characters

fdopen Opens a file based on a low-level file descriptor.

fileno Gets the low-level file descriptor from the file descriptor
(FILE*).

__gets Corresponds to fgets on stdin.

getw Gets a wchar_t character from stdin.

putw Puts a wchar_t character to stdout.

__ungetchar Corresponds to ungetc on stdout.

__write_array Corresponds to fwrite on stdout.

Header file Usage

Table 45: New Standard C header files—DLIB (Continued)

AFE1_AFE2-1:1

362

IAR DLIB Library

IAR C/C++ Compiler User Guide
for AVR32

string.h

These are the additional functions defined in string.h:

time.h

There are two interfaces for using time_t and the associated functions time, ctime,
difftime, gmtime, localtime, and mktime:

● The 32-bit interface supports years from 1900 up to 2035 and uses a 32-bit integer
for time_t. The type and function have names like __time32_t, __time32, etc.
This variant is mainly available for backwards compatibility.

● The 64-bit interface supports years from -9999 up to 9999 and uses a signed
long long for time_t. The type and function have names like __time64_t,
__time64, etc.

In both interfaces, time_t starts at the year 1970.

The interfaces are defined in the system header file time.h.

An application can use either interface, and even mix them by explicitly using the 32-
or 64-bit variants. By default, the library and the header redirect time_t, time etc. to
the 32-bit variants. However, to explicitly redirect them to their 64-bit variants, define
_DLIB_TIME_USES_64 in front of the inclusion of time.h or ctime.

See also, Time, page 145.

clock_t is represented by a 32-bit integer type.

SYMBOLS USED INTERNALLY BY THE LIBRARY

The following symbols are used by the library, which means that they are visible in
library source files, etc:

strdup Duplicates a string on the heap.

strcasecmp Compares strings case-insensitive.

strncasecmp Compares strings case-insensitive and bounded.

strnlen Bounded string length.

__assignment_by_bitwise_copy_allowed

This symbol determines properties for class objects.

__code, __data

These symbols are used as memory attributes internally by the compiler, and they might
have to be used as arguments in certain templates.

AFE1_AFE2-1:1

Library functions

363

Note: The symbols are reserved and should only be used by the library.

Use the compiler option --predef_macros to determine the value for any predefined
symbols.

__constrange()

Determines the allowed range for a parameter to an intrinsic function and that the
parameter must be of type const.

__construction_by_bitwise_copy_allowed

This symbol determines properties for class objects.

__has_constructor, __has_destructor

These symbols determine properties for class objects and they function like the sizeof
operator. The symbols are true when a class, base class, or member (recursively) has a
user-defined constructor or destructor, respectively.

__memory_of

Determines the class memory. A class memory determines which memory a class
object can reside in. This symbol can only occur in class definitions as a class memory.

AFE1_AFE2-1:1

364

IAR DLIB Library

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

 365

Segment reference
● Summary of segments

● Descriptions of segments

For more information about placement of segments, see the chapter Linking
your application.

Summary of segments
The compiler places code and data into named segments which are referred to by the
IAR XLINK Linker. Details about the segments are required for programming
assembler language modules, and are also useful when interpreting the assembler
language output from the compiler.

The table below lists the segments that are available in the compiler:

Segment Description

ACTAB Holds addresses of acall functions.

CHECKSUM Holds the checksum generated by the linker.

CODE21 Holds user application code declared __code21.

CODE32 Holds user application code declared __code32.

CSTACK Holds the data and return address stack in application mode.

DATA17_AC Holds __data17 located constant data.

DATA17_AN Holds __data17 located uninitialized data.

DATA17_C Holds __data17 constant data.

DATA17_I Holds __data17 static and global initialized variables.

DATA17_ID Holds initial values for __data17 static and global variables in
DATA17_I.

DATA17_N Holds __no_init __data17 static and global variables.

DATA17_Z Holds zero-initialized __data17 static and global variables.

DATA21_AC Holds __data21 located constant data.

DATA21_AN Holds __data21 located uninitialized data.

DATA21_C Holds __data21 constant data.

DATA21_I Holds __data21 static and global initialized variables.

Table 46: Segment summary

AFE1_AFE2-1:1

366

Summary of segments

IAR C/C++ Compiler User Guide
for AVR32

DATA21_ID Holds initial values for __data21 static and global variables in
DATA21_I.

DATA21_N Holds __no_init __data21 static and global variables.

DATA21_Z Holds zero-initialized __data21 static and global variables.

DATA32_AC Holds __data32 located constant data.

DATA32_AN Holds __data32 located uninitialized data.

DATA32_C Holds __data32 constant data.

DATA32_I Holds __data32 static and global initialized variables.

DATA32_ID Holds initial values for __data32 static and global variables in
DATA32_I.

DATA32_N Holds __no_init __data32 static and global variables.

DATA32_Z Holds zero-initialized __data32 static and global variables.

DBGREG_AC Holds __dbgreg located constant data.

DBGREG_AN Holds __dbgreg located uninitialized data.

DIFUNCT Holds pointers to code, typically C++ constructors, that should be
executed by the system startup code before main is called.

EVBYTES1 Holds the code bytes of the EVTA segment when linking for segment
translation systems.

EVBYTES2 Holds the code bytes of the EV100 segment when linking for segment
translation systems.

EVBYTES3 Holds the code bytes of the EVSEG segment when linking for segment
translation systems.

EVSEG Holds code for exception handlers.

EVTAB Holds code for exception handlers.

EV100 Holds code for exception handlers.

FVVEC Holds secure state exception vectors for FlashVault-enabled applications.

HEAP Holds the heap used for dynamically allocated data.

HTAB Holds interrupt handler initialization data.

INITTAB Holds the segment initializer table.

RAMCODE21 Holds user application code declared __ramfunc.

RAMCODE21_ID Holds code for __ramfunc declared functions in RAMCODE21.

RAMCODE32 Holds user application code declared __ramfunc.

RAMCODE32_ID Holds code for __ramfunc declared functions in RAMCODE32.

Segment Description

Table 46: Segment summary (Continued)

AFE1_AFE2-1:1

Segment reference

367

Descriptions of segments
This section gives reference information about each segment.

The segments are placed in memory by the segment placement linker directives -Z and
-P, for sequential and packed placement, respectively. Some segments cannot use
packed placement, as their contents must be continuous. For information about these
directives, see Using the -Z command for sequential placement, page 107 and Using the
-P command for packed placement, page 107, respectively.

For each segment, the segment memory type is specified, which indicates in which type
of memory the segment should be placed; see Segment memory type, page 90.

For information about how to define segments in the linker configuration file, see
Linking your application, page 105.

For more information about the extended keywords mentioned here, see the chapter
Extended keywords.

ACTAB

Description Holds addresses to functions declared __acall.

Functions declared with the __acall keyword may be called with the short instruction
ACALL, but because the same calling convention is used as for normal functions, they
can also be called like normal functions.

The ACTAB segment contains a list of function addresses for functions declared with the
__acall keyword.

The compiler automatically creates this table when a function declared with the
keyword __acall is encountered.

RESET Holds code executed when the processor has been reset.

RESETCODE Holds the code bytes of the RESET segment when linking for segment
translation systems.

SSTACK Holds the internal data and return stack in supervisor mode.

SWITCH Holds switch tables generated by switch statements.

SYSREG_AC Holds __sysreg located constant data.

SYSREG_AN Holds __sysreg located uninitialized data.

TRACEBUFFER Holds trace data when using NanoTrace.

Segment Description

Table 46: Segment summary (Continued)

AFE1_AFE2-1:1

368

Descriptions of segments

IAR C/C++ Compiler User Guide
for AVR32

Segment memory type CONST

Memory placement This segment can be placed anywhere in memory, but check for device-specific
alignment requirements.

Access type Read-only

CHECKSUM

Description Holds the checksum bytes generated by the linker. This segment also holds the
__checksum symbol. Note that the size of this segment is affected by the linker option
-J.

Segment memory type CONST

Memory placement This segment can be placed anywhere in ROM memory.

Access type Read-only

CODE21

Description Holds program code declared __code21.

Segment memory type CODE

Memory placement 0x0-0xFFFFF and 0xFFF00000-0xFFFFFFFF

Access type Read-only

CODE32

Description Holds program code declared __code32.

Segment memory type CODE

Memory placement This segment can be placed anywhere in memory.

Access type Read-only

AFE1_AFE2-1:1

Segment reference

369

CSTACK

Description Holds the internal data stack.

Segment memory type DATA

Memory placement This segment can be placed anywhere in memory.

Access type Read-write

See also Setting up stack memory, page 109.

DATA17_AC

Description Holds __data17 located constant data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

DATA17_AN

Description Holds __no_init __data17 located data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

DATA17_C

Description Holds __data17 constant data. This can include constant variables, string and
aggregate literals, etc.

Segment memory type CONST

Memory placement 0x0-0x1FFFF and 0xFFFE0000-0xFFFFFFFF

Access type Read-only

AFE1_AFE2-1:1

370

Descriptions of segments

IAR C/C++ Compiler User Guide
for AVR32

DATA17_I

Description Holds __data17 static and global initialized variables initialized by copying from the
segment DATA17_ID at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -Z directive must be used.

Segment memory type DATA

Memory placement 0x0-0x1FFFF and 0xFFFE0000-0xFFFFFFFF

Access type Read-write

DATA17_ID

Description Holds initial values for __data17 static and global variables in the DATA17_I segment.
These values are copied from DATA17_ID to DATA17_I at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -Z directive must be used.

Segment memory type CONST

Memory placement 0x0-0x1FFFF and 0xFFFE0000-0xFFFFFFFF

Access type Read-only

DATA17_N

Description Holds static and global __no_init __data17 variables.

Segment memory type DATA

Memory placement 0x0-0x1FFFF and 0xFFFE0000-0xFFFFFFFF

Access type Read-write

AFE1_AFE2-1:1

Segment reference

371

DATA17_Z

Description Holds zero-initialized __data17 static and global variables. The contents of this
segment is declared by the system startup code.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -Z directive must be used.

Segment memory type DATA

Memory placement 0x0-0x1FFFF and 0xFFFE0000-0xFFFFFFFF

Access type Read-write

DATA21_AC

Description Holds __data21 located constant data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

DATA21_AN

Description Holds __no_init __data21 located data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

DATA21_C

Description Holds __data21 constant data. This can include constant variables, string and
aggregate literals, etc.

Segment memory type CONST

Memory placement 0x0-0xFFFFF and 0xFFF00000-0xFFFFFFFF

Access type Read-only

AFE1_AFE2-1:1

372

Descriptions of segments

IAR C/C++ Compiler User Guide
for AVR32

DATA21_I

Description Holds __data21 static and global initialized variables initialized by copying from the
segment DATA21_ID at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -Z directive must be used.

Segment memory type DATA

Memory placement 0x0-0xFFFFF and 0xFFF00000-0xFFFFFFFF

Access type Read-write

DATA21_ID

Description Holds initial values for __data21 static and global variables in the DATA21_I segment.
These values are copied from DATA21_ID to DATA21_I at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -Z directive must be used.

Segment memory type CONST

Memory placement 0x0-0xFFFFF and 0xFFF00000-0xFFFFFFFF

Access type Read-only

DATA21_N

Description Holds static and global __no_init __data21 variables.

Segment memory type DATA

Memory placement 0x0-0xFFFFF and 0xFFF00000-0xFFFFFFFF

Access type Read-write

AFE1_AFE2-1:1

Segment reference

373

DATA21_Z

Description Holds zero-initialized __data21 static and global variables. The contents of this
segment is declared by the system startup code.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -Z directive must be used.

Segment memory type DATA

Memory placement 0x0-0xFFFFF and 0xFFF00000-0xFFFFFFFF

Access type Read-write

DATA32_AC

Description Holds __data32 located constant data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

DATA32_AN

Description Holds __no_init __data32 located data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

DATA32_C

Description Holds __data32 constant data. This can include constant variables, string and
aggregate literals, etc.

Segment memory type CONST

Memory placement This segment can be placed anywhere in memory.

Access type Read-only

AFE1_AFE2-1:1

374

Descriptions of segments

IAR C/C++ Compiler User Guide
for AVR32

DATA32_I

Description Holds __data32 static and global initialized variables initialized by copying from the
segment DATA32_ID at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -Z directive must be used.

Segment memory type DATA

Memory placement This segment can be placed anywhere in memory.

Access type Read-write

DATA32_ID

Description Holds initial values for __data32 static and global variables in the DATA32_I segment.
These values are copied from DATA32_ID to DATA32_I at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -Z directive must be used.

Segment memory type CONST

Memory placement This segment can be placed anywhere in memory.

Access type Read-only

DATA32_N

Description Holds static and global __no_init __data32 variables.

Segment memory type DATA

Memory placement This segment can be placed anywhere in memory.

Access type Read-write

AFE1_AFE2-1:1

Segment reference

375

DATA32_Z

Description Holds zero-initialized __data32 static and global variables. The contents of this
segment is declared by the system startup code.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -Z directive must be used.

Segment memory type DATA

Memory placement This segment can be placed anywhere in memory.

Access type Read-write

DBGREG_AC

Description Holds __dbgreg located constant data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

DBGREG_AN

Description Holds __no_init __dbgreg located data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

DIFUNCT

Description Holds the dynamic initialization vector used by C++.

Segment memory type CONST

Memory placement This segment can be placed anywhere in memory.

Access type Read-only

AFE1_AFE2-1:1

376

Descriptions of segments

IAR C/C++ Compiler User Guide
for AVR32

EVBYTES1

Description Holds the actual code bytes of the EVTAB segment when linking for a segment
translation system.

Segment memory type CODE

Memory placement This segment must be placed at the same address as the offset of the EVTAB segment
from the translation segment base address.

Access type Read-only

See also Linking for segment-translated systems, page 114

EVBYTES2

Description Holds the actual code bytes of the EV100 segment when linking for a segment
translation system.

Segment memory type CODE

Memory placement This segment must be placed at the same address as the offset of the EV100 segment
from the translation segment base address.

Access type Read-only

See also Linking for segment-translated systems, page 114

EVBYTES3

Description Holds the actual code bytes of the EVSEG segment when linking for a segment
translation system.

Segment memory type CODE

Memory placement This segment must be placed at the same address as the offset of the EVSEG segment
from the translation segment base address.

Access type Read-only

See also Linking for segment-translated systems, page 114

AFE1_AFE2-1:1

Segment reference

377

EVSEG

Description Holds the code for exception handlers.

When a system exception occurs, code located in this segment will be executed.

Segment memory type CODE

Memory placement For security reasons, this segment should be located in the privileged address space.
Read more about how to locate the exception handlers in the chip manufacturer’s
documentation.

Access type Read-write

EVTAB

Description Holds code for exception handlers.

The system register EVBA is automatically initialized to the start address for this segment
at startup. When a system exception occurs, code located in this segment will be
executed.

Segment memory type CODE

Memory placement For security reasons, this segment should be located in the privileged address space.
Read more about how to locate the exception handlers in the chip manufacturer’s
documentation.

Access type Read-write

EV100

Description Holds code for exception handlers.

When a system exception occurs, code located in this segment will be executed.

Segment memory type CODE

Memory placement Should be placed at the address in the EVBA register + 0x100. For security reasons, this
segment should be located in the privileged address space. Read more about how to
locate the exception handlers in the chip manufacturer’s documentation.

Access type Read-write

AFE1_AFE2-1:1

378

Descriptions of segments

IAR C/C++ Compiler User Guide
for AVR32

FVVEC

Description Holds secure state exception vectors for FlashVault-enabled applications.

Functions declared with the directive #pragma flashvault_impl generate entries in
this segment.

Segment memory type CONST

Memory placement This segment must be placed at the start of the flash memory.

Access type Read-only

See also Implementing middleware using FlashVault™, page 84

HEAP

Description Holds the heap used for dynamically allocated data, in other words data allocated by
malloc and free, and in C++, new and delete.

Segment memory type DATA

Memory placement This segment can be placed anywhere in memory.

Access type Read-write

HTAB

Description Holds information about how the interrupt controller should be initialized. The system
startup code calls a function called __init_ihandlers, which in turn parses this
segment and performs the requested initializations.

The table consists of one 32-bit entry for each interrupt group for which a handler has
been provided. The entries are not ordered in any special way and the format of each
individual entry is as follows:

Segment memory type CONST

Memory placement This segment can be placed anywhere in memory.

AFE1_AFE2-1:1

Segment reference

379

Access type Read-only

See also System startup, page 132

INITTAB

Description Holds information about segments to be initialized with zero initial data (_Z segments),
and segments to be copied during startup (_ID and _I segments).

Each row in this table is contains three 32-bit parameters, corresponding to a declaration
like:

 DC32 count
 DC32 to
 DC32 from

The first parameter (count) in each row always denotes the number of bytes to clear or
copy.

The second parameter (to) contains the start address of a segment to initialize.

The third parameter (from) can contain the same value as the second parameter (to). In
this case, the segment denoted by the second parameter will be cleared (set to zero). The
cleared segment is one of the _Z segments.

If the third parameter (from) is different from the second parameter (to), it denotes the
start of a segment to copy from. In this case, bytes will be copied from the “from”
segment to the “to” segment. The “from” segment is one of the _ID segments, and the
“to” segment is the corresponding _I segment.

Note: The contents of the INITTAB segment are automatically generated by the
compiler.

Segment memory type CONST

Memory placement This segment can be placed anywhere in memory.

Access type Read-only

RAMCODE21

Description Holds program code declared __ramfunc.

Segment memory type DATA

AFE1_AFE2-1:1

380

Descriptions of segments

IAR C/C++ Compiler User Guide
for AVR32

Memory placement 0x0–0xFFFFF and 0xFFF00000–0xFFFFFFFF

Access type Read-write

RAMCODE21_ID

Description Holds code for __ramfunc declared functions in the RAMCODE21 segment. These
values are copied from RAMCODE21_ID to RAMCODE21 at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be contiguous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type CONST

Memory placement This segment can be placed anywhere in memory.

Access type Read-only

RAMCODE32

Description Holds program code declared __ramfunc.

Segment memory type DATA

Memory placement This segment can be placed anywhere in memory.

Access type Read-write

RAMCODE32_ID

Description Holds code for __ramfunc declared functions in the RAMCODE32 segment. These
values are copied from RAMCODE32_ID to RAMCODE32 at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be contiguous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type CONST

Memory placement This segment can be placed anywhere in memory.

AFE1_AFE2-1:1

Segment reference

381

Access type Read-only

RESET

Description Holds the code that is executed when the processor has been reset.

Segment memory type CODE

Memory placement See the hardware reference manual for information about the location of the reset
location.

Access type Read-only

RESETCODE

Description Holds the actual code bytes of the RESET segment when linking for a segment
translation system.

Segment memory type CODE

Memory placement This segment must be placed at the same address as the offset of the RESET segment
from the translation segment base address.

Access type Read-only

See also Linking for segment-translated systems, page 114.

SSTACK

Description Holds the internal data and return stack in supervisor mode.

Segment memory type DATA

Memory placement This segment can be placed anywhere in memory.

Access type Read-write

See also For information about how to define this segment and its length in the linker command
file, see The stack, page 68.

AFE1_AFE2-1:1

382

Descriptions of segments

IAR C/C++ Compiler User Guide
for AVR32

SWITCH

Description Holds switch tables generated by switch statements.

Segment memory type CONST

Memory placement This segment can be placed anywhere in memory.

Access type Read-only

SYSREG_AC

Description Holds __sysreg located constant data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

SYSREG_AN

Description Holds __sysreg located uninitialized data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

TRACEBUFFER

Description Holds trace data when using NanoTrace.

Segment memory type DATA

Memory placement This segment can be placed anywhere in memory.

Access type No-access

See also The C-SPY® Debugging Guide for AVR32.

AFE1_AFE2-1:1

 383

The stack usage control file
● Overview

● Stack usage control directives

● Syntactic components

Before you read this chapter, see Stack usage analysis, page 95.

Overview
A stack usage control file consists of a sequence of directives that control stack usage
analysis. You can use C ("/*...*/") and C++ ("//...") comments in these files.

The default filename extension for stack usage control files is suc.

C++ NAMES

You can also use wildcards in function names. "#*" matches any sequence of characters,
and "#?" matches a single character.

Stack usage control directives
This section gives detailed reference information about each stack usage control
directive.

call graph root directive

Syntax call graph root [category] : func-spec [, func-spec...];

Parameters

Description Specifies that the listed functions are call graph roots. You can optionally specify a call
graph root category. Call graph roots are listed under their category in the Stack Usage
chapter in the linker map file.

category See category, page 387

func-spec See func-spec, page 387

AFE1_AFE2-1:1

384

Stack usage control directives

IAR C/C++ Compiler User Guide
for AVR32

The linker will normally issue a warning for functions needed in the application that are
not call graph roots and which do not appear to be called.

Example call graph root [task]: MyFunc10, MyFunc11;

See also call_graph_root, page 308.

check that directive

Syntax check that expression;

Parameters

Description You can use the check that directive to compare the results of stack usage analysis
against the sizes of blocks and regions. If the expression evaluates to zero, an error is
emitted.

Three extra operators are available for use only in check that expressions:

Example check that maxstack("Program entry")
 + totalstack("interrupt")
 + 1K
 <= size("CSTACK");

See also Stack usage analysis, page 95.

exclude directive

Syntax exclude func-spec [, func-spec...];

Parameters

expression A boolean expression.

maxstack(category) The stack depth of the deepest call chain for any call
graph root function in the category.

totalstack(category) The sum of the stack depths of the deepest call chains
for each call graph root function in the category.

size("SEGMENT") The size of the segment.

func-spec See func-spec, page 387

AFE1_AFE2-1:1

The stack usage control file

385

Description Excludes the specified functions, and call trees originating with them, from stack usage
calculations.

Example exclude MyFunc5, MyFunc6;

function directive

Syntax [override] function [category] func-spec : stack-size
[, call-info...];

Parameters

Description Specifies what the maximum stack usage is in a function and which other functions that
are called from that function.

Normally, an error is issued if there already is stack usage information for the function,
but if you start with override, the error will be suppressed and the information
supplied in the directive will be used instead of the previous information.

Example function MyFunc1: 32,
 calls MyFunc2,
 calls MyFunc3, MyFunc4: 16;

function [interrupt] MyInterruptHandler: 44;

max recursion depth directive

Syntax max recursion depth func-spec : size;

Parameters

Description Specifies the maximum number of iterations through any of the cycles in the recursion
nest of which the function is a member.

category See category, page 387

func-spec See func-spec, page 387

call-info See call-info, page 388

stack-size See stack-size, page 389

func-spec See func-spec, page 387

size See size, page 389

AFE1_AFE2-1:1

386

Stack usage control directives

IAR C/C++ Compiler User Guide
for AVR32

A recursion nest is a set of cycles in the call graph where each cycle shares at least one
node with another cycle in the nest.

Stack usage analysis will base its result on the max recursion depth multiplied by the
stack usage of the deepest cycle in the nest. If the nest is not entered on a point along
one of the deepest cycles, no stack usage result will be calculated for such calls.

Example max recursion depth MyFunc12: 10;

no calls from directive

Syntax no calls from module-spec to func-spec [, func-spec...];

Parameters

Description When you provide stack usage information for some functions in a module without
stack usage information, the linker warns about functions that are referenced from the
module but not listed as called. This is primarily to help avoid problems with C runtime
routines, calls to which are generated by the compiler, beyond user control.

If there actually is no call to some of these functions, use the no calls from directive
to selectively suppress the warning for the specified functions. You can also disable the
warning entirely (--diag_suppress or
Project>Options>Linker>Diagnostics>Suppress these diagnostics).

Example no calls from [file.r82] to MyFunc13, MyFun14;

possible calls directive

Syntax possible calls calling-func : called-func [, called-func...];

Parameters

Description Specifies an exhaustive list of possible destinations for all indirect calls in one function.
Use this for functions which are known to perform indirect calls and where you know
exactly which functions that might be called in this particular application. Consider

func-spec See func-spec, page 387

module-spec See module-spec, page 387

calling-func See func-spec, page 387

called-func See func-spec, page 387

AFE1_AFE2-1:1

The stack usage control file

387

using the #pragma calls directive if the information about which functions that might
be called is available when compiling.

Example possible calls MyFunc7: MyFunc8, MyFunc9;

See also calls, page 308.

Syntactic components
The stack usage control directives use some syntactical components. These are
described below.

category

Syntax [name]

Description A call graph root category. You can use any name you like. Categories are not
case-sensitive.

Example category examples:

[interrupt]
[task]

func-spec

Syntax [?] name [module-spec]

Description Specifies the name of a symbol, and for module-local symbols, the name of the module
it is defined in. Normally, if func-spec does not match a symbol in the program, a
warning is emitted. Prefixing with ? suppresses this warning.

Example func-spec examples:

xFun
MyFun [file.r82]

module-spec

Syntax [name [(name)]]

AFE1_AFE2-1:1

388

Syntactic components

IAR C/C++ Compiler User Guide
for AVR32

Description Specifies the name of a module, and optionally, in parentheses, the name of the library
it belongs to. To distinguish between modules with the same name, you can specify:

● The complete path of the file ("D:\C1\test\file.o")

● As many path elements as are needed at the end of the path ("test\file.o")

● Some path elements at the start of the path, followed by "...", followed by some
path elements at the end ("D:\...\file.o").

Note that when using multi-file compilation (--mfc), multiple files are compiled into a
single module, named after the first file.

Example module-spec examples:

[file.r82]
[file.r82(lib.a)]
["D:\C1\test\file.r82"]

name

Description A name can be either an identifier or a quoted string.

The first character of an identifier must be either a letter or one of the characters "_",
"$", or ".". The rest of the characters can also be digits.

A quoted string starts and ends with " and can contain any character. Two consecutive
" characters can be used inside a quoted string to represent a single ".

Example name examples:

MyFun
file.r82
"file-1.r82"

call-info

Syntax calls func-spec [, func-spec...][: stack-size]

Description Specifies one or more called functions, and optionally, the stack size at the calls.

Example call-info examples:

calls MyFunc1 : stack 16
calls MyFunc2, MyFunc3, MyFunc4

AFE1_AFE2-1:1

The stack usage control file

389

stack-size

Syntax [stack] size

Description Specifies the size of a stack frame.

Example stack-size examples:

24
stack 28

size

Description A decimal integer, or 0x followed by a hexadecimal integer. Either alternative can
optionally be followed by a suffix indicating a power of two (K=210, M=220, G=230,
T=240, P=250).

Example size examples:

24
0x18
2048
2K

AFE1_AFE2-1:1

390

Syntactic components

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

 391

Implementation-defined
behavior for Standard C
● Descriptions of implementation-defined behavior

If you are using C89 instead of Standard C, see Implementation-defined behavior
for C89, page 407. For a short overview of the differences between Standard
C and C89, see C language overview, page 187.

Descriptions of implementation-defined behavior
This section follows the same order as the C standard. Each item includes references to
the ISO chapter and section (in parenthesis) that explains the implementation-defined
behavior.

Note: The IAR Systems implementation adheres to a freestanding implementation of
Standard C. This means that parts of a standard library can be excluded in the
implementation.

J.3.1 TRANSLATION

Diagnostics (3.10, 5.1.1.3)

Diagnostics are produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

White-space characters (5.1.1.2)

At translation phase three, each non-empty sequence of white-space characters is
retained.

AFE1_AFE2-1:1

392

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

J.3.2 ENVIRONMENT

The character set (5.1.1.2)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, if you use the
--enable_multibytes compiler option, the host character set is used instead.

Main (5.1.2.1)

The function called at program startup is called main. No prototype is declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior, see Customizing system initialization, page 135.

The effect of program termination (5.1.2.1)

Terminating the application returns the execution to the startup code (just after the call
to main).

Alternative ways to define main (5.1.2.2.1)

There is no alternative ways to define the main function.

The argv argument to main (5.1.2.2.1)

The argv argument is not supported.

Streams as interactive devices (5.1.2.3)

The streams stdin, stdout, and stderr are treated as interactive devices.

Signals, their semantics, and the default handling (7.14)

In the DLIB library, the set of supported signals is the same as in Standard C. A raised
signal will do nothing, unless the signal function is customized to fit the application.

Signal values for computational exceptions (7.14.1.1)

In the DLIB library, there are no implementation-defined values that correspond to a
computational exception.

Signals at system startup (7.14.1.1)

In the DLIB library, there are no implementation-defined signals that are executed at
system startup.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

393

Environment names (7.20.4.5)

In the DLIB library, there are no implementation-defined environment names that are
used by the getenv function.

The system function (7.20.4.6)

The system function is not supported.

J.3.3 IDENTIFIERS

Multibyte characters in identifiers (6.4.2)

Additional multibyte characters may not appear in identifiers.

Significant characters in identifiers (5.2.4.1, 6.1.2)

The number of significant initial characters in an identifier with or without external
linkage is guaranteed to be no less than 200.

J.3.4 CHARACTERS

Number of bits in a byte (3.6)

A byte contains 8 bits.

Execution character set member values (5.2.1)

The values of the members of the execution character set are the values of the ASCII
character set, which can be augmented by the values of the extra characters in the host
character set.

Alphabetic escape sequences (5.2.2)

The standard alphabetic escape sequences have the values \a–7, \b–8, \f–12, \n–10,
\r–13, \t–9, and \v–11.

Characters outside of the basic executive character set (6.2.5)

A character outside of the basic executive character set that is stored in a char is not
transformed.

Plain char (6.2.5, 6.3.1.1)

A plain char is treated as an unsigned char.

AFE1_AFE2-1:1

394

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

Source and execution character sets (6.4.4.4, 5.1.1.2)

The source character set is the set of legal characters that can appear in source files. By
default, the source character set is the standard ASCII character set. However, if you use
the command line option --enable_multibytes, the source character set will be the
host computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. By default, the execution character set is the standard ASCII character set.

However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library
needs a multibyte character scanner to support a multibyte execution character set. See
Locale, page 141.

Integer character constants with more than one character (6.4.4.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

Wide character constants with more than one character (6.4.4.4)

A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Locale used for wide character constants (6.4.4.4)

By default, the C locale is used. If the --enable_multibytes compiler option is used,
the default host locale is used instead.

Locale used for wide string literals (6.4.5)

By default, the C locale is used. If the --enable_multibytes compiler option is used,
the default host locale is used instead.

Source characters as executive characters (6.4.5)

All source characters can be represented as executive characters.

J.3.5 INTEGERS

Extended integer types (6.2.5)

There are no extended integer types.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

395

Range of integer values (6.2.6.2)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, 0 for positive and zero.

For information about the ranges for the different integer types, see Basic data
types—integer types, page 276.

The rank of extended integer types (6.3.1.1)

There are no extended integer types.

Signals when converting to a signed integer type (6.3.1.3)

No signal is raised when an integer is converted to a signed integer type.

Signed bitwise operations (6.5)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers; in other words, the sign-bit will be treated as any other bit.

J.3.6 FLOATING POINT

Accuracy of floating-point operations (5.2.4.2.2)

The accuracy of floating-point operations is unknown.

Rounding behaviors (5.2.4.2.2)

There are no non-standard values of FLT_ROUNDS.

Evaluation methods (5.2.4.2.2)

There are no non-standard values of FLT_EVAL_METHOD.

Converting integer values to floating-point values (6.3.1.4)

When an integral value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

Converting floating-point values to floating-point values (6.3.1.5)

When a floating-point value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

AFE1_AFE2-1:1

396

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

Denoting the value of floating-point constants (6.4.4.2)

The round-to-nearest rounding mode is used (FLT_ROUNDS is defined to 1).

Contraction of floating-point values (6.5)

Floating-point values are contracted. However, there is no loss in precision and because
signaling is not supported, this does not matter.

Default state of FENV_ACCESS (7.6.1)

The default state of the pragma directive FENV_ACCESS is OFF.

Additional floating-point mechanisms (7.6, 7.12)

There are no additional floating-point exceptions, rounding-modes, environments, and
classifications.

Default state of FP_CONTRACT (7.12.2)

The default state of the pragma directive FP_CONTRACT is OFF.

J.3.7 ARRAYS AND POINTERS

Conversion from/to pointers (6.3.2.3)

For information about casting of data pointers and function pointers, see Casting, page
282.

ptrdiff_t (6.5.6)

For information about ptrdiff_t, see ptrdiff_t, page 282.

J.3.8 HINTS

Honoring the register keyword (6.7.1)

User requests for register variables are not honored.

Inlining functions (6.7.4)

User requests for inlining functions increases the chance, but does not make it certain,
that the function will actually be inlined into another function. See Inlining functions,
page 87.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

397

J.3.9 STRUCTURES, UNIONS, ENUMERATIONS, AND
BITFIELDS

Sign of 'plain' bitfields (6.7.2, 6.7.2.1)

For information about how a 'plain' int bitfield is treated, see Bitfields, page 277.

Possible types for bitfields (6.7.2.1)

All integer types can be used as bitfields in the compiler’s extended mode, see -e, page
254.

Bitfields straddling a storage-unit boundary (6.7.2.1)

A bitfield is always placed in one—and one only—storage unit, which means that the
bitfield cannot straddle a storage-unit boundary.

Allocation order of bitfields within a unit (6.7.2.1)

For information about how bitfields are allocated within a storage unit, see Bitfields,
page 277.

Alignment of non-bitfield structure members (6.7.2.1)

The alignment of non-bitfield members of structures is the same as for the member
types, see Alignment, page 275.

Integer type used for representing enumeration types (6.7.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

J.3.10 QUALIFIERS

Access to volatile objects (6.7.3)

Any reference to an object with volatile qualified type is an access, see Declaring
objects volatile, page 284.

J.3.11 PREPROCESSING DIRECTIVES

Mapping of header names (6.4.7)

Sequences in header names are mapped to source file names verbatim. A backslash '\'
is not treated as an escape sequence. See Overview of the preprocessor, page 347.

AFE1_AFE2-1:1

398

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

Character constants in constant expressions (6.10.1)

A character constant in a constant expression that controls conditional inclusion
matches the value of the same character constant in the execution character set.

The value of a single-character constant (6.10.1)

A single-character constant may only have a negative value if a plain character (char)
is treated as a signed character, see --char_is_signed, page 246.

Including bracketed filenames (6.10.2)

For information about the search algorithm used for file specifications in angle brackets
<>, see Include file search procedure, page 232.

Including quoted filenames (6.10.2)

For information about the search algorithm used for file specifications enclosed in
quotes, see Include file search procedure, page 232.

Preprocessing tokens in #include directives (6.10.2)

Preprocessing tokens in an #include directive are combined in the same way as outside
an #include directive.

Nesting limits for #include directives (6.10.2)

There is no explicit nesting limit for #include processing.

Universal character names (6.10.3.2)

Universal character names (UCN) are not supported.

Recognized pragma directives (6.10.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect. If a pragma
directive is listed both in the chapter Pragma directives and here, the information
provided in the chapter Pragma directives overrides the information here.

alignment

baseaddr

basic_template_matching

building_runtime

can_instantiate

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

399

codeseg

cspy_support

define_type_info

do_not_instantiate

early_dynamic_initialization

function

function_effects

hdrstop

important_typedef

instantiate

keep_definition

library_default_requirements

library_provides

library_requirement_override

memory

module_name

no_pch

once

system_include

warnings

Default __DATE__ and __TIME__ (6.10.8)

The definitions for __TIME__ and __DATE__ are always available.

J.3.12 LIBRARY FUNCTIONS

Additional library facilities (5.1.2.1)

Most of the standard library facilities are supported. Some of them—the ones that need
an operating system—require a low-level implementation in the application. For more
information, see The DLIB runtime environment, page 119.

AFE1_AFE2-1:1

400

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

Diagnostic printed by the assert function (7.2.1.1)

The assert() function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Representation of the floating-point status flags (7.6.2.2)

For information about the floating-point status flags, see fenv.h, page 361.

Feraiseexcept raising floating-point exception (7.6.2.3)

For information about the feraiseexcept function raising floating-point exceptions,
see Floating-point environment, page 280.

Strings passed to the setlocale function (7.11.1.1)

For information about strings passed to the setlocale function, see Locale, page 141.

Types defined for float_t and double_t (7.12)

The FLT_EVAL_METHOD macro can only have the value 0.

Domain errors (7.12.1)

No function generates other domain errors than what the standard requires.

Return values on domain errors (7.12.1)

Mathematic functions return a floating-point NaN (not a number) for domain errors.

Underflow errors (7.12.1)

Mathematic functions set errno to the macro ERANGE (a macro in errno.h) and return
zero for underflow errors.

fmod return value (7.12.10.1)

The fmod function returns a floating-point NaN when the second argument is zero.

The magnitude of remquo (7.12.10.3)

The magnitude is congruent modulo INT_MAX.

signal() (7.14.1.1)

The signal part of the library is not supported.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

401

Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Signal and raise, page 145.

NULL macro (7.17)

The NULL macro is defined to 0.

Terminating newline character (7.19.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Space characters before a newline character (7.19.2)

Space characters written to a stream immediately before a newline character are
preserved.

Null characters appended to data written to binary streams (7.19.2)

No null characters are appended to data written to binary streams.

File position in append mode (7.19.3)

The file position is initially placed at the beginning of the file when it is opened in
append-mode.

Truncation of files (7.19.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 141.

File buffering (7.19.3)

An open file can be either block-buffered, line-buffered, or unbuffered.

A zero-length file (7.19.3)

Whether a zero-length file exists depends on the application-specific implementation of
the low-level file routines.

Legal file names (7.19.3)

The legality of a filename depends on the application-specific implementation of the
low-level file routines.

AFE1_AFE2-1:1

402

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

Number of times a file can be opened (7.19.3)

Whether a file can be opened more than once depends on the application-specific
implementation of the low-level file routines.

Multibyte characters in a file (7.19.3)

The encoding of multibyte characters in a file depends on the application-specific
implementation of the low-level file routines.

remove() (7.19.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 141.

rename() (7.19.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 141.

Removal of open temporary files (7.19.4.3)

Whether an open temporary file is removed depends on the application-specific
implementation of the low-level file routines.

Mode changing (7.19.5.4)

freopen closes the named stream, then reopens it in the new mode. The streams stdin,
stdout, and stderr can be reopened in any new mode.

Style for printing infinity or NaN (7.19.6.1, 7.24.2.1)

The style used for printing infinity or NaN for a floating-point constant is inf and nan
(INF and NAN for the F conversion specifier), respectively. The n-char-sequence is not
used for nan.

%p in printf() (7.19.6.1, 7.24.2.1)

The argument to a %p conversion specifier, print pointer, to printf() is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the %x conversion specifier.

Reading ranges in scanf (7.19.6.2, 7.24.2.1)

A - (dash) character is always treated as a range symbol.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

403

%p in scanf (7.19.6.2, 7.24.2.2)

The %p conversion specifier, scan pointer, to scanf() reads a hexadecimal number and
converts it into a value with the type void *.

File position errors (7.19.9.1, 7.19.9.3, 7.19.9.4)

On file position errors, the functions fgetpos, ftell, and fsetpos store EFPOS in
errno.

An n-char-sequence after nan (7.20.1.3, 7.24.4.1.1)

An n-char-sequence after a NaN is read and ignored.

errno value at underflow (7.20.1.3, 7.24.4.1.1)

errno is set to ERANGE if an underflow is encountered.

Zero-sized heap objects (7.20.3)

A request for a zero-sized heap object will return a valid pointer and not a null pointer.

Behavior of abort and exit (7.20.4.1, 7.20.4.4)

A call to abort() or _Exit() will not flush stream buffers, not close open streams, and
not remove temporary files.

Termination status (7.20.4.1, 7.20.4.3, 7.20.4.4)

The termination status will be propagated to __exit() as a parameter. exit() and
_Exit() use the input parameter, whereas abort uses EXIT_FAILURE.

The system function return value (7.20.4.6)

The system function is not supported.

The time zone (7.23.1)

The local time zone and daylight savings time must be defined by the application. For
more information, see Time, page 145.

Range and precision of time (7.23)

For information about range and precision, see time.h, page 362. The application must
supply the actual implementation for the functions time and clock. See Time, page
145.

AFE1_AFE2-1:1

404

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

clock() (7.23.2.1)

The application must supply an implementation of the clock function. See Time, page
145.

%Z replacement string (7.23.3.5, 7.24.5.1)

By default, ":" is used as a replacement for %Z. Your application should implement the
time zone handling. See Time, page 145.

Math functions rounding mode (F.9)

The functions in math.h honor the rounding direction mode in FLT-ROUNDS.

J.3.13 ARCHITECTURE

Values and expressions assigned to some macros (5.2.4.2, 7.18.2,
7.18.3)

There are always 8 bits in a byte.

MB_LEN_MAX is at the most 6 bytes depending on the library configuration that is used.

For information about sizes, ranges, etc for all basic types, see Data representation, page
275.

The limit macros for the exact-width, minimum-width, and fastest minimum-width
integer types defined in stdint.h have the same ranges as char, short, int, long,
and long long.

The floating-point constant FLT_ROUNDS has the value 1 (to nearest) and the
floating-point constant FLT_EVAL_METHOD has the value 0 (treat as is).

The number, order, and encoding of bytes (6.2.6.1)

See Data representation, page 275.

The value of the result of the sizeof operator (6.5.3.4)

See Data representation, page 275.

J.4 LOCALE

Members of the source and execution character set (5.2.1)

By default, the compiler accepts all one-byte characters in the host’s default character
set. If the compiler option --enable_multibytes is used, the host multibyte
characters are accepted in comments and string literals as well.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

405

The meaning of the additional character set (5.2.1.2)

Any multibyte characters in the extended source character set is translated verbatim into
the extended execution character set. It is up to your application with the support of the
library configuration to handle the characters correctly.

Shift states for encoding multibyte characters (5.2.1.2)

Using the compiler option --enable_multibytes enables the use of the host’s default
multibyte characters as extended source characters.

Direction of successive printing characters (5.2.2)

The application defines the characteristics of a display device.

The decimal point character (7.1.1)

The default decimal-point character is a '.'. You can redefine it by defining the library
configuration symbol _LOCALE_DECIMAL_POINT.

Printing characters (7.4, 7.25.2)

The set of printing characters is determined by the chosen locale.

Control characters (7.4, 7.25.2)

The set of control characters is determined by the chosen locale.

Characters tested for (7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10,
7.4.1.11, 7.25.2.1.2, 7.25.5.1.3, 7.25.2.1.7, 7.25.2.1.9, 7.25.2.1.10,
7.25.2.1.11)

The sets of characters tested are determined by the chosen locale.

The native environment (7.1.1.1)

The native environment is the same as the "C" locale.

Subject sequences for numeric conversion functions (7.20.1,
7.24.4.1)

There are no additional subject sequences that can be accepted by the numeric
conversion functions.

The collation of the execution character set (7.21.4.3, 7.24.4.4.2)

The collation of the execution character set is determined by the chosen locale.

AFE1_AFE2-1:1

406

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

Message returned by strerror (7.21.6.2)

The messages returned by the strerror function depending on the argument is:

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error

EILSEQ multi-byte encoding error

<0 || >99 unknown error

all others error nnn

Table 47: Message returned by strerror()—IAR DLIB library

AFE1_AFE2-1:1

 407

Implementation-defined
behavior for C89
● Descriptions of implementation-defined behavior

If you are using Standard C instead of C89, see Implementation-defined behavior
for Standard C, page 391. For a short overview of the differences between
Standard C and C89, see C language overview, page 187.

Descriptions of implementation-defined behavior
The descriptions follow the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

TRANSLATION

Diagnostics (5.1.1.3)

Diagnostics are produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

ENVIRONMENT

Arguments to main (5.1.2.2.2.1)

The function called at program startup is called main. No prototype was declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior for the IAR DLIB runtime environment, see Customizing
system initialization, page 135.

AFE1_AFE2-1:1

408

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

Interactive devices (5.1.2.3)

The streams stdin and stdout are treated as interactive devices.

IDENTIFIERS

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

Identifiers with external linkage are treated as case-sensitive.

CHARACTERS

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. The
default source character set is the standard ASCII character set. However, if you use the
command line option --enable_multibytes, the source character set will be the host
computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. The default execution character set is the standard ASCII character set.
However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library
needs a multibyte character scanner to support a multibyte execution character set.

See Locale, page 141.

Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT.
The standard include file limits.h defines CHAR_BIT as 8.

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way. In other words, the
same representation value is used for each member in the character sets except for the
escape sequences listed in the ISO standard.

AFE1_AFE2-1:1

Implementation-defined behavior for C89

409

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant generates a diagnostic message, and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Converting multibyte characters (6.1.3.4)

The only locale supported—that is, the only locale supplied with the IAR C/C++
Compiler—is the ‘C’ locale. If you use the command line option
--enable_multibytes, the IAR DLIB Library will support multibyte characters if
you add a locale with multibyte support or a multibyte character scanner to the library.

See Locale, page 141.

Range of 'plain' char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.

INTEGERS

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, 0 for positive and zero.

See Basic data types—integer types, page 276, for information about the ranges for the
different integer types.

Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal
length, the bit-pattern remains the same. In other words, a large enough value will be
converted into a negative value.

AFE1_AFE2-1:1

410

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

Signed bitwise operations (6.3)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers; in other words, the sign-bit will be treated as any other bit.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)

The result of a right-shift of a negative-valued signed integral type preserves the sign-bit.
For example, shifting 0xFF00 down one step yields 0xFF80.

FLOATING POINT

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEEE
854–1987. A typical floating-point number is built up of a sign-bit (s), a biased
exponent (e), and a mantissa (m).

See Basic data types—floating-point types, page 279, for information about the ranges
and sizes for the different floating-point types: float and double.

Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.

Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded (up or down) to the nearest
suitable value.

ARRAYS AND POINTERS

size_t (6.3.3.4, 7.1.1)

See size_t, page 282, for information about size_t.

Conversion from/to pointers (6.3.4)

See Casting, page 282, for information about casting of data pointers and function
pointers.

AFE1_AFE2-1:1

Implementation-defined behavior for C89

411

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff_t, page 282, for information about the ptrdiff_t.

REGISTERS

Honoring the register keyword (6.5.1)

User requests for register variables are not honored.

STRUCTURES, UNIONS, ENUMERATIONS, AND BITFIELDS

Improper access to a union (6.3.2.3)

If a union gets its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alignment of structure members (6.5.2.1)

See the section Basic data types—integer types, page 276, for information about the
alignment requirement for data objects.

Sign of 'plain' bitfields (6.5.2.1)

A 'plain' int bitfield is treated as a signed int bitfield. All integer types are allowed as
bitfields.

Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the chosen bitfield integer type.

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

QUALIFIERS

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.

AFE1_AFE2-1:1

412

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

DECLARATORS

Maximum numbers of declarators (6.5.4)

The number of declarators is not limited. The number is limited only by the available
memory.

STATEMENTS

Maximum number of case statements (6.6.4.2)

The number of case statements (case values) in a switch statement is not limited. The
number is limited only by the available memory.

PREPROCESSING DIRECTIVES

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain' character
is treated as a signed character.

Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A parent file is the file that contains the #include
directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file is not found,
the search continues as if the filename was enclosed in angle brackets.

Character sequences (6.8.2)

Preprocessor directives use the source character set, except for escape sequences. Thus,
to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"

Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile","rt");

AFE1_AFE2-1:1

Implementation-defined behavior for C89

413

Recognized pragma directives (6.8.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect. If a pragma
directive is listed both in the chapter Pragma directives and here, the information
provided in the chapter Pragma directives overrides the information here.

alignment

baseaddr

basic_template_matching

building_runtime

can_instantiate

codeseg

cspy_support

define_type_info

do_not_instantiate

early_dynamic_initialization

function

function_effects

hdrstop

important_typedef

instantiate

keep_definition

library_default_requirements

library_provides

library_requirement_override

memory

module_name

no_pch

once

system_include

warnings

AFE1_AFE2-1:1

414

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

Default __DATE__ and __TIME__ (6.8.8)

The definitions for __TIME__ and __DATE__ are always available.

IAR DLIB LIBRARY FUNCTIONS

The information in this section is valid only if the runtime library configuration you have
chosen supports file descriptors. See the chapter The DLIB runtime environment for
more information about runtime library configurations.

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)

The assert() function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to fmod() is zero, the function returns NaN; errno is set to
EDOM.

signal() (7.7.1.1)

The signal part of the library is not supported.

Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Signal and raise, page 145.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

AFE1_AFE2-1:1

Implementation-defined behavior for C89

415

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

No null characters are appended to data written to binary streams.

Files (7.9.3)

Whether the file position indicator of an append-mode stream is initially positioned at
the beginning or the end of the file, depends on the application-specific implementation
of the low-level file routines.

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 141.

The characteristics of the file buffering is that the implementation supports files that are
unbuffered, line buffered, or fully buffered.

Whether a zero-length file actually exists depends on the application-specific
implementation of the low-level file routines.

Rules for composing valid file names depends on the application-specific
implementation of the low-level file routines.

Whether the same file can be simultaneously open multiple times depends on the
application-specific implementation of the low-level file routines.

remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 141.

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 141.

%p in printf() (7.9.6.1)

The argument to a %p conversion specifier, print pointer, to printf() is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the %x conversion specifier.

AFE1_AFE2-1:1

416

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf() reads a hexadecimal number and
converts it into a value with the type void *.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

On file position errors, the functions fgetpos and ftell store EFPOS in errno.

Message generated by perror() (7.9.10.4)

The generated message is:

usersuppliedprefix:errormessage

Allocating zero bytes of memory (7.10.3)

The calloc(), malloc(), and realloc() functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort() function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The argument passed to the exit function will be the return value returned by the main
function to cstartup.

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in Environment interaction, page 144.

system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See Environment interaction, page 144.

AFE1_AFE2-1:1

Implementation-defined behavior for C89

417

Message returned by strerror() (7.11.6.2)

The messages returned by strerror() depending on the argument is:

The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in Time, page
145.

clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See Time, page 145.

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error

EILSEQ multi-byte encoding error

<0 || >99 unknown error

all others error nnn

Table 48: Message returned by strerror()—IAR DLIB library

AFE1_AFE2-1:1

418

Descriptions of implementation-defined behavior

IAR C/C++ Compiler User Guide
for AVR32

AFE1_AFE2-1:1

Index

419

A
ABI. 171
abort

implementation-defined behavior. 403
implementation-defined behavior in C89 (DLIB) 416
system termination (DLIB) . 134

absolute location
data, placing at (@) . 215
language support for . 190
#pragma location . 318

abs_s (ETSI macro) . 331
__acall (extended keyword) . 294
acall functions. 77
ACALL jump table . 111
ACTAB (segment) . 367
add (ETSI macro) . 331
addressing. See memory types, data models,
and code models
algorithm (STL header file) . 359
alignment . 275

forcing stricter (#pragma data_alignment) 309
in structures (#pragma pack) . 321
in structures, causing problems 212
of an object (__ALIGNOF__) 190
restrictions for inline assembler 161

alignment (pragma directive) 398, 413
__ALIGNOF__ (operator) . 190
anonymous structures . 213
anonymous symbols, creating . 187
ANSI C. See C89
application

building, overview of . 54
execution, overview of . 50
startup and termination (DLIB) 131

ARGFRAME (assembler directive) 178
argv (argument), implementation-defined behavior 392
arrays

designated initializers in . 187

global, accessing . 180
hints about index type . 211
implementation-defined behavior. 396
implementation-defined behavior in C89 410
incomplete at end of structs . 187
non-lvalue . 193
of incomplete types . 192
single-value initialization . 193

asm, __asm (language extension) 162
assembler code

calling from C . 167
calling from C++ . 169
inserting inline . 160

assembler directives
for call frame information . 182
for static overlay . 178
using in inline assembler code 161

assembler instructions, inserting inline 160
assembler labels

default for application startup . 54
making public (--public_equ). 268

assembler language interface . 159
calling convention. See assembler code

assembler list file, generating . 258
assembler output file . 169
asserts . 148

implementation-defined behavior of 400
implementation-defined behavior of in C89, (DLIB) . . 414
including in application . 353

assert.h (DLIB header file) . 357
__assignment_by_bitwise_copy_allowed, symbol used
in library . 362
@ (operator)

placing at absolute address. 215
placing in segments . 217

atomic operations . 79
__monitor . 298

attributes
object . 292
type . 289

Index

AFE1_AFE2-1:1

420
IAR C/C++ Compiler User Guide
for AVR32

auto variables . 68
at function entrance . 173
programming hints for efficient code 224
using in inline assembler statements 161

--avr32_dsp_instructions (compiler option) 243
--avr32_flashvault (compiler option) 243
--avr32_fpu_instructions (compiler option) 244
--avr32_rmw_instructions (compiler option) 244
--avr32_simd_instructions (compiler option) 245

B
backtrace information See call frame information
Barr, Michael . 33
baseaddr (pragma directive) 398, 413
__BASE_FILE__ (predefined symbol) 348
basic_template_matching (pragma directive) 398, 413
batch files

error return codes . 234
none for building library from command line 130

binary streams. 401
binary streams in C89 (DLIB). 415
bit negation . 225
bitfields

data representation of. 277
implementation-defined behavior. 397
implementation-defined behavior in C89 411
non-standard types in . 190

bitfields (pragma directive) . 307
bits in a byte, implementation-defined behavior 393
__bit_reverse (intrinsic function) 333
bit, efficient manipulation using RMW instructions 181
bold style, in this guide . 34
bool (data type) . 276

adding support for in DLIB 358, 360
__BREAKPOINT (intrinsic function). 333
building_runtime (pragma directive). 398, 413
__BUILD_NUMBER__ (predefined symbol) 348

C
C and C++ linkage . 171
C/C++ calling convention. See calling convention
C header files . 357
C language, overview . 187
__cache_control (intrinsic function) 334
call frame information . 181

in assembler list file . 169
in assembler list file (-lA) . 258

call graph root (stack usage control directive). 383
call stack . 181
callee-save registers, stored on stack. 68
calling convention

C++, requiring C linkage . 169
in compiler. 170

calloc (library function) . 69
See also heap
implementation-defined behavior in C89 (DLIB) 416

calls (pragma directive). 308
call_graph_root (pragma directive) 308
call-info (in stack usage control file). 388
can_instantiate (pragma directive) 398, 413
cassert (library header file) . 360
cast operators

in Extended EC++ . 196, 200
missing from Embedded C++ 196

casting
of pointers and integers . 282
pointers to integers, language extension. 192

category (in stack usage control file). 387
cctype (DLIB header file) . 360
cerrno (DLIB header file) . 360
cexit (system termination code)

customizing system termination. 135
in DLIB . 132

CFI (assembler directive) . 182
cfloat (DLIB header file). 360

AFE1_AFE2-1:1

Index

421

char (data type) . 276
changing default representation (--char_is_signed) . . . 246
changing representation (--char_is_unsigned) 246
implementation-defined behavior. 393
signed and unsigned. 277

character set, implementation-defined behavior 392
characters

implementation-defined behavior. 393
implementation-defined behavior in C89 408

character-based I/O . 137
--char_is_signed (compiler option) 246
--char_is_unsigned (compiler option) 246
check that (linker directive). 384
checksum

calculation of . 207
CHECKSUM (segment) . 368
cinttypes (DLIB header file) . 360
__clear_status_flag (intrinsic function). 334
climits (DLIB header file). 360
clobber . 161
clocale (DLIB header file) . 360
clock (DLIB library function),
implementation-defined behavior in C89 417
clock (library function)
implementation-defined behavior 404
clock.c . 145
__close (DLIB library function) . 141
clustering (compiler transformation). 223

disabling (--no_clustering) . 261
cmain (system initialization code)

in DLIB . 132
cmath (DLIB header file) . 360
code

execution of . 56
facilitating for good generation of 223
interruption of execution . 73
verifying linked result . 117

code models . 71
calling functions in. 178
configuration . 56

identifying (__CODE_MODEL__) 348
selecting (--code_model) . 246

code motion (compiler transformation). 222
disabling (--no_code_motion) 261

codeseg (pragma directive) . 399, 413
__CODE_MODEL__ (predefined symbol). 348
__code_model (runtime model attribute) 156
--code_model (compiler option) . 246
__code, symbol used in library . 362
__code21 (extended keyword) . 294
CODE21 (segment). 368
__code32 (extended keyword) . 294
CODE32 (segment). 368
command line options

See also compiler options
part of compiler invocation syntax 231
passing . 232
typographic convention . 34

command prompt icon, in this guide 34
comments

after preprocessor directives. 193
C++ style, using in C code. 187

common block (call frame information) 182
common subexpr elimination (compiler transformation) . 221

disabling (--no_cse) . 261
compilation date

exact time of (__TIME__) . 352
identifying (__DATE__) . 349

compiler
environment variables . 232
invocation syntax . 231
output from . 233

compiler listing, generating (-l). 258
compiler object file . 47

including debug information in (--debug, -r) 249
output from compiler . 233

compiler optimization levels . 220
compiler options . 237

passing to compiler . 232

AFE1_AFE2-1:1

422
IAR C/C++ Compiler User Guide
for AVR32

reading from file (-f) . 256
specifying parameters . 239
summary . 239
syntax. 237
for creating skeleton code . 168
instruction scheduling . 223
--warnings_affect_exit_code . 234

compiler platform, identifying . 351
compiler subversion number . 352
compiler transformations . 218
compiler version number . 353
compiling

from the command line . 54
syntax. 231

complex numbers, supported in Embedded C++. 196
complex (library header file). 359
complex.h (library header file) . 357
compound literals . 187
computer style, typographic convention 34
configuration

basic project settings . 54
__low_level_init . 135

configuration symbols
for file input and output . 141
for locale . 142
for printf and scanf. 139
for strtod . 146
in library configuration files. 131, 136

consistency, module . 154
const

declaring objects . 286
non-top level . 193

constants, placing in named segment 309
__constrange(), symbol used in library 363
__construction_by_bitwise_copy_allowed, symbol used
in library . 363
constseg (pragma directive) . 309
const_cast (cast operator) . 196
contents, of this guide . 30

control characters,
implementation-defined behavior 405
conventions, used in this guide . 34
__COP (intrinsic function) . 334
copyright notice . 2
__COP_get_registers (intrinsic function) 335
__COP_get_register32 (intrinsic function) 335
__COP_get_register64 (intrinsic function) 335
__COP_set_registers (intrinsic function) 336
__COP_set_register32 (intrinsic function) 336
__COP_set_register64 (intrinsic function) 336
__CORE__ (predefined symbol). 348
core

identifying . 348
__core (runtime model attribute). 156
__CORE_REVISION__ (predefined symbol) 348
cos (library function) . 356
cos (library routine) . 146, 148
cosf (library routine) . 147–148
cosl (library routine) . 147–148
__COUNTER__ (predefined symbol). 348
__count_leading_zeros (intrinsic function) 336
__count_trailing_zeros (intrinsic function) 337
__cplusplus (predefined symbol) 349
--cpu (compiler option) . 247
--cpu_info (compiler option). 248
CPU, specifying on command line for compiler 247
csetjmp (DLIB header file) . 360
csignal (DLIB header file) . 360
cspy_support (pragma directive) 399, 413
CSTACK (segment) . 369

example . 133
See also stack

cstartup (system startup code)
customizing system initialization 135
source files for (DLIB). 132

cstdarg (DLIB header file) . 360
cstdbool (DLIB header file) . 360
cstddef (DLIB header file) . 360
cstdio (DLIB header file) . 360

AFE1_AFE2-1:1

Index

423

cstdlib (DLIB header file) . 360
cstring (DLIB header file). 360
ctime (DLIB header file). 360
ctype.h (library header file). 357
cwctype.h (library header file) . 361
C_INCLUDE (environment variable) 232
C-SPY

debug support for C++. 199
including debugging support . 126
interface to system termination 135
Terminal I/O window, including debug support for . . . 127

C-STAT for static analysis, documentation for 32
C++

See also Embedded C++ and Extended Embedded C++
absolute location . 216–217
calling convention . 169
dynamic initialization in . 112
header files. 358
language extensions . 201
standard template library (STL) 359
static member variables . 216–217
support for . 40

C++ header files . 359
C++ names, in assembler code . 170
C++ objects, placing in memory type 66
C++ terminology. 34
C++-style comments . 187
C89

implementation-defined behavior. 407
support for . 187

--c89 (compiler option) . 245
C99. See Standard C

D
-D (compiler option) . 248
data

alignment of. 275
different ways of storing . 59

located, declaring extern . 216
placing . 214, 310, 365

at absolute location . 215
representation of . 275
storage . 59
verifying linked result . 117

data block (call frame information). 182
data memory attributes, using . 63
data models . 66

configuration . 56
identifying (__DATA_MODEL__) 349
large . 67
setting (--data_model) . 249
small . 67

data pointers . 281
data types . 276

avoiding signed . 211
floating point . 279
in C++ . 287
integer types. 276

dataseg (pragma directive) . 310
data_alignment (pragma directive) 309
__DATA_MODEL__ (predefined symbol) 349
__data_model (runtime model attribute) 156
--data_model (compiler option) . 249
__data, symbol used in library . 362
__data17 (extended keyword) . 295
data17 (memory type) . 61
__data21 (extended keyword) . 295
data21 (memory type) . 61
__data32 (extended keyword) . 296
data32 (memory type) . 61
__DATE__ (predefined symbol) . 349
date (library function), configuring support for. 145
__dbgreg (extended keyword). 296
DC32 (assembler directive). 161
--debug (compiler option) . 249
debug information, including in object file 249
decimal point, implementation-defined behavior 405

AFE1_AFE2-1:1

424
IAR C/C++ Compiler User Guide
for AVR32

declarations
empty . 193
in for loops. 187
Kernighan & Ritchie . 225
of functions . 171

declarations and statements, mixing 187
declarators, implementation-defined behavior in C89. . . . 412
__DEFAULT_CODE_SEGMENT__ (predefined symbol)349
__DEFAULT_CONST_SEGMENT__
(predefined symbol) . 349
__DEFAULT_DATA_SEGMENT__ (predefined symbol) 349
define_type_info (pragma directive) 399, 413
delete (keyword) . 69
denormalized numbers. See subnormal numbers
--dependencies (compiler option) 250
deque (STL header file) . 359
destructors and interrupts, using . 199
device description files, preconfigured for C-SPY 42
DI (assembler instruction). 337
diagnostic messages . 235

classifying as compilation errors 251
classifying as compilation remarks 251
classifying as compiler warnings 252
disabling compiler warnings . 265
disabling wrapping of in compiler 265
enabling compiler remarks. 269
listing all used by compiler . 252
suppressing in compiler . 251

--diagnostics_tables (compiler option) 252
diagnostics, implementation-defined behavior 391
diag_default (pragma directive) . 312
--diag_error (compiler option) . 251
diag_error (pragma directive) . 313
--diag_remark (compiler option). 251
diag_remark (pragma directive) . 313
--diag_suppress (compiler option) 251
diag_suppress (pragma directive) 313
--diag_warning (compiler option) 252
diag_warning (pragma directive) 314
DIFUNCT (segment) . 112, 375

directives
function for static overlay . 178
pragma . 42, 305

directory, specifying as parameter. 238
--disable_inline_asm_label_replacement
(compiler option) . 253
__disable_interrupt (intrinsic function). 337
--discard_unused_publics (compiler option) 253
disclaimer . 2
div_s (ETSI macro). 331
DLIB. 357

configurations . 136
configuring. 120, 253
documentation . 32
including debug support. 125
naming convention. 35
reference information. See the online help system 355
runtime environment . 119

--dlib_config (compiler option). 253
DLib_Defaults.h (library configuration file) 131, 136
__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 141
document conventions. 34
documentation

contents of this. 30
how to use this . 29
overview of guides . 31
who should read this . 29

domain errors, implementation-defined behavior 400
domain errors, implementation-defined behavior in C89
(DLIB) . 414
double (data type) . 279

avoiding . 211
do_not_instantiate (pragma directive) 399, 413
dsp, enabling block of instructions 56, 243
dynamic initialization . 131

and C++ . 112
dynamic memory . 69

AFE1_AFE2-1:1

Index

425

E
-e (compiler option) . 254
early_initialization (pragma directive) 399, 413
--ec++ (compiler option). 255
edition, of this guide . 2
--eec++ (compiler option) . 255
EI (assembler instruction) . 337
Embedded C++. 195

differences from C++. 196
enabling . 255
function linkage . 171
language extensions . 195
overview . 195

Embedded C++ Technical Committee 34
embedded systems, IAR special support for 42
__embedded_cplusplus (predefined symbol) 349
__enable_interrupt (intrinsic function) 337
--enable_multibytes (compiler option) 255
--enable_restrict (compiler option) 256
enabling restrict keyword . 256
entry label, program . 132
enumerations

implementation-defined behavior. 397
implementation-defined behavior in C89 411

enums
data representation . 276
forward declarations of . 192

__enum_size (runtime model attribute). 156
environment

implementation-defined behavior. 392
implementation-defined behavior in C89 407
runtime (DLIB) . 119

environment names, implementation-defined behavior . . . 393
environment variables

C_INCLUDE . 232
QCCAVR32 . 232

environment (native),
implementation-defined behavior 405

EQU (assembler directive) . 268
ERANGE . 400
ERANGE (C89) . 414
errno value at underflow,
implementation-defined behavior 403
errno.h (library header file) . 357
error messages . 236

classifying for compiler . 251
error return codes . 234
error (pragma directive) . 314
--error_limit (compiler option) . 256
escape sequences, implementation-defined behavior 393
EVBYTES1 (segment) . 376
EVBYTES2 (segment) . 376
EVBYTES3 (segment) . 376
EVSEG (segment). 377
EVTAB (segment) . 377
EV100 (segment) . 377
__exception (extended keyword) 296
exception handlers . 75, 111
exception handling, missing from Embedded C++ 196
exception table, start address for . 73
exception vectors . 112
exception (pragma directive). 314
__exchange_memory (intrinsic function) 337
exclude (stack usage control directive) 384
execution modes . 303
_Exit (library function) . 134
exit (library function) . 134

implementation-defined behavior. 403
implementation-defined behavior in C89 416

_exit (library function) . 134
__exit (library function) . 134
exp (library routine) . 146
expf (library routine). 147
expl (library routine) . 147
export keyword, missing from Extended EC++ 199
extended command line file

for compiler . 256
passing options . 232

AFE1_AFE2-1:1

426
IAR C/C++ Compiler User Guide
for AVR32

Extended Embedded C++ . 196
enabling . 255

extended keywords . 289
enabling (-e). 254
overview . 42
summary . 292
syntax

object attributes. 292
type attributes on data objects 63, 290
type attributes on functions 291

extern "C" linkage. 198
extract_h (ETSI macro). 331
extract_l (ETSI macro) . 331

F
-f (compiler option). 256
__far (extended keyword) . 281
__farfunc (function pointer) . 281
fatal error messages . 236
fdopen, in stdio.h . 361
fegettrapdisable. 361
fegettrapenable . 361
FENV_ACCESS, implementation-defined behavior. 396
fenv.h (library header file). 357

additional C functionality. 361
fgetpos (library function), implementation-defined
behavior . 403
fgetpos (library function), implementation-defined
behavior in C89. 416
__FILE__ (predefined symbol). 350
file buffering, implementation-defined behavior 401
file dependencies, tracking . 250
file paths, specifying for #include files 258
file position, implementation-defined behavior. 401
file streams lock interface . 151
file (zero-length), implementation-defined behavior 401
filename

extension for device description files 42

extension for header files . 41
of object file. 267
search procedure for. 232
specifying as parameter . 238

filenames (legal), implementation-defined behavior 401
fileno, in stdio.h . 361
files, implementation-defined behavior

handling of temporary . 402
multibyte characters in. 402
opening . 402

FlashVault
using to implement middleware 84

__flashvault (extended keyword) 297
__flashvault_impl (extended keyword) 297
flashvault_vector (pragma directive). 315
flashvault, enabling block of instructions 56
float (data type). 279
floating-point constants

hexadecimal notation . 187
hints . 212

floating-point environment, accessing or not 327
floating-point expressions

contracting or not . 327
floating-point format. 279

hints . 211
implementation-defined behavior. 395
implementation-defined behavior in C89 410
special cases. 280
32-bits . 280
64-bits . 280

floating-point status flags . 361
float.h (library header file) . 357
FLT_EVAL_METHOD, implementation-defined
behavior . 395, 400, 404
FLT_ROUNDS, implementation-defined
behavior . 395, 404
fmod (library function),
implementation-defined behavior in C89 414
for loops, declarations in. 187

AFE1_AFE2-1:1

Index

427

formats
floating-point values . 279
standard IEEE (floating point) 279

fpu, enabling block of instructions 56, 244
FP_CONTRACT, implementation-defined behavior. 396
--fp_implementation (compiler option). 257
fragmentation, of heap memory . 69
free (library function). See also heap 69
fsetpos (library function), implementation-defined
behavior . 403
fstream (library header file) . 359
ftell (library function), implementation-defined behavior . 403

in C89 . 416
Full DLIB (library configuration) 136
__func__ (predefined symbol) 194, 350
FUNCALL (assembler directive) 178
__FUNCTION__ (predefined symbol) 194, 350
function calls

calling convention . 170
eliminating overhead of by inlining 87
large code model . 179
preserved registers across. 172
small code model . 179

function declarations, Kernighan & Ritchie 225
function directives for static overlay 178
function execution, in RAM . 83
function inlining (compiler transformation) 222

disabling (--no_inline) . 262
function pointers . 281
function prototypes . 224

enforcing . 270
function return addresses . 176
function type information, omitting in object output. 266
FUNCTION (assembler directive) 178
function (pragma directive). 399, 413
function (stack usage control directive). 385
functional (STL header file) . 359
functions . 71

acall . 77
calling in different code models 178

declaring . 171, 224
inlining. 187, 222, 224, 317
interrupt . 73, 79
intrinsic . 159, 224
monitor . 79
omitting type info . 266
parameters . 173
placing in memory . 214, 217
placing segments for . 108, 111
recursive

avoiding . 224
storing data on stack . 68

reentrancy (DLIB) . 356
related extensions. 71
return values from . 175
scall . 78
special function types. 73
verifying linked result . 117

function_effects (pragma directive). 399, 413
function-spec (in stack usage control file). 387
FVVEC (segment) . 378

G
getenv (library function), configuring support for 144
getw, in stdio.h . 361
getzone (library function), configuring support for 145
getzone.c. 145
__get_system_register (intrinsic function) 338
__get_interrupt_state (intrinsic function) 338
__get_system_register (intrinsic function) 339
__get_user_context (intrinsic function). 339
global arrays, accessing . 180
global variables

accessing . 180
affected by static clustering . 223
handled during system termination 134
hints for not using . 224
initialized during system startup 133

AFE1_AFE2-1:1

428
IAR C/C++ Compiler User Guide
for AVR32

--guard_calls (compiler option). 257
guidelines, reading . 29

H
handler (pragma directive) . 74, 315
Harbison, Samuel P. . 33
hardware support in compiler . 119
hash_map (STL header file) . 359
hash_set (STL header file) . 359
__has_constructor, symbol used in library 363
__has_destructor, symbol used in library 363
__HAS_DSP_INSTRUCTIONS__ (predefined symbol) . 350
__HAS_FPU_INSTRUCTIONS__ (predefined symbol) . 350
__HAS_RMW_INSTRUCTIONS__ (predefined symbol) 351
__HAS_SIMD_INSTRUCTIONS__ (predefined symbol) 351
hdrstop (pragma directive) . 399, 413
header files

C . 357
C++ . 358–359
library . 355
special function registers . 227
STL . 359
DLib_Defaults.h . 131, 136
including stdbool.h for bool . 276
including stddef.h for wchar_t 277

header names, implementation-defined behavior 397
--header_context (compiler option). 257
heap

dynamic memory . 69
segments for. 109
storing data . 60
VLA allocated on. 272

heap segments
DLIB . 206
placing . 110

heap size
and standard I/O. 206
changing default. 109–110

HEAP (section). 206
heap (zero-sized), implementation-defined behavior. 403
hints

for good code generation . 223
implementation-defined behavior. 396
using efficient data types . 211

HTAB (segment). 378

I
-I (compiler option). 258
IAR Command Line Build Utility. 130
IAR Systems Technical Support . 236
iarbuild.exe (utility) . 130
__iar_cos_accurate (library routine) 148
__iar_cos_accuratef (library routine) 148
__iar_cos_accuratef (library function) 356
__iar_cos_accuratel (library routine) 148
__iar_cos_accuratel (library function) 356
__iar_cos_small (library routine) 146
__iar_cos_smallf (library routine). 147
__iar_cos_smalll (library routine). 147
__IAR_DLIB_PERTHREAD_INIT_SIZE (macro) 152
__IAR_DLIB_PERTHREAD_SIZE (macro) 152
__IAR_DLIB_PERTHREAD_SYMBOL_OFFSET
(symbolptr) . 152
__iar_exp_small (library routine) 146
__iar_exp_smallf (library routine) 147
__iar_exp_smalll (library routine) 147
__iar_log_small (library routine) 146
__iar_log_smallf (library routine). 147
__iar_log_smalll (library routine) 147
__iar_log10_small (library routine) 146
__iar_log10_smallf (library routine) 147
__iar_log10_smalll (library routine) 147
__iar_Powf (library routine) . 148
__iar_Powl (library routine) . 148
__iar_Pow_accurate (library routine) 148
__iar_pow_accurate (library routine) 148

AFE1_AFE2-1:1

Index

429

__iar_Pow_accuratef (library routine) 148
__iar_pow_accuratef (library routine). 148
__iar_pow_accuratef (library function). 356
__iar_Pow_accuratel (library routine). 148
__iar_pow_accuratel (library routine) 148
__iar_pow_accuratel (library function) 356
__iar_pow_small (library routine). 146
__iar_pow_smallf (library routine) 147
__iar_pow_smalll (library routine) 147
__iar_program_start (label). 132
__iar_Sin (library routine) . 146
__iar_Sinf (library routine) . 148
__iar_Sinl (library routine) . 148
__iar_Sin_accurate (library routine) 148
__iar_sin_accurate (library routine) 148
__iar_Sin_accuratef (library routine) 148
__iar_sin_accuratef (library routine). 148
__iar_sin_accuratef (library function). 356
__iar_Sin_accuratel (library routine) 148
__iar_sin_accuratel (library routine) 148
__iar_sin_accuratel (library function) 356
__iar_Sin_small (library routine) 146
__iar_sin_small (library routine). 146
__iar_Sin_smallf (library routine). 147
__iar_sin_smallf (library routine) 147
__iar_Sin_smalll (library routine). 147
__iar_sin_smalll (library routine) 147
__IAR_SYSTEMS_ICC__ (predefined symbol) 351
__iar_tan_accurate (library routine) 148
__iar_tan_accuratef (library routine). 148
__iar_tan_accuratef (library function). 356
__iar_tan_accuratel (library routine). 148
__iar_tan_accuratel (library function). 356
__iar_tan_small (library routine) 146
__iar_tan_smallf (library routine) 147
__iar_tan_smalll (library routine) 147
__ICCAVR32__ (predefined symbol) 351
icons, in this guide . 34

IDE
building a library from . 130
overview of build tools. 39

identifiers, implementation-defined behavior 393
identifiers, implementation-defined behavior in C89 408
IEEE format, floating-point values 279
important_typedef (pragma directive) 399, 413
__imported (extended keyword) . 298
include files

including before source files . 268
specifying . 232

include_alias (pragma directive) . 316
infinity . 280
infinity (style for printing), implementation-defined
behavior . 402
inheritance, in Embedded C++ . 195
initialization

dynamic . 131
single-value . 193

initializers, static . 192
INITTAB (segment) . 379
inline assembler . 160

avoiding . 224
for passing values between C and assembler 228
See also assembler language interface

inline functions . 187
in compiler. 222

inline (pragma directive) . 317
inlining functions . 87

implementation-defined behavior. 396
installation directory . 34
instantiate (pragma directive) 399, 413
instruction scheduling (compiler option). 223
int (data type) signed and unsigned. 276
integer types . 276

casting . 282
implementation-defined behavior. 394
intptr_t . 282
ptrdiff_t . 282
size_t . 282

AFE1_AFE2-1:1

430
IAR C/C++ Compiler User Guide
for AVR32

uintptr_t . 282
integers, implementation-defined behavior in C89 409
integral promotion. 225
internal error . 236
__interrupt (extended keyword) 74, 298
interrupt controller initialization, __init_ihandler 132
interrupt functions. 73

placement in memory. 112
interrupt handler. See interrupt service routine
interrupt service routine . 73
interrupt state, restoring . 341
interrupt vector . 74

specifying with pragma directive 328
interrupt vector table

in linker configuration file . 112
interrupts

disabling . 298
during function execution . 79

processor state . 68
using with EC++ destructors . 199

intptr_t (integer type) . 282
__intrinsic (extended keyword). 298
intrinsic functions . 224

overview . 159
summary . 329

intrinsics.h (header file) . 329
inttypes.h (library header file). 358
INTVEC (segment). 112
invocation syntax . 231
iomanip (library header file) . 359
ios (library header file) . 359
iosfwd (library header file) . 359
iostream (library header file). 359
iso646.h (library header file). 358
istream (library header file). 359
italic style, in this guide . 34
iterator (STL header file) . 359
I/O register. See SFR

J
Josuttis, Nicolai M. 33

K
keep_definition (pragma directive) 399, 413
Kernighan & Ritchie function declarations 225

disallowing. 270
Kernighan, Brian W. 33
keywords. 289

extended, overview of . 42

L
-l (compiler option). 258

for creating skeleton code . 168
labels. 193

assembler, making public. 268
__iar_program_start. 132
__program_start . 132

Labrosse, Jean J. 33
Lajoie, Josée . 33
language extensions

Embedded C++ . 195
enabling using pragma . 317
enabling (-e). 254

language overview . 40
language (pragma directive) . 317
Large (code model)

function calls . 179
libraries

reason for using . 48
standard template library . 359
using a prebuilt . 121

library configuration files
DLIB . 136
DLib_Defaults.h . 131, 136
modifying . 131

AFE1_AFE2-1:1

Index

431

specifying . 253
library documentation . 355
library features, missing from Embedded C++ 196
library functions

summary, DLIB . 357
online help for . 32

library header files . 355
library modules

creating . 259
overriding. 129

library object files . 355
library options, setting . 58
library project, building using a template 130
library_default_requirements (pragma directive) . . . 399, 413
--library_module (compiler option) 259
library_provides (pragma directive) 399, 413
library_requirement_override (pragma directive) . . . 399, 413
lightbulb icon, in this guide. 35
limits.h (library header file) . 358
__LINE__ (predefined symbol) . 351
linkage, C and C++. 171
linker. 89
linker configuration file . 92

for placing code and data . 92
in depth . 383
overview of . 383
using the -P command . 107
using the -Z command . 107

linker map file. 118
linker options

typographic convention . 34
linker segment. See segment
linking

from the command line . 54
in the build process . 48
introduction . 89
process for . 91

Lippman, Stanley B. 33
list (STL header file). 359

listing, generating . 258
literals, compound. 187
literature, recommended . 33
local variables, See auto variables
locale

adding support for in library . 143
changing at runtime . 143
implementation-defined behavior. 394, 404
removing support for . 143
support for . 142

locale.h (library header file) . 358
located data segments . 108
located data, declaring extern . 216
location (pragma directive) . 215, 318
LOCFRAME (assembler directive). 178
log (library routine). 146
logf (library routine) . 147
logl (library routine) . 147
log10 (library routine). 146
log10f (library routine) . 147
log10l (library routine) . 147
long double (data type) . 279
long float (data type), synonym for double 192
long long (data type)

avoiding . 211
long long (data type) signed and unsigned 276
long (data type) signed and unsigned 276
longjmp, restrictions for using . 357
loop unrolling (compiler transformation) 221

disabling . 264
loop-invariant expressions. 222
__low_level_init . 132

customizing . 135
initialization phase . 50

low_level_init.c. 132
low_level_init.s99 . 132
low-level processor operations 188, 329

accessing . 159
__lseek (library function) . 141

AFE1_AFE2-1:1

432
IAR C/C++ Compiler User Guide
for AVR32

L_abs (ETSI macro) . 332
L_add (ETSI macro) . 332
L_deposit_c (ETSI macro) . 332
L_deposit_l (ETSI macro) . 332
L_mac (ETSI macro) . 332
L_macNs (ETSI macro) . 332
L_msu (ETSI macro) . 332
L_msuNs (ETSI macro) . 332
L_mult (ETSI macro) . 332
L_negate (ETSI macro). 332
L_sat (ETSI macro) . 332
L_shl (ETSI macro) . 332
L_shr (ETSI macro) . 332
L_shr_r (ETSI macro). 332
L_sub (ETSI macro) . 332
L_sub_c (ETSI macro) . 332

M
macros

embedded in #pragma optimize 321
ERANGE (in errno.h) . 400, 414
inclusion of assert . 353
NULL, implementation-defined behavior 401

in C89 for DLIB . 414
substituted in #pragma directives 188
variadic . 187

--macro_positions_in_diagnostics (compiler option) 259
mac_r (ETSI macro) . 332
main (function)

definition (C89) . 407
implementation-defined behavior. 392

malloc (library function)
 See also heap . 69
implementation-defined behavior in C89 416

Mann, Bernhard . 33
map (STL header file) . 359
map, linker . 118

math functions rounding mode,
implementation-defined behavior 404
math functions (library functions). 146
math.h (library header file) . 358
__max (intrinsic function). 339
max recursion depth (stack usage control directive) 385
MB_LEN_MAX, implementation-defined behavior. 404
memory

accessing . 60, 180
using data20 method . 181

allocating in C++ . 69
dynamic . 69
heap . 69
non-initialized . 228
RAM, saving . 224
releasing in C++. 69
stack. 68

saving . 224
used by global or static variables 60

memory access methods
data20 . 181
data32 . 181
system register . 181

memory clobber . 161
memory management, type-safe . 195
memory map

initializing SFRs . 135
linker configuration for . 105

memory placement
of linker segments . 92
using type definitions. 65

memory segment. See segment
memory types . 60

C++ . 66
placing variables in . 66
specifying . 63
structures . 65
summary . 63

memory (pragma directive). 399, 413
memory (STL header file). 359

AFE1_AFE2-1:1

Index

433

__memory_of
symbol used in library . 363

message (pragma directive). 319
messages

disabling . 270
forcing . 319

Meyers, Scott . 33
--mfc (compiler option). 260
migration

from earlier IAR compilers . 32
__min (intrinsic function) . 339
--minimize_constant_tables (compiler option) 260
MISRA C, documentation . 32
--misrac_verbose (compiler option) 241
--misrac1998 (compiler option) . 241
--misrac2004 (compiler option) . 241
MMU, memory management unit. 114
mode changing, implementation-defined behavior 402
modes . 303
module consistency. 154

rtmodel. 323
module map, in linker map file . 118
module name, specifying (--module_name) 260
module summary, in linker map file 118
--module_name (compiler option) 260
module_name (pragma directive) 399, 413
module-spec (in stack usage control file) 387
__monitor (extended keyword) . 298
monitor functions . 79, 298
msu_r (ETSI macro) . 332
mult (ETSI macro) . 332
multibyte character support. 255
multibyte characters, implementation-defined
behavior . 393, 405
multiple inheritance

in Extended EC++ . 196
missing from Embedded C++ 196

multithreaded environment . 149
multi-file compilation . 219
mult_r (ETSI macro). 333

mutable attribute, in Extended EC++ 196, 200

N
name (in stack usage control file) 388
names block (call frame information) 182
namespace support

in Extended EC++ . 196, 200
missing from Embedded C++ 196

naming conventions . 35
NaN

implementation of . 281
implementation-defined behavior. 402

native environment,
implementation-defined behavior 405
NDEBUG (preprocessor symbol) 353
__near (extended keyword). 281
__nearfunc (function pointer) . 281
negate (ETSI macro) . 333
__nested (extended keyword) . 299
nesting interrupts . 74
new (keyword) . 69
new (library header file) . 359
no calls from (stack usage control directive) 386
non-initialized variables, hints for. 228
non-scalar parameters, avoiding . 224
NOP (assembler instruction) . 340
__noreturn (extended keyword) . 301
Normal DLIB (library configuration) 136
norm_l (ETSI macro) . 333
norm_s (ETSI macro) . 333
Not a number (NaN) . 281
__no_alloc (extended keyword) . 299
__no_alloc_str (operator) . 300
__no_alloc_str16 (operator) . 300
__no_alloc16 (extended keyword) 299
--no_clustering (compiler option) 261
--no_code_motion (compiler option) 261
--no_cse (compiler option) . 261

AFE1_AFE2-1:1

434
IAR C/C++ Compiler User Guide
for AVR32

__no_init (extended keyword) 228, 301
--no_inline (compiler option) . 262
__no_operation (intrinsic function). 340
--no_path_in_file_macros (compiler option). 262
no_pch (pragma directive) . 399, 413
--no_scheduling (compiler option) 262
--no_size_constraints (compiler option) 263
--no_static_destruction (compiler option) 263
--no_system_include (compiler option) 263
--no_tbaa (compiler option) . 264
--no_typedefs_in_diagnostics (compiler option). 264
--no_unroll (compiler option) . 264
--no_warnings (compiler option) 265
--no_wrap_diagnostics (compiler option) 265
NULL

implementation-defined behavior. 401
implementation-defined behavior in C89 (DLIB) 414
pointer constant, relaxation to Standard C 192

numeric conversion functions,
implementation-defined behavior 405
numeric (STL header file). 359

O
-O (compiler option) . 265
-o (compiler option) . 266
object attributes. 292
object filename, specifying (-o) . 267
object module name, specifying (--module_name) 260
object_attribute (pragma directive) 228, 319
--omit_types (compiler option) . 266
once (pragma directive) . 399, 413
--only_stdout (compiler option) . 266
__open (library function) . 141
operators

 See also @ (operator)
for cast

in Extended EC++. 196
missing from Embedded C++ 196

for segment control . 191
precision for 32-bit float . 280
precision for 64-bit float . 280
sizeof, implementation-defined behavior 404
variants for cast . 200
_Pragma (preprocessor) . 187
__ALIGNOF__, for alignment control. 190
?, language extensions for . 201

optimization
clustering, disabling . 261
code motion, disabling . 261
common sub-expression elimination, disabling 261
configuration . 57
disabling . 221
function inlining, disabling (--no_inline) 262
hints . 223
loop unrolling, disabling . 264
scheduling, disabling . 262
specifying (-O). 265
techniques . 221
type-based alias analysis, disabling (--tbaa) 264
using inline assembler code . 161
using pragma directive . 320

optimization levels . 220
optimize (pragma directive) . 320
option parameters . 237
options, compiler. See compiler options
Oram, Andy . 33
ostream (library header file) . 359
output

from preprocessor . 268
specifying for linker. 54

--output (compiler option). 266
overhead, reducing . 221–222

P
pack (pragma directive) . 283, 321
__packed (extended keyword). 301

AFE1_AFE2-1:1

Index

435

packed structure types. 283
parameters

function . 173
hidden . 173
non-scalar, avoiding . 224
register . 173–174
rules for specifying a file or directory 238
specifying . 239
stack. 173–174
typographic convention . 34

__PART__ (predefined symbol) . 351
part number, of this guide . 2
--pending_instantiations (compiler option) 267
permanent registers . 172
perror (library function),
implementation-defined behavior in C89 416
placement

code and data . 365
in named segments. 217
of code and data, introduction to 92

plain char, implementation-defined behavior 393
pointer types . 281

mixing . 192
pointers

casting . 282
data . 281
function . 281
implementation-defined behavior. 396
implementation-defined behavior in C89 410

polymorphism, in Embedded C++ 195
porting, code containing pragma directives. 307
possible calls (stack usage control directive). 386
pow (library routine) . 146, 148

alternative implementation of. 356
powf (library routine) . 147–148
powl (library routine) . 147–148
pragma directives . 42

summary . 305
exception . 314
for absolute located data . 215

handler . 315
list of all recognized. 398
list of all recognized (C89). 413
pack . 283, 321
shadow_registers . 325

_Pragma (preprocessor operator) 187
predefined symbols

overview . 43
summary . 348

--predef_macro (compiler option). 267
__prefetch_cache (intrinsic function) 340
--preinclude (compiler option) . 268
--preprocess (compiler option) . 268
preprocessor

operator (_Pragma) . 187
output. 268

preprocessor directives
comments at the end of . 193
implementation-defined behavior. 397
implementation-defined behavior in C89 412
#pragma . 305

preprocessor extensions
__VA_ARGS__ . 187
#warning message . 353

preprocessor symbols . 348
defining . 248

preserved registers . 172
__PRETTY_FUNCTION__ (predefined symbol). 352
primitives, for special functions . 73
print formatter, selecting . 124
printf (library function) . 123

choosing formatter . 123
configuration symbols . 139
implementation-defined behavior. 402
implementation-defined behavior in C89 415

__printf_args (pragma directive). 322
printing characters, implementation-defined behavior . . . 405
processor configuration. 55

AFE1_AFE2-1:1

436
IAR C/C++ Compiler User Guide
for AVR32

processor operations
accessing . 159
low-level . 188, 329

program entry label. 132
program termination, implementation-defined behavior . . 392
programming hints . 223
__program_start (label). 132
projects

basic settings for . 54
setting up for a library . 130

prototypes, enforcing . 270
ptrdiff_t (integer type). 282
PUBLIC (assembler directive) . 268
publication date, of this guide . 2
--public_equ (compiler option) . 268
public_equ (pragma directive) . 322
putenv (library function), absent from DLIB 144
putw, in stdio.h . 361

Q
QCCAVR32 (environment variable) 232
qualifiers

const and volatile . 284
implementation-defined behavior. 397
implementation-defined behavior in C89 411

queue (STL header file) . 360

R
-r (compiler option). 249
raise (library function), configuring support for 145
raise.c . 145
RAM

execution . 83
initializers copied from ROM . 52
saving memory. 224

RAMCODE21 (segment) . 379
RAMCODE21_ID (segment) . 380

RAMCODE32 (segment) . 380
RAMCODE32_ID (segment) . 380
__ramfunc (extended keyword). 83, 302
range errors, in linker . 117
__read (library function) . 141

customizing . 137
read formatter, selecting . 125
reading guidelines. 29
reading, recommended . 33
__read_TLB_entry (intrinsic function) 340
realloc (library function) . 69

implementation-defined behavior in C89 416
See also heap

recursive functions
avoiding . 224
storing data on stack . 68

reentrancy (DLIB). 356
reference information, typographic convention. 34
register keyword, implementation-defined behavior 396
register parameters . 173–174
registered trademarks . 2
registers

assigning to parameters . 174
callee-save, stored on stack . 68
for function returns . 175
implementation-defined behavior in C89 411
in assembler-level routines. 170
preserved . 172
scratch . 172

reinterpret_cast (cast operator) . 196
--relaxed_fp (compiler option) . 269
remark (diagnostic message). 235

classifying for compiler . 251
enabling in compiler . 269

--remarks (compiler option) . 269
remove (library function) . 141

implementation-defined behavior. 402
implementation-defined behavior in C89 (DLIB) 415

remquo, magnitude of . 400

AFE1_AFE2-1:1

Index

437

rename (library function) . 141
implementation-defined behavior. 402
implementation-defined behavior in C89 (DLIB) 415

__ReportAssert (library function) 148
required (pragma directive). 322
--require_prototypes (compiler option) 270
RESET (segment) . 381
RESETCODE (segment). 381
restrict keyword, enabling. 256
return address register, considerations. 172
return addresses . 176
return values, from functions . 175
Ritchie, Dennis M. . 33
rmw, enabling block of instructions 56, 244
__root (extended keyword) . 303
round (ETSI macro) . 333
routines, time-critical . 159, 188, 329
rtmodel (assembler directive) . 155
rtmodel (pragma directive) . 323
rtti support, missing from STL . 197
__rt_version (runtime model attribute) 156
runtime environment

DLIB . 119
setting options for . 58
setting up (DLIB). 120

runtime libraries (DLIB)
introduction . 355
customizing system startup code 135
customizing without rebuilding 122
filename syntax . 122
overriding modules in . 129
using prebuilt . 121

runtime library
setting up from command line . 57
setting up from IDE . 57

runtime model attributes . 154
runtime model definitions . 323
runtime type information, missing from Embedded C++ . 196

S
__scall (extended keyword) . 303
scall functions . 78
scanf (library function)

choosing formatter (DLIB) . 124
configuration symbols . 139
implementation-defined behavior. 403
implementation-defined behavior in C89 (DLIB) 416

__scanf_args (pragma directive) . 324
scheduling (compiler transformation) 223

disabling . 262
scratch registers . 172
__search_TLB_entry (intrinsic function) 340
section (pragma directive). 324
segment group name . 94
segment map, in linker map file . 118
segment memory types, in XLINK 90
segment (pragma directive). 324
segments . 365

allocation of . 92
CSTACK, example. 133
declaring (#pragma segment) . 325
definition of . 90
located data . 108
naming . 94
packing in memory . 107
placing in sequence . 107
SSTACK, example . 133
summary . 365
too long for address range . 117
too long, in linker. 117

__segment_begin (extended operator). 191
__segment_end (extended operator) 191
__segment_size (extended operator) 191
segment-translated systems. 114
semaphores

C example . 79
C++ example . 81

AFE1_AFE2-1:1

438
IAR C/C++ Compiler User Guide
for AVR32

operations on . 298
set (STL header file) . 360
setjmp.h (library header file). 358
setlocale (library function) . 143
settings, basic for project configuration 54
__set_system_register (intrinsic function). 341
__set_interrupt_state (intrinsic function) 341
__set_status_flag (intrinsic function) 341
__set_system_register (intrinsic function). 342
__set_suser_context (intrinsic function) 342
severity level, of diagnostic messages 235

specifying . 236
SFR

accessing special function registers 227
declaring extern special function registers 216

shadow_registers (pragma directive). 325
shared object . 234
shl (ETSI macro). 333
short (data type) . 276
shr (ETSI macro) . 333
shr_r (ETSI macro) . 333
signal (library function)

configuring support for . 145
implementation-defined behavior. 400
implementation-defined behavior in C89 414

signals, implementation-defined behavior. 392
at system startup . 392

signal.c . 145
signal.h (library header file) . 358
signed char (data type) . 276–277

specifying . 246
signed int (data type). 276
signed long long (data type) . 276
signed long (data type) . 276
signed short (data type). 276
signed values, avoiding . 211
__signed_saturate (intrinsic function) 343
--silent (compiler option) . 270
silent operation, specifying in compiler 270

simd, enabling block of instructions 56, 245
sin (library function) . 356
sin (library routine) . 146, 148
sinf (library routine) . 147–148
sinl (library routine) . 147–148
64-bits (floating-point format) . 280
size (in stack usage control file) . 389
size_t (integer type) . 282
skeleton code, creating for assembler language interface . 167
SLEEP (assembler instruction) . 343
__sleep (intrinsic function) . 343
slist (STL header file) . 360
source files, list all referred. 257
space characters, implementation-defined behavior 401
special function registers (SFR) . 227
special function types . 73
sprintf (library function) . 123

choosing formatter . 123
sscanf (library function)

choosing formatter (DLIB) . 124
SSTACK (segment)

example . 133
See also stack

sstream (library header file) . 359
stack . 68

advantages and problems using 68
cleaning after function return . 175
contents of . 68
internal data in supervisor mode 381
layout . 174
saving space . 224
setting up . 109
size. 205

stack initialization. 133
stack parameters . 173–174
stack pointer . 68
stack pointer register, considerations. 172
stack segments

CSTACK . 369

AFE1_AFE2-1:1

Index

439

placing . 109
stack (STL header file) . 360
stack-size (in stack usage control file). 389
Standard C . 256

library compliance with . 355
specifying strict usage . 270

standard error
redirecting in compiler. 266
See also diagnostic messages . 234

standard input . 137
standard output . 137

specifying in compiler . 266
standard template library (STL)

in C++ . 359
in Extended EC++ . 196, 200
missing from Embedded C++ 196

startup code. 111
cstartup . 135
placement of . 111

startup system. See system startup
statements, implementation-defined behavior in C89 412
static analysis

documentation for . 32
static clustering (compiler transformation) 223
static data, in configuration file. 108
static overlay. 178
static variables . 60

taking the address of . 224
static_assert() . 190
static_cast (cast operator) . 196
status flags for floating-point . 361
std namespace, missing from EC++
and Extended EC++ . 200
stdarg.h (library header file) . 358
stdbool.h (library header file) 276, 358
__STDC__ (predefined symbol) . 352
STDC CX_LIMITED_RANGE (pragma directive) 326
STDC FENV_ACCESS (pragma directive) 326
STDC FP_CONTRACT (pragma directive) 327
__STDC_VERSION__ (predefined symbol) 352

stddef.h (library header file) 277, 358
stderr. 141, 266
stdin . 141

implementation-defined behavior in C89 (DLIB) 415
stdin and stdout, redirecting to C-SPY window 148
stdint.h (library header file). 358, 360
stdio.h (library header file) . 358
stdio.h, additional C functionality 361
stdlib.h (library header file). 358
stdout . 141, 266

implementation-defined behavior. 401
implementation-defined behavior in C89 (DLIB) 414

Steele, Guy L. 33
STL. 200
__store_conditional (intrinsic function) 343
strcasecmp, in string.h . 362
strdup, in string.h . 362
streambuf (library header file). 359
streams

implementation-defined behavior. 392
supported in Embedded C++ . 196

strerror (library function), implementation-defined
behavior . 406
strerror (library function),
implementation-defined behavior in C89 (DLIB) 417
--strict (compiler option). 270
string (library header file) . 359
strings, supported in Embedded C++ 196
string.h (library header file) . 358
string.h, additional C functionality 362
strncasecmp, in string.h. 362
strnlen, in string.h . 362
Stroustrup, Bjarne . 33
strstream (library header file) . 359
strtod (library function), configuring support for 146
structure types

alignment . 283
layout of. 283
packed . 283

AFE1_AFE2-1:1

440
IAR C/C++ Compiler User Guide
for AVR32

structures
accessing using a pointer . 180
aligning . 321
anonymous. 190, 213
implementation-defined behavior. 397
implementation-defined behavior in C89 411
packing and unpacking . 212
placing in memory type . 65

sub (ETSI macro) . 333
subnormal numbers. 281
supervisor mode . 303

entering by using __scall . 78
support, technical . 236
Sutter, Herb. 33
__swap_bytes (intrinsic function) 344
__swap_bytes_in_halfwords (intrinsic function). 344
__swap_halfwords (intrinsic function) 344
switch tables . 112
SWITCH (segment) . 382
symbols

anonymous, creating . 187
including in output . 323
listing in linker map file . 118
overview of predefined. 43
preprocessor, defining . 248

__synchronize_write_buffer (intrinsic function) 345
syntax

command line options . 237
extended keywords. 63, 290–292
invoking compiler . 231

__sysreg (extended keyword) . 303
SYSREG_AC (segment) . 382
system function, implementation-defined behavior. . 393, 403
system locks interface . 151
system startup

customizing . 135
DLIB . 132
initialization phase . 50

system termination
C-SPY interface to . 135
DLIB . 134

system (library function)
configuring support for . 144
implementation-defined behavior in C89 (DLIB) 416

system_include (pragma directive) 399, 413
--system_include_dir (compiler option) 271

T
tan (library function). 356
tan (library routine). 146, 148
tanf (library routine) . 147–148
tanl (library routine) . 147–148
technical support, IAR Systems . 236
template support

in Extended EC++ . 196, 199
missing from Embedded C++ 196

Terminal I/O window
making available (DLIB) . 127
not supported when . 130

terminal I/O, debugger runtime interface for. 126
terminal output, speeding up. 127
termination of system. See system termination
termination status, implementation-defined behavior 403
terminology. 34
__test_status_flag (intrinsic function) 345
tgmath.h (library header file) . 358
32-bits (floating-point format) . 280
this (pointer) . 169
threaded environment . 149
thread-local storage. 151
__TIME__ (predefined symbol) . 352
time zone (library function)
implementation-defined behavior in C89 417
time zone (library function), implementation-defined
behavior . 403
__TIMESTAMP__ (predefined symbol). 352

AFE1_AFE2-1:1

Index

441

time-critical routines . 159, 188, 329
time.c . 145
time.h (library header file) . 358

additional C functionality. 362
time32 (library function), configuring support for 145
time64 (library function), configuring support for 145
__tiny (extended keyword) . 281
tips, programming. 223
TLS handling . 151
tools icon, in this guide . 34
TRACEBUFFER (segment) . 382
trademarks . 2
transformations, compiler . 218
translation

implementation-defined behavior. 391
implementation-defined behavior in C89 407

trap vectors, specifying with pragma directive 328
type attributes . 289

specifying . 327
type definitions, used for specifying memory storage 65
type information, omitting . 266
type qualifiers

const and volatile . 284
implementation-defined behavior. 397
implementation-defined behavior in C89 411

typedefs
excluding from diagnostics . 264
repeated . 192

type_attribute (pragma directive) 327
type-based alias analysis (compiler transformation) 222

disabling . 264
type-safe memory management . 195
typographic conventions . 34

U
UBROF

format of linkable object files 233
specifying, example of . 54

uchar.h (library header file). 358
uintptr_t (integer type) . 282
__unaligned_word_access (runtime model attribute) 156
--unaligned_word_access (compiler option) 271
underflow errors, implementation-defined behavior 400
underflow range errors,
implementation-defined behavior in C89 414
__ungetchar, in stdio.h . 361
unions

anonymous. 190, 213
implementation-defined behavior. 397
implementation-defined behavior in C89 411

universal character names, implementation-defined
behavior . 398
unsigned char (data type) . 276–277

changing to signed char . 246
unsigned int (data type). 276
unsigned long long (data type) . 276
unsigned long (data type) . 276
unsigned short (data type) . 276
__unsigned_saturate (intrinsic function) 345
--use_c++_inline (compiler option) 272
utility (STL header file) . 360

V
variable type information, omitting in object output 266
variables

auto . 68
defined inside a function . 68
global

accessing. 180
placement in memory . 60

hints for choosing . 224
local. See auto variables
non-initialized . 228
omitting type info . 266
placing at absolute addresses . 217
placing in named segments . 217

AFE1_AFE2-1:1

442
IAR C/C++ Compiler User Guide
for AVR32

static
placement in memory . 60
taking the address of . 224

--variable_enum_size (compiler option) 272
variadic macros . 191
vector (pragma directive) . 328
vector (STL header file) . 360
version

compiler subversion number . 352
identifying C standard in use (__STDC_VERSION__)352
of compiler (__VER__) . 353
of this guide . 2

--vla (compiler option) . 272
void, pointers to . 192
volatile

and const, declaring objects . 286
declaring objects . 284
protecting simultaneously accesses variables 226
rules for access. 285

W
#warning message (preprocessor extension) 353
warnings . 235

classifying in compiler. 252
disabling in compiler . 265
exit code in compiler . 273

warnings icon, in this guide . 35
warnings (pragma directive) 399, 413
--warnings_affect_exit_code (compiler option) 234, 273
--warnings_are_errors (compiler option) 273
--warn_about_c_style_casts (compiler option) 273
wchar_t (data type), adding support for in C. 277
wchar.h (library header file) 358, 361
wctype.h (library header file) . 358
web sites, recommended . 33
white-space characters, implementation-defined behavior 391
With I/O emulation modules (linker option), using. 148

__write (library function) . 141
customizing . 137

__write_array, in stdio.h . 361
__write_buffered (DLIB library function). 127
__write_TLB_entry (intrinsic function) 346

X
XLINK errors

range error . 117
segment too long . 117

XLINK segment memory types . 90
XLINK. See linker
xreportassert.c. 148

Symbols
_Exit (library function) . 134
_exit (library function) . 134
__acall (extended keyword) . 294
__ALIGNOF__ (operator) . 190
__asm (language extension) . 162
__assignment_by_bitwise_copy_allowed, symbol used
in library . 362
__BASE_FILE__ (predefined symbol) 348
__bit_reverse (intrinsic function) 333
__BREAKPOINT (intrinsic function). 333
__BUILD_NUMBER__ (predefined symbol) 348
__cache_control (intrinsic function) 334
__clear_status_flag (intrinsic function). 334
__close (library function) . 141
__code_model (runtime model attribute) 156
__CODE_MODEL__ (predefined symbol). 348
__code, symbol used in library . 362
__code21 (extended keyword) . 294
__code32 (extended keyword) . 294
__constrange(), symbol used in library 363

AFE1_AFE2-1:1

Index

443

__construction_by_bitwise_copy_allowed, symbol used
in library . 363
__COP (intrinsic function) . 334
__COP_get_registers (intrinsic function) 335
__COP_get_register32 (intrinsic function) 335
__COP_get_register64 (intrinsic function) 335
__COP_set_registers (intrinsic function) 336
__COP_set_register32 (intrinsic function) 336
__COP_set_register64 (intrinsic function) 336
__core (runtime model attribute). 156
__CORE_REVISION__ (predefined symbol) 348
__CORE__ (predefined symbol). 348
__COUNTER__ (predefined symbol). 348
__count_leading_zeros (intrinsic function) 336
__count_trailing_zeros (intrinsic function) 337
__cplusplus (predefined symbol) 349
__data_model (runtime model attribute) 156
__DATA_MODEL__ (predefined symbol) 349
__data, symbol used in library . 362
__data17 (extended keyword) . 295
__data21 (extended keyword) . 295
__data32 (extended keyword) . 296
__DATE__ (predefined symbol) . 349
__dbgreg (extended keyword). 296
__DEFAULT_CODE_SEGMENT__ (predefined symbol)349
__DEFAULT_CONST_SEGMENT__
(predefined symbol) . 349
__DEFAULT_DATA_SEGMENT__ (predefined symbol) 349
__disable_interrupt (intrinsic function). 337
__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 141
__embedded_cplusplus (predefined symbol) 349
__enable_interrupt (intrinsic function) 337
__enum_size (runtime model attribute). 156
__exception (extended keyword) 296
__exchange_memory (intrinsic function) 337
__exit (library function) . 134
__far (extended keyword) . 281
__farfunc (function pointer) . 281
__FILE__ (predefined symbol). 350
__flashvault (extended keyword) 297

__flashvault_impl (extended keyword) 297
__FUNCTION__ (predefined symbol) 194, 350
__func__ (predefined symbol) 194, 350
__gets, in stdio.h. 361
__get_debug_register (intrinsic function) 338
__get_interrupt_state (intrinsic function) 338
__get_system_register (intrinsic function) 339
__get_user_context (intrinsic function). 339
__has_constructor, symbol used in library 363
__has_destructor, symbol used in library 363
__HAS_DSP_INSTRUCTIONS__ (predefined symbol) . 350
__HAS_FPU_INSTRUCTIONS__ (predefined symbol) . 350
__HAS_RMW_INSTRUCTIONS__ (predefined symbol) 351
__HAS_SIMD_INSTRUCTIONS__ (predefined symbol) 351
__iar_cos_accurate (library routine) 148
__iar_cos_accuratef (library routine) 148
__iar_cos_accuratel (library routine) 148
__iar_cos_small (library routine) 146
__iar_cos_smallf (library routine). 147
__iar_cos_smalll (library routine). 147
__IAR_DLIB_PERTHREAD_INIT_SIZE (macro) 152
__IAR_DLIB_PERTHREAD_SIZE (macro) 152
__IAR_DLIB_PERTHREAD_SYMBOL_OFFSET
(symbolptr) . 152
__iar_exp_small (library routine) 146
__iar_exp_smallf (library routine) 147
__iar_exp_smalll (library routine) 147
__iar_log_small (library routine) 146
__iar_log_smallf (library routine). 147
__iar_log_smalll (library routine) 147
__iar_log10_small (library routine) 146
__iar_log10_smallf (library routine) 147
__iar_log10_smalll (library routine) 147
__iar_Pow (library routine). 148
__iar_Powf (library routine) . 148
__iar_Powl (library routine) . 148
__iar_Pow_accurate (library routine) 148
__iar_pow_accurate (library routine) 148
__iar_Pow_accuratef (library routine) 148
__iar_pow_accuratef (library routine). 148

AFE1_AFE2-1:1

444
IAR C/C++ Compiler User Guide
for AVR32

__iar_Pow_accuratel (library routine). 148
__iar_pow_accuratel (library routine) 148
__iar_pow_small (library routine). 146
__iar_pow_smallf (library routine) 147
__iar_pow_smalll (library routine) 147
__iar_program_start (label). 132
__iar_Sin (library routine) . 146, 148
__iar_Sinf (library routine) . 147–148
__iar_Sinl (library routine) . 147–148
__iar_Sin_accurate (library routine) 148
__iar_sin_accurate (library routine) 148
__iar_Sin_accuratef (library routine) 148
__iar_sin_accuratef (library routine). 148
__iar_Sin_accuratel (library routine) 148
__iar_sin_accuratel (library routine) 148
__iar_Sin_small (library routine) 146
__iar_sin_small (library routine). 146
__iar_Sin_smallf (library routine). 147
__iar_sin_smallf (library routine) 147
__iar_Sin_smalll (library routine). 147
__iar_sin_smalll (library routine) 147
__IAR_SYSTEMS_ICC__ (predefined symbol) 351
__iar_tan_accurate (library routine) 148
__iar_tan_accuratef (library routine). 148
__iar_tan_accuratel (library routine). 148
__iar_tan_small (library routine) 146
__iar_tan_smallf (library routine) 147
__iar_tan_smalll (library routine) 147
__ICCAVR32__ (predefined symbol) 351
__imported (extended keyword) . 298
__init_ihandler, called by system startup code 132
__interrupt (extended keyword) 74, 298
__intrinsic (extended keyword). 298
__LINE__ (predefined symbol) . 351
__low_level_init . 132

initialization phase . 50
__low_level_init, customizing . 135
__lseek (library function) . 141
__max (intrinsic function). 339

__memory_of
symbol used in library . 363

__min (intrinsic function) . 339
__monitor (extended keyword) . 298
__near (extended keyword). 281
__nearfunc (function pointer) . 281
__nested (extended keyword) . 299
__noreturn (extended keyword) . 301
__no_alloc (extended keyword) . 299
__no_alloc_str (operator) . 300
__no_alloc_str16 (operator) . 300
__no_alloc16 (extended keyword) 299
__no_init (extended keyword) 228, 301
__no_operation (intrinsic function). 340
__open (library function) . 141
__packed (extended keyword). 301
__PART__ (predefined symbol) . 351
__prefetch_cache (intrinsic function) 340
__PRETTY_FUNCTION__ (predefined symbol). 352
__printf_args (pragma directive). 322
__program_start (label). 132
__ramfunc (extended keyword). 302

executing in RAM . 83
__read (library function) . 141

customizing . 137
__read_TLB_entry (intrinsic function) 340
__ReportAssert (library function) 148
__root (extended keyword) . 303
__rt_version (runtime model attribute) 156
__scall (extended keyword) . 303
__scanf_args (pragma directive) . 324
__search_TLB_entry (intrinsic function) 340
__segment_begin (extended operator). 191
__segment_end (extended operator) 191
__segment_size (extended operator) 191
__set_debug_register (intrinsic function) 341
__set_interrupt_state (intrinsic function) 341
__set_status_flag (intrinsic function) 341
__set_system_register (intrinsic function). 342

AFE1_AFE2-1:1

Index

445

__set_user_context (intrinsic function) 342
__signed_saturate (intrinsic function) 343
__sleep (intrinsic function) . 343
__STDC_VERSION__ (predefined symbol) 352
__STDC__ (predefined symbol) . 352
__store_conditional (intrinsic function) 343
__swap_bytes (intrinsic function) 344
__swap_bytes_in_halfwords (intrinsic function). 344
__swap_halfwords (intrinsic function) 344
__synchronize_write_buffer (intrinsic function) 345
__sysreg (extended keyword) . 303
__test_status_flag (intrinsic function) 345
__TIMESTAMP__ (predefined symbol) 352
__TIME__ (predefined symbol) . 352
__tiny (extended keyword) . 281
__unaligned_word

access (runtime model attribute) 156
__ungetchar, in stdio.h . 361
__unsigned_saturate (intrinsic function) 345
__VA_ARGS__ (preprocessor extension). 187
__write (library function) . 141

customizing . 137
__write_array, in stdio.h . 361
__write_buffered (DLIB library function). 127
__write_TLB_entry (intrinsic function) 346
-D (compiler option) . 248
-e (compiler option) . 254
-f (compiler option). 256
-I (compiler option). 258
-l (compiler option). 258

for creating skeleton code . 168
-O (compiler option) . 265
-o (compiler option) . 266
-r (compiler option). 249
--avr32_dsp_instructions (compiler option) 243
--avr32_flashvault (compiler option) 243
--avr32_fpu_instructions (compiler option) 244
--avr32_rmw_instructions (compiler option) 244
--avr32_simd_instructions (compiler option) 245

--char_is_signed (compiler option) 246
--char_is_unsigned (compiler option) 246
--code_model (compiler option) . 246
--cpu (compiler option) . 247
--cpu_info (compiler option). 248
--c89 (compiler option) . 245
--data_model (compiler option) . 249
--debug (compiler option) . 249
--dependencies (compiler option) 250
--diagnostics_tables (compiler option) 252
--diag_error (compiler option) . 251
--diag_remark (compiler option). 251
--diag_suppress (compiler option) 251
--diag_warning (compiler option) 252
--disable_inline_asm_label_replacement
(compiler option) . 253
--discard_unused_publics (compiler option) 253
--dlib_config (compiler option). 253
--ec++ (compiler option). 255
--eec++ (compiler option) . 255
--enable_multibytes (compiler option) 255
--enable_restrict (compiler option) 256
--error_limit (compiler option) . 256
--fp_implementation (compiler option). 257
--guard_calls (compiler option). 257
--g_ _handle_all_exceptions, handle unhandled exceptions 76
--g_ _init_all_ihandlers, handle unhandled interrupts 75
--header_context (compiler option). 257
--library_module (compiler option) 259
--macro_positions_in_diagnostics (compiler option) 259
--mfc (compiler option). 260
--minimize_constant_tables (compiler option) 260
--misrac_verbose (compiler option) 241
--misrac1998 (compiler option) . 241
--misrac2004 (compiler option) . 241
--module_name (compiler option) 260
--no_clustering (compiler option) 261
--no_code_motion (compiler option) 261
--no_cse (compiler option) . 261
--no_inline (compiler option) . 262

AFE1_AFE2-1:1

446
IAR C/C++ Compiler User Guide
for AVR32

--no_path_in_file_macros (compiler option). 262
--no_scheduling (compiler option) 262
--no_size_constraints (compiler option) 263
--no_static_destruction (compiler option) 263
--no_system_include (compiler option) 263
--no_typedefs_in_diagnostics (compiler option). 264
--no_unroll (compiler option) . 264
--no_warnings (compiler option) 265
--no_wrap_diagnostics (compiler option) 265
--omit_types (compiler option) . 266
--only_stdout (compiler option) . 266
--output (compiler option). 266
--pending_instantiations (compiler option) 267
--predef_macro (compiler option). 267
--preinclude (compiler option) . 268
--preprocess (compiler option) . 268
--relaxed_fp (compiler option) . 269
--remarks (compiler option) . 269
--require_prototypes (compiler option) 270
--silent (compiler option) . 270
--strict (compiler option). 270
--system_include_dir (compiler option) 271
--unaligned_word_access (compiler option) 271
--use_c++_inline (compiler option) 272
--variable_enum_size (compiler option) 272
--vla (compiler option) . 272
--warnings_affect_exit_code (compiler option) 234, 273
--warnings_are_errors (compiler option) 273
--warn_about_c_style_casts (compiler option) 273
@ (operator)

placing at absolute address. 215
placing in segments . 217

#include files, specifying . 232, 258
#warning message (preprocessor extension) 353
%Z replacement string,
implementation-defined behavior 404

Numerics
16-bit pointers, accessing memory 67
24-bit pointers, accessing memory 67
32-bits (floating-point format) . 280
64-bit data types, avoiding . 211
64-bits (floating-point format) . 280

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Using the compiler
	Part 2. Reference information

	Other documentation
	User and reference guides
	The online help system
	Further reading
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Using the compiler
	Introduction to the IAR build tools
	The IAR build tools—an overview
	IAR C/C++ Compiler
	IAR Assembler
	The IAR XLINK Linker
	External tools

	IAR language overview
	Device support
	Supported AVR32 devices
	Preconfigured support files
	Examples for getting started

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Accessing low-level features

	Developing embedded applications
	Developing embedded software using IAR build tools
	CPU features and constraints
	Mapping of memory
	Communication with peripheral units
	Event handling
	System startup
	Real-time operating systems

	The build process—an overview
	The translation process
	The linking process
	After linking

	Application execution—an overview
	The initialization phase
	The execution phase
	The termination phase

	Building applications—an overview
	Basic project configuration
	Processor configuration
	Data model
	Code model
	Optimization for speed and size
	Runtime environment

	Data storage
	Introduction
	Different ways to store data

	Memory types
	Introduction to memory types
	Using data memory attributes
	Structures and memory types
	More examples
	C++ and memory types

	Data models
	Specifying a data model

	Storage of auto variables and parameters
	The stack

	Dynamic memory on the heap
	Potential problems

	Functions
	Function-related extensions
	Code models and memory attributes for function storage
	Using function memory attributes

	Primitives for interrupts, concurrency, and OS-related programming
	Interrupt functions
	Exception handlers
	ACALL functions
	SCALL functions
	Monitor functions

	Execution in RAM
	Implementing middleware using FlashVault™
	Implementing a single entry point API
	Implementing a multiple entry point API
	Locking down the firmware at download

	Inlining functions
	C versus C++ semantics
	Features controlling function inlining

	Linking overview
	Linking—an overview
	Segments and memory
	What is a segment?

	The linking process in detail
	Placing code and data—the linker configuration file
	The contents of the linker configuration file

	Initialization at system startup
	Static data memory segments
	The initialization process

	Stack usage analysis
	Introduction to stack usage analysis
	Performing a stack usage analysis
	Result of an analysis—the map file contents
	Specifying additional stack usage information
	Limitations
	Situations where warnings are issued
	Call graph log

	Linking your application
	Linking considerations
	Placing segments
	Placing data
	Setting up stack memory
	Setting up heap memory
	Placing code
	Keeping modules
	Keeping symbols and segments
	Application startup
	Interaction between XLINK and your application
	Producing other output formats than UBROF

	Linking for segment-translated systems
	Segment-translated mode
	Implications for the linker configuration file
	Mapped memories

	Verifying the linked result of code and data placement
	Segment too long errors and range errors
	Linker map file

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Setting up the runtime environment

	Using prebuilt libraries
	Choosing a library
	Library filename syntax
	Customizing a prebuilt library without rebuilding

	Choosing formatters for printf and scanf
	Choosing a printf formatter
	Choosing a scanf formatter

	Application debug support
	Including C-SPY debugging support
	The debug library functionality
	The C-SPY Terminal I/O window
	Low-level functions in the debug library

	Adapting the library for target hardware
	Library low-level interface

	Overriding library modules
	Building and using a customized library
	Setting up a library project
	Modifying the library functionality
	Using a customized library

	System startup and termination
	System startup
	System termination

	Customizing system initialization
	_ _low_level_init
	Modifying the file cstartup.s82

	Library configurations
	Choosing a runtime configuration

	Standard streams for input and output
	Implementing low-level character input and output

	Configuration symbols for printf and scanf
	Customizing formatting capabilities

	File input and output
	Locale
	Locale support in prebuilt libraries
	Customizing the locale support
	Changing locales at runtime

	Environment interaction
	The getenv function
	The system function

	Signal and raise
	Time
	Strtod
	Math functions
	Smaller versions
	More accurate versions

	Assert
	Managing a multithreaded environment
	Multithread support in the DLIB library
	Enabling multithread support
	TLS in the linker configuration file

	Checking module consistency
	Runtime model attributes
	Using runtime model attributes
	Predefined runtime attributes

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Mixing C and assembler modules
	Inline assembler
	Reference information for inline assembler
	An example of how to use clobbered memory

	Calling assembler routines from C
	Creating skeleton code
	Compiling the skeleton code

	Calling assembler routines from C++
	Calling convention
	Function declarations
	Using C linkage in C++ source code
	Preserved versus scratch registers
	Function entrance
	Function exit
	Calls in supervisor mode
	Alternative calling convention for FlashVault implementation functions
	Examples
	Function directives

	Assembler instructions used for calling functions
	Calling functions in the Small and medium code models
	Calling functions in the Large code model

	Memory access methods
	The main memory access method (data21, data32)
	Read-modify-write access method (data17)
	The system and debug register access method

	Call frame information
	CFI directives
	Creating assembler source with CFI support

	Using C
	C language overview
	Extensions overview
	Enabling language extensions

	IAR C language extensions
	Extensions for embedded systems programming
	Relaxations to Standard C

	Using C++
	Overview—EC++ and EEC++
	Embedded C++
	Extended Embedded C++

	Enabling support for C++
	EC++ feature descriptions
	Using IAR attributes with Classes
	Function types
	Using static class objects in interrupts
	Using New handlers
	Templates
	Debug support in C-SPY

	EEC++ feature description
	Templates
	Variants of cast operators
	Mutable
	Namespace
	The STD namespace

	C++ language extensions

	Application-related considerations
	Stack considerations
	Stack size considerations

	Heap considerations
	Heap segments in DLIB
	Heap size and standard I/O

	Interaction between the tools and your application
	Checksum calculation
	Calculating a checksum
	Adding a checksum function to your source code
	Things to remember

	Efficient coding for embedded applications
	Selecting data types
	Using efficient data types
	Floating-point types
	Alignment of elements in a structure
	Anonymous structs and unions

	Controlling data and function placement in memory
	Data placement at an absolute location
	Data and function placement in segments

	Controlling compiler optimizations
	Scope for performed optimizations
	Multi-file compilation units
	Optimization levels
	Speed versus size
	Fine-tuning enabled transformations

	Facilitating good code generation
	Writing optimization-friendly source code
	Saving stack space and RAM memory
	Function prototypes
	Integer types and bit negation
	Protecting simultaneously accessed variables
	Accessing special function registers
	Passing values between C and assembler objects
	Non-initialized variables

	Part 2. Reference information
	External interface details
	Invocation syntax
	Compiler invocation syntax
	Passing options
	Environment variables

	Include file search procedure
	Compiler output
	Error return codes

	Diagnostics
	Message format
	Severity levels
	Setting the severity level
	Internal error

	Compiler options
	Options syntax
	Types of options
	Rules for specifying parameters

	Summary of compiler options
	Descriptions of compiler options
	--avr32_dsp_instructions
	--avr32_flashvault
	--avr32_fpu_instructions
	--avr32_rmw_instructions
	--avr32_simd_instructions
	--c89
	--char_is_signed
	--char_is_unsigned
	--code_model
	--core
	--core_revision
	--cpu
	--cpu_info
	-D
	--data_model
	--debug, -r
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--disable_inline_asm_label_replacement
	--discard_unused_publics
	--dlib_config
	-e
	--ec++
	--eec++
	--enable_multibytes
	--enable_restrict
	--error_limit
	-f
	--fp_implementation
	--guard_calls
	--header_context
	-I
	-l
	--library_module
	--macro_positions_in_diagnostics
	--mfc
	--minimize_constant_tables
	--module_name
	--no_clustering
	--no_code_motion
	--no_cse
	--no_inline
	--no_path_in_file_macros
	--no_scheduling
	--no_size_constraints
	--no_static_destruction
	--no_system_include
	--no_tbaa
	--no_typedefs_in_diagnostics
	--no_unroll
	--no_warnings
	--no_wrap_diagnostics
	-O
	--omit_types
	--only_stdout
	--output, -o
	--pending_instantiations
	--predef_macros
	--preinclude
	--preprocess
	--public_equ
	--relaxed_fp
	--remarks
	--require_prototypes
	--silent
	--strict
	--system_include_dir
	--unaligned_word_access
	--use_c++_inline
	--variable_enum_size
	--vla
	--warn_about_c_style_casts
	--warnings_affect_exit_code
	--warnings_are_errors

	Data representation
	Alignment
	Basic data types—integer types
	Integer types—an overview
	Bool
	The enum type
	The char type
	The wchar_t type
	Bitfields

	Basic data types—floating-point types
	Floating-point environment
	32-bit floating-point format
	64-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Function pointers
	Data pointers
	Casting

	Structure types
	Alignment of structure types
	General layout
	Packed structure types

	Type qualifiers
	Declaring objects volatile
	Declaring objects volatile and const
	Declaring objects const

	Data types in C++

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	Object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _acall
	_ _code21
	_ _code32
	_ _data17
	_ _data21
	_ _data32
	_ _dbgreg
	_ _exception
	_ _flashvault
	_ _flashvault_impl
	_ _imported
	_ _interrupt
	_ _intrinsic
	_ _monitor
	_ _nested
	_ _no_alloc, _ _no_alloc16
	_ _no_alloc_str, _ _no_alloc_str16
	_ _no_init
	_ _noreturn
	_ _packed
	_ _ramfunc
	_ _root
	_ _scall
	_ _sysreg

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	bitfields
	calls
	call_graph_root
	constseg
	data_alignment
	dataseg
	default_function_attributes
	default_variable_attributes
	diag_default
	diag_error
	diag_remark
	diag_suppress
	diag_warning
	error
	exception
	flashvault_vector
	handler
	include_alias
	inline
	language
	location
	message
	object_attribute
	optimize
	pack
	_ _printf_args
	public_equ
	required
	rtmodel
	_ _scanf_args
	segment
	shadow_registers
	STDC CX_LIMITED_RANGE
	STDC FENV_ACCESS
	STDC FP_CONTRACT
	type_attribute
	vector

	Intrinsic functions
	Summary of intrinsic functions
	Intrinsic inline functions
	Summary and description of ETSI functions

	Descriptions of intrinsic functions
	_ _bit_reverse
	_ _BREAKPOINT
	_ _cache_control
	_ _clear_status_flag
	_ _COP
	_ _COP_get_register32
	_ _COP_get_register64
	_ _COP_get_registers
	_ _COP_set_registers
	_ _COP_set_register32
	_ _COP_set_register64
	_ _count_leading_zeros
	_ _count_trailing_zeros
	_ _disable_interrupt
	_ _enable_interrupt
	_ _exchange_memory
	_ _get_debug_register
	_ _get_interrupt_state
	_ _get_system_register
	_ _get_user_context
	_ _max
	_ _min
	_ _no_operation
	_ _prefetch_cache
	_ _read_TLB_entry
	_ _search_TLB_entry
	_ _set_debug_register
	_ _set_interrupt_state
	_ _set_status_flag
	_ _set_system_register
	_ _set_user_context
	_ _signed_saturate
	_ _sleep
	_ _store_conditional
	_ _swap_bytes
	_ _swap_bytes_in_halfwords
	_ _swap_halfwords
	_ _synchronize_write_buffer
	_ _test_status_flag
	_ _unsigned_saturate
	_ _write_TLB_entry

	The preprocessor
	Overview of the preprocessor
	Description of predefined preprocessor symbols
	_ _BASE_FILE_ _
	_ _BUILD_NUMBER_ _
	_ _CODE_MODEL_ _
	_ _CORE_ _
	_ _CORE_REVISION_ _
	_ _COUNTER_ _
	_ _cplusplus
	_ _DATA_MODEL_ _
	_ _DATE_ _
	_ _DEFAULT_CODE_SEGMENT_ _
	_ _DEFAULT_CONST_SEGMENT_ _
	_ _DEFAULT_DATA_SEGMENT_ _
	__embedded_cplusplus
	_ _FILE_ _
	_ _func_ _
	_ _FUNCTION_ _
	_ _HAS_DSP_INSTRUCTIONS_ _
	_ _HAS_FPU_INSTRUCTIONS_ _
	_ _HAS_RMW_INSTRUCTIONS_ _
	_ _HAS_SIMD_INSTRUCTIONS_ _
	_ _IAR_SYSTEMS_ICC_ _
	_ _ICCavr32_ _
	_ _LINE_ _
	_ _PART_ _
	_ _PRETTY_FUNCTION_ _
	_ _STDC_ _
	_ _STDC_VERSION_ _
	_ _SUBVERSION_ _
	_ _TIME_ _
	_ _TIMESTAMP_ _
	_ _VER_ _

	Descriptions of miscellaneous preprocessor extensions
	NDEBUG
	#warning message

	Library functions
	Library overview
	Header files
	Library object files
	Alternative more accurate library functions
	Reentrancy
	The longjmp function

	IAR DLIB Library
	C header files
	C++ header files
	Library functions as intrinsic functions
	Added C functionality
	Symbols used internally by the library

	Segment reference
	Summary of segments
	Descriptions of segments
	ACTAB
	CHECKSUM
	CODE21
	CODE32
	CSTACK
	DATA17_AC
	DATA17_AN
	DATA17_C
	DATA17_I
	DATA17_ID
	DATA17_N
	DATA17_Z
	DATA21_AC
	DATA21_AN
	DATA21_C
	DATA21_I
	DATA21_ID
	DATA21_N
	DATA21_Z
	DATA32_AC
	DATA32_AN
	DATA32_C
	DATA32_I
	DATA32_ID
	DATA32_N
	DATA32_Z
	DBGREG_AC
	DBGREG_AN
	DIFUNCT
	EVBYTES1
	EVBYTES2
	EVBYTES3
	EVSEG
	EVTAB
	EV100
	FVVEC
	HEAP
	HTAB
	INITTAB
	RAMCODE21
	RAMCODE21_ID
	RAMCODE32
	RAMCODE32_ID
	RESET
	RESETCODE
	SSTACK
	SWITCH
	SYSREG_AC
	SYSREG_AN
	TRACEBUFFER

	The stack usage control file
	Overview
	C++ names

	Stack usage control directives
	call graph root directive
	check that directive
	exclude directive
	function directive
	max recursion depth directive
	no calls from directive
	possible calls directive

	Syntactic components
	category
	func-spec
	module-spec
	name
	call-info
	stack-size
	size

	Implementation-defined behavior for Standard C
	Descriptions of implementation-defined behavior
	J.3.1 Translation
	J.3.2 Environment
	J.3.3 Identifiers
	J.3.4 Characters
	J.3.5 Integers
	J.3.6 Floating point
	J.3.7 Arrays and pointers
	J.3.8 Hints
	J.3.9 Structures, unions, enumerations, and bitfields
	J.3.10 Qualifiers
	J.3.11 Preprocessing directives
	J.3.12 Library functions
	J.3.13 Architecture
	J.4 Locale

	Implementation-defined behavior for C89
	Descriptions of implementation-defined behavior
	Translation
	Environment
	Identifiers
	Characters
	Integers
	Floating point
	Arrays and pointers
	Registers
	Structures, unions, enumerations, and bitfields
	Qualifiers
	Declarators
	Statements
	Preprocessing directives
	IAR DLIB Library functions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

