
MAVR-1

AVR® IAR Embedded
Workbench® IDE

Migration Guide

for Atmel® Corporation’s
AVR® Microcontroller

MAVR-1

COPYRIGHT NOTICE
© Copyright 1996–2007 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR, IAR Systems, IAR Embedded Workbench, IAR MakeApp, C-SPY, visualSTATE,
From Idea To Target, IAR KickStart Kit and IAR PowerPac are trademarks or registered
trademarks owned by IAR Systems AB.

Atmel is a registered trademark of Atmel Corporation. AVR is a registered trademark of
Atmel Corporation.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

First edition: May 2007

Part number: MAVR-2

This guide applies to version 4.x of AVR IAR Embedded Workbench®.

Migrating from version 3.x
to version 4.x
This chapter gives hints for porting your application code and projects to the
new version 4.x.

C or C++ source code that was originally written for the AVR IAR C Compiler
version 3.x can be used also with the new AVR IAR C/C++ Compiler version
4.x. However, some small modifications may be required.

This chapter presents the major differences between the AVR IAR Embedded
Workbench version 3.x and the AVR IAR Embedded Workbench version 4.x,
and describes the migration considerations.

Note that if you are migrating from AVR IAR Embedded Workbench version
1.x (EWA90), you must first read the chapter Migrating from EWA90 to EWAVR.

IAR Embedded Workbench IDE
Upgrading to the new version of the IAR Embedded Workbench IDE should be a
smooth process as the improvements do not affect the compatibility between the
versions.

WORKSPACE AND PROJECTS

The workpaces and projects you have created with 3.x are compatible with 4.x.

C-SPY LAYOUT FILES

Due to a new improved window management system, the C-SPY layout files support in
3.x has been removed. Any custom-made lew files can safely be removed from your
projects.
MAVR-1

1

2

Runtime library and object files considerations
Runtime library and object files considerations
Both in version 3.x and version 4.x, two sets of runtime libraries are provided—CLIB
and DLIB. In version 4.x, CLIB corresponds to the CLIB runtime library provided with
version 3.x, and it can be used in the same way as before. DLIB, however, has been
improved so that you can configure it to contain the features that are needed by your
application.

To build code produced by version 4.x of the compiler, you must use the runtime
environment components it provides. It is not possible to link object code produced
using version 4.x with components provided with version 3.x.

For information about how to migrate from CLIB to DLIB, see Migrating from CLIB to
DLIB, page 3. For more information about the two libraries, and the runtime
environment they provide see the AVR® IAR C/C++ Compiler Reference Guide.

COMPILING AND LINKING WITH THE DLIB RUNTIME
LIBRARY

In earlier versions, the choice of runtime library did not have any impact on the
compilation. In AVR IAR Embedded Workbench version 4.x, this has changed. Now
you can configure the runtime library to contain the features that are needed by your
application.

One example is input and output. An application might use the fprintf function for
terminal I/O (stdout), but might not use file I/O functionality on file descriptors
associated with the files. In this case the library can be configured so that code related
to file I/O is removed but still provides terminal I/O functionality.

This configuration involves the library header files, for example stdio.h. In other
words, when you build your application, the same header file setup must be used as
when the library was built. The library setup is specified in a library configuration file,
which defines the library functionality.

When you build an application using the IAR Embedded Workbench IDE, there are
three library configuration alternatives to choose between: Normal, Full, and Custom.
Normal and Full are prebuilt library configurations delivered with the product, where
Normal should be used in the above example with file I/O. Custom is used for
custom-built libraries. Note that the choice of the library configuration file is handled
automatically.

When you build an application from the command line, you must use the same library
configuration file as when the library was built. For the prebuilt libraries (r90) there is
a corresponding library configuration file (h), which has the same name as the library.
The files are located in the avr\lib directory.
MAVR-1

AVR® IAR Embedded Workbench® IDE
Migration Guide

Migrating from version 3.x to version 4.x
The command lines for specifying the library configuration file and library object file
could look like this:

iccavr -dlib_config <install_dir>\avr\lib\dlib\dlavr-3s-ec-f.h
xlink dlavr-3s-ec-f.r90

In case you intend to build your own library version, use the default library configuration
file dlavrCustom.h.

To take advantage of the new features, it is recommended that you read about the
runtime environment in the AVR® IAR C/C++ Compiler Reference Guide.

PROGRAM ENTRY

By default, the linker includes all root declared segment parts in program modules
when building an application. However, there is a new mechanism that affects the load
procedure.

The new linker option Entry label (-s) specifies a start label. By specifying the start
label, the linker will look in all modules for a matching start label, and start loading from
that point. As before, any program modules containing a root segment part will also be
loaded.

In version 4.x, the default program entry label in cstartup.s90 is
__program_start, which means the linker will start loading from there. The
advantage of this new behavior is that it is much easier to override cstartup.s90.

If you build your application in the IAR Embedded Workbench IDE, you might simply
add a customized cstartup file to your project. It will then be used instead of the
cstartup module in the library. It is also possible to switch startup files just by
overriding the name of the program entry point.

If you build your application from the command line, the -s option must be explicitly
specified when you link a C/C++ application. If you link without the option, the
resulting output executable file will be empty, because no modules were referred to.

MIGRATING FROM CLIB TO DLIB

There are some considerations to have in mind if you want to migrate from the CLIB,
the legacy C library, to the modern DLIB C/EC++ library:

● The CLIB exp10 function defined in iccext.h is not available in DLIB.
● The DLIB library uses the low-level I/O routines __write and __read instead of

putchar and getchar.
● If the heap size in your version 3.x project (using CLIB) was defined in a file

named heap.c, you must now set the heap size either in the extended linker
command file (*.xcl) or in the IAR Embedded Workbench IDE to use the DLIB
library.
MAVR-1

3

4

Runtime library and object files considerations
You should also see the chapter The DLIB runtime environment in the AVR® IAR
C/C++ Compiler Reference Guide.
MAVR-1

AVR® IAR Embedded Workbench® IDE
Migration Guide

Migrating from EWA90 to
EWAVR
This chapter contains information that is useful when migrating from the A90
IAR Compiler (the EWA90 Compiler) to the AVR IAR C/C++ Compiler (the
EWAVR Compiler). It briefly describes both differences and similarities
between the products.

C source code that was originally written for the A90 IAR Compiler can be
used also with the AVR IAR C/C++ Compiler, although some modifications
may be required.

Note that if you are migrating from AVR IAR Embedded Workbench version
1.x (EWA90), you must also read the chapter Migrating from version 3.x to
version 4.x.

Introduction
The main difference between the EWA90 Compiler and the EWAVR Compiler is that
the latter is based on new compiler technology, which makes it possible to enhance your
application code in a way that previously was not possible.

The most obvious difference is that with the new compiler technology, support for
Embedded C++ has become available. Other main advantages include a new global
optimizer, which improves the efficiency of the generated code. The consistency of the
compiler is also improved due to the new technology.

Moreover, the new compiler technology allows you to write source code that is easily
portable since it adheres more strictly to the ISO/ANSI standard; for example, it is
possible to use pragma directives instead of extended keywords for defining special
function registers (SFRs).

Also the checking of data types adheres more strictly to the ISO/ANSI standard in the
EWAVR Compiler than in products using a previous compiler technology. You have the
opportunity to identify and correct problems in the code, which improves the quality of
the object code. Therefore, it is important to be aware of the fact that code written for
the EWA90 Compiler may generate warnings or errors in the EWAVR Compiler.
MAVR-1

5

6

The migration process
The migration process
In short, to migrate from EWA90 to EWAVR, you must consider the following:

● The project file and project setup
● The C source code

To migrate your old project follow the described migration process. Note that not all
steps in the described migration process may be relevant for your project. Consider
carefully what actions are needed in your case.

Project file and project setup
The workspace and projects you have created with EWA90 are not compatibe with
EWAVR. If you are using the IAR Embedded Workbench IDE, follow these steps to
convert your project file manually:

1 Start your new version of the AVR IAR Embedded Workbench IDE and create a new
workspace by choosing File>New and then Workspace.

2 Choose Project>Create New Project to create a new project. To add your source code
files, choose Project>Add files. For detailed information about how to create
workspace and projects, see the tutorials available in the AVR IAR Embedded
Workbench User Guide.

3 Because the available compiler options differ between EWA90 and EWAVR, you
should verify your option settings.

To generate a text file with the command line equivalents of the project options in your
old project, see Migrating project options, page 6.

Also, set any new options.

4 If you have your own customized linker command file, compare this file with the
original file in the old installation and make the required changes in a copy of the
corresponding file in the new installation. Replace EWA90 Compiler segments with
EWAVR Compiler segments in the linker command file.

MIGRATING PROJECT OPTIONS

Because the available compiler options differ between EWA90 and EWAVR, you should
verify your option settings after you have created your new project.

If you are using the command line interface, you can simply compare your makefile with
the option tables in this chapter, see Compiler options, page 13, and modify the makefile
accordingly.
MAVR-1

AVR® IAR Embedded Workbench® IDE
Migration Guide

Migrating from EWA90 to EWAVR
If you are using the IAR Embedded Workbench IDE, follow these steps:

1 Open the old project in the old IAR Embedded Workbench IDE.

2 In the project window, select the project level to get information about options on all
levels in your project.

3 To save the project settings to a file, right-click in the project window. On the context
menu that appears, choose Save As Text, and save the settings to an appropriate
destination.

4 Use this file and the option tables in this chapter, see Compiler options, page 13, to
verify whether the options you used in your old project are still available or needed.
Also check whether you need to use any of the new options.

For information about where to set the equivalent options in the IAR Embedded
Workbench IDE, see the AVR® IAR Embedded Workbench® IDE User Guide.

C source code
Use the file comp_a90.h during the migration process. This file, which is provided with
the product, contains translation macros that facilitate the migration.

In short, the process of migrating from the EWA90 Compiler to the EWAVR Compiler
involves the following steps:

1 Replace EWA90 Compiler extended keywords in the source code with EWAVR
Compiler keywords; see Extended keywords, page 8.

2 Replace EWA90 Compiler pragma directives with EWAVR Compiler directives.
Notice that the behavior differs between the two products; see Pragma directives, page
10 for detailed information.

3 Replace EWA90 Compiler intrinsic functions with EWAVR Compiler intrinsic
functions; see Intrinsic functions, page 12.

4 Transfer all relevant changes made to the cstartup.s90 used in your EWA90
Compiler project and create a new cstartup.s90 based on the file supplied with the
EWAVR Compiler. It is not possible to use a cstartup.s90 written for the EWA90
Compiler together with the EWAVR Compiler.

The following sections describe the differences between the EWA90 Compiler and the
EWAVR Compiler in detail.

5 To read about changed behavior of sizeof in preprocessor directives, see Sizeof in
preprocessor directives, page 18.
MAVR-1

7

8

Extended keywords
Extended keywords
The set of language extensions has changed in the EWAVR Compiler. Some extensions
have been added, some extensions have been removed, and for some of them the syntax
has changed. There is also a rare case where an extension has a different interpretation
if typedefs are used. This is described in the following section.

In the EWAVR Compiler, all extended keywords except asm start with two underscores,
for example __near.

STORAGE MODIFIERS

Both the EWA90 Compiler and the EWAVR Compiler allow keywords that specify
memory location. Each of these keywords can be used either as a placement attribute for
an object, or as a pointer type attribute denoting a pointer that can point to the specified
memory.

When the keywords are used directly in the source code, they behave in a similar way in
the EWA90 Compiler and the EWAVR Compiler. The usage of type definitions and
extended keywords is, however, more strict in the EWAVR Compiler than in the EWA90
Compiler.

Products based on the EWA90 Compiler behave unexpectedly in some cases:

typedef int near NINT;
NINT a,b;
NINT huge c; /* Illegal */
NINT *p; /* p stored in near memory, points to

default memory attribute */

The first variable declaration works as expected, that is a and b are located in near
memory. The declaration of c is however illegal, except when near is the default
memory, in which case there is no need for an extended keyword in the typedef.

In the last declaration, the near keyword of the typedef affects the location of the
pointer variable p, not the pointer type. The pointer type is the default, which is given
by the memory model.

The corresponding example for the EWAVR Compiler is:

typedef int __near NINT;
NINT a,b;
NINT __huge c; /* c stored in huge memory --

override attribute in typedef */
NINT *p; /* p stored in default memory, points
 to near memory */
MAVR-1

AVR® IAR Embedded Workbench® IDE
Migration Guide

Migrating from EWA90 to EWAVR
The declarations of c and p differ. The __huge keyword in the declaration of c will
always compile. It overrides the keyword of the typedef. In the last declaration the
__near keyword of the typedef affects the type of the pointer. It is thus a __near
pointer to int. The location of the variable p is however not affected.

__NO_INIT

In the EWA90 Compiler, the keyword no_init is used for specifying that an object is
not initialized. In the EWAVR Compiler __no_init can be used together with a
keyword specifying any memory location, for example:

__near __no_init char buffer [1000];

__INTERRUPT

In the EWA90 Compiler, a vector can be attached to an interrupt function with the
#pragma function directive or directly in the source code, for example:

interrupt [8] void f(void);

In the EWAVR Compiler a vector can be attached to an interrupt function with the
#pragma vector directive, for example:

#pragma vector=8
__interrupt void f(void);

__MONITOR

In the EWA90 Compiler, the keyword monitor specifies not only the type attribute
setting but also the memory location. In the EWAVR Compiler __monitor is an object
attribute only.

SFR

In the EWA90 Compiler, the keywords sfrb and sfrw denote an object of byte or word
size residing in the Special Function Register (SFR) memory area for the chip, and
having a volatile type. The SFR is always located at an absolute address. For
example:

sfr PORT=0x10;

In the EWAVR Compiler the keywords sfrb and sfrw are not available. Instead you
can:

● Place any object into any memory, by using a memory attribute; for example:
__io int b;

● Locate any object at an absolute address by using the #pragma location directive
or by using the locator operator @; for example:
long PORT @ 100;
MAVR-1

9

10

Pragma directives
● Use the volatile attribute on any type, for example:
volatile __io char PORT@100;

See the AVR® IAR C/C++ Compiler Reference Guide for complete information about
the extended keywords available in the EWAVR Compiler.

Pragma directives
The EWA90 Compiler and the EWAVR Compiler have different sets of pragma
directives for specifying attributes, and they also behave differently:

● In the EWA90 Compiler, the pragma directives change the default attribute to use
for declared objects; they do not have an effect on pointer types. These directives
are #pragma memory that specifies the default location of data objects, and
#pragma function that specifies the default location of functions.

● In the EWAVR Compiler the pragma directives type_attribute and
object_attribute change the next declared object or typedef.

The following EWA90 Compiler pragma directives have been removed in the EWAVR
Compiler:

codeseg
function

warnings

They are recognized and will give a diagnostic message but will not work in the
EWAVR Compiler.

Note: Instead of the #pragma codeseg directive, in the EWAVR Compiler the
#pragma location directive or the @ operator can be used for specifying an absolute
location.

The following table shows the mapping of pragma directives:

EWA90 Compiler pragma directive EWAVR Compiler pragma directive

#pragma function=interrupt #pragma type_attribute=__interrupt
#pragma vector=long_word offset

#pragma function=C_task #pragma object_attribute=__c_task

#pragma function=interrupt #pragma type_attribute=__interrupt

#pragma function=monitor #pragma type_attribute=__monitor

#pragma memory=constseg #pragma constseg, #pragma location

#pragma memory=dataseg #pragma dataseg, #pragma location
Table 1: Mapping of pragma directives
MAVR-1

AVR® IAR Embedded Workbench® IDE
Migration Guide

Migrating from EWA90 to EWAVR
It is important to notice that the EWAVR Compiler directives #pragma
type_attribute, #pragma object_attribute, and #pragma vector affect only
the first of the declarations that follow after the directive. In the following example x is
affected, but z and y are not affected by the directive:

#pragma object_attribute==__no_init
int x,z;
int y;

The EWAVR Compiler directives #pragma constseg and #pragma dataseg are
active until they are explicitly turned off with the directive #pragma
constseg=default and #pragma dataseg=default, respectively. For example:

#pragma constseg=myseg
__no_init f;
#pragma constseg=default

The EWAVR Compiler directive #pragma memory=__xxxx is active until it is
explicitly turned off with the #pragma memory=default directive, for example:

#pragma memory=__near
int x,y,z;
#pragma memory=default
int myfunc()

The following pragma directives are identical in the EWA90 Compiler and the EWAVR
Compiler:

#pragma language=extended
#pragma language=default

The following pragma directives have been added in the EWAVR Compiler:

#pragma constseg
#pragma dataseg

#pragma memory=far #pragma type_attribute=__far,
#pragma location

#pragma memory=flash #pragma type_attribute=__flash,
#pragma location

#pragma memory=huge #pragma type_attribute=__huge

#pragma memory=near #pragma type_attribute=__near

#pragma memory=no_init #pragma object_attribute=__no_init

#pragma memory=tiny #pragma type_attribute=__tiny

EWA90 Compiler pragma directive EWAVR Compiler pragma directive

Table 1: Mapping of pragma directives
MAVR-1

11

12

Predefined symbols
#pragma diag_default
#pragma diag_error
#pragma diag_remark
#pragma diag_suppress
#pragma diag_warning
#pragma location

#pragma object_attribute
#pragma optimize
#pragma pack

#pragma type_attribute
#pragma vector

Specific segment placement

In the EWA90 Compiler, the #pragma memory directive supports a syntax enabling
subsequent data objects that match certain criteria to end up in a specified segment. Each
object found after the invocation of a segment placement directive will be placed in the
segment, provided that it does not have a memory attribute placement and that it has the
correct constant attribute. For constseg it must be a constant, while for dataseg they
must not be declared const.

In the EWAVR Compiler, the directive #pragma location and the @ operator are
available for this purpose.

See the AVR® IAR C/C++ Compiler Reference Guide for detailed information about the
pragma directives available in the EWAVR Compiler.

Predefined symbols
In both the EWA90 Compiler and the EWAVR Compiler, all predefined symbols start
with two underscores, for example __IAR_SYSTEMS_ICC__. Note however that in the
EWAVR Compiler all but two predefined symbols also end with two underscores.

See the AVR® IAR C/C++ Compiler Reference Guide for complete information about
the predefined symbols available in the EWAVR Compiler.

Intrinsic functions
In the EWAVR Compiler, the intrinsic functions start with two underscores, for example
__enable_interrupt.

The EWA90 Compiler intrinsic functions _args$ and _argt$ are not available in the
EWAVR Compiler. Other EWA90 Compiler intrinsic functions have equivalents with
other names in the EWAVR Compiler.
MAVR-1

AVR® IAR Embedded Workbench® IDE
Migration Guide

Migrating from EWA90 to EWAVR
See the AVR® IAR C/C++ Compiler Reference Guide for complete information about
the intrinsic functions available in the EWAVR Compiler.

Compiler options
COMMAND LINE SYNTAX

The command line options in the EWAVR Compiler follow two different syntax styles:

● Long option names containing one or more words prefixed with two dashes and
sometimes followed by an equal sign and a modifier, for example --strict_ansi
and --cpu=2343. This is the preferred style in the EWAVR Compiler.

● Short option names consisting of a single letter prefixed with a single dash and
sometimes followed by a modifier, for example -r or -mt. This style is available in
the EWAVR Compiler mainly for backward compatibility.

Some options appear in one style only, other options appear in both styles.

Removed EWA90 options

The following table shows the EWA90 Compiler command line options that have been
removed in the EWAVR Compiler:

EWA90 Compiler option Description

-C Nested comments

-E Constants and string literals in flash

-F Form-feed after each function

-G Open standard input as source. Replaced by - (dash) as
source file in the EWAVR Compiler.

-g Global strict type check. In the EWAVR Compiler, global
strict type checking is always enabled.

-gO No type information in object code

-K ‘//’ comments. In the EWAVR Compiler, ‘//’
comments are allowed unless the option --strict_ansi
is used.

-Oprefix Set object filename prefix. In the EWAVR Compiler, use
-o filename instead.

Table 2: EWA90 Compiler options removed from EWAVR Compiler
MAVR-1

13

14

Compiler options
Note: The EWA90 Compiler command line option -f was not supported by the first
versions of the EWAVR Compiler, but has been available again since version 2.26A.

Identical options

The following table shows the command line options that are identical in the EWA90
Compiler and the EWAVR Compiler:

-P Generate PROMable code. This functionality is always
enabled in the EWAVR Compiler.

-pnn Lines/page

-T Active lines only

-t Tab spacing

-Usymb Undefine symbol

-X Explain C declarations

-x[DFT2] Cross-reference

-y Writable strings

Option Comment

-Dsymb=value Define symbols

-e Language extensions

-I Include paths. (Syntax is more free in the EWAVR Compiler.)

-o filename Set object filename

-s[0–9] Optimize for speed

-z[0–9] Optimize for size

Table 3: Identical options in the EWA90 Compiler and the EWAVR Compiler

EWA90 Compiler option Description

Table 2: EWA90 Compiler options removed from EWAVR Compiler (Continued)
MAVR-1

AVR® IAR Embedded Workbench® IDE
Migration Guide

Migrating from EWA90 to EWAVR
Renamed or modified EWA90 Compiler options

The following EWA90 Compiler command line options have been renamed and/or
modified:

Note: A number of new command line options have been added in the EWAVR
Compiler. For a complete list of the available command line options, see the AVR® IAR
C/C++ Compiler Reference Guide.

EWA90 Compiler option EWAVR Compiler option Description

-A

-a filename
-la .
-la filename

Assembly output. See
Filenames, page 16.

-b --library_module Make object a library
module

-c --char_is_signed ‘char’ is ‘signed
char’

-gA --strict_ansi Flag old-style functions

-Hname --module_name=name Set object module name

-L[prefix],
-l[c|C|a|A][N] filename

-l[c|C|a|A][N]
filename

List file. The modifiers
specify the type of list file to
create.

-Nprefix, -n --preprocess=[c][n][l]
filename

Preprocessor output

-q -lA, -lC Insert mnemonics. List file
syntax has changed.

-R name --segment Set code segment name.

-r[012][i][n] -r

--debug

Generate debug information.
The modifiers have been
removed.

-S --silent Set silent operation

-v[0|1|2|3] --cpu=xxxx
-v[0|1|2|3|4|5|6]

Processor configuration.

-w --no_warnings Disable warnings

Table 4: Renamed or modified EWA90 Compiler command line options
MAVR-1

15

16

Compiler options
FILENAMES

In the EWA90 Compiler, file references can be made in either of the following ways:

● With a specific filename, and in some cases with a default extension added, using a
command line option such as -a filename (Assembly output to named file).

● With a prefix string added to the default name, using a command line option such as
-A[prefix] (Assembly output to prefixed filename).

In the EWAVR Compiler, a file reference is always regarded as a file path that can be a
directory, which the compiler will check and then add a default filename to, or a
filename.

The following table shows some examples where it is assumed that the source file is
named test.c, myfile is not a directory and mydir is a directory:

LIST FILES

In the EWA90 Compiler, only one C list file and one assembler list file can be produced;
in the EWAVR Compiler there is no upper limit on the number of list files that can be
generated. The EWAVR Compiler command line option -l[c|C|a|A][N] filename
is used for specifying the behavior of each list file.

OBJECT FILE FORMAT

In some products using the previous generation of compiler technology, two types of
source references can be generated in the object file. When the command line option -r
is used, the source statements are being referred to, and when the command line option
-re is used, the actual source code is embedded in the object format.

In the EWAVR Compiler, when the command line option -r or --debug is used, source
file references are always generated, i.e. embedding of the source code is not supported.

EWA90 Compiler command EWAVR Compiler command Result

-l myfile -l myfile myfile.lst

-Lmyfile -l myfile myfile.lst

-L -l . test.lst

-Lmydir/ -l mydir -l mydir/mydir/test.lst

Table 5: Filenames in the EWA90 Compiler and the EWAVR Compiler
MAVR-1

AVR® IAR Embedded Workbench® IDE
Migration Guide

Migrating from EWA90 to EWAVR
NESTED COMMENTS

In the EWA90 Compiler, nested comments were allowed if the option -C was used. In
the EWAVR Compiler, nested comments are never allowed. For example, if a comment
were used for removing a statement as in the following example, it would not have the
desired effect.

/*
/* x is a counter */
int x = 0;
*/

The variable x will still be defined, there will be a warning where the inner comment
begins, and there will be an error where the outer comment ends.

 /* x is a counter */
 ^
"c:\bar.c",2 Warning[Pe009]: nested comment is not allowed

 */
 ^
"c:\bar.c",4 Error[Pe040]: expected an identifier

The solution is to use #if 0 to “hide” portions of the source code when compiling:

#if 0
/* x is a counter */
int x = 0;
#endif

Note: #if statements may be nested.

PREPROCESSOR FILE

In the EWA90 Compiler, a preprocessor file can be generated as a side effect of
compiling a source file.

In the EWAVR Compiler, a preprocessor file is either generated as a side effect, or as
the whole purpose when parsing of the source code is not required. You may also choose
to include or exclude comments and/or #line directives.

CROSS-REFERENCE INFORMATION

In the EWA90 Compiler, cross-reference information can be generated. This possibility
is not available in the EWAVR Compiler.
MAVR-1

17

18

Compiler options
SIZEOF IN PREPROCESSOR DIRECTIVES

In the EWA90 Compiler, sizeof could be used in #if directives, for example:

#if sizeof(int)==2
int i = 0;
#endif

In the EWAVR Compiler, sizeof is not allowed in #if directives. The following error
message will be produced:

 #if sizeof(int)==2
 ^
"c:\bar.c",1 Error[Pe059]: function call is not allowed in a
constant expression.

Macros can be used instead, for example SIZEOF_INT. Macros can be defined using the
-D option, or a #define in the source code:

#define SIZEOF_INT 2
#if SIZEOF_INT==2
int i = 0;
#endif

To find the size of a predefined data type, see the AVR® IAR C/C++ Compiler Reference
Guide.

Complex data types may be computed using one of several methods:

1 Write a small program, and run it in the simulator, with terminal I/O.

#include <stdio.h>
struct s { char c; int a; };

void main(void)
{
 printf("sizeof(struct s)=%d \n", sizeof(struct s));
}

2 Write a small program, compile it with the option -la . to get an assembler listing
in the current directory and look for the definition of the constant x.

struct s { char c; int a; };
const int x = sizeof(struct s);

Note: The file limits.h contains macro definitions that can be used instead of #if
sizeof.
MAVR-1

AVR® IAR Embedded Workbench® IDE
Migration Guide

	Migrating from version 3.x to version 4.x
	IAR Embedded Workbench IDE
	Workspace and Projects
	C-SPY layout files

	Runtime library and object files considerations
	Compiling and linking with the DLIB runtime library
	Program entry
	Migrating from CLIB to DLIB

	Migrating from EWA90 to EWAVR
	Introduction
	The migration process
	Project file and project setup
	Migrating project options

	C source code
	Extended keywords
	Storage modifiers
	_ _no_init
	_ _interrupt
	_ _monitor
	SFR

	Pragma directives
	Specific segment placement

	Predefined symbols
	Intrinsic functions
	Compiler options
	Command line syntax
	Removed EWA90 options
	Identical options
	Renamed or modified EWA90 Compiler options

	Filenames
	List files
	Object file format
	Nested comments
	Preprocessor file
	Cross-reference information
	Sizeof in preprocessor directives

