IAR Embedded Workbench®
IDE
User Guide

COPYRIGHT NOTICE
© Copyright 19962006 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of AR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, From Idea to Target, IAR Embedded Workbench, visualSTATE, IAR
MakeApp and C-SPY are trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Adobe and
Acrobat Reader are registered trademarks of Adobe Systems Incorporated. CodeWright
is a registered trademark of Starbase Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fifth edition: January 2006

Part number: UEW-5

Internal reference: 4.6.0.

Brief contents

TABIES ..o Xix
FIGUIES oo Xxiii
Preface ..o XXix
Part |. Product overview ... 1
Product introduction ... 3
Installed files ... 13
Part 2. Tutorials ... 21
Creating an application Project ... 23
Debugging using the IAR C-SPY® Debugger ..., 33
Mixing C and assembler modules ... 43
USING CH s 47
Simulating an INTErTUPL ... 51
Working with library modules ... 61
Part 3. Project management and building ... 65
The development environNMent ... 67
MaNAZING PrOJECLS ... 73
BUITAING ..o 83
EAItiNG ...oooo et 89
Part 4. Debugging ... 99
The IAR C-SPY® Debuggeriicieneereneseeesesssssns 101

iv

IAR Embedded Workbench® IDE
User Guide

Executing your application ... 109

Working with variables and expressions ... 115
UsiNg breakpPoints ... 121
Monitoring memory and registers ... 127
Using the C-SPY macro SyStem ... 135
Analyzing your application ... 143
Part 5. IAR C-SPY® Simulator ... 149
Simulator-specific debugging ... 151
SIMUIAtING INLEITUPLESooovvvrceiis e 169
Part 6. Reference information ... 181
IAR Embedded Workbench® IDE reference ..o 183
C-SPY® Debugger reference ..., 257
GeNEral OPLIONSooooiiiivieirrrrieiereei s 285
COomMPIlEr OPLIONS ... 291
Assembler OpPtioNs ... 303
Custom build OPLIONS ..o 309
Build actions OPLioNS ... 311
LiNKEr OPLIONSoiiiiei e 313
Library builder options ..., 327
Debugger OPLiONS ... 329
C-SPY® macros reference ... 333
GIOSSANY ... 355
INAEX . 369

Contents

TABIES ..ottt X1X
Figures ... XX111
Preface ... XXix
Who should read this guide ... XXix
How to use this guide i
What this guide contains
Other documentationcoooviiiiiiiicecee
Document conventions ...
Part |. Product overview ... 1
Product introdUction ... 3
The IAR Embedded Workbench IDE ... 3
An extensible and modular environmentccceceeeereeereerieneeneenns 4
FRALUIES ..ttt 4
DOCUMENTAIONovveeieiieiieieeieetie st ere et e e sresteesteeaeesaesaaesseesaeenes 5
IAR C-SPY® DebuUggerccccocovuiiiircnerte e 5
General C-SPY Debugger featurescoceeeveeerreeneenienienienieniencenenne. 6
RTOS aWAarenessccccccevvevuevuieuieieiiieieieiesrese et enesnesnene 8
TAR C-SPY Simulatorccccecvevvevierieneneneneneneneneceeiteeeeneeneeneens 8
DOCUMENTALION ...eevieiiieiieiieiieiieiteteteteereeieet ettt s sae e 9
IAR C/C++ Compiler ... 9
FRATUIES ...ttt s 9
Runtime environmentccceeuervereneneneneneeieieeeieneseenee e 10
DocuUmMEnNtationcccceeeieerininiiieieeeieieee et 10
TAR AsSsemDbIEFcooovii e 10
FRALUIES ..eveiiiiiiiieietiteee et 10
DoCcUmMENtationc..ccceeevueeiriniiieiiieicteieee s 10
IAR XLINK LINKEFcooiiiiiiieiceeee e 11

FEALUIES ..ottt et et eve e eae e e aeaeeans 11

vi

Documentation

IAR XAR Library Builder and IAR XLIB Librarian 12
FEALUIES ..o 12
DOCUMENTATIONoeiiiiiiiiiciieicceiceee e 12

Installed files ... 13

Directory StrUCLtUNe ..o 13
Root directory
The commOnN dir€CLOTYcoovevieviiriiriinririeniineneeeeeeeete e 13
The CPUNAME QIT€CLOTYcuvvveiuiiciieienieiieieteieseeeeeeeeeee e eaene 14

File CYPES ..ot 15

Documentation ... 17
The user and reference UIdesccoceeeeerererienienieienenereseseeeen 18
Online help
TAR 0n the Web ..o 19

Part 2. Tutorials ... 21
Creating an application pProject ... 23

Setting Up @ NEW ProjJect ... 23
Creating a workspace WindoWccceeceeeririenienienienienenieneseseeeneas 23
Creating the NEW PIrOJECTc.coceevveieriiriiriinrireneneeeeeceeeeseeee e 24
Adding files to the PrOJECtcceveevueruirienininenieeeeeeeeteeee e 26
Setting Project OPLIONSccvevvereeruerierierierieetieteeeetetetestestestesiesiesienne 27

Compiling and linking the application ... 28
Compiling the source filescocevverieniniinieeiienenicreneneneeeeeen 28
Viewing the LSt filec.ccoviriiiiniiiiccceeeeeeeeeene 29
Linking the applicationc..ccccvveverieiriieieiienicieenenencneeeeeeene 31
Viewing the map fileccccoovevirininininieieieceeeeeceeeee 32

Debugging using the IAR C-SPY® Debugger ..., 33

Debugging the application ... 33
Starting the debugger
Organizing the WINAOWScccceirivirieiiieieieieieeestenie e 33
Inspecting SOUICe StAEIMENLScc.evververuerrerrerieeieieieiereeneeseeseeseenaeas 34

IAR Embedded Workbench® IDE
User Guide

Contents °

MONItOIING TEZISETS ...covvvrrureireieieienientenieereereeie oot rerenesresreseesaenae 40
MONItOriNG MEMOTYeoveueemienieietentenrenrentestesieeseeteteaeseesseseeseessesseas 40
Viewing terminal I/Occocoviiiiiiiiiiiiicieeeeecee e 41
Reaching program eXitccccoceverereninenineneeieierereeseese e sieae 41
Mixing C and assembler modules ... 43
Examining the calling convention ...,
Adding an assembler module to the project
Setting up the ProJECtccevviierieiiiiierieiertete et
USING CHa e 47
Creating a C++ application ... 47
Compiling and linking the C++ applicationc.cccccoeveeicncennnnes 47
Setting a breakpoint and eXecuting to itcceceeevererererenienenneene 48
Printing the Fibonacci NUMDETScccceveeeeieienienieiinienicncnenenenene 50
Simulating an iNEerruPt ... 51
Adding an interrupt handler ..., 51
The application—a brief desCriptioncocceveeerereeieniencnenenennens 51
Writing an interrupt handlercoocoveeviininninninieeeeeee 52
Setting up the project
Setting up the simulation environment ... 52
Defining a C-SPY setup macro filec.ccceceveveviienienieneeneeneeneenne, 53
Specifying C-SPY OPHONScccevverererinieieieieieierestene e 54
Building the Projectccoevererereninirenieieeeeeseee e 55
Starting the SIMUlatorcocovviiviiiiiniieeeeee e 55
Specifying a simulated INtEITUPtc.ccoveveverereeieierereienene e 56
Setting an immediate breakpointc.ceceeveeveevienierenenienienieneneneene 57
Simulating the interrupt ... 58
Executing the appliCationceceeceeieieieierienienieneneneneneneeeeeene 58
Using macros for interrupts and breakpoints 59

vii

viii

Working with library modules ..., 61

Using libraries ... 61
Creating @ NEW PIOJECT ...evueerueeruierierriieiesiienieenieenieesteeseeteseeeseeesseeneeas

Creating a library projectc.ccoceeeeerenenrenieneeeeeeienieneneseeseeenees

Using the library in your application project

Part 3. Project management and building ... 65
The development environmMent ... 67
The IAR Embedded Workbench IDE ...
Running the IAR Embedded Workbench IDE
EXINE ettt
Customizing the environment ... 69
Organizing the windows on the SCTeenc..ccoceevveeveerrieeveerireneennns 69
Customizing the IDEccccccooiiininininiiiicceccncscccecee 70
Communicating with external toolScccoceeerireiriierienienenenerees 71
MaNAZING PrOJECLSoiiirvveeeieeereeieeeii e 73

The project model

How projects are organized
Creating and managing WOrKSPACEScccevereruerireeienienieneneneennens 76
Navigating project files ...
Viewing the WOrkSpaceccccoceveveriririeieieiiiecnencncseneeeeene
Displaying browse information

Source code CONtrOl ..o

BUIIAING ..o 83

Building your application ... 83
SEHNZ OPLOMNS ..ttt sttt ettt ettt et sbe b sieene

Building a project

Building multiple configurations in a batchc..cccceceevervirciicincnenne 85
Correcting errors found during buildcceceevievenencnnnencncnnne 86
Building from the command linecccooceeviiniinieninninienieeeeee, 86

IAR Embedded Workbench® IDE
User Guide

Contents °

Extending the tool chain ..., 87
Tools that can be added to the tool chainccccocooniiinnn 87
Adding an external too]c.ccoceviririniniinieieeeee e 87
EAItiNG ...oooo st 89
Using the IAR Embedded Workbench editor 89
Editing @ fileooeveriiieieieieeeeeeeee s
Using and adding code templates
Navigating in and between filesc..cocvevivnieieiiniinininnenenene
SEATCHINGcveiiieieieie ettt 95
Customizing the editor environment ... 95
Using an external @ditorccceovevererenenienieneneneeeeeeeceeeeeeene 96
Part 4. Debugging ... 99
The IAR C-SPY® DebUZger ..o 101
Debugger CONCEPLS ..o 101
IAR C-SPY Debugger and target SyStemscceceeerereeeereeuenuens 101
DEDUZEET ...ceviiiiiiirieree e
Target system
USEr apPliCALION ..c.eeviiiiiriieiieiieiieiete ettt 102
IAR C-SPY Debugger SYSteMScccecvevrerrerverereneneneneneneeeeneen 103
ROM-mMONItOr PrOZIAIMcevviiiiiiinrinrinreerieteeeetesrenrentesiesiesiesseeseene 103
Third-party debUZZETSccceerierieriiniiniiniiniieiieeetetet e 103
The C-SPY environment ..o 104
An integrated enVIrONMENTcceoveeveereeeeieierieieneneneneneseeeeeens 104
Setting up the IAR C-SPY Debugger ... 104
Choosing a debug driverc.cccceveeieieiiienieneneneneneneseseeeeene
Executing from IESEtcoeveruiririninieiieiieeetesteseesie e
Using a Setup mMacro filecoeveririeieiiieieiciere et

Selecting a device description file ...

Loading plugin modulesceceeeeieieirienienienieneneneneneneneeene
Starting the IAR C-SPY Debugger ..., 107
Redirecting debugger output to a fileccceoevveviiininincnicncenne. 107

Executing your application ... 109

Source and disassembly mode debugging 109
EXE@CULING ..ot 110

RUn t0 CUISOT ... 112
Highlightingccoooviiiininiin e 112

Using breakpoints t0 STOP ...c.eeeeeeueeuieuienienienienenenenenenieeeeeeneeeens 112

Using the Break button to StOPc.ccevceeriererrieenieiiienienie e seenne 113

StOp at PrOZram €Xit ...cccveverreriererenereneeeeteeeeerere e eeeeene 113

Call stack information ... 113
Terminal input and output ..o, 114
Working with variables and expressions ... 115
C-SPY @XPIresSiONS ..ottt seeseiees 115
C SYMDOIS vttt st 115
ASSemDbIEr SYMDOISoovevuiieiriiiiieiieiieieeiee ettt 116

Macro functions ...

Macro variables

Limitations on variable information ... 117
Effects of optimizationsccccocvviiiiiiiniiiiiic 117
Viewing variables and expressionsccccoovievniinnnns 118
Working with the WindOWscccceieiiiiiiiniiieiee e 118
Using the trace system
Viewing assembler variablesc.ccccoevivinininiineninieieienenenne 120
UsiNg breakpPoints ... 121
The breakpoint system ...,
Defining breakpoints ...
Toggling a simple code breakpointccccecevererereneneeeeneeniennens
Setting a breakpoint in the Memory window
Defining breakpoints using the dialog boXccccccvcevierierienieneenene
Defining breakpoints using System macrosc..cecceveeeeererveennene

IAR Embedded Workbench® IDE
User Guide

Contents °

Viewing all breakpoints ... 125

Using the Breakpoint Usage dialog boXcccevvvevieneinenieniiennenne 125

Monitoring memory and registers ... 127

Memory addressing ... 127

Using the Memory window ..., 128
Working with registers ...

Register groups

Using the Stack window ...

Graphical stack diSplayccccecererieiierieriieereee e
Detecting stack oVerflowscccceecerierienieenienieenieeeeeeie e 133
Viewing the stack CONENLSccevverueerieieuieieieienenene e 133
Using the C-SPY macro SyStem ... 135
The Macro SYSteMcccoiiiiice e 135
The Macro 1angUAZEcceverriririeiieieieieteee et 136
The macro file ..o 136
Setup MACTO fUNCHONSevverierierieriieiieieiertcee et 137
Using C-SPY MaACros ..o s 137
Using the Macro Configuration dialog boxcc.ccccevevvieincncncnne. 138
Registering and executing using setup macros and setup files 139
Executing macros using Quick Watchccocevenininenincnicncnene 140
Executing a macro by connecting it to a breakpointcc.ccce...... 141
Analyzing your application ... 143
Function-level profiling ... 143
Using the profiler ... 143
COdE COVEIAGE ... 145
Using Code COVEIAZEcceevvevverierireniiniiieeeeieneereresresreereeieenennenne 145
Part 5. IAR C-SPY® Simulator ... 149
Simulator-specific debugging ... 151
The IAR C-SPY Simulator introduction ... 151
FEAUIES ...euiiiiiiieie et 151

Xi

Xii

Selecting the simulator driver

Simulator-specific menus ...

Simulator MENUccccoiiiiiiiiiiiiieee e
Using the trace system in the simulator 153
Trace WINdOWccccooviiiiiiiiiiiiiiii

Trace tOOIDATcccvviieiiiieiiecieeceee et e

Function Trace window ...

Trace EXpressions WindOWcccceceererrienienieneenieenieeiesiesee e 155
Find In Trace Windowccccccoiviiiiiiiiniiiiiiccccece 156
Find in Trace dialog boXccceveeieiiieiiieieecncncsencseeeeeeene 157
Memory access checking ... 158
Memory Access setup dialog bOXcccevvevverenininreninineereeenean 159
Edit Memory Access dialog DOXccecveeiereninenenieneneneeeeienene 161
Using breakpoints ... 162
Data breakpointscoccveverieririeririeietetcetetereeresresree e 163
Immediate breakpointscccceeeeeeeeerieieieienieniere e 165
Breakpoint Usage dialog BOXcccevierienieriiienienieniienienieenieeieeiene 167
SIMUIating INEEITUPLScoooooiie e 169
The C-SPY interrupt simulation system
Interrupt CharaCteriSticsc.eeerereeieieieieierierese et
Interrupt SiMUlation StALESc.ceoevereererieieieierienterie e
Using the interrupt simulation system ...
Target-adapting the interrupt simulation SyStemc.ccocevveeeenene 172

Interrupt Setup dialog box ...

Edit Interrupt dialog BOXc.cocueviiriiniinieiecceceece e
Forced interrupt WindOWcoevuerereninininieieieicene e
C-SPY system macros for interruptsceeeeeeereevesuerenenierenenne 176
Interrupt Log WiNAOWcooeiiiiiiiriiiieieieceeieeeeete e 177
Simulating a simple interrupt ... 178

IAR Embedded Workbench® IDE
User Guide

Contents °

Part 6. Reference information ... 181
IAR Embedded Workbench® IDE reference ..., 183
WINAOWS ...ttt 183
TIAR Embedded Workbench IDE windowcccccceveeviieeeneeennnnnn. 184
Workspace WINAOWcoceevuerriiriinienienieeieeeseesite e 186
Editor window
Source Browser WindOWcccocoiuiieiuieeiiiieeieceeee et 199
Breakpoints WindOWccccocerviiriinienienieeieeieeieste e 201
BUild WINAOW ...cocvviiiiiiiiiiciiece ettt et 207

Project menu ...

TOOIS MENU ..o
WindOW MENU ..ottt st s 254
HelIp MENU ...oouiiiiiiiiieieeee et 255
C-SPY® Debugger reference ..., 257
C-SPY WINOWScoiiiiiiiiice e 257
Editing in C-SPY WINdOWSccceoiririninininicieienesiese e 257
IAR C-SPY Debugger main Windowccceceverereneneneneneeneene 258
Disassembly WINAOWccccocereriririiniiniiieiiieiceseereeeee e 259
MEmOTY WINAOWoviiiiiiiniieiieiieiieiieiteitetetetete e 261
Register WindOWccuciueiiiriiniiriiniieiieieteteeeee et 264

Watch window

Locals window ...

AULO WINAOW ..ottt ettt
Live Watch WindOWccooeviiiiiiiiiiieiieecie e e 268
Quick Watch WindOWcccouieeiiiiiiiiieiie ettt 269

xiii

Xiv

Call Stack window

Terminal I/O Windowcccocoviiiiiiiiiiii 272
Code Coverage WindOWcccceeeueeuieieieienienienienenenenieseseeeeeneene 273
Profiling Windowc.coceveiirinininieieieiccce e 274
Stack WINAOW ..o 277

C-SPY MENUS ...t
Debug menu
GeNEral OPLIONScoooiiiiviierrrieieeeeies e 285
TAFGEL ..o 285
OULPUL ..ot 285
OUPUL FIIE ..ottt 286
OULPUL AITECLOTIES ...veeveereirenieieriesienie sttt ettt besbe b eaeeas 286

Library Configuration ... 287
LIDTATY ettt
Library file ...ooceeioierieieeeese e
Configuration file

Library OPtions ...
Printf fOrmattercoooveriiinirieeeeeeeee e

Scanf formatter ...

Stack/HEAP ..o
ComPpiler OPLiIONS ... 291
LanGUAZEc.ooooiiiiice s 291
Language ..ot 291
ReqUITe ProtOLYPES ...c.eeuveureiiiiriiniinierieeicetcteteecreesreeree e 292
Language conformancec..ececeeeeierienienenenieneneneneeeeeeeeneens 292
Plain 'char' IS ..ovevierieeeeeee e 293
Enable multibyte SUPPOTtc..coevirieiiiiiiiiiiniiceeeseeeeeeeeeene 293
Enable IAR migration preprocessor eXtensionscceeeererereenne 293
COAE ... e 294
OPLIMIZALIONS ... 294
OPHMIZALIONS ...t 294
OULPUL ... 295
MOAUIE LYPE ..ottt 296

IAR Embedded Workbench® IDE
User Guide

Contents °

Object module name

Generate debug informationc.ccceceevvievvienienieeneeneeneeeeeeeene

Output LSt e ceeeeveeeieiieieieiceree e
Output assembler filecocoviviiriiniiiiiiieeeee e
Preprocessor ...
Ignore standard include directories
Additional include dir€Ctoriesccevivieieieieienienieneneneeeeaene
Preinclude file ..o
Defined SYmMDOIS ...c.eeveeuiiiiiiriiiiieeeeeeeeteeee e
Preprocessor output to fileccceoveeviiriiniiiniiniiniieneseeeeeeee
DIagNOSLICSooiiiiiiii s
Enable remarksccccoovereiiiininiieeeeeeeene
Suppress these diagnoStiCScoveveereerierririieniereene e
Treat these as 1emMarkscoccecveievieiiinineninnnececeecceseeee
Treat these as WarNingscccceceeeeeeieieiieierieneneseneneeeeeeeeeeeens
Treat these as eITOISccccovivivieieieieicicicienee s
Treat all warnings as errors

Extra OPtioNns ...

Use command lin€ OPtiONSceceerueerierieriienienienieenieeneeieeeesnene
Assembler OPLiONS ... 303

LanGUage ...t e 303
User symbols are case SENSItVEc.ccceeeeuieierienierenenienieneneeeeeens 303

Enable multibyte support

Allow mnemonics in first COluUMNcccceeiieriienciieeiie e 303

Preprocessor ... 305
Ignore standard include dir€ctoriescccveverererieneneeeereeeenens 305

Additional include direCtoriesccoooeevieeeiieeeireeeiieeeieeereeeaeens 305

Xv

xvi

Defined symbols

Preprocessor output to fileocceevevieriiniieniinieieeceeeeeee 306

DIagnostiCsc.ccoooiiiiiiniiiciccee s 307

Extra OPLtioNns ..o 307

Use command lin€ OPtIONSceceerueeruerieriierienienieenieeneeieeeeenene 307

Custom build OPLIONS ... 309
Custom Tool Configuration ..., 309

Build actions OPLiONS ... 311
Build Actions Configuration ... 311
Pre-build command line ... 311

Post-build command linecccceceeieieiieiieiieniieneneeeeeeeeene 311

EXtra OULPUL ..ot
HAEfINe ..o
Define Symbolcoueviiiiiiiieieieee e
DIagnOSLiCSccoccoiiiiiiiiccc s
Always generate output
Segment overlap Warningsccocceceevererreereereentenreneneneneseseeeene 318
No global type checKingccccooervierierieniieniieerieeeee e 318
Range Checkscceoienininininiicccce e 319
Warnings/EITOTSccceoverieriiriinrininieetieiieteiietestesie e 319
LISt o 320
Generate lINKer LIStINGc..coceveeieiiiiniiniiniiieeeeeeeeeeercreseneee 320
CONTIG .. 322
Linker command fileccccocooiiininiiniiniiiiiiiineneccccees 322
Command file configuration toolcc.ccceeeveeiecinciivienenenienenenne 322
Override default program entryoccecevererereeeeneeneenenenenennes 322
Search paths
Raw binary imagecccccceeeverenineneninceteeeeereesreereee e

IAR Embedded Workbench® IDE
User Guide

Contents °

Processing ..o s 324

Fill unused code MEMOTYcocveviiriiirienienieeieeieiee e 324

The checksum calculationcccceceeeevieieieiieienicnnieneneneceeene 325

Extra OPLtioNns ..o 326

Use command lin€ OPtIONSceceerueeruerieriierienienieenieeneeieeeeenene 326

Library builder options ..., 327
OULPUL ..ottt 327
Debugger OPLiONS ... 329
SEUUP .ot e 329

DIIVET oottt st 329

RUN E0 ittt 330

SELUP MACTOS ..evveviieriirierieeiteteitete ettt ettt enene 330

Device description filecoceeeeieieieiiinienenenenenreeecteeeene 330

Extra Options

Use command line OPONS ...c..co.eeereeeeeeeeenienieniinreneneneeeeeeeennenne 331

PIUGINS ..o 332

C-SPY® macros referenceeeoniommnnneeeeeessossssssn 333
The macro language ...,

MaCTO FUNCHONS ..ocvviiiiiieiiieeiieeiee ettt ettt e sare e aeeearee s
Predefined system macro functions
MaCro Variablesccoooiiiieiieeiieeeie e
MaACTO SLALEIMENLSeeevvieriiieeiieeiieenieeeteeeaeeeereeesereesereeesneeesreeeneneens

Setup macro functions summary

C-SPY system macros summary

Description of C-SPY system macroscccccocvcneninnanes 339
GIOSSANY ... 355
INAEX . 369

xvii

IAR Embedded Workbench® IDE
xviii User Guide

Tables

1: Typographic conventions used in this gUIdec..cocceververirieneniinenincneene. XXXiii
27 FIIE LYPES ettt sttt ettt st s b e bttt a ettt be st naeas 15
3: Compiler options fOr ProjECt2c.ccevievierenenenininteeeieteetesreee e 44
4: Interrupts dialog DOX ..c.cceeieieiieiiiierienieneece ettt

5: Breakpoints dialog box

6: XLINK options for a library projectc..cecceeeeveeeievievenenenienienenecieienenenennens 62
7: Command Shellsccoioiiiiiiiiiiii e 72
8: iarbuild.exe command lin€ OPLIONScocevueririeiiiinienieneneeeee ettt 86
9: C-SPY assembler Symbols eXPIeSSiONScecceceeveervenrenrenreneneneerenenienenenenne 116
10: Handling name conflicts between hardware registers and assembler labels 116
11: Project options for enabling profilingcccceeveriiinieniienienienieneenceneeene 143
12: Project options for enabling code COVETAZEccevveriererenereeieieierenrennenne 146
13: Description of Simulator menu commandscccceeverererreereenieneenenenenennes 152
14: Trace toolbar cOMMANAScceceeieiiiiiniinieninincneeccee e 154
15: Toolbar buttons in the Trace Expressions windowcccceceeveeeeencncnennnnnes 156
16: Function buttons in the Memory Access Setup dialog boxccccecevvevuenrenncnne. 160
17: Example of costs for accessing memory entitiesc..cceceevverreerveneerveneeneens 162
18: MEMOTY ACCESS LYPES .eeuvereerieriruieireutetententeniesiesiesseeseeeeseentensessessessessessesueennens 164
19: Breakpoint CONAItIONScceecverieriereniererenienenceeeeete et 164
20: MEMOTY ACCESS LYPES ..verveeveerieeieeiertertertenttesteeteetesresssesitesseesseenseensesnsesnsens 166
21: Characteristics of a forced INterrupPtc..coceveeeerierieniininieeeeeeeecreesese e

22: Description of the Interrupt Log window ...

23: Timer INtEITUPL SELLINES uveeveriereieriierieerieeieet et ettesitesteeste et eteerestesaeesieesaeens 179
24: 1AR Embedded Workbench IDE menu barccccocveveviininenenieniecienenenenne 184
25: Workspace window context menu coOmmandsceoevververeneneneneenrenenenne 188
26: Description of source code control commandscccceeeerereriereeierienenenenne 189
27: Description of source code CONtrol SLAEScccceveeeeververvenereneerererrenenenenne 190
28: Description of commands on the editor window context menuc..cecceuee 196
29: Editor keyboard commands for insertion point navigationceceeceeeeeeenenne 197
30: Editor keyboard commands for scrolling

31: Editor keyboard commands for selecting teXtcccceceeveeveeviereeneneneneneneenes 198

Xix

XX

IAR Embedded Workbench® IDE
User Guide

34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

Breakpoints window context menu commandsc.ccoceverereneneneneneneennes 201
Breakpoint CONAItIONSccceoverierierieniiniintineeieeteieeit ettt 204
Log breakpoint CONAItIONScc.eevueriirieriirieiieeie ettt see e 205
LOCAtION LYPLS -eevvveemeinriniintintietieteeiteie ettt st st sttt ettt sa e ne b sbe e

File menu commands

Edit menu commandsc.ccoeveiiiiiiiiiniiieiee e e 213
Find dialog DOX OPLIONS ...c..coveeuirrieiriiriiiieieientenene ettt 216
Replace dialog DOX OPLIONScc.evvereirierieriirieieienienteteeteer ettt 216
Incremental Search function buttonscccceceevevieriininininiiniieieicieenienene 219
View menu CoOmMmANAScccceveeeeieieienienieneneneneneetee et eeeeaessesnesresnesaennes 221
Project menu cOmMMANAScoceveririireiiinienieientesteeteete ettt 223
ArgUmMENt VAriabIesccceeviiriiriiiriiiie ettt 225
Configurations for project dialog boX OptionScccceceveeveevvenienienienenenenenne. 226
New Configuration dialog bOX OPHONScceeveeveeieeeienienieniineneneeteeereieniene 227
Description of Create New Project dialog bOXcccevvevvieieiieiienienienienienieeene 228
Project option categories

Description of the Batch Build dialog BoXceceeeeieiiiiienienieeienenenenee 230
Description of the Edit Batch Build dialog boXccceceevveeievievienienienienienienene 231
Tools MeNU COMMANASccverviriiriiriiriiriieiteietetetesteete ettt et 232
External Editor OPtIONScccooeverieriirieieieteesesteieete ettt 233
Key Bindings page OPLiONScocueviereerienernienieeieeieneeste st st seeesieenieenieenee 235
Editor page options

Editor Colors and Fonts page Optionsc.cceceeveerienuenienieniinieieeeieienienienienee 241
Project Page OPLONScc.eerieriiirieeieeieeieete sttt ettt 242
Debugger Page OPLIONSc.ceveuieieieieienerenie ettt 243
Register Filter OPLiONSccccevereriiiiiieienierieesteetceieeie ettt 245
Terminal I/O OPLONSocueivieiiiiiieiieeie ettt ae e 245
Configure Tools dialog bOX OPLIONSc.ccoererereriririieeieieieeeeeeereeeees 249
Command SHEllSccooiieriiiririee e 250
Window menu commandsc..coceeeeieieniiniiniininiiee e 254
Help menu commandsocecveierieniineneneninineeeeteeeeteneere e 255
Editing in C-SPY WINAOWScceetiiiiiiiiiiniinieeieeieeiteicett ettt 258

66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
T7:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:

Tables 4

Disassembly window operations

Disassembly context menu commandscocceveereeneeriienrieniienieneeneeneeneenee 260
Memory WindOW OPEIAtIONSccceeeuereeieienienienierierienieeseeeeeeresresnesnesreseeeees 262
Commands on the memory window CONtexXt MENUc.ceceevuevvereerierenienenenne 262
Fill dialog BOX OPHONSeoviiiiiiiiiieriieriteicet ettt
Memory fill OPEIatioNsSc..coeeveeieiririeieieieee sttt
Watch window context menu commands ...

Effects of display format setting on different types of expressions 266
Profiling window COIUMNSccceeirieiiiiieienienene ettt 276
Stack WINAOW COIUMMS ...c.evuiiiiiiiiiiiieienieener ettt 278
Debug menu cOmMmMAaNAScoeeveeriierieriienienieneeteeeeete et et see e 280
LOZ fI1€ OPHIONS ...vviiiniiiieiieieeieeitet ettt ettt 283
XLINK range check OPLtioNScoccoererirerieienienieienteseeeieereeieeeetetesrenee e nee 319
XLINK LISt file OPHONS ..eeivveriiiiieiiiieeieeierite ettt ettt st 320
XLINK list file format OptionSccccceverenererenenentneeteeeeere e 321
XLINK checksum algorithmscccceceeienienieneneninieeeeeeeietee e 325
Examples of C-SPY macro variablescccceceverinieinieieieieieiese e 334
C-SPY setup macros

Summary of SYStEIM MACTOSeeveeuiruieuieieiieierierierie ettt ettt sbeeaeeaes 337
__cancellnterrupt return Valuescceeoveeierieniiinienieneeeeieeeeeeeeee e 339
__disableInterrupts return ValUesc..cccceveeerieieienienieneneneneneeeeeesieneeneens 340
__driverType return VAlUEScceoeruerieririeiieieieiesientese sttt 341
__enablelnterrupts return Valuescooeeveererrienienienieneeneeseeeee e 341
__openFile return values

__readFile return values

__setCodeBreak return ValUEscccccceeriieiiieiiiieeniieenieeeieeeiee e eseeesaee s 347
__setDataBreak return ValUEScccceeeviiieiiiieiiiieeiie et eee e 348
__setSimBreak return Valuesccccoeeeiiiieiiiiiiiieeeiie et 349

XXi

IAR Embedded Workbench® IDE
xxii User Guide

Figures

1: Create New Project dialog DOXcceecieierienienininiininienieieeeeee et 24
2: WOrkSpace WINAOWccceerieriiriirieriintieieetieietete et te st sttt ettt et et steseesaeseesaeas 25
3: New Workspace dialog DOXc..ccceevieviiiiniiniiniininininieeeteeeerercresresre e 25
4: Adding files tO PrOJECT] ..ocueeiiieiiiniiienieriee ettt 26
5: Setting COMPIETr OPLIONS ...cc.veieiirieriirtirieetieieeieeie ettt sttt see s 27
6: ComPilation MESSAZE ..c..ceveeueemieieieiiniintenteettettettete e ete et ste e st et bt eaee e eseenaenaens 28
7: Workspace window after compilationc..coccecevevierienenenenienienceieieceneneene 29
8: Setting the option Scan for Changed Filesccccoueveninininininiiieicieresenee 30
9: The C-SPY Debugger main WindOWcccocceereneninienenieieieieieienieneneennennenn 34
10: Stepping in C-SPY

11: Using Step Into in C-SPY ..ooiiiiiieeeet e 36
12: Inspecting variables in the Auto WindOWc..cccevevivinininieiieiieiccenenenene 37
13: Watching variables in the Watch Windowcccoevirininieieiiiiicciccee 38
14: Setting DreakPOINScccevierierieriieierieete ettt ettt et st e st este s esaesaneeaee 39
15: REZISIEr WINAOW ..cevitiiiiiiiriiiieciieieteitetctente sttt se ettt e sne e st
16: Output from the I/O operations

17: Reaching program exit in C-SPYcccooiiiiiiiiiiiinieieeeeeeeeeeee e 42
18: Setting a breakpoint in CPPtUtOT.CPP .c.vevververieriiniiririeieiecieeeercrcesie e 48
19: Inspecting the function Callsceceeieviiiiirinininineeeeece e 49
20: Printing FIDONACCT SEQUENCEScc.eeruiiiiiiirieniieniienieeieeieete ettt e 50
21: Specifying setup mMacro fileccccvviririririiiiiiiieieeeeeeeer e 55
22: Inspecting the INterrupt SELNZS ...ccvevverververrirreerieieieeietetetesest et s seeeens 56
23: Printing the Fibonacci values in the Terminal I/O windowccccceeeveniinnenene 58
24: TAR Embedded Workbench IDE Windowcccccceeieirinvinieiiniiiercreienennenne 68
25: Configure Tools dialog DOXceceeveeieiieniiriirienireneneneeeee ettt 71
26: Customized TOOIS MENUcocviiiiiiiiiiiiii s
27: Examples of workspaces and projects

28: Displaying a project in the workspace Windowc..cccceceverererienieniencncnennens 78
29: Workspace WindOW—an OVEIVIEWcccceveerierrieeiieriientenientesieenieenieeseeseseennne 79
30: GENEral OPLIONS ..cc.eovieuieuieiieiiiietentene sttt ettt st ettt saesnesae et 84
31: Editor WINAOWc.oouiiiiiiiiiiiiicieece e 90

xxiii

XXiv

IAR Embedded Workbench® IDE
User Guide

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

Parentheses matching in editor window 93
Editor window status bar ..o 93
Editor window code template MEeNUc..coevererenuinirenieieeeeereeeteiesrenrenenee 94
Specifying external command line €ditorc.coceeererieienieneneneneneneeeeene 96
External editor DDE SEHHNZSceoueeviiriiirienierienieeieeeeeeeeste st 97
IAR C-SPY Debugger and target SySteIMSccceevevververrerererereeeenueneenveneennens
Viewing assembler variables in the Watch window

Breakpoint on a function Callcoccovieviiiiiniiniiiniiieeeeeee e
Breakpoint Usage dialog DOXcccccevuerininininiininicicicecicecnc e
MEMOTY WINAOWcouiiiiiiriiniinienieeiieieeiteteee ettt ettt et s sie e et
Memory Fill dialog DOXooverieriiiieriieieiieeiecteet et
REZISIEr WINAOWoviiiiiiiiiiiiiieicceteneser sttt
Register FIlter PAZEccevveviiriiririieiicitetceetcee et
StaCk WINAOW ..ottt
Macro Configuration dialog DOXc..ccccvereririrnienieniiniiieiccceseeeeeeeeeene
Quick WatCh WINAOWcccuiieiiieiiiiiie ettt e
Profiling WinAOWcceoieeiiriiniiiinieieeteeete ettt st sae e
Graphs in Profiling window
Function details WindOWc.ccoerieiiriinineninieeieeee ettt
Code Coverage WiNAOWccoecierierienieniieieeieete sttt et e e et s seesieenee
SIMUIALOT MENU ...ttt s
TTACE WINAOW .uviniiiiiiieiieiietetetet ettt et ettt ettt ettt sbesbeebeeneene
Trace tOOIDATccoccviviiiiiriiiiiiiniicicc e s
Function Trace window
Trace EXpressions WindOWc.ccccvververinenieninieieeietetetesie e see e s e siesveene
Find In Trace WINAOWccccoeviiiiiiiiniiniiniiiieiciet ettt
Find in Trace dialog DOXccccoeviirininininininintctctceccececreceee s
Memory Access Setup dialog DOXc.cceeieieieirieieieieieriese e
Edit Memory Access dialog box
Data breakpoints dialog DOXccccocevererereniiiiiiieiciccccce e
Immediate breakpoints PAZEcceceeereerierierterenesteeteete ettt ettt seeeieene
Breakpoint Usage dialog DOXcocuevierierienieiniiiienieeteseeieenieeeeite e
Simulated interrupt configurationcccceceeceevverienenenenineeeeeeneeeeneeenes

Simulation states - eXample 1cccocoeieiieiieiineneneneneee e

66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
T7:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

Figures ___o

Simulation states - example 2

Interrupt Setup dialog BOX ...cooveiiiriiiiiiieiereeteete e
Edit Interrupt dialog BOXc.ccccveveoiirinenenininnreteeeeece e
Forced INterrupt WindOowc.ccoeeieriiniininininineeeeeeieeetetete et seene
Interrupt Log WINAOWcoouiiiiiiiiiiiieniieeee ettt
IAR Embedded Workbench IDE Windowcc.ccceceeieiienieniencnencnenenencenen. 184
IAR Embedded Workbench IDE toolbar

TIAR Embedded Workbench IDE window status barcccecevereneneneenne 186
WOTKSPACe WINAOWcvevviriiriiriiniiiiieiiiictietete ettt s 186
Workspace Window CONEXE MENU ..c..ecueruerereerierienieientententeereeseeeetesessensenienee 187
Source Code Control MENUcc.ccuevviriiriieieiiiiieienienene et 189
Select Source Code Control Provider dialog boXcc.cccceeuevieviininincncncnenne. 191
Check In File dialog DOXcoccvereriririiiiieicesesteieeteeeeeeeetee et 192
Check Out File dialog DOXcccooieriiriiniiiiieiieieetceteecet et 193
Editor WINAOW ..c..ooviiiiiiiiiiiicieieieteeesenenes sttt 194
Editor window tab CONtEXt MENUccuerviruiruerriniierieieeteeieieterenteseestestesie e sieene 195
Editor window CONEXE MENUceeiiuiiiiiiiiiieiietietieieteeer et sie s e sreeaeene 195
Source Browser window

Source Browser window CONtEXt MENUc..evververeerierieeierieiereenieeeneesiesiesresneenes 200
Breakpoints WinAOWcoeeiiirieriiiiieiiencenteeeete sttt 201
Breakpoints WindOw CONEXE MENUcc.eeueeueeueeirreieieienienienentenseseeereeneeneenees 201
Code breakpoints PAZEcccceevverierierierierierieniesierie ettt

Log breakpoints PAZEooveruierieriierienieneenieeieete sttt e s
Enter Location dialog box

Build window (message WindOW)cccceeeieieieieieieieiesiesesie e eieeeene 207
Build window CONtEXt MENUocueiiiiiiiiiitieieieeeieier ettt 207
Find in Files window (message WindOW)c.ccceeueruenienienienienenenenenenennenne 208
Find in Files Window CONtEXt MENUcceveruirriruinrieiieiieieieiesiesie e sie e sieeieene
Tool Output window (message window)

Tool Output WindoOW CONEXE MEIIUeuvevieuiereereereereireirererenreneseereesieeneereeneens
Debug Log window (message window)
Debug Log window CONEXt MENUevveruierieerieerierieritenitenieenieeieeiresnesieenieenne

FAIE MENU ..ottt e eb e e tb e e e ae e e reeenaaeean

Edit MENU ..oooiiiiiiiice ettt et e e e et e et e eaeeas

XXV

XXVi

IAR Embedded Workbench® IDE
User Guide

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:

Find in Files dialog box

Incremental Search dialog bOXc.coveriirieniiniiiieeeee e 219
Template dialog DOX ...cc.eeeveririiiiicicicteer s 220
VIBW IMEIIU ..ot s 221
PrOJect MENUoouiiiiiiiiiiicieeete ettt 223
Configurations for project dialog bOXcccceceveririniniirieieieieeicereeeeenes 226
New Configuration dialog box
Create New Project dialog box
Batch Build dialog DOXceeviiiiiiininininincnececctcectccesee e
Edit Batch Build dialog DOXccceeieiiniinienienininencecececeeeecreeeeees

TOOIS TNEMU ...ttt et ettt e e te e e teeesaaeesbeeebeeensaeensaaennne

External Editor page with command line settingsc.ccceeeeverenerenenennne 233
CommoOon FONES PAZE ..c.eeveruiriieiiieicieieserte ettt 234
Key Bindings PAZEcoveeriirieiiiiieiieeitesiteieeie ettt sttt 235
IMESSAZES PALE -.cevenvenvinririerierieiieitetetenteste st st sttt ebe st bt saeaestesaesbesbesnesneenees 236
EdItOr PAZE ..veeuvenierierieeieeieetet ettt bbb 237
Configure Auto Indent dialog DOXccecverierererienieieieieieee e 239
Editor Setup Files page

Editor Colors and FONtS PAZEc.ccecveruerierierieniinienieeiieiteiteete e 241
PIrOJECES PAZE weveevvieiieiieeteet ettt
DEDUZZET PAZE ...veviviriiieiieiieiteteteteteeesese ettt
Register FAlter PAZEc.cccveieieiiieieieseee et
Terminal I/O PAZEcooveeiiriiiieeeeeeeee et

Source Code Control page

SEACK PAZE -eveeveiititiet ettt ettt
Configure Tools dialog DOXcccccueieriiriirierierinereeeeee e
Customized TOOIS MENUc.cccueriiriirinirinireeeeeeeteetetereree e
Filename Extensions dialog DOXc.cccceevereririieiieiiieieieieceeeeceeeeee
Filename Extension Overrides dialog box
Edit Filename Extensions dialog boXc..ceceeveerieienienieneneneninineececeeenee
Configure Viewers dialog DOXccccoverieririniniinieieieteiereese e

Edit Viewer Extensions dialog DOXcceccervieviiniininieinienieeeeeeeceeee,

WiINdOW MENU ..o
Embedded Workbench Startup dialog boXcccceveevienineneneninenicneeeene 256

Figures ___o

134: C-SPY debug toolbar
135: C-SPY Disassembly WiNAOWcccevcieriiniinieriienienieneeneeniceieeee e 259
136: Disassembly window CONEXE MENU ..c..ccvevueruererereemienieieienrenrenresresiesesseseeenns 260
137: MeMOTY WINAOW ..c..oeuiiiiiiieiiiiiieienienienteniesieeit ettt sb s be s 261
138: Memory window CONEXE MENUevuverureriierierrierierteseenieenieesseeneseesiresseesanens 262
139: Fill dIalOg DOX .eouvievieiieiiiiieiieiieietetetestestene sttt

140: Register window ...
141: Watch WINAOWooiviiiiiiiiiiiiiiiciceeee s

142: Watch window CONtEXt MENUcccveieriieriieeiieeieeeiee e eeree e e ereesaaeesenee e

143: Locals WINAOW ..c.eeviriiiiiiiieiieiieieieietestestese sttt ettt
144: AULO WINAOW ..ooviiiiiiiiiiiiiiieiicicretetestese sttt
145: Live Watch WINAOWc.cociiiiiiiiiiiiiiininenenenceecetetete et
146: Quick WatCh WINAOWcooviiiiiiiiiiii e
147: Call Stack WINAOWcocoiiiiiiiiiiiiiiniinicnierenene e
148: Call Stack window context menu
149: Terminal I/O WINAOWccoeiiiiriiiiiiiiininerenerenee ettt
150: Ctrl COAES MENUc.eeviiiiiiiiiiiiiiieieentesere sttt
151: Change Input Mode dialog box
152: Code COVerage WindOWccccocevererierieriiteteeeteste e ee st ste st sbe b b eeens
153: Code coverage CONtEXt MENUeecverreerierreerierieereneeseesieenseenseesesseseessnens
154: Profiling WindOWccccceeviimiiriinininiininicnccteteceee ettt
155: Profiling CONLEXE MENUoveieriirierieniinienieeiteitee ettt sbesb e ne
156: Stack WINAOWcc.eeiiiiiiiiiiiiiieieicnentet et
157: Stack window context menu
158: DEbUZ MENU ..ottt ettt bbb ne
159: Autostep settings dialog DOXcoceriiriiriiniiniiiinieeereesetee e
160: Macro Configuration dialog box
161: Log File dialog DOXcceecuiviiriirienierienienieeitetetete ettt
162: Terminal I/O Log File dialog box

163: OULPUL OPLIONS ..euvviiieiieiieiietetententestest st sttt ettt sbe bbb eae

164: Library Configuration OPONSccereriereeieieterienienieneestestessessesresnesieeseeeenes
165: Library OPtions PAZE ...cccueevereerieeriernieeierieeienitenieesseesieeseesesstesisesseessesseensens
166: Compiler 1anguage OPONScoccverererererininieeetetetenresresresrese e

167: Compiler optimizations OPtIONSc.ceecereruererereerienieieieseerieseesresie e eaeenes

XXVii

XXviii

IAR Embedded Workbench® IDE
User Guide

168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:

Compiler preprocesSOr OPONSc..eoververreruerrireeeeeesieeeteteresressessessessesnenns 298
Compiler diagnostiCs OPLIONSceeevveierierierererieneeieeeestetete et 300
Extra Options page for the compilerccocovevnieniniiniienieeeeeeeeeeee, 301
Choosing macro qUOte CharacCterscocvevevereeeeieeenieieieneneeeeeee e 304
Assembler output options

Assembler preprocessSOr OPLIONScccverueeruerierieeriienieeieeresteseeseeenieeseeenseenees 305
Extra Options page for the assemblerc..cocecvverienieierieiencncncneneneeneee 307
CUSLOM tOO] OPLIONS ...euventiiiriieiieitetetetete ettt ettt ettt sbesbe b eaes 309
Build actions OPIONSeeverieriiiniienierienteeiertest ettt st sae st e e e i eees 311
XLINK output file OPtiONSccccoueieriinireninininieeieteteteteresre e 313
XLINK extra output file OPtionSc.ccoevererererinieieieieietesrenresreereeieeeeeens 316
XLINK defined Symbols OPtIONScocueeeeriierieniienienienieneeneenieeie e 317
XLINK diagnostics OPHONScc.cecvevererienierierenininrensteieeeeneeseenseseeesressesseenes 318
XLINK LISt file OPHONS .e.vevveriiriiriiiieieieiereseenesiceieet ettt
XLINK cONfig OPIONS ..ccvevviriieiiiieieieriesiesieeieeieettetentetebe et ste s ere e eneene
XLINK processing options

Extra Options page for the linKercccoevenininininiiiieeeeccee 326
XAR OULPUL OPLIONS ..veineieiieiieieiieeiieete ettt ettt nae s e 328
Generic C-SPY OPHONSooeviiiiieieiiicientesten ettt 329
Extra Options page for the C-SPY debuggercccceceveeiinienienencnineneee 331
C-SPY Plugin OPLIONS ..cueeriiiiiiieiieiieeiesiteeiesie ettt st see e 332

Preface

Welcome to the IAR Embedded Workbench® IDE User Guide. The purpose
of this guide is to help you fully utilize the features in IAR Embedded
Workbench with its integrated Windows development tools. IAR Embedded
Workbench is a very powerful Integrated Development Environment that

allows you to develop and manage a complete embedded application project.

The user guide includes product overviews and reference information, as well
as tutorials that will help you get started. It also describes the processes of
editing, project managing, building, and debugging.

Note: Some descriptions in this guide only apply to certain versions of the

IAR Embedded Workbench® IDE. For example, not all versions support C++.

Who should read this guide

You should read this guide if you want to get the most out of the features and tools
available in the IAR Embedded Workbench IDE. In addition, you should have a working
knowledge of:

o The C or C++ programming language

e Application development for embedded systems

e The architecture and instruction set for the processor you are using (refer to the chip
manufacturer's documentation)

o The operating system of your host machine.

Refer to the JAR C/C++ Compiler Reference Guide, IAR Assembler Reference Guide,
and IAR Linker and Library Tools Reference Guide for more information about the other
development tools incorporated in the IAR Embedded Workbench IDE.

How to use this guide

If you are new to using this product, we suggest that you start by reading Part 1. Product
overview to give you an overview of the tools and the functions that the IAR Embedded
Workbench IDE can offer.

XXiX

What this guide contains

XXX

If you already have had some experience using IAR Embedded Workbench, but need
refreshing on how to work with the IAR development tools, Part 2. Tutorials is a good
place to begin. The process of managing projects and building, as well as editing, can
be found in Part 3. Project management and building, page 65, whereas information
about how to use the C-SPY® Debugger can be found in Part 4. Debugging, page 99.

If you are an experienced user and need this guide only for reference information, see
the reference chapters in Part 6. Reference information and the online help system
available from the IAR Embedded Workbench Help menu.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR Systems user and reference guides.

What this guide contains

IAR Embedded Workbench® IDE
User Guide

Below is a brief outline and summary of the chapters in this guide. Some chapters only
apply to certain versions of the [AR Embedded Workbench® IDE, partly or in their
entirety.

Part I. Product overview

This section provides a general overview of all the IAR development tools so that you
can become familiar with them:

® Product introduction provides a brief summary and lists the features offered in each
of the IAR Systems development tools—IAR Embedded Workbench® IDE, IAR
C/C++ Compiler, IAR Assembler, IAR XLINK Linker, IAR XAR Library Builder,
IAR XLIB Librarian, and IAR C-SPY® Debugger.

e [nstalled files describes the directory structure and the types of files it contains. The
chapter also includes an overview of the documentation supplied with the IAR
development tools.

Part 2. Tutorials

The tutorials give you hands-on training in order to help you get started with using the
tools:

e Creating an application project guides you through setting up a new project,
compiling your application, examining the list file, and linking your application.
The tutorial demonstrates a typical development cycle, which is continued with
debugging in the next chapter.

® Debugging using the IAR C-SPY® Debugger explores the basic facilities of the
debugger.

Preface __ 4

o Mixing C and assembler modules demonstrates how you can easily combine source
modules written in C with assembler modules. The chapter also demonstrates how
the compiler can be used for examining the calling convention.

® Using C++ shows how to create a C++ class, which creates two independent
objects. The application is then built and debugged. This chapter only applies to
product versions with C++ support.

o Simulating an interrupt shows how you can add an interrupt handler to the project
and how this interrupt can be simulated using C-SPY facilities for simulated
interrupts, breakpoints, and macros.

o Working with library modules demonstrates how to create library modules.

Part 3. Project management and building
This section describes the process of editing and building your application:

® The development environment introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for
customizing the environment to meet your requirements.

® Managing projects describes how you can create workspaces with multiple projects,
build configurations, groups, source files, and options that helps you handle
different versions of your applications.

® Building discusses the process of building your application.

e FEditing contains detailed descriptions about the IAR Embedded Workbench editor,
how to use it, and the facilities related to its usage. The final section also contains
information about how to integrate an external editor of your choice.

Part 4. Debugging
This section gives conceptual information about C-SPY functionality and how to use it:

® The IAR C-SPY® Debugger introduces some of the concepts that are related to
debugging in general and to the IAR C-SPY Debugger in particular. It also
introduces you to the C-SPY environment and how to setup, start, and configure
C-SPY to reflect the target hardware.

® Executing your application describes how you initialize the IAR C-SPY Debugger,
the conceptual differences between source and disassembly mode debugging, the
facilities for executing your application, and finally, how you can handle terminal
input and output.

o Working with variables and expressions defines the syntax of the expressions and
variables used in C-SPY, as well as the limitations on variable information. The
chapter also demonstrates the different methods for monitoring variables and
expressions.

o Using breakpoints describes the breakpoint system and the different ways to define
breakpoints.

XXXi

What this guide contains

xxxii

IAR Embedded Workbench® IDE
User Guide

Monitoring memory and registers shows how you can examine memory and
registers.

Using the C-SPY macro system describes the C-SPY macro system, its features, for
what purposes these features can be used, and how to use them.

Analyzing your application presents facilities for analyzing your application.

Part 5. IAR C-SPY® Simulator

Simulator-specific debugging gives a brief introduction to the simulator and
describes the functionality specific to the simulator.

Simulating interrupts contains detailed information about the C-SPY interrupt
simulation system and how to configure the simulated interrupts to make them
reflect the interrupts of your target hardware.

Part 6. Reference information

IAR Embedded Workbench® IDE reference contains detailed reference information
about the development environment, such as details about the graphical user
interface.

C-SPY® Debugger reference provides detailed reference information about the
graphical user interface of the IAR C-SPY Debugger.

General options specifies the target, output, library, heap, and stack options.
Compiler options specifies compiler options for language, code, output, list file,
preprocessor, and diagnostics.

Assembler options describes the assembler options for language, output, list,
preprocessor, and diagnostics.

Custom build options describes the options available for custom tool configuration.
Build actions options describes the options available for pre-build and post-build
actions.

Linker options describes the XLINK options for output, defining symbols,
diagnostics, list generation, setting up the include paths, input, and processing.
Library builder options describes the XAR options available in the Embedded
Workbench IDE.

Debugger options gives reference information about generic C-SPY options.
C-SPY® macros reference gives reference information about C-SPY macros, such
as a syntax description of the macro language, summaries of the available setup
macro functions, and pre-defined system macros. Finally, a description of each
system macro is provided.

Glossary

The glossary contains definitions of programming terms.

Preface __ 4

Other documentation

The complete set of IAR development tools are described in a series of guides. For
information about:

Programming for the IAR C/C++ Compiler, refer to the IJAR C/C++ Compiler
Reference Guide

Programming for the IAR Assembler, refer to the JAR Assembler Reference Guide
Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the IAR Linker and Library Tools Reference Guide

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books. Note that additional
documentation might be available depending on your product installation.

Recommended web sites:

The chip manufacturer web site contains information and news about the processor
you are using.

The IAR Systems web site, www.iar.com, holds application notes and other
product information.

Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, contains information about the Embedded C++
standard.

Document conventions

This book uses the following typographic conventions:

Style Used for
computer Text that you type or that appears on the screen.
parameter A label representing the actual value you should type as part of a

command. Note that this style is also used for cpuname,
configfile, libraryfile, and other labels representing your
product, as well as for the numeric part of filename extensions—xx.

[option] An optional part of a command.

{option} A mandatory part of a command.

a|b]|c Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

reference A cross-reference within this guide or to another guide.

Table 1: Typographic conventions used in this guide

XXXiii

Document conventions

IAR Embedded Workbench® IDE
xxxiv User Guide

Style Used for

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Table 1: Typographic conventions used in this guide (Continued)

Part |. Product overview

This part of the IAR Embedded Workbench® IDE User Guide includes the
following chapters:

e Product introduction

e Installed files.

- .hmuiuhhhi

AARAre

Product introduction

The IAR Embedded Workbench® IDE is a very powerful Integrated
Development Environment, that allows you to develop and manage complete
embedded application projects. It is a development platform, with all the
features you would expect to find in your everyday working place.

This chapter describes the IAR Embedded Workbench IDE and provides a
general overview of all the tools that are integrated in this product.

The IAR Embedded Workbench IDE

The IAR Embedded Workbench IDE is the framework where all necessary tools are
seamlessly integrated:

The highly optimizing IAR C/C++ Compiler

The IAR Assembler

The versatile IAR XLINK Linker

The IAR XAR Library Builder and the IAR XLIB Librarian

A powerful editor

A project manager

A command line build utility

IAR C-SPY® debugger, a state-of-the-art high-level language debugger.

IAR Embedded Workbench is available for a large number of microprocessors and
microcontrollers in the 8-, 16-, and 32-bit segments, allowing you to stay within a
well-known development environment also for your next project. It provides an
easy-to-learn and highly efficient development environment with maximum code
inheritance capabilities, comprehensive and specific target support. IAR Embedded
‘Workbench promotes a useful working methodology, and thus a significant reduction of
the development time can be achieved by using the IAR Systems tools. We call this
concept “Different Architectures. One Solution.”

If you want detailed information about supported target processors, contact your
software distributor or your IAR representative, or visit the IAR Systems web site
www.iar.com for information about recent product releases.

Part |. Product overview

The IAR Embedded Workbench IDE

IAR Embedded Workbench® IDE
4 User Guide

AN EXTENSIBLE AND MODULAR ENVIRONMENT

Although the IAR Embedded Workbench IDE provides all the features required for a
successful project, we also recognize the need to integrate other tools. Therefore the IAR
Embedded Workbench IDE can be easily adapted to work with your favorite editor and
source code control system. The IAR XLINK Linker can produce a large number of
output formats, allowing for debugging on most third-party emulators. Support for
RTOS-aware debugging can also be added to the product.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

FEATURES

The IAR Embedded Workbench IDE is a flexible integrated development environment,
allowing you to develop applications for a variety of different target processors. It
provides a convenient Windows interface for rapid development and debugging.

Project management

The IAR Embedded Workbench IDE comes with functions that will help you to stay in
control of all project modules, for example, C or C++ source code files, assembler files,
include files, and other related modules. You create workspaces and let them contain one
or several projects. Files can be grouped, and options can be set on all levels—project,
group, or file. Changes are tracked so that a request for rebuild will retranslate all
required modules, making sure that no executable files contain out-of-date modules. The
following list shows some additional features:

e Project templates to create a project that can be built and executed out of the box for
a smooth development startup

Hierarchical project representation

Source browser with an hierarchical symbol presentation

Options can be set globally, on groups of source files, or on individual source files
The Make utility recompiles, reassembles, and links files only when necessary
Text-based project files

Custom Build utility to expand the standard tool chain in an easy way

Command line build with the project file as input.

Source code control

Source code control (SCC)—or revision control—is useful for keeping track of different
versions of your source code. IAR Embedded Workbench can identify and access any
third-party source code control system that conforms to the SCC interface published by
Microsoft.

Product introduction °

Window management

To give you full and convenient control of the placement of the windows, each window
is dockable and you can optionally organize the windows in tab groups. The system of
dockable windows also provides a space-saving way to keep many windows open at the
same time. It also makes it easy to rearrange the size of the windows.

The text editor

The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor, including unlimited undo/redo and
automatic completion. In addition, it provides functions specific to software
development, like coloring of keywords (C/C++, assembler, and user-defined), block
indent, and function navigation within source files. It also recognizes C language
elements like matching brackets. The following list shows some additional features:

o Context-sensitive help system that can display reference information for DLIB
library functions

o Syntax of C or C++ programs and assembler directives shown using text styles and

colors

Powerful search and replace commands, including multi-file search

Direct jump to context from error listing

Multi-byte character support

Parenthesis matching

Automatic indentation

Bookmarks

Unlimited undo and redo for each window.

DOCUMENTATION

The IAR Embedded Workbench IDE is documented in the IJAR Embedded Workbench®
IDE User Guide (this guide). There is also help and hypertext PDF versions of the user
documentation available online.

IAR C-SPY® Debugger

The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the IAR Systems compilers and assemblers, and
it is completely integrated in the IAR Embedded Workbench IDE, providing seamless
switching between development and debugging. This will give you possibilities such as:

e Editing while debugging. During a debug session, corrections can be made directly
into the same source code window that is used to control the debugging. Changes
will be included in the next project rebuild.

Part |. Product overview 5

IAR C-SPY® Debugger

IAR Embedded Workbench® IDE
6 User Guide

e Setting source code breakpoints before starting the debugger. Breakpoints in source
code will be associated with the same piece of source code even if additional code is
inserted.

The IAR C-SPY Debugger consists both of a general part which provides a basic set of
C-SPY features, and of a driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides a user
interface—special menus, windows, and dialog boxes—to the functions provided by the
target system, for instance, special breakpoints.

Contact your software distributor or IAR Systems representative for information about
available C-SPY drivers. You can also find information on the IAR Systems website,
www.iar.com.

Depending on your product installation, the IAR C-SPY Debugger is available with a
simulator driver and optional drivers for hardware debugger systems. For information
about hardware debugger systems, see the online help system available from the Help
menu.

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire tool chain, the output provided by the compiler
and linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you. The IAR C-SPY Debugger offers the general features
described in this section.

Source and disassembly level debugging

The IAR C-SPY Debugger allows you to switch between source and disassembly
debugging as required, for both C or C++ and assembler source code.

Debugging the C or C++ source code provides the quickest and easiest way of verifying
the program logic of your application whereas disassembly debugging lets you focus on
the critical sections of your application, and provides you with precise control over the
hardware. In Mixed-Mode display, the debugger also displays the corresponding C/C++
source code interleaved with the disassembly listing.

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function calls—inside
expressions, as well as function calls being part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging C++
code, where numerous extra function calls are made, for example to object constructors.

Product introduction °

The debug information also presents inlined functions as if a call was made, making the
source code of the inlined function available.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest. You
can set a code breakpoint to investigate whether your program logic is correct. You can
also set a data breakpoint, to investigate how and when the data changes. Finally, you
can add conditions and connect actions to your breakpoints.

Monitoring variables and expressions

‘When you work with variables and expressions you are presented with a wide choice of
facilities. Any variable and expression can be evaluated in one-shot views. You can
easily both monitor and log values of a defined set of expressions during a longer period
of time. You have instant control over local variables, and real-time data is displayed
non-intrusively. Finally, the last referred variables are displayed automatically.

Container awareness

‘When you run your application in the IAR C-SPY Debugger, you can view the elements
of library data types such as STL lists and vectors. This gives you a very good overview
and premium debugging opportunities when you work with C++ STL containers.

Call stack information

The IAR C/C++ Compiler generates extensive call stack information. This allows
C-SPY to show, without any runtime penalty, the complete stack of function calls
wherever the program counter is. You can select any function in the call stack, and for
each function you get valid information for local variables and registers available.

Powerful macro system

The IAR C-SPY Debugger includes a powerful internal macro system, to allow you to
define complex sets of actions to be performed. C-SPY macros can be used solely or in
conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY Debugger features

This list shows some additional features:

o A modular and extensible architecture allowing third-party extensions to the
debugger, for example, real-time operating systems, peripheral simulation modules,
and emulator drivers

Part |. Product overview 7

IAR C-SPY® Debugger

IAR Embedded Workbench® IDE
8 User Guide

Threaded execution keeps the IDE responsive while running the target application
Automatic stepping

Source browser provides easy navigation to functions, types and variables
Extensive type recognition of variables

Configurable registers (CPU and peripherals) and memory windows

Dedicated Stack window

Support for code coverage and function level profiling

Optional terminal I/O emulation

UBROF, Intel-extended, and Motorola input formats supported.

RTOS AWARENESS
The IAR C-SPY Debugger supports Real-time OS awareness debugging.

RTOS plugin modules can be provided by IAR, as well as by third-party suppliers.
Contact your software distributor or IAR representative, alternatively visit the AR
Systems web site, for information about supported RTOS modules.

IAR C-SPY SIMULATOR

The C-SPY simulator driver simulates the functions of the target processor entirely in

software. With this driver, the program logic can be debugged long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

Features

In addition to the general features of the C-SPY Debugger the simulator driver also
provides:

e Instruction-level simulation

e Memory configuration and validation

e Interrupt simulation

e Peripheral simulation, using the C-SPY macro system in conjunction with
immediate breakpoints.

For additional information about the IAR C-SPY Simulator, refer to Part 5. IAR
C-SPY® Simulator in this guide.

Product introduction °

DOCUMENTATION

The IAR C-SPY Debugger is documented in the JAR Embedded Workbench® IDE User
Guide (this guide). Generic debugger features are described in Part 4. Debugging,
whereas features specific to each debugger driver are described in Part 5. IAR C-SPY®
Simulator. Features specific to supported hardware debugger systems are described in
the online help system available from the Help menu. There are also help and hypertext
PDF versions of the documentation available online.

IAR C/C++ Compiler

The IAR C/C++ Compiler is a state-of-the-art compiler that offers the standard features
of the C or C++ languages, plus many extensions designed to take advantage of the
target-specific facilities.

The compiler is integrated with other IAR Systems software in the IAR Embedded
Workbench IDE.

FEATURES
The IAR C/C++ Compiler provides the following features:

Code generation

e Generic and target-specific optimization techniques produce very efficient machine
code

e Comprehensive output options, including relocatable object code, assembler source
code, and list files with optional assembler mnemonics

o The object code can be linked together with assembler routines

e Generation of extensive debug information.

Language facilities

e Support for C or C++ programming languages (some product versions do not
support C++)

e Support for IAR Extended EC++ with features such as full template support,
namespace support, the cast operators static_cast, const_cast, and
reinterpret_cast, as well as the Standard Template Library (STL). Applies
only to product versions that support C++.

o Placement of classes in different memory types

Conformance to the ISO/ANSI C standard for a free-standing environment

o Target-specific language extensions, such as special function types, extended
keywords, #pragma directives, predefined symbols, intrinsic functions, absolute
allocation, and inline assembler

e Standard library of functions applicable to embedded systems

Part |. Product overview 9

IAR Assembler

10

o IEEE-compatible floating-point arithmetic

e Interrupt functions can be written in C or C++.

Type checking

e Extensive type checking at compile time

e External references are type checked at link time

e Link-time inter-module consistency checking of the application.

RUNTIME ENVIRONMENT

There are several mechanisms available for customizing the runtime environment and
the runtime libraries.

For further information about the runtime environment, see the IJAR C/C++ Compiler
Reference Guide.

DOCUMENTATION
The IAR C/C++ Compiler is documented in the JAR C/C++ Compiler Reference Guide.

IAR Assembler

IAR Embedded Workbench® IDE
User Guide

The IAR Assembler is integrated with other IAR Systems software tools. It is a powerful
relocating macro assembler (supporting the Intel/Motorola style) with a versatile set of
directives and expression operators. The assembler features a built-in C language
preprocessor and supports conditional assembly.

FEATURES
The IAR Assembler provides the following features:

C preprocessor

List file with extensive cross-reference output

Number of symbols and program size limited only by available memory
Support for complex expressions with external references

Up to 65536 relocatable segments per module

255 significant characters in symbol names.

DOCUMENTATION
The IAR Assembler is documented in the /AR Assembler Reference Guide.

Product introduction °

IAR XLINK Linker

The IAR XLINK Linker links one or more relocatable object files produced by the IAR
Assembler or IAR C/C++ Compiler to produce machine code for the processor you are
using. It is equally well suited for linking small, single-file, absolute assembler
applications as for linking large, relocatable, multi-module, C/C++, or mixed C/C++
and assembler applications.

It can generate one out of more than 30 industry-standard loader formats, in addition to
the IAR Systems proprietary debug format used by the IAR C-SPY Debugger—UBROF
(Universal Binary Relocatable Object Format). An application can be made up of any
number of UBROF relocatable files, in any combination of assembler and C or C++
applications.

The final output produced by the IAR XLINK Linker is an absolute, target-executable
object file that can be downloaded to the processor or to a hardware emulator.
Optionally, the output file might or might not contain debug information depending on
the output format you choose.

The IAR XLINK Linker supports user libraries, and will load only those modules that
are actually needed by the application you are linking. Before linking, the IAR XLINK
Linker performs a full C-level type checking across all modules as well as a full
dependency resolution of all symbols in all input files, independent of input order. It also
checks for consistent compiler settings for all modules and makes sure that the correct
version and variant of the C or C++ runtime library is used.

FEATURES

Full inter-module type checking

Simple override of library modules

Flexible segment commands allow detailed control of code and data placement
Link-time symbol definition enables flexible configuration control

Optional code checksum generation for runtime checking

Removes unused code and data.

DOCUMENTATION

The IAR XLINK Linker is documented in the IAR Linker and Library Tools Reference
Guide.

Part |. Product overview 1

IAR XAR Library Builder and IAR XLIB Librarian

IAR XAR Library Builder and IAR XLIB Librarian

A library is a single file that contains a number of relocatable object modules, each of
which can be loaded independently from other modules in the file as it is needed. The
IAR XAR Library Builder assists you to build libraries easily. In addition the IAR XLIB
Librarian enables you to manipulate the relocatable library object files produced by the
IAR Systems assembler and compiler.

A library file is no different from any other relocatable object file produced by the
assembler or compiler, except that it includes a number of modules of the LIBRARY
type. All C or C++ applications make use of libraries, and the IAR C/C++ Compiler is
supplied with a number of standard library files.

FEATURES

The IAR XAR Library Builder and IAR XLIB Librarian both provide the following
features:

o Modules can be combined into a library file
e Interactive or batch mode operation.

The IAR XLIB Librarian provides the following additional features:

o Modules can be listed, added, inserted, replaced, or removed
® Modules can be changed between program and library type
o Segments can be listed

e Symbols can be listed.

DOCUMENTATION

The IAR XLIB Librarian and the IAR XAR Library Builder are documented in the JAR
Linker and Library Tools Reference Guide, a PDF document available from the AR
Embedded Workbench IDE Help menu.

IAR Embedded Workbench® IDE
12 User Guide

Installed files

This chapter describes which directories are created during installation and
what file types are used. At the end of the chapter, there is a section that
describes what information you can find in the various guides and online
documentation.

Refer to the QuickStart Card and the Installation and Licensing Guide, which are
delivered with the product, for system requirements and information about
how to install and register the IAR Systems products.

Directory structure

The installation procedure creates several directories to contain the different types of
files used with the IAR Systems development tools. The following sections give a
description of the files contained by default in each directory.

ROOT DIRECTORY

The root directory created by the default installation procedure is the

x:\Program Files\IAR Systems\Embedded Workbench 4.n\ directory where x
is the drive where Microsoft Windows is installed and 4 . n is the version number of the
IAR Embedded Workbench IDE.

In the root directory there are two subdirectories—common and one named after the
processor you are using. The latter directory will hereafter be referred to as cpuname.

Note: The installation path can be different from the one shown above depending on
previously installed IAR products, and on your preferences.

THE COMMON DIRECTORY

The common directory contains subdirectories for components shared by all IAR
Embedded Workbench products.

The common\bin directory

The common\bin subdirectory contains executable files for components common to all
IAR Embedded Workbench products, such as the IAR XLINK Linker, the IAR XLIB
Librarian, the IAR XAR Library Builder, the editor and the graphical user interface
components. The executable file for the IAR Embedded Workbench IDE is also located
here.

Part |. Product overview

Directory structure

14

IAR Embedded Workbench® IDE
User Guide

The common\config directory

The common\config subdirectory contains files used by IAR Embedded Workbench
for holding settings in the development environment.

The common\doc directory

The common\doc subdirectory contains readme files with recent additional information
about the components common to all AR Embedded Workbench products, such as the
linker and library tools. We recommend that you read these files. The directory also
contains an online version in PDF format of the JAR Linker and Library Tools Reference
Guide.

The common\plugins directory

The common\plugins subdirectory contains executable files and description files for
components that can be loaded as plugin modules.

The common\src directory

The common\ src subdirectory contains source files for components common to all AR
Embedded Workbench products, such as a sample reader of the IAR XLINK Linker
output format SIMPLE.

THE CPUNAME DIRECTORY

The cpuname directory contains all product-specific subdirectories.

The cpuname\bin directory

The cpuname\bin subdirectory contains executable files for target-specific
components, such as the IAR C/C++ Compiler, the IAR Assembler, and the IAR C-SPY
drivers.

The cpuname\config directory

The cpuname\ config subdirectory contains files used for configuring the development
environment and projects, for example:

Linker command files (* .xc1)

Special function register description files (*.sfr)

The C-SPY device description files (* .ddf)

Syntax coloring configuration files (*.c£fg)

Project templates for both application and library projects (* . ewp), and for the
library projects, the corresponding library configuration files.

Installed files °

The cpuname\doc directory

The cpuname\doc subdirectory contains release notes with recent additional
information about the tools. We recommend that you read all of these files. The directory
also contains online hypertext versions in hypertext PDF format of this user guide, and
of the reference guides, as well as online help files (CHM format).

The cpunamelinc directory

The cpuname\inc subdirectory holds include files, such as the header files for the
standard C or C++ library. There are also specific header files defining special function
registers (SFRs); these files are used by both the compiler and the assembler.

The cpunamellib directory

The cpuname\1ib subdirectory holds prebuilt libraries and the corresponding library
configuration files, used by the compiler.

The cpuname\plugins directory

The cpuname\plugins subdirectory contains executable files and description files for
components that can be loaded as plugin modules.

The cpuname\src directory

The cpuname\ src subdirectory holds source files for some configurable library
functions, and application code examples. This directory also holds the library source
code.

The cpuname\tutor directory

The cpuname\ tutor subdirectory contains the files used for the tutorials in this guide.

File types

The IAR Systems development tools use the following default filename extensions to
identify the IAR-specific file types:

Ext. Type of file Output from Input to

axx Target application XLINK EPROM, C-SPY, etc.
asm Assembler source code Text editor Assembler

c C source code Text editor Compiler

Table 2: File types

Part |. Product overview 15

File types

Ext. Type of file Output from Input to
cfg Syntax coloring configuration Text editor IAR Embedded
Workbench
cpp Embedded C++ source code Text editor Compiler
dxx Target application with debug information XLINK C-SPY and other symbolic
debuggers
dbg Target application with debug information XLINK C-SPY and other symbolic
debuggers
dbgt Debugger desktop settings C-SPY C-SPY
ddf Device description file Text editor C-SPY
dep Dependency information IAR Embedded IAR Embedded
Workbench Workbench
dni Debugger initialization file C-SPY C-SPY
ewd Project settings for C-SPY IAR Embedded IAR Embedded
Workbench Workbench
ewp IAR Embedded Workbench project IAR Embedded IAR Embedded
(current version) Workbench Workbench
eww Workspace file IAR Embedded IAR Embedded
Workbench Workbench
fmt Formatting information for the Locals and IAR Embedded IAR Embedded
Watch windows Workbench Workbench
h C/C++ or assembler header source Text editor Compiler or assembler
#include
i Preprocessed source Comepiler Compiler
inc Assembler header source Text editor Assembler #include
lst List output Compiler and -
assembler
mac C-SPY macro definition Text editor C-SPY
map List output XLINK -
pbd Source browse information IAR Embedded |AR Embedded
Workbench Workbench
pbi Source browse information IAR Embedded |AR Embedded
Workbench Workbench
pew IAR Embedded Workbench project (old IAR Embedded IAR Embedded
project format) Workbench Workbench

Table 2: File types (Continued)

IAR Embedded Workbench® IDE

16 User Guide

Installed files °

Ext. Type of file Output from Input to

prj IAR Embedded Workbench project (old IAR Embedded IAR Embedded

project format) Workbench Workbench

rxx Object module Compiler and XLINK, XAR, and XLIB
assembler

SXX Assembler source code Text editor IAR Assembler

sfr Special function register definitions Text editor C-SPY

IAR Embedded IAR Embedded
Workbench Workbench

wsdt Workspace desktop settings

xcl Extended command line Text editor Assembler, compiler,
XLINK
x1b Extended librarian batch command Text editor XLIB

Table 2: File types (Continued)

Note: The notation xx stands for two digits, which form an identifier for the processor
you are using.

You can override the default filename extension by including an explicit extension when
specifying a filename.

Files with the extensions ini and dni are created dynamically when you run the IAR
Embedded Workbench tools. These files, which contain information about your project
configuration and other settings, are located in a set t ings directory under your project
directory.

Note: If you run the tools from the command line, the XLINK listings (map files) will
by default have the extension 1st, which might overwrite the list file generated by the
compiler. Therefore, we recommend that you name XLINK map files explicitly, for
example projectl.map.

Documentation

This section briefly describes the information that is available in the user and reference
guides, in the online help, and on the Internet.

You can access the online documentation from the Help menu in the IAR Embedded
Workbench IDE. Help is also available via the F1 key in the IAR Embedded Workbench
IDE.

‘We recommend that you read the file readme . htm for recent information that might not
be included in the user guides. It is located in the cpuname\doc directory.

Note: Additional documentation might be available depending on your product
installation.

Part |. Product overview

17

Documentation

18

IAR Embedded Workbench® IDE
User Guide

THE USER AND REFERENCE GUIDES

The user and reference guides provided with IAR Embedded Workbench are as follows:

IAR Embedded Workbench® IDE User Guide
This guide.

IAR C/C++ Compiler Reference Guide

This guide provides reference information about the IAR C/C++ Compiler. You should
refer to this guide for information about:

e How to configure the compiler to suit your target processor and application
requirements

How to write efficient code for your target processor

The assembler language interface and the calling convention

The available data types

The runtime libraries

The IAR language extensions.

IAR Assembler Reference Guide

This guide provides reference information about the IAR Assembler, including details
of the assembler source format, and reference information about the assembler
operators, directives, mnemonics, and diagnostics.

IAR Linker and Library Tools Reference Guide

This online PDF guide provides reference information about the IAR linker and library
tools:

o The IAR XLINK Linker reference sections provide information about XLINK
options, output formats, environment variables, and diagnostics.

o The IAR XAR Library Builder reference sections provide information about XAR
options and output.

o The IAR XLIB Librarian reference sections provide information about XLIB
commands, environment variables, and diagnostics.

ONLINE HELP

The context-sensitive online help contains reference information about the menus and
dialog boxes in the IAR Embedded Workbench IDE. There is also keyword reference
information for specific functions. To obtain reference information for a function, select
the function name in the editor window and press F1.

Installed files °

IAR ON THE WEB

The latest news from IAR Systems can be found at the web site www.iar.com, available
from the Help menu in the Embedded Workbench IDE. Visit it for information about:

Product announcements

Updates and news about current versions

Special offerings

Evaluation copies of the IAR Systems products

Technical Support, including technical notes

Application notes

Links to chip manufacturers and other interesting sites

Distributors; the names and addresses of distributors in each country.

Part |. Product overview 19

http://www.iar.com

Documentation

IAR Embedded Workbench® IDE
20 User Guide

Part 2. Tutorials

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e Creating an application project

e Debugging using the IAR C-SPY® Debugger
e Mixing C and assembler modules

e Using C++

e Simulating an interrupt

e Working with library modules.

N

.hmuiuhhhi

ARARAIed

22

Creating an application
project

This chapter introduces you to the IAR Embedded Workbench® integrated
development environment (IDE). The tutorial demonstrates a typical
development cycle and shows how you use the compiler and the linker to
create a small application for your device. For instance, creating a workspace,
setting up a project with C source files, and compiling and linking your
application.

The development cycle continues in the next chapter, see Debugging using the
IAR C-SPY® Debugger, page 33.

Setting up a new project
Using the IAR Embedded Workbench IDE, you can design advanced project models.
You create a workspace to which you add one or several projects. There are ready-made
project templates for both application and library projects. Each project can contain a
hierarchy of groups in which you collect your source files. For each project you can
define one or several build configurations. For more details about designing project
models, see the chapter Managing projects in this guide.

Because the application in this tutorial is a simple application with very few files, the
tutorial does not need an advanced project model.

‘We recommend that you create a specific directory where you can store all your project
files. In this tutorial we call the directory projects. You can find all the files needed
for the tutorials in the cpuname\ tutor directory. Make a copy of the tutor directory
in your projects directory.

Before you can create your project you must first create a workspace.

CREATING A WORKSPACE WINDOW

The first step is to create a new workspace for the tutorial application. When you start
the IAR Embedded Workbench IDE for the first time, there is already a ready-made
workspace, which you can use for the tutorial projects. If you are using that workspace,
you can ignore the first step.

Part 2. Tutorials 23

Setting up a new project

IAR Embedded Workbench® IDE
24 User Guide

Choose File>New>Workspace. Now you are ready to create a project and add it to the
workspace.
CREATING THE NEW PROJECT

To create a new project, choose Project>Create New Project. The Create New
Project dialog box appears, which lets you base your new project on a project
template.

Create New Project E

Toal chair: ICPUNAME j

Project templates:

-t
-C
-CLIB

Description:

Creates an empty project.

()3 Cancel
I |

Figure 1: Create New Project dialog box

From the Tool chain drop-down list, choose the tool chain you are using and click
OK For this tutorial, select the project template Empty project, which simply creates
an empty project that uses default project settings.

In the standard Save As dialog box that appears, specify where you want to place your
project file, that is, in your newly created projects directory. Type projectl in the
File name box, and click Save to create the new project.

Creating an application project ___¢

The project will appear in the workspace window.

IDebug 'l
Files IEES
Elproject! - Debug * v

project] I

Figure 2: Workspace window

By default two build configurations are created: Debug and Release. In this tutorial only
Debug will be used. You choose the build configuration from the drop-down menu at the
top of the window. The asterisk in the project name indicates that there are changes that
have not been saved.

A project file—with the filename extension ewp—has now been created in the
projects directory, not immediately, but later on when you save the workspace. This
file contains information about your project-specific settings, such as build options.

Before you add any files to your project, you should save the workspace. Choose
File>Save Workspace and specify where you want to place your workspace file. In
this tutorial, you should place it in your newly created projects directory. Type
tutorials in the File name box, and click Save to create the new workspace.

Save Workspace As EHE
Save ir: Ia projects j - £ B
|1 Debug

D setkings

My Documents

File name: IM

Save as type: IW’orkspace Files [*.eww]

Save I
Cancel |

L e

Figure 3: New Workspace dialog box

Part 2. Tutorials 25

Setting up a new project

IAR Embedded Workbench® IDE

26 User Guide

A workspace file—with the filename extension eww—has now been created in the
projects directory. This file lists all projects that you will add to the workspace.
Information related to the current session, such as the placement of windows and
breakpoints is located in the files created in the projects\settings directory.

ADDING FILES TO THE PROJECT

This tutorial uses the source files Tutor.c and Utilities.c.

o The Tutor.c application is a simple program using only standard features of the C
language. It initializes an array with the ten first Fibonacci numbers and prints the
result to stdout.

e Theutilities.c application contains utility routines for the Fibonacci
calculations.

Creating several groups is a possibility for you to organize your source files logically
according to your project needs. However, because there are only two files in this project
there is no need for creating a group. For more information about how to create complex
project structures, see the chapter Managing projects.

In the workspace window, select the destination to which you want to add a source file;
a group or, as in this case, directly to the project.

Choose Project>Add Files to open a standard browse dialog box. Locate the files
Tutor.c and Utilities.c, select them in the file selection list, and click Open to
add them to the projectl project.

Add Files - project1 HE

Look i Ia tutor j & £ B

1 Debug

[settings

""" CppTutor.cpp
Fibonacci.cpp

My Documents
-

npLker

File name: I"Utilities.c" "Tutaor.c" j Open I
Files of type: IEI.-"EI++ Source Files [*.c.%.opp;®.cc) j Cancel |

Figure 4: Adding files to projectl

Creating an application project ___¢

SETTING PROJECT OPTIONS

Now you will set the project options. For application projects, options can be set on all
levels of nodes. First you will set the general options to suit the processor configuration
in this tutorial. Because these options must be the same for the whole build
configuration, they must be set on the project node.

I Select the project folder icon projectl - Debug in the workspace window and choose
Project>Options.

The Target options page in the General Options category is displayed. In this tutorial
you should use the default settings. Then set up the compiler options for the project.

2 Select C/C++ Compiler in the Category list to display the compiler option pages.

Options for node “projectl - Debug **

Category: Factary Settings |

Language | Code I Dutputl List I Preprocessorl Diagnosticsl Crnd Opt

Agzembler

Cusztomn Build

Lirker Language
[ebugger o

" Embedded C++
" Extended Embedded C++
 Automatic [extension based)

™ Require pratotypes

r— Language conformance Flain ‘char' iz
@ Allow |AR extensions Signed
" Relaxed IS0/4NS] & Unsigned
£ Stict 1SOA4NSI

™ Enable multibyte support

oK I Cancel |

Figure 5: Setting compiler options

3 Verify that default settings are used. In addition to the default settings, click the List
page, and select the options Output list file and Assembler mnemonics. Click OK to
set the options you have specified.

Note: It is possible to customize the amount of information to be displayed in the Build
messages window. In this tutorial, the default setting is not used. Thus, the contents of
the Build messages window on your screen might differ from the screen shots.

The project is now ready to be built.

Part 2. Tutorials 27

Compiling and linking the application

28

Compiling and linking the application

BFs

IAR Embedded Workbench® IDE
User Guide

You can now compile and link the application. You should also create a compiler list file
and a linker map file and view both of them.

COMPILING THE SOURCE FILES

To compile the file Utilities.c, select it in the workspace window.

Choose Project>Compile.

Alternatively, click the Compile button in the toolbar or choose the Compile command
from the context menu that appears when you right-click on the selected file in the
workspace window.

The progress will be displayed in the Build messages window.

Messages |
Compiling

utilities.c

Generating Browse Info

Dane. 0 erroris). 0warning(s)

Figure 6: Compilation message

Compile the file Tutor . c in the same manner.

The IAR Embedded Workbench IDE has now created new directories in your project
directory. Because you are using the build configuration Debug, a Debug directory has
been created containing the directories List, Obj, and Exe:

o The List directory is the destination directory for the list files. The list files have
the extension 1st.

e The Obj directory is the destination directory for the object files from the compiler
and the assembler. These files have the extension rxx and will be used as input to
the IAR XLINK Linker.

o The Exe directory is the destination directory for the executable file. It has the
extension dxx and will be used as input to the IAR C-SPY® Debugger. Note that
this directory will be empty until you have linked the object files.

Creating an application project ___¢

Click on the plus signs in the workspace window to expand the view. As you can see,
IAR Embedded Workbench has also created an output folder icon in the workspace
window containing any generated output files. All included header files are displayed as
well, showing the dependencies between the files.

Workspace B
Iproiect‘l - Debug 'l

Filas IAES
B Etutarials *

=l project] - Debug E2

=1 B Tutar.c

| = @0utput

| — [Tutar st
I — [Tutor.phi
|

|

L— B Tutar.rme
— & Tutorh

L— [& Utilities.h
L@ @ Utilities.c
&1 Ca Output

— B Utilities.Ist
— [Utilities. phi
L— B Utilities.rex
— [stdarg.h

— [# stdich

— [sysmach
L— [& Utilities.h

project] I

Figure 7: Workspace window after compilation

VIEWING THE LIST FILE

Now examine the compiler list file and notice how it is automatically updated when you,
as in this case, will investigate how different optimization levels affect the generated
code size.

Open the list file utilities. 1st by double-clicking it in the workspace window.
Examine the list file, which contains the following information:

o The header shows the product version, information about when the file was created,
and the command line version of the compiler options that were used

o The body of the list file shows the assembler code and binary code generated for
each statement. It also shows how the variables are assigned to different segments

® The end of the list file shows the amount of stack, code, and data memory required,
and contains information about error and warning messages that might have been
generated.

Notice the amount of generated code at the end of the file and keep the file open.

Part 2. Tutorials

29

Compiling and linking the application

30

IAR Embedded Workbench® IDE
User Guide

2 Choose Tools>Options to open the IDE Options dialog box and click the Editor tab.
Select the option Scan for Changed Files. This option turns on the automatic update
of any file open in an editor window, such as a list file. Click the OK button.

IDE Dptions E

Editor Setup Files I Editor Colors and Fonts I
Project I Source Code Contral I Debugger |
Common Fonts I Key Bindings I External Editar I Messages Editor

Tab size: IS [V Syntax highlighting
¥ Auto indent

Indent size: |2 Configure. .. |

Tab Key Function: ——— T Show line numbers
' Inzert tab V' Scan for changed files
& |ndent with spaces V' Show bookmarks

I Enable vitual space
EOL characters: IPC 'l

V' Remove trailing blarks

QK I Cancel | Aol | Help |

Figure 8: Setting the option Scan for Changed Files

3 Select the file Utilities.c in the workspace window. Open the C/C++ Compiler
options dialog box by right-clicking on the selected file in the workspace window.
Click the Optimizations tab and select the Override inherited settings option.
Choose High from the Optimizations drop-down list. Click OK.

Notice that the options override on the file node is indicated in the workspace window.

4 Compile the file Utilities.c. Now you will notice two things. First, note the
automatic updating of the open list file due to the selected option Scan for Changed
Files. Second, look at the end of the list file and notice the effect on the code size due
to the increased optimization.

5 For this tutorial, the optimization level None should be used, so before linking the
application, restore the default optimization level. Open the C/C++ Compiler options
dialog box by right-clicking on the selected file in the workspace window. Deselect the
Override inherited settings option and click OK. Recompile the file Utilities.c.

Creating an application project ___¢

LINKING THE APPLICATION
Now you should set up the options for the IAR XLINK Linker.

Select the project folder icon projectl - Debug in the workspace window and choose
Project>Options. Then select Linker in the Category list to display the XLINK
option pages.

For this tutorial, default factory settings are used. However, pay attention to the choice
of output format and linker command file.

Output format

It is important to choose the output format that suits your purpose. You might want to
load it to a debugger—which means that you need output with debug information. In this
tutorial you will use the default output options suitable for the C-SPY
debugger—Debug information for C-SPY, With runtime control modules, and With
I/0 emulation modules—which means that some low-level routines will be linked that
direct stdin and stdout to the Terminal I/O window in the C-SPY Debugger. You find
these options on the Qutput page.

Alternatively, in your real application project, you might want to load the output to a
PROM programmer—in which case you need an output format without debug
information, such as Intel-hex or Motorola S-records.

Linker command file

In the linker command file, the XLLINK command line options for segment control are
used for placing segments. It is important to be familiar with the linker command file
and placement of segments. You can read more about this in the JAR C/C++ Compiler
Reference Guide.

The linker command file templates supplied with the product can be used as is in the
simulator, but when using them for your target system you might have to adapt them to
your actual hardware memory layout. You can find supplied linker command files in the
config directory.

In this tutorial you will use the default linker command file, which you can see on the
Config page.

If you want to examine the linker command file, use a suitable text editor, such as the
IAR Embedded Workbench editor, or print a copy of the file, and verify that the
definitions match your requirements.

Linker map file

By default no linker map file is generated. To generate a linker map file, click the List
tab and select the options Generate linker listing, Segment map, and Module map.

Part 2. Tutorials 31

Compiling and linking the application

32

IAR Embedded Workbench® IDE
User Guide

2 Click OK to save the XLINK options.

Now you should link the object file, to generate code that can be debugged.

3 Choose Project>Make. The progress will as usual be displayed in the Build messages
window. The result of the linking is a code file projectl . dxx with debug information
and a map file projectl.map.

VIEWING THE MAP FILE

Examine the file projectl.map to see how the segment definitions and code were
placed in memory. These are the main points of interest in a map file:

The header includes the options used for linking.

The CROSS REFERENCE section shows the address of the program entry.

The RUNTIME MODEL section shows the runtime model attributes that are used.

The MODULE MAP shows the files that are linked. For each file, information about the
modules that were loaded as part of your application, including segments and global
symbols declared within each segment, is displayed.

The SEGMENTS IN ADDRESS ORDER section lists all the segments that constitute
your application.

The projectl. dxx application is now ready to be run in the IAR C-SPY Debugger.

Debugging using the IAR
C-SPY® Debugger

This chapter continues the development cycle started in the previous chapter
and explores the basic features of the IAR C-SPY Debugger.

Note that, depending on what IAR product package you have installed, the IAR
C-SPY Debugger may or may not be included. The tutorials assume that you
are using the C-SPY Simulator.

Debugging the application

el 2

The projectl.dxx application, created in the previous chapter, is now ready to be run
in the IAR C-SPY Debugger where you can watch variables, set breakpoints, view code
in disassembly mode, monitor registers and memory, and print the program output in the
Terminal I/O window.

STARTING THE DEBUGGER
Before starting the IAR C-SPY Debugger you must set a few C-SPY options.

Choose Project>Options and then the Debugger category. On the Setup page, make
sure that you have chosen Simulator from the Driver drop-down list and that Run to
main is selected. Click OK.

Choose Project>Debug. Alternatively, click the Debugger button in the toolbar. The
IAR C-SPY Debugger starts with the projectl . dxx application loaded. In addition
to the windows already opened in the Embedded Workbench, a set of C-SPY-specific
windows are now available.

ORGANIZING THE WINDOWS

In the IAR Embedded Workbench IDE, you can dock windows at specific places, and
organize them in tab groups. You can also make a window floating, which means it is
always on top of other windows. If you change the size or position of a floating window,
other currently open windows are not affected.

The status bar, located at the bottom of the Embedded Workbench main window,
contains useful help about how to arrange windows. For further details, see Organizing
the windows on the screen, page 69.

Part 2. Tutorials

33

Debugging the application

34

IAR Embedded Workbench® IDE
User Guide

Make sure the following windows and window contents are open and visible on the
screen: the Workspace window with the active build configuration tutorials — project1,
the editor window with the source files Tutor.cand Utilities.c, and the Debug Log
window.

% 1AR Embedded Workbench IDE [_ O] x]
Fle Edt Yiew Project Debug Smulator Tools Window Help

[DB2E & i 2 lo | =Y % vz @B 0 |)

CIeZ22 222 58

project] - Debug hd void do_foreground_process (void) ﬂ‘
Files BT | | i ne £
— unsigned int fih;
(“(U"E“ -~ next_counter|) ;
=] projectl - Debug v | | fib = get_fib(call_count);
= E"l:':ltmc pur_fib{ fib];
1 3 Output '
— B Tutor st
— B Tutorphi
L & Tutor.re e
— [Tutarh Main program.
L— [Utilities.h Prints the Fibomacci mmbers.
Ha (@ Utilities.c 4
-2 21 Output void main(void)
— B wtiliies.Ist ¢
— B Uiilities phi B sall_soune=0;
L— [Utilities.roc init fib() s
— @ stdargh Rt
— [stdio.h while[call_count < MAX_FIE)
— B sysmach (- -
—DOE Utilities.h do_toreground_process() ;
utput '
i
projsctl [fol_ 4l | ’l—l
= Messages ‘
Building configuration: project - Debug
Tutorc
Utilities.c
Linkirng

Total number of errors: 0
Total number of wamings: 0

[= Debog Log, Build
Reary s cal= i -

Figure 9: The C-SPY Debugger main window

INSPECTING SOURCE STATEMENTS

To inspect the source statements, double-click the file Tutor. c in the workspace
window.

With the file Tutor. c displayed in the editor window, first step over with the
Debug>Step Over command.

Alternatively, click the Step Over button on the toolbar.

Debugging using the IAR C-SPY® Debugger __4

The current position should be the call to the init_£ib function.

tutor.c |

* ZI

Mzin program.
Prints the Fibonacci numbers.

*
woid nain(woid)
i

call_count=0;
5 init_fib():

while| call count < MiX FIE |
i

do_foreground processi);
'
'

of
[« | B

Figure 10: Stepping in C-SPY

Choose Debug>Step Into to step into the function init_£ib.
Alternatively, click the Step Into button on the toolbar.

At source level, the Step Over and Step Into commands allow you to execute your
application a statement or instruction at a time. Step Into continues stepping inside
function or subroutine calls, whereas Step Over executes each function call in a single
step. For further details, see Step, page 110.

When Step Into is executed you will notice that the active window changes to
Utilities.c asthe function init_£ib is located in this file.

Part 2. Tutorials 35

Debugging the application

36

IAR Embedded Workbench® IDE
User Guide

4 Use the Step Into command until you reach the for loop.

unsigmed int root[MiX FIB]: i

e

Initialize MAX FIB Fibonacci numbers.

*
void init_fib{ woid)
i

short i 45

root[0] = root[l] = 1;
5 for | 128 7 i<ML¥ FIB ; i++)
root[i] = get_fib{i) + get fih(i-1):
i

e

.
[l 1

Return the Fibonacci mumber 'nr'. _ILI
| &

Figure 11: Using Step Into in C-SPY

Use Step Over until you are back in the header of the for loop. You will notice that
the step points are on a function call level, not on a statement level.

You can also step on a statement level. Choose Debug>Next statement to execute one
statement at a time. Alternatively, click the Next statement button on the toolbar.

Notice how this command differs from the Step Over and the Step Into commands.

Debugging with C-SPY is usually quicker and more straightforward in C/C++ source
mode. However, if you want to have full control over low-level routines, you can debug
in disassembly mode where each step corresponds to one assembler instruction. C-SPY
lets you switch freely between the two modes.

Choose View>Disassembly to open the Disassembly window, if it is not already
open.You will see the assembler code corresponding to the current C statement.

Try the different step commands also in the Disassembly window.

INSPECTING VARIABLES

C-SPY allows you to watch variables or expressions in the source code, so that you can
keep track of their values as you execute your application. You can look at a variable in
a number of ways; for example by pointing at it in the source window with the mouse
pointer, or by opening one of the Locals, Watch, Live Watch, or Auto windows. For
more information about inspecting variables, see the chapter Working with variables and
expressions.

Debugging using the IAR C-SPY® Debugger __4

Note: When optimization level None is used, all non-static variables will live during
their entire scope and thus, the variables are fully debuggable. When higher levels of
optimizations are used, variables might not be fully debuggable.

Using the Auto window

Choose View>Auto to open the Auto window.

The Auto window will show the current value of recently modified expressions.

Expression | Yalue | Location | Type |
i 45 R10 short
root[0] 0 Mermory:0x202 unsigned int
root <array> Mermor:0x202 unsigned int[10]
root[1] 0 Mermory:0x204 unsigned int

Figure 12: Inspecting variables in the Auto window

Keep stepping to see how the values change.

Setting a watchpoint
Next you will use the Watch window to inspect variables.

Choose View>Watch to open the Watch window. Notice that it is by default grouped
together with the currently open Auto window; the windows are located as a rab group.

Set a watchpoint on the variable i using the following procedure: Click the dotted
rectangle in the Watch window. In the entry field that appears, type i and press the
Enter key.

You can also drag a variable from the editor window to the Watch window.

Select the root array in the init_fib function, then drag it to the Watch window.

Part 2. Tutorials 37

Debugging the application

IAR Embedded Workbench® IDE
38 User Guide

The Watch window will show the current value of i and root. You can expand the root
array to watch it in more detail.

Expression | Walue | Location | Type |
i 45 R0 short

= root <array> Mermor:0x202 unsigned int[10]
— [0 0 Mermory:0x202 unsigned int
= [0 Mermory:0x204 unsigned int
= [2] 0 Mermory:0<206 unsigned int
= [3] 0 Mermory:0x208 unsigned int
— [4] 0 Mermory:0<20A unsigned int
— [5] 0 Mermory:0<20C unsigned int
— [6] 0 Mermory:0<20E unsigned int
= [7] 0 Mermory:0<210 unsigned int
— [8] 0 Mermor:0x212 unsigned int
— 9 0 Mermor:0x214 unsigned int
‘Watch

Figure 13: Watching variables in the Watch window

Execute some more steps to see how the values of i and root change.

To remove a variable from the Watch window, select it and press Delete.

SETTING AND MONITORING BREAKPOINTS

The IAR C-SPY Debugger contains a powerful breakpoint system with many features.
For detailed information about the different breakpoints, see The breakpoint system,
page 121.

The most convenient way is usually to set breakpoints interactively, simply by
positioning the insertion point in or near a statement and then choosing the Toggle
Breakpoint command.

Set a breakpoint on the statement get_£ib (i) using the following procedure: First,
click the utilities.c tab in the editor window and click in the statement to position
the insertion point. Then choose Edit>Toggle Breakpoint.

Alternatively, click the Toggle Breakpoint button on the toolbar.

Debugging using the IAR C-SPY® Debugger __4

A breakpoint will be set at this statement. The statement will be highlighted and there
will be an X in the margin to show that there is a breakpoint there.

B Utilities.c {(Read Only) M= E3
/*
Initialize MAX FIB Fibonacci numbers.
s
void init_fib{ void j
([|
short i = 45;
root[0] = root[l] = 1;
for { i=2 ; i<MAX _FIE : i++)
D roor(i] - [EENEREEEN + vev_fibii-l):
i

|fial |’|—/!

Figure 14: Setting breakpoints

To view all defined breakpoints, choose View>Breakpoints to open the Breakpoints
window. You can find information about the breakpoint execution in the Debug Log
window.
Executing up to a breakpoint
2 To execute your application until it reaches the breakpoint, choose Debug>Go.
+++| Alternatively, click the Go button on the toolbar.
L

The application will execute up to the breakpoint you set. The Watch window will
display the value of the root expression and the Debug Log window will contain
information about the breakpoint.

3 Select the breakpoint and choose Edit>Toggle Breakpoint to remove the breakpoint.

Part 2. Tutorials 39

Debugging the application

40

IAR Embedded Workbench® IDE
User Guide

MONITORING REGISTERS

The Register window lets you monitor and modify the contents of the processor
registers.

Choose View>Register to open the Register window.

IEF'U Registers j
PC = 0O=xll62 Ri2 = 0=0200
8P = 0=09F8 R13 = 0=FFFF
FHer = 0=z0000 R14 = 0x0000
R4 = 0=x78ZD Ri5 = 0=0000
RE = 0=6BEE CYCLECOUNTER = 276
R6 = 0=5E95
R7 = 0x763B
RE = O=x4A65
RO = 0=27C3
Ri0 = 0=002D
Ri1 = 0=x7064

Figure 15: Register window

Step Over to execute the next instructions, and watch how the values change in the
Register window.

Close the Register window.

MONITORING MEMORY

The Memory window lets you monitor selected areas of memory. In the following
example, the memory corresponding to the variable root will be monitored.

Choose View>Memory to open the Memory window.

Make the Utilities.c window active and select root. Then drag it from the C source
window to the Memory window.

The memory contents in the Memory window corresponding to root will be selected.

You can change the memory contents by editing the values in the Memory window. Just
place the insertion point at the memory content that you want to edit and type the desired
value.

Close the Memory window.

Debugging using the IAR C-SPY® Debugger __4

VIEWING TERMINAL I/O

Sometimes you might need to debug constructions in your application that make use of
stdin and stdout without the possibility of having hardware support. C-SPY lets you
simulate stdin and stdout by using the Terminal I/O window.

Note: The Terminal I/O window is only available in C-SPY if you have linked your
project using the output option With I/O emulation modules. This means that some
low-level routines will be linked that direct stdin and stdout to the Terminal I/O
window, see Linking the application, page 31.

I Choose View>Terminal I/O to display the output from the I/O operations.

Terminal I;0 B
Output: Loq file: OFff
1 =
1
2
3
5
8
13
21
34
55 -
K| 3
Input: LCtl codes | Input Mode... |
I— Buffer size: 1]

Figure 16: Output from the I/O operations

The contents of the window depends on how far you have executed the application.

REACHING PROGRAM EXIT
I To complete the execution of your application, choose Debug>Go.

+++| Alternatively, click the Go button on the toolbar.
L

Part 2. Tutorials 41

Debugging the application

As no more breakpoints are encountered, C-SPY reaches the end of the application and
aprogram exit reached message is printed in the Debug Log window.

Log |

Tue Mar 30 13:16:40 2004 Loaded module

Tue Mar3013:16:40 2004: Target reset

Tue Mar 30 13:16:40 2004: Profiler activated.
Tue Mar 30 14:18:40 2004: Program exit reached.

Debug Log

Figure 17: Reaching program exit in C-SPY
All output from the application has now been displayed in the Terminal I/O window.

4—| If you want to start again with the existing application, choose Debug>Reset, or click
=" the Reset button on the toolbar.

2 To exit from C-SPY, choose Debug>Stop Debugging. Alternatively, click the Stop
ﬁl Debugging button on the toolbar. The Embedded Workbench workspace is displayed.

C-SPY also provides many other debugging facilities. Some of these—for example
macros and interrupt simulation—are described in the following tutorial chapters.

For further details about how to use C-SPY, see Part 4. Debugging. For reference
information about the features of C-SPY, see Part 6. Reference information and the
online help system.

IAR Embedded Workbench® IDE
42 User Guide

Mixing C and assembler
modules

In some projects it may be necessary to write certain pieces of source code
in assembler language. The chapter first demonstrates how the compiler can
be helpful in examining the calling convention, which you need to be familiar
with when calling assembler modules from C/C++ modules or vice versa.
Furthermore, this chapter demonstrates how you can easily combine source
modules written in C with assembler modules, but the procedure is applicable
to projects containing source modules written in C++, too, if your product
version supports C++.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Examining the calling convention

When writing an assembler routine that will be called from a C routine, it is necessary
to be aware of the calling convention used by the compiler. By creating skeleton code in
C and letting the compiler produce an assembler output file from it, you can study the
produced assembler output file and find the details of the calling convention.

In this example you will make the compiler create an assembler output file from the file
Utilities.c.

I Create anew project in the workspace tutorials used in previous tutorials, and name
the project project2.

2 Add the files Tutor.c and Utilities.c to the project.

To display an overview of the workspace, click the Overview tab available at the bottom
of the workspace window. To view only the newly created project, click the project2
tab. For now, the project2 view should be visible.

3 To set options, choose Project>Options, and select the General Options category. On
project level, default factory settings should be used in this tutorial.

4 To set options on file level node, in the workspace window, select the file
Utilities.c.

Part 2. Tutorials 43

Adding an assembler module to the project

Choose Project>Options. You will notice that only the C/C++ Compiler and Custom
Build categories are available.

In the C/C++ Compiler category, select Override inherited settings and verify the
following settings:

Page Option
Optimizations Size: None (Best debug support)*
List Output assembler file

Include source
Include compiler runtime information (deselected)f.

Table 3: Compiler options for project2

" In this example it is necessary to use a low optimization level when compiling the code to show
local and global variable accesses. If a higher level of optimization is used, the required references
to local variables can be removed. The actual function declaration is not changed by the optimi-
zation level.

T Depending on the product version you are using, it may be necessary to have the option Include
compiler runtime information selected.

Click OK and return to the workspace window.

Compile the file utilities.c. You can find the output file Utilities. sxxin the
subdirectory projects\debug\list.

To examine the calling convention and to see how the C or C++ code is represented in
assembler language, open the file Utilities. sxx.

You can now study where and how parameters are passed, how to return to the program
location from where a function was called, and how to return a resulting value. You can
also see which registers an assembler-level routine must preserve.

To obtain the correct interface for your own application functions, you should create
skeleton code for each function that you need.

For more information about the calling convention used in the compiler, see the /AR
C/C++ Compiler Reference Guide.

Adding an assembler module to the project

IAR Embedded Workbench® IDE

44 User Guide

This tutorial demonstrates how you can easily create a project containing both assembler
modules and C modules. You will also compile the project and view the assembler
output list file.

Mixing C and assembler modules ___¢

SETTING UP THE PROJECT

Modify project2 by removing the file Utilities.c—select it, right-click, and
choose Remove from the context menu that appears—and adding the file
Utilities.sxx.

Note: To view assembler files in the Add files dialog box, choose Project>Add Files
and choose Assembler Files from the Files of type drop-down list.

Select the project level node in the workspace window, choose Project>Options. Use
the default settings in the General Options, C/C++ Compiler, and Linker categories.
Select the Assembler category, click the List tab, and select the option Output list file.

Click OK.

Select the file utilities. sxx in the workspace window and choose
Project>Compile to assemble it.

Assuming that the source file was assembled successfully, the file Utilities. rxx will
be created, containing the linkable object code.
Viewing the assembler list file

Open the list file by double-clicking the file Utilities.1st available in the Output
folder icon in the workspace window.

The end of the file contains a summary of errors and warnings that were generated.
For further details of the list file format, see the IAR Assembler Reference Guide.
Choose Project>Make to relink project2.

Start C-SPY to run the project?2 . dxx application and see that it behaves like in the
previous tutorial.

Exit the debugger when you are done.

Part 2. Tutorials 45

Adding an assembler module to the project

IAR Embedded Workbench® IDE
46 User Guide

Using C++

In this chapter, C++ is used to create a C++ class. The class is then used for
creating two independent objects, and the application is built and debugged.
We also show an example of how to set a conditional breakpoint.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Note that, depending on what IAR product package you have installed,
support for C++ may or may not be included. This tutorial assumes that there
is support for C++.

Creating a C++ application
This tutorial will demonstrate how to use the IAR Embedded Workbench C++ features.
The tutorial consists of two files:

® Fibonacci.cpp creates a class fibonacci that can be used to extract a series of
Fibonacci numbers

® CPPtutor.cpp creates two objects, £ibl and £ib2, from the class fibonacci
and extracts two sequences of Fibonacci numbers using the £ibonacci class.

To demonstrate that the two objects are independent of each other, the numbers are
extracted at different speeds. A number is extracted from £ib1 each turn in the loop
while a number is extracted from £ib2 only every second turn.

The object £ib1 is created using the default constructor while the definition of £ib2
uses the constructor that takes an integer as its argument.
COMPILING AND LINKING THE C++ APPLICATION

I In the workspace tutorials used in the previous chapters, create a new project,
project3.

2 Add the files Fibonacci . cpp and CPPtutor . cpp to project3.

Part 2. Tutorials

Creating a C++ application

IAR Embedded Workbench® IDE
48 User Guide

3 Choose Project>Options and make sure default factory settings are used.

In addition to the default settings, you need to switch to the C++ programming language,
which is supported by the IAR DLIB Library. To use a DLIB library, choose the General
Options category and click the Library Configuration tab. From the Library
drop-down list, choose Normal DLIB.

To switch to the C++ programming language, choose the C/C++ Compiler category
and click the Language tab. Choose Embedded C++.

To read more about the IAR DLIB Library and the C++ support, see the IAR C/C++
Compiler Reference Guide.

Choose Project>Make to compile and link your application.

Alternatively, click the Make button on the toolbar. The Make command compiles and
links those files that have been modified.

Choose Project>Debug to start the IAR C-SPY® Debugger.

SETTING A BREAKPOINT AND EXECUTING TO IT
Open the CPPtutor.cpp window if it is not already open.

To see how the object is constructed, set a breakpoint on the C++ object £ib1 on the
following line:

fibonacci fibl;

CppTutor.cpp | Fibonacei.cop

#include <iostreams i

#include "Fibonacci.h™

Sknt haitiiveid)

i

A4 Create two fibonacci objects.

D tfibonacci
fibonacci £ibZ(7): A4 FibZ starts at fibonacci mumber 7.
A Extract two series of fibonaccl numbers.
for (int i = 1:; i < 30; ++i)
{

cout << fibl.next();

A I "It is even, we print out the next fibonacci number of
A4 the sequence represented by fibZ.
if (i % 2 == 0}
{
cout <« " " L fibZ.nexti):

) -
Jfal <] |_>|_I

Figure 18: Setting a breakpoint in CPPtutor.cpp

Using C++ ___4

Choose Debug>Go, or click the Go button on the toolbar.
The cursor should now be placed at the breakpoint.

To step into the constructor, choose Debug>Step Into or click the Step Into button in
the toolbar. Then click Step Out again.

Step Over until the line:
cout << fibl.next();
Step Into until you are in the function next in the file Fibonacci . cpp.

Use the Go to function button in the lower left corner of the editor window to find and
go to the function nth by double-clicking the function name. Set a breakpoint on the
function call nth (n-1) at the line

value = nth(n-1) + nth(n-2);

It can be interesting to backtrace the function calls a few levels down and to examine
the value of the parameter for each function call. By adding a condition to the
breakpoint, the break will not be triggered until the condition is true, and you will be
able to see each function call in the Call Stack window.

To open the Breakpoints window, choose View>Breakpoints. Select the breakpoint in
the Breakpoints window, right-click to open the context menu, and choose Edit to open
the Edit Breakpoints dialog box. Set the value in the SKip count text box to 4 and click

Apply.
Close the dialog box.

Looking at the function calls

Choose Debug>Go to execute the application until the breakpoint condition is
fulfilled.

When C-SPY stops at the breakpoint, choose View>Call Stack to open the Call Stack
window.

™ Call Stack M=l E3

[?estart_call_main + 0x4]

Figure 19: Inspecting the function calls

Part 2. Tutorials

49

Creating a C++ application

There are five instances of the function nth displayed on the call stack. Because the Call
Stack window displays the values of the function parameters, you can see the different
values of n in the different function instances.

You can also open the Register window to see how it is updated as you trace the function
calls by double-clicking on the function instances.

PRINTING THE FIBONACCI NUMBERS
I Open the Terminal I/O window from the View menu.
2 Remove the breakpoints and run the application to the end and verify the Fibonacci

sequences being printed.

Terminal I;0 B

Output: Log file: Off

A fibonacci ohjectwas created. o
A fibonacc ohjectthat starts at fibonacc number 7 was created.

1
113
2
32
5
g 34
13

21 55
34

o o

Input: LCtl codes | InputMode...l

I Buffer size: 1]

Figure 20: Printing Fibonacci sequences

IAR Embedded Workbench® IDE
50 User Guide

Simulating an interrupt

In this tutorial an interrupt handler for a serial port is added to the project.
The Fibonacci numbers will be read from an on-chip communication
peripheral device (UART).

This tutorial will show how the IAR C/C++ Compiler interrupt keyword and
the #fpragma vector directive can be used. The tutorial will also show how an
interrupt can be simulated using the features that support interrupts,
breakpoints, and macros. Notice that this example does not describe an exact
simulation; the purpose is to illustrate a situation where C-SPY macros,
breakpoints, and the interrupt system can be useful to simulate hardware.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Note that interrupt simulation is possible only when you are using the IAR
C-SPY® Simulator.

Adding an interrupt handler

This section will demonstrate how to write an interrupt in an easy way. It starts with a
brief description of the application used in this project, followed by a description of how
to set up the project.

THE APPLICATION—A BRIEF DESCRIPTION

The interrupt handler will read values from the serial communication port receive
register (UART), RBUF. It will then print the value. The main program enables interrupts
and starts printing periods (.) in the foreground process while waiting for interrupts.

Note: In this tutorial, the serial communication port UART and the receive buffer
register RBUF are symbolic names. To follow this tutorial and simulate the interrupt in
the C-SPY simulator, you should instead use names that are suitable for your target
system, see the Interrupt . c file available in the cpuname\ tutor directory.

Part 2. Tutorials

51

Setting up the simulation environment

52

WRITING AN INTERRUPT HANDLER

The following lines define the interrupt handler used in this tutorial (the complete source
code can be found in the file Interrupt.c supplied in the cpuname\ tutor directory):

// define the interrupt handler
#pragma vector=UARTR_VECTOR
__interrupt void uartReceiveHandler (void)

The #pragma vector directive is used for specifying the interrupt vector address—in
this case the interrupt vector for the UART receive interrupt—and the keyword
__interrupt is used for directing the compiler to use the calling convention needed
for an interrupt function.

Note: In this tutorial, the name of the vector is symbolic. To follow this tutorial and
simulate the interrupt in the C-SPY simulator, you should instead use a name that is
suitable for your target system, see the Interrupt.c file available in the
cpuname\ tutor directory.

For detailed information about the extended keywords and pragma directives used in
this tutorial, see the JAR C/C++ Compiler Reference Guide.
SETTING UP THE PROJECT

Add a new project—project4—to the workspace tutorials used in previous
tutorials.

Add the files Utilities.c and Interrupt.c toit.

In the workspace window, select the project level node, and choose
Project>Options. Make sure default factory settings are used in the General
Options, C/C++ Compiler, and Linker categories.

Note: The file Interrupt.c might specify any specific settings required.

Next you will set up the simulation environment.

Setting up the simulation environment

IAR Embedded Workbench® IDE
User Guide

The C-SPY interrupt system is based on the cycle counter. You can specify the amount
of cycles to pass before C-SPY generates an interrupt.

To simulate the input to UART, values will be read from the file InputData. txt,
which contains the Fibonacci series. You will set an immediate read breakpoint on the
UART receive register, RBUF, and connect a user-defined macro function to it (in this
example the Access macro function). The macro reads the Fibonacci values from the
text file.

Simulating an interrupt ___¢

Whenever an interrupt is generated, the interrupt routine will read RBUF and the
breakpoint will be triggered, the Access macro function will be executed and the
Fibonacci values will be fed into the UART receive register.

The immediate read breakpoint will trigger the break before the processor reads the
RBUF register, allowing the macro to store a new value in the register that is immediately
read by the instruction.

This section will demonstrate the steps involved in setting up the simulator for
simulating a serial port interrupt. The steps involved are:

e Defining a C-SPY setup file which will open the file InputData. txt and define
the Access macro function

Specitying C-SPY options

Building the project

Starting the simulator

Specifying the interrupt request

Setting the breakpoint and associating the Access macro function to it.

Note: For a simple example of a system timer interrupt simulation, see Simulating a
simple interrupt, page 178.

DEFINING A C-SPY SETUP MACRO FILE

In C-SPY, you can define setup macros that will be registered during the C-SPY startup
sequence. In this tutorial you will use the C-SPY macro file SetupSimple.mac,
available in the cpuname\ tutor directory. It is structured as follows:

First the setup macro function execUserSetup is defined, which is automatically
executed during C-SPY setup. Thus, it can be used to set up the simulation environment
automatically. A message is printed in the Log window to confirm that this macro has
been executed:

execUserSetup ()
{

__message "execUserSetup() called\n";

Then the file InputData. txt, which contains the Fibonacci series to be fed into
UART, will be opened:

_fileHandle = __openFile(
"STOOLKIT_DIRS\\tutor\\InputData.txt", "r");

Part 2. Tutorials 53

Setting up the simulation environment

After that, the macro function Access is defined. It will read the Fibonacci values from
the file InputData. txt, and assign them to the receive register address:

Access ()
{
__message "Access () called\n";
__var _fibvalue;
if(0 == __readFile(_fileHandle, &_fibvalue))
{
RBUF = _fibvalue;

}

You will have to connect the Access macro to an immediate read breakpoint. However,
this will be done at a later stage in this tutorial.

Finally, the file contains two macro functions for managing correct file handling at reset
and exit.

For detailed information about macros, see the chapters Using the C-SPY macro system
and C-SPY® macros reference.

Next you will specify the macro file and set the other C-SPY options needed.

SPECIFYING C-SPY OPTIONS

I To select C-SPY options, choose Project>Options. In the Debugger category, click
the Setup tab.

2 Use the Use macro file browse button to specify the macro file to be used:
SetupSimple.mac
Alternatively, use an argument variable to specify the path:

STOOLKIT_DIRS$\tutor\SetupSimple.mac

IAR Embedded Workbench® IDE
54 User Guide

Simulating an interrupt ___¢

See Argument variables summary, page 225, for details.

Options for node “project4 - Debug **

Category: Factary Settings |

General Options
C/C++ compiler Setup | F'Iuginsl
Azzembler .
Custom Build - Driver ¥ Bunto
Linker - -
Simulat A
smdato =] e
Simulator
— Setup macro
¥ Use macra file
IEI:\proiects\tutor\SetupSimple.mac J
— Device description file
¥ Overide default
I$TDDLKIT_DIF|$\c:0nfig\devic:e1 .ddf J

()3 I Cancel |

Figure 21: Specifying setup macro file

3 The C-SPY interrupt system requires some interrupt definitions, provided by the device
description files. With the Device description file option you can specify the
appropriate file. In this tutorial, use the default file.

4 Select Run to main and click OK. This will ensure that the debug session will start by
running to the main function.

The project is now ready to be built.

BUILDING THE PROJECT
I Compile and link the project by choosing Project>Make.

Alternatively, click the Make button on the toolbar. The Make command compiles and
links those files that have been modified.

STARTING THE SIMULATOR

@l I Start the IAR C-SPY Debugger to run the project4 project.

The Interrupt.c window is displayed (among other windows). Click in it to make it the
active window.

Part 2. Tutorials 55

Setting up the simulation environment

2 Examine the Log window. Note that the macro file has been loaded and that the
execUserSetup function has been called.
SPECIFYING A SIMULATED INTERRUPT
Now you will specify your interrupt to make it simulate an interrupt every 2000 cycles.

I Choose Simulator>Interrupt Setup to display the Interrupt Setup dialog box. Click
New to display the Edit Interrupt dialog box and make the following settings for your

interrupt:

Setting Value Description

Interrupt UARTR_VECTOR Specifies which interrupt to use.

Description As is The interrupt definition that the simulator uses to be
able to simulate the interrupt correctly.

First activation 4000 Specifies the first activation moment for the
interrupt. The interrupt is activated when the cycle
counter has passed this value.

Repeat Interval 2000 Specifies the repeat interval for the interrupt,
measured in clock cycles.

Hold time Infinite Hold time.

Probability % 100 Specifies probability. 100% specifies that the
interrupt will occur at the given frequency. Another
percentage might be used for simulating a more
random interrupt behavior.

Variance % 0 Time variance, not used here.

Table 4: Interrupts dialog box

Interrupt:
[URTR_VECTOR =l
Drescription: Cancel |
Jox12 2

First activatior:

2000 Hold tirne
& Infirite
Fiepeat interval:
r
[2000 r
Wariance [%]: Probability [%]:
Jo = [100 =]

Figure 22: Inspecting the interrupt settings

IAR Embedded Workbench® IDE
56 User Guide

Simulating an interrupt ___¢

During execution, C-SPY will wait until the cycle counter has passed the activation
time. When the current assembler instruction is executed, C-SPY will generate an
interrupt which is repeated approximately every 2000 cycles.

When you have specified the settings, click OK to close the Edit Interrupt dialog box,
and then click OK to close the Interrupt Setup dialog box.

For information about how you can use the system macro __orderInterrupt ina
C-SPY setup file to automate the procedure of defining the interrupt, see Using macros
for interrupts and breakpoints, page 59.

SETTING AN IMMEDIATE BREAKPOINT

By defining a macro and connecting it to an immediate breakpoint, you can make the
macro simulate the behavior of a hardware device, for instance an I/O port, as in this
tutorial. The immediate breakpoint will not halt the execution, only temporarily suspend
it to check the conditions and execute any connected macro.

In this example, the input to the UART is simulated by setting an immediate read
breakpoint on the RBUF address and connecting the defined Access macro to it. The
macro will simulate the input to the UART. These are the steps involved:

Choose View>Breakpoints to open the Breakpoints window, right-click to open the
context menu, choose New Breakpoint>Immediate to open the Immediate tab.

Add the following parameters for your breakpoint.

Setting Value Description

Break at RBUF Receive buffer address.

Access Type Read The breakpoint type (Read or Write)
Action Access () The macro connected to the breakpoint.

Table 5: Breakpoints dialog box

During execution, when C-SPY detects a read access from the RBUF address, C-SPY
will temporarily suspend the simulation and execute the Access macro. The macro will
read a value from the file InputData. txt and write it to RBUF. C-SPY will then
resume the simulation by reading the receive buffer value in RBUF.

Click OK to close the breakpoints dialog box.

For information about how you can use the system macro __setSimBreakin a C-SPY
setup file to automate the breakpoint setting, see Using macros for interrupts and
breakpoints, page 59.

Part 2. Tutorials 57

Simulating the interrupt

Simulating the interrupt

IAR Embedded Workbench® IDE

58 User Guide

In this section you will execute your application and simulate the serial port interrupt.

EXECUTING THE APPLICATION

Step through the application and stop when it reaches the while loop, where the
application waits for input.

In the Interrupt.c source window, locate the function uartReceiveHandler.

Place the insertion point on the ++callCount; statement in this function and set a
breakpoint by choosing Edit>Toggle Breakpoint, or click the Toggle Breakpoint
button on the toolbar. Alternatively, use the context menu.

If you want to inspect the details of the breakpoint, choose Edit>Breakpoints.

Open the Terminal I/O window and run your application by choosing Debug>Go or
clicking the Go button on the toolbar.

The application should stop in the interrupt function.

Click Go again in order to see the next number being printed in the Terminal I/O
window.

Because the main program has an upper limit on the Fibonacci value counter, the tutorial
application will soon reach the exit label and stop.

The Terminal I/O window will display the Fibonacci series.

Output: Log file: Off

=

_>l_I
LCtl codes | InputMode...l

I Buffer size: 1]

Figure 23: Printing the Fibonacci values in the Terminal I/O window

Simulating an interrupt ___¢

Using macros for interrupts and breakpoints

To automate the setting of breakpoints and the procedure of defining interrupts, the
system macros __setSimBreak and __orderInterrupt, respectively, can be

executed by the setup macro execUserSetup.

The file setupAdvanced.mac is extended with system macro calls for setting the

breakpoint and specifying the interrupt:

SimulationSetup ()

{...
_interruptID = __orderInterrupt (
if(-1 == _interruptID)

{

"UARTR_VECTOR", 4000,

0, 100);

__message "ERROR: failed to order interrupt";

_breakID = __setSimBreak("RBUF",

}

"Access ()");

By replacing the file SetupSimple.mac, used in the previous tutorial, with the file
SetupAdvanced.mac, setting the breakpoint and defining the interrupt will be

automatically performed at C-SPY startup. Thus, you do not need to start the simulation

by manually filling in the values in the Interrupts and Breakpoints dialog boxes.

Note: Before you load the file SetupaAdvanced.mac you should remove the

previously defined breakpoint and interrupt.

Part 2. Tutorials

59

Using macros for interrupts and breakpoints

IAR Embedded Workbench® IDE
60 User Guide

Working with library
modules

This tutorial demonstrates how to create library modules and how you can
combine an application project with a library project.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Using libraries

If you are working on a large project you will soon accumulate a collection of useful
routines that are used by several of your applications. To avoid having to assemble a
routine each time the routine is needed, you can store such routines as object files, that
is, assembled but not linked.

A collection of routines in a single object file is referred to as a library. It is
recommended that you use library files to create collections of related routines, such as
a device driver.

Use the IAR XAR Library Builder to build libraries. The IAR XLIB Librarian lets you
manipulate libraries. It allows you to:

e Change modules from PROGRAM to LIBRARY type, and vice versa
o Add or remove modules from a library file
e List module names, entry names, etc.

The Main.sxx program

The Main.sxx program uses a routine called max to set the contents of one register to
the maximum value of two other registers. The EXTERN directive declares max as an
external symbol, to be resolved at link time.

A copy of the program is provided in the cpuname\ tutor directory.

The library routines

The two library routines will form a separately assembled library. It consists of the max
routine called by main, and a corresponding min routine, both of which operate on the
contents of the registers used in the Main. sxx program. The file containing these
library routines is called Maxmin. sxx, and a copy is provided with the product.

Part 2. Tutorials

61

Using libraries

62

BF

IAR Embedded Workbench® IDE
User Guide

The routines are defined as library modules by the MODULE directive, which instructs the
IAR XLINK Linker to include the modules only if they are referenced by another
module.

The pUBLIC directive makes the max and min symbols public to other modules.
For detailed information about the MODULE and PUBLIC directives, see the IJAR
Assembler Reference Guide.

CREATING A NEW PROJECT

In the workspace tutorials used in previous chapters, add a new project called
projects.

Add the file Main. sxx to the new project.

To set options, choose Project>Options. Select the General Options category and
click the Library Configuration tab. Choose None from the Library drop-down list,
which means that a standard C/C++ library will not be linked.

The default options are used for the other option categories.
To assemble the file Main. sxx, choose Project>Compile.

You can also click the Compile button on the toolbar.

CREATING A LIBRARY PROJECT

Now you are ready to create a library project.

In the same workspace tutorials, add a new project called tutor_library.
Add the file Maxmin . sxx to the project.

To set options, choose Project>Options. In the General Options category, verify the
following settings:

Page Option

Output Output file: Library

Library Configuration Library: None

Table 6: XLINK options for a library project

Note that Library Builder appears in the list of categories, which means that the IAR
XAR Library Builder is added to the build tool chain. It is not necessary to set any
XAR-specific options for this tutorial.

Click OK.
Choose Project>Make.

w N

Working with library modules ___¢

The library output file tutor_library.rxx has now been created.

USING THE LIBRARY IN YOUR APPLICATION PROJECT
You can now add your library containing the maxmin routine to project5.

In the workspace window, click the projectS tab. Choose Project>Add Files and add
the file tutor_library.rxx located in the projects\Debug\Exe directory. Click
Open.

Click Make to build your project.

You have now combined a library with an executable project, and the application is
ready to be executed. For information about how to manipulate the library, see the JAR
Linker and Library Tools Reference Guide.

Part 2. Tutorials 63

Using libraries

IAR Embedded Workbench® IDE
64 User Guide

Part 3. Project
management and building

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e The development environment
e Managing projects
o Building

e Editing.

a .hmuiuhhhi

ARARAIed

66

The development
environment

This chapter introduces you to the IAR Embedded Workbench® development
environment (IDE). The chapter also demonstrates how you can customize

the environment to suit your requirements.

The IAR Embedded Workbench IDE

The IAR Embedded Workbench IDE is the framework where all necessary tools are
seamlessly integrated: a C/C++ compiler, an assembler, the IAR XLINK Linker, the
IAR XAR Library Builder, the IAR XLIB Librarian, an editor, a project manager with
Make utility, and the IAR C-SPY® Debugger, a high-level language debugger.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

Part 3. Project management and building 67

The IAR Embedded Workbench IDE

This illustration shows the IAR Embedded Workbench IDE window with different
components.

7% 1AR Embedded Workbench IDE

[_[o]x]
Menu bar — Fie Edt Wew Project Tools Window Help
Toolbar — (DS HE@ &4 @2 o | SV % uEe e dh mes X0
e * | Tuterc
Debug Ll
Fls [7 | ﬂ énrt:reaie thet';:zllico!mt 'tv;x;aim. -
i project -Debug [+ I WY et and print the assiciated Fibonacei mumber.
Fa B Tutore void do_foreground_process (void)
| F= 0 ouput (— 1 Editor
| —ETuorh unsigmed int £ib; window
| ' [uilitesh next_counter () ;
[Utilities.c fib - ger_fib[call_count) ;
L@ G utput put_fib{ fib);
i
Workspace
window — 7+
Main program.
Prints the Fibonacci mmbers.
4
void nain(void)
{
call_count = 0;
init_fib(};
while [call_count < MAX_FIB)
do_foreground_process()
i
Owerview piojsct] | projsct2 |Ft)| |‘| | »
* | Messages File ‘ Lmel
Building configuration: project! - Debug
Caonfiguration is up-to-date
Messages
windows
buld [Gebuatog SELTETS
Status bar — ready Ln3s, Col31 UM 4

Figure 24: IAR Embedded Workbench IDE window

The window might look different depending on what additional tools you are using.

RUNNING THE IAR EMBEDDED WORKBENCH IDE

Click the Start button on the taskbar and choose Programs>IAR Systems>IAR
Embedded Workbench for CPUNAME>IAR Embedded Workbench.

The file TarIdePm. exe is located in the common\bin directory under your IAR

installation, in case you want to start the program from the command line or from within
Windows Explorer.

IAR Embedded Workbench® IDE
68 User Guide

The development environment ___¢

Double-clicking the workspace filename

The workspace file has the filename extension eww. If you double-click a workspace
filename, the AR Embedded Workbench IDE starts. If you have several versions of [AR
Embedded Workbench installed, the workspace file will be opened by the most recently
used version of your IAR Embedded Workbench that uses that file type.

EXITING

To exit the IAR Embedded Workbench IDE, choose File>Exit. You will be asked
whether you want to save any changes to editor windows, the projects, and the
workspace before closing them.

Customizing the environment

The IAR Embedded Workbench IDE is a highly customizable environment. This section
demonstrates how you can work with and organize the windows on the screen, the
possibilities for customizing the IDE, and how you can set up the environment to
communicate with external tools.

ORGANIZING THE WINDOWS ON THE SCREEN

In the IAR Embedded Workbench IDE, you can position the windows and arrange a
layout according to your preferences. You can dock windows at specific places, and
organize them in tab groups. You can also make a window floating, which means it is
always on top of other windows. If you change the size or position of a floating window,
other currently open windows are not affected.

Each time you open a previously saved workspace, the same windows are open, and they
have the same sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved.
In addition to the information saved for the workspace, information about all open
debugger-specific windows is also saved.

Using docked versus floating windows

Each window that you open has a default location, which depends on other currently
open windows. To give you full and convenient control of window placement, each
window can either be docked or floating.

Part 3. Project management and building 69

Customizing the environment

70

IAR Embedded Workbench® IDE
User Guide

A docked window is locked to a specific area in the Embedded Workbench main
window, which you can decide. To keep many windows open at the same time, you can
organize the windows in tab groups. This means one area of the screen is used for several
concurrently open windows. The system also makes it easy to rearrange the size of the
windows. If you rearrange the size of one docked window, the sizes of any other docked
windows are adjusted accordingly.

A floating window is always on top of other windows. Its location and size does not
affect other currently open windows. You can move a floating window to any place on
your screen, also outside of the IAR Embedded Workbench IDE main window.

Note: The editor window is always docked. When you open the editor window, its
placement is decided automatically depending on other currently open windows. For
more information about how to work with the editor window, see Using the IAR
Embedded Workbench editor, page 89.

Organizing windows
To place a window as a separate window, drag it next to another open window.

To place a window in the same tab group as another open window, drag the window you
want to locate to the middle of the area and drop the window.

To make a window floating, double-click on the window’s title bar.

The status bar, located at the bottom of the IAR Embedded Workbench IDE main
window, contains useful help about how to arrange windows.

CUSTOMIZING THE IDE

To customize the IDE, choose Tools>Options to get access to a vide variety of
commands for:

Configuring the editor

Configuring the editor colors and fonts

Configuring the project build command

Organizing the windows in C-SPY

Using an external editor

Changing common fonts

Changing key bindings

Configuring the amount of output to the Messages window.

In addition, you can increase the number of recognized filename extensions. By default,
each tool in the build tool chain accepts a set of standard filename extensions. If you
have source files with a different filename extension, you can modify the set of accepted
filename extensions. Choose Tools>Filename Extensions to get access to the necessary
commands.

The development environment ___¢

For reference information about the commands for customizing the IDE, see Tools
menu, page 232. You can also find further information related to customizing the editor
in the section Customizing the editor environment, page 95. For further information
about customizations related to C-SPY, see Part 4. Debugging.

COMMUNICATING WITH EXTERNAL TOOLS

The Tools menu is a configurable menu to which you can add external tools for
convenient access to these tools from within the IAR Embedded Workbench IDE. For
this reason, the menu might look different depending on which tools you have

preconfigured to appear as menu commands.

To add an external tool to the menu, choose Tools>Configure Tools to open the

Configure Tools dialog box.

Configure Tools

Menu Content:

Menu Text:
I&N otepad

Command:
IE:\W’INNT\Notepad.exe

Argument:

Initial Directary:

™ Redirect to Output \Window

™ Prampt for Cormand Line

Tool Available:

IAIways j

Cancel

Remove

=
g
=

Browse... |

Figure 25: Configure Tools dialog box

For reference information about this dialog box, see Configure Tools dialog box, page

249.

Part 3. Project management and building 71

Customizing the environment

72

IAR Embedded Workbench® IDE
User Guide

After you have entered the appropriate information and clicked OK, the menu command
you have specified is displayed on the Tools menu.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 26: Customized Tools menu

Note: If you intend to add an external tool to the standard tool chain, see Extending the
tool chain, page 87.
Adding command line commands

Command line commands and calls to batch files must be run from a command shell.
You can add command line commands to the Tools menu and execute them from there.

To add commands to the Tools menu, you must specify an appropriate command shell.
Type one of the following command shells in the Command text box:

System Command shell

Windows 98/Me command . com

Windows NT/2000/XP cmd. exe (recommended) or command . com

Table 7: Command shells

Specify the command line command or batch file name in the Argument text box.
The Argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /c option terminates the shell after execution, to allow the IAR Embedded
Workbench IDE to detect when the tool has finished.

Example

To add the command Backup to the Tools menu to make a copy of the entire project
directory to a network drive, you would specifty Command either as command . cmd or
as cmd . exe depending on your host environment, and Argument as:

/C copy c:\project*.* F:
Alternatively, to use a variable for the argument to allow relocatable paths:

/C copy S$PROJ_DIRS*.* F:

Managing projects

This chapter discusses the project model used by the IAR Embedded
Workbench IDE. It covers how projects are organized and how you can specify
workspaces with multiple projects, build configurations, groups, source files,
and options that help you handle different versions of your applications. The
chapter also describes the steps involved in interacting with an external
third-party source code control system.

The project model

In a large-scale development project, with hundreds of files, you must be able to
organize the files in a structure that is easily navigated and maintained by perhaps
several engineers involved.

The IAR Embedded Workbench IDE is a flexible environment for developing projects
also with a number of different target processors in the same project, and a selection of
tools for each target processor.

HOW PROJECTS ARE ORGANIZED

The IAR Embedded Workbench IDE has been designed to suit the way that software
development projects are typically organized. For example, perhaps you need to develop
related versions of an application for different versions of the target hardware, and you
might also want to include debugging routines into the early versions, but not in the final
application.

Versions of your applications for different target hardware will often have source files
in common, and you might want to be able to maintain only one unique copy of these
files, so that improvements are automatically carried through to each version of the
application. Perhaps you also have source files that differ between different versions of
the application, such as those dealing with hardware-dependent aspects of the
application.

The IAR Embedded Workbench IDE allows you to organize projects in a hierarchical
tree structure showing the logical structure at a glance. In the following sections the
different levels of the hierarchy are described.

Part 3. Project management and building

73

The project model

74

IAR Embedded Workbench® IDE
User Guide

Projects and workspaces

Typically you create a project which contains the source files needed for your embedded
systems application. If you have several related projects, you can access and work with
them simultaneously. To achieve this, you can organize related projects in workspaces.

Each workspace you define can contain one or more projects, and each project must be
part of at least one workspace.

Consider this example: two related applications—for instance A and B—will be
developed, requiring one development team each (team A and B). Because the two
applications are related, parts of the source code can be shared between the applications.
The following project model can be applied:

o Three projects—one for each application, and one for the common source code
o Two workspaces—one for team A and one for team B.

It is both convenient and efficient to collect the common sources in a library project
(compiled but not linked object code), to avoid having to compile it unnecessarily.

Development team A Development team B

Appl.
B

Appl.
A

Project for application A Project for application B

Utility
library

Library project for
common sources

Workspace for team A Workspace for team B
m Project for application A m Project for application B
m Project for utility library m Project for utility library

Figure 27: Examples of workspaces and projects

Managing projects °

For an example where a library project has been combined with an application project,
see the chapter Working with library modules in Part 2. Tutorials.

Projects and build configurations

Often, you need to build several versions of your project. The Embedded Workbench
lets you define multiple build configurations for each project. In a simple case, you
might need just two, called Debug and Release, where the only differences are the
options used for optimization, debug information, and output format. In the Release
configuration, the preprocessor symbol NDEBUG is defined, which means the application
will not contain any asserts.

Additional build configurations can be useful, for instance, if you intend to use the
application on different target devices. The application is the same, but hardware-related
parts of the code differ. Thus, depending on which target device you intend to build for,
appropriate source files can be excluded from the build configuration. The following
build configurations might fulfil these requirements for Project A:

e Project A - Device 1:Release
e Project A - Device 1:Debug
e Project A - Device 2:Release
e Project A - Device 2:Debug

Groups

Normally, projects contain hundreds of files that are logically related. You can define
each project to contain one or more groups, in which you can collect related source files.
You can also define multiple levels of subgroups to achieve a logical hierarchy. By
default, each group is present in all build configurations of the project, but you can also
specity a group to be excluded from a particular build configuration.

Source files

Source files can be located directly under the project node or in a hierarchy of groups.
The latter is convenient if the amount of files makes the project difficult to survey. By
default, each file is present in all build configurations of the project, but you can also
specity a file to be excluded from a particular build configuration.

Only the files that are part of a build configuration will actually be built and linked into
the output code.

Once a project has been successfully built, all include files and output files are displayed
in the structure below the source file that included or generated them.

Part 3. Project management and building 75

The project model

76

IAR Embedded Workbench® IDE
User Guide

Note: The settings for a build configuration can affect which include files that will be
used during compilation of a source file. This means that the set of include files
associated with the source file after compilation can differ between the build
configurations.

CREATING AND MANAGING WORKSPACES

This section describes the overall procedure for creating the workspace, projects,
groups, files, and build configurations. The File menu provides the commands for
creating workspaces. The Project menu provides commands for creating projects,
adding files to a project, creating groups, specifying project options, and running the
IAR Systems development tools on the current projects.

For reference information about these menus, menu commands, and dialog boxes, see
the chapter JAR Embedded Workbench® IDE reference.

The steps involved for creating and managing a workspace and its contents are:
e Creating a workspace.

An empty workspace window appears, which is the place where you can view your
projects, groups, and files.

o Adding new or existing projects to the workspace.

When creating a new project, you can base it on a template project with
preconfigured project settings. There are template projects available for C
applications, C++ applications, assembler applications, and library projects.

o Creating groups.

A group can be added either to the project’s top node or to another group within the
project.

o Adding files to the project.
A file can be added either to the project’s top node or to a group within the project.
e Creating new build configurations.

By default, each project you add to a workspace will have two build configurations
called Debug and Release.

You can base a new configuration on an already existing configuration. Alternatively,
you can choose to create a default build configuration.

Note that you do not have to use the same tool chain for the new build configuration
as for other build configurations in the same project.

e Excluding groups and files from a build configuration.

Managing projects °

Note that the icon indicating the excluded group or file will change to white in the
workspace window.

e Removing items from a project.
For a detailed example, see Creating an application project, page 23.

Note: It might not be necessary for you to perform all of these steps.

Drag and drop

You can easily drag individual source files and project files from the Windows file
explorer to the Workspace window. Source files dropped on a group will be added to that
group. Source files dropped outside the project tree—on the Workspace window
background—will be added to the active project.

Source file paths

The IAR Embedded Workbench IDE supports relative source file paths to a certain
degree.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IAR Embedded Workbench IDE will use a path relative to the project
file when accessing the source file.

Navigating project files

There are two main different ways to navigate your project files: using the Workspace
window or the Source Browser window. The Workspace window displays an
hierarchical view of the source files, dependency files, and output files and how they are
logically grouped. The Source Browser window, on the other hand, displays information
about the build configuration that is currently active in the Workspace window. For that
configuration, the Source Browser window displays a hierarchical view of all globally
defined symbols, such as variables, functions, and type definitions. For classes,
information about any base classes is also displayed.

Part 3. Project management and building 77

Navigating project files

VIEWING THE WORKSPACE

The workspace window is where you access your projects and files during the

application development.

I Choose which project you want to view by clicking its tab at the bottom of the

workspace window.

IDebug ']—-

Files

"]

=1 B Tutar.c
| =@ 0utput
| — B Tutarst
| | — B Tutorphi
| L B Tutorrex
| — B Tutarh
| L— [utiities.h
[Utilities.c
L@ G output
&1 @ project! dbe
2 Ca Output

L— B project! .map
— B dicpuname.rx
F— Bl Inkdevice xcl
— [Tutar.rx
Tabs for — [Utilties.rex
choosing L— [# projectl.map
workspace

El® project! - Debug * EX

x -

display

Owverview project] Iproiect2| proiect3|

Configuration
drop-down
menu

Indicator for
errors detected
during build

Indicator for
option overrides
on file node

IAR Embedded Workbench® IDE

Figure 28: Displaying a project in the workspace window

For each file that has been built, an output folder icon appears, containing generated
files, such as object files and list files. The latter is generated only if the list file option
is enabled. There is also an output folder related to the project node that contains
generated files related to the whole project, such as the executable file and the linker
map file (if the list file option is enabled).

Also, any included header files will appear, showing dependencies at a glance.

To display the project with a different build configuration, choose that build
configuration from the drop-down list at the top of the workspace window.

The project and build configuration you have selected are displayed highlighted in the
workspace window. It is the project and build configuration that is selected from the
drop-down list that will be built when you build your application.

Managing projects °

3 To display an overview of all projects in the workspace, click the Overview tab at the
bottom of the workspace window.

An overview of all project members is displayed.

IDebug 'l

Filas I““Im-l a |
B [Elproject! - Debug

- m--n
= [utilities.c

L@ 3 Output

Owverview project] Iproiect2|

Figure 29: Workspace window—an overview

The current selection in the Build Configuration drop-down list is also highlighted
when an overview of the workspace is displayed.

DISPLAYING BROWSE INFORMATION

To display browse information in the Source Browser window, choose
Tools>Options>Project and select the option Generate browse information.

To open the Source Browser window, choose View>Source Browser. The Source
Browser window is by default docked with the Workspace window. Source browse
information is displayed for the active build configuration. For reference information,
see Source Browser window, page 199.

Note that you can choose a file filter and a type filter from the context menu that appears
when you right-click in the top pane of the window.

To see the definition of a global symbol or a function, there are three alternative methods
that you can use:

e In the Source Browser window, right-click on a symbol, or function, and choose the
Go to definition command from the context menu that appears

o In the Source Browser window, double-click on a row

e In the editor window, right-click on a symbol, or function, and choose the Go to
definition command from the context menu that appears.

The definition of the symbol or function is displayed in the editor window.

Part 3. Project management and building 79

Source code control

80

The source browse information is continuously updated in the background. While you
are editing source files, or when you open a new project, there will be a short delay
before the information is up-to-date.

Source code control

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench can identify and access any installed third-party source code
control (SCC) systems that conform to the SCC interface published by Microsoft
corporation. From within the IDE you can connect an IAR Embedded Workbench
project to an external SCC project, and perform some of the most commonly used
operations.

To connect your IAR Embedded Workbench project to a source code control system you
should be familiar with the source code control client application you are using. Note
that some of the windows and dialog boxes that appear when you work with source code
control in IAR Embedded Workbench originate from the SCC system and is not
described in the documentation from IAR Systems. For information about details in the
client application, refer to the documentation supplied with that application.

Note: Different SCC systems use very different terminology even for some of the most
basic concepts involved. It is important to keep this in mind when reading the
description below.

INTERACTING WITH SOURCE CODE CONTROL SYSTEMS

In any SCC system, you use a client application to maintain a central archive. In this
archive you keep the working copies of the files of your project. The SCC integration in
IAR Embedded Workbench allows you to conveniently perform a few of the most
common SCC operations directly from within the IDE. However, several tasks must still
be performed in the client application.

To connect an IAR Embedded Workbench project to a source code control system, you
should:

e In the SCC client application, set up an SCC project
e In IAR Embedded Workbench, connect your project to the SCC project.

Setting up an SCC project in the SCC client application

Use your SCC client tools to set up a working directory for the files in your AR
Embedded Workbench project that you want to control using your SCC system. The
files can be placed in one or more nested subdirectories, all located under a common
root. Specifically, all the source files must reside in the same directory as the ewp project
file, or nested in subdirectories of this directory.

Managing projects °

For information about the steps involved, refer to the documentation supplied with the
SCC client application.

Connecting projects in IAR Embedded Workbench
In IAR Embedded Workbench, connect your application project to the SCC project.

In the Workspace window, select the project for which you have created an SCC
project. From the Project menu, choose Source Code Control>Add Project To
Source Control. This command is also available from the context menu that appears
when you right-click in the Workspace window.

Note: The commands on the Source Code Control submenu are available when there
is at least one SCC client application available.

If you have source code control systems from different vendors installed, a dialog box
will appear to let you choose which system you want to connect to.

An SCC-specific dialog box will appear where you can navigate to the proper SCC
project that you have set up.

Viewing the SCC states

When your IAR Embedded Workbench project has been connected to the SCC project,
a column that contains status information for source code control will appear in the
‘Workspace window. Different icons will be displayed depending on whether:

a file is checked out to you

a file is checked out to someone else

a file is checked in

a file has been modified

there is a new version of a file in the archive.

There are also icons for some combinations of these states. Note that the interpretation
of these states depends on the SCC client application you are using. For reference
information about the icons and the different states they represent, see Source code
control states, page 190.

For reference information about the commands available for accessing the SCC system,
see Source Code Control menu, page 189.
Configuring the source code control system

To customize the source code control system, choose Tools>Options and click the
Source Code Control tab. For reference information about the available commands, see
Terminal 1/0 page, page 245.

Part 3. Project management and building 81

Source code control

IAR Embedded Workbench® IDE
82 User Guide

Building

This chapter briefly discusses the process of building your application, and
describes how you can extend the chain of build tools with tools from
third-party suppliers.

Building your application

The building process consists of the following steps:

e Setting project options
e Building the project
o Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This
gives you the possibility to perform several builds in one operation.

In addition to use the IAR Embedded Workbench IDE for building projects, it is also
possible to use the command line utility iarbuild.exe for building projects.

For examples of building application and library projects, see Part 2. Tutorials in this
guide. For further information about building library projects, see the IAR C/C++
Compiler Reference Guide.

SETTING OPTIONS

To specify how your application should be built, you must define one or several build
configurations. Every build configuration has its own settings, which are independent of
the other configurations. All settings are indicated in a separate column in the workspace
window.

For example, a configuration that is used for debugging would not be highly optimized,
and would produce output that suits the debugging. Conversely, a configuration for
building the final application would be highly optimized, and produce output that suits
a flash or PROM programmer.

For each build configuration, you can set options on the project level, group level, and
file level. Many options can only be set on the project level because they affect the entire
build configuration. Examples of such options are General Options, linker settings, and
debug settings. Other options, such as compiler and assembler options, that you set on
project level are default for the entire build configuration.

Part 3. Project management and building 83

Building your application

84

IAR Embedded Workbench® IDE
User Guide

Itis possible to override project level settings by selecting the required item, for instance
a specific group of files, and selecting the option Override inherited settings. The new
settings will affect all members of that group, that is, files and any groups of files. To
restore all settings to the default factory settings, click the Factory Settings button.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

Using the Options dialog box

The Options dialog box—available by choosing Project>Options—provides options
for the building tools. You set these options for the selected item in the workspace
window. Options in the General Options, Linker, and Debugger categories can only
be set for the entire build configuration, and not for individual groups and files.
However, the options in the other categories can be set for the entire build configuration,
a group of files, or an individual file.

Options for node “projectl - Debug" E
Category:
General Options
C/C++ compiler Target Output | Library Configuration | Library Options | Stack/Heap
Azzembler)
Custom Build - Output file
Lirker % Executable
[ebugger Library
Simulator
r— Output directarie:
Executables/libraries:
IDebug\Exe
Object files:
|DebugiObi
List files:
|DebughList

()3 I Cancel

Figure 30: General options

Building °

The Category list allows you to select which building tool to set options for. The tools
available in the Category list depends on which tools are included in your product. If
you select Library as output file on the QOutput page, Linker will be replaced by
Library Builder in the category list. When you select a category, one or more pages
containing options for that component are displayed.

Click the tab corresponding to the type of options you want to view or change. To restore
all settings to the default factory settings, click the Factory Settings button, which is
available for all categories except General Options and Custom Build. Note that there
are two sets of factory settings available: Debug and Release. Which one that will be
used depends on your build configuration; see New Configuration dialog box, page 227.

For information about each option and how to set options, see the chapters General
options, Compiler options, Assembler options, Linker options, Library builder options,
Custom build options, and Debugger options in Part 6. Reference information in this
guide. For information about options specific to the debugger driver you are using, see
the part of this book that corresponds to your driver.

Note: If you add to your project a source file with a non-recognized filename extension,
you cannot set options on that source file. However, you can add support for additional
filename extensions. For reference information, see Filename Extensions dialog box,
page 251.

BUILDING A PROJECT

You have access to the build commands both from the Project menu and from the
context menu that appears if you right-click an item in the workspace window.

The three build commands Make, Compile, and Rebuild All run in the background, so
you can continue editing or working with the IAR Embedded Workbench IDE while
your project is being built.

For further reference information, see Project menu, page 223.

BUILDING MULTIPLE CONFIGURATIONS IN A BATCH

Use the batch build feature when you want to build more than one configuration at once.
A batch is an ordered list of build configurations. The Batch Build dialog
box—available from the Project menu—Iets you create, modify, and build batches of
configurations.

For workspaces that contain several configurations it is convenient to define one or
several different batches. Instead of building the entire workspace, you can build only
the appropriate build configurations, for instance Release or Debug configurations.

For detailed information about the Batch Build dialog box, see Batch Build dialog box,
page 230.

Part 3. Project management and building 85

Building your application

86

IAR Embedded Workbench® IDE
User Guide

CORRECTING ERRORS FOUND DURING BUILD

The compiler, assembler, and debugger are fully integrated with the development
environment. So if there are errors in your source code, you can jump directly to the
correct position in the appropriate source file by double-clicking the error message in
the error listing in the Build message window, or selecting the error and pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the
project, you can directly start debugging the resulting code at the source level.

To specify the level of output to the Build message window, choose Tools>Options to
open the IDE Options dialog box. Click the Messages tab and select the level of output
in the Show build messages drop-down list.

For reference information about the Build messages window, see Build window, page
207.

BUILDING FROM THE COMMAND LINE

It is possible to build the project from the command line by using the IAR Command
Line Build Utility (iarbuild.exe) located in the common\bin directory. As input you
use the project file, and the invocation syntax is:

iarbuild project.ewp [-clean|-build|-make] <configuration>
[-log errors|warnings|info|all]

Parameter Description

project.ewp Your IAR Embedded Workbench IDE project file.

-clean Removes any intermediate files.

-build Rebuilds and relinks all files in the current build configuration.
-make Brings the current build configuration up to date by compiling,

assembling, and linking only the files that have changed since the last
build.

configuration The name of the configuration you want to build, which can either be
one of the predefined configurations Debug or Release, or a name that
you define yourself. For more information about build configurations, see
Projects and build configurations, page 75.

-log errors Displays build error messages.
-log warnings Displays build warning and error messages.
-log info Displays build warning messages and messages issued by the #pragma

message preprocessor directive.

-log all Displays all messages generated from the build, for example compiler
sign-on information and the full command line.

Table 8: iarbuild.exe command line options

Building °

If you run the application from a command shell without specifying a project file, you
will get a sign-on message describing available parameters and their syntax.

Extending the tool chain

IAR Embedded Workbench provides a feature—Custom Build—which lets you extend
the standard tool chain. This feature is used for executing external tools (not provided
by IAR). You can make these tools execute each time specific files in your project have
changed.

By specifying custom build options, on the Custom tool configuration page, the build
commands treat the external tool and its associated files in the same way as the standard
tools within the IAR Embedded Workbench IDE and their associated files. The relation
between the external tool and its input files and generated output files is similar to the
relation between the C/C++ Compiler, c files, h files, and rxx files. See Custom build
options, page 309, for details about available custom build options.

You specify filename extensions of the files used as input to the external tool. If the input
file has changed since you last built your project, the external tool is executed; just as
the compiler executes if a c file has changed. In the same way, any changes in additional
input files (for instance include files) are detected.

You must specify the name of the external tool. You can also specify any necessary
command line options needed by the external tool, as well as the name of the output files
generated by the external tool. Note that it is possible to use argument variables for
substituting file paths.

For some of the file information, you can use argument variables.

It is possible to specify custom build options to any level in the project tree. The options
you specify are inherited by any sublevel in the project tree.

TOOLS THAT CAN BE ADDED TO THE TOOL CHAIN

Some examples of external tools, or types of tools, that you can add to the IAR
Embedded Workbench tool chain are:

e Tools that generate files from a specification, such as Lex and YACC

e Tools that convert binary files—for example files that contain bitmap images or
audio data—to a table of data in an assembler or C source file. This data can then be
compiled and linked together with the rest of your application.

ADDING AN EXTERNAL TOOL

The following example demonstrates how to add the tool Flex to the tool chain. The
same procedure can be used also for other tools.

Part 3. Project management and building 87

Extending the tool chain

88

IAR Embedded Workbench® IDE
User Guide

In the example, Flex takes the file foo.lex as input. The two files foo.c and foo.h
are generated as output.

Add the file you want to work with to your project, for example foo. lex.

Select this file in the workspace window and choose Project>Options. Select Custom
Build from the list of categories.

In the Filename extensions field, type the filename extension . lex. Remember to
specify the leading period (.).

In the Command line field, type the command line for executing the external tool, for
example

flex SFILE_PATH$ -o$FILE_BPATHS.c
During the build process, this command line will be expanded to:
flex foo.lex -ofoo.c

Note the usage of argument variables. For further details of these variables, see
Argument variables summary, page 225.

Take special note of the use of $FILE_BNAMES which gives the base name of the input
file, in this example appended with the c extension to provide a C source file in the same
directory as the input file foo.lex.

In the Output files field, describe the output files that are relevant for the build. In this
example, the tool Flex would generate two files—one source file and one header file.
The text in the Qutput files text box for these two files would look like this:

SFILE_BPATHS.cC
SFILE_BPATHS.h

If there are any additional files used by the external tool during the build, these should
be added in the Additional input files field: for instance:

STOOLKIT_DIRS$\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer
be the same and the need for a rebuild is detected.

Click OK.

To build your application, choose Project>Make.

Editing

This chapter describes in detail how to use the IAR Embedded Workbench
editor. The final section describes how to customize the editor and how to

use an external editor of your choice.

Using the IAR Embedded Workbench editor

The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor. In addition, it provides features
specific to software development. It also recognizes C or C++ language elements.

EDITING A FILE

The editor window is where you write, view, and modify your source code. You can
open one or several text files, either from the File menu, or by double-clicking a file in
the Workspace window. If you open several files, they are organized in a tab group. You
can have several editor windows open at the same time.

Part 3. Project management and building 89

Using the IAR Embedded Workbench editor

90

IAR Embedded Workbench® IDE
User Guide

Click the tab for the file that you want to display. All open files are also available from
the drop-down menu at the upper right corner of the editor window.

File drop-down
’_ menu

Title bar —— Utilities.c
with modification o —ip)lrlltttrirl
indicator Initialize MAX FIB Fibonacci numbers.

*

void init_fib({ woid)
i
short i
root[0]

= 45;
= root[l] = 1:
for [i=2 ; i<MA¥_FIE ; i++)

Bookmark — root[i] = get fih{i) + get_fib(i-1):

'

/*
Return the Fibonacci mumber 'nr'.
*
unsigned int get_fib({ int nr |
{

if | nrx0 &s& nr<=MiX FIE) -
[fal 1] | B

Splitter control Go to function

Figure 31: Editor window

The name of the open source file is displayed on the tab. If a file is read-only, a padlock
is visible at the bottom left corner of the editor window. If a file has been modified after
it was last saved, an asterisk appears on the tab after the filename, for example
Utilities.c *.

The commands on the Window menu allow you to split the editor window into panes.
On the Window menu you also find commands for opening multiple editor windows, as
well as commands for moving files between different editor windows. For reference
information about each command on the menu, see Window menu, page 254. For
reference information about the editor window, see Editor window, page 194.

Accessing reference information for DLIB library functions

‘When you need to know the syntax for any C or Embedded C++ library function, select
the function name in the editor window and press F1. The library documentation for the
selected function appears in a help window.

Editing °

Using and customizing editor commands and shortcut keys

The Edit menu provides commands for editing and searching in editor windows. For
instance, unlimited undo/redo by using the Edit>Undo and Edit>Redo commands,
respectively. You can also find some of these commands on the context menu that
appears when you right-click in the editor window. For reference information about each
command, see Edit menu, page 213.

There are also editor shortcut keys for:

e moving the insertion point
e scrolling text
e selecting text.

For detailed information about these shortcut keys, see Editor key summary, page 197.
To change the default shortcut key bindings, choose Tools>Options, and click the Key
Bindings tab. For further details, see Key Bindings page, page 235.

Splitting the editor window into panes

You can split the editor window horizontally or vertically into multiple panes, to allow
you to look at different parts of the same source file at once, or move text between two
different panes.

To split the window, double-click the appropriate splitter bar, or drag it to the middle of
the window. Alternatively, you can split a window into panes using the Window>Split
command.

To revert to a single pane, double-click the splitter control or drag it back to the end of
the scroll bar.

Dragging and dropping of text

You can easily move text within an editor window or between different editor windows.
Select the text and drag it to the new location.

Syntax coloring

The IAR Embedded Workbench editor automatically recognizes the syntax of:

e C and C++ keywords

e C and C++ comments

o Assembler directives and comments
e Preprocessor directives

e Strings.

The different parts of source code are displayed in different text styles.

Part 3. Project management and building 91

Using the IAR Embedded Workbench editor

92

IAR Embedded Workbench® IDE
User Guide

To change these styles, choose Tools>Options, and click the Editor Colors and Fonts
tab in the IDE Options dialog box. For additional information, see Editor Colors and
Fonts page, page 241.

In addition, you can define your own set of keywords that should be syntax-colored
automatically:

In a text file, list all the keywords that you want to be automatically syntax-colored.
Separate each keyword with either a space or a new line.

Choose Tools>Options and click the Editor Setup Files tab.

Select the Use Custom Keyword File option and specify your newly created text file.
A browse button is available for your convenience.

Click the Edit Colors and Fonts tab and choose User Keyword from the Syntax
Coloring list. Specify the font, color, and type style of your choice. For additional
information, see Editor Colors and Fonts page, page 241.

In the editor window, type any of the keywords you listed in your keyword file; see
how the keyword is syntax-colored according to your specification.
Automatic text indentation

The text editor can perform different kinds of indentation. For assembler source files and
normal text files, the editor automatically indents a line to match the previous line. If
you want to indent a number of lines, select the lines and press the Tab key. Press
Shift-Tab to move a whole block of lines to the left.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++
source code. This is performed whenever you:

e Press the Return key
e Type any of the special characters {, }, :, and #
o Have selected one or several lines, and choose the Edit>Auto Indent command.

To enable or disable the indentation:

Choose Tools>Options

Click the Editor tab

Select or deselect the Auto indent option.

To customize the C/C++ automatic indentation, click the Configure button.

For additional information, see Configure Auto Indent dialog box, page 238.

Editing °

Matching brackets and parentheses

When the insertion point is located next to a parenthesis, the matching parenthesis is
highlighted with a light gray color:

forf| int i = 0; i < 10; i++)]
{
i

Figure 32: Parentheses matching in editor window

The highlight remains in place as long as the insertion point is located next to the
parenthesis.

To select all text between the brackets surrounding the insertion point, choose
Edit>Match Brackets. Every time you choose Match Brackets after that, the selection
will increase to the next hierarchic pair of brackets.

Note: Both of these functions—automatic matching of corresponding parentheses and
selection of text between brackets—apply to (), [1, and {}.
Displaying status information

As you are editing, the status bar—available by choosing View>Status Bar— shows
the current line and column number containing the insertion point, and the Caps Lock,
Num Lock, and Overwrite status:

ILn 8. Cal 4 CAP [MUM | OWR 4

Figure 33: Editor window status bar

USING AND ADDING CODE TEMPLATES
Code templates is a method for conveniently inserting frequently used source code
sequences, for example for loops and i £ statements. The code templates are defined in
a normal text file. By default, there are a few example templates provided. In addition,
you can easily add your own code templates.
Enabling code templates
By default, code templates are enabled. To enable and disable the use of code templates:
I Choose Tools>Options.
2 Go to the Editor Setup Files page.

3 Select or deselect the Use Code Templates option.

Part 3. Project management and building 93

Using the IAR Embedded Workbench editor

94

IAR Embedded Workbench® IDE
User Guide

4 In the text field, specify which template file you want to use; either the default file or

one of your own template files. A browse button is available for your convenience.

Inserting a code template in your source code

To insert a code template in your source code, place the insertion point at the location
where you want the template to be inserted and choose Edit>Insert Template. This
command displays a list in the editor window from which you can choose a code
template.

Figure 34: Editor window code template menu

If the code template you choose requires any type of field input, as in the for loop
example which needs an end value and a count variable, an input dialog box appears.

Adding your own code templates

The source code templates are defined in a normal text file. The original template file
CodeTemplates. txt islocated in the common\config installation directory. The first
time you use IAR Embedded Workbench, the original template file is copied to a
directory for local settings, and this is the file that will be used by default if code
templates are enabled. To use your own template file, follow the procedure described in
Enabling code templates, page 93.

To open the template file and define your own code templates, choose Edit>Code
Templates>Edit Templates.

The syntax for defining templates is described in the default template file.

Editing °

NAVIGATING IN AND BETWEEN FILES

The editor provides several functions for easy navigation within the files and between
different files:

e Switching between source and header files

If the insertion point is located on an #include line, you can choose the Open
""header.h' command from the context menu, which opens the header file in an
editor window. You can also choose the command Open Header/Source File, which
opens the header or source file that corresponds to the current file, or activates it if it
is already open. This command is available if the insertion point is located on any
line except an #include line.

e Function navigation

iy Click the Go to function button in the bottom left corner in an editor window to list
all functions defined in the source file displayed in the window. You can then choose
to go directly to one of the functions by double-clicking it in the list.

o Adding bookmarks

Use the Edit>Toggle Bookmark command to add and remove bookmarks. To
switch between the marked locations, choose Edit>Go to Bookmark.

SEARCHING
There are several standard search functions available in the editor:

Quick search text box

Find dialog box

Replace dialog box

Find in files dialog box
Incremental Search dialog box.

To use the Quick search text box on the toolbar, type the text you want to search for and
press Enter. Press Esc to cancel the search. This is a quick method for searching for text
in the active editor window.

To use the Find, Replace, Find in Files, and Incremental Search functions, choose the
corresponding command from the Edit menu. For reference information about each
search function, see Edit menu, page 213.

Customizing the editor environment

The IAR Embedded Workbench IDE editor can be configured on the IDE Options
pages Editor and Editor Colors and Fonts. Choose Tools>Options to access the

pages.

Part 3. Project management and building 95

Customizing the editor environment

96

IAR Embedded Workbench® IDE
User Guide

For details about these pages, see Tools menu, page 232.

USING AN EXTERNAL EDITOR

The External Editor page—available by choosing Tools>Options—Ilets you specify
an external editor of your choice.

Select the option Use External Editor.

An external editor can be called in one of two ways, using the Type drop-down menu.
Command Line calls the external editor by passing command line parameters.

DDE calls the external editor by using DDE (Windows Dynamic Data Exchange).

If you use the command line, specify the command line to pass to the editor, that is, the
name of the editor and its path, for instance:

C:\WINNT\NOTEPAD.EXE.

You can send an argument to the external editor by typing the argument in the
Arguments field. For example, type $FILE_PATHS to start the editor with the active file
(in editor, project, or Messages window).

Editar Colors and Fonts I Froject I Debugager | Register Filter I Terminal /0 I
Common Fants I Key Bindings External Editor | Messages I Editor
™ Use External Editor
Type;: IEommand Line j
Editar: I J
Arguments:l
QK | Cancel | Apply | Help |

Figure 35: Specifying external command line editor

If you use DDE, specify the editor’s DDE service name in the Service field. In the
Command field, specify a sequence of command strings to send to the editor.

The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.

Editing °

The command strings should be entered as:

DDE-Topic CommandString
DDE-Topic CommandString

as in the following example, which applies to Codewright®:

Editor | Editor Colors and Fonts I Project I Debugger I
External E ditor | Common Fonts I K.ey Bindings I Messages
k]
Tupe: IDDE j
Edior [C\EW32CWI2EXE J

Service: IEodewright

Cormmand: |System BufEditFile $FILE_PATHS
$FILE_PATH$ MovToline $CUR_LINES

QK I Cancel | Apply | Help |

Figure 36: External editor DDE settings

The command strings used in this example will open the external editor with a dedicated
file activated. The cursor will be located on the current line as defined in the context
from where the file is open, for instance when searching for a string in a file, or when
double-clicking an error message in the Message window.

Click OK.

When you open a file by double-clicking it in the workspace window, the file will be
opened by the external editor.

Variables can be used in the arguments. For more information about the argument
variables that are available, see Argument variables summary, page 225.

Part 3. Project management and building 97

Customizing the editor environment

IAR Embedded Workbench® IDE
98 User Guide

Part 4. Debugging

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e The IAR C-SPY® Debugger

e Executing your application

e Working with variables and expressions
e Using breakpoints

e Monitoring memory and registers

e Using the C-SPY macro system

e Analyzing your application.

: .hmuiuhhhi

ARARAIed

100

The IAR C-SPY®
Debugger

This chapter introduces you to the IAR C-SPY Debugger. First some of the
concepts are introduced that are related to debugging in general and to the
IAR C-SPY Debugger in particular. Then the debugger environment is
presented, followed by a description of how to setup, start, and finally adapt
C-SPY to target hardware.

Debugger concepts

This section introduces some of the concepts that are related to debugging in general and
to the IAR C-SPY Debugger in particular. This section does not contain specific
conceptual information related to the functionality of the IAR C-SPY Debugger.
Instead, such information can be found in each chapter of this part of the guide. The IAR

Systems user documentation uses the following terms when referring to these concepts.

IAR C-SPY DEBUGGER AND TARGET SYSTEMS

The IAR C-SPY Debugger can be used for debugging either a software target system or
a hardware target system.

Part 4. Debugging

101

Debugger concepts

102

IAR Embedded Workbench® IDE
User Guide

Figure 37, IAR C-SPY Debugger and target systems, shows an overview of C-SPY and
possible target systems.

' JAR C-SPY DEBUGGER ! TARGET SYSTEM
| |
| . -
| | Simulator ! | Simulator
| | driver |
| |— _ — — f s
Embedded | . S
. ROM- 1
Workbench C-SPY | drivermom or :H/\/[ROM- %
| - | monitor A
| Target hardware §
8 S
| | Emulator ‘_§
| driver | i
| =
: \1|~/[JTAG | | Target <
| emulator| |hardware
I I

Figure 37: IAR C-SPY Debugger and target systems

DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

USER APPLICATION

A user-application is the software you have developed and which you want to debug
using the AR C-SPY Debugger.

The IAR C-SPY® Debugger __4

IAR C-SPY DEBUGGER SYSTEMS

The IAR C-SPY Debugger consists of both a general part which provides a basic set of
C-SPY features, and a driver. The C-SPY driver is the part that provides communication
with and control of the target system. The driver also provides the user

interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints. There are three main types of C-SPY drivers:

o Simulator driver
o ROM-monitor driver
e Emulator driver

If you have more than one C-SPY driver installed on your computer you can switch
between them by choosing the appropriate driver from within the IAR Embedded
Workbench IDE.

For an overview of the general features of IAR C-SPY Debugger, see IJAR C-SPY®
Debugger, page 5. For an overview of the functionality provided by each driver, see the
online help system available from the Help menu. There may also be a driver guide in
hypertext PDF format available in the doc directory. Contact your software distributor
or IAR representative for information about available C-SPY drivers. You can also find
information on the IAR Systems website, www.iar.com.

ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

It is possible to use a third-party debugger together with the IAR Systems tool chain as
long as the third-party debugger can read any of the output formats provided by XLINK,
such as UBROF, ELF/DWAREF, COFF, Intel-extended, Motorola, or any other available
format. For information about which format to use with third-party debuggers, see the
user documentation supplied with that tool.

Part 4. Debugging 103

The C-SPY environment

104

The C-SPY environment

AN INTEGRATED ENVIRONMENT

The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the IAR C/C++ Compiler and IAR Assembler,
and is completely integrated in the IAR Embedded Workbench IDE, providing
development and debugging within the same application.

All windows that are open in the Embedded Workbench workspace will stay open when
you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows will be
opened.

You can modify your source code in an editor window during the debug session, but
changes will not take effect until you exit from the debugger and rebuild your
application.

The integration also makes it possible to set breakpoints in the text editor at any point
during the development cycle. It is also possible to inspect and modify breakpoint
definitions also when the debugger is not running. Breakpoints are highlighted in the
editor windows and breakpoint definitions flow with the text as you edit. Your debug
settings, such as watch properties, window layouts, and register groups will remain
between your debug sessions.

In addition to the features available in the IAR Embedded Workbench IDE, the debugger
environment consists of a set of C-SPY-specific items, such as a debugging toolbar,
menus, windows, and dialog boxes.

Reference information about each item specific to C-SPY can be found in the chapter
C-SPY® Debugger reference, page 257.

For specific information about a C-SPY driver, see the part of the book corresponding
to the driver.

Setting up the IAR C-SPY Debugger

IAR Embedded Workbench® IDE
User Guide

Before you start the IAR C-SPY Debugger you should set options to set up the debugger
system. These options are available on the Setup page of the Debugger category,
available with the Project>Options command. On the Plugins page you can find
options for loading plug-in modules.

In addition to the options for setting up the debugger system, you can also set
debugger-specific IDE options. These options are available with the Tools>Options
command. For further information about these options, see Debugger page, page 243.

The IAR C-SPY® Debugger __4

CHOOSING A DEBUG DRIVER

Before starting C-SPY, you must choose a driver for the debugger system from the
Driver drop-down list on the Setup page. The contents of the drop-down list depend on
your product installation; drivers for hardware debugger systems might, or might not be
available. If you choose a driver for a hardware debugger system, you also need to set
hardware-specific options. For information about these options, see the online help
system available from the Help menu.

Note: You can only choose a driver you have installed on your computer.

EXECUTING FROM RESET

Using the Run to option, you can specify a location you want C-SPY to run to when you
start the debugger as well as after each reset. C-SPY will place a breakpoint at this
location and all code up to this point will be executed prior to stopping at the location.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will then contain the regular
hardware reset address at each reset.

If there are no breakpoints available when C-SPY starts, a warning message appears
notifying you that single stepping will be required and that this is time consuming. You
can then continue execution in single step mode or stop at the first instruction. If you
choose to stop at the first instruction, the debugger starts executing with the pc (program
counter) at the default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where
breakpoints are not limited.

For driver-specific information about breakpoints, see the online help system available
from the Help menu.

USING A SETUP MACRO FILE

A setup macro file is a standard macro file that you choose to load automatically when
C-SPY starts. You can define the setup macro file to perform actions according to your
needs, by using setup macro functions and system macros. Thus, by loading a setup
macro file you can initialize C-SPY to perform actions automatically.

To register a setup macro file, select Use macro file and type the path and name of your
setup macro file, for example Setup.mac. If you do not type a filename extension, the
extension mac is assumed. A browse button is available for your convenience.

Part 4. Debugging 105

Setting up the IAR C-SPY Debugger

106

IAR Embedded Workbench® IDE
User Guide

For detailed information about setup macro files and functions, see The macro file, page
136. For an example about how to use a setup macro file, see the chapter Simulating an
interrupt in Part 2. Tutorials.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY handles several of the target-specific adaptations by using device description
files. They contain device-specific information about for example, definitions of
peripheral units and CPU registers, and groups of these. Each file also contains
documentation about the definitions.

If you want to use the device-specific information provided in the device description file
during your debug session, you must select the appropriate device description file.
Device description files are provided in the cpuname\config directory and they have
the filename extension ddf.

To load a device description file that suits your device, you must, before you start the
C-SPY debugger, choose Project>Options and select the Debugger category. On the
Setup page, enable the use of a description file and select a file using the Device
description file browse button.

For an example about how to use a setup macro file, see Simulating an interrupt in Part
2. Tutorials.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules that are to be loaded and
made available during debug sessions. Plugin modules can be provided by IAR, as well
as by third-party suppliers. Contact your software distributor or IAR representative, or
visit the IAR Systems web site, for information about available modules.

For information about how to load plugin modules, see Plugins, page 332.

The IAR C-SPY RTOS awareness plugin modules

Provided that there is one or more real-time operating systems plugin modules
supported for the IAR Embedded Workbench version you are using, you can load one
for use with the IAR C-SPY Debugger. C-SPY RTOS awareness plugin modules give
you a high level of control and visibility over an application built on top of a real-time
operating system. It displays RTOS-specific items like task lists, queues, semaphores,
mailboxes and various RTOS system variables. Task-specific breakpoints and
task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own set of windows and buttons when a debug session is
started (provided that the RTOS is linked with the application). For information about
other RTOS awareness plugin modules, refer to the manufacturer of the plugin module.

The IAR C-SPY® Debugger __4

Starting the IAR C-SPY Debugger

pe]

When you have setup the debugger, you can start it.

To start the IAR C-SPY Debugger and load the current project, click the Debug button.
Alternatively, choose the Project>Debug command.

For information about how to execute your application and how to use the C-SPY
features, see the remaining chapters in Part 4. Debugging.

Executable files built outside of the Embedded Workbench

It is also possible to load C-SPY with a project that was built outside the Embedded
‘Workbench, for example projects built on the command line. To be able to set C-SPY
options for the externally built project, you must create a project within the Embedded
Workbench.

To load an externally built executable file, you must first create a project for it in your
workspace. Choose Project>Create New Project, and specify a project name. To add
the executable file to the project, choose Project>Add Files and make sure to choose
All Files in the Files of type drop-down list. Locate the executable file (filename
extension dxx). To start the executable file, select the project in the workspace window
and click the Debug button. The project can be reused whenever you rebuild your
executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

REDIRECTING DEBUGGER OUTPUT TO A FILE

The Debug Log window—available from the View menu—displays debugger output,
such as diagnostic messages and trace information. It can sometimes be convenient to
log the information to a file where it can be easily inspected. The Log Files dialog
box—available from the Debug menu—allows you to log output from C-SPY to a file.
The two main advantages are:

e The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

e The file provides history about how you have controlled the execution, for instance,
what breakpoints have been triggered etc.

The information printed in the file is by default the same as the information listed in the
Log window. However, you can choose what you want to log in the file: errors,
warnings, system information, user messages, or all of these. For reference information
about the Log File options, see Log File dialog box, page 283.

Part 4. Debugging 107

Starting the IAR C-SPY Debugger

IAR Embedded Workbench® IDE
108 User Guide

Executing your application

The IAR C-SPY® Debugger provides a flexible range of facilities for executing
your application during debugging. This chapter contains information about:

e The conceptual differences between source mode and disassembly mode
debugging

e Executing your application
e The call stack

e Handling terminal input and output.

Source and disassembly mode debugging

The IAR C-SPY Debugger allows you to switch seamlessly between source mode and
disassembly mode debugging as required.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control over the hardware. You can open a disassembly
window which displays a mnemonic assembler listing of your application based on
actual memory contents rather than source code, and lets you execute the application
exactly one instruction at a time. In Mixed-Mode display, the debugger also displays the
corresponding C/C++ source code interleaved with the disassembly listing.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

For an example of a debug session both in C source mode and disassembly mode, see
Debugging the application, page 33.

Part 4. Debugging 109

Executing

110

Executing

IAR Embedded Workbench® IDE
User Guide

The IAR C-SPY Debugger provides a flexible range of features for executing your
application. You can find commands for executing on the Debug menu as well as on the
toolbar.

STEP

C-SPY allows more stepping precision than most other debuggers in that it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, as well as at each function call.
That is, source code locations where you might consider whether to execute a step into
or a step over command. Because the step points are located not only at each statement
but also at each function call, the step functionality allows a finer granularity than just
stepping on statements. There are four different step commands:

e Step Into

e Step Over

o Next Statement

e Step Out

Consider this example and assume that the previous step has taken you to the £ (1)
function call (highlighted):

int f(int n)

{

value = f(n-1) + £(n-2) + £(n-3);
return value;

}

£(1);

value ++;

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine, £ (n-1):

int f(int n)

{

value = £(n-1) + £(n-2) + £(n-3);
return value;

}
£(i);
value ++;

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Executing your application __¢

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the £ (n-2) function
call, which is not a statement on its own but part of the same statement as £ (n-1) . Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

int f(int n)

{

value = f(n-1) + £(n-2) + £(n-3);
return value;

}

£(1i);
value ++;

The Next Statement command executes directly to the next statement return value,
allowing faster stepping:

int f(int n)

{

value = f(n-1) + f£f(n-2) + f£(n-3);
return value;

}

£(1);
value ++;
When inside the function, you have the choice of stepping out of it before reaching the

function exit, by using the Step Out command. This will take you directly to the
statement immediately after the function call:

int f(int n)

{

value = f(n-1) + f(n-2) f(n-3);
return value;

£(1);

value ++;

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for Embedded C++, which tends to have many implicit
function calls, such as constructors, destructors, assignment operators, and other
user-defined operators.

Part 4. Debugging 111

Executing

112

IAR Embedded Workbench® IDE
User Guide

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, it is also possible to step only on statements, which means faster

stepping.

GO

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

RUN TO CURSOR

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING
At each stop, C-SPY highlights the corresponding C or C++ source with a green color.

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

USING BREAKPOINTS TO STOP

You can set breakpoints in the application to stop at locations of particular interest.
These locations can be either at code sections where you want to investigate whether
your program logic is correct, or at data accesses to investigate when and how the data
is changed. Depending on which debugger solution you are using you might also have
access to additional types of breakpoints. For instance, if you are using C-SPY
Simulator there is a special kind of breakpoint to facilitate simulation of simple
hardware devices. See the chapter Simulator-specific debugging for further details.

For a more advanced simulation, you can stop under certain conditions, which you
specity. It is also possible to connect a C-SPY macro to the breakpoint. The macro can
be defined to perform actions, which for instance can simulate specific hardware
behavior.

Executing your application __¢

All these possibilities provide you with a flexible tool for investigating the status of, for
example, variables and registers at different stages during the application execution.

For detailed information about the breakpoint system and how to use the different
breakpoint types, see the chapter Using breakpoints.

USING THE BREAK BUTTON TO STOP

While your application is executing, the Break button on the debug toolbar is
highlighted in red. You can stop the application execution by clicking the Break button,
alternatively by choosing the Debug>Break command.

STOP AT PROGRAM EXIT

Typically, the execution of an embedded application is not intended to end, which means
that the application will not make use of a traditional exit. However, there are situations
where a controlled exit is necessary, such as during debug sessions. You can link your
application with a special library that contains an exit label. A breakpoint will be
automatically set on that label to stop execution when it gets there. Before you start
C-SPY, choose Project>Options, and select the Linker category. On the Output page,
select the option With runtime control modules (-r).

Call stack information

The IAR C/C++ Compiler generates extensive backtrace information. This allows
C-SPY to show, without any runtime penalty, the complete call chain at any time.
Typically, this is useful for two purposes:

e Determining in what context the current function has been called
e Tracing the origin of incorrect values in variables and incorrect values in
parameters, thus locating the function in the call chain where the problem occurred.

The Call Stack window—available from the View menu—shows a list of function calls,
with the current function at the top. When you inspect a function in the call chain, by
double-clicking on any function call frame, the contents of all affected windows will be
updated to display the state of that particular call frame. This includes the editor, Locals,
Register, Watch and Disassembly windows. A function would normally not make use of
all registers, so these registers might have undefined states and be displayed as dashes
(---). For reference information about the Call Stack window, see Call Stack window,
page 270.

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

Part 4. Debugging 113

Terminal input and output

114

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command—available on the Debug menu, or alternatively on the
context menu—to execute to that function.

Assembler source code does not automatically contain any backtrace information. To be
able to see the call chain also for your assembler modules, you can add the appropriate
CFI assembler directives to the source code. For further information, see the JAR
Assembler Reference Guide.

Terminal input and output

IAR Embedded Workbench® IDE
User Guide

Sometimes you might need to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window—available on the View menu—Ilets you enter input to your application, and
display output from it.

This facility can be useful in two different contexts:

e If your application uses stdin and stdout
e For producing debug trace printouts.

To use this window, you need to link your application with the option With I/O
emulation modules. C-SPY will then direct stdin, stdout, and stderr to this
window.

For reference information, see Terminal I/0 window, page 272.

Directing stdin and stdout to a file

You can also direct stdin and stdout directly to a file. You can then open the file in
another tool, for instance an editor, to navigate and search within the file for particularly
interesting parts. The Terminal I/O Log Files dialog box—available by choosing
Debug>Logging—allows you to select a destination log file, and to log terminal I/O
input and output from C-SPY to this file.

For reference information, see Terminal I/O Log File dialog box, page 284.

Working with variables
and expressions

This chapter defines the variables and expressions used in C-SPY®. It also
demonstrates the different methods for examining variables and expressions.

C-SPY expressions

C-SPY lets you examine the C variables, C expressions, and assembler symbols that you
have defined in your application code. In addition, C-SPY allows you to define C-SPY
macro variables and macro functions and use them when evaluating expressions.
Expressions that are built with these components are called C-SPY expressions and
there are several methods for monitoring these in C-SPY.

C-SPY expressions can include any type of C expression, except function calls. The
following types of symbols can be used in expressions:

o C/C++ symbols

o Assembler symbols (register names and assembler labels)
o C-SPY macro functions

o C-SPY macro variables

Examples of valid C-SPY expressions are:
i+ 3

i =42

#asm_label

#R2

#PC

my_macro_func (19)

C SYMBOLS

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions. C symbols can be referenced by their
names.

Part 4. Debugging 115

C-SPY expressions

116

IAR Embedded Workbench® IDE
User Guide

ASSEMBLER SYMBOLS

Assembler symbols can be assembler labels or register names. That is, general purpose
registers and special purpose registers, such as the program counter and the status
register. If a device description file is used, all memory-mapped peripheral units, such
as I/O ports, can also be used as assembler symbols in the same way as the CPU
registers. See Selecting a device description file, page 106.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

Example What it does

#pc++ Increments the value of the program counter.

myptr = #label7 Setsmyptr to the integral address of 1abel7 within its zone.

Table 9: C-SPY assembler symbols expressions

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes * (ASCII character 0x60). For example:

Example What it does
#pc Refers to the program counter.
pc’ Refers to the assembler label pc.

Table 10: Handling name conflicts between hardware registers and assembler labels

Which processor-specific symbols are available by default can be seen in the Register
window, using the CPU Registers register group. See Register groups, page 130.

MACRO FUNCTIONS

Macro functions consist of C-SPY variable definitions and macro statements which are
executed when the macro is called.

For details of C-SPY macro functions and how to use them, see The macro language,
page 136.

MACRO VARIABLES

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assigns both its value and type.

For details of C-SPY macro variables and how to use them, see The macro language,
page 333.

Working with variables and expressions ___¢

Limitations on variable information

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice the value of the variable is accessible and correct more
often than that.

‘When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

EFFECTS OF OPTIMIZATIONS

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. Depending on your project settings, a high level of
optimization results in smaller or faster code, but also in increased compile time.
Debugging might be more difficult because it will be less clear how the generated
code relates to the source code. Typically, using a high optimization level can affect
the code in a way that will not allow you to view a value of a variable as expected.

Consider this example:

foo ()
{
int i = 42;

x = bar(i); //Not until here the value of i is known to C-SPY

}

From the point where the variable 1 is declared until it is actually used there is no need
for the compiler to waste stack or register space on it. The compiler can optimize the
code, which means C-SPY will not be able to display the value until it is actually used.
If you try to view a value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Part 4. Debugging 117

Viewing variables and expressions

118

Viewing variables and expressions

IAR Embedded Workbench® IDE
User Guide

There are several methods for looking at variables and calculating their values:

e Tooltip watch provides the simplest way of viewing the value of a variable or more
complex expressions. Just point at the variable with the pointer. The value will be
displayed next to the variable.

o The Auto window—available from the View menu—automatically displays a
useful selection of variables and expressions in, or near, the current statement.

o The Locals window—available from the View menu—automatically displays the
local variables, that is, auto variables and function parameters for the active
function.

o The Watch window—available from the View menu—allows you to monitor the
values of C-SPY expressions and variables.

e The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in
the expressions must be statically located, such as global variables.

o The Quick Watch window, see Using the Quick Watch window, page 118.

o The Trace system, see Using the trace system, page 119.

For reference information about the different windows, see C-SPY windows, page 257.

WORKING WITH THE WINDOWS

All the windows are easy to use. You can add, modify, and remove expressions, and
change the display format.

A context menu containing useful commands is available in all windows if you
right-click in each window. Convenient drag-and-drop between windows is supported,
except for in the Locals window and the Quick Watch window where it is not applicable.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click in the Value field and
modify its content. To remove an expression, select it and press the Delete key.

Using the Quick Watch window

The Quick Watch window—available from the View menu—Iets you watch the value
of a variable or expression and evaluate expressions.

The Quick Watch window is different from the Watch window in the following ways:

o The Quick Watch window offers a fast method for inspecting and evaluating
expressions. Right-click on the expression you want to examine and choose Quick
Watch from the context menu that appears. The expression will automatically
appear in the Quick Watch window.

Working with variables and expressions ___¢

e In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be
necessary, but for expressions with side effects, such as assignments and C-SPY
macro functions, it allows you to perform evaluations under controlled conditions.

USING THE TRACE SYSTEM

A trace is arecorded sequence of events in the target system, typically executed machine
instructions. Depending on what C-SPY driver you are using, additional types of trace
data can be recorded. For example, read and write accesses to memory, as well as the
values of C-SPY expressions.

By using the trace system, you can trace the program flow up to a specific state, for
instance an application crash, and use the trace information to locate the origin of the
problem. Trace information can be useful for locating programming errors that have
irregular symptoms and occur sporadically. Trace information can also be useful as test
documentation.

The trace system is not supported by all C-SPY drivers. For detailed information about
the trace system and the components provided by the C-SPY driver you are using, see
the corresponding driver documentation.

Which trace system functionality that is provided depends on the C-SPY driver you are
using. Regardless of which C-SPY driver you are using, the Trace window, the Find in
Trace window, and the Find in Trace dialog box are always available. You can save the
trace information to a file to be analyzed later.

The Trace window and its browse mode

The type of information that is displayed in the Trace window depends on the C-SPY
driver you are using. The different trace data is displayed in separate columns, but the
Trace column is always available regardless of what driver you are using. The
corresponding source code can also be shown.

You can follow the execution history by simply looking and scrolling in the Trace
window. Alternatively, you can enter browse mode. To enter browse mode, double-click
an item in the Trace window, or click the Browse toolbar button. The selected item turns
yellow and the source and disassembly windows will highlight the corresponding
location. You can now move around in the Trace window by using the up and down
arrow keys, or by scrolling and clicking; the source and Disassembly windows will be
updated to show the corresponding location. Double-click again to leave browse mode.

Searching in the trace data

You can perform advanced searches in the recorded trace data. You specify the search
criteria in the Find in Trace dialog box and view the result in the Find in Trace window.

Part 4. Debugging 119

Viewing variables and expressions

asmmain. asm

PUBLIC

COMMON
CODE32

RSEG

asmvarl: DC32
asmvarz: DC32
asmvar3: DCE
asmvard: DCE

CODE32
Srmain NOF
E main

IAR Embedded Workbench® IDE

120 User Guide

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the

Trace window.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY treats, by default, all data located at assembler labels as
variables of type int. However, in the Watch, Quick Watch, and Live Watch windows,
you can select a different interpretation to better suit the declaration of the variables.

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

nain Expression Yalue Location Type
= asrrvan 42 0x5000 int
main asrar? 456 0x8004 int
asrvard 55 0=8008 <G-hit unsigned>
INTVEC: CODE 4
Add
Remove

main
v Default Farmak
Binary Formak

ICODE: CODE COckal Format
Drecimal Format
4z Hezxadecimal Format
436 Char Format
55
1n

main

Figure 38: Viewing assembler variables in the Watch window

8-bit Signed
&-bit Unsigned
16-bit Signed
16-bit Unsigned
32-bit Signed

32-bit Unsigned

Note that asmvard4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has

already been specified for the asmvar3 variable.

Using breakpoints

This chapter describes the breakpoint system and different ways to create and
monitor breakpoints.

The breakpoint system

The C-SPY® breakpoint system lets you set various kinds of breakpoints in the
application you are debugging, allowing you to stop at locations of particular interest.
You can set a breakpoint at a code location to investigate whether your program logic is
correct, or to get trace printouts. In addition to code breakpoints, and depending on what
C-SPY driver you are using, additional breakpoint types might be available. For
example, you might be able to set a data breakpoint, to investigate how and when the
data changes. If you are using the simulator driver you can also set immediate
breakpoints.

All your breakpoints are listed in the Breakpoints window where you can conveniently
monitor, enable, and disable them.

For a more advanced simulation, you can stop under certain conditions, which you
specify. It is also possible to let the breakpoint trigger a side effect, for instance
executing a C-SPY macro function, without stopping the execution. The macro function
can be defined to perform a wide variety of actions, for instance, simulating hardware
behavior.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions. C-SPY provides different ways of defining
breakpoints.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

Defining breakpoints

The breakpoints you define will appear in the Breakpoints window. From this window
you can conveniently view all breakpoints, enable and disable breakpoints, and open a
dialog box for defining new breakpoints. For more details, see Breakpoints window,
page 201.

Breakpoints are set with a higher precision than single lines, in analogy with the step
mechanism; for more details about the step mechanism, see Step, page 110.

Part 4. Debugging

121

Defining breakpoints

122

IAR Embedded Workbench® IDE
User Guide

You can set a breakpoint in several different ways: using the Toggle Breakpoint
command, from the Memory window, from a dialog box, or using predefined system
macros. The different methods allow different levels of complexity and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available, either in the editor window, the Disassembly window, or both:

o Double-click in the gray left-side margin of the editor window

e Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

e Choose Edit>Toggle Breakpoint

e Right-click and choose Toggle Breakpoint from the context menu.

The breakpoint is marked with a red X in the left margin of the editor window:

Bi Utilities.c M= E3

void init fib({ void)

i

short i = 45;

root[i] = get_fihii) + get_fib(i-1):

for { i=2 ; i<MAX_FIE ; i++) J

Figure 39: Breakpoint on a function call

If the red X does not appear, make sure the option Show bookmarks is selected, see
Editor page, page 237.

SETTING A BREAKPOINT IN THE MEMORY WINDOW

For information about how to set breakpoints using the Memory window, see Setting a
breakpoint in the Memory window, page 129.

DEFINING BREAKPOINTS USING THE DIALOG BOX

The advantage of using the dialog box is that it provides you with a graphical interface
where you can interactively fine tune the characteristics of the breakpoints. You can set
the options and quickly test whether the breakpoint works according to your intentions.

To define a new breakpoint:
Choose View>Breakpoints to open the Breakpoints window.
In the Breakpoints window, right-click to open the context menu.

On the context menu, choose New Breakpoint.

Using breakpoints °

On the submenu, choose the breakpoint type you want to set. Depending on the C-SPY
driver you are using, different breakpoint types might be available.

To modify an existing breakpoint:
Choose View>Breakpoints to open the Breakpoints window.

In the Breakpoints window, select the breakpoint you want to modify and right-click to
open the context menu.

On the context menu, choose Edit.

A breakpoint dialog box appears. Specify the breakpoint settings and click OK. The
breakpoint will be displayed in the Breakpoints window.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

For reference information about code and log breakpoints, see Code breakpoints dialog
box, page 202 and Log breakpoints dialog box, page 204, respectively. For details about
any additional breakpoint types, see the driver-specific documentation.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, it is useful to put a breakpoint on the first line of the function with a condition
that is true only when the parameter is 0. The breakpoint will then not be triggered until
the problematic situation actually occurs.

Performing a task with or without stopping execution

You can perform a task when a breakpoint is triggered with or without stopping the
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed.

If you instead want to perform a task without stopping the execution, you can set a
condition which returns 0 (false). When the breakpoint is triggered, the condition will
be evaluated and since it is not true execution will continue.

Part 4. Debugging 123

Defining breakpoints

124

IAR Embedded Workbench® IDE
User Guide

Consider the following example where the C-SPY macro function performs a simple
task:

__var my_counter;

count ()

{
my_counter += 1;
return 0;

}

To use this function as a condition for the breakpoint, type count () in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

DEFINING BREAKPOINTS USING SYSTEM MACROS

You can define breakpoints not only by using the Breakpoints dialog box but also by
using built-in C-SPY system macros. When you use macros for defining breakpoints,
the breakpoint characteristics are specified as function parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file by using
built-in system macros and execute the file at C-SPY startup. The breakpoints will then
be set automatically each time you start C-SPY. Another advantage is that the debug
session will be documented, and that several engineers involved in the development
project can share the macro files.

If you use system macros for setting breakpoints it is still possible to view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros will be removed when
you exit the debug session.

The following breakpoint macros are available:

__setCodeBreak
__setDataBreak
__setSimBreak
__clearBreak

For details of each breakpoint macro, see the chapter C-SPY® macros reference.

Defining breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Registering and executing using setup macros and setup files,
page 139.

Using breakpoints ___¢

Viewing all breakpoints

To view breakpoints, you can use the Breakpoints window and the Breakpoints Usage
dialog box.

For information about the Breakpoints window, see Breakpoints window, page 201.

USING THE BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from C-SPY driver-specific menus, for
example the Simulator menu—Ilists all active breakpoints.

=8 (02 [Fetch

- C-5P Terminal 10 & libzupport module

Figure 40: Breakpoint Usage dialog box

The Breakpoint Usage dialog box lists all breakpoints currently set in the target system,
both the ones you have defined and the ones used internally by C-SPY. For each
breakpoint in the list, the address and access type are shown. Each breakpoint can also
be expanded to show its originator. The format of the items in this dialog box depends
on which C-SPY driver you are using.

The dialog box gives a low-level view of all breakpoints, related but not identical to the
list of breakpoints shown in the Breakpoints dialog box.

Exceeding the number of available low-level breakpoints will cause the debugger to
single step. This will significantly reduce the execution speed. Therefore, in a debugger
system with a limited amount of breakpoints, the Breakpoint Usage dialog box can be
useful for:

o Identifying all consumers of breakpoints

o Checking that the number of active breakpoints is supported by the target system

o Configuring the debugger to utilize the available breakpoints in a better way, if
possible.

Part 4. Debugging 125

Viewing all breakpoints

126

IAR Embedded Workbench® IDE
User Guide

For information about the available number of breakpoints in the debugger system you
are using and how to use the available breakpoints in a better way, see the section about
breakpoints in the part of this book that corresponds to the debugger system you are
using.

Breakpoint consumers
There are several consumers of breakpoints in a debugger system.

User breakpoints—the breakpoints you define by using the Breakpoints dialog box or
by toggling breakpoints in the editor window—often consume one low-level breakpoint
each, but this can vary greatly. Some user breakpoints consume several low-level
breakpoints and conversely, several user breakpoints can share one low-level
breakpoint. User breakpoints are displayed in the same way both in the Breakpoint
Usage dialog box and in the Breakpoints dialog box, for example Data @[R]
callCount.

C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

o the C-SPY option Run to has been selected, and any step command is used. These
are temporary breakpoints which are only set when the debugger system is running.
This means that they are not visible in the Breakpoint Usage window.

o the linker options With I/O emulation modules has been selected.

These types of breakpoint consumers are displayed in the Breakpoint Usage dialog
box, for example, C-SPY Terminal I/0 & libsupport module.

In addition, C-SPY plugin modules, for example modules for real-time operating
systems, can consume additional breakpoints.

Monitoring memory and
registers

This chapter describes how to use the features available in the IAR C-SPY®
Debugger for examining memory and registers:

e The Memory window
o The Register window
o Predefined and user-defined register groups

e The Stack window.

Memory addressing

In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. Memory zones
are used in several contexts, perhaps most importantly in the Memory and Disassembly
windows. The Zone box in these windows allows you to choose which memory zone to
display.

Memory zones are defined in the device description files. For further information, see
Selecting a device description file, page 106.

Part 4. Debugging

127

Using the Memory window

Using the Memory window

Go to memory —
address

IAR Embedded Workbench® IDE
128 User Guide

The Memory window—available from the View menu—gives an up-to-date display of
a specified area of memory and allows you to edit it. You can open several instances of
this window, which is very convenient if you want to monitor different memory or
register areas.

Zone display
Gotol j IMemory j |ZI
00009fen 17 17 17 17 17 17 ;l
00009fe8 17 17 17 17 17 17
00oo9££n 17 17 17 17 17 17
00oo9ffs 7 17 17 17
00002000 0 ..
00002008
0000a010 .. Il
ooooa018 17 17 17 17 17 17 17 17
0000a0z20 17 17 17 17 17 17
0000a028 17 17 17 17 17 17
00002030 17 17 17 17 17 17 LI

Figure 41: Memory window

The window consists of three columns. The left-most part displays the addresses
currently being viewed. The middle part of the window displays the memory contents
in the format you have chosen. Finally, the right-most part displays the memory contents
in ASCII format. You can edit the contents of the Memory window, both in the
hexadecimal part and the ASCII part of the window.

You can easily view the memory contents for a specific variable by dragging the variable
to the Memory window. The memory area where the variable is located will appear.
Memory window operations

At the top of the window there are commands for navigation and configuration. These
commands are also available on the context menu that appears when you right-click in
the Memory window. In addition, commands for editing, opening the Fill dialog box,
and setting breakpoints are available.

For reference information about each command, see Memory window, page 261.

Monitoring memory and registers ___¢

Memory Fill

The Fill dialog box allows you to fill a specified area of memory with a value.

Start Address Length Zone

[p-1000 [t |Memay =]
Vel Operation

O=FF

& Copy AND
 ®OR 0OR

()3 I Cancel |

Figure 42: Memory Fill dialog box

For example, unused memory can be filled with 0x00 to inspect how far the stack has
grown.

For reference information about the dialog box, see Fill dialog box, page 263.

Setting a breakpoint in the Memory window

It is possible to set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted; you can see, edit, and remove it by using the
Breakpoints window, which is available from the View menu. The breakpoints you set
in this window will be triggered for both read and write access. All breakpoints defined
in the Memory window are preserved between debug sessions.

Note: Setting different types of breakpoints in the Memory window is only supported
if the driver you use supports these types of breakpoints.

Part 4. Debugging 129

Working with registers

130

Working with registers

IAR Embedded Workbench® IDE
User Guide

The Register window—available from the View menu—gives an up-to-date display of
the contents of the processor registers, and allows you to edit them.

IEF'U Registers j
PC = 0O=xll62 Ri2 = 0=0200
8P = 0=09F8 R13 = 0=FFFF
FHer = 0=z0000 R14 = 0x0000
R4 = 0=x78ZD Ri5 = 0=0000
RE = 0=6BEE CYCLECOUNTER = 276
R6 = 0=5E95
R7 = 0x763B
RE = O=x4A65
RO = 0=27C3
Ri0 = 0=002D
Ri1 = 0=x7064

Figure 43: Register window

Every time C-SPY stops, a value that has changed since the last stop is highlighted. To
edit the contents of a register, click it, and modify the value. Some registers are
expandable, which means that the register contains interesting bits or subgroups of bits.

You can change the display format by changing the Base setting on the Register Filter
page—available by choosing Tools>Options.

REGISTER GROUPS

Due to the large amount of registers—memory-mapped peripheral unit registers and
CPU registers—it is inconvenient to list all registers concurrently in the Register
window. Instead you can divide registers into register groups. By default there is only
one register group in the debugger: CPU Registers.

In addition to the CPU Registers there are additional register groups predefined in the
device description files—available in the cpuname\config directory—that make all
SFR registers available in the register window. The device description file contains a
section that defines the special function registers and their groups.

You can select which register group to display in the Register window using the
drop-down list. You can conveniently keep track of different register groups
simultaneously, as you can open several instances of the Register window.

Enabling predefined register groups

To use any of the predefined register groups, select a device description file that suits
your device, see Selecting a device description file, page 106.

Monitoring memory and registers ___¢

The available register groups will be listed on the Register Filter page available if you
choose the Tools>Options command when C-SPY is running.
Defining application-specific groups

In addition to the predefined register groups, you can design your own register groups
that better suit the use of registers in your application.

To define new register groups, choose Tools>Options and click the Register Filter tab.
This page is only available when the IAR C-SPY Debugger is running.

IDE Dptions [%]
Common Fonts I Key Bindings I External Editar | Meszages I Editor I

Editor Colors and Fonts I Project I Debugger Register Filter | Terminal |40

¥ Use register filter Groups:

IMyFiIter.fIt Filer Files...l I VI
=- EI_F'U Registers MI

Group members:

Cancel | Apply | Help |

Figure 44: Register Filter page

For reference information about this dialog box, see Register Filter page, page 244.

Part 4. Debugging 131

Using the Stack window

Using the Stack window

IAR Embedded Workbench® IDE

132 User Guide

The Stack window is a memory window that displays the contents of the stack. In
addition, some integrity checks of the stack can be performed to detect and warn about
problems with stack overflow. For example, the Stack window is useful for determining
the optimal size of the stack.

Before you can open the Stack window you must make sure it is enabled; Choose
Project>Options>Debugger>Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open
several Stack windows, each showing a different stack—if several stacks are
available—or the same stack with different display settings.

. Current stack
Stack view pointer Used stack memory, Unused stack memory,

in dark gray in light gray

The graphical stack bar

Location | Data. Yariable Yalue | Frame |

0x08

+1 0x08

+2 0x0000 p.mStatus 0 [1] _exit

+4 Ox4Rh

+5 0x67

+6 OxEOQ

+7 0Ox04

Figure 45: Stack window

For detailed reference information about the Stack window, and the method used for
computing the stack usage and its limitations, see Stack window, page 277. For reference
information about the options specific to the window, see Stack page, page 247.

GRAPHICAL STACK DISPLAY

At the top of the window, a stack bar displays the state of the stack graphically. To view
the stack bar you must make sure it is enabled: choose Tools>Options>Stack and select
the option Enable stack checks.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. A green line represents the current value of
the stack pointer. The part of the stack memory that has been used during execution is
displayed in a dark-gray color, and the unused part in a light-gray color. The graphical
stack bar turns red when the stack usage exceeds a threshold that you can specify.

Monitoring memory and registers ___¢

Place the mouse pointer over the stack bar to get tool tip information about stack usage.

DETECTING STACK OVERFLOWS

If you have selected the option Enable stack checks, available by choosing
Tools>Options>Stack, you have also enabled the functionality needed to detect stack
overflows. This means that C-SPY can issue warnings for stack overflow when the
application stops executing. Warnings are issued either when the stack usage exceeds a
threshold that you can specify, or when the stack pointer is outside the stack memory
range.

VIEWING THE STACK CONTENTS

The main part of the Stack window displays the contents of the stack, which can be
useful in many contexts. Some examples are:

e Investigating the stack usage when assembler modules are called from C modules
and vice versa
e Investigating whether the correct elements are located on the stack

Investigating whether the stack is restored properly.

Part 4. Debugging 133

Using the Stack window

IAR Embedded Workbench® IDE
134 User Guide

Using the C-SPY macro
system

The IAR C-SPY® Debugger includes a comprehensive macro system which
allows you to automate the debugging process and to simulate peripheral
devices. Macros can be used in conjunction with complex breakpoints and
interrupt simulation to perform a wide variety of tasks.

This chapter describes the macro system, its features, for what purpose these
features can be used, and how to use them.

The macro system

C-SPY macros can be used solely or in conjunction with complex breakpoints and
interrupt simulation to perform a wide variety of tasks. Some examples where macros
can be useful:

e Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

e Hardware configuring, such as initializing hardware registers.

Developing small debug utility functions, for instance calculating the stack depth.

e Simulating peripheral devices, see the chapter Simulating interrupts. This only
applies if you are using the simulator driver.

The macro system has several features:

o The similarity between the macro language and the C language, which lets you
write your own macro functions.

e Predefined system macros which perform useful tasks such as opening and closing
files, setting breakpoints and defining simulated interrupts.

o Reserved setup macro functions which can be used for defining at which stage the
macro function should be executed. You define the function yourself, in a setup
macro file.

e The option of collecting your macro functions in one or several macro files.

e A dialog box where you can view, register, and edit your macro functions and files.

Alternatively, you can register and execute your macro files and functions using
either the setup functionality or system macros.

Part 4. Debugging

135

The macro system

136

IAR Embedded Workbench® IDE
User Guide

Many C-SPY tasks can be performed either by using a dialog box or by using macro
functions. The advantage of using a dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the task you want
to perform, for instance setting a breakpoint. You can add parameters and quickly test
whether the breakpoint works according to your intentions.

Macros, on the other hand, are useful when you already have specified your breakpoints
so that they fully meet your requirements. You can set up your simulator environment
automatically by writing a macro file and executing it, for instance when you start
C-SPY. Another advantage is that the debug session will be documented, and if there are
several engineers involved in the development project you can share the macro files
within the group.

THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return values. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. For a
detailed description of the macro language components, see The macro language, page
333.

Example

Consider this example of a macro function which illustrates the different components of
the macro language:

CheckLatest (value)

{
oldvalue;
if (oldvalue != value)
{
__message "Message: Changed from ", oldvalue, " to ", value;
oldvalue = value;
}
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

THE MACRO FILE

You collect your macro variables and functions in one or several macro files. To define
a macro variable or macro function, first create a text file containing the definition. You
can use any suitable text editor, such as the editor supplied with IAR Embedded
Workbench. Save the file with a suitable name using the filename extension mac.

Using the C-SPY macro system °

Setup macro file

It is possible to load a macro file at C-SPY startup; such a file is called a setup macro
file. This is especially convenient if you want to make C-SPY perform actions before
you load your application software, for instance to initialize some CPU registers or
memory-mapped peripheral units. Other reasons might be if you want to automate the
initialization of C-SPY, or if you want to register multiple setup macro files. An example
of a C-SPY setup macro file SetupSimple.mac can be found in the cpuname\tutor
directory.

For information about how to load a setup macro file, see Registering and executing
using setup macros and setup files, page 139. For an example of how to use setup macro
files, see the chapter Simulating an interrupt in Part 2. Tutorials.

SETUP MACRO FUNCTIONS

The setup macro functions are reserved macro function names that will be called by
C-SPY at specific stages during execution. The stages to choose between are:

e After communication with the target system has been established but before
downloading the application software

o Once after your application software has been downloaded

e Each time the reset command is issued

o Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register
a macro function with the name of a setup macro function. For instance, if you want to
clear a specific memory area before you load your application software, the macro setup
function execUserPreload is suitable. This function is also suitable if you want to
initialize some CPU registers or memory mapped peripheral units before you load your
application software. For detailed information about each setup macro function, see
Setup macro functions summary, page 336.

As with any macro function, you collect your setup macro functions in a macro file.
Because many of the setup macro functions execute before main is reached, you should
define these functions in a setup macro file.

Using C-SPY macros
If you decide to use C-SPY macros, you first need to create a macro file in which you
define your macro functions. C-SPY needs to know that you intend to use your defined
macro functions, and thus you must register (load) your macro file. During the debug
session you might need to list all available macro functions as well as execute them.

Part 4. Debugging 137

Using C-SPY macros

138

IAR Embedded Workbench® IDE
User Guide

To list the registered macro functions, you can use the Macro Configuration dialog
box. There are various ways to both register and execute macro functions:

e You can register a macro interactively by using the Macro Configuration dialog
box.

e You can register and execute macro functions at the C-SPY startup sequence by
defining setup macro functions in a setup macro file.

e A file containing macro function definitions can be registered using the system
macro __ registerMacroFile. This means that you can dynamically select
which macro files to register, depending on the runtime conditions. Using the
system macro also lets you register multiple files at the same moment. For details
about the system macro, see __registerMacroFile, page 346.

o The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions.

e A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro will be executed.

USING THE MACRO CONFIGURATION DIALOG BOX

The Macro Configuration dialog box—available by choosing Debug>Macros—Ilets
you list, register, and edit your macro files and functions. The dialog box offers you an
interactive interface for registering your macro functions which is convenient when you
develop macro functions and continuously want to load and test them.

Using the C-SPY macro system °

Macro functions that have been registered using the dialog box will be deactivated when
you exit the debug session, and will not automatically be registered at the next debug
session.

Macro Configuration BE
Look in: Ia tutaor j - I‘j‘ v
_1Debug
1 settings

Setupadvanced. mac
SetupSimple. mac

File name: ISetupSimpIe.mac j
Files of type: IMacro Filez [*.mac] j
Selected Macro Files: Add |

C:hprojectshtutorS etupSimple. mac Add Al |
Remove |
Remave Al |

— Registered Macro .
Regist
(o] User € System ﬂl

Parameters | File

_canceldlinterrupts] - Spstem Macro -
__cancellnterupt int] - Spstem Macro -
_clearBreak [id) - Spstem Macro -
__clozeFile [file] - Spstem Macro - — ol
- ose |
__dizablelnterrupts Il - Spstem Macro -
__driverType [ztring] - Spstem Macro - LI Help |

Figure 46: Macro Configuration dialog box

For reference information about this dialog box, see Macro Configuration dialog box,
page 281.

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence,
especially if you have several ready-made macro functions. C-SPY can then execute the
macros before main is reached. You achieve this by specifying a macro file which you
load before starting the debugger. Your macro functions will be automatically registered
each time you start the C-SPY Debugger.

If you define the macro functions by using the setup macro function names you can
define exactly at which stage you want the macro function to be executed.

Part 4. Debugging 139

Using C-SPY macros

140

IAR Embedded Workbench® IDE
User Guide

Follow these steps:
Create a new text file where you can define your macro function.
For example:

execUserSetup ()

{

_ _registerMacroFile (MyMacroUtils.mac) ;
_ _registerMacroFile (MyDeviceSimulation.mac) ;

}

This macro function registers the macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the
execUserSetup function name, it will be executed directly after your application has
been downloaded.

Save the file using the filename extension mac.

Before you start C-SPY, choose Project>Options and click the Setup tab in the
Debugger category. Select the check box Use Setup file and choose the macro file you
just created.

The interrupt macro will now be loaded during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window—available from the View menu—Iets you watch the value

of any variables or expressions and evaluate them. For macros, the Quick Watch window
is especially useful because it is a method which lets you dynamically choose when to
execute a macro function.

Consider the following simple macro function which checks the status of a watchdog
timer interrupt enable bit:

WDTstatus ()
{
if (#WDreg & 0x01 != 0) // Checks the status of WDTIE
return "Timer enabled"; // C-SPY macro string used
else

return "Timer disabled"; // C-SPY macro string used

}
Save the macro function using the filename extension mac. Keep the file open.

To register the macro file, choose Debug>Macros. The Macro Configuration dialog
box appears. Locate the file, click Add and then Register. The macro function appears
in the list of registered macros.

Using the C-SPY macro system °

3 In the macro file editor window, select the macro function name WDTstatus.
Right-click, and choose Quick Watch from the context menu that appears.

Quick Watch B

G e =]

| Expression | Yalue | Location | Type |
WD Tstatus() "Timer disabled" macro string

Figure 47: Quick Watch window
The macro will automatically be displayed in the Quick Watch window.

Click Close to close the window.

EXECUTING A MACRO BY CONNECTING ITTO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed at the time
when the breakpoint is triggered. The advantage is that you can stop the execution at
locations of particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers changes. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

For an example of how to create a log macro and connect it to a breakpoint, follow these
steps:

I Assume this skeleton of a C function in your application source code:

int fact(int x)

{

}
2 Create a simple log macro function like this example:

logfact ()
{
__message "fact(" ,x, ")";

}
The __message statement will log messages to the Log window.

Save the macro function in a macro file, with the filename extension mac.

Part 4. Debugging 141

Using C-SPY macros

142

IAR Embedded Workbench® IDE
User Guide

Before you can execute the macro it must be registered. Open the Macro
Configuration dialog box—available by choosing Debug>Macros—and add your
macro file to the list Selected Macro Files. Click Register and your macro function
will appear in the list Registered Macros. Close the dialog box.

Next, you should toggle a code breakpoint—using the Toggle Breakpoint button—on
the first statement within the function fact in your application source code. Open the
Breakpoint dialog box—available by choosing Edit>Breakpoints—your breakpoint
will appear in the list of breakpoints at the bottom of the dialog box. Select the
breakpoint.

Connect the log macro function to the breakpoint by typing the name of the macro
function, logfact (), in the Action field and clicking Apply. Close the dialog box.

Now you can execute your application source code. When the breakpoint has been
triggered, the macro function will be executed. You can see the result in the Log
window.

You can easily enhance the log macro function by, for instance, using the __ fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Printing messages, page 335.

For a complete example where a serial port input buffer is simulated using the method
of connecting a macro to a breakpoint, see the chapter Simulating an interrupt in Part 2.
Tutorials.

Analyzing your application

Itis important to locate an application’s bottle-necks and to verify that all parts
of an application have been tested. This chapter presents facilities available in
the IAR C-SPY® Debugger for analyzing your application so that you can
efficiently spend time and effort on optimizations.

Function-level profiling

The profiler will help you find the functions where most time is spent during execution,
for a given stimulus. Those functions are the parts you should focus on when spending
time and effort on optimizing your code. A simple method of optimizing a function is to
compile it using speed optimization. Alternatively, you can move the function into
memory which uses the most efficient addressing mode. For detailed information about
efficient memory usage, see the IJAR C/C++ Compiler Reference Guide.

The Profiling window displays profiling information, that is, timing information for the
functions in an application. Profiling must be turned on explicitly using a button on the
window’s toolbar, and will stay active until it is turned off.

The profiler measures the time between the entry and return of a function. This means
that time consumed in a function is not added until the function returns or another
function is called. You will only notice this if you are stepping into a function.

For reference information about the Profiling window, see Profiling window, page 274.

USING THE PROFILER

Before you can use the Profiling window, you must build your application using the
following options:

Category Setting

C/C++ Compiler Output>Generate debug information
Linker Format>Debug information for C-SPY
Debugger Plugins>Profiling

Table 11: Project options for enabling profiling

After you have built your application and started C-SPY, choose View>Profiling to
open the window, and click the Activate button to turn on the profiler.

Click the Clear button, alternatively use the context menu available by right-clicking in
the window, when you want to start a new sampling.

Part 4. Debugging

143

Function-level profiling

g 3

IAR Embedded Workbench® IDE

144 User Guide

Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button.

Flat Time
5243

Accumulated Time
6724

_exit A
exit 1 o 0.0o o ono

init_fily 1 498 3.08 1280 975
main 1 159 1.24 6097 47.54
memset 1 0 0.00 0 0.00
dio_foregrouncd_p... 10 280 2.18 4688 36.56
next_counter 10 70 0.55 70 111
put_fila 1 3724 29.04 3068 3006
__putchar 24 72 0.56 72 056
putchar 24 72 0.56 144 112
get_fib 26 1222 9.53 1222 9453

Figure 48: Profiling window
Profiling information is displayed in the window.

Viewing the figures
Clicking on a column header sorts the complete list according to that column.

A dimmed item in the list indicates that the function has been called by a function which
does not contain source code (compiled without debug information). When a function
is called by functions that do not have their source code available, such as library
functions, no measurement in time is made.

There is always an item in the list called Outside main. This is time that cannot be placed
in any of the functions in the list. That is, code compiled without debug information, for
instance, all startup and exit code, and C/C++ library code.

Clicking the Graph button toggles the percentage columns to be displayed either as
numbers or as bar charts.

wiPofing _________________________________ mEm|
[& 5lF =] el e
Function | Calls | Flat Time (cycles) | Flat Tirne (*6) | Accumulated Time (cycles)| Accumulated Time (%) |
Cutside main 0 518 [| 518 []
__exit 0 1] 1]
__memset_generic 0 1] 1]
__putchar 4 16 | 16 |
__segment_init_zero 0 1] 1]
do_foreground_pracess 2 44 1 248 ||
exit 0 1] 1]
get_fib 18 234] 234 []
init_fik 0 0 0
main 0 1] 1]
next_counter 2 18 | 18 |
put_fily 2 102 | | 162 |
putchar 4 44 1 60 |

Figure 49: Graphs in Profiling window

Analyzing your application ___¢

Clicking the Show details button displays more detailed information about the function
selected in the list. A window is opened showing information about callers and callees
for the selected function:

¥ Profiling - Function details

Function: putchar -
Flat time 6571 cycles., Accumulated time 9329 cycles.
Callers:

Total: 538

Count Function

E14 do foreground_process
24 put_fib
Callees

Count Function

Figure 50: Function details window

Producing reports

To produce a report, right-click in the window and choose the Save As command on the
context menu. The contents of the Profiling window will be saved to a file.

Code coverage

The code coverage functionality helps you verify whether all parts of your code have
been executed. This is useful when you design your test procedure to make sure that all
parts of the code have been executed. It also helps you identify parts of your code that
are not reachable.

USING CODE COVERAGE

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code have been executed at least
once since the start of the analysis. The compiler generates detailed stepping
information in the form of step points at each statement, as well as at each function call.
The report includes information about all modules and functions. It reports the amount
of all step points, in percentage, that have been executed and lists all step points that have
not been executed up to the point where the application has been stopped. The coverage
will continue until turned off.

Part 4. Debugging

145

Code coverage

146

IAR Embedded Workbench® IDE
User Guide

For reference information about the Code Coverage window, see Code Coverage
window, page 273.

Before using the Code Coverage window you must build your application using the
following options:

Category Setting

C/C++ Compiler
Linker

Output>Generate debug information
Format>Debug information for C-SPY

Debugger Plugins>Code Coverage

Table 12: Project options for enabling code coverage

After you have built your application and started C-SPY, choose View>Code Coverage
to open the Code Coverage window and click Activate to switch on the code coverage
analyzer. The following window will be displayed:

[[0 x]

ode Coverage

comrmon 23.81%
339 get_fibh BE.E7 3%
&-® init_fib 50.00%
< 3-24:24 addr{0xEC)
< 3-13:26 addr(0xFE)
: < 1-1:28 addr(0x122)
&-# put_fib 0.00%
&% tutorl 0.00%
E:;...Q do_foreground_process 0.00%
&-® main 0.00%
- et _cournter 0.00%

Figure 51: Code Coverage window

Viewing the figures

The code coverage information is displayed in a tree structure, showing the program,
module, function and step point levels. The plus sign and minus sign icons allow you to
expand and collapse the structure.

The following icons are used to give you an overview of the current status on all levels:

A red diamond signifies that 0% of the code has been executed
A green diamond signifies that 100% of the code has been executed
A red and green diamond signifies that some of the code has been executed

°
.
°
e A yellow diamond signifies a step point that has not been executed.

Analyzing your application ___¢

The percentage displayed at the end of every program, module and function line shows
the amount of code that has been covered so far, that is, the number of executed step
points divided with the total number of step points.

For step point lines, the information displayed is the column number range and the row
number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:row.

A step point is considered to be executed when one of its instructions has been executed.
When a step point has been executed, it is removed from the window.

Double-clicking a step point or a function in the Code Coverage window displays that
step point or function as the current position in the source window, which becomes the
active window. Double-clicking a module on the program level expands or collapses the
tree structure.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window needs to be refreshed because the displayed information is
no longer up to date. To update the information, use the Refresh command.

What parts of the code are displayed?

The window displays only statements that have been compiled with debug information.
Thus, startup code, exit code and library code will not be displayed in the window.
Furthermore, coverage information for statements in inlined functions will not be
displayed. Only the statement containing the inlined function call will be marked as
executed.

Producing reports

To produce a report, right-click in the window and choose the Save As command on the
context menu. The contents of the Code Coverage window will be saved to a file.

Part 4. Debugging 147

Code coverage

IAR Embedded Workbench® IDE
148 User Guide

Part 5. IAR C-SPY®
Simulator

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

o Simulator-specific debugging

e Simulating interrupts.

.hmuiuhhhi

149

ARARAIed

150

Simulator-specific
debugging

In addition to the general C-SPY® features, the C-SPY Simulator provides
some simulator-specific features, which are described in this chapter.

You will get reference information, as well as information about driver-specific
characteristics, such as memory access checking and breakpoints.

The IAR C-SPY Simulator introduction

The IAR C-SPY Simulator simulates the functions of the target processor entirely in
software, which means the program logic can be debugged long before any hardware is
available. As no hardware is required, it is also the most cost-effective solution for many
applications.

FEATURES

In addition to the general features listed in the chapter Product introduction, the IAR
C-SPY Simulator also provides:

Instruction-accurate simulated execution

Memory configuration and validation

Interrupt simulation

Immediate breakpoints with resume functionality
Peripheral simulation (using the C-SPY macro system).

SELECTING THE SIMULATOR DRIVER

Before starting the IAR C-SPY Debugger you must choose the simulator driver. In the
IAR Embedded Workbench IDE, choose Project>Options and click the Setup tab in
the Debugger category. Choose Simulator from the Driver drop-down list.

Depending on your product version, the list may or may not contain hardware drivers.
You can only choose a driver you have installed on your computer.

Part 5. IAR C-SPY Simulator 151

Simulator-specific menus

152

Simulator-specific menus

When you use the simulator driver, the Simulator menu is added in the menu bar.

IAR Embedded Workbench® IDE
User Guide

SIMULATOR MENU

v Inkerrupks...
Forced Interrupts
Inkerrupk Log
Memary Map...
Trace
Function Trace

Breakpoint Usage

Figure 52: Simulator menu

The Simulator menu contains the following commands:

Menu command

Description

Interrupts

Forced Interrupts

Interrupt Log

Memory Access Setup

Trace

Function Trace

Breakpoint Usage

Displays a dialog box to allow you to configure C-SPY interrupt
simulation; see Interrupt Setup dialog box, page 172.

Displays a window from which you can trigger an interrupt; see Forced
interrupt window, page 175.

Displays a window which shows the status of all defined interrupts; see
Interrupt Log window, page 177.

Displays a dialog box to simulate memory access checking by specifying
memory areas with different access types; see Memory Access setup dialog
box, page 159.

Opens the Trace window with the recorded trace data; see Trace window,
page 153.

Opens the Function Trace window with the trace data for which
functions were called or returned from; see Function Trace window, page
I55.

Displays the Breakpoint Usage dialog box which lists all active
breakpoints; see Breakpoint Usage dialog box, page 167.

Table 13: Description of Simulator menu commands

Simulator-specific debugging ___¢

Using the trace system in the simulator

In the C-SPY simulator, a trace is a recorded sequence of executed machine instructions.
In addition, you can record the values of C-SPY expressions by selecting the expressions
in the Trace Expressions window. The Function Trace window only shows trace data
corresponding to calls to and returns from functions, whereas the Trace window displays
all instructions.

For more detailed information about using the common features in the trace system, see
Using the trace system, page 119.

TRACE WINDOW

The Trace window—available from the Simulator menu—displays a recorded
sequence of executed machine instructions. In addition, the window can display trace
data for expressions.

Trace =]
OXIEB2SYHE M
| Trace | call_count |:|
Z61 00000234 MOV 0x0002, R2
Z62 0000023C ER §+0x1E

=]
Z63 000o0o0z5a CHMP Ox0004, R2
Z64 00000zZ5C BLT §-0x1E
Z65 00000Z3E MOV Rz, Rl -
Z66 00000z40 JARL get £ih, LP soo T LI
Function Trace Trace ITrace Expressions =

Figure 53: Trace window
C-SPY generates trace information based on the location of the program counter.

The Trace column displays the recorded sequence of executed machine instructions.
Optionally, the corresponding source code can also be shown.

Each expression you have defined to be displayed appears in a separate column. Each

entry in the expression column displays the value affer executing the instruction on the
same row. You specify the expressions for which you want to record trace information
in the Trace Expressions window; see Trace Expressions window, page 155.

For more information about using the trace system, see Using the trace system, page
119.

Part 5. IAR C-SPY Simulator 153

Using the trace system in the simulator

154

IAR Embedded Workbench® IDE
User Guide

TRACE TOOLBAR

The Trace toolbar is available in the Trace window and in the Function trace window:

Enable/Disable Find
Toggle source

|
EXEC}%E,H%x &

Clear trace data Browse Save Function Trace

Edit Expression

Figure 54: Trace toolbar

The following function buttons are available on the toolbar:

Toolbar button Description

Enable/Disable Enables and disables tracing. This button is not available in the
Function trace window.

Clear trace data Clears the trace buffer. Both the Trace window and the Function
trace window are cleared.

Toggle source Toggles the Trace column between showing only disassembly or
disassembly together with corresponding source code.

Browse Toggles browse mode on and off for a selected item in the Trace
column. For more information about browse mode, see The Trace
window and its browse mode, page 119.

Find Opens the Find In Trace dialog box where you can perform a
search; see Find in Trace dialog box, page 157.

Save Opens a standard Save dialog box where you can save the
recorded trace information to a text file, with tab-separated

columns.
Edit settings This button is not enabled in the C-SPY simulator.
Edit expressions Opens the Trace Expressions window; see Trace Expressions

window, page |55.

Table 14: Trace toolbar commands

Simulator-specific debugging ___¢

FUNCTION TRACE WINDOW

The Function Trace window—available from the Simulator menu—displays a subset
of the trace data displayed in the Trace window. Instead of displaying all rows, the
Function Trace window only shows trace data corresponding to calls to and returns from
functions.

Function Trace =]
XAyYHE A

| Trace | call_count |;|
2699 Memory: 0x002D4: put f£ib + 50 2

2711 Memory:0x00114: ?C PUTCHAR 2

2713 Memory:0x00313: put f£ib + 107 2

2717 Memory:0x00214: do foreground process... 2

27158 Memory:0x0023E: main + 41 2

2721 Memory:0x00145: 251 CHMP LOZ 2

2735 Memory:0x00247: main + 50 2

2737 Memory:0x00205: do foreground process 2

2738 Memory: 0x00200: next counter 2 j
Function Trace ITrace | Trace Expressions =

Figure 55: Function Trace window

For information about the toolbar, see Trace toolbar, page 154.

For more information about using the trace system, see Using the trace system, page
119.

TRACE EXPRESSIONS WINDOW

In the Trace Expressions window—available from the Trace window toolbar—you can
specify specific expressions for which you want to record trace information.

Trace Expressions B
+ 3

Expression | Format
. Default

Trace Expressions

Figure 56: Trace Expressions window

In the Expression column, you specify any expression you want to be recorded. You can
specify any expression that can be evaluated, such as variables and registers.

The Format column shows which display format is used for each expression.

Part 5. IAR C-SPY Simulator 155

Using the trace system in the simulator

156

IAR Embedded Workbench® IDE
User Guide

Each row in this window will appear as an extra column in the Trace window.

For more information about using the trace system, see Using the trace system, page
119.

Use the toolbar buttons to change the order between the expressions:

Toolbar button Description
Arrow up Moves the selected row up
Arrow down Moves the selected row down

Table 15: Toolbar buttons in the Trace Expressions window

FIND IN TRACE WINDOW

The Find In Trace window—available from the View>Messages menu—displays the
result of searches in the trace data.

Find In Trace B

Trace

Find In Trace

Figure 57: Find In Trace window

The Find in Trace window looks like the Trace window, showing the same columns and
data, but only those rows that match the specified search criteria. Double-clicking an
item in the Find in Trace window brings up the same item in the Trace window.

You specity the search criteria in the Find In Trace dialog box, which is available from
the Edit menu or from the Trace window toolbar, see Find in Trace dialog box, page
157. Note that the dialog box is available from the Edit menu only when the Trace
window is selected.

For more information about using the trace system, see Using the trace system, page
119.

Simulator-specific debugging ___¢

FIND IN TRACE DIALOG BOX

Use the Find in Trace dialog box—available by choosing Edit>Find and
Replace>Find when the Trace window is the current window, or from the Trace
window toolbar—to specify the search criteria for advanced searches in the trace data.
Note that this dialog box is available from the Edit menu only when the Trace window
is open.

Find in Trace E
IV Text Search Find I
| = |
Cancel

™ Makch Case
™ Makch whale word

™ Only search in one column

ITrace j

™ address Range

[e gk

Figure 58: Find in Trace dialog box

The search results are displayed in the Find In Trace window—available by choosing
the View>Messages command, see Find In Trace window, page 156.

For more information about using the trace system, see Using the trace system, page
119.

In the Find in Trace dialog box, you specify the search criteria with the following
settings:
Text search

A text field in which you type the string you want to search for. There are four ways of
fine-tuning the search:

Match Case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

Only search in one Searches only in the column you selected from the drop-down menu.
column

Address Range Searches only in the address range specified.

Part 5. IAR C-SPY Simulator 157

Memory access checking

158

Memory access checking

IAR Embedded Workbench® IDE
User Guide

C-SPY can simulate different memory access types of the target hardware and detect
illegal accesses, for example a read access to write-only memory. If a memory access
occurs that does not agree with the access type specified for the specific memory area,
C-SPY will regard this as an illegal access. The purpose of memory access checking is
to help you to identify any memory access violations.

The memory areas can either be the zones predefined in the device description file, or
memory areas based on the segment information available in the debug file. The access
type can be read and write, read only, or write only. It is not possible to map two
different access types to the same memory area. You can choose between checking
access type violation or checking accesses to unspecified ranges. Any violations are
logged in the Debug Log window. You can also choose to have the execution halted.

In addition, you can specify the cost—in cycles—associated with accessing a memory
entity during execution. The size of the memory entity depends on the bus width. The
costs for read and write accesses are specified separately, because they can differ. You
can also specify costs separately for sequential and non-sequential memory accesses.
These costs will be added to the cycle counter whenever a byte is accessed. These
additional features related to specifying the cost may, or may not, be included in your
product version.

Choose Simulator>Memory Access Setup to open the Memory Access Setup dialog
box.

MEMORY ACCESS SETUP DIALOG BOX

Simulator-specific debugging ___¢

The Memory Access Setup dialog box—available from the Simulator menu—Ilists all
defined memory areas, where each column in the list specifies the properties of the area.
In other words, the dialog box displays the memory access setup that will be used during

the simulation.

Memory Access Setup

™ Use ranges based on
% Deyvice description file
| Debug file segment information [anly shovwn while debugging)

Cancel

Zone | Start Addr| End Addr| Accesz Type

Memory 0x0 0x1FF R
Memory 0200 0x9FF R
Memory 01000 0«10FF R
Memory 0x1100 0«FFFF R

™ Use manual ranges

Zone | Start Addr| End Addr| Accesz Type

| e

Exdit....

Delete

[elete &l

i

Memony aczess checking
Check far: Schor:
¥ | frcess type violation € Log violations

¥ Access tounspeciied ranges

% [Log and stop execution

Figure 59: Memory Access Setup dialog box

Note: If you enable both the Use ranges based on and the Use manual ranges option,
memory accesses will be checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory

Access dialog box, page 161.

Use ranges based on

Use the Use ranges based on option to choose any of the predefined alternatives for the

memory access setup. You can choose between:

o Device description file, which means the properties will be loaded from the device

description file

o Debug file segment information, which means the properties will be based on the
segment information available in the debug file. This information is only available
while debugging. The advantage of using this option, is that the simulator can catch

memory accesses outside the linked application.

Part 5. IAR C-SPY Simulator 159

Memory access checking

Use manual ranges

Use the Use manual ranges option to specify your own ranges manually via the Edit
Memory Access dialog box. To open this dialog box, choose New to specify a new
memory range, or select a memory zone and choose Edit to modify it. For more details,
see Edit Memory Access dialog box, page 161.

The ranges you define manually are saved between debug sessions.

Memory Access Checking
Use the Check for options to specify what to check for. Choose between:

® Access type violation
e Access to unspecified ranges.

Use the Action options to specify the action to be performed if there is an access
violation. Choose between:

o Log violations
e Log and stop execution.

Any violations are logged in the Debug Log window.

Buttons

The Memory Access Setup dialog box contains the following buttons:

Button Description

OK Standard OK.

Cancel Standard Cancel.

New Opens the Edit Memory Access dialog box, where you can specify a

new memory range and attach an access type to it; see Edit Memory
Access dialog box, page 161.

Edit Opens the Edit Memory Access dialog box, where you can edit the
selected memory area. See Edit Memory Access dialog box, page 161.

Delete Deletes the selected memory area definition.

Delete All Deletes all defined memory area definitions.

Factory Settings Loads the areas predefined in the device description file currently in use.

Note that if you have defined your own memory areas manually and then
load factory settings, your own defined areas will be lost when the
present definitions in the device description file are loaded.

Table 16: Function buttons in the Memory Access Setup dialog box

IAR Embedded Workbench® IDE
160 User Guide

Simulator-specific debugging ___¢

Note: Except for the OK and Cancel buttons, buttons are only available when the
option Use manual ranges is selected.

EDIT MEMORY ACCESS DIALOG BOX

In the Edit Memory Access dialog box—available from the Memory Access Setup
dialog box—you can specify the memory ranges, and assign an access type to each
memory range, for which you want to detect illegal accesses during the simulation.

Edit Memory Access E

— Memory range
Zone:

——
I Memory - l Cancel |
Start address: End address:
Jo [1FFF

—Access lype
 Fead and write

' Fead only
© Wfrite anly

Figure 60: Edit Memory Access dialog box

For each memory range you can define the following properties:

Memory range

Use these settings to define the memory area for which you want to check the memory
accesses:

Zone The memory zone; see Memory addressing, page 127.
Start address The start address for the address range, in hexadecimal notation.
End address The end address for the address range, in hexadecimal notation.

Access type

Use one of these options to assign an access type to the memory range; the access type
can be one of Read and write, Read only, or Write only. It is not possible to assign two
different access types to the same memory area.

Part 5. IAR C-SPY Simulator 161

Using breakpoints

162

Cycle costs

Use these settings to specify the cost—in cycles—associated with accessing a memory
entity during execution:

Bus width The size of the memory entity depends on the bus width, which can
be specified as 8, 16, or 32 bits. For examples about how this affects
the cost, see Table 17, Example of costs for accessing memory entities.

Sequential The cost for sequential accesses to the memory area; the cycle cost
can be specified individually for read and write accesses, because it
can differ.

Non-sequential The cost for non-sequential accesses to the memory area; the cycle

cost can be specified individually for read and write accesses, because
it can differ.

Note: These options may, or may not, be available in your product version.

Example

If the cost is specified as 1 cycle, a word access (16 bits) will cost 2 cycles with an 8-bit
bus width, and 1 cycle with a 16-bit or 32-bit bus width:

Memory entity 8-bit bus 16-bit bus 32-bit bus
Word entities (16 bits) 2 | |
Long entities (32 bits) 4 2 |

Table 17: Example of costs for accessing memory entities

Using breakpoints

IAR Embedded Workbench® IDE
User Guide

Using the C-SPY Simulator, you can set an unlimited amount of breakpoints. For code
and data breakpoints you can define a size attribute, that is, you can set the breakpoint
on a range. You can also set immediate breakpoints.

For information about the breakpoint system, see the chapter Using breakpoints in this
guide. For detailed information about code breakpoints, see Code breakpoints dialog
box, page 202.

Simulator-specific debugging ___¢

DATA BREAKPOINTS

Data breakpoints are triggered when data is accessed at the specified location. Data
breakpoints are primarily useful for variables that have a fixed address in memory. If you
set a breakpoint on an accessible local variable, the breakpoint will be set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. The execution will usually stop directly after the instruction that
accessed the data has been executed.

You can set a data breakpoint in three different ways; by using:

e A dialog box, see Data breakpoints dialog box, page 163
® A system macro, see __setDataBreak, page 348
e The Memory window, see Setting a breakpoint in the Memory window, page 129.

Data breakpoints dialog box

The options for setting data breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Data to set a new breakpoint. Alternatively, to modify an existing
breakpoint, select a breakpoint in the Breakpoint window and choose Edit on the
context menu.

The Data breakpoints dialog box appears.

; [rata |

Break &f:

5

—Access Type e
& Readwiite & Auto |1
£ Read £ Manual
= wiite — Action
Expression: I
r— Condition:
Expression:

& Condition true Skip count; I 0

" Condition changed

Figure 61: Data breakpoints dialog box

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 206.

Part 5. IAR C-SPY Simulator 163

Using breakpoints

164

IAR Embedded Workbench® IDE
User Guide

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Memory Access type Description

Read/Write Read or write from location (not available for immediate breakpoints).
Read Read from location.
Write Write to location.

Table 18: Memory Access types

Note: Data breakpoints never stop execution within a single instruction. They are
recorded and reported after the instruction is executed. (Immediate breakpoints do not
stop execution at all, they only suspend it temporarily. See Immediate breakpoints, page
165.)

Size

Optionally, you can specify a size—in practice, a range of locations. Each read and write
access to the specified memory range will trigger the breakpoint. For data breakpoints,
this can be useful if you want the breakpoint to be triggered on accesses to data
structures, such as arrays, structs, and unions.

There are two different ways the size can be specified:

e Auto, the size will automatically be based on the type of expression the breakpoint
is set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes

e Manual, you specify the size of the breakpoint manually in the Size text box.

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 19: Breakpoint conditions

Simulator-specific debugging ___¢

Action

You can optionally connect an action to a breakpoint. You specify an expression, for
instance a C-SPY macro function, which is evaluated when the breakpoint is triggered
and the condition is true.

IMMEDIATE BREAKPOINTS

In addition to generic breakpoints, the C-SPY Simulator lets you set immediate
breakpoints, which will halt instruction execution only temporarily. This allows a
C-SPY macro function to be called when the processor is about to read data from a
location or immediately after it has written data. Instruction execution will resume after
the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

The two different methods of setting an immediate breakpoint are by using:
o A dialog box, see Immediate breakpoints dialog box, page 165

e A system macro, see __setSimBreak, page 349.

Immediate breakpoints dialog box

The options for setting immediate breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Immediate to set a new breakpoint. Alternatively, to modify an
existing breakpoint, select a breakpoint in the Breakpoint window and choose Edit on
the context menu.

Part 5. IAR C-SPY Simulator 165

Using breakpoints

IAR Embedded Workbench® IDE
166 User Guide

The Immediate breakpoints dialog box appears.

Break &f:

; Immediate |

Accesz Type
' Read
© Wiite

Action
’7 Expression:

Figure 62: Immediate breakpoints page

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 206.

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Memory Access type Description

Read Read from location.

Write Write to location.

Table 20: Memory Access types

Note: Immediate breakpoints do not stop execution at all; they only suspend it
temporarily. See Using breakpoints, page 162.

Action

You should connect an action to the breakpoint. Specify an expression, for instance a
C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.

Simulator-specific debugging ___¢

BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from the Simulator menu—Ilists all
active breakpoints.

Breakpoint Usage [%]

[Fetch
-SSP Terminal 140 & libsupport module

Figure 63: Breakpoint Usage dialog box

In addition to listing all breakpoints that you have defined, this dialog box also lists the
internal breakpoints that the debugger is using.

For each breakpoint in the list the address and access type are shown. Each breakpoint
in the list can also be expanded to show its originator.

For more information, see Viewing all breakpoints, page 125.

Part 5. IAR C-SPY Simulator

167

Using breakpoints

IAR Embedded Workbench® IDE
168 User Guide

Simulating interrupts

By being able to simulate interrupts, you can debug the program logic long
before any hardware is available. This chapter contains detailed information
about the C-SPY interrupt simulation system and how to configure the
simulated interrupts to make them reflect the interrupts of your target
hardware. Finally, reference information about each interrupt system macro is
provided.

For information about the interrupt-specific facilities useful when writing
interrupt service routines, see the IAR C/C++ Compiler Reference Guide.

The C-SPY interrupt simulation system

The IAR C-SPY® Simulator includes an interrupt simulation system that allows you to
simulate the execution of interrupts during debugging. It is possible to configure the
interrupt simulation system so that it resembles your hardware interrupt system. By
using simulated interrupts in conjunction with C-SPY macros and breakpoints, you can
compose a complex simulation of, for instance, interrupt-driven peripheral devices.
Having simulated interrupts also lets you test the logic of your interrupt service routines.

The interrupt system has the following features:

Simulated interrupt support for the microcontroller

Single-occasion or periodical interrupts based on the cycle counter

Predefined interrupts for different devices

Configuration of hold time, probability, and timing variation

State information for locating timing problems

Two interfaces for configuring the simulated interrupts—a dialog box and a C-SPY
system macro—that is, one interactive and one automating interface

e Activation of interrupts either instantly or based on parameters you define

o A log window which continuously displays the status for each defined interrupt.

The interrupt system is activated by default, but if it is not required it can be turned off
to speed up the simulation. You can turn the interrupt system on or off as required either
in the Interrupts dialog box, or by using a system macro. Defined interrupts will be
preserved until you remove them. All interrupts you define using the Interrupts dialog
box are preserved between debug sessions.

Part 5. IAR C-SPY Simulator 169

The C-SPY interrupt simulation system

170

IAR Embedded Workbench® IDE
User Guide

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, and a variance.

H H H
Act - First activation time
R - Repeat interval
! . . H - Hold time
! ' ! V - Variance
I
o ActeV | RsV

Figure 64: Simulated interrupt configuration

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options
probability—the probability, in percent, that the interrupt will actually appear in a
period—and variance—a time variation range as a percentage of the repeat interval.
These options make it possible to randomize the interrupt simulation. You can also
specify a hold time which describes how long the interrupt remains pending until
removed if it has not been processed. If the hold time is set to infinite, the corresponding
pending bit will be set until the interrupt is acknowledged or removed.

The interrupt system is activated by default, but if it is not required it can be turned off
to speed up the simulation. You can turn the interrupt system on or off as required either
in the Interrupts dialog box, or by using a system macro. Defined interrupts will be
preserved until you remove them. All interrupts you define using the Interrupts dialog
box are preserved between debug sessions.

Simulating interrupts ___¢

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that can be used for locating
timing problems in your application. The Interrupt Setup dialog box displays the
available status information. The interrupt activation signal can exist in one of the states
Idle or Pending. For an interrupt, the following states can be displayed: Executing,
Removed, or Expired.

For a repeatable interrupt that has a specified repeat time which is longer than the
execution time, the status information at different times can look like this:

Hold time Time Status
Interrupt A B C D E A Idle _
activation B Pending
signal Execution time for C Idle (1 executing)
interrupt handler D Idle (1 executing)
E Idle

Figure 65: Simulation states - example 1

If the interrupt repeat interval is shorter than the execution time, and the interrupt is
re-entrant (or non-maskable), the status information at different times can look like this:

Hold time Time Status
A Idle
Int t .
anct?\:;i‘:m A B C D B Executing
signal Execution time for Cc Idle (1 executing)
D

interrupt handler (1) Execution time for

interrupt handler (2) Executing (1 executing

Figure 66: Simulation states - example 2

In this case, the execution time of the interrupt handler is too long compared to the repeat
time, which might indicate that you should rewrite your interrupt handler and make it
shorter, or that you should specify a longer repeat time for the interrupt simulation
system.

Using the interrupt simulation system

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using, and know how to use:

o The Forced Interrupt window
o The Interrupts and Interrupt Setup dialog boxes

Part 5. IAR C-SPY Simulator 171

Using the interrupt simulation system

172

IAR Embedded Workbench® IDE
User Guide

o The C-SPY system macros for interrupts
o The Interrupt Log window.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To be able to perform these actions for various derivatives, the interrupt system must
have detailed information about each available interrupt. Except for default settings, this
information is provided in the device description files.You can find preconfigured daf
files in the cpuname\config directory. The default settings will be used if no device
description file has been specified.

To load a device description file before you start C-SPY, choose Project>Options and
click the Setup tab of the Debugger category.

Choose a device description file that suits your target.

Note: In case you do not find a preconfigured device description file that resembles
your device, you can define one according to your needs. For details of device
description files, see Selecting a device description file, page 106.

INTERRUPT SETUP DIALOG BOX

The Interrupt Setup dialog box—available by choosing Simulator>Interrupt
Setup—lists all defined interrupts.

Interrupt Setup E

Interupt | Type | Statuz | Mext Activation |
[FlUARTR_VECTOR Fepeat 4000

Cancel

£

Ef:..

[Velete

Delete &l

AL

Figure 67: Interrupt Setup dialog box

Simulating interrupts ___¢

The option Enable interrupt simulation enables or disables interrupt simulation. If the
interrupt simulation is disabled, the definitions remain but no interrupts will be
generated. You can also enable and disable installed interrupts individually by using the
check box to the left of the interrupt name in the list of installed interrupts.

The columns contain the following information:

Interrupt Lists all interrupts.

Type Shows the type of the interrupt. The type can be Forced, Single,
or Repeat.

Status Shows the status of the interrupt. The status can be Idle, Removed,

Pending, Executing, or Expired.

Next Activation Shows the next activation time in cycles.

Note: For repeatable interrupts there might be additional information in the Type
column about how many interrupts of the same type that is simultaneously executing
(n executing). If nis larger than one, there is a reentrant interrupt in your interrupt

simulation system that never finishes executing, which might indicate that there is a
problem in your application.

Only non-forced interrupts may be edited or removed.

Click New or Edit to open the Edit Interrupt dialog box.

Part 5. IAR C-SPY Simulator 173

Using the interrupt simulation system

EDIT INTERRUPT DIALOG BOX

Use the Edit Interrupt dialog box—available from the Interrupt Setup dialog box—to
add and modify interrupts. This dialog box provides you with a graphical interface

where you can interactively fine-tune the interrupt simulation parameters. You can add
the parameters and quickly test that the interrupt is generated according to your needs.

Interrupt:
[URTR_VECTOR =l
Drescription: Cancel |
Jox12 2

First activatior:

4000 Hold tirne

& Infirite
Fiepeat interval:

r
[2000 r
Wariance [%]: Probability [%]:

[= N =

Figure 68: Edit Interrupt dialog box

For each interrupt you can set the following options:

Interrupt A drop-down list containing all available interrupts. Your selection
will automatically update the Description box. The list is populated
with entries from the device description file that you have selected.

Description Contains the description of the selected interrupt, if available. The
description is retrieved from the selected device description file. For
interrupts specified using the system macro __orderInterrupt,
the Description box will be empty.

First activation The value of the cycle counter after which the specified type of
interrupt will be generated.

Repeat interval The periodicity of the interrupt in cycles.

Variance % A timing variation range, as a percentage of the repeat interval, in
which the interrupt may occur for a period. For example, if the
repeat interval is 100 and the variance 5%, the interrupt might occur
anywhere between T=95 and T=105, to simulate a variation in the
timing.

IAR Embedded Workbench® IDE
174 User Guide

Simulating interrupts ___¢

Hold time Describes how long, in cycles, the interrupt remains pending until
removed if it has not been processed. If you select Infinite, the

corresponding pending bit will be set until the interrupt is

acknowledged or removed.

Probability % The probability, in percent, that the interrupt will actually occur

within the specified period.

FORCED INTERRUPT WINDOW

From the Forced Interrupt window—available from the Simulator menu—you can
force an interrupt instantly. This is useful when you want to check your interrupt

logistics and interrupt routines.

Forced Interrupt Window B
Trigger |

Interrupt | Description -

-

4] | 3

Figure 69: Forced Interrupt window

To force an interrupt, the interrupt simulation system must be enabled. To enable the
interrupt simulation system, see Interrupt Setup dialog box, page 172.

The Forced Interrupt window lists all available interrupts and their definitions. The
information in the description field is retrieved from the selected device description file.

By selecting an interrupt and clicking the Trigger button, an interrupt of the selected

type is generated.

A triggered interrupt will have the following characteristics:

Characteristics Settings
First Activation As soon as possible (0)
Repeat interval 0

Table 21: Characteristics of a forced interrupt

Part 5. IAR C-SPY Simulator 175

Using the interrupt simulation system

176

IAR Embedded Workbench® IDE
User Guide

Characteristics Settings
Hold time Infinite
Variance 0%
Probability 100%

Table 21: Characteristics of a forced interrupt

C-SPY SYSTEM MACROS FOR INTERRUPTS

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. By writing a macro function containing
definitions for the simulated interrupts you can automatically execute the functions
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides a set of predefined system macros for the interrupt
simulation system. The advantage of using the system macros for specifying the
simulated interrupts is that it lets you automate the procedure.

These are the available system macros related to interrupts:
__enablelInterrupts

__disablelInterrupts

__orderInterrupt

__cancellInterrupt

__cancelAllInterrupts
__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupts dialog box. To read more about how to use the
__popSimulatorInterruptExecutingStack macro, see Interrupt simulation in a
multi-task system, page 177.

For detailed information about each macro, see Description of C-SPY system macros,
page 339.

Defining simulated interrupts at C-SPY startup using a setup file

If you want to use a setup file to define simulated interrupts at C-SPY startup, follow the
procedure described in Registering and executing using setup macros and setup files,
page 139.

Simulating interrupts ___¢

Interrupt simulation in a multi-task system

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If there are
too many interrupts executing simultaneously, a warning might be issued.

To avoid these problems, you can use the
__popSimulatorInterruptExecutingStack macro to inform the interrupt
simulation system that the interrupt handler has finished executing, as if the normal
instruction used for returning from an interrupt handler was executed. You can use the
following procedure:

Set a code breakpoint on the instruction that returns from the interrupt function.

Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

INTERRUPT LOG WINDOW

The Interrupt Log window—available from the Simulator menu—displays runtime
information about the interrupts that you have activated in the Interrupts dialog box or
forced via the Forced Interrupt window. The information is useful for debugging the
interrupt handling in the target system.

Interrupt Log Window B
Cycles | FC | Interrupt | MNumber | Status -
4004 0x1158 UARTR_VECTOR 1 Trigged
4004 0x1158 UARTR_VECTOR 1 Executed
G000 0x1158 UARTR_VECTOR 1 Trigged
G000 0x1158 UARTR_VECTOR 1 Executed
aoo0 0x1266 UARTR_VECTOR 1 Trigged
aoo0 0x1266 UARTR_VECTOR 1 Executed -

Figure 70: Interrupt Log window

The columns contain the following information:

Column Description
Cycles The point in time, measured in cycles, when the event occurred.
PC The value of the program counter when the event occurred.

Table 22: Description of the Interrupt Log window

Part 5. IAR C-SPY Simulator 177

Simulating a simple interrupt

178

Column Description
Interrupt The interrupt as defined in the device description file.
Number A unique number assigned to the interrupt. The number is used for

distinguishing between different interrupts of the same type.

Status Shows the status of the interrupt, which can be Triggered, Forced,
Executing, Finished, or Expired.
* Triggered: The interrupt has passed its activation time.
* Forced: The same as Triggered, but the interrupt has been forced from
the Forced Interrupt window.
* Executing: The interrupt is currently executing.
* Finished: The interrupt has been executed.
* Expired: The interrupt hold time has expired without the interrupt
being executed.

Table 22: Description of the Interrupt Log window (Continued)

‘When the Interrupt Log window is open it will be updated continuously during runtime.

Simulating a simple interrupt

IAR Embedded Workbench® IDE
User Guide

This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.

This simple application contains an interrupt service routine for a timer, which
increments a tick variable. The main function sets the necessary status registers. The
application exits when 100 interrupts have been generated.

#include "iocpuname.h"
#include <intrinsics.h>
int ticks = 0;

void main (void)

{

//Enter your timer setup code here

__enable_interrupt () ; //Enable interrupts
while (ticks < 100); //Endless loop
printf ("Done\n") ;

}

Simulating interrupts ___¢

// Timer interrupt service routine
#pragma vector = TIMER_VECTOR
__interrupt void timer (void)

{
ticks += 1;

}
To simulate and debug an interrupt, perform the following steps:

Add your interrupt service routine to your application source code and add the file to
your project.

C-SPY needs information about the interrupt to be able to simulate it. This information
is provided in the device description files. To select a device description file, choose
Project>Options, and click the Setup tab in the Debugger category. Use the Device
description file browse button to locate the ddf file.

Build your project and start the simulator.

Choose Simulator>Interrupt Setup to open the Interrupt Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. The following table lists the options and suggests
some settings. For your interrupt, verify the options according to your requirements:

Option Settings
Interrupt TIMER_VECTOR
First Activation 4000

Repeat interval 2000

Hold time 0

Probability % 100

Variance % 0

Table 23: Timer interrupt settings

Click OK.

Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

o Generate an interrupt when the cycle counter has passed 4000
e Continuously repeat the interrupt after approximately 2000 cycles.

Part 5. IAR C-SPY Simulator 179

Simulating a simple interrupt

IAR Embedded Workbench® IDE
180 User Guide

Part 6. Reference
information

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e IAR Embedded Workbench® IDE reference
e C-SPY® Debugger reference

e General options

e Compiler options

e Assembler options

e Custom build options

o Build actions options

e Linker options

e Library builder options

e Debugger options

o C-SPY® macros reference.

.hmuiuhhhi

181

ARARAIed

182

IAR Embedded
Workbench® IDE
reference

This chapter contains reference information about the windows, menus, menu
commands, and the corresponding components that are found in the IAR
Embedded Workbench IDE. Information about how to best use the Embedded
Workbench for your purposes can be found in parts 3 to 7 in this guide.

The IAR Embedded Workbench IDE is a modular application. Which menus
are available depends on which components are installed.

Windows

The available windows are:

TAR Embedded Workbench IDE window
Workspace window

Editor window

Source Browser window

Breakpoints window

Message windows.

In addition, a set of C-SPY-specific windows becomes available when you start the [AR
C-SPY® Debugger. Reference information about these windows can be found in the
chapter C-SPY® Debugger reference in this guide.

Part 6. Reference information

183

184

Windows

IAR EMBEDDED WORKBENCH IDE WINDOW

The figure shows the main window of the [AR Embedded Workbench IDE and its
different components. The window might look different depending on which plugin

modules you are using.

% 1R Embedded Workbench IDE
Menu bar

[_[o]x]
Fle Edt View Project Tools Window Help
Toolbar DERE S 5 Bl ol
e ¥ | Tutor.
Debug - =
e T ﬁ ;n:reaze thet f:l{count'tvzz-;azle. -
- st and print the assiciated Fibonacci mumber.
ElSprojecti - Debug [[|| (N5 P
-2 [Tutor.c woid do_foreground_process (void)
| 8 & output [
| — ETll_t_O_f-h unsigned int fih;
| L— @ uilitiesh next_counter () ;
[Utilities.c f£ib - ger_fib| call_count];
L@ (3 0utput pur_fib{ fib);
Workspace Vo
window —
e
Main program.
Prints the Fibonacci numbers.
7
void main(void)
{
call_count = 0;
init_fibi);
while (call _count < MAX_FIE)
do_toreground_process()
i
Dverview project] | project2 |F(J| |‘\ |>
* ‘ Messages File | Line ‘
Building configuration: project - Debug
Configuration is up-to-date
Status bar ——

tn 25, col 21 [o | 4

Figure 71: IAR Embedded Workbench IDE window

Editor
window

Each window item is explained in greater detail in the following sections.

Menu bar

Gives access to the JAR Embedded Workbench IDE menus.

Menu Description

File

The File menu provides commands for opening source and project files, saving

and printing, and exiting from the IAR Embedded Workbench IDE.

Edit
and for enabling and disabling breakpoints in C-SPY.

The Edit menu provides commands for editing and searching in editor windows

Table 24: IAR Embedded Workbench IDE menu bar

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference ___¢

Menu Description

View Use the commands on the View menu to open windows and decide which
toolbars to display.
Project The Project menu provides commands for adding files to a project, creating

groups, and running the IAR Systems tools on the current project.

Tools The Tools menu is a user-configurable menu to which you can add tools for use
with the IAR Embedded Workbench IDE.

Window With the commands on the Window menu you can manipulate the IAR
Embedded Workbench IDE windows and change their arrangement on the
screen.

Help The commands on the Help menu provide help about the IAR Embedded
Workbench IDE.

Table 24: IAR Embedded Workbench IDE menu bar (Continued)

For reference information for each menu, see Menus, page 210.

Toolbar

The IAR Embedded Workbench IDE toolbar—available from the View
menu—>provides buttons for the most useful commands on the IAR Embedded
Workbench IDE menus, and a text box for typing a string to do a quick search.

You can display a description of any button by pointing to it with the mouse button.
When a command is not available, the corresponding toolbar button will be dimmed,
and you will not be able to click it.

This figure shows the menu commands corresponding to each of the toolbar buttons:

Next
Open Cut Redo Find Bookmark Make
Toggle
Save All Paste Go to Navigate Forward Breakpoint

DR & =2alo o Sy eumEe » @6 B0NE XL D

Save Copy Quick search text box Replace Navigate Backward Stop Build

New Print Undo Find Next Toggle Bookmark Compile Debug
Figure 72: IAR Embedded Workbench IDE toolbar

Note: When you start C-SPY, the Debug button will change to a Make and Debug
button.

A

Part 6. Reference information 185

Windows

186

IAR Embedded Workbench® IDE
User Guide

Status bar

The Status bar at the bottom of the window—available from the View menu—displays
the status of the IAR Embedded Workbench IDE, and the state of the modifier keys.

As you are editing, the status bar shows the current line and column number containing
the insertion point, and the Caps Lock, Num Lock, and Overwrite status.

ILn 8. Cal 4 CAP [MUM | OWR 4

Figure 73: IAR Embedded Workbench IDE window status bar

WORKSPACE WINDOW

The Workspace window, available from the View menu, shows the name of the current

workspace and a tree representation of the projects, groups and files included in the
workspace.

Configuration
drop-down menu

x
[ebug -
Files I“:Iml a|
=] .pm]ecﬂ - Debug
Lo @ --I'_'l
= B ut|I|t|es C
L@ 3 Output
Indicates that the file will
Tabs for be rebuilt next time the
choosing project is built
workspace
display ——— | DOverview project] I project? I

Column containing
status information
about option overrides

Figure 74: Workspace window

In the drop-down list at the top of the window you can choose a build configuration to

display in the window for a specific project.

Column containing
source code control
status information

IAR Embedded Workbench® IDE reference ___¢

The column that contains status information about settings and overrides can have one
of three icons for each level in the project:

Blank There are no settings/overrides for this file/group
Black check mark There are local settings/overrides for this file/group
Red check mark There are local settings/overrides for this file/group, but they are

identical with the inherited settings, which means the overrides are
superfluous.

For details about the different source code control icons, see Source code control states,
page 190.

At the bottom of the window you can choose which project to display. Alternatively, you
can choose to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see
the chapter Managing projects in Part 3. Project management and building in this guide.

Workspace window context menu

Clicking the right mouse button in the workspace window displays a context menu
which gives you convenient access to several commands.

Options. ..

Make:
L =
Rebuild all
Clean

Shop Build

Add 3
Remave

Source Code Contral »
File Properties. ..

Sefk as fAekive

Figure 75: Workspace window context menu

The following commands are available on the context menu:

Menu command Description

Options Displays a dialog box where you can set options for each build tool on
the selected item in the workspace window. You can set options on the
entire project, on a group of files, or on an individual file.

Table 25: Workspace window context menu commands

Part 6. Reference information 187

Windows

IAR Embedded Workbench® IDE
188 User Guide

Menu command

Description

Make

Compile

Rebuild All

Clean

Stop Build
Add>Add Files
Add>Add "filename"

Add>Add Group
Remove

Source Code Control

File Properties

Set as Active

Brings the current target up to date by compiling, assembling, and linking
only the files that have changed since the last build.

Comepiles or assembles the currently active file as appropriate. You can
choose the file either by selecting it in the workspace window, or by
selecting the editor window containing the file you want to compile.

Recompiles and relinks all files in the selected build configuration.
Deletes intermediate files.

Stops the current build operation.

Opens a dialog box where you can add files to the project.

Adds the indicated file to the project. This command is only available if
there is an open file in the editor.

Opens a dialog box where you can add new groups to the project.
Removes selected items from the Workspace window.

Opens a submenu with commands for source code control, see Source
Code Control menu, page 189.

Opens a standard File Properties dialog box for the selected file.

Sets the selected project in the overview display to be the active project.
It is the active project that will be built when the Make command is
executed.

Table 25: Workspace window context menu commands (Continued)

Source Code Control menu

The Source Code Control menu is available from the Project menu and from the
context menu in the Workspace window. This menu contains some of the most
commonly used commands of external, third-party source code control systems.

CheckIn...

Check Qut,..
Unda Checkout:
et Latest Yersion
Compare. ..
History...
Properties...

Refresh

Add Project To Source Cantral, .,
Femave Project From Source Contral, ..

Figure 76: Source Code Control menu

IAR Embedded Workbench® IDE reference ___¢

For more information about interacting with an external source code control system, see
Source code control, page 80.

The following commands are available on the submenu:

Menu command Description

Check In Opens the Check In Files dialog box where you can check in the
selected files; see Check In Files dialog box, page 192. Any changes you
have made in the files will be stored in the archive. This command is
enabled when currently checked-out files are selected in the Workspace
window.

Check Out Checks out the selected file or files. Depending on the SCC system you
are using, a dialog box may appear; see Check Out Files dialog box, page
193. This means you get a local copy of the file(s), which you can edit.
This command is enabled when currently checked-in files are selected in
the Workspace window.

Undo Check out The selected files revert to the latest archived version; the files are no
longer checked-out. Any changes you have made to the files will be lost.
This command is enabled when currently checked-out files are selected
in the Workspace window.

Get Latest Version Replaces the selected files with the latest archived version.

Compare Displays—in a SCC-specific window—the differences between the local
version and the most recent archived version.

History Displays SCC-specific information about the revision history of the
selected file.

Properties Displays information available in the SCC system for the selected file.

Refresh Updates the SCC display status for all the files that are part of the

project. This command is always enabled for all projects under SCC.

Add Project To Source Opens a dialog box, which originates from the SCC client application, to

Control let you create a connection between the selected IAR Embedded
Workbench project and an SCC project; the IAR Embedded Workbench
project will then be an SCC-controlled project. After creating this
connection, a special column that contains status information will appear
in the Workspace window.

Remove Project From Removes the connection between the selected IAR Embedded

Source Control Workbench project and an SCC project; your project will no longer be a
SCC-controlled project. The column in the Workspace window that
contains SCC status information will no longer be visible for that project.

Table 26: Description of source code control commands

Part 6. Reference information 189

Windows

Source code control states

Each source code-controlled file can be in one of several states.

SCC state Description
D Checked out to you. The file is editable.
Checked out to you. The file is editable and you have modified the file.

(grey padlock) Checked in. In many SCC systems this means that the file is
write-protected.

(grey padlock) Checked in. There is a new version available in the archive.

(red padlock) Checked out exclusively to another user. In many SCC systems this
means that you cannot check out the file.

Al (red padlock) Checked out exclusively to another user. There is a new version available
in the archive. In many SCC systems this means that you cannot check
out the file.

Table 27: Description of source code control states

Note: The source code control in IAR Embedded Workbench depends on the
information provided by the SCC system. If the SCC system provides incorrect or
incomplete information about the states, AR Embedded Workbench might display
incorrect symbols.

IAR Embedded Workbench® IDE
190 User Guide

IAR Embedded Workbench® IDE reference ___¢

Select Source Code Control Provider dialog box

The Select Source Code Control Provider dialog box is displayed if there are several
SCC systems from different vendors available. Use this dialog box to choose the SCC
system you want to use.

Select Source Code Control Provider E
Cancel |

[Micrasaft visual SaurceSare

Figure 77: Select Source Code Control Provider dialog box

Check In Files dialog box

The Check In Files dialog box is available by choosing the Project>Source Code
Control>Check In command, alternatively available from the Workspace window
context menu.

Check In Files E

Comment

K

Cancel

Advanced. .,

Ik

™ Keep checked out

Files

C:hprojectshtutor\Utilities. o

Figure 78: Check In File dialog box

Part 6. Reference information 191

Windows

192

IAR Embedded Workbench® IDE
User Guide

Comment

A text box in which you can write a comment—typically a description of your
changes—that will be stored in the archive together with the file revision. This text box
is only enabled if the SCC system supports the adding of comments at check-in.

Keep checked out

The file(s) will continue to be checked out after they have been checked in. Typically,
this is useful if you want to make your modifications available to other members in your
project team, without stopping your own work with the file.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check in.

Files

A list of the files that will be checked in. The list will contain all files that were selected
in the Workspace window when this dialog box was opened.

IAR Embedded Workbench® IDE reference ___¢

Check Out Files dialog box

The Check Out File dialog box is available by choosing the Project>Source Code
Control>Check Out command, alternatively available from the Workspace window
context menu. However, this dialog box is only available if the SCC system supports
adding comments at check-out or advanced options.

Check Dut Files E

Comment

K

Cancel

Advanced. .,

Ik

Files
C:hprojectshtutor\Utilities. o

Figure 79: Check Out File dialog box

Comment

A text field in which you can write a comment—typically the reason why the file is
checked out—that will be placed in the archive together with the file revision. This text
box is only enabled if the SCC system supports the adding of comments at check-out.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check out.

Files

A list of files that will be checked out. The list will contain all files that were selected in
the Workspace window when this dialog box was opened.

Part 6. Reference information 193

Windows

194

IAR Embedded Workbench® IDE
User Guide

EDITOR WINDOW

Source files are displayed in editor windows. You can have one or several editor
windows open at the same time. The editor window is always docked, and its size and
position depends on other currently open windows.

Drop-down menu
listing all open files

Tabs
e - |
Initialize MAX FIB Fibonacci numbers. G
*
void init_fib{ void j
{
short i = 45;
root[0] = root[l] = 1;
for { i=2 ; i<MAX_FIE ; i++)
Bookmark —

root[i] = get_fib{i) + get fih(i-1):
'

/*
Return the Fibonacci mumber 'nr'.
*
unsigned int get_fib({ int nr |
{

if | nrx0 &s& nr<=MiX FIE) -
[fal 1] | B
Il

Splitter control ~ Go to function

Figure 80: Editor window

The name of the open source file is displayed on the tab. If a file is read-only, a padlock
icon is visible at the bottom left corner of the editor window. If a file has been modified
after it was last saved, an asterisk appears after the filename on the tab, for example
Utilities.c *. All open files are available from the drop-down menu in the upper
right corner of the editor window.

For information about using the editor, see the chapter Editing, page 89.

Split commands

Use the Window>Split command—or the Splitter controls—to split the editor window
horizontally or vertically into multiple panes.

On the Window menu you also find commands for opening multiple editor windows, as
well as commands for moving files between the different editor windows.

Go to function

IAR Embedded Workbench® IDE reference ___¢

With the Go to function button in the bottom left-hand corner of the editor window you
can display all functions in the C or C++ editor window. You can then choose to go

directly to one of them.

Editor window tab context menu

The context menu that appears if you right-click on a tab in the editor window provides
access to commands for saving and closing the file.

Save intermupt.c
Cloze

Figure 81: Editor window tab context menu

Editor window context menu

The context menu available in the editor window provides convenient access to several

commands.

Ut

Copy.
Paste

Complete
Match Brackets
Insert Template

Open "Fibonacci.h"

5o ko definition

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)
Enable/disable Breakpoink

Set Mext Statement

Quick \Watch
Add to Wakch

Move to PC
Run ko Cursor

Figure 82: Editor window context menu

Note: The contents of this menu depend on different circumstances, which means it
may contain other commands compared to this figure. All commands available are
described in the Table 28, Description of commands on the editor window context menu.

Part 6. Reference information 195

Windows

196

IAR Embedded Workbench® IDE
User Guide

The following commands are available on the editor window context menu:

Menu command

Description

Cut, Copy, Paste

Complete

Match Brackets

Open "headerh"

Open Header/Source
File

Go to definition

Check In
Check Out
Undo Checkout

Toggle Breakpoint
(Code)

Toggle Breakpoint
(Log)

Enable/disable
Breakpoint

Set Next Statement

Quick Watch

Add to Watch

Standard window commands.

Attempts to complete the word you have begun to type, basing the guess
on the contents of the rest of the editor document.

Selects all text between the brackets immediately surrounding the
insertion point, increases the selection to the next hierarchic pair of
brackets, or beeps if there is no higher bracket hierarchy.

Opens the header file "headerh" in an editor window. This menu
command is only available if the insertion point is located on an
#include line when you open the context menu.

Jumps from the current file to the corresponding header or source file. If
the destination file is not open when performing the command, the file
will first be opened. This menu command is only available if the insertion
point is located on any line except an #include line when you open
the context menu. This command is also available from the File>Open
menu.

Shows the declaration of the symbol where the insertion point is placed.

Commands for source code control; for more details, see Source Code
Control menu, page 189. These menu commands are only available if the
current source file in the editor window is SCC-controlled. The file must
also be a member of the current project.

Toggles a code breakpoint at the statement or instruction containing or
close to the cursor in the source window. For information about code
breakpoints, see Code breakpoints dialog box, page 202.

Toggles a log breakpoint at the statement or instruction containing or
close to the cursor in the source window. For information about log
breakpoints, see Log breakpoints dialog box, page 204.

Toggles a breakpoint between being disabled, but not actually
removed—making it available for future use—and being enabled again.

Sets the PC directly to the selected statement or instruction without
executing any code. Use this menu command with care. This menu
command is only available when you are using the debugger.

Opens the Quick Watch window, see Quick Watch window, page 269.
This menu command is only available when you are using the debugger.

Adds the selected symbol to the Watch window. This menu command is
only available when you are using the debugger.

Table 28: Description of commands on the editor window context menu

IAR Embedded Workbench® IDE reference ___¢

Menu command Description

Move to PC

Moves the insertion point to the current PC position in the editor

window. This menu command is only available when you are using the

debugger.

Run to Cursor

are using the debugger.

Executes from the current statement or instruction up to a selected
statement or instruction. This menu command is only available when you

Table 28: Description of commands on the editor window context menu (Continued)

Source file paths

The IAR Embedded Workbench IDE supports relative source file paths to a certain

degree.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IAR Embedded Workbench IDE will use a path relative to the project

file when accessing the source file.

Editor key summary

The following tables summarize the editor’s keyboard commands.

Use the following keys and key combinations for moving the insertion point:

To move the insertion point Press
One character left Arrow left
One character right Arrow right

One word left

One word right

One line up

One line down

To the start of the line
To the end of the line

To the first line in the file

To the last line in the file

Ctri+Arrow left
Ctrl+Arrow right
Arrow up

Arrow down
Home

End

Ctrl+Home

Ctrl+End

Table 29: Editor keyboard commands for insertion point navigation

Use the following keys and key combinations for scrolling text:

To scroll

Press

Up one line

Ctrl+Arrow up

Table 30: Editor keyboard commands for scrolling

Part 6. Reference information

197

Windows

198

IAR Embedded Workbench® IDE
User Guide

To scroll

Press

Down one line
Up one page

Down one page

Ctrl+Arrow down
Page Up

Page Down

Table 30: Editor keyboard commands for scrolling (Continued)

Use the following key combinations for selecting text:

To select

Press

The character to the left

The character to the right

One word to the left

One word to the right

To the same position on the previous line
To the same position on the next line
To the start of the line

To the end of the line

One screen up

One screen down

To the beginning of the file

To the end of the file

Shift+Arrow left
Shift+Arrow right
Shift+Ctrl+Arrow left
Shift+Ctrl+Arrow right
Shift+Arrow up
Shift+Arrow down
Shift+Home
Shift+End

Shift+Page Up
Shift+Page Down
Shift+Ctrl+Home
Shift+Ctrl+End

Table 31: Editor keyboard commands for selecting text

IAR Embedded Workbench® IDE reference ___¢

SOURCE BROWSER WINDOW

The Source Browser window—available from the View menu—displays an hierarchical
view in alphabetical order of all symbols defined in the active build configuration.

[® [Name — —
project] - Debug

< call_count
+ do_foreground_process
] 1
* init_fib
* main
4+ next_counter
*
w

put_fib
root

KN — i
Full name: get_fibling)

Symbol type: function

Filename: ChprojectsiUtilities.c

ource Browse

Figure 83: Source Browser window

The window consists of two separate panes. The top pane displays the names of global
symbols and functions defined in the project.

Each row is prefixed with an icon, which corresponds to the Symbol type classification,
see Table 32, Information in Source Browser window. By clicking in the window header,
you can sort the symbols either by name or by symbol type.

In the top pane you can also access a context menu; see Source Browser window context
menu, page 200.

For a symbol selected in the top pane, the bottom pane displays the following
information:

Type of information Description

Full name Displays the unique name of each element, for instance
classname:membername.

Symbol type Displays the symbol type for each element: enumeration, enumeration
constant, class, typedef, union, macro, field or variable, function,
template function, template class, and configuration.

Filename Specifies the path to the file in which the element is defined.

Table 32: Information in Source Browser window

Part 6. Reference information 199

Windows

For further details about how to use the Source Browser window, see Displaying browse
information, page 79.
Source Browser window context menu

Right-clicking in the Source Browser window displays a context menu with convenient
access to several commands.

5o ko definition
Move ko parent

All symbols

v Functions & variables
Types
Constants & macros

All files
v Exclude system includes
Only project members

Figure 84: Source Browser window context menu

The following commands are available on the context menu:

Menu command Description
Go to Source The editor window will display the definition of the selected item.
Move to parent If the selected element is a member of a class, struct, union,

enumeration, or namespace, this menu command can be used for
moving to its enclosing element.

All symbols Type filter; all global symbols and functions defined in the project will
be displayed.

Functions & variables Type filter; all functions and variables defined in the project will be
displayed.

Types Type filter; all types such as structures and classes defined in the

project will be displayed.

Constants & macros Type filter; all constants and macros defined in the project will be
displayed.
All files File filter; symbols from all files that you have explicitly added to your

project and all files included by them will be displayed.

Exclude system includes File filter; symbols from all files that you have explicitly added to your
project and all files included by them will be displayed, except the
include files in the IAR Embedded Workbench installation directory.

Only project members File filter; symbols from all files that you have explicitly added to your
project will be displayed, but no include files.

Table 33: Source Browser window context menu commands

IAR Embedded Workbench® IDE
200 User Guide

IAR Embedded Workbench® IDE reference ___¢

BREAKPOINTS WINDOW

The Breakpoints window—available from the View menu—Ilists all breakpoints. From
the window you can conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

Code @ Tutar.c:46.2

Figure 85: Breakpoints window

All breakpoints you define are displayed in the Breakpoints window.

For more information about the breakpoint system and how to set breakpoints, see the
chapter Using breakpoints in Part 4. Debugging.

Breakpoints window context menu

Right-clicking in the Breakpoints window displays a context menu with several
commands.

G0 to Source
Edit...

Delete
Disable
Enable Al
Disable Al

Mew Breakpoint ¥
Figure 86: Breakpoints window context menu

The following commands are available on the context menu:

Menu command Description

Go to Source Moves the insertion point to the location of the breakpoint, if the
breakpoint has a source location. Double-click a breakpoint in the
Breakpoints window to perform the same command.

Edit Opens the Edit Breakpoint dialog box for the selected breakpoint.

Table 34: Breakpoints window context menu commands

Part 6. Reference information 201

Windows

202

IAR Embedded Workbench® IDE
User Guide

Menu command Description

Delete Deletes the selected breakpoint. Press the Delete key to perform the
same command.

Enable Enables the selected breakpoint. The check box at the beginning of the
line will be selected. You can also perform the command by manually
selecting the check box. This command is only available if the selected
breakpoint is disabled.

Disable Disables the selected breakpoint. The check box at the beginning of the
line will be cleared. You can also perform this command by manually
deselecting the check box.This command is only available if the selected
breakpoint is enabled.

Enable All Enables all defined breakpoints.
Disable All Disables all defined breakpoints.
New Breakpoint Displays a submenu where you can open the New Breakpoint dialog

box for the available breakpoint types. All breakpoints you define using
the New Breakpoint dialog box are preserved between debug
sessions. In addition to code and log breakpoints—see Code breakpoints
dialog box, page 202 and Log breakpoints dialog box, page 204—other types
of breakpoints might be available depending on the C-SPY driver you are
using. For information about driver-specific breakpoint types, see the
driver-specific debugger documentation.

Table 34: Breakpoints window context menu commands (Continued)

Code breakpoints dialog box

Code breakpoints are triggered when an instruction is fetched from the specified
location. If you have set the breakpoint on a specific machine instruction, the breakpoint
will be triggered and the execution will stop, before the instruction is executed.

To set a code breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Code on the context menu. To modify an existing breakpoint, select it in
the Breakpoints window and choose Edit on the context menu.

IAR Embedded Workbench® IDE reference ___¢

The Code breakpoints dialog box appears.

é Code |
Break &f:
f Edit...l
— Size
& Auta (1] I_I—
 Marual
— Action
Expression: I
Condition:
Expression:
& Condition true Skip count; I—D
" Condition changed

Figure 87: Code breakpoints page

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 206.

Size

Optionally, you can specify a size—in practice, a range—of locations. Each fetch access
to the specified memory range will trigger the breakpoint. There are two different ways
the size can be specified:

e Auto, the size will be set automatically, typically to 1
e Manual, you specify the size of the breakpoint range manually in the Size text box.
Action

You can optionally connect an action to a breakpoint. Specify an expression, for instance
a C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.

Part 6. Reference information 203

Windows

IAR Embedded Workbench® IDE
204 User Guide

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 35: Breakpoint conditions

Log breakpoints dialog box

Log breakpoints are triggered when an instruction is fetched from the specified location.
If you have set the breakpoint on a specific machine instruction, the breakpoint will be
triggered and the execution will temporarily halt and print the specified message in the
C-SPY Debug Log window. This is a convenient way to add trace printouts during the
execution of your application, without having to add any code to the application source
code.

To set a log breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Log on the context menu. To modify an existing breakpoint, select it in the
Breakpoints window and choose Edit on the context menu.

The Log breakpoints dialog box appears.

2 Log |
Break &f:
I{E:\tutor\Tutor.c}.4?.3 Edit...l
Meszage: [~ CSpymaco"__message” style

I"depth =", call_count

Condition:
Expression:

& Condition tue
" Condition changed

Figure 88: Log breakpoints page

IAR Embedded Workbench® IDE reference ___¢

The quickest—and typical—way to set a log breakpoint is by choosing Toggle
Breakpoint (Log) from the context menu available by right-clicking in either the editor
or the Disassembly window. For more information about how to set breakpoints, see
Defining breakpoints, page 121.

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter Location dialog box; see Enter Location dialog box, page
206.

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
"__message' style—a comma-separated list of arguments.

C-SPY macro "__message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Printing messages, page 335.

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Table 36: Log breakpoint conditions

Part 6. Reference information 205

Windows

Enter Location dialog box

Use the Enter Location dialog box—available from a breakpoints dialog box—to
specify the location of the breakpoint.

Enter Location E

Type
' Expression

7 Absolute address

 Souree location

Expression:

o]

Cancel |

Figure 89: Enter Location dialog box

You can choose between these locations and their possible settings:

Location type

Description/Examples

Expression

Absolute Address

Source Location

Any expression that evaluates to a valid address, such as a function or
variable name. Code breakpoints are set on functions and data
breakpoints are set on variable names. For example, my_var refers to
the location of the variable my_var, and arr [3] refers to the third
element of the array arr.

An absolute location on the form zone: hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory: 0x42.

If you enter a combination of a zone and address that is not valid, C-SPY
will indicate the mismatch.

A location in the C source code using the syntax:

{file path}.row.column. File specifies the filename and full path.
Row specifies the row in which you want the breakpoint. Column specifies
the column in which you want the breakpoint. Note that the Source
Location type is usually meaningful only for code breakpoints.

For example, {C:\IAR Systems\xxx\Utilities.c}.22.3
sets a breakpoint on the third character position on line 22 in the source
file Utilities.c.

Table 37: Location types

IAR Embedded Workbench® IDE

206 User Guide

IAR Embedded Workbench® IDE reference ___¢

BUILD WINDOW

The Build window—available by choosing View>Messages—displays the messages
generated when building a build configuration. When opened, this window is by default
grouped together with the other message windows, see Windows, page 183.

| Messages | File | Line |
Tutar.c
A\ Warming[Pe0b4]: declaration does not declare amahing CAProgram File. ATutarc 17
€3 Eror[Pe020] identifier "call_count" is undefined CAProgram File. \Tutorc 24
€3 Eror[Pe020]: identifier "call_count" is undefined CAProgram File. \Tutorc 35
€3 Eror[Pe020] identifier "call_count" is undefined CAProgram File. \Tutorc 45
Dane. 3 errors). 1 warning(s)

Figure 90: Build window (message window)

Double-clicking a message in the Build window opens the appropriate file for editing,
with the insertion point at the correct position.

Right-clicking in the Build window displays a context menu which allows you to copy,
select, and clear the contents of the window.

Gy
Select Al

Clear Al

Options. ..
Figure 91: Build window context menu

The Options command opens the Messages page of the IDE options dialog box. On
this page you can set options related to messages; see Messages page, page 236.

Part 6. Reference information

207

Windows

208

IAR Embedded Workbench® IDE
User Guide

FIND IN FILES WINDOW

The Find in Files window—available by choosing View>Messages—displays the
output from the Edit>Find in Files command. When opened, this window is by default
grouped together with the other message windows, see Windows, page 183.

Fath

| L..| String -

ChprojectsiTutor.c
ChprojectsiTutor.c
ChprojectsiTutor.c
ChprojectsiTutor.c
ChprojectsiTutor.c
ChprojectsiTutorh
f| CprojectsiTutarh
| Cyprojectsi Tutorh

<

4

Pt s ara =

* Ctutorial. Printthe Fibonacci numbers.
int call_count;

Getand printthe assiciated Fibonacci nu.
unsigned int fik;

Prints the Fibonacci numbers.

extern unsigned intfibsum(int first, int last);
extern unsigned intfibsum(int first, int last);
extern unsigned intfilbsum(int first, int last); o

»

ind in Files

Figure 92: Find in Files window (message window)

Double-clicking an entry in the page opens the appropriate file with the insertion point
positioned at the correct location.

Right-clicking in the Find in Files window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 93: Find in Files window context menu

IAR Embedded Workbench® IDE reference ___¢

TOOL OUTPUT WINDOW

The Tool Output window—available by choosing View>Messages—displays any
messages output by user-defined tools in the Tools menu, provided that you have
selected the option Redirect to Output Window in the Configure Tools dialog box;
see Configure Tools dialog box, page 249. When opened, this window is by default
grouped together with the other message windows, see Windows, page 183.

Output |

Tool Output

Figure 94: Tool Output window (message window)

Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 95: Tool Output window context menu

Part 6. Reference information

209

Menus

210

DEBUG LOG WINDOW

The Debug Log window—available by choosing View>Messages—displays debugger
output, such as diagnostic messages and trace information. This output is only available
when the C-SPY Debugger is running. When opened, this window is by default grouped
together with the other message windows, see Windows, page 183.

Log
Fri Feb 06 10:41:40 2004: Loaded module
Fri Felb 06 10:41:40 2004: Target reset

Debug Log

Debug Log

Figure 96: Debug Log window (message window)

Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 97: Debug Log window context menu

Menus

IAR Embedded Workbench® IDE
User Guide

The following menus are available in the IAR Embedded Workbench IDE:

File menu
Edit menu
View menu
Project menu
Tools menu
Window menu
Help menu.

In addition, a set of C-SPY-specific menus become available when you start the IAR
C-SPY Debugger. Reference information about these menus can be found in the chapter
C-SPY® Debugger reference, page 257.

Y=

FILE MENU

IAR Embedded Workbench® IDE reference ___¢

The File menu provides commands for opening workspaces and source files, saving and
printing, and exiting from the IAR Embedded Workbench IDE.

The menu also includes a numbered list of the most recently opened files and
workspaces to allow you to open one by selecting its name from the menu.

Mew 3
Open 3
Close

Save Workspace
Close Workspace

Save CTRLES
Save fs..,

Save Al

Page Setup...

Print. .. CTRL+P
Recent Files 3
Recent Workspaces 3

Exit

Figure 98: File menu

The following commands are available on the File menu:

Menu command Shortcut Description

New CTRL+N Displays a submenu with commands for creating a new
workspace, or a new text file.

Open>File CTRL+O Displays a submenu from which you can select a text file to
open.

Open> Displays a submenu from which you can select a workspace file

Workspace to open. Before a new workspace is opened you will be
prompted to save and close any currently open workspaces.

Open> CTRL+ Opens the header file or source file that corresponds to the

Header/Source File SHIFT+H

Close

current file, and jumps from the current file to the newly
opened file. This command is also available from the context
menu available from the editor window.

Closes the active window. You will be given the opportunity to
save any files that have been modified before closing.

Table 38: File menu commands

Part 6. Reference information 211

Menus

212

IAR Embedded Workbench® IDE
User Guide

Menu command Shortcut Description

Open Workspace Displays a dialog box where you can open a workspace file.
You will be given the opportunity to save and close any
currently open workspace file that has been modified before
opening a new workspace.

Save Workspace Saves the current workspace file.

Close Workspace Closes the current workspace file.

Save CTRL+S Saves the current text file or workspace file.

Save As Displays a dialog box where you can save the current file with a
new name.

Save All Saves all open text documents and workspace files.

Page Setup Displays a dialog box where you can set printer options.

Print CTRL+P Displays a dialog box where you can print a text document.

Recent Files Displays a submenu where you can quickly open the most

Recent Workspaces

Exit

recently opened text documents.

Displays a submenu where you can quickly open the most
recently opened workspace files.

Exits from the IAR Embedded Workbench IDE. You will be

asked whether to save any changes to text windows before
closing them. Changes to the project are saved automatically.

Table 38: File menu commands (Continued)

IAR Embedded Workbench® IDE reference ___¢

EDIT MENU

The Edit menu provides several commands for editing and searching.

Lrida Chrl+-Z

Redo Chrl4-

Cuf: Chrl4-

Copy Chrl+C

Paste Chrl4+y

Paste Special...

Select Al Chrl4+-4

Find and Replace 3
Mavigate 3
Code Templates 3
Mext ErrorfTag F4

Previous ErrorfTag Shift+F4
Complete Chrl+Space
Match Brackets Chrl+B

Auko Indent Chrl+T

Block Comment Chrl4+k

Block Unomment Chrl+Shift+k
Toggle Breakpoink F2
Enable/Disable Breakpoint Ctrl+F9

Figure 99: Edit menu

Menu command Shortcut Description
Undo CTRL+Z Undoes the last edit made to the current editor window.
Redo CTRL+Y Redoes the last Undo in the current editor window.

You can undo and redo an unlimited number of edits
independently in each editor window.

Cut CTRL+X The standard Windows command for cutting text in editor
windows and text boxes.

Copy CTRL+C The standard Windows command for copying text in editor
windows and text boxes.

Paste CTRL+V The standard Windows command for pasting text in editor

windows and text boxes.

Paste Special Provides you with a choice of the most recent contents of the
clipboard to choose from when pasting in editor documents.

Select All CTRL+A Selects all text in the active editor window.

Table 39: Edit menu commands

Part 6. Reference information 213

Menus

214

Menu command Shortcut

Description

% | Find and Replace>Find CTRL+F

IAR Embedded Workbench® IDE
User Guide

¥z

Find and Replace> F3
Find Next

Find and Replace> CTRL+H
Replace

Find and Replace>
Find in Files

Find and Replace> CTRL+I
Incremental Search

Navigate>Go To CTRL+G

Navigate> CTRL+F2
Toggle Bookmark

Navigate> F2

Go to Bookmark

Navigate> ALT+Left

Navigate Backward arrow

Navigate> ALT+Right
Navigate Forward arrow

Displays the Find dialog box where you can search for text
within the current editor window. Note that if the insertion
point is located in the Memory window when you choose the
Find command, the dialog box will contain a different set of
options than it would otherwise do. If the insertion point is
located in the Trace window when you choose the Find
command, the Find in Trace dialog box is opened; the
contents of this dialog box depend on the C-SPY driver you
are using, see the driver documentation for more
information.

Finds the next occurrence of the specified string.

Displays a dialog box where you can search for a specified
string and replace each occurrence with another string. Note
that if the insertion point is located in the Memory window
when you choose the Replace command, the dialog box will
contain a different set of options than it would otherwise do.

Displays a dialog box where you can search for a specified
string in multiple text files; see Find in Files dialog box, page
217.

Displays a dialog box where you can gradually fine-tune or
expand the search by continuously changing the search string.

Displays a dialog box where you can move the insertion point
to a specified line and column in the current editor window.

Toggles a bookmark at the line where the insertion point is
located in the active editor window.

Moves the insertion point to the next bookmark that has
been defined with the Toggle Bookmark command.

Navigates backward in the insertion point history. The
current position of the insertion point is added to the history
by actions like Go to definition and clicking on a result from
the Find in Files command.

Navigates forward in the insertion point history. The current
position of the insertion point is added to the history by
actions like Go to definition and clicking on a result from
the Find in Files command.

Table 39: Edit menu commands (Continued)

IAR Embedded Workbench® IDE reference ___¢

Menu command Shortcut Description

Code Templates> CTRL+ Displays a list in the editor window from which you can

Insert Template SHIFT+ choose a code template to be inserted at the location of the
SPACE insertion point. If the code template you choose requires any

field input, the Template dialog box appears; for
information about this dialog box, see Template dialog box,
page 220. For information about using code templates, see
Using and adding code templates, page 93.

Code Templates> Opens the current code template file, where you can modify

Edit Templates existing code templates and add your own code templates.
For information about using code templates, see Using and
adding code templates, page 93.

Next Error/Tag F4 If there is a list of error messages or the results from a Find
in Files search in the Messages window, this command will
display the next item from that list in the editor window.

Previous Error/Tag ~ SHIFT+F4 If there is a list of error messages or the results from a Find
in Files search in the Messages window, this command will
display the previous item from that list in the editor window.

Complete CTRL+ Attempts to complete the word you have begun to type,
SPACE basing the guess on the contents of the rest of the editor
document.
Auto Indent CTRL+T Indents one or several lines you have selected in a C/C++

source file. To configure the indentation, see Configure Auto
Indent dialog box, page 238.

Match Brackets Selects all text between the brackets immediately
surrounding the insertion point, increases the selection to the
next hierarchic pair of brackets, or beeps if there is no higher
bracket hierarchy.

Block Comment CTRL+K Places the C++ comment character sequence // at the
beginning of the selected lines.

Block Uncomment ~ CTRL+K Removes the C++ comment character sequence // from
the beginning of the selected lines.

Table 39: Edit menu commands (Continued)

Part 6. Reference information 215

Menus

216

IAR Embedded Workbench® IDE
User Guide

Find dialog box

The Find dialog box is available from the Edit menu.

Option

Description

Find What
Match Whole Word Only

Match Case

Direction

Search as Hex

Find Next
Stop

Selects the text to search for.

Searches the specified text only if it occurs as a separate word.
Otherwise specifying int will also find print, sprintf etc. This
option is not available when you perform the search in the Memory
window.

Searches only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.
This option is not available when you perform the search in the
Memory window.

Specifies the direction of the search. Choose between the options
Up and Down.

Searches for the specified hexadecimal value. This option is only
available when you perform the search in the Memory window.

Searches the next occurrence of the selected text.

Stops an ongoing search. This function button is only available during
a search.

Table 40: Find dialog box options

Replace dialog box

The Replace dialog box is available from the Edit menu.

Option Description
Find What Selects the text to search for.
Replace With Selects the text to replace each found occurrence in the Replace

Match Whole Word Only

Match Case

With box.

Searches the specified text only if it occurs as a separate word.
Otherwise int will also find print, sprintf etc. This checkbox
is not available when you perform the search in the Memory window.

Searches only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.
This checkbox is not available when you perform the search in the
Memory window.

Table 41: Replace dialog box options

Option

IAR Embedded Workbench® IDE reference ___¢

Description

Search as Hex

Find Next
Replace

Replace All

Searches for the specified hexadecimal value. This checkbox is only
available when you perform the search in the Memory window.

Searches the next occurrence of the text you have specified.
Replaces the searched text with the specified text.

Replaces all occurrences of the searched text in the current editor
window.

Table 41: Replace dialog box options (Continued)

Find in Files dialog box

Use the Find in Files dialog box—available from the Edit menu—to search for a string

in files.
Find what

™ Match case

™ Makch whale word

Find |
j Close |

Look in

& Project files

" Project files and user include files
" Project files and all include Files

" Direckory:

¥ | Lack i subdirectaries

File types

I*.c,'*.cpp;*.cc,'*.h;*.hpp,‘*.s*;*.msa;*.asm j

Figure 100: Find in Files dialog box

The result of the search appears in the Find in Files messages window—available from
the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
messages window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-most
margin indicates the line.

In the Find in Files dialog box, you specify the search criteria with the following

settings.

Part 6. Reference information 217

Menus

218

IAR Embedded Workbench® IDE
User Guide

Find what

A text field in which you type the string you want to search for. There are two options
for fine-tuning the search:

Match case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

Look in

The options in the Look in area lets you specify which files you want to search in for a
specified string. Choose between:

Project files The search will be performed in all files that you have explicitly added to
your project.

Project files and user The search will be performed in all files that you have explicitly added to
include files your project and all files included by them, except the include files in the
IAR Embedded Workbench installation directory.

Project files and all The search will be performed in all project files that you have explicitly
include files added to your project and all files included by them.

Directory The search will be performed in the directory that you specify. Recent
search locations are saved in the drop-down list. Locate the directory
using the browse button.

Look in The search will be performed in the directory that you have specified
subdirectories and all its subdirectories.

File types

This is a filter for choosing which type of files to search; the filter applies to all options
in the Look in area. Choose the appropriate filter from the drop-down list. Note that the
File types text field is editable, which means that you can add your own filters. Use the
* character to indicate zero or more unknown characters of the filters, and the 2
character to indicate one unknown character.

Stop

Stops an ongoing search. This function button is only available during an ongoing
search.

IAR Embedded Workbench® IDE reference ___¢

Incremental Search dialog box

The Incremental Search dialog box—available from the Edit menu—Iets you
gradually fine-tune or expand the search string.

Incremental Search x|

Findwhat: | =l
[T Mateh Cass Cloze |

Figure 101: Incremental Search dialog box

Find What

Type the string to search for. The search will be performed from the location of the
insertion point—the start point. Gradually incrementing the search string will gradually
expand the search criteria. Backspace will remove a character from the search string; the
search will be performed on the remaining string and will start from the start point.

If a word in the editor window is selected when you open the Incremental Search
dialog box, this word will be displayed in the Find What text box.

Match Case

Use this option to find only occurrences that exactly match the case of the specified text.
Otherwise searching for int will also find INT and Int.

Function buttons

Function button Description

Find Next Searches for the next occurrence of the current search string. If the
Find What text box is empty when you click the Find Next button, a
string to search for will automatically be selected from the drop-down
list. To search for this string, click Find Next.

Close Closes this dialog box.

Table 42: Incremental Search function buttons

Part 6. Reference information 219

Menus

220

IAR Embedded Workbench® IDE
User Guide

Template dialog box

Use the Template dialog box to specify any field input that is required by the source
code template you insert. This dialog box appears when you insert a code template that
requires any field input.

Template “for™ E
End Yalue I 10 ok I
‘ariable I i Cancel |

fForfink i =0; i < 10; +-+i)

+

Figure 102: Template dialog box
Note: This figure reflects the default code template that can be used for automatically
inserting code for a for loop.

The contents of this dialog box match the code template. In other words, which fields
that appear depends on how the code template is defined.

At the bottom of the dialog box, the code that would result from the code template is
displayed.

For more information about using code templates, see Using and adding code templates,
page 93.

IAR Embedded Workbench® IDE reference ___¢

VIEW MENU

With the commands on the View menu you can choose what to display in the IAR
Embedded Workbench IDE. During a debug session you can also open
debugger-specific windows from the View menu.

Messages 3

‘Warkspace

Source Browser

Breakpoints

Toolbars 3
v Status Bar

Figure 103: View menu

Menu command Description

Messages Opens a submenu which gives access to the message windows—aBuild,
Find in Files, Tool Output, Debug Log—that display messages and text
output from the IAR Embedded Workbench commands. If the window
you choose from the menu is already open, it becomes the active

window.
Workspace Opens the current workspace window.
Source Browser Opens the Source Browser window.
Breakpoints Opens the Breakpoints window.
Toolbars The options Main and Debug toggle the two toolbars on and off.
Status bar Toggles the status bar on and off.

Table 43: View menu commands

Part 6. Reference information 221

Menus

Menu command Description

Debugger windows During a debugging session, the different debugging windows are also
available from the View menu:
Disassembly window
Memory window
Register window
Watch window
Locals window
Auto window
Live Watch window
Quick Watch window
Call Stack window
Terminal 1/O window
Code Coverage window
Profiling window
Stack window
For descriptions of these windows, see C-SPY windows, page 257.

Table 43: View menu commands (Continued)

IAR Embedded Workbench® IDE
222 User Guide

IAR Embedded Workbench® IDE reference ___¢

PROJECT MENU

The Project menu provides commands for working with workspaces, projects, groups,
and files, as well as specifying options for the build tools, and running the tools on the
current project.

Add Files. ..

Add Group. ..

Import File List, .,
Edit Configurations. ..

Remayve

Create Mew Project. ..
Add Existing Project. ..

Options. .. ALT+F?
Source Code Contral 3
Make F?

Compile CTRL+F7
Rebuild all

Clean

Batch build. .. F&

Stop Build

Debug CTRL+D

IMake & Restark Debugger

Figure 104: Project menu

Menu Command Description

Add Files Displays a dialog box that where you can select which files to include to
the current project.

Add Group Displays a dialog box where you can create a new group. The Group
Name text box specifies the name of the new group. The Add to Target
list selects the targets to which the new group should be added. By
default the group is added to all targets.

Import File List Displays a standard Open dialog box where you can import information
about files and groups from projects created using another IAR tool
chain.

To import information from project files which have one of the older
filename extensions pew or prj you must first have exported the
information using the context menu command Export File List
available in your own IAR Embedded Workbench.

Edit Configurations Displays the Configurations for project dialog box, where you can
define new or remove existing build configurations.

Table 44: Project menu commands

Part 6. Reference information 223

Menus

224

IAR Embedded Workbench® IDE

Menu Command

Description

Remove

Create New Project

Add Existing Project

Options

Source Code Control

Make

Compile

Rebuild All
Clean

Batch Build

Stop Build
Debug

In the Workspace window, removes the selected item from the
workspace.

Displays a dialog box where you can create a new project and add it to
the workspace.

Displays a dialog box where you can add an existing project to the
workspace.

Displays the Options for node dialog box, where you can set options
for the build tools on the selected item in the Workspace window. You
can set options on the entire project, on a group of files, or on an
individual file.

Opens a submenu with commands for source code control, see Source
Code Control menu, page 189.

Brings the current build configuration up to date by compiling,
assembling, and linking only the files that have changed since the last
build.

Compiles or assembles the currently selected file, files, or group.

One or more files can be selected in the workspace window—all files in
the same project, but not necessarily in the same group. You can also
select the editor window containing the file you want to compile. The
Compile command is only enabled if every file in the selection is
individually suitable for the command.

You can also select a group, in which case the command is applied to each
file in the group (including inside nested groups) that can be compiled,
even if the group contains files that cannot be compiled, such as header
files.

Rebuilds and relinks all files in the current target.
Removes any intermediate files.

Displays a dialog box where you can configure named batch build
configurations, and build a named batch.

Stops the current build operation.

Starts the IAR C-SPY Debugger so that you can debug the project object
file. If necessary, a make will be performed before running C-SPY to
ensure the project is up to date. Depending on your IAR product
installation, you can choose which debugger drive to use by selecting the
appropriate C-SPY driver on the C-SPY Setup page available by using the
Project>Options command.

Table 44: Project menu commands (Continued)

Menu Command

IAR Embedded Workbench® IDE reference ___¢

Description

Make & Restart
Debugger

Stops the debugger, makes the active build configuration, and starts the
debugger again; all in a single command. This button is only available
during debugging.

Table 44: Project menu commands (Continued)

Argument variables summary

Variables can be used for paths and arguments. The following argument variables can

be used:

Variable Description

$CUR_DIRS Current directory

$CUR_LINES Current line

$SEW_DIRS Top directory of IAR Embedded Workbench, for example
c:\program files\iar systems\embedded workbench
4.n

$EXE_DIRS Directory for executable output

$FILE_BNAMES
$FILE_BPATHS
$FILE_DIRS
$FILE_FNAMES
$FILE_PATHS
$LIST_DIRS
SOBJ_DIRS
$PROJ_DIRS
$PROJ_FNAMES
$PROJ_PATHS
$TARGET_DIRS
$TARGET_BNAMES
$TARGET_BPATHS
$TARGET_FNAMES$
$TARGET_PATHS

STOOLKIT_DIRS

Filename without extension

Full path without extension

Directory of active file, no filename

Filename of active file without path

Full path of active file (in Editor, Project, or Message window)
Directory for list output

Directory for object output

Project directory

Project file name without path

Full path of project file

Directory of primary output file

Filename without path of primary output file and without extension
Full path of primary output file without extension

Filename without path of primary output file

Full path of primary output file

Directory of the active product, for example ¢ : \program
files\iar systems\embedded workbench 4.n\cpuname

Table 45: Argument variables

Part 6. Reference information 225

Menus

226

IAR Embedded Workbench® IDE
User Guide

Configurations for project dialog box

In the Configuration for project dialog box—available by choosing Project>Edit
Configurations—you can define new build configurations for the selected project;
either entirely new, or based on a previous project.

Configurations for "Project1™

Configurations: QK

Release Mew..

Remove

i

Figure 105: Configurations for project dialog box

The dialog box contains the following:

Operation Description

Configurations Lists existing configurations, which can be used as templates for new
configurations.

New Opens a dialog box where you can define new build configurations.

Remove Removes the configuration that is selected in the Configurations list.

Table 46: Configurations for project dialog box options

IAR Embedded Workbench® IDE reference ___¢

New Configuration dialog box

In the New Configuration dialog box—available by clicking New in the
Configurations for project dialog box—you can define new build configurations;
either entirely new, or based on any currently defined configuration.

M ame: ok |

I Cancel

Tool chain:

|cPUNAME 4|

Based on configuration:
I [ebug j

Factory settings
& Debug
" Felease

Figure 106: New Configuration dialog box

The dialog box contains the following:

Item Description
Name The name of the build configuration.
Tool chain The target to build for. If you have several versions of IAR Embedded

Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

Based on configuration A currently defined build configuration that you want the new
configuration to be based on. The new configuration will inherit the
project settings as well as information about the factory settings from
the old configuration. If you select None, the new configuration will have
default factory settings and not be based on an already defined
configuration.

Factory settings Specifies the default factory settings—either Debug or Release—that
you want to apply on your new build configuration. These factory
settings will be used by your project if you press the Factory Settings
button in the Options dialog box.

Table 47: New Configuration dialog box options

Part 6. Reference information 227

Menus

228

IAR Embedded Workbench® IDE
User Guide

Create New Project dialog box

The Create New Project dialog box is available from the Project menu, and lets you

create a new project based on a template project. There are template projects available
for C/C++ applications, assembler applications, and library projects. You can also create
your own template projects.

Create New Project E

Toal chair: ICPUNAME j

Project templates:

Empty project
+- 33m
C++

Description:

Creates an empty project.

()3 I Cancel

Figure 107: Create New Project dialog box

The dialog box contains the following:

Item Description

Tool chain The target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

Project templates Lists all available template projects that you can base a new project on.

Table 48: Description of Create New Project dialog box

IAR Embedded Workbench® IDE reference ___¢

Options dialog box
The Options dialog box is available from the Project menu.

In the Category list you can select the build tool for which you want to set options. The
options available in the Category list will depend on the tools installed in your IAR
Embedded Workbench IDE, and will typically include the following options:

Category Description

General Options General options

C/C++ Compiler IAR C/C++ Compiler options

Assembler IAR Assembler options

Custom Build Options for extending the tool chain

Build Actions Options for pre-build and post-build actions

Linker IAR XLINK Linker options. This category is
available for application projects.

Library Builder IAR XAR Library Builder options. This
category is available for library projects.

Debugger IAR C-SPY™ Debugger options

Simulator Simulator-specific options

Table 49: Project option categories

Note: Additional debugger categories might be available depending on the debugger
drivers installed.

Selecting a category displays one or more pages of options for that component of the
IAR Embedded Workbench IDE.

For detailed information about each option, see the option reference chapters:

General options
Compiler options
Assembler options
Custom build options
Build actions options
Linker options

Library builder options
Debugger options.

For information about the options related to available hardware debugger systems, see
the online help system.

Part 6. Reference information 229

Menus

230

IAR Embedded Workbench® IDE
User Guide

Batch Build dialog box

The Batch Build dialog box—available by choosing Project>Batch build—lists all
defined batches of build configurations.

Batch Build [%]
Batches:
Mew..

— Build

Femove

Edit...

Cloze

Cancel

il L

I ake

Llean

Rebuid Al |

Figure 108: Batch Build dialog box

The dialog box contains the following:

Item Description

Batches Lists all currently defined batches of build configurations.

New Displays the Edit Batch Build dialog box, where you can define new
batches of build configurations.

Remove Removes the selected batch.

Edit Displays the Edit Batch Build dialog box, where you can modify
already defined batches.

Build Consists of the three build commands Make, Clean, and Rebuild All.

Table 50: Description of the Batch Build dialog box

IAR Embedded Workbench® IDE reference ___¢

Edit Batch Build dialog box

In the Edit Batch Build dialog box—available from the Batch Build dialog box—you
can create new batches of build configurations, and edit already existing batches.

Edit Batch Build [%]

— Mame

Awailable configurations Configurations to build [drag to order]

project] - Debug
project] - Release 5
project? - Debug

project? - Release

Il

L4+

()3 I Cancel

Figure 109: Edit Batch Build dialog box

The dialog box contains the following:

Item Description

Name The name of the batch.

Available configurations Lists all build configurations that are part of the workspace.

Configurations to build Lists all the build configurations you select to be part of a named
batch.

Table 51: Description of the Edit Batch Build dialog box

To move appropriate build configurations from the Available configurations list to the
Configurations to build list, use the arrow buttons. Note also that you can drag the
build configurations in the Configurations to build field to specify the order between
the build configurations.

Part 6. Reference information 231

Menus

232

IAR Embedded Workbench® IDE
User Guide

TOOLS MENU

The Tools menu provides commands for customizing the environment, such as changing
common fonts and shortcut keys.

It is a user-configurable menu to which you can add tools for use with IAR Embedded
Workbench. Thus, it might look different depending on which tools have been
preconfigured to appear as menu items. See Configure Tools dialog box, page 249.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 110: Tools menu

Tools menu commands

Menu command

Description

Options

Configure Tools

Filename Extensions

Configure Viewers

Notepad

Displays a dialog box where you can customize the IAR Embedded
Workbench IDE. Select the feature you want to customize by clicking
the appropriate tab. Which pages are available in this dialog box depends
on your IAR Embedded Workbench IDE configuration, and whether the
IDE is in a debugging session or not

Displays a dialog box where you can set up the interface to use external
tools.

Displays a set of dialog boxes where you can define the filename
extensions to be accepted by the build tools.

Displays a dialog box where you can configure viewer applications to
open documents with.

User-configured. This is an example of a user-configured addition to the
Tools menu.

Table 52: Tools menu commands

IAR Embedded Workbench® IDE reference ___¢

External Editor page

On the External Editor page—available by choosing Tools>Options—you can
specify an external editor.

IDE Dptions [%]

Editor | Editor Colors and Fonts I Project I Debugger I
External E ditor | Common Fonts I K.ey Bindings I Messages

Type: |DDE =]
Editar: |c:\cwaz\w32£><5 J

Service: IEodewright

Cormmand: |System BufEditFile $FILE_PATHS
$FILE_PATH$ MovToline $CUR_LINES

QK I Cancel Apply Help

Figure 111: External Editor page with command line settings

Options

Option Description

Use External Editor Enables the use of an external editor.

Type Selects the method for interfacing with the external editor. The type can
be either Command Line or DDE (Windows Dynamic Data Exchange).

Editor Type the filename and path of your external editor. A browse button is
available for your convenience.

Arguments Type any arguments to pass to the editor. Only applicable if you have
selected Type as Command Line.

Service Type the DDE service name used by the editor. Only applicable if you
have selected Type as DDE.

Command Type a sequence of command strings to send to the editor. The
command strings should be typed as:
DDE-Topic CommandString
DDE-Topic CommandString
Only applicable if you have selected Type as DDE.

Table 53: External Editor options

Part 6. Reference information 233

Menus

234

IAR Embedded Workbench® IDE
User Guide

The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.

Note: Variables can be used in arguments. See Argument variables summary, page
225, for information about available argument variables.
Common fonts page

The Common Fonts page—available by choosing Tools>Options—displays the fonts
used for all project windows except the editor windows.

Editor Colors and Fonts I Project I Debugger I Fiegister Filker I Terminal |40 I
Camman Forts | Key Bindings I External E ditar I Messages I Editar
— Fied Width Font

Fant... | IEourier, zize =10
r— Proportional '#fidth Font

Fart.. | IMSSansSerif,size=1D

QK | Cancel | Apply | Help |

Figure 112: Common Fonts page

With the Font buttons you can change the fixed and proportional width fonts,
respectively.

Any changes to the Fixed Width Font options will apply to the Disassembly, Register,
and Memory windows. Any changes to the Proportional Width Font options will
apply to all other windows.

None of the settings made on this page apply to the editor windows. For information
about how to change the font in the editor windows, see Editor Colors and Fonts page,
page 241.

Key Bindings

The Key Bindings page—available by choosing Tools>Options—displays the shortcut

keys used for eac

IAR Embedded Workbench® IDE reference ___¢

page

h of the menu options, which you can change, if you wish.

Editor Colors and Fonts | Project | Debugger I Fiegister Filker I Terminal |40 I
Common Fonts Key Bindings | External Editar I Meszages I Editor
Category: IFiIe j
Command | Frimary | Alias | -
Mew CTRL+M
Open CTRL+O
Cloze
Open Workspace =
Save Workspace
Cloze Workspace
Save CTRL+S
Caa he LI
Prezz shortcut key: Frimary Aliaz
I et Al
[lear | [lear | Reset Al |
QK | Cancel | Apply | Help

Figure 113: Key Bindings page

Options
Option Description
Category Drop-down menu to choose the menu you want to edit. Any currently

Press shortcut key

Primary

Alias

Reset All

defined shortcut keys are shown in the scroll list below.
Type the key combination you want to use as shortcut key.

The shortcut key will be displayed next to the command on the menu.
Click Set to set the combination, or Clear to delete the shortcut.

The shortcut key will work but not be displayed on the menu. Click

either Add to make the key take effect, or Clear to delete the shortcut.

Reverts all command shortcut keys to the factory settings.

Table 54: Key Bindings page options

It is not possible

To delete a shortcut key definition, select the corresponding menu command in the scroll

to set or add the shortcut if it is already used by another command.

list and click Clear under Primary or Alias. To revert all command shortcuts to the

factory settings, click Reset All. Click OK to make the new shortcut key bindings take

effect.

Part 6. Reference information

235

Menus

236

IAR Embedded Workbench® IDE
User Guide

Messages page

On the Messages page—available by choosing Tools>Options—you can choose the
amount of output in the Messages window.

IDE Dptions [%]
Common Fonts I Key Bindings I External Editar I
Messages | Editor I Editor Colors and Fonts I Project
Show build messages: IMessages 'l
Log File

™ Enable build log file
& sppend to end of file
= Oyenrite old file

QK I Cancel Apply Help

Figure 114: Messages page

Show build messages

Use this drop-down menu to specify the amount of output in the Messages window.
Choose between:

All Shows all messages, including compiler and linker information.
Messages Shows messages, warnings, and errors.

Woarnings Shows warnings and errors.

Errors Show errors only.

Log File

Use the options in this area to log build messages in a file. To enable the options, select
the Enable build log file option. Choose between:

Append to end of file Appends the messages at the end of the specified file.

Overwrite old file Replaces the contents in the file you specify.

Type the filename you want to use in the text box. A browse button is available for your
convenience.

Editor page

IAR Embedded Workbench® IDE reference ___¢

On the Editor page—available by choosing Tools>Options—you can change the editor

options.

Tab size: I8
Indent size: |2

Tab Key Function:
£ Ingert tab

& |ndent with spaces

EOL characters: |FC x

V' Show right margin
" Printing edge

& Calurnres ISD

Editor

V' Syritax highlighting

¥ Autoindsrt
Configure. ..

[Show line rumbers

V' Scan for changed files

¥ Show bookmarks

[~ Enable virtual space

™ Remove trailing blarks

Figure 115: Editor page

Options

Option

Description

Tab Size
Indent Size

Tab Key Function

EOL character

Show right margin

Syntax Highlighting

Specifies the number of character spaces corresponding to each tab.

Specifies the number of character spaces to be used for indentation.

Specifies how the tab key is used. Either as Insert Tab or as Indent
with Spaces.

Selects line break character.

PC (default) uses Windows and DOS end of line character.

Unix uses UNIX end of line characters.

Preserve uses the same end of line character as the file had when it
was read from the disc drive. The PC format is used by default, and
if the read file did not have any breaks, or if there is a mixture of
break characters used in the file.

Shows the area of the editor window outside the right-side margin
as a light gray field. You can choose to set the size of the text field
between the left-side margin and the right-side margin using one of
the options Printing edge or Columns.

Displays the syntax of C or C++ applications in different text styles.

Table 55: Editor page options

Part 6. Reference information

237

Menus

238

IAR Embedded Workbench® IDE
User Guide

Option

Description

Auto Indent

Show Line Numbers

Scan for Changed Files

Show Bookmarks

Enable Virtual Space

Remove trailing blanks

Ensures that when you press Return, the new line will automatically
be indented. For C/C++ source files, indentation will be performed
as configured in the Configure Auto Indent dialog box. Click the
Configure button to open the dialog box where you can configure
the automatic indentation; see Configure Auto Indent dialog box, page
238. For all other text files, the new line will have the same
indentation as the previous line.

Displays line numbers in the Editor window.

Checks if files have been modified by some other tool and
automatically reloads them. If a file has been modified in the IAR
Embedded Workbench IDE, you will be prompted first.

Displays a column on the left side in the editor window, with icons
for compiler errors and warnings, Find in Files results, user
bookmarks and breakpoints.

Allows the insertion point to move outside the text area.

Removes trailing blanks from files when they are saved to disk.
Trailing blanks are blank spaces between the last non-blank
character and the end of line character.

Table 55: Editor page options (Continued)

For more information about the IAR Embedded Workbench IDE Editor and how it can
be used, see Editing, page 89.

Configure Auto Indent dialog box

Use the Configure Auto Indent dialog box to configure the automatic indentation
performed by the editor for C/C++ source code. To open the dialog box:

Choose Tools>Options.

Click the Editor tab.

Select the Auto indent option.

IAR Embedded Workbench® IDE reference ___¢

4 Click the Configure button.

Configure Auto Indent [%]

Sample code
(Opening Brace () int fiint x)
0 a |t
] switch (%)
EBody (b} a i
|2 c case 0O:
] return 1;
Label {c) c defanlt:
ID—] EEetuUrn X:
+
+

[8]4 I Cancel |

Figure 116: Configure Auto Indent dialog box

To read more about indentation, see Automatic text indentation, page 92.

Type the number of spaces to indent in the appropriate text box for each category of

indentation:

Opening Brace (a) The number of spaces used to indent an opening brace.

Body (b) The number of additional spaces used to indent code after an opening
brace, or a statement that continues onto a second line.

Label (c) The number of additional spaces used to indent a label, including case

labels.

Sample code

Reflects the settings made in the text boxes for indentation. All indentations are relative
to the preceding line, statement, or other syntactic structures.

Part 6. Reference information 239

Menus

240

IAR Embedded Workbench® IDE
User Guide

Editor Setup Files page

On the Editor Setup Files page—available by choosing Tools>Options—you can
specify setup files for the editor.

IDE Dptions E

Common Fonts I Key Bindings I External Editar I Meszages I
Editor Colors and Fonts I Project | Source Code Control |
Editor Editor Setup Files

™ Use Custom Keyword File

| 5

¥ Use Code Templates
Ition [atatAR Embedded Workbench\CodeTemplates.tat |~ |

QK I Cancel Aol Help

Figure 117: Editor Setup Files page

Use Custom Keyword File

Use this option to specify a text file containing keywords that you want the editor to
highlight. For information about syntax coloring, see Syntax coloring, page 91.

Use Code Templates

Use this option to specify a text file with code templates that you can use for inserting
frequently used code in your source file. For information about using code templates,
see Using and adding code templates, page 93.

Editor Colors and Fonts page

IAR Embedded Workbench® IDE reference ___¢

The Editor Colors and Fonts page—available by choosing Tools>Options—allows
you to specify the colors and fonts used for text in the Editor windows.

IDE Dptions [%]
Common Fonts | Key Bindings I External Editar I Meszages I Editor I

Editar Calars and Forts | Project I Debugger I Register Filter I Terrinal /0

— Editar Faont

Font... I ICourier Mew, size = 3

— Syntax Coloring

Default
C Keyword
Shings

Char
Preprocessor
Integer [dec]
Integer [oct] Sample

Lalar |

Type Style:

Integer [hex)
Float LI |

QK | Cancel | Help
Figure 118: Editor Colors and Fonts page
Options
Option Description
Font Opens a dialog box to choose font and its size.

Syntax Coloring

Lists the possible items for which you can specify font and style of

syntax. The elements you can customize are: C or C++, compiler

keywords, assembler keywords, and user-defined keywords.

Color Chooses a color from a list of colors.
Type Style Chooses a type style from a drop-down list.
Sample Displays the current setting.

Table 56: Editor Colors and Fonts page options

The keywords controlling syntax highlighting for assembler and C or C++ source code
are specified in the files syntax_icc.cfgand syntax_asm. cfg, respectively. These

files are located in the config directory.

Part 6. Reference information 241

Menus

Project page

On the Project page—available by choosing Tools>Options—you can set options for
Make and Build. The following table describes the options and their available settings.

Project |

Stop build operation on:
Save editor windows before building:

Save workspace and projects before
building:

Make before debugging:

™ Reload last workspace at startup

¥ Play a sound after build operations

¥ Generate browss information

Figure 119: Projects page

Options

Option Description

Stop build operation on Specifies when the build operation should stop.
Never: Do not stop.
Warnings: Stop on warnings and errors.

Errors: Stop on errors.

Save editor windows before
building

Save workspace and projects
before building

Make before debugging

Always: Always save before Make or Build.
Ask: Prompt before saving.
Never: Do not save.

Always: Always save before Make or Build.
Ask: Prompt before saving.
Never: Do not save.

Always: Always make before debugging.
Ask: Always prompt before Making.
Never: Do not make.

Reload last workspace at startup Select this option if you want the last active workspace to
load automatically the next time you start IAR Embedded

Workbench.

Play a sound after build operations Plays a sound when the build operations are finished.

Table 57: Project page options

IAR Embedded Workbench® IDE
242 User Guide

IAR Embedded Workbench® IDE reference ___¢

Option Description

Generate browse information Enables the use of the Source Browser window.

Table 57: Project page options (Continued)

Debugger page

On the Debugger page—available by choosing Tools>Options—you can set options
for configuring the debugger environment.

IDE Options [%]

Common Fonts I Key Bindings | External Editar I Meszages I Editor I
Editor Colors and Fonts I Project Debugger | Fiegister Filker I Terminal [0
—when zource resolves to multiple function instances

™ Automatically choose all instances

— Source code color in di bly windo
- Calar |
— Step into functions——— [~ 5TL container expansion

& Al functi l—
unctions Degth: [0

" Functions with source only

i~ Live watch—————————————— [~ Default integer format
Update interval - =
[milliseconds]): I‘I oo I Decimal J

QK I Cancel | Aol | Help

Figure 120: Debugger page

Options

Option Description

When source resolves to Some source code corresponds to multiple code instances, for

multiple function instances: example template code. When specifying a source location in such

Automatically choose all code, for example when setting a source breakpoint, you can make

instances C-SPY act on all instances or a subset of instances. This option lets
C-SPY act on all instances without first asking.

Source code color in Specifies the color of the source code in the Disassembly window.

Disassembly window

Table 58: Debugger page options

Part 6. Reference information 243

Menus

244

IAR Embedded Workbench® IDE
User Guide

Option

Description

Step into functions

STL container expansion

Live watch

Default integer format

This option controls the behavior of the Step Into command.

If you choose the Functions with source only option, the
debugger will only step into functions for which the source code is
known. This helps you avoid stepping into library functions or
entering disassembly mode debugging.

The value decides how many elements that are shown initially
when a container value is expanded in, for example, the Watch
window. Additional elements can be shown by clicking the
expansion arrow.

The value decides how often the C-SPY Live Watch window is
updated during execution.

Sets the default integer format in the Watch, Locals, and related
windows.

Table 58: Debugger page options (Continued)

Register Filter page

On the Register Filter page—available by choosing Tools>Options when the IAR
C-SPY Debugger is running—you can choose to display registers in the Register
window in groups you have created yourself. See Register groups, page 130, for more
information about how to create register groups.

IDE Dptions [%]

Common Fonts I Key Bindings I External Editar | Meszages I Editor I
Editor Colors and Fonts I Project I Debugger Register Filter | Terminal |40

¥ Use register filter

IMyFiIter.fIt Filter Files. .. | I VI

- CPU Registers «

Baze

[

™ Ovenide

Groups:

Mew Group...l

Group members:

€ Bin
et
& Dec
 Hex

QK I Cancel Apply Help

Figure 121: Register Filter page

IAR Embedded Workbench® IDE reference ___¢

Options

Option Description

Use register filter Enables the usage of register filters.

Filter Files Displays a dialog box where you can select or create a new filter file.

Groups Lists available groups in the register filter file, alternatively displays the
new register group.

New Group The name for the new register group.

Group members Lists the registers selected from the register scroll bar window.

Base Changes the default integer base.

Table 59: Register Filter options

Terminal I/O page

On the Terminal I/O page—available by choosing Tools>Options when the IAR
C-SPY Debugger is running—you can configure the C-SPY terminal I/O functionality.

IDE Dptions B
Common Fonts I Key Bindings I External Editar I Meszages | Editor |

Editor Colors and Fonts I Project I Debugger I Register Fiter ~ Terminal 1/0

 Input Mode Input Echaing

& Keyboard File ¥ Logfile

= Buffered = Teut ™ Output window
" Direct | Binary

[FFRO._DIRSATemiDinput st J

™ Show target reset in Dutput windaw

QK I Cancel Apply Help

Figure 122: Terminal I/0 page

Options

Option Description

Input Mode: Keyboard Buffered: All input characters are buffered.
Direct: Input characters are not buffered.

Table 60: Terminal 1/0 options

Part 6. Reference information 245

Menus

246

IAR Embedded Workbench® IDE
User Guide

Option Description

Input Mode: File Input characters are read from a file, either a text file or a binary file. A
browse button is available for locating the file.

Show target reset in ~ When the target resets, a message is displayed in the C-SPY Terminal /O
Output window window.

Input Echoing Input characters can be echoed either in a log file, or in the C-SPY
Terminal I/O window. To echo input in a file requires that you have
enabled the option Enable log file that is available by choosing
Debug>Logging.

Table 60: Terminal 1/0 options (Continued)

Source Code Control page

On the Source Code Control page—available by choosing Tools>Options—you can
configure the interaction between an IAR Embedded Workbench project and an SCC
project.

IDE Dptions [%]

Common Fonts I Key Bindings I External Editar | Meszages I Editor I
Editor Colors and Fonts I Project Source Code Control | Debugger

™ Keep items checked out when checking in

Save editor windows befare perfarming IAIways vl

source code contral commands:

QK I Cancel Apply Help

Figure 123: Source Code Control page

Keep items checked out when checking in

Determines the default setting for the option Keep Checked Out in the Check In Files
dialog box; see Check In Files dialog box, page 192.

IAR Embedded Workbench® IDE reference ___¢

Save editor windows before performing source code control commands

Specifies whether editor windows should be saved before you perform any source code
control commands. The following options are available:

Ask When you perform any source code control commands, you will be asked
about saving editor windows first.

Never Editor windows will never be saved first when you perform any source
code control commands.

Always Editor windows will always be saved first when you perform any source
code control commands.

Stack page
On the Stack page—available by choosing Tools>Options—you can set options
specific to the Stack window.

Stack

[¥ Enable stack checks
¥ |ssue wamings for stack overflow

& Log
" Log and alert
ISD % stack uzage warning threshold
™ Limit stack display to 812 bytes

Stack pointer(z] not valid until reaching:

Imain

Figure 124: Stack page

Enable stack checks

Use this option to enable the graphical stack bar available at the top of the Stack window.
At the same time, it enables the functionality needed to detect stack overflows. To read
more about the stack bar and the information it provides, see The graphical stack bar,
page 277.

Part 6. Reference information 247

Menus

248

IAR Embedded Workbench® IDE
User Guide

Issue warnings for stack overflow

Use this option to make C-SPY issue warnings for stack overflow. When the execution
of your application stops, a warning is issued under the following circumstances:

e The stack usage exceeds the threshold specified in the Stack usage warning
threshold option
o The stack pointer is outside the stack memory range.

You can choose to issue warnings using one of the following options:

o Log: warnings are issued in the Debug Log window
e Log and alert: warnings are issued in the Debug Log window and as alert dialog
boxes.

Stack usage warning threshold

Use this option to specify the percentage of stack usage above which C-SPY should
issue a warning for stack overflow.

Limit stack display to

Use this option to limit the amount of memory displayed in the Stack window by
specifying a number, counting from the stack pointer. This can be useful if you have a
big stack or if you are only interested in the topmost part of the stack. Using this option
can improve the Stack window performance, especially if reading memory from the
target system is slow. By default, the Stack window shows the whole stack, or in other
words, from the stack pointer to the bottom of the stack. If the debugger cannot
determine the memory range for the stack, the byte limit is used even if the option is not
selected.

Note: The Stack window does not affect the execution performance of your
application, but it might read a large amount of data to update the displayed information
when the execution stops.

Stack pointer(s) not valid until reaching

Use this option to specify a location in your application code from where you want the
stack display and verification to take place. The Stack window will not display any
information about stack usage until execution has reached this location. By default,
C-SPY will not track the stack usage before the main function. If your application does
not have a main function, for example, if it is an assembler-only project, your should
specify your start label.

Typically, the stack pointer is set up in the system initialization code cstartup, but not
necessarily from the very first instruction. By using this option you can avoid incorrect
warnings or misleading stack display for this part of the application.

IAR Embedded Workbench® IDE reference ___¢

Configure Tools dialog box

In the Configure Tools dialog box—available from the Tools menu—you can specify
a user-defined tool to add to the Tools menu.

Configure Tools

Menu Content:
Cancel |
Mew
Remove |

Menu Text:

I&Notepad

Command:

IE:\W’INNT\Notepad.exe Browse... |

Argument:

Initial Directary:

™ Redirect to Output \Window

™ Prampt for Cormand Line

Tool Available:

IAIways j

Figure 125: Configure Tools dialog box

Options

Option Description

Menu Content Lists all available user defined menu commands.

Menu Text Specifies the text for the menu command. By adding the sign &, the
following letter, N in this example, will then appear as the
mnemonic key for this command. The text you type in this field
will be reflected in the Menu Content field.

Command Specifies the command, and its path, to be run when you choose
the command from the menu. A browse button is available for
your convenience.

Argument Optionally type an argument for the command.

Initial Directory Specifies an initial working directory for the tool.

Table 61: Configure Tools dialog box options

Part 6. Reference information 249

Menus

250

IAR Embedded Workbench® IDE

Option Description

Redirect to Output window Specifies any console output from the tool to the Tool Output
page in the Messages window. Tools that are launched with this
option cannot receive any user input, for instance input from the
keyboard.

Tools that require user input or make special assumptions regarding
the console that they execute in, will not work at all if launched
with this option.

Prompt for Command Line Displays a prompt for the command line argument when the
command is chosen from the Tools menu.

Tool Available Specifies in which context the tool should be available, only when
debugging or only when not debugging.

Table 61: Configure Tools dialog box options (Continued)

Note: Variables can be used in the arguments, allowing you to set up useful tools such
as interfacing to a command line revision control system, or running an external tool on
the selected file.

You can remove a command from the Tools menu by selecting it in this list and clicking
Remove.

Click OK to confirm the changes you have made to the Tools menu.

The menu items you have specified will then be displayed on the Tools menu.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 126: Customized Tools menu

Specifying command line commands or batch files

Command line commands or batch files need to be run from a command shell, so to add
these to the Tools menu you need to specify an appropriate command shell in the
Command text box. These are the command shells that can be entered as commands:

System Command shell

Windows 98/Me command . com

Windows NT/2000/XP cmd.exe (recommended) or command . com

Table 62: Command shells

IAR Embedded Workbench® IDE reference ___¢

Filename Extensions dialog box

In the Filename Extensions dialog box—available from the Tools menu—you can
customize the filename extensions recognized by the build tools. This is useful if you
have many source files that have a different filename extension.

If you have an IAR Embedded Workbench for a different microprocessor installed on
your host computer, it can appear in the Tool Chain box. In that case you should select
the tool chain you want to customize.

File Extensions

Tool Chain
Cancel |

Edi... |

Figure 127: Filename Extensions dialog box

Note the * sign which indicates that there are user-defined overrides. If there is no *
sign, factory settings are used.

Click Edit to open the Filename Extension Overrides dialog box.

Part 6. Reference information 251

Menus

252

IAR Embedded Workbench® IDE
User Guide

Filename Extension Overrides dialog box

The Filename Extension Overrides dialog box—available by clicking Edit in the
Filename Extensions dialog box—Ilists the available tools in the build chain, their
factory settings for filename extensions, and any defined overrides.

Filename Extension Overrides

Taol | Factaory Setting | Overide ()3 I
C/C++ Compiler .CLCPP.LCC <Niones

Azzembler SN0 ASMLMEA S <hones Cancel |
Browse Info Compiler .cioc.cpp <none

Linker ik <none:

Library Builder i i Edit... |
Browse Info Builder .pbi <none

| | i

Figure 128: Filename Extension Overrides dialog box

Select the tool for which you want to define more recognized filename extensions, and
click Edit to open the Edit Filename Extensions dialog box.

Edit Filename Extensions dialog box

The Edit File Extensions dialog box—available by clicking Edit in the Filename
Extension Overrides dialog box—Ilists the filename extensions accepted by default,
and you can also define new filename extensions.

Edit Filename Extensions

Factaory setting
I.c:;.c:c:;.c:pp QK

¥ Overide Cancel |
I.c;.cc;.cpp

Figure 129: Edit Filename Extensions dialog box

Click Override and type the new filename extension you want to be recognized.
Extensions can be separated by commas or semicolons, and should include the leading
period.

IAR Embedded Workbench® IDE reference ___¢

Configure Viewers dialog box

The Configure Viewers dialog box—available from the Tools menu—Iists the
filename extensions of document formats that IAR Embedded Workbench can handle,
and which viewer application that will be used for opening the document type. Explorer
Default in the Action column means that the default application associated with the
specified type in Windows Explorer is used for opening the document type.

Configure Yiewers [%]
Extensions | Ackion | Ok
Explorer Default
.htm Explorer Default Cancel

Mg

Edit...

Remave

g

Figure 130: Configure Viewers dialog box

To specity how to open a new document type or editing the setting for an existing
document type, click New or Edit to open the Edit Viewer Extensions dialog box.

Edit Viewer Extensions dialog box

Type the filename extension for the document type—including the separating
period (.)—in the Filename extensions box.

Edit Yiewer Extensions [%]
File name extensians:
| bl

Action
€ Buile-in text editor

& st file explorer associations

 Command line

| |

Figure 131: Edit Viewer Extensions dialog box
Then choose one of the Action options:

o Built-in text editor—select this option to open all documents of the specified type
with the JAR Embedded Workbench text editor.

o Use file explorer associations—select this option to open all documents with the
default application associated with the specified type in Windows Explorer.

Part 6. Reference information 253

Menus

254

IAR Embedded Workbench® IDE
User Guide

o Command line—select this option and type or browse your way to the viewer
application, and give any command line options you would like to the tool.

WINDOW MENU

Use the commands on the Window menu to manipulate the IAR Embedded Workbench
IDE windows and change their arrangement on the screen.

The last section of the Window menu lists the windows currently open on the screen.
Choose the window you want to switch to.

Close Tab

Close Window Chrl+F4

Split

Mew Vertical Editor Window
Mew Horizontal Editor Window
IMayve Tabs To Mext Windaw
IMave Tabs To Previous Window
Close All Tabs Except Active
Close All Editor Tabs

Figure 132: Window menu

Window menu commands

Menu command

Description

Close Tab
Close Window CTRL+F4
Split

New Vertical Editor
Window

New Horizontal
Editor Window
Move Tabs To Next
Window

Move Tabs To

Previous Window

Close All Tabs Except
Active

Close All Editor Tabs

Closes the active tab.
Closes the active editor window.

Splits an editor window horizontally or vertically into two,
or four panes, to allow you to see more parts of a file
simultaneously.

Opens a new empty window next to current editor window.
Opens a new empty window under current editor window.
Moves all tabs in current window to next window.

Moves all tabs in current window to previous window.

Closes all the tabs except the active tab.

Closes all tabs currently available in editor windows.

Table 63: Window menu commands

IAR Embedded Workbench® IDE reference ___¢

HELP MENU

The Help menu provides help about the IAR Embedded Workbench IDE and displays
the version numbers of the user interface and of the IAR Embedded Workbench IDE.

Menu command Description

Content Opens the contents page of the IAR Embedded
Workbench IDE online help.

Index Opens the index page of the IAR Embedded
Workbench IDE online help.

Search Opens the search page of the IAR Embedded
Workbench IDE online help.

Release notes Provides access to late-breaking information about
IAR Embedded Workbench.

Embedded Workbench User Guide Provides access to an online version of this user
guide, available in PDF format.

Assembler Reference Guide Provides access to an online version of the IAR
Assembler Reference Guide, available in PDF format.

C/C++ Compiler Reference Guide Provides access to an online version of the IAR C/C++
Compiler Reference Guide, available in PDF format.

Linker and Library Tools Reference Guide Provides access to the online version of the IAR Linker
and Library Tools Reference Guide, available in PDF
format.

IAR on the Web Allows you to browse the home page, the news page,
and the technical notes search page of the IAR
Systems web site, and to contact IAR Technical
Support.

Startup Screen Displays the Embedded Workbench Startup
dialog box; see Embedded Workbench Startup dialog
box, page 256.

About>Product Info Displays detailed information about the installed IAR
products. Copy this information (using the Ctrl+C
keyboard shortcut) and include it in your message if
you contact |AR Technical Support via electronic
mail.

About>Install Log Opens the license manager log file 1ms . 1og in the
editor. Attach this file to the email message if you
contact IAR Technical Support regarding any
problems related to the license management system.

Table 64: Help menu commands

Part 6. Reference information 255

Menus

256

IAR Embedded Workbench® IDE
User Guide

Note: Additional documentation might be available on the Help menu depending on
your product installation.

Embedded Workbench Startup dialog box

The Embedded Workbench Startup dialog box—available from the Help
menu—>provides an easy access to ready-made example workspaces that can be built
and executed out of the box for a smooth development startup.

Embedded Workbench Startup x|

Create new project in current work space
Add existing project to current work space

Open exigting workspace

[l B |Bi

Example workspaces

Fecent workspaces:

tutorials Open |

™ Da not show this window at startup.

Cancel |

Figure 133: Embedded Workbench Startup dialog box

C-SPY® Debugger
reference

This chapter contains detailed reference information about the windows,
menus, menu commands, and the corresponding components that are specific
for the IAR C-SPY Debugger.

C-SPY windows

The following windows specific to C-SPY are available in the IAR C-SPY Debugger:

IAR C-SPY Debugger main window
Disassembly window
Memory window
Register window

Watch window

Locals window

Auto window

Live Watch window
Quick Watch window
Call Stack window
Terminal I/O window
Code Coverage window
Profiling window

Stack window.

Additional windows will be available depending on which C-SPY driver you are using.
For information about driver-specific windows, see the driver-specific documentation.

EDITING IN C-SPY WINDOWS

You can edit the contents of the Memory, Register, Auto, Watch, Locals, Live Watch,
and Quick Watch windows.

Part 6. Reference information 257

C-SPY windows

258

IAR Embedded Workbench® IDE
User Guide

Use the following keyboard keys to edit the contents of the Register and Watch
windows:

Key Description
Enter Makes an item editable and saves the new value.
Esc Cancels a new value.

Table 65: Editing in C-SPY windows

IAR C-SPY DEBUGGER MAIN WINDOW

When you start the IAR C-SPY Debugger, the following debugger-specific items appear
in the main IAR Embedded Workbench IDE window:

o A dedicated debug menu with commands for executing and debugging your
application

o Depending on the C-SPY driver you are using, a driver-specific menu. Typically,
this menu contains menu commands for opening driver-specific windows and dialog
boxes. See the driver-specific documentation for more information

e A special debug toolbar

e Several windows and dialog boxes specific to C-SPY.

The window might look different depending on which components you are using.

Each window item is explained in greater detail in the following sections.

Menu bar

In addition to the menus available in the development environment, the Debug menu is
available when C-SPY is running. The Debug menu provides commands for executing
and debugging the source application. Most of the commands are also available as icon
buttons in the debug toolbar.

Depending on which C-SPY driver you are using, additional driver-specific menus
might be available. For information about the driver-specific menus, see the
driver-specific documentation.

Debug toolbar

The debug toolbar provides buttons for the most frequently-used commands on the
Debug menu.

You can display a description of any button by pointing to it with the mouse pointer.
When a command is not available the corresponding button will be dimmed and you will
not be able to select it.

C-SPY® Debugger reference __o

The following diagram shows the command corresponding to each button:

Next G
Break Step Into Statement °

| | |
o B2 LEZZ R
| | | | |

Reset Step Over Step Out Run To Stop
Cursor Debugging

Figure 134: C-SPY debug toolbar

DISASSEMBLY WINDOW

The C-SPY Disassembly window—available from the View menu—shows the
application being debugged as disassembled application code.

The current position—highlighted in green—indicates the next assembler instruction to
be executed. You can move the cursor to any line in the Disassembly window by clicking
on the line. Alternatively, you can move the cursor using the navigation keys.
Breakpoints are indicated in red. Code that has been executed—code coverage—is
indicated with a green diamond.

Zone display

Toggle embedded

Go to memory
source mode

address

wold indt_ fib(weld) -]
i

init_fil: ==
001154 0AlZ push.w R10

00115C OEl2 push.w Rl

short i = 45;
Code coverage 00115E 32402D00 mov.w #0x2D,R10
information root[0] = reet[l] = 1;
00lls2 1F43 oW LW #0x1, R15
00llsd S24F0402 NG LW R15, &0x204
o0ll&s S24F0202 NG LW R15, &root

for { i=2 ; i<MAX FIB ; i++)
Current position
for i=2 ; i<MAX FIB ; i++)

Q011&E FAS00A00 CIOE . $0cn, R10
001172 OF34 Jge 0x11%2

Breakpoint roct[i] = get fikii) + get fikii-1);

001178 BOl25211 call #get_fik
001174 OB4C OOV W REl2.R11

QOL117C 0C4n OOV W Rlo.R12 _ILI
3

Figure 135: C-SPY Disassembly window

Part 6. Reference information 259

C-SPY windows

260

IAR Embedded Workbench® IDE
User Guide

To change the default color of the source code in the Disassembly window, choose
Tools>Options>Debugger. Set default color using the Set source code coloring in
Disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
window and drag it to the Disassembly window.
Disassembly window operations

At the top of the window you can find a set of useful text boxes, drop-down lists and
command buttons:

Operation Description
Go to The memory location you want to view.
Zone display Lists the available memory or register zones to display. Read more about

Zones in section Memory addressing, page 127.

Disassembly mode Toggles between showing only disassembly or disassembly together with
the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

Table 66: Disassembly window operations

Disassembly context menu

Clicking the right mouse button in the Disassembly window displays a context menu
which gives you access to some extra commands.

Move to PC
Run ko Cursor

Code Coverage 3

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)
Enablefdisable Ereakpaoint

Set Mext Statement

Copy Window Contents

Figure 136: Disassembly window context menu

Operation Description
Move to PC Displays code at the current program counter location.
Run to Cursor Executes the application from the current position up to the line

containing the cursor.

Table 67: Disassembly context menu commands

Go to memory

address

Operation

C-SPY® Debugger reference __o

Description

Code Coverage
Enable
Show

Clear

Toggle Breakpoint (Code)

Toggle Breakpoint (Log)

Enable/Disable Breakpoint
Set Next Statement

Copy Window Contents

Opens a submenu with commands for controlling code coverage.
Enable toggles code coverage on and off.

Show toggles between displaying and hiding code coverage. Executed
code is indicated by a green diamond.

Clear clears all code coverage information.

Toggles a code breakpoint. Assembler instructions at which code
breakpoints have been set are highlighted in red. For information
about code breakpoints, see Code breakpoints dialog box, page 202.

Toggles a log breakpoint for trace printouts. Assembler instructions
at which log breakpoints have been set are highlighted in red. For
information about log breakpoints, see Log breakpoints dialog box, page
204.

Enables and Disables a breakpoint.

Sets program counter to the location of the insertion point.

Copies the selected contents of the Disassembly window to the
clipboard.

Table 67: Disassembly context menu commands (Continued)

MEMORY WINDOW

The Memory window—available from the View menu—gives an up-to-date display of

a specified area of mem

ory and allows you to edit it. You can open several instances of

this window, which is very convenient if you want to keep track of different memory or

register zones, Or monit;

or different parts of the memory.

Zone display

Goto

j IMemory j |ZI

0000%fed 17
0000%fed
00009££0
00009££3
00002000
00002008
0000a010
0000a018
0000a020
0000a028
00002030

17 17 17 17 17 17 17 ;I
17
17

Figure 137: Memory window

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

Part 6. Reference information 261

C-SPY windows

IAR Embedded Workbench® IDE
262 User Guide

Memory window operations

At the top of the window you can find commands for navigation:

Operation Description
Go to The address of the memory location you want to view.
Zone display Lists the available memory or register zones to display. Read more about

Zones in section Memory addressing, page 127.

Table 68: Memory window operations

Memory window context menu

The context menu available in the Memory window provides above commands, edit
commands, and a command for opening the Fill dialog box.

Copy
Paste

Zong 3

<

1 Units
2x Units
¢ Units

Little Endian
Big Endian

<

Data Coverage 3

Memory Fill...
Memory Upload. ..

Set Data Breakpoink

Figure 138: Memory window context menu

Menu command Description
Copy, Paste Standard editing commands.
Zone Lists the available memory or register zones to display. Read more about

Zones in Memory addressing, page 127.

x|, x2, x4 Units Switches between displaying the memory contents in units of 8, 16, or 32
bits

Little Endian Switches between displaying the contents in big-endian or little-endian

Big Endian order. An asterisk (*) indicates the default byte order.

Table 69: Commands on the memory window context menu

C-SPY® Debugger reference __o

Menu command Description

Data Coverage

Enable Enable toggles data coverage on and off.

Show Show toggles between showing and hiding data coverage.

Clear Clear clears all data coverage information.
Memory Fill Opens the Fill dialog box, where you can fill a specified area with a value.
Memory Upload Displays the Memory Upload dialog box, where you can save a selected

memory area to a file in Intel Hex format.

Set Data Breakpoint ~ Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog
box. The breakpoints you set in this window will be triggered for both
read and write access.

Table 69: Commands on the memory window context menu (Continued)

Data coverage display
Data coverage is displayed with the following colors:

o Yellow indicates data that has been read
o Blue indicates data that has been written
o Green indicates data that has been both read and written.

Fill dialog box

In the Fill dialog box—available from the context menu available in the Window
memory—you can fill a specified area of memory with a value.

Start Address Length Zone
[p-1000 [t |Memay =]
Vel Operation

|WF & Copy AND
" ®OR OR

()3 I Cancel

Figure 139: Fill dialog box

Part 6. Reference information 263

C-SPY windows

Options

Option Description

Start Address Type the start address—in binary, octal, decimal, or hexadecimal
notation.

Length Type the length—in binary, octal, decimal, or hexadecimal notation.

Zone Select memory zone.

Value Type the 8-bit value to be used for filling each memory location.

Table 70: Fill dialog box options

These are the available memory fill operations:

Operation Description
Copy The Value will be copied to the specified memory area.
AND An AND operation will be performed between the Value and the

existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between the Value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between the Value and the existing
contents of memory before writing the result to memory.

Table 71: Memory fill operations

REGISTER WINDOW

The Register window—available from the View menu—gives an up-to-date display of
the contents of the processor registers, and allows you to edit them. When a value
changes it becomes highlighted. Some registers are expandable, which means that the
register contains interesting bits or sub-groups of bits.

IAR Embedded Workbench® IDE
264 User Guide

C-SPY® Debugger reference __o

You can open several instances of this window, which is very convenient if you want to
keep track of different register groups.

IEF'U Registers j
PC = 0O=xll62 Ri2 = 0=0200
8P = 0=09F8 R13 = 0=FFFF
FHer = 0=z0000 R14 = 0x0000
R4 = 0=x78ZD Ri5 = 0=0000
RE = 0=6BEE CYCLECOUNTER = 276
R6 = 0=5E95
R7 = 0x763B
RE = O=x4A65
RO = 0=27C3
Ri0 = 0=002D
Ri1 = 0=x7064

Figure 140: Register window

You can select which register group to display in the Register window using the
drop-down list. To define application-specific register groups, see Defining
application-specific groups, page 131.

WATCH WINDOW

The Watch window—available from the View menu—allows you to monitor the values
of C-SPY expressions or variables. You can view, add, modity, and remove expressions
in the Watch window. Tree structures of arrays, structs, and unions are expandable,
which means that you can study each item of these.

Watch B

Expression | Walue | Location | Type |
i 45 R10 short
= root <array> Mermor:0x202 unsigned int[10]
0 Mermory:0x202 unsigned int
Mermory:0x204 unsigned int
Mermory:0<206 unsigned int
Mermory:0x208 unsigned int
Mermory:0<20A unsigned int
Mermory:0<20C unsigned int
Mermory:0<20E unsigned int
Mermory:0<210 unsigned int
Mermor:0x212 unsigned int
Mermor:0x214 unsigned int

Figure 141: Watch window

Part 6. Reference information 265

C-SPY windows

266

IAR Embedded Workbench® IDE
User Guide

Every time execution in C-SPY stops, a value that has changed since the last stop is
highlighted. In fact, every time memory changes, the values in the Watch window are
recomputed, including updating the red highlights.

Woatch window context menu

The context menu available in the Watch window provides commands for adding and
removing expressions, changing the display format of expressions, as well as commands
for changing the default type interpretation of variables.

Add
Hemaye

DEfault Farmat
Eimaty: Farmat:

A Farmat
Decimal Farmat
Hexadecimal Farmat
et Farmat

Show As 3

Figure 142: Watch window context menu

The menu contains the following commands:

Menu command Description

Add, Remove Adds or removes the selected expression.

Default Format, Changes the display format of expressions. The display format setting
Binary Format, affects different types of expressions in different ways, see Table 73,
Octal Format, Effects of display format setting on different types of expressions. Your
Decimal Format, selection of display format is saved between debug sessions.

Hexadecimal Format,
Char Format

Show As Provides a submenu with commands for changing the default type
interpretation of variables. The commands on this submenu are mainly
useful for assembler variables—data at assembler labels—as these are by
default displayed as integers. For more information, see Viewing assembler
variables, page 120.

Table 72: Watch window context menu commands

The display format setting affects different types of expressions in different ways:

Type of expressions Effects of display format setting

Variable The display setting affects only the selected variable, not other variables.

Table 73: Effects of display format setting on different types of expressions

C-SPY® Debugger reference __o

Type of expressions Effects of display format setting

Array element The display setting affects the complete array, that is, same display format
is used for each array element.

Structure field All elements with the same definition—the same field name and C
declaration type—are affected by the display setting.

Table 73: Effects of display format setting on different types of expressions (Continued)

LOCALS WINDOW

The Locals window—available from the View menu—automatically displays the local
variables and function parameters.

¥ Locals M= 3

Expression | Yalue | Location | Type
i 3 17 short

Figure 143: Locals window

Locals window context menu

The context menu available in the Locals window provides commands for changing the
display format of expressions; for information about these commands, see Watch
window context menu, page 266.

AUTO WINDOW

The Auto window—available from the View menu—automatically displays a useful
selection of variables and expressions in, or near, the current statement.

Expression | Yalue | Location | Type |
i 45 R10 short
root[0] 0 Mermory:0x202 unsigned int
root <array> Mermor:0x202 unsigned int[10]
root[1] 0 Mermory:0x204 unsigned int

Figure 144: Auto window

Part 6. Reference information 267

C-SPY windows

268

IAR Embedded Workbench® IDE
User Guide

Auto window context menu

The context menu available in the Auto window provides commands for changing the
display format of expressions; for information about these commands, see Watch
window context menu, page 266.

LIVE WATCH WINDOW

The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in the
expressions must be statically located, such as global variables.

Live Watch =]
Expression | Yalue | Location | Type |
=l get_fib get_filb (0x1198) unsigned int (*)...
- get_filb (0x1198) Mermor:0<1198 unsigned int {int)

Figure 145: Live Watch window

Typically, this window is useful for hardware target systems supporting this feature.

Live Watch window context menu

The context menu available in the Live Watch window provides commands for adding
and removing expressions, changing the display format of expressions, as well as
commands for changing the default type interpretation of variables. For information
about these commands, see Watch window context menu, page 266.

In addition, the menu contains the Options command, which opens the Debugger
dialog box where you can set the Update interval option. The default value of this
option is 1000 milliseconds, which means the Live Watch window will be updated once
every second during program execution.

C-SPY® Debugger reference __o

QUICK WATCH WINDOW

In the Quick Watch window—available from the View menu—you can watch the value
of a variable or expression and evaluate expressions.

Quick Watch B
| Expression | Yalue | Location | Type |
WD Tstatus() "Timer disabled" macro string

Figure 146: Quick Watch window

Type the expression you want to examine in the Expressions text box. Click the
Recalculate button to calculate the value of the expression. For examples about how to
use the Quick Watch window, see Using the Quick Watch window, page 118 and
Executing macros using Quick Watch, page 140.

Part 6. Reference information

269

C-SPY windows

270

IAR Embedded Workbench® IDE
User Guide

Quick Watch window context menu

The context menu available in the Quick Watch window provides commands for
changing the display format of expressions, as well as commands for changing the
default type interpretation of variables. For information about these commands, see
Watch window context menu, page 266.

In addition, the menu contains the Add to Watch window command, which adds the
selected expression to the Watch window.
CALL STACK WINDOW

The Call stack window—available from the View menu—displays the C function call
stack with the current function at the top. To inspect a function call, double-click it.
C-SPY now focuses on that call frame instead.

7 get_fib = Destination for Step
& init_fib () Into
main)

[Mthumb_entry + 0x2d]

Figure 147: Call Stack window
Each entry has the format:
function(values)

where (values) is alist of the current value of the parameters, or empty if the function
does not take any parameters.

If the Step Into command steps into a function call, the name of the function is
displayed in the grey bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

C-SPY® Debugger reference __o

Call Stack window context menu

The context menu available in the Call Stack window provides some useful commands
when you right-click.

Goto Source
v Show Arguments
Rur ta Cursor
Toggle Breakpaint
Enable/dizable Breakpoint

Figure 148: Call Stack window context menu

Commands

Go to Source Displays the selected functions in the Disassembly or editor
windows.

Show Arguments Shows function arguments.

Run to Cursor Executes to the function selected in the call stack.

Toggle Breakpoint Toggles a code breakpoint. This breakpoint is not saved between

debug sessions.

Enable/Disable Breakpoint Enables or disables the selected breakpoint.

Part 6. Reference information 271

C-SPY windows

272

IAR Embedded Workbench® IDE
User Guide

TERMINAL 1/O0 WINDOW

In the Terminal I/O window—available from the View menu—you can enter input to
the application, and display output from it. To use this window, you need to link the
application with the option Debug info with terminal I/O. C-SPY will then direct
stdin, stdout and stderr to this window. If the Terminal I/O window is closed,
C-SPY will open it automatically when input is required, but not for output.

Terminal I;0 B
Output: Loq file: OFff
1 =
1
2
3
5
8
13
21
34
55 -
K| 3
Input: LCtl codes | Input Mode... |
I— Buffer size: 1]

Figure 149: Terminal I/0 window

Clicking the Ctrl codes button opens a menu with submenus for input of special
characters, such as EOF (end of file) and NUL.

0:x00-0x0f »
O:x10-0:x1F »
ECF

Figure 150: Ctrl codes menu

Clicking the Input Mode button opens the Change Input Mode dialog box where you
choose whether to input data from the keyboard or from a text file.

 Input Mode
. ak. I
& Keyboard File
C |
& Buffered & Text il

" Direct | Binary

$PROJ_DIREAT ermnlOlnput bt J

Figure 151: Change Input Mode dialog box

C-SPY® Debugger reference __o

For reference information about the options available in the dialog box, see Terminal I/0
page, page 245.

CODE COVERAGE WINDOW

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code that have been executed
at least once since the start of the analysis. The compiler generates detailed stepping
information in the form of step points at each statement, as well as at each function call.
The report includes information about all modules and functions. It reports the amount
of all step points, in percentage, that have been executed and lists all step points that have
not been executed up to the point where the application has been stopped. The coverage
will continue until turned off.

ode Coverage M=l E3

® common 23.81%
5@ get_fib 66.67%
g @ init_filbh 50.00%
< 3-24:24 addr(IxEC)
< 3-13:26 addr(0xFE)
L 1-1:28 addr(0x1 22)
; &-# put_fib 0.00%
&% tutorl 0.00%
a:a---O do_foreground_process 0.00%
&-® main 0.00%
- et _cournter 0.00%

Figure 152: Code Coverage window
Note:

® You can enable the Code Coverage plugin module on the Debugger>Plugins page
available in the Options dialog box.

o Code coverage is not supported by all C-SPY drivers. For information about
whether the C-SPY driver you are using supports code coverage, see the
driver-specific documentation in the online help system available from the Help
menu. Code coverage is supported by the C-SPY Simulator.

Part 6. Reference information 273

C-SPY windows

274

IAR Embedded Workbench® IDE
User Guide

o i |8

©

Code coverage commands

In addition to the commands available as icon buttons in the toolbar, clicking the right
mouse button in the Code Coverage window displays a context menu that gives you
access to these and some extra commands.

v Activate
Clear
Refresh
Auko-refresh

Save As...

Figure 153: Code coverage context menu

You can find the following commands on the menu:

Activate Switches code coverage on and off during execution.

Clear Clears the code coverage information. All step points are marked as not
executed.

Refresh Updates the code coverage information and refreshes the window. All step
points that has been executed since the last refresh are removed from the
tree.

Auto-refresh Toggles the automatic reload of code coverage information on and off.

When turned on, the code coverage information is reloaded automatically
when C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As Saves the current code coverage information in a text file.

The following icons are used to give you an overview of the current status on all levels:

o A red diamond signifies that 0% of the code has been executed

e A green diamond signifies that 100% of the code has been executed

e A red and green diamond signifies that some of the code has been executed

o A yellow diamond signifies a step point that has not been executed.

For step point lines, the information displayed is the column number range and the row
number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:<row>.

PROFILING WINDOW

The Profiling window—available from the View menu—displays profiling information,
that is, timing information for the functions in an application. Profiling must be turned
on explicitly using a button in the window’s toolbar, and will stay active until it is turned
off.

==l

C-SPY® Debugger reference __o

The profiler measures time at the entry and return of a function. This means that time
consumed in a function is not added until the function returns or another function is
called. You will only notice this if you are stepping into a function.

Flat Time Accumulated Time

52,43

init_fily 498 3.08 1280 975
main 1 159 1.24 6097 47.54
memset 1 0 0.00 0 0.00
dio_foregrouncd_p... 10 280 2.18 4688 36.56
next_counter 10 70 0.55 70 111
put_fila 1 3724 29.04 3068 3006
__putchar 24 72 0.56 72 056
putchar 24 72 0.56 144 112
get_fib 26 1222 9.53 1222 9453

Figure 154: Profiling window
Note:

e You can enable the Profiling plugin module on the Debugger>Plugins page
available in the Options dialog box.

e Profiling is not supported by all C-SPY drivers. For information about whether the
C-SPY driver you are using supports profiling, see the driver-specific
documentation in the online help system available from the Help menu. Profiling is
supported by the C-SPY Simulator.

Profiling commands

In addition to the toolbar buttons, the context menu available in the Profiling window
gives you access to these and some extra commands:

v Activate
Mew Measurement
v Graph
Show details
Refresh
Auko refresh

Save As...

Figure 155: Profiling context menu

You can find the following commands on the menu:

Activate Toggles profiling on and off during execution.

New measurement Starts a new measurement. By clicking the button, the values displayed
are reset to zero.

Part 6. Reference information

275

C-SPY windows

276

IAR Embedded Workbench® IDE
User Guide

[e]
o

Graph

Show details

Refresh

Auto refresh

Save As

Displays the percentage information for Flat Time and Accumulated
Time as graphs (bar charts) or numbers.

Shows more detailed information about the function selected in the list.
A window is opened showing information about callers and callees for
the selected function.

Updates the profiling information and refreshes the window.

Toggles the automatic update of profiling information on and off. When
turned on, the profiling information is updated automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Saves the current profiling information in a text file.

Profiling columns

The Profiling window contains the following columns:

Column Description

Function The name of each function.

Calls The number of times each function has been called.

Flat Time The total time spent in each function in cycles or as a percentage of the

Accumulated Time

total number of cycles, excluding all function calls made from that
function.

Time spent in each function in cycles or as a percentage of the total
number of cycles, including all function calls made from that function.

Table 74: Profiling window columns

There is always an item in the list called Outside main. This is time that cannot be
placed in any of the functions in the list. That is, code compiled without debug
information, for instance, all startup and exit code, and C/C++ library code.

C-SPY® Debugger reference __o

STACK WINDOW

The Stack window is a memory window that displays the contents of the stack. In
addition, some integrity checks of the stack can be performed to detect and warn about
problems with stack overflow. For example, the Stack window is useful for determining
the optimal size of the stack.

Before you can open the Stack window you must make sure it is enabled: choose
Project>Options>Debugger>Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open
several Stack windows, each showing a different stack—if several stacks are
available—or the same stack with different display settings.

| Locati0n| Data | Yariable | Yalue | Frame |
IseREE] oxon

+1 0x08

+2 0x0000 p.mStatus 0 [1] _exit

+4 Ox4Rh

+5 0x67

+6 OxEOQ

+7 0Ox04

Figure 156: Stack window

The stack drop-down menu

If the microcontroller you are using has multiple stacks, you can use the stack
drop-down menu at the top of the window to select which stack to view.

The graphical stack bar

At the top of the window, a stack bar displays the state of the stack graphically. To view
the stack bar you must make sure it is enabled: choose Tools>Options>Stack and select
the option Enable stack checks.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. A green line represents the current value of
the stack pointer. The part of the stack memory that has been used during execution is
displayed in a dark gray color, and the unused part in a light gray color. The graphical
stack bar turns red when the stack usage exceeds a threshold that you can specify.

Part 6. Reference information 277

C-SPY windows

278

IAR Embedded Workbench® IDE
User Guide

‘When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xCD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can
incorrectly grow outside its bounds, and even modify memory outside the stack range,
without actually modifying any of the bytes near the stack range. Likewise, your
application might modify memory within the stack range by mistake. Furthermore, the
Stack window cannot detect a stack overflow when it happens, but can only detect the
signs it leaves behind.

Note: The size and location of the stack is retrieved from the definition of the segment
holding the stack, typically cSTACK, made in the linker command file. If you, for some
reason, modify the stack initialization made in the system startup code, cstartup, you
should also change the segment definition in the linker command file accordingly;
otherwise the Stack window cannot track the stack usage. To read more about this, see
the IAR C/C++ Compiler Reference Guide.

When the stack bar is enabled, the functionality needed to detect and warn about stack
overflows is also enabled, see Stack page, page 247.

The Stack window columns

The main part of the window displays the contents of stack memory in the following

columns:

Column Description

Location Displays the location in memory. The addresses are displayed in
increasing order. If your target system has a stack that grows towards
high addresses, the top of the stack will consequently be located at the
bottom of the window. The address referenced by the stack pointer, in
other words the top of the stack, is highlighted in a green color.

Data Displays the contents of the memory unit at the given location. From the
Stack window context menu, you can select how the data should be
displayed; as a |-, 2-, or 4-byte group of data.

Variable Displays the name of a variable, if there is a local variable at the given
location. Variables are only displayed if they are declared locally in a
function, and located on the stack and not in registers.

Value Displays the value of the variable that is displayed in the Variable
column.
Frame Displays the name of the function the call frame corresponds to.

Table 75: Stack window columns

C-SPY® Debugger reference __o

The Stack window context menu

The following context menu is available if you right-click in the Stack window:

v Show Yariables
v Show Offsets
v 1 Units

2x Units

¢ Units

Options. ..

Figure 157: Stack window context menu

The following commands are available in the context window:

Show variables

Show offsets

Ix Bytes
2x Bytes
4x Bytes

Options

Separate columns named Variables, Value, and Frame are
displayed in the Stack window. Variables located at memory
addresses listed in the Stack window are displayed in these
columns.

When this option is selected, locations in the Location column are
displayed as offsets from the stack pointer. When deselected,
locations are displayed as absolute addresses.

The data in the Data column is displayed as single bytes.
The data in the Data column is displayed as 2-byte groups.
The data in the Data column is displayed as 4-byte groups.

Opens the IDE Options dialog box where you can set options
specific to the Stack window, see Stack page, page 247.

C-SPY menus

In addition to the menus available in the development environment, the Debug menu is
available when C-SPY is running.

Additional menus will be available depending on which C-SPY driver you are using. For
information about driver-specific menus, see the online help system available from the
Help menu for information about driver-specific documentation.

Part 6. Reference information 279

C-SPY menus

R N

N

IAR Embedded Workbench® IDE

280 User Guide

DEBUG MENU

The Debug menu provides commands for executing and debugging your application.
Most of the commands are also available as toolbar buttons.

G0 FS
Break:
Reset

Stop Debugging

Step Cwver Fi0
Step Inko F11
Skep Cut SHIFT+F11

Mext Statement
Run ko Cursor
Autostep. ..

Refresh

Set Mext Statement

Macros. ..
Logging

Figure 158: Debug menu

Menu Command

Description

Go F5

Break

Reset

Stop Debugging

Step Over Fl0

Step Into Fll

Step Out SHIFT+FI |

Next Statement

Run to Cursor

Executes from the current statement or instruction until a breakpoint or
program exit is reached.

Stops the application execution.

Resets the target processor.

Stops the debugging session and returns you to the project manager.

Executes the next statement or instruction, without entering C or C++
functions or assembler subroutines.

Executes the next statement or instruction, entering C or C++ functions
or assembler subroutines.

Executes from the current statement up to the statement after the call
to the current function.

If stepping into and out of functions is unnecessarily slow, use this
command to step directly to the next statement.

Executes from the current statement or instruction up to a selected
statement or instruction.

Table 76: Debug menu commands

C-SPY® Debugger reference __o

Menu Command Description

Autostep Displays the Autostep settings dialog box which lets you customize
and perform autostepping.

Refresh Refreshes the contents of the Memory, Register, Watch, and Locals
windows.

Set Next Statement ~ Moves the program counter directly to where the cursor is, without
executing any source code. Note, however, that this creates an anomaly
in the program flow and might have unexpected effects.

Macros Displays the Macro Configuration dialog box to allow you to list,
register, and edit your macro files and functions.

Logging>Set Log file Displays a dialog box to allow you to log input and output from C-SPY to
a file. You can select the type and the location of the log file. You can
choose what you want to log: errors, warnings, system information, user
messages, or all of these.

Logging>Set Terminal Displays a dialog box to allow you to log terminal input and output from
I/O Log file C-SPY to afile. You can select the destination of the log file.

Table 76: Debug menu commands (Continued)

Autostep settings dialog box

In the Autostep settings dialog box—available from the Debug menu—you can
customize autostepping.

Autostep settings E

I Step Into [Source level] j Start I
Delay [miIIiseconds]:I‘I] Cancel |

Figure 159: Autostep settings dialog box

The drop-down menu lists the available step commands.

The Delay text box lets you specify the delay between each step.

Macro Configuration dialog box

In the Macro Configuration dialog box—available by choosing Debug>Macros—you
can list, register, and edit your macro files and functions.

Part 6. Reference information 281

C-SPY menus

Macro functions that have been registered using the dialog box will be deactivated when

you exit the debug session, and will not automatically be registered at the next debug
session.

Macro Configuration EHE

Lok ir: Ia tutar j = £ E-
1 Debug

[settings

Setupadvanced. mac

SetupSimple. mac

File name: ISetupSimpIe.mac j
Files of type: IMacro Filez [*.mac] j
Selected Macro Files: Add |

C:hprojectshtutorS etupSimple. mac Add Al |
Remove |
Remave Al |

— Registered Macro Fradich
(o] User € System ﬂl
Parameters
_canceldlinterrupts] - Spstem Macro -
__cancellnterupt int] - Spstem Macro -
_clearBreak [id) - Spstem Macro -
__clozeFile [file] - Spstem Macro - — ol
- ose |
__dizablelnterrupts Il - Spstem Macro -
__driverType [ztring] - Spstem Macro - LI Help |

Figure 160: Macro Configuration dialog box

Registering macro files

Select the macro files you want to register in the file selection list, and click Add or Add
All to add them to the Selected Macro Files list. Conversely, you can remove files from
the Selected Macro Files list using Remove or Remove All.

Once you have selected the macro files you want to use click Register to register them,
replacing any previously defined macro functions or variables. Registered macro
functions are displayed in the scroll window under Registered Macros. Note that
system macros cannot be removed from the list, they are always registered.

IAR Embedded Workbench® IDE
282 User Guide

C-SPY® Debugger reference __o

Listing macro functions

Selecting All displays all macro functions, selecting User displays all user-defined
macros, and selecting System displays all system macros.

Clicking on either Name or File under Registered Macros displays the column
contents sorted by macro names or by file. Clicking a second time sorts the contents in
the reverse order.

Modifying macro files

Double-clicking a user-defined macro function in the Name column automatically
opens the file in which the function is defined, allowing you to modity it, if needed.

Log File dialog box

The Log File dialog box—available by choosing Debug>Logging>Set Log File
—allows you to log output from C-SPY to a file.

r Log File
o Include:
¥ Enable log file
¥ Enmors ¥ “wamings
¥ Info IV User
$PROJ_DIR$ LogFile1.log J

()3 I Cancel |

Figure 161: Log File dialog box

Enable or disable logging to the file with the Enable Log file check box.

The information printed in the file is by default the same as the information listed in the
Log window. To change the information logged, use the Include options:

Option Description

Errors C-SPY has failed to perform an operation.

Warnings A suspected error.

Info Progress information about actions C-SPY has performed.
User Printouts from C-SPY macros, that is, your printouts using the

__Inessage statement.

Table 77: Log file options

Click the browse button, to override the default file type and location of the log file.
Click Save to select the specified file—the default filename extension is log.

Part 6. Reference information 283

C-SPY menus

Terminal I/O Log File dialog box

The Terminal I/O Log Files dialog box—available by choosing
Debug>Logging—allows you to select a destination log file, and to log terminal I/O
input and output from C-SPY to this file.

Temminal 10 Log Files [%]

Temminal 10 Log File

" Enable Terminal |0 log file

Ic::\T erml0.log J

Figure 162: Terminal 1/0 Log File dialog box

Click the browse button to open a standard Save As dialog box. Click Save to select the
specified file—the default filename extension is log.

IAR Embedded Workbench® IDE
284 User Guide

General options

This chapter describes the general options in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 83.

Target

For information about the Target options, see the online help system available from the
Help menu.

Output

With the Output options you can specify the type of output file—Executable or
Library. You can also specify the destination directories for executable files, object
files, and list files.

Clutput |

— Output file
& Executable
 Library

r— Output directarie:
Executables/libraries:
IDebug\E we

Object files:
|DebugiObi

List files:
|DebughList

Figure 163: Output options

Part 6. Reference information

285

Output

286

IAR Embedded Workbench® IDE
User Guide

OUTPUT FILE

Use these options to choose the type of output file. Choose between:

Executable As a result of the build process, the XLINK linker will create an application

(default) (an executable output file). When this option is selected, linker options will
be available in the Options dialog box. Before you create the output you
should set the appropriate linker options.

Library As a result of the build process, the XAR library builder will create a library
output file. When this option is selected, XAR library builder options will be
available in the Options dialog box, and Linker will disappear from the list
of categories. Before you create the library you can set the XAR options.

OUTPUT DIRECTORIES

Use these options to specify paths to destination directories. Note that incomplete paths
are relative to your project directory. You can specify the paths to the following
destination directories:

Executables/libraries Use this option to override the default directory for executable or
library files. Type the name of the directory where you want to save
executable files for the project.

Object files Use this option to override the default directory for object files. Type
the name of the directory where you want to save object files for the
project.

List files Use this option to override the default directory for list files. Type the

name of the directory where you want to save list files for the project.

General options ___¢

Library Configuration
With the Library Configuration options you can specify which library to use.

Library Configuration |

Library: Description:
Customn DLIB j Use a customized C/EC++ runtime library.

Library file:

IEI: projectsimylibrang. rax

Configuration file:
IEI: Sprojectshmylibrane. b

L L

Figure 164: Library Configuration options

For information about the runtime library, library configurations, the runtime
environment they provide, and the possible customizations, see IJAR C/C++ Compiler
Reference Guide.

LIBRARY

In the Library drop-down list you choose which runtime library to use. For information
about available libraries, see the JAR C/C++ Compiler Reference Guide.

The library object file and library configuration file that actually will be used are
displayed in the Library file and Configuration file text boxes, respectively.
LIBRARY FILE

The Library file text box displays the library object file that will be used. A library
object file is automatically chosen depending on some of your settings, see the JAR
C/C++ Compiler Reference Guide.

If you have chosen a Custom library in the Library drop-down list, you must specify
your own library object file.

CONFIGURATION FILE

The Configuration file text box displays the library configuration file that will be used.
A library configuration file is chosen automatically depending on the project settings. If
you have chosen Custom DLIB in the Library drop-down list, you must specify your
own library configuration file.

Part 6. Reference information 287

Library Options

288

Note: A library configuration file is only required for the DLIB library, but note that
not all product versions support the DLIB library.

Library Options

IAR Embedded Workbench® IDE
User Guide

With the options on the Library Options page you can choose printf and scanf
formatters.

Library Options |
— Printf farmatter
I Large j
Full formatting.
— Scanf formatter
I Large j
Full formatting.

Figure 165: Library Options page

See the IAR C/C++ Compiler Reference Guide for more information about the
formatting capabilities.

PRINTF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications. To reduce the memory consumption,
alternative versions are also provided.

For information about available printf formatters, see the IAR C/C++ Compiler
Reference Guide.
SCANF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications. To reduce the memory consumption,
alternative versions are also provided.

For information about available print f formatters, see the IAR C/C++ Compiler
Reference Guide.

General options ___¢

Stack/Heap

With the options on the Stack/Heap page you can customize the heap and stack sizes.
For more information, see the online help system available from the Help menu.

Part 6. Reference information 289

Stack/Heap

IAR Embedded Workbench® IDE
290 User Guide

Compiler options

This chapter describes the compiler options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 83.

Language

The Language options enable the use of target-dependent extensions to the C or C++
language.

Language|

— Language

@

 Embedded C++
 Extended Embedded C++
' Automatic [extension based)

™ Require pratotypes

r— Language conformance Flain ‘char' iz
& Allow |AR extensions " Signed
" Relaxed IS0/4NS] & Unsigned
£ Shrict 150/8M51

™ Enable multibyte support

™ Enable |4R migration preprocessor extensions

Figure 166: Compiler language options

LANGUAGE

With the Language options you can specify the language support you need.

For information about Embedded C++ and Extended Embedded C++, see the JAR
C/C++ Compiler Reference Guide. (Note that not all product versions support C++.)
C

By default, the IAR C/C++ Compiler runs in ISO/ANSI C mode, in which features
specific to Embedded C++ and Extended Embedded C++ cannot be utilized.

Part 6. Reference information

291

Language

292

IAR Embedded Workbench® IDE
User Guide

Embedded C++

In Embedded C++ mode, the compiler treats the source code as Embedded C++. This
means that features specific to Embedded C++, such as classes and overloading, can be
utilized.

Embedded C++ requires that a DLIB library (C/C++ library) is used.

Extended Embedded C++

In Extended Embedded C++ mode, you can take advantage of features like namespaces
or the standard template library in your source code.

Extended Embedded C++ requires that a DLIB library (C/C++ library) is used.

Automatic

If you select Automatic, language support will be decided automatically depending on
the filename extension of the file being compiled:

e Files with the filename extension c will be compiled as C source files
e Files with the filename extension cpp will be compiled as Extended Embedded C++
source files.

This option requires that a DLIB library (C/C++ library) is used.

Note: Not all product versions support C++. For products without C++ support, the
Language options will not be available.

REQUIRE PROTOTYPES

This option forces the compiler to verify that all functions have proper prototypes. Using
this option means that code containing any of the following will generate an error:

e A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

e A function definition of a public function with no previous prototype declaration

e An indirect function call through a function pointer with a type that does not include
a prototype.

LANGUAGE CONFORMANCE

Language extensions must be enabled for the IAR C/C++ Compiler to be able to accept
target-specific keywords as extensions to the standard C or C++ language. In the IAR
Embedded Workbench IDE, the option Allow IAR extensions is enabled by default.

The option Relaxed ISO/ANSI disables IAR extensions, but does not adhere to strict
ISO/ANSI.

Compiler options °

Select the option Strict ISO/ANSI to adhere to the strict ISO/ANSI C standard.

For details about language extensions, see the JAR C/C++ Compiler Reference Guide.

PLAIN 'CHAR'IS

Normally, the compiler interprets the char type as unsigned char. Use this option to
make the compiler interpret the char type as signed char instead, for example for
compatibility with another compiler.

Note: The runtime library is compiled with unsigned plain characters. If you select the
radio button Signed, you might get type mismatch warnings from the linker as the
library uses unsigned char.

ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in C or Embedded C++ source code. If
you use this option, multibyte characters in the source code are interpreted according to
the host computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.
ENABLE IAR MIGRATION PREPROCESSOR EXTENSIONS

Migration preprocessor extensions extend the preprocessor in order to ease migration of
code from earlier IAR compilers. If you need to migrate code from an earlier IAR C or
C++ compiler, you may want to use this option. Note that, depending on your product
installation, this option might not be available.

Note: If you use this option, not only will the compiler accept code that is not standard
conformant, but it will also reject some code that does conform to standard.

Important! Do not depend on these extensions in newly written code. Support for them
may be removed in future compiler versions.

Part 6. Reference information 293

Code

294

Code

With the options on the Code page you can customize the code generation. For more
information, see the online help system available from the Help menu. Note that,
depending on your product installation, this page might not be available.

Optimizations

IAR Embedded Workbench® IDE
User Guide

The Optimizations options determine the type and level of optimization for generation
of object code.

Optimisation |

— Optimization:

* Size
I N - l
" Speed one

Enabled transformations:

[CCommon subespression elimination
CLoop unroling

[CIFunction inlining

[CCode mation

(1 Type-bazed alias analyzis

Figure 167: Compiler optimizations options
OPTIMIZATIONS

Size or speed, and level

The IAR C/C++ Compiler supports two optimization models—size and speed—at
different optimization levels.

Select the optimization model using either the Size or Speed radio button. Then choose
the optimization level—None, Low, Medium, or High—from the drop-down list next to
the radio buttons.

By default, a debug project will have a size optimization that is fully debuggable, while
a release project will have a size optimization that generates an absolute minimum of
code.

For a list of optimizations performed at each optimization level, see the JAR C/C++
Compiler Reference Guide.

Compiler options °

Enabled transformations
The following transformations are available on different level of optimizations:

Common subexpression elimination
Loop unrolling

Function inlining

Code motion

Type-based alias analysis.

Note that, depending on your product installation, there might be additional
transformations available.

When a transformation is enabled, you can enable or disable it by selecting its check
box.

In a debug project, the transformations are by default disabled. In a release project, the
transformations are by default enabled.

For a brief description of the transformations that can be individually disabled, see the
IAR C/C++ Compiler Reference Guide.

Output

The Output options determine the output format of the compiled file, including the level
of debugging information in the object code.

Clutput |

Module type

[T Overide default
| Frogram hodule
€ Librany Module

" Object module name:

[V Generate debug information

Figure 168: Compiler output options

Part 6. Reference information 295

Output

296

IAR Embedded Workbench® IDE
User Guide

MODULE TYPE

By default, the compiler generates program modules. Use this option to make a library
module that will only be included if it is referenced in your application. Select the
Override default check box and choose one of:

Program Module The object file will be treated as a program module rather than as
a library module.

Library Module The object file will be treated as a library module rather than as a

program module.

For information about program and library modules, and working with libraries, see the
XLIB and XAR chapters in the IAR Linker and Library Tools Reference Guide, available
from the Help menu.

OBJECT MODULE NAME

Normally, the internal name of the object module is the name of the source file, without
a directory name or extension. Use this option to set the object module name explicitly.

First select the Object module name check box, then type a name in the entry field.

This option is particularly useful when several modules have the same filename, because
the resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

GENERATE DEBUG INFORMATION

This option causes the compiler to include additional information in the object modules
that is required by C-SPY® and other symbolic debuggers.

The Generate debug information option is selected by default. Deselect this option if
you do not want the compiler to generate debug information.

Note: The included debug information increases the size of the object files.

Compiler options °

List

The List options determine whether a list file is produced, and the information included
in the list file.

List

™ Output list file
| fissemblern memarics
™| Diagnostics

™ Output assembler file
| Ihelude source
¥ | Irelude callframe infarmation

Figure 169: Compiler list file options

Normally, the compiler does not generate a list file. Select any of the following options
to generate a list file or an assembler file. The list file will be saved in the List directory,
and its filename will consist of the source filename, plus the filename extension 1st.
You can open the output files directly from the Qutput folder which is available in the
Workspace window.

OUTPUT LIST FILE

Select the Output list file option and choose the type of information to include in the
list file:

Assembler mnemonics Includes assembler mnemonics in the list file.

Diagnostics Includes diagnostic information in the list file.

OUTPUT ASSEMBLER FILE

Select the Qutput assembler file option and choose the type of information to include
in the list file:

Include source Includes source code in the assembler file.

Include call frame information Includes compiler-generated information for runtime
model attributes, call frame information, and frame size
information.

Part 6. Reference information 297

Preprocessor

298

Preprocessor

IAR Embedded Workbench® IDE
User Guide

The Preprocessor options allow you to define symbols and include paths for use by the
compiler.

Preprocessor |

™ lgnore standard include directaries $TOOLKIT_DIR$AMNCY

Additional include directories: [one per lineg]

=
=
-

Preinclude file:

Defined symbols: [one per line)

;I ™ Preprocessor output to file
= Freserve commments
= Fererateline ditestives

|

Figure 170: Compiler preprocessor options

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional include directories option adds a path to the list of #include file
paths. The paths required by the product are specified by default depending on your
choice of runtime library.

Type the full file path of your #include files.

Note: Any additional directories specified using this option will be searched before the
standard include directories.

To make your project more portable, use the argument variable $TOOLKIT_DIRS for the
subdirectories of the active product and $PROJ_DIRS for the directory of the current
project. For an overview of the argument variables, see Argument variables summary,
page 225.

Compiler options °

PREINCLUDE FILE

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

DEFINED SYMBOLS

The Defined symbols option is useful for conveniently specifying a value or choice that
would otherwise be specified in the source file.

Type the symbols that you want to define for the project, for example:
TESTVER=1
Note that there should be no space around the equal sign.

The Defined symbols option has the same effect as a #define statement at the top of
the source file.

For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was defined. To
do this you would use include sections such as:

#ifdef TESTVER
; additional code lines for test version only
#endif

You would then define the symbol TESTVER in the Debug target but not in the Release
target.

PREPROCESSOR OUTPUT TO FILE
By default, the compiler does not generate preprocessor output.

Select the Preprocessor output to file option if you want to generate preprocessor
output. You can also choose to preserve comments and/or to generate #1ine directives.

Diagnostics
The Diagnostics options determine how diagnostics are classified and displayed. Use
the diagnostics options to override the default classification of the specified diagnostics.

Part 6. Reference information 299

Diagnostics

Note: The diagnostics cannot be suppressed for fatal errors, and fatal errors cannot be
reclassified.

Diagnostics |
[T Enable remarks

Suppress theze diagnostics:

Treat these as remarks:

Treat these as warnings:

Treat these as emars:

™ Treat all wamings as emors

Figure 171: Compiler diagnostics options

ENABLE REMARKS

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that might cause strange behavior in the generated code.

By default remarks are not issued. Select the Enable remarks option if you want the
compiler to generate remarks.

SUPPRESS THESE DIAGNOSTICS

This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings pe117 and Pel77, type:

Pell7,pPel77

TREAT THESE AS REMARKS

A remark is the least severe type of diagnostic message. It indicates a source code
construct that might cause strange behavior in the generated code. Use this option to
classify diagnostics as remarks.

For example, to classify the warning Pe177 as a remark, type:

pPel77

IAR Embedded Workbench® IDE
300 User Guide

Compiler options °

TREAT THESE AS WARNINGS

A warning indicates an error or omission that is of concern, but which will not cause the
compiler to stop before compilation is completed. Use this option to classify diagnostic
messages as warnings.

For example, to classify the remark Pe826 as a warning, type:

Pe826

TREAT THESE AS ERRORS

An error indicates a violation of the C or C++ language rules, of such severity that object
code will not be generated, and the exit code will be non-zero. Use this option to classify
diagnostic messages as errors.

For example, to classify the warning Pe117 as an error, type:

Pell?7

TREAT ALL WARNINGS AS ERRORS

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, object code is not generated.

Extra Options

The Extra Options page provides you with a command line interface to the compiler.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Figure 172: Extra Options page for the compiler

Part 6. Reference information 301

Extra Options

USE COMMAND LINE OPTIONS

Additional command line arguments for the compiler (not supported by the GUI) can be
specified here.

IAR Embedded Workbench® IDE
302 User Guide

Assembler options

This chapter describes the assembler options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 83.

Language

The Language options control the code generation of the assembler.

Note: Some of the options described here might not be available in the product version
you are using.

USER SYMBOLS ARE CASE SENSITIVE

By default, case sensitivity is on. This means that, for example, LABEL and label refer
to different symbols. You can deselect User symbols are case sensitive to turn case
sensitivity off, in which case LABEL and 1abel will refer to the same symbol.

ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in comments, in string literals, and in character
constants. They are transferred untouched to the generated code.
ALLOW MNEMONICS IN FIRST COLUMN

The default behavior by the assembler is to treat all identifiers starting in the first column
as labels.

Use this option to make mnemonics names (without a trailing colon) starting in the first
column to be recognized as mnemonics.
ALLOW DIRECTIVES IN FIRST COLUMN

The default behavior by the assembler is to treat all identifiers starting in the first column
as labels.

Use this option to make directive names (without a trailing colon) that start in the first
column to be recognized as directives.

Part 6. Reference information

303

Output

304

MACRO QUOTE CHARACTERS

The Macro quote characters option sets the characters used for the left and right quotes
of each macro argument.

By default, the characters are < and >. This option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or >.

From the drop-down list, choose one of four types of brackets to be used as macro quote
characters:

tacro quote characters
< 'I

[
[
{

Figure 173: Choosing macro quote characters

Output

The Output options allow you to generate information to be used by a debugger such
as the JAR C-SPY® Debugger.

Clutput |

[V Generate debug information

Figure 174: Assembler output options

IAR Embedded Workbench® IDE
User Guide

Assembler options __¢

GENERATE DEBUG INFORMATION

The Generate debug information option must be selected if you want to use a
debugger with your application. By default, this option is selected in a Debug project,
but not in a Release project.

List
The List options are used for making the assembler generate a list file and for selecting
the list file contents. For reference information about each option, see the online help
system available from the Help menu.

Preprocessor

The Preprocessor options allow you to define include paths and symbols in the
assembler.

Preprocessor |

[~ lgnore standard include directories [$TOOLKIT_DIR$4MCY

Additional include directories: [one per ling]

<

Defined symbols: [one per line)

<

™ Preprocessor autput to file
| Freserve comments

| Generate Hine diective

Figure 175: Assembler preprocessor options

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional include directories option adds paths to the list of #include file paths.
The path required by the product is specified by default.

Type the full path of the directories that you want the assembler to search for #include
files.

Part 6. Reference information 305

Preprocessor

306

IAR Embedded Workbench® IDE
User Guide

To make your project more portable, use the argument variable $TOOLKIT_DIRS for the
subdirectories of the active product and $PROJ_DIRS for the directory of the current
project. For an overview of the argument variables, see Table 45, Argument variables,
page 225.

See the IAR Assembler Reference Guide for information about the #include directive.

Note: By default the assembler also searches for #include files in the paths specified
in the ACPUNAME_INC environment variable. We do not, however, recommend that you
use environment variables in the IAR Embedded Workbench IDE.

DEFINED SYMBOLS

This option provides a convenient way of specifying a value or choice that you would
otherwise have to specify in the source file.

Type the symbols you want to define, one per line.

e For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was
defined. To do this you would use include sections such as:

#ifdef TESTVER
; additional code lines for test version only
#endif

You would then define the symbol TESTVER in the Debug target but not in the
Release target.

e Alternatively, your source might use a variable that you need to change often, for
example FRAMERATE. You would leave the variable undefined in the source and use
this option to specify a value for the project, for example FRAMERATE=3.

To delete a user-defined symbol, select in the Defined symbols list and press the Delete
key.

PREPROCESSOR OUTPUT TO FILE

By default the assembler does not generate preprocessor output.

Select the Preprocessor output to file option if you want to generate preprocessor
output. You can also choose to preserve comments and/or to generate #1ine directives.

Note: This option might not be available in the product version you are using.

Assembler options __¢

Diagnostics

The Diagnostics options determine how diagnostics are classified and displayed. Use
the diagnostics options to override the default classification of the specified diagnostics.

For reference information about each option, see the online help system available from
the Help menu.

Extra Options
The Extra Options page provides you with a command line interface to the assembler.

Extra Dptions |
™ Use command line options

[Eammand line optians: [aneipenline]

Figure 176: Extra Options page for the assembler

USE COMMAND LINE OPTIONS

Additional command line arguments for the assembler (not supported by the GUI) can
be specified here.

Part 6. Reference information 307

Extra Options

IAR Embedded Workbench® IDE
308 User Guide

Custom build options

This chapter describes the Custom Build options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 83.

Custom Tool Configuration

To set custom build options in the IAR Embedded Workbench IDE, choose
Project>Options to display the Options dialog box. Then select Custom Build in the
Category list to display the Custom Tool Configuration page:

Custom Tool Configuration |

Filename extensions:

Command line:

Output files [one per line]:

=

Additional input files [one per line]:

L

K1

Figure 177: Custom tool options

In the Filename extensions text box, specify the filename extensions for the types of
files that are to be processed by this custom tool. You can enter several filename
extensions. Use commas, semicolons, or blank spaces as separators.

In the Command line text box, type the command line for executing the external tool.
In the Output files text box, enter the output files from the external tool.

If there are any additional files that are used by the external tool during the building
process, these files should be added in the Additional input files text box. If these
additional input files, so-called dependency files, are modified, the need for a rebuild is
detected.

For an example, see Extending the tool chain, page 87.

Part 6. Reference information 309

Custom Tool Configuration

IAR Embedded Workbench® IDE
310 User Guide

Build actions options

This chapter describes the options for pre-build and post-build actions
available in the IAR Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 83.

Build Actions Configuration
To set options for pre-build and post-build actions in the IAR Embedded Workbench
IDE, choose Project>Options to display the Options dialog box. Then select Build
Actions in the Category list to display the Build Actions Configuration page.

These options apply to the whole build configuration, and cannot be set on groups or
files.

Build Actions Configuration |

Fre-build command line:

Post-build command line:

Ll

Figure 178: Build actions options

PRE-BUILD COMMAND LINE

Type a command line to be executed directly before a build; a browse button for locating
an extended command line file is available for your convenience. The commands will
not be executed if the configuration is already up-to-date.

POST-BUILD COMMAND LINE

Type a command line to be executed directly after each successful build. The commands
will not be executed if the configuration was up-to-date. This is useful for copying or
post-processing the output file.

Part 6. Reference information 311

Build Actions Configuration

IAR Embedded Workbench® IDE
312 User Guide

Linker options

This chapter describes the XLINK options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 83.

Note that the XLINK command line options that are used for defining
segments in a linker command file are described in the IAR Linker and Library

Tools Reference Guide.

Output

The Output options are used for specifying the output format and the level of debugging
information included in the output file.

Clutput |
— Output file
™ Overide default Secondary output file:
Iproiect‘l .duw [Maone for the selected format]
— Format

&' Debug information for C-5PY
¥ w/ith untime control madules
¥ with 140 emulation modules
™| Buffered terminal autput
[~ Allow C-5P-specific extra output file
" Other

[utput format: I

Farmat wariart: INone

Lef L L

Module-local spmbols: IIncIude all

Figure 179: XLINK output file options

OUTPUT FILE

Use Output file to specify the name of the XLINK output file. If a name is not specified,
the linker will use the project name with a filename extension. The filename extension
depends on which output format you choose. If you choose Debug information for
C-SPY, the output file will have the filename extension dxx.

Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).

Part 6. Reference information

313

Output

314

IAR Embedded Workbench® IDE
User Guide

Override default

Use this option to specify a filename or filename extension other than the default.

FORMAT

The output options determine the format of the output file generated by the IAR XLINK
Linker. The output file is used as input to either a debugger or as input for programming
the target system. The IAR Systems proprietary output format is called UBROF,
Universal Binary Relocatable Object Format.

The default output settings are:

e In a debug project, Debug information for C-SPY, With runtime control
modules, and With I/O emulation modules are selected by default

e In a release project, an output format suitable for target download is selected by
default.

Note: For debuggers other than C-SPY, check the user documentation supplied with
that debugger for information about which format/variant should be used.

Debug information for C-SPY

This option creates a UBROF output file, with a dxx filename extension, to be used with
the IAR C-SPY® Debugger.

With runtime control modules

This option produces the same output as the Debug information for C-SPY option, but
also includes debugger support for handling program abort, exit, and assertions. Special
C-SPY variants for the corresponding library functions are linked with your application.
For more information about the debugger runtime interface, see the JAR C/C++
Compiler Reference Guide.

With 1/O emulation modules

This option produces the same output as the Debug information for C-SPY and With
runtime control modules options, but also includes debugger support for I/O handling,
which means that stdin and stdout are redirected to the Terminal I/O window, and
that it is possible to access files on the host computer during debugging.

For more information about the debugger runtime interface, see the IAR C/C++
Compiler Reference Guide.

Linker options °

Buffered terminal output

During program execution in C-SPY, instead of instantly printing each new character to
the C-SPY Terminal I/O window, this option will buffer the output. This option is useful
when using debugger systems that have slow communication.

Allow C-SPY-specific extra output file
Use this option to enable the options available on the Extra Output page.

If you choose any of the options With runtime control modules or With I/0
emulation modules, the generated output file will contain dummy implementations for
certain library functions, such as putchar, and extra debug information required by
C-SPY to handle those functions. In this case, the options available on the Extra Output
page are disabled, which means you cannot generate an extra output file. The reason is
that the extra output file would still contain the dummy functions, but would lack the
required extra debug information, and would therefore normally be useless.

However, for some debugger systems, two output files from the same build process are
required—one with the required debug information, and one that you can burn to your
hardware before debugging. This is useful when you want to debug code that is located
in non-volatile memory. In this case, you must choose the Allow C-SPY-specific extra
output file option to make it possible to generate an extra output file.

Other

Use this option to generate output other than those generated by the options Debug
information for C-SPY, With runtime control modules, and With I/O emulation
modules.

Use the Output format drop-down list to select the appropriate output. If applicable,
use Format variant to select variants available for some of the output formats. The
alternatives depend on the output format chosen.

When you specify the Other>Output format option as either debug (ubrof), or ubrof,
a UBROF output file with the filename extension dbg will be created. The generated
output file will not contain debugging information for simulating facilities such as stop
at program exit, long jump instructions, and terminal I/O. If you need support for these
facilities during debugging, use the Debug information for C-SPY, With runtime
control modules, and With I/O emulation modules options, respectively.

For more information, see the IAR Linker and Library Tools Reference Guide.

Part 6. Reference information 315

Extra Output

316

Module-local symbols

Use this option to specify whether local (non-public) symbols in the input modules
should be included or not by the IAR XLINK Linker. If suppressed, the local symbols
will not appear in the listing cross-reference and they will not be passed on to the output
file.

You can choose to ignore just the compiler-generated local symbols, such as jump or
constant labels. Usually these are only of interest when debugging at assembler level.

Note: Local symbols are only included in files if they were compiled or assembled with
the appropriate option to specify this.

Extra Output

IAR Embedded Workbench® IDE
User Guide

The Extra Output options are used for generating an extra output file and for specifying
its format.

Note: If you have chosen any of the options With runtime control modules or With
I/0 emulation modules available on the Output page, you must also choose the option
Allow C-SPY-specific extra output file to enable the Extra Output options.

Extra Dutput |

V' Generate extra output file

— Output file
™ Overide default

Iproiect‘l LR

— Format
Olutput format;: I j
Format wariant: INone j

Figure 180: XLINK extra output file options

Use the Generate extra output file option to generate an additional output file from the
build process.

Use the Override default option to override the default file name. If a name is not
specified, the linker will use the project name and a filename extension which depends
on the output format you choose.

Note: If youselect a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).

Linker options °

Use the Output format drop-down list to select the appropriate output. If applicable,
use Format variant to select variants available for some of the output formats. The
alternatives depend on the output format you have chosen.

When you specify the Output format option as either debug (ubrof), or ubrof, a
UBROF output file with the filename extension dbg will be created.

#define

You can define symbols with the #define option.

Hdefine |

Defined symbols: [one per line]

Figure 181: XLINK defined symbols options

DEFINE SYMBOL

Use Define symbol to define absolute symbols at link time. This is especially useful for
configuration purposes.

Type the symbols that you want to define for the project, for example:
TESTVER=1
Note that there should be no space around the equal sign.

Any number of symbols can be defined in a linker command file. The symbol(s) defined
in this manner will be located in a special module called ?ABS_ENTRY_MOD, which is
generated by the linker.

XLINK will display an error message if you attempt to redefine an existing symbol.

Part 6. Reference information 317

Diagnostics

318

Diagnostics

IAR Embedded Workbench® IDE
User Guide

The Diagnostics options determine the error and warning messages generated by the
TAR XLINK Linker.

Diagnostics

™ Always generate output Range checks

. % Generate emors

™ Segment cverlap warrings)
. Generate warrings

™ Mo global type checking ' Disabled

—warnings/E mor
™ Suppress all wamings
Suppress theze diagnostics:

Treat these as warnings:

Treat these as emors:

Figure 182: XLINK diagnostics options

ALWAYS GENERATE OUTPUT

Use Always generate output to generate an output file even if a non-fatal error was
encountered during the linking process, such as a missing global entry or a duplicate
declaration. Normally, XLINK will not generate an output file if an error is encountered.

Note: XLINK always aborts on fatal errors, even when this option is used.

The Always generate output option allows missing entries to be patched in later in the
absolute output image.

SEGMENT OVERLAP WARNINGS

Use Segment overlap warnings to reduce segment overlap errors to warnings, making
it possible to produce cross-reference maps, etc.

NO GLOBAL TYPE CHECKING

Use No global type checking to disable type checking at link time. While a well-written
application should not need this option, there may be occasions where it is helpful.

By default, XLINK performs link-time type checking between modules by comparing
the external references to an entry with the PUBLIC entry (if the information exists in the
object modules involved). A warning is generated if there are mismatches.

Linker options °

RANGE CHECKS

Use Range checks to specify the address range check. The following table shows the
range check options in the IAR Embedded Workbench IDE:

Option Description

Generate errors An error message is generated
Generate warnings Range errors are treated as warnings
Disabled Disables the address range checking

Table 78: XLINK range check options

If an address is relocated outside address range of the target CPU —code, external data,
or internal data address—an error message is generated. This usually indicates an error
in an assembler language module or in the segment placement.

WARNINGS/ERRORS

By default, the IAR XLINK Linker generates a warning when it detects that something
may be wrong, although the generated code might still be correct. The
Warnings/Errors options allow you to suppress or enable all warnings, and to change
the severity classification of errors and warnings.

Refer to the IAR Linker and Library Tools Reference Guide for information about the
different warning and error messages.

Use the following options to control the generation of warning and error messages:

Suppress all warnings

Use this option to suppress all warnings.

Suppress these diagnostics
This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings w117 and w177, type wll7,wl77.

Treat these as warnings

Use this option to specify errors that should be treated as warnings instead. For example,
to make error 106 become treated as a warning, type e106.

Treat these as errors

Use this option to specify warnings that should be treated as errors instead. For example,
to make warning 26 become treated as an error, type w26.

Part 6. Reference information 319

List

320

List

IAR Embedded Workbench® IDE
User Guide

The List options determine the generation of an XLINK cross-reference listing.

List |
V¥ Generate linker listing

¥ Segment map File format———————
Symbols—————————— & Text
£ Hone HTML

" Symbol listing

Lines/ : ISU
& Module map) e

™ Module summary

™ Include suppressed entries

™ Static averlay map

Figure 183: XLINK list file options

GENERATE LINKER LISTING

Causes the linker to generate a listing and send it to the file projectname.map.

Segment map

Use Segment map to include a segment map in the XLINK listing file. The segment
map will contain a list of all the segments in dump order.

Symbols

The following options are available:

Option Description

None Symbols will be excluded from the linker listing.

Symbol listing An abbreviated list of every entry (global symbol) in every module. This
entry map is useful for quickly finding the address of a routine or data
element.

Module map A list of all segments, local symbols, and entries (public symbols) for

every module in the application.

Table 79: XLINK list file options

Linker options °

Module summary

Use the Module summary option to generate a summary of the contributions to the total
memory use from each module.

Only modules with a contribution to memory use are listed.

Include suppressed entries

Use this option to include all segment parts in a linked module in the list file, not just the
segment parts that were included in the output. This makes it possible to determine
exactly which entries that were not needed.

Static overlay map

If the compiler uses static overlay, this option includes a listing of the static overlay
system in the list file. Read more about static overlay maps in the IAR Linker and
Library Tools Reference Guide.

File format

The following options are available:

Option Description
Text Plain text file
HTML HTML format, with hyperlinks

Table 80: XLINK list file format options

Lines/page

Sets the number of lines per page for the XLINK listings to 1ines, which must be in
the range 10 to 150.

Part 6. Reference information 321

Config

322

Config

IAR Embedded Workbench® IDE
User Guide

With the Config options you can specify the path and name of the linker command file,
override the default program entry, and specify the library search path.

Config |

Linker command file
™ Overide default
I$TDDLKIT_DIF|$\c:0nfig\Ink.xc:I J

g [Cammatd e canfiguration tool

™ Overide default program entry

&) Entrlabel I_program_start
) Defined by application
Search paths: [one per ling)

|$TDDLKIT_DIF|$\LIB\ ﬂ

File: Symbol: Segment: Align:

| =l [

" Fiaw binary image

Figure 184: XLINK config options

LINKER COMMAND FILE

A default linker command file is selected automatically for the chosen Target settings
in the General Options category. You can override this by selecting the Override
default option, and then specifying an alternative file.

The argument variables $TOOLKIT_ DIRS or $PROJ_DIRS can be used here too, to
specify a project-specific or predefined linker command file.

COMMAND FILE CONFIGURATION TOOL

You can override the default linker command file and click Command file
configuration tool to configure a linker command file yourself. For more information
about the options related to the configuration tool, see the online help system available
from the Help menu. Note that this option might not be available in your product
version.

OVERRIDE DEFAULT PROGRAM ENTRY

By default, the program entry is the label __program_start. The linker will make sure
that a module containing the program entry label is included, and that the segment part
containing the label is not discarded.

The default program handling can be overridden by selecting Override default
program entry.

Linker options °

Selecting the option Entry label will make it possible to specify a label other than
__program_start to use for the program entry.

Selecting the option Defined by application will disable the use of a start label. The
linker will, as always, include all program modules, and enough library modules to
satisty all symbol references, keeping all segment parts that are marked with the root
attribute or that are referenced, directly or indirectly, from such a segment part.

SEARCH PATHS

The Search paths option specifies the names of the directories which XLINK will
search if it fails to find the object files to be linked in the current working directory. Add
the full paths of any further directories that you want XLINK to search.

The paths required by the product are specified by default, depending on your choice of
runtime library. If the box is left empty, XLINK searches for object files only in the
current working directory.

Type the full file path of your #include files. To make your project more portable, use
the argument variable $TOOLKIT_DIRS for the subdirectories of the active product and
$PROJ_DIRS for the directory of the current project. For an overview of the argument
variables, see Argument variables summary, page 225.

RAW BINARY IMAGE

Use the Raw binary image options to link pure binary files in addition to the ordinary
input files. Use the text boxes to specify the following parameters:

File The pure binary file you want to link.

Symbol The symbol defined by the segment part where the binary data is placed.
Segment The segment where the binary data will be placed.

Align The alignment of the segment part where the binary data is placed.

The entire contents of the file are placed in the segment you specify, which means it can
only contain pure binary data, for example, the raw-binary output format. The segment
part where the contents of the specified file is placed, is only included if the specified
symbol is required by your application. Use the -g linker option if you want to force a
reference to the symbol. Read more about single output files and the -g option in the
IAR Linker and Library Tools Reference Guide.

Part 6. Reference information 323

Processing

324

Processing

IAR Embedded Workbench® IDE
User Guide

With the Processing options you can specity details about how the code is generated.

Processing |

¥ Fill unused code memory

Fill pattern: IDxFF

¥ Generate checksum
Size: m
 Arithmetic sum
& CRCIE [0x11021)
© CRC32 (0w4C110ET)
" Crc polynomial:

IDx‘I 1021
Complement: IAs iz - l

Bit arder: IMSB first 'l
Alignment: |2 Initial walue: |00

Figure 185: XLINK processing options

FILL UNUSED CODE MEMORY

Use Fill unused code memory to fill all gaps between segment parts introduced by the
linker with the value you enter. The linker can introduce gaps either because of
alignment restriction, or at the end of ranges given in segment placement options.

The default behavior, when this option is not used, is that these gaps are not given a value
in the output file.

Fill pattern

Use this option to specify size, in hexadecimal notation, of the filler to be used in gaps
between segment parts.

Generate checksum

Use Generate checksum to checksum all generated raw data bytes. This option can
only be used if the Fill unused code memory option has been specified.

Size

Size specifies the number of bytes in the checksum, which can be 1, 2, or 4.

Linker options °

Algorithms

One of the following algorithms can be used:

Algorithms Description

Arithmetic sum Simple arithmetic sum

CRCI6 CRCI 6, generating polynomial Ox 11021 (default)
CRC32 CRC32, generating polynomial 0x104C11DB7

Crc polynomial CRC with a generating polynomial of the value you enter

Table 81: XLINK checksum algorithms

Complement

Use the Complement drop-down list to specify the one’s complement or two’s
complement.

Bit order

By default it is the most significant 1, 2, or 4 bytes (MSB) of the result that will be
output, in the natural byte order for the processor. Choose LSB from the Bit order
drop-down list if you want the least significant bytes to be output.

Alignment

Use this option to specify an optional alignment for the checksum. If you do not specify
an alignment explicitly, an alignment of 2 is used.

Initial value

Use this option to specify the initial value of the checksum. This is useful if the
microcontroller you are using has its own checksum calculation and you want that
calculation to correspond to the calculation performed by XLINK.

THE CHECKSUM CALCULATION

The CRC checksum is calculated as if the following code was called for each bit in the
input, starting with a CRC of 0:

unsigned long
crc(int bit, unsigned long oldcrc)
{
unsigned long newcrc = (oldcrc << 1) *~ bit;
if (oldcrc & 0x80000000)
newcrc "= POLY;
return newcrc;

Part 6. Reference information 325

Extra Options

326

POLY is the generating polynomial. The checksum is the result of the final call to this
routine. If the complement is specified, the checksum is the one’s or two’s complement
of the result.

The linker will place the checksum byte(s) at the __checksum label in the CHECKSUM
segment. This segment must be placed using the segment placement options like any
other segment.

For additional information about segment control, see the IAR Linker and Library Tools
Reference Guide.

Extra Options

IAR Embedded Workbench® IDE
User Guide

The Extra Options page provides you with a command line interface to the linker.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Figure 186: Extra Options page for the linker

USE COMMAND LINE OPTIONS

Additional command line arguments for the linker (not supported by the GUI) can be
specified here.

Library builder options

This chapter describes the XAR Library builder options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 83.

Output

XAR options are not available by default. Before you can set XAR options in the AR
Embedded Workbench IDE, you must add the XAR Library Builder tool to the list of

categories. Choose Project>Options to display the Options dialog box, and select the
General Options category. On the Output page, select the Library option.

If you select the Library option, Library Builder appears as a category in the Options
dialog box. As a result of the build process, the XAR Library Builder will create a
library output file. Before you create the library you can set the XAR options.

Part 6. Reference information

327

Output

To set XAR options, select Library Builder from the category list to display the XAR
options.

Options for node “projectl - Debug" E
Category: Factory Settings |

General Options

C/EC++ compiler Output |
Azzembler -
Custom Build Output file

™ Overide default

Iproiect‘l THE

: Library Builder

()3 I Cancel |

Figure 187: XAR output options

To restore all settings to the default factory settings, click the Factory Settings button.

The Output file option overrides the default name of the output file. Enter a new name
in the Override default text box.

IAR Embedded Workbench® IDE
328 User Guide

Debugger options

This chapter describes the C-SPY options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 83.

In addition, for information about options specific to an additional C-SPY
driver, see the online help system available from the Help menu.

Setup

To set C-SPY options in the AR Embedded Workbench IDE, choose Project>Options
to display the Options dialog box. Then select Debugger in the Category list. The
Setup page contains the generic C-SPY options.

Setup |
Driver———————————— ¥ Funto
I Simulator j Imain
— Setup macro

™ Use macra file
| L

— Device description file

™ Overide default

| L

Figure 188: Generic C-SPY options

To restore all settings to the default factory settings, click the Factory Settings button.

The Setup options specify the C-SPY driver, the setup macro file, and device
description file to be used, and which default source code location to run to.

DRIVER

Selects the appropriate driver for use with C-SPY, for example a simulator or an
emulator.

Part 6. Reference information

329

Setup

330

IAR Embedded Workbench® IDE
User Guide

Contact your distributor or IAR Systems representative, or visit the IAR Systems web
site at www.iar.com for the most recent information about the available C-SPY drivers.

RUN TO

Use this option to specify a location you want C-SPY to run to when you start the
debugger and after a reset.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for example function names.

If you leave the check-box empty, the program counter will contain the regular hardware
reset address at each reset.
SETUP MACROS

To register the contents of a setup macro file in the C-SPY startup sequence, select Use
macro file and enter the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

DEVICE DESCRIPTION FILE

Use this option to load a device description file that contains device-specific
information. Each file also contains documentation about the definitions.

For details about the device description file, see Selecting a device description file, page
106.

Device description files are provided in the directory cpuname\config and have the
filename extension ddf.

Debugger options ___4

Extra Options

The Extra Options page provides you with a command line interface to the C-SPY
debugger.

r

(Cammatdlife:

Figure 189: Extra Options page for the C-SPY debugger

USE COMMAND LINE OPTIONS

Additional command line arguments for the C-SPY debugger (not supported by the
GUI) can be specified here.

Part 6. Reference information 331

Plugins

Plugins

On the Plugins page you can specify C-SPY plugin modules to be loaded and made
available during debug sessions. Plugin modules can be provided by IAR, as well as by
third-party suppliers. Contact your software distributor or IAR representative, or visit
the IAR Systems web site, for information about available modules.

Flugins

Select pluging to load:

Code Coverage

Description: |[Enables code coverage in the debugger.

Lacatian: |\common\plugins\EodeEoverage\EodeEoverage.dII

Originator: |IAF| Systems
Wersior: |4.B.D.D

Figure 190: C-SPY plugin options
By default, Select plugins to load lists the plugin modules delivered with the product

installation.

If you have any C-SPY plugin modules delivered by any third-party vendor, these will
also appear in the list.

The common\plugins directory is intended for generic plugin modules. The
cpuname\plugins directory is intended for target-specific plugin modules.

IAR Embedded Workbench® IDE
332 User Guide

C-SPY® macros reference

This chapter gives reference information about the C-SPY macros. First a
syntax description of the macro language is provided. Then, the available setup
macro functions and the pre-defined system macros are summarized. Finally,
each system macro is described in detail.

The macro language

The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return value. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. You can
collect your macro functions in a macro file (filename extension mac).

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has the following form:

macroName (parameterList)

{

macroBody

}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.
PREDEFINED SYSTEM MACRO FUNCTIONS

The macro language also includes a wide set of predefined system macro functions
(built-in functions), similar to C library functions. For detailed information about each
system macro, see Description of C-SPY system macros, page 339.

Part 6. Reference information 333

The macro language

334

IAR Embedded Workbench® IDE
User Guide

MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application space. It
can then be used in a C-SPY expression. For detailed information about C-SPY
expressions, see the chapter C-SPY expressions, page 115.

The syntax for defining one or more macro variables is:
__var nameList;
where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and keeps its value and
type through the whole debugging session. A macro variable defined within a macro
body is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

Expression What it means
myvar = 3.5; myvar is now type float, value 3.5.
myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 82: Examples of C-SPY macro variables

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions

expression;

For detailed information about C-SPY expressions, see C-SPY expressions, page 123.

Conditional statements

if (expression)
statement

if (expression)
statement
else
statement

C-SPY® macros reference __¢

Loop statements
for (init_expression; cond_expression; update_expression)

statement

while (expression)
statement

do

statement
while (expression);
Return statements

return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
statementl
statement2

statementN

Printing messages

The __message statement allows you to print messages while executing a macro
function. The value of expression arguments or strings are printed to the Log window.
Its definition is as follows:

__message argList;

where argList is alist of C-SPY expressions or strings separated by commas, as in the
following example:

varl = 42;
var2 = 37;
__message "This line prints the values ", varl, " and ", var2,

" in the Log window.";

Part 6. Reference information 335

Setup macro functions summary

336

This should produce the following message in the Log window:

This line prints the values 42 and 37 in the Log window.

Overriding default display format of arguments

It is possible to override the default display format of a scalar argument (number or
pointer) in argList by suffixing it with a : followed by a format specifier. Available
specifiers are b for binary, $o for octal, $d for decimal, $x for hexadecimal and %c for
character. These match the formats available in the Watch and Locals windows, but
number prefixes and quotes around strings and characters are not printed. Another
example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;
This might produce:

The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%C;

would produce:

65 is the numeric value of the character A

Writing to a file

There is also a statement __ fmessage Which is similar to __message, except that the
first argument must be a file handle. The output is written to the designated file. For
example:

__fmessage myfile, "Result is ", res, "!\n";

Setup macro functions summary

IAR Embedded Workbench® IDE
User Guide

The following table summarizes the available setup macro functions:

Macro Description

execUserPreload Called after communication with the target system is established
but before downloading the target application.
Implement this macro to initialize memory locations and/or
registers which are vital for loading data properly.

Table 83: C-SPY setup macros

C-SPY® macros reference __¢

Macro Description

execUserFlashInit Called once before the flash loader is downloaded to RAM.
Implement this macro typically for setting up the memory map
required by the flash loader. This macro is only called when you are
programming flash, and it should only be used for flash loader
functionality.

execUserSetup Called once after the target application is downloaded.
Implement this macro to set up the memory map, breakpoints,
interrupts, register macro files, etc.

execUserFlashReset Called once after the flash loader is downloaded to RAM, but
before execution of the flash loader. This macro is only called when
you are programming flash, and it should only be used for flash
loader functionality.

execUserReset Called each time the reset command is issued.
Implement this macro to set up and restore data.

execUserExit Called once when the debug session ends.
Implement this macro to save status data etc.
execUserFlashExit Called once when the debug session ends.

Implement this macro to save status data etc. This macro is useful
for flash loader functionality.

Table 83: C-SPY setup macros (Continued)

Note: If you define interrupts or breakpoints in a macro file that is executed at system
start (using execUserSetup) we strongly recommend that you also make sure that they
are removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see Defining a C-SPY setup macro file, page 53.

The reason for this is that the simulator saves breakpoint and interrupt settings between
sessions and if they are not removed they will get duplicated every time
execUserSetup is executed again. This seriously affects the execution speed.

C-SPY system macros summary

The following table summarizes the pre-defined system macros:

Macro Description

__cancelAllInterrupts Cancels all ordered interrupts
__cancelInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

__closeFile Closes a file that was opened by __openFile

Table 84: Summary of system macros

Part 6. Reference information 337

C-SPY system macros summary

338

IAR Embedded Workbench® IDE
User Guide

Macro

Description

__disableInterrupts
__driverType
__enableInterrupts
__openFile

__orderInterrupt

__popSimulatorInterruptExecu
tingStack

__readFile
__readFileByte
__readMemoryByte
__readMemory8
__readMemoryl6
__readMemory32
__registerMacroFile
__resetFile
__setCodeBreak
__setDataBreak
__setSimBreak

__strFind

__subString

__toLower

__toUpper

__writeFile
__writeFileByte
__writeMemoryByte
__writeMemory8
__writeMemorylé6

__writeMemory32

Disables generation of interrupts
Verifies the driver type

Enables generation of interrupts
Opens a file for I/O operations
Generates an interrupt

Informs the interrupt simulation system that an
interrupt handler has finished executing

Reads from the specified file

Reads one byte from the specified file

Reads one byte from the specified memory location
Reads one byte from the specified memory location
Reads two bytes from the specified memory location
Reads four bytes from the specified memory location
Registers macros from the specified file

Rewinds a file opened by __openFile

Sets a code breakpoint

Sets a data breakpoint

Sets a simulation breakpoint

Searches a given string for the occurrence of another
string

Extracts a substring from another string

Returns a copy of the parameter string where all the
characters have been converted to lower case

Returns a copy of the parameter string where all the
characters have been converted to upper case

Writes to the specified file

Writes one byte to the specified file

Writes one byte to the specified memory location
Writes one byte to the specified memory location
Writes two bytes to the specified memory location

Writes four bytes to the specified memory location

Table 84: Summary of system macros (Continued)

C-SPY® macros reference __¢

Description of C-SPY system macros

This section gives reference information about each of the C-SPY system macros.

__cancelAlllnterrupts

Syntax __cancelAllInterrupts ()

Return value int 0

Description Cancels all ordered interrupts.

Applicability This system macro is only available in IAR C-SPY Simulator.
__cancellnterrupt

Syntax __cancelInterrupt (interrupt_id)

Parameter

interrupt_id The value returned by the corresponding

__orderInterrupt macro call (unsigned long)

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 85: __cancellnterrupt return values

Description Cancels the specified interrupt.
Applicability This system macro is only available in IAR C-SPY Simulator.
__clearBreak
Syntax __clearBreak (break_id)
Parameter
break_id The value returned by any of the set breakpoint macros
Return value int 0

Part 6. Reference information 339

Description of C-SPY system macros

Description Clears a user-defined breakpoint.
See also Defining breakpoints, page 121.
__closeFile
Syntax __closeFile(filehandle)
Parameter
filehandle The macro variable used as filehandle by the __openFile macro
Return value int 0
Description Closes a file previously opened by __openFile.
__disablelnterrupts
Syntax __disableInterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 86: __disablelnterrupts return values

Description Disables the generation of interrupts.
Applicability This system macro is only available in IAR C-SPY Simulator.
__driverType
Syntax __driverType(driver_id)
Parameter
driver_id A string corresponding to the driver you want to check for; for a list

of supported strings, see the online help system available from the
Help menu

IAR Embedded Workbench® IDE
340 User Guide

C-SPY® macros reference __¢

Return value

Result Value
Successful 1
Unsuccessful 0

Table 87: __driverType return values

Description Checks to see if the current IAR C-SPY Debugger driver is identical to the driver type
of the driver_id parameter.

Example __driverType("sim")

If a simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__enablelnterrupts

Syntax __enableInterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 88: __enablelnterrupts return values

Description Enables the generation of interrupts.
Applicability This system macro is only available in IAR C-SPY Simulator.
__openFile
Syntax __openFile(file, access)
Parameters
file The filename as a string
access The access type (string); one of the following:
"t ASCII read
"w" ASCII write

Return value
Result Value

Successful The file handle

Table 89: __openkFile return values

Part 6. Reference information 341

Description of C-SPY system macros

342

Description

Example

See also

__orderinterrupt

Syntax

Parameters

Return value

IAR Embedded Workbench® IDE
User Guide

Result Value

Unsuccessful An invalid file handle, which tests as False

Table 89: __openFile return values

Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (* . pew or *.pr3j) is located. The argument to __openFile
can specify a location relative to this directory. In addition, you can use argument
variables such as $PROJ_DIR$ and $STOOLKIT_DIRS in the path argument.

__var filehandle; /* The macro variable to contain */
/* the file handle */
filehandle = __openFile("Debug\\Exe\\test.tst", "r");
if (filehandle)
{
/* successful opening */
}

Argument variables summary, page 225.

__orderInterrupt (specification, first_activation,
repeat_interval, variance, infinite_hold time,
hold time, probability)

specification The interrupt (string). The specification can either be the full
specification used in the device description file (Adf) or only the
name. In the latter case the interrupt system will automatically get
the description from the device description file.

first_activation The first activation time in cycles (integer)

repeat_interval The periodicity in cycles (integer)

variance The timing variation range in percent (integer between 0 and 100)
infinite_hold_time | if infinite, otherwise 0.

hold time The hold time (integer)

probability The probability in percent (integer between 0 and 100)

The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.

C-SPY® macros reference __¢

Description Generates an interrupt.
Applicability This system macro is only available in IAR C-SPY Simulator.
Example The following example generates a repeating interrupt using an infinite hold time first

activated after 4000 cycles:

__orderInterrupt("USARTR_VECTOR", 4000, 2000, 0, 1, 0O, 100);

__popSimulatorinterruptExecutingStack

Syntax __popSimulatorInterruptExecutingStack (void)
Return value This macro has no return value.
Description Informs the interrupt simulation system that an interrupt handler has finished executing,

as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

Applicability This system macro is only available in IAR C-SPY Simulator.
__readFile
Syntax __readFile(file, value)
Parameters
file A file handle
value A pointer to a macro variable

Return value

Result Value
Successful 0
Unsuccessful Non-zero error number

Table 90: __readFile return values
Description Reads a sequence of hexadecimal digits from the given file and converts them to an

unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Part 6. Reference information 343

Description of C-SPY system macros

Example __var number;
if (__readFile(myFile, &number) == 0)
{

// Do something with number

__readFileByte
Syntax __readFileByte(file)
Parameter
file A file handle
Return value -1 upon error or end-of-file, otherwise a value between 0 and 255.
Description Reads one byte from the file file.
Example __var byte;
while ((byte = __readFileByte(myFile)) != -1)
{
// Do something with byte
}
__readMemoryByte
Syntax __readMemoryByte (address, zone)
Parameters
address The memory address (integer)
zone The memory zone name (string); for a list of available zones,
see Memory addressing, page |35
Return value The macro returns the value from memory.
Description Reads one byte from a given memory location.
Example __readMemoryByte (0x0108, "Memory") ;

IAR Embedded Workbench® IDE
344 User Guide

C-SPY® macros reference __¢

__readMemory8
Syntax __readMemory8 (address, zone)
Parameters
address The memory address (integer)
zone The memory zone name (string)
Return value The macro returns the value from memory.
Description Reads one byte from a given memory location.
Example _ _readMemory$8 (0x0108, "Memory") ;
__readMemoryl 6
Syntax __readMemorylé6 (address, zone)
Parameters
address The memory address (integer)
zone The memory zone name (string)
Return value The macro returns the value from memory.
Description Reads two bytes from a given memory location.
Example __readMemoryl6 (0x0108, "Memory");
__readMemory32
Syntax __readMemory32 (address, zone)
Parameters
address The memory address (integer)
zone The memory zone name (string)
Return value The macro returns the value from memory.
Description Reads four bytes from a given memory location.

Part 6. Reference information 345

Description of C-SPY system macros

346

__registerMacroFile

Example

Syntax

Parameter

Return value

Description

Example

See also

__resetFile

IAR Embedded Workbench® IDE

User Guide

Syntax

Parameter

Return value

Description

__readMemory32 (0x0108, "Memory") ;

__registerMacroFile (filename)

filename A file containing the macros to be registered (string)
int 0

Registers macros from a setup macro file. With this function you can register multiple
macro files during C-SPY startup.

__registerMacroFile("c:\\testdir\\macro.mac") ;

Registering and executing using setup macros and setup files, page 139.

_resetFile(filehandle)

filehandle The macro variable used as filehandle by the __openFile
macro

int 0

Rewinds the file previously opened by __openFile.

C-SPY® macros reference __¢

__setCodeBreak

Syntax __setCodeBreak(location, count, condition, cond_type, action)

Parameters
location A string with a location description. This can be either:

A source location on the form { filename}.line.col (for
example {D:\\src\\prog.c}.12.9)

An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0x42)

An expression whose value designates a location (for example main)

count The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

condition The breakpoint condition (string)
cond_type The condition type; either “CHANGED” or “TRUE” (string)
action An expression, typically a call to a macro, which is evaluated when

the breakpoint is detected

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 91: __setCodeBreak return values

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

Examples __setCodeBreak (" {D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode() ") ;

The following example sets a code breakpoint on the label main in your assembler

source:
__setCodeBreak ("#main", 0, "1", "TRUE", "");
See also Defining breakpoints, page 121.

Part 6. Reference information 347

Description of C-SPY system macros

348

__setDataBreak

Syntax __setDataBreak(location, count, condition, cond_type, access,

Parameters
location

count

condition
cond_type

access

action

Return value
Result

action)

A string with a location description. This can be either:

A source location on the form { filename}.line.col (for
example {D:\\src\\prog.c}.12.9),although this is not
very useful for data breakpoints

An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0x42)

An expression whose value designates a location (for example
my_global_variable).

The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

The breakpoint condition (string)
The condition type; either “"CHANGED” or “TRUE” (string)

The memory access type: "R" for read, "W" for write, or "RW"
for read/write

An expression, typically a call to a macro, which is evaluated when
the breakpoint is detected

Value

Successful

Unsuccessful

An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

0

Table 92: __setDataBreak return values

Description Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

Applicability This system macro is only available in IAR C-SPY Simulator.
Example __var brk;
brk = __setDataBreak("Memory:0x4710", 3, "d>6", "TRUE",
"W", "ActionData()");

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference __¢

__clearBreak (brk) ;

See also Defining breakpoints, page 121.
__setSimBreak
Syntax __setSimBreak(location, access, action)
Parameters
location A string with a location description. This can be either:

A source location on the form { filename}.line.col (for
example {D:\\src\\prog.c}.12.9),although this is not
very useful for simulation breakpoints.

An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0xE01E).

An expression whose value designates a location (for example

main).
access The memory access type: "R" for read or "W" for write
action An expression, typically a call to a macro function, which is

evaluated when the breakpoint is detected

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 93: __setSimBreak return values

Applicability This system macro is only available in IAR C-SPY Simulator.
__strFind
Syntax __strFind(string, pattern, position)
Parameters
string The string to search in
pattern The string pattern to search for
position The position where to start the search. The first position is 0

Part 6. Reference information 349

Description of C-SPY system macros

Return value
Description

Example

__subString

Syntax

Parameters

Return value
Description

Example

__toLower

Syntax
Parameter
Return value

Description

Example

IAR Embedded Workbench® IDE

350 User Guide

The position where the pattern was found or -1 if the string is not found.
This macro searches a given string for the occurrence of another string.

__strFind("Compiler", "pile", 0) =3
__strFind("Compiler", "foo", 0) = -1

__subString(string, position, length)

string The string from which to extract a substring
position The start position of the substring
length The length of the substring

A substring extracted from the given string.
This macro extracts a substring from another string.

_subString("Compiler", 0, 2) = "Co"
_subString("Compiler", 3, 4) "pile"

__toLower (string)
stringis any string.
The converted string.

This macro returns a copy of the parameter string where all the characters have been
converted to lower case.

__toLower ("IAR") = "iar"
__toLower ("Mix42") "mix42"

C-SPY® macros reference __¢

__toUpper
Syntax __toUpper (string)
Parameter stringis any string.
Return value The converted string.
Description This macro returns a copy of the parameter string where all the characters have been
converted to upper case.
Example __toUpper ("string") = "STRING"
__writeFile
Syntax __writeFile(file, value)
Parameters
file A file handle
value An integer
Return value int 0
Description Prints the integer value in hexadecimal format (with a trailing space) to the file file.
Note: The __ fmessage statement can do the same thing. The __writeFile macrois
provided for symmetry with __readFile.
__writeFileByte
Syntax __writeFileByte(file, value)
Parameters
file A file handle
value An integer in the range 0-255
Return value int 0
Description Writes one byte to the file file.

Part 6. Reference information 351

Description of C-SPY system macros

__writeMemoryByte

Syntax

Parameters

Return value
Description

Example

__writeMemory8

Syntax

Parameters

Return value
Description

Example

__writeMemoryl 6

Syntax

Parameters

IAR Embedded Workbench® IDE
352 User Guide

__writeMemoryByte(value, address, zone)

value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string)
int 0

Writes one byte to a given memory location.

__writeMemoryByte (0x2F, 0x1F, "Memory") ;

__writeMemory8 (value, address, zone)

value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string)
int 0

Writes one byte to a given memory location.

__writeMemory8 (0x2F, 0x8020, "Memory");

__writeMemoryl6 (value, address, zone)

value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string)

C-SPY® macros reference __¢

Return value int 0

Description Writes two bytes to a given memory location.

Example __writeMemoryl6 (0x2FFF, 0x8020, "Memory") ;

__writeMemory32

Syntax __writeMemory32 (value, address, zone)

Parameters
value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string)

Return value int 0

Description Writes four bytes to a given memory location.
Example

__writeMemory32 (0x5555FFFF, 0x8020, "Memory");

Part 6. Reference information 353

Description of C-SPY system macros

IAR Embedded Workbench® IDE
354 User Guide

Glossary
A

Absolute location

A specific memory address for an object specified in the
source code, as opposed to the object being assigned a location
by the JAR XLINK Linker.

Absolute segments
Segments that have fixed locations in memory before linking.

Address expression
An expression which has an address as its value.

Application

The program developed by the user of the IAR Systems toolkit
and which will be run as an embedded application on a target
processor.

Architecture

A term used by computer designers to designate the structure
of complex information-processing systems. It includes the
kinds of instructions and data used, the memory organization
and addressing, and the methods by which the system is
implemented. The two main architecture types used in
processor design are Harvard architecture and von Neumann
architecture.

Assembler directives

The set of commands that control how the assembler operates.

Assembler options
Parameters you can specify to change the default behavior of
the assembler.

Assembler language

A machine-specific set of mnemonics used to specify
operations to the target processor and input or output registers
or data areas. Assembler language might sometimes be
preferred over C/Embedded C++ to save memory or to
enhance the execution speed of the application.

Glossary °

Auto variables

The term refers to the fact that each time the function in which
the variable is declared is called, a new instance of the variable
is created automatically. This can be compared with the
behavior of local variables in systems using static overlay,
where a local variable only exists in one instance, even if the
function is called recursively. Also called local variables.
Compare Register variables.

Backtrace

Information that allows the IAR C-SPY® Debugger to show,
without any runtime penalty, the complete stack of function
calls wherever the program counter is, provided that the code
comes from compiled C functions.

Bank
See Memory bank.

Bank switching

Switching between different sets of memory banks. This
software technique is used to increase a computer's usable
memory by allowing different pieces of memory to occupy the
same address space.

Banked code
Code that is distributed over several banks of memory. Each
function must reside in only one bank.

Banked data
Data that is distributed over several banks of memory. Each
data object must fit inside one memory bank.

Banked memory
Has multiple storage locations for the same address. See also
Memory bank.

Bank-switching routines
Code that selects a memory bank.

355

356

Batch files

A text file containing operating system commands which are
executed by the command line interpreter. In Unix, this is
called a “shell script” because it is the Unix shell which
includes the command line interpreter. Batch files can be used
as a simple way to combine existing commands into new
commands.

Bitfield
A group of bits considered as a unit.

Breakpoint

1. Code breakpoint. A point in a program that, when reached,
triggers some special behavior useful to the process of
debugging. Generally, breakpoints are used for stopping
program execution or dumping the values of some or all of the
program variables. Breakpoints can be part of the program
itself, or they can be set by the programmer as part of an
interactive session with a debugging tool for scrutinizing the
program's execution.

2. Data breakpoint. A point in memory that, when accessed,
triggers some special behavior useful to the process of
debugging. Generally, data breakpoints are used to stop
program execution when an address location is accessed either
by a read operation or a write operation.

3. Immediate breakpoint. A point in memory that, when
accessed, trigger some special behavior useful in the process of
debugging. Immediate breakpoints are generally used for
halting the program execution in the middle of a memory
access instruction (before or after the actual memory access
depending on the access type) while performing some
user-specified action. The execution is then resumed. This
feature is only available in the simulator version of C-SPY.

C

Calling convention

A calling convention describes the way one function in a
program calls another function. This includes how register
parameters are handled, how the return value is returned, and
which registers that will be preserved by the called function.
The compiler handles this automatically for all C and C++

IAR Embedded Workbench® IDE
User Guide

functions. All code written in assembler language must
conform to the rules in the calling convention in order to be
callable from C or C++, or to be able to call C and C++
functions. The C calling convention and the C++ calling
conventions are not necessarily the same.

Cheap

As in cheap memory access. A cheap memory access either
requires few cycles to perform, or few bytes of code to
implement. A cheap memory access is said to have a low cost.
See Memory access cost.

Checksum

A computed value which depends on the contents of a block of
data and which is stored along with the data in order to detect
corruption of the data. Compare CRC (cyclic redundancy
checking).

Code banking
See Banked code.

Code model

The code model controls how code is generated for an
application. Typically, the code model controls behavior such
as how functions are called and in which code segment
functions will be located. All object files of an application
must be compiled using the same code model.

Code pointers

A code pointer is a function pointer. As many microcontrollers
allow several different methods of calling a function,
compilers for embedded systems usually provide the users
with the ability to use all these methods.

Do not confuse code pointers with data pointers.

Compilation unit
See Translation unit.

Compiler function directives

The compiler function directives are generated by the compiler
to pass information about functions and function calls to the
TIAR XLINK Linker. To view these directives, you must create
an assembler list file. These directives are primarily intended
for compilers that support static overlay, a feature which is
useful in smaller microcontrollers.

Compiler options
Parameters you can specify to change the default behavior of
the compiler.

Cost
See Memory access cost.

CRC (cyclic redundancy checking)

A number derived from, and stored with, a block of data in
order to detect corruption. A CRC is based on polynomials and
is a more advanced way of detecting errors than a simple
arithmetic checksum. Compare Checksum.

C-SPY options
Parameters you can specify to change the default behavior of
the IAR C-SPY Debugger.

Cstartup
Code that sets up the system before the application starts
executing.

C-style preprocessor

A preprocessor is either a stand-alone application or an
integrated part of a compiler, that performs preprocessing of
the input stream before actual compilation takes place. A
C-style preprocessor follows the rules set up in the ANSI
specification of the C language and implements commands
like #define, #if, and #include, which are used to handle textual
macro substitution, conditional compilation, and inclusion of
other files.

D

Data banking
See Banked data.

Glossary °

Data model

The data model specifies the default memory type. This means
that the data model typically controls one or more of the
following: The method used and the code generated to access
static and global variables, dynamically allocated data, and the
runtime stack. It also controls the default pointer type and in
which data segments static and global variables will be
located. A project can only use one data model at a time, and
the same model must be used by all user modules and all
library modules in the project.

Data pointers

Many microcontrollers have different addressing modes in
order to access different memory types or address spaces.
Compilers for embedded systems usually have a set of
different data pointer types so they can access the available
memory efficiently.

Data representation
How different data types are laid out in memory and what
value ranges they represent.

Declaration

A specification to the compiler that an object, a variable or
function, exists. The object itself must be defined in exactly
one translation unit (source file). An object must either be
declared or defined before it is used. Normally an object that is
used in many files is defined in one source file. A declaration
is normally placed in a header file that is included by the files
that use the object.

For example:

/* Variable "a" exists somewhere. Function
"b" takes two int parameters and returns an
int. */

extern int a;
int b(int, int);

Definition

The variable or function itself. Only one definition can exist
for each variable or function in an application. See also
Tentative definition.

357

For example:

int a;
int b(int x, int y)
{

return x + y;

}

Derivative
One of two or more processor variants in a series or family of
microprocessors or microcontrollers.

Device description file

A file used by the IAR C-SPY Debugger that contains various
device-specific information such as I/O registers (SFR)
definitions, interrupt vectors, and control register definitions.

Device driver
Software that provides a high-level programming interface to
a particular peripheral device.

Digital signal processor (DSP)

A device that is similar to a microprocessor, except that the
internal CPU has been optimized for use in applications
involving discrete-time signal processing. In addition to
standard microprocessor instructions, digital signal processors
usually support a set of complex instructions to perform
common signal-processing computations quickly.

Disassembly window

A C-SPY window that shows the memory contents
disassembled as machine instructions, interspersed with the
corresponding C source code (if available).

Dynamic initialization

Variables in a program written in C are initialized during the
initial phase of execution, before the main function is called.
These variables are always initialized with a static value,
which is determined either at compile-time or at link-time.
This is called static initialization. In Embedded C++, variables
might require initialization to be performed by executing code,
for example, running the constructor of global objects, or
performing dynamic memory allocation.

IAR Embedded Workbench® IDE
User Guide

Dynamic memory allocation

There are two main strategies for storing variables: statically at
link-time, or dynamically at runtime. Dynamic memory
allocation is often performed from the heap and it is the size of
the heap that determines how much memory that can be used
for dynamic objects and variables. The advantage of dynamic
memory allocation is that several variables or objects that are
not active at the same time can be stored in the same memory,
thus reducing the memory need of an application. See also
Heap memory.

Dynamic object

An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory
that is dynamically allocated. Compare Static object.

E

EEPROM

Electrically Erasable, Programmable Read-Only Memory. A
type of ROM that can be erased electronically, and then be
re-programmed.

EPROM

Erasable, Programmable Read-Only Memory. A type of ROM
that can be erased by exposing it to ultraviolet light, and then
be re-programmed.

Embedded C++

A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that
performance and portability are particularly important in
embedded systems development was considered when
defining the language.

Embedded system

A combination of hardware and software, designed for a
specific purpose. Embedded systems are often part of a larger
system or product.

Emulator

An emulator is a hardware device that performs emulation of
one or more derivatives of a processor family. An emulator can
often be used instead of the actual microcontroller and
connects directly to the printed circuit board—where the
microcontroller would have been connected—via a connecting
device. An emulator always behaves exactly as the processor it
emulates, and is used when debugging requires all systems
actuators, or when debugging device drivers.

Enumeration

A type which includes in its definition an exhaustive list of
possible values for variables of that type. Common examples
include Boolean, which takes values from the list [true, false],
and day-of-week which takes values [Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday].
Enumerated types are a feature of typed languages, including
C and Ada.

Characters, (fixed-size) integers, and even floating-point types
might be (but are not usually) considered to be (large)
enumerated types.

Exceptions

An exception is an interrupt initiated by the processor
hardware, or hardware that is tightly coupled with the
processor, for instance, a memory management unit (MMU).
The exception signals a violation of the rules of the
architecture (access to protected memory), or an extreme error
condition (division by zero).

Do not confuse this use of the word exception with the term
exception used in the C++ language (but not in Embedded
C++).

Expensive

As in expensive memory access. An expensive memory access
either requires many cycles to perform, or many bytes of code
to implement. An expensive memory access is said to have a
high cost. See Memory access cost.

Extended keywords

Non-standard keywords in C and C++. These usually control
the definition and declaration of objects (that is, data and
functions). See also Keywords.

Glossary °

F

Format specifiers

Used to specify the format of strings sent by library functions
such as printf. In the following example, the function call
contains one format string with one format specifier, %c, that
prints the value of a as a single ASCII character:

)

printf("a = %c", a);

G

General options

Parameters you can specify to change the default behavior of
all tools that are included in the IAR Embedded Workbench
IDE.

Generic pointers

Pointers that have the ability to point to all different memory
types in, for example, a microcontroller based on the Harvard
architecture.

H

Harvard architecture

A microcontroller based on the Harvard architecture has
separate data and instruction buses. This allows execution to
occur in parallel. As an instruction is being fetched, the current
instruction is executing on the data bus. Once the current
instruction is complete, the next instruction is ready to go. This
theoretically allows for much faster execution than a von
Neumann architecture, but there is some added silicon
complexity. Compare von Neumann architecture.

Heap memory

The heap is a pool of memory in a system that is reserved for
dynamic memory allocation. An application can request parts
of the heap for its own use; once memory has been allocated
from the heap it remains valid until it is explicitly released
back to the heap by the application. This type of memory is

359

useful when the number of objects is not known until the
application executes. Note that this type of memory is risky to
use in systems with a limited amount of memory or systems
that are expected to run for a very long time.

Heap size
Total size of memory that can be dynamically allocated.

Host

The computer that communicates with the target processor.
The term is used to distinguish the computer on which the
debugger is running from the microcontroller the embedded
application you develop runs on.

IDE (integrated development environment)
A programming environment with all necessary tools
integrated into one single application.

Include file
A text file which is included into a source file. This is often
performed by the preprocessor.

Inline assembler
Assembler language code that is inserted directly between C
statements.

Inlining

An optimization that replaces function calls with the body of
the called function. This optimization increases the execution
speed and can even reduce the size of the generated code.

Instruction mnemonics

A word or acronym used in assembler language to represent a
machine instruction. Different processors have different
instruction sets and therefore use a different set of mnemonics
to represent them, such as, ADD, BR (branch), BLT (branch if
less than), MOVE, LDR (load register).

Interrupt vector
A small piece of code that will be executed, or a pointer that
points to code that will be executed when an interrupt occurs.

IAR Embedded Workbench® IDE
User Guide

Interrupt vector table

A table containing interrupt vectors, indexed by interrupt type.
This table contains the processor's mapping between interrupts
and interrupt service routines and must be initialized by the
programmer.

Interrupts

In embedded systems, the use of interrupts is a method of
detecting external events immediately, for example a timer
overflow or the pressing of a button.

Interrupts are asynchronous events that suspend normal
processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by both
hardware (I/0O, timer, machine check) and software
(supervisor, system call or trap instruction). Compare Trap.

Intrinsic
An adjective describing native compiler objects, properties,
events, and methods.

Intrinsic functions

1. Function calls that are directly expanded into specific
sequences of machine code. 2. Functions called by the
compiler for internal purposes (that is, floating point
arithmetic etc.).

K

Key bindings
Key shortcuts for menu commands used in the AR Embedded
Workbench IDE.

Keywords

A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they
cannot be used as identifiers (in other words, user-defined
objects such as variables or procedures). See also Extended
keywords.

L

L-value

A value that can be found on the left side of an assignment and
thus be changed. This includes plain variables and
de-referenced pointers. Expressions like (x + 10) cannot be
assigned a new value and are therefore not L-values.

Language extensions
Target-specific extensions to the C language.

Library
See Runtime library.

Linker command file

A file used by the IAR XLINK Linker. It contains command
line options which specify the locations where the memory
segments can be placed, thereby assuring that your application
fits on the target chip.

Because many of the chip-specific details are specified in the
linker command file and not in the source code, the linker
command file also helps to make the code portable.

In particular, the linker specifies the placement of segments,
the stack size, and the heap size.

Local variable
See Auto variables.

Location counter
See Program location counter (PLC).

Logical address
See Virtual address (logical address).

Glossary °

M

MAC (Multiply and accumulate)

A special instruction, or on-chip device, that performs a
multiplication together with an addition. This is very useful
when performing signal processing where many filters and

transforms have the form:
N

Y= E Cit Kiaj

=0

The accumulator of the MAC usually has a higher precision
(more bits) than normal registers. See also Digital signal
processor (DSP).

Macro

1. Assembler macros are user-defined sets of assembler lines
that can be expanded later in the source file by referring to the
given macro name. Parameters will be substituted if referred

to.

2. C macro. A text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of each
macro is then substituted for any occurrences of the macro
name in the rest of the translation unit.

3. C-SPY macros are programs that you can write to enhance
the functionality of the IAR C-SPY Debugger. A typical
application of C-SPY macros is to associate them with
breakpoints; when such a breakpoint is hit, the macro is run
and can for example be used to simulate peripheral devices, to
evaluate complex conditions, or to output a trace.

The C-SPY macro language is like a simple dialect of C, but is
less strict with types.

Mailbox

A mailbox in an RTOS is a point of communication between
two or more tasks. One task can send messages to another task
by placing the message in the mailbox of the other task.
Mailboxes are also known as message queues or message
ports.

361

362

Memory access cost

The cost of a memory access can be in clock cycles, or in the
number of bytes of code needed to perform the access. A
memory which requires large instructions or many instructions
is said to have a higher access cost than a memory which can
be accessed with few, or small instructions.

Memory area
A region of the memory.

Memory bank

The smallest unit of continuous memory in banked memory.
One memory bank at a time is visible in a microcontroller’s
physical address space.

Memory map
A map of the different memory areas available to the
microcontroller.

Memory model

Specifies the memory hierarchy and how much memory the
system can handle. Your application must use only one
memory model at a time, and the same model must be used by
all user modules and all library modules.

Microcontroller

A microprocessor on a single integrated circuit intended to
operate as an embedded system. As well as a CPU, a
microcontroller typically includes small amounts of RAM,
PROM, timers, and 1/O ports.

Microprocessor

A CPU contained on one (or a small number of) integrated
circuits. A single-chip microprocessor can include other
components such as memory, memory management, caches,
floating-point unit, I/O ports and timers. Such devices are also
known as microcontrollers.

Module

The basic unit of linking. A module contains definitions for
symbols (exports) and references to external symbols
(imports). When compiling C/C++, each translation unit
produces one module. In assembler, each source file can
produce more than one module.

IAR Embedded Workbench® IDE
User Guide

N

Nested interrupts
A system where an interrupt can be interrupted by another
interrupt is said to have nested interrupts.

Non-banked memory
Has a single storage location for each memory address in a
microcontroller’s physical address space.

Non-initialized memory
Memory that can contain any value at reset, or in the case of a
soft reset, can remember the value it had before the reset.

Non-volatile storage

Memory devices such as battery-backed RAM, ROM,
magnetic tape and magnetic disks that can retain data when
electric power is shut off. Compare Volatile storage.

NOP

No operation. This is an instruction that does not perform
anything, but is used to create a delay. In pipelined
architectures, the NOP instruction can be used for
synchronizing the pipeline. See also Pipeline.

o

Operator

A symbol used as a function, with infix syntax if it has two
arguments (+, for example) or prefix syntax if it has only one
(for instance, bitwise negation, ~). Many languages use
operators for built-in functions such as arithmetic and logic.

Operator precedence

Each operator has a precedence number assigned to it that
determines the order in which the operator and its operands are
evaluated. The highest precedence operators are evaluated
first. Use parentheses to group operators and operands to
control the order in which the expressions are evaluated.

P

Parameter passing
See Calling convention.

Peripheral
A hardware component other than the processor, for example
memory or an I/O device.

Pipeline

A structure that consists of a sequence of stages through which
a computation flows. New operations can be initiated at the
start of the pipeline even though other operations are already
in progress through the pipeline.

Pointer
An object that contains an address to another object of a
specified type.

#pragma

During compilation of a C/C++ program, the #pragma
preprocessing directive causes the compiler to behave in an
implementation-defined manner. This can include, for
example, producing output on the console, changing the
declaration of a subsequent object, changing the optimization
level, or enabling/disabling language extensions.

Pre-emptive multitasking

An RTOS task is allowed to run until a higher priority process
is activated. The higher priority task might become active as
the result of an interrupt. The term preemptive indicates that
although a task is allotted to run a given length of time (a
timeslice), it might lose the processor at any time. Each time
an interrupt occurs, the task scheduler looks for the highest
priority task that is active and switches to that task. If the
located task is different from the task that was executing before
the interrupt, the previous task is suspended at the point of
interruption.

Compare Round Robin.

Preprocessing directives
A set of directives that are executed before the parsing of the
actual code is started.

Glossary °

Preprocessor
See C-style preprocessor.

Processor variant
The different chip setups that the compiler supports. See
Derivative.

Program counter (PC)
A special processor register that is used to address instructions.
Compare Program location counter (PLC).

Program location counter (PLC)

Used in the IAR Assembler to denote the code address of the
current instruction. The PLC is represented by a special
symbol (typically $) that can be used in arithmetic expressions.
Also called simply location counter (LC).

PROM
Programmable Read-Only Memory. A type of ROM that can
be programmed only once.

Project
The user application development project.

Project options
General options that apply to an entire project, for example the
target processor that the application will run on.

Q

Qualifiers
See Type qualifiers.

R

R-value
A value that can be found on the right side of an assignment.
This is just a plain value. See also L-value.

363

Real-time operating system (RTOS)

An operating system which guarantees the latency between an
interrupt being triggered and the interrupt handler starting, as
well as how tasks are scheduled. An RTOS is typically much
smaller than a normal desktop operating system. Compare
Real-time system.

Real-time system
A computer system whose processes are time-sensitive.
Compare Real-time operating system (RTOS).

Register constant

A register constant is a value that is loaded into a dedicated
processor register when the system is initialized. The compiler
can then generate code that assumes that the constants are
present in the dedicated registers.

Register

A small on-chip memory unit, usually just one or a few bytes
in size, which is particularly efficient to access and therefore
often reserved to function as a temporary storage area during
program execution.

Register locking

Register locking means that the compiler can be instructed that
some processor registers shall not be used during normal code
generation. This is useful in a number of situations. For
example, some parts of a system might be written in assembler
language to gain speed. These parts might be given dedicated
processor registers. Or the register might be used by an
operating system, or by other third-party software.

Register variables

Typically, register variables are local variables that have been
placed in registers instead of on the (stack) frame of the
function. Register variables are much more efficient than other
variables because they do not require memory accesses, so the
compiler can use shorter/faster instructions when working
with them. See also Auto variables.

Relocatable segments
Segments that have no fixed location in memory before
linking.

IAR Embedded Workbench® IDE
User Guide

Reset

A reset is a restart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft
reset). A hard reset can usually not be distinguished from the
power-on condition, which a soft reset can be.

ROM-monitor

A piece of embedded software that has been designed
specifically for use as a debugging tool. It resides in the ROM
of the evaluation board chip and communicates with a
debugger via a serial port or network connection. The
ROM-monitor provides a set of primitive commands to view
and modify memory locations and registers, create and remove
breakpoints, and execute your application. The debugger
combines these primitives to fulfill higher-level requests like
program download and single-step.

Round Robin

Task scheduling in an operating system, where all tasks have
the same priority level and are executed in turn, one after the
other. Compare Pre-emptive multitasking.

RTOS
See Real-time operating system (RTOS).

Runtime library
A collection of useful routines, stored as an object file, that can
be linked into any application.

Runtime model attributes

A mechanism that is designed to prevent modules that are not
compatible to be linked into an application. A runtime attribute
is a pair constituted of a named key and its corresponding
value.

Two modules can only be linked together if they have the same
value for each key that they both define.

S

Saturated mathematics

Most, if not all, C and C++ implementations use mod—2N
2-complement-based mathematics where an overflow wraps
the value in the value domain, that is, (127 + 1) =-128.
Saturated mathematics, on the other hand, does not allow
wrapping in the value domain, for instance, (127 + 1) = 127, if
127 is the upper limit. Saturated mathematics is often used in
signal processing, where an overflow condition would have
been fatal if value wrapping had been allowed.

Scheduler

The part of an RTOS that performs task-switching. It is also
responsible for selecting which task that should be allowed to
run. There are many different scheduling algorithms, but most
of them are either based on static scheduling (performed at
compile-time), or on dynamic scheduling (where the actual
choice of which task to run next is taken at runtime, depending
on the state of the system at the time of the task-switch). Most
real-time systems use static scheduling, because it makes it
possible to prove that the system will not violate the real-time
requirements.

Scope

The section of an application where a function or a variable can
be referenced by name. The scope of an item can be limited to
file, function, or block.

Segment
A chunk of data or code that should be mapped to a physical
location in memory. The segment can either be placed in RAM

(read-and-writeable memory) or in ROM (read-only memory).

Segment map
A set of segments and their locations.

Semaphore

A semaphore is a type of flag that is used for guaranteeing
exclusive access to resources. The resource can be a hardware
port, a configuration memory, or a set of variables. If several
different tasks have to access the same resource, the parts of
the code (the critical sections) that access the resource have to
be made exclusive for every task. This is done by obtaining the

Glossary °

semaphore that protects that resource, thus blocking all other
tasks from it. If another task wishes to use the resource, it also
has to obtain the semaphore. If the semaphore is already in use,
the second task has to wait until the semaphore is released.
After the semaphore is released, the second task is allowed to
execute and can obtain the semaphore for its own exclusive
access.

Severity level

The level of seriousness of the diagnostic response from the
assembler, compiler, or debugger, when it notices that
something is wrong. Typical severity levels are remarks,
warnings, errors, and fatal errors. A remark just points to a
possible problem, while a fatal error means that the
programming tool exits without finishing.

Short addressing

Many microcontrollers have special addressing modes for
efficient access to internal RAM and memory mapped I/O.
Short addressing is therefore provided as an extended feature
by many compilers for embedded systems. See also Data
pointers.

Side effect

An expression in C or C++ is said to have a side-effect if it
changes the state of the system. Examples are assignments to
avariable, or using a variable with the post-increment operator.
The C and C++ standards state that a variable that is subject to
a side-effect should not be used more that once in an
expression. As an example, this statement violates that rule:

*d++ = *d;

Signal

Signals provide event-based communication between tasks. A
task can wait for one or more signals from other tasks. Once a
task receives a signal it waits for, execution continues. A task
in an RTOS that waits for a signal does not use any processing
time, which allows other tasks to execute.

365

Simulator

A debugging tool that runs on the host and behaves as similar
to the target processor as possible. A simulator is used to debug
the application when the hardware is unavailable, or not
needed for proper debugging. A simulator is usually not
connected to any physical peripheral devices. A simulated
processor is often slower, or even much slower, than the real
hardware.

Single stepping
Executing one instruction or one C statement at a time in the
debugger.

Skeleton code
An incomplete code framework that allows the user to
specialize the code.

Special function register (SFR)
A register that is used to read and write to the hardware
components of the microcontroller.

Stack frames

Data structures containing data objects as preserved registers,
local variables, and other data objects that need to be stored
temporary for a particular scope (usually a function).

Earlier compilers usually had a fixed size and layout on a stack
frame throughout a complete function, while modern
compilers might have a very dynamic layout and size that can
change anywhere and anytime in a function.

Stack segments

The segment or segments that reserve space for the stack(s).
Most processors use the same stack for calls and parameters,
but some have separate stacks.

Statically allocated memory

This kind of memory is allocated once and for all at link-time,
and remains valid all through the execution of the application.
Variables that are either global or declared static are allocated
this way.

IAR Embedded Workbench® IDE
User Guide

Static object

An object whose memory is allocated at link-time and is
created during system startup (or at first use). Compare
Dynamic object.

Static overlay

Instead of using a dynamic allocation scheme for parameters
and auto variables, the linker allocates space for parameters
and auto variables at link time. This generates a worst-case
scenario of stack usage, but might be preferable for small chips
with expensive stack access or no stack access at all.

Structure value

A collecting names for structs and unions. A struct is a
collection of data object placed sequentially in memory
(possibly with pad bytes between them). A union is a
collection of data sharing the same memory location.

Symbol
A name that represents a register, an absolute value, or a
memory address (relative or absolute).

Symbolic location
A location that uses a symbolic name because the exact
address is unknown.

T

Target

1. An architecture. 2. A piece of hardware. The particular
embedded system you are developing the application for. The
term is usually used to distinguish the system from the host
system.

Task (thread)

A task is an execution thread in a system. Systems that contain
many tasks that execute in parallel are called multitasking
systems. Because a processor only executes one instruction
stream at the time, most systems implement some sort of
task-switch mechanism (often called context switch) so that all
tasks get their share of processing time. The process of
determining which task that should be allowed to run next is
called scheduling. Two common scheduling methods are
Pre-emptive multitasking and Round Robin.

Tentative definition
A variable that can be defined in multiple files, provided that
the definition is identical and that it is an absolute variable.

Terminal /O
A simulated terminal window in the IAR C-SPY Debugger.

Timeslice

The (longest) time an RTOS allows a task to run without
running the task-scheduling algorithm. It is possible that a task
will be allowed to execute during several consecutive
timeslices before being switched out. It is also possible that a
task will not be allowed to use its entire time slice, for example
if, in a preemptive system, a higher priority task is activated by
an interrupt.

Timer
A peripheral that counts independent of the program
execution.

Translation unit

A source file together with all the header files and source files
included via the preprocessor directive #include, with the
exception of the lines skipped by conditional preprocessor
directives such as #if and #ifdef.

Trap

A trap is an interrupt initiated by inserting a special instruction
into the instruction stream. Many systems use traps to call
operating system functions. Another name for trap is software
interrupt.

Type qualifiers

In standard C/C++, const or volatile. IAR compilers usually
add target-specific type qualifiers for memory and other type
attributes.

U

UBROF (Universal Binary Relocatable Object
Format)

File format produced by the IAR Systems programming tools.

Glossary °

A\

Virtual address (logical address)

An address that needs to be translated by the compiler, linker
or the runtime system into a physical memory address before
it is used. The virtual address is the address seen by the
application, which can be different from the address seen by
other parts of the system.

Virtual space

An IAR Embedded Workbench Editor feature which allows
you to place the insertion point outside of the area where there
are actual characters.

Volatile storage

Data stored in a volatile storage device is not retained when the
power to the device is turned off. In order to preserve data
during a power-down cycle, you should store it in non-volatile
storage. This should not be confused with the C keyword
volatile. Compare Non-volatile storage.

von Neumann architecture

A computer architecture where both instructions and data are
transferred over a common data channel. Compare Harvard
architecture.

W

Woatchpoints

Watchpoints keep track of the values of C variables or
expressions in the C-SPY Watch window as the application is
being executed.

X

XAR options
The set of commands that control how the IAR XAR Library
Builder operates.

XLIB options
The set of commands that control how the IAR XLIB Librarian
operates.

367

368

XLINK options
Parameters you can specify to change the default behavior of
the IAR XLINK Linker.

Z

Zero-overhead loop

A loop in which the loop condition, including branching back
to the beginning of the loop, does not take any time at all. This
is usually implemented as a special hardware feature of the
processor and is not available in all architectures.

Zone

Different processors have widely differing memory
architectures. Zone is the term C-SPY uses for a named
memory area. For example, on processors with separately
addressable code and data memory there would be at least two
zones. A processor with an intricate banked memory scheme
might have several zones.

IAR Embedded Workbench® IDE
User Guide

A

absolute location, definitionof 355
absolute segments, definitionof 355
Access Type (Breakpoints dialog box) 164, 166
Action (Breakpoints dialog box). 165-166, 203
Additional include directories (assembler option). 305
Additional include directories (compiler option) 298
address expression, definitionof.................... 355
address range check, specifying in XLINK. 319
Allow C-SPY-specific output file (XLINK option). 315
Allow directives in first column (assembler option) 303
Allow mnemonics in first column (assembler option). . . . 303
Always generate output (XLINK option) 318
application
built outside the IDE 107
definitionof 355
hardware-dependent aspects. 73
EESHINE oottt 86
architecture, definitionof 355
argument variables L ool 249
in #include filepaths 298, 306, 323
SUMMATY © o v v v e eee et et e e e e e enenn 225
asm (filename extension)o...n... 15
assembler
documentation it 18
ontheHelpmenu 255
features 10
assembler directives 62
definitionof 355
assembler language, definitionof 355
assembler list files
compiler call frame information, including 297
format 45
GENETALING . . ottt e 305
Assembler mnemonics (compiler option) 297
assembler options i 303
definitionof 355
Additional include directories 305

Index °

Allow directives in firstcolumn. 303
Allow mnemonics in firstcolumn 303
Defined symbols, 306
Diagnostics 307
Enable multibyte support. 303
Generate debuginfo. 305
Language i 303
LASt. oot 305
Macro quote charactersc.c.oouo.... 304
OULPUL .« .« e et 304
Preprocessor. i 305
Preprocessor outputtofile...................... 306
User symbols are case sensitive 303
assembler output, including debug information 304
assembler preprocessor. 305
Assembler Reference Guide (Help menu). 255
assembler symbols
defining i 306
using in C-SPY expressions. 116
assert, in built applications 75
assumptions, programming experience. XXIX
Auto indent (editor option) 238
AUto Window 267
COMEXEMENU « . o\ et ettt et et et e e eeeeenes 268
Automatic (compiler option). 292
Autostep settings dialog box (Debug menu) 281
auto-variables, definitionof 355
axx (filename extension). 15

backtrace information

definitionof L i 355

generated by compiler L. 113
bank switching, definitionof. 355
banked code, definitionof. 355
banked data, definitionof 355
banked memory, definitionof 355
bank-switching routines, definitionof. 355

369

370

Batch Build Configuration dialog box (Project menu) . . . 231

Batch Build dialog box (Project menu). 230
batch files
definitionof L 356
specitying in Embedded Workbench IDE 72,250
bin (subdirectory)ol 14
bin, common (subdirectory), 13
bitfield, definitionof 356
blocks, in C-SPY macrosuuinn.. 335
bookmarks
adding 95
showingineditor............ 238
Break (button). 259
breakpoint condition, example 123
Breakpoint Usage dialog box (Simulator menu). 167
USING « ettt e 125
breakpoints 112
code,examplec.c.iiiiiii. 347
conditional, example 57
connectinga C-SPYmacro 141
CONSUIMETS . .. e vttt e e e e e e e ee s 126
data ... 163
example. 348
definitionof 356
immediate, example. i 57
inthe simulator 162
setting in memory window. 122
SELLINES. « v vttt et e 228
system, descriptionof 121
toggling 122
USING SYStEM MACTOS « . vt vev e e e e e eeee e 124
using the dialogbox. 122
VIEWING .« ot ee 125
Breakpoints dialog box
Code . i 202
Data. ... 163
Immediate i 165
Log o 204
Breakpoints window (Viewmenu) 201

IAR Embedded Workbench® IDE
User Guide

Buffered terminal output (XLINK option) 315

-build (iarbuild command line option) 86
Build Actions Configuration (Build Actions options). . ..311
build configuration, definitionof 75
Build window (Viewmenu) 207
building
commands for 85
from the command line 86
103 015 10} 1P 242
the Process . .« oo vt e 83

C

C compiler. See compiler

C function information, in C-SPY. 113
C symbols, using in C-SPY expressions 115
C variables, using in C-SPY expressions 115
¢ (filename eXtension).o.v vt i 15
Call stack information., 113
Call Stack window 113,270
CONEEXEMENU .+ . v v et et et et e e e e eeeeennns 271
EXAMPIE . oot 56
calling convention, definitionof 356
__cancelAllInterrupts (C-SPY system macro) 339
__cancellnterrupt (C-SPY system macro). 339
Category, in Options dialogbox 85,229
cfg (filename extension) 16, 241
characters, in assembler macro quotes 304
cheap memory access, definitionof 356
Check In Files, dialogbox 192
Check Out Files, dialogbox 193
checksum
definitionof 356
generating in XLINK. 324
-clean (iarbuild command line option) 86
__clearBreak (C-SPY systemmacro) 339
Close Workspace (Filemenu). 212
__closeFile (C-SPY systemmacro) 340

code
banked, definitionof 355
skeleton, definitionof 366
EBSHNE v vttt e 86
Code Coverage
commands 274
CONEEXEMCNIU . . o v vv et ettt et e eeeeaenen 274
USING « ettt e 145
viewing the figures. 146
WINdOW 273
code generation
assembler. L 303
compiler, features. oo 9
code memory, fillingunused. 324
code model, definitionof 356
Code page (compiler options). 294
code pointers, definitionof 356
code templates, usingineditor 93
Command file configuration tool (XLINK option) 322
command line options,
specifying in Embedded Workbench IDE. 72,250
Common Fonts (IDE Options dialog box) 234
common (directory)c.ouenenenennnnenen.. 13
compiler
command line version 4,67
documentationt 10, 18
features 9
compiler call frame information
including in assembler listfile 297
compiler diagnostics.t 297
SUPPIESSING « v vttt et 300
compiler function directives, definitionof 357
compiler list files
assembler mnemonics, including 297
example 29
GENETALNG . . oottt e 297
source code, including L. 297
compiler Options vo vt 291
definitionof L. 357
setting in Embedded Workbench, example 27

Index °

Additional include directories 298
Assembler mnemonics. 297
Automatic 292
Code ... o 294
Defined symbols 299
Diagnostics 299
Diagnostics (in listfile) 297
Disable language extensions 292
Embedded C++ 292
Enable multibyte support. 293
Enableremarks 300
Extended Embedded C++ syntax. 292
Generate debug information. 296
Ignore standard include directories 298, 305
Include compiler call frame information 297
Includesource 297
Language........ i 291
Language conformance 292
LaSt. oo 297
Module type. . ..o v 296
Objectmodulename 296
Optimizations., 294
Outputo 295
Output assembler file. 297
Outputlistfile ot 297
Plain ‘char’ is. oo 293
Preincludefile 299
Preprocessor. oo 298
Preprocessor output tofile 299
Relaxed ISO/ANSI 292
Require prototypes. 292
Strict ISO/ANSI. 293
Suppress these diagnostics. 300
Treat all warnings as errors 301
Treatthese as €ITorso vvne e, 301
Treat these asremarks 300
Treat these as warningsc........ 301

compiler output
debug information, including. 296

371

372

modulename 296

COMPIlEr PrePrOCESSOT. « . v vttt e et e eeee e 298
Compiler Reference Guide (Help menu). 255
compiler symbols, defining. 299
conditional breakpoints, example 57
conditional statements, in C-SPY macros............. 334
Conditions (Breakpoints dialog) 164, 204
Config options (XLINK).o ... 322
config (subdirectory). 14
Configuration file (general option) 287
configurationtool L . 322
Configurations for project dialog box (Project menu). . . .226
Configure Auto Indent (IDE Options dialog box). 238
Configure Tools (Toolsmenu) 249
Configure Viewers dialog box (Tools menu)........... 253
config, common (subdirectory)...................... 14
context menus
Call Stack window 271
Disassembly window 260
Editorwindow L L. 195
Editor windowtab 195
Memory window 262
Messages window 207-210
Source Browser window 200
Source Code Control oo io... 189
Watchwindow 266
Workspace window 187, 201
conventions, typographic Xxxiii
cost. See memory access cost
cpp (filename extension)., 16
CPU variant, definitionof. 358
CRC, definition of. 357
Create New Project dialog box (Project menu). 228
cross-references, inmap files 32
Cstartup, definitionof 357
current position, in C-SPY Disassembly window 259
cursor, in C-SPY Disassembly window. 259
$CUR_DIRS (argument variable) 225
CUR_LINES (argument variable). 225

IAR Embedded Workbench® IDE
User Guide

custom build, using. L 87
Custom Tool Configuration (Custom Build options). 309
C-SPY . .t 104
characteristics, Simulator. 151
IDE reference information. 257
menus. See menus
OVEIVIEW ...ttt 5
starting the debugger 107
windows. See windows
C-SPY eXpressions o.vvveninenenenenennenen. 115
evaluating. 118
inC-SPYmacros................ 334
Quick Watch, using L. 118
Tooltip watch, using. 118
Watch window, using, 118
C-SPY Macrosc.uuvuiiniinunnnnnn... 135,333
blocks. 335
conditional statements 334
C-SPY expressionsc.c.oeeenenenennnn.. 334
definition of the system 135
dialogbox 281
USINE o oottt e et e e 138
examples
checking latest value. 136
checking status of register. 140
checking the status of WDT 140
creatingalogmacro 141
execUserExito 337
execUserFlashExit........... 337
execUserSetup, example 53,59
CXECULIMZ o v v vttt e e et 137
connecting to a breakpoint 141
using Quick Watch 140
using setup macro and setup file............... 139
functions 116, 333
loop statementsc.oininininaiaan.. 335
MACIO SLALETMNENLS . . . o\ vttt ettt eeeeeen e 334
Printing mMeSSAaZES. « . . . vt v s et 335

setup macro file

definitionof oL L. 137
EXECULING. . o vt ettt 139
setup macro function
definitionof L L. 137
execUserFlashInit.......................... 337
execUserFlashReset 337
execUserPreload 336
execUserReset. 337
execUserSetupcouiiininnn.. 337
SUMMATY .« v v vvee e et et e et e e e e 336
USING « ettt e 135
variables. 116, 334
_closeFile......... L 340
_driverType . ..o 341
_openFile..... 341
_orderInterrupt. 342-343
_readFileByte........ oL 343
__readFileByte (systemmacro) 344
_readMemoryByte............ ... oL 344
__registerMacroFile. 346
_resetFile 346
_setCodeBreak. 347
_setDataBreak 348
_setSimBreak. 349
_strtFind ..o 349
_subString 350
O OWET . . 350
_tOUPPer « v 351
_owriteFile. ... 351
_writeFileByte. 351
__writeMemoryByte L. 352
_writeMemoryl6.......... ... 353
_writeMemory32 353
_writeMemory8 352
C-SPYooptions, 229, 329
definitionof L. 357
Device descriptionfile. 330
Driver.oi 329

Index °

Plugins. 332
Runto 105, 330
SetUP vttt 329
SEtUP MACTOS .« v v ov ettt et 330
C-SPY windows
Code CoVerage.ovvnn e 145
FindInTrace 156
Function Trace............. ..., 155
021 PP 104
Memory, USING . . . oottt 128
Register
example. 40
Register, usingcoiiiin i 130
Stack ... 2717
Terminal I/O
example. 41
Tracecovie 153
Trace Expressions, 155
C-style preprocessor, definitionof 357
C/EC++ syntax styles, options 241
Databreakpoints. 163
Data breakpoints dialogbox 163
data model, definitionof.......... 357
data pointers, definitionof 357
data representation, definitionof.................... 357
dbg (filename extension)., 16
dbgt (filename extension)co ... 16
ddf (filename extension) 16, 106
Debug info with terminal I/O (XLINK option). 272
debug information
generating inassembler, .. 305
in compiler, generating 296
Debug information for C-SPY (XLINK option) 314
Debug Log window (View menu). 210
Debugmenuiuiiiiiniin 280
debugger concepts, definitionsof 101

373

374

Debugger (IDE Options dialogbox)................. 243

debugging projects
externally built applications. 107
in disassembly mode, example. 36
declaration, definitionof. 357
default installation path., 13
#define options (XLINK) 317
#define statement, in compiler 299
Define symbol (XLINK option) 317
Defined symbols (assembler option). 306
Defined symbols (compiler option). 299
definition, definitionof 357
dep (filename extension)., 16
derivative, definitionof 358
Development environment, introduction. 67
Device description file (C-SPY option). 330
device descriptionfiles, 14, 106
definitionof L 358
specifying interrupts, 342
device driver, definitionof 358
diagnostics
compiler
including inlistfile......................... 297
SUPPIESSING .« o v ov ot e ettt 300
inlistfile i 297
XLINK, suppressingc.oeuuinnenn.. 319
Diagnostics (assembler options) 307
Diagnostics (compiler option). 299
Diagnostics (XLINK option) 318
dialog boxes
Autostep settings (Debugmenu) 281
Batch Build Configuration (Project menu). 231
Batch Build (Projectmenu) 230
Breakpoint Usage (Simulatormenu) 167
CheckInFiles 192
CheckOutFiles........ ..., 193
Code breakpoints., 202
Common fonts (IDE Options dialog box) 234
Configurations for project (Project menu) 226

IAR Embedded Workbench® IDE
User Guide

Configure Auto Indent (IDE Options dialog box)238

Configure Viewers (Toolsmenu) 253
Create New Project (Projectmenu) 228
Data breakpoints, 163
Debugger (IDE Options dialogbox) 243
Edit Filename Extensions (Tools menu). 252
EditInterrupt 174
Edit Memory ACCessovvvnenininenenan... 161
Editor Colors and Fonts (IDE Options dialog box) . ..241
Editor Setup Files (IDE Options dialog) 240
Editor (IDE Options dialogbox) 237
Embedded Workbench Startup (Help menu) 256
Enter Location. 206
External Editor (IDE Options dialog box) 233
Filename Extensions Overrides (Tools menu) 252
Filename Extensions (Tools menu) 251
Fill (Memory window context menu). 263
Find in Files (Editmenu)....................... 217
FindInTrace 157
Find (Editmenu) 216
Immediate breakpoints. 165
Incremental Search (Editmenu).................. 219
Interrupt Setup. 172
Key Bindings (IDE Options dialog box) 235
Linker command file configuration tool. 322
Log breakpoints (Breakpoints window) 204
Log File (Debugmenu) 283
Macro Configuration (Debug menu) 281
Memory Access Setup (Simulator menu). 159
Messages (IDE Options dialog box) 236
New Configuration (Project menu) 227
Options (Projectmenu) 229
Register Filter (IDE Options dialog box)........... 244
Replace (Editmenu) 216
Select SCC Providert 191
Set Log file (Debug menu). 281
Source Code Control (IDE Options dialog box). 245
Stack (IDE Options dialog box). 247
Template (Editmenu) 220

Terminal I/O Log File (Debug menu). 284
Terminal I/O (IDE Options dialog) 246
digital signal processor, definitionof 358
directories
DN .ot 14
common\bin....... L L i il 13
common\config 14
common\doC 14
common\pluging i 14
COMMONNSIC . .+ e v vttt e e e e e e e e 14
compiler include files. 305
config. .. .o 14
doc. ... 15
INC .o 15
Ib. o 15
Plugins. 15
SEHNES. .« v v vttt e 17
STC . e et 15
L1010 15
directory Structure.viiii i 13
Disable language extensions (compiler option). 292
__disableInterrupts (C-SPY system macro) 340
disassembly mode debugging, example 36
Disassembly window 259
CONEEXEMENUL . . o\ vt et e ee e e e e e e e eeaene 260
definitionof L. 358
dni (filename extension) 16-17
do (macro statement)i.iinii.n. 335
doc (subdirectory). ovvi i 15
document CONVENtioNS.ovvnenenennnnenn. Xxxiii
documentation 13
assembler. 10
compiler. 10
online.iiiiiii e 14-15
other documentation Xxxiii
product. 17
thisguide.......... ..o i, XXixX
XLIB . oottt e e e e 12
XLINK. .t e 11

Index °

doc, common (subdirectory)c..... 14
drag-and-drop
of files in Workspace window 77
of text in editor window 91
Driver (C-SPY option) 329
__driverType (C-SPY systemmacro) 340
DSP. See digital signal processor
dxx (filename extension).oueuuurn.. 16
Dynamic Data Exchange (DDE), calling external
editor. 233
dynamic initialization, definitionof 358
dynamic memory allocation, definitionof 358
dynamic object, definitionof 358
Edit Filename Extensions dialog box (Tools menu) 252
Edit Interrupt dialog box (Simulator menu) 174
Edit Memory Access dialogbox.................... 161
Editmenu.........o 213
editing sourcefiles L L. 89
editor
codetemplatesl 93
COMMANAS « . v ov et 91
customizing the environment. 95
features 5
indentation. 92
keyboard commands 197
matching parentheses and brackets 93
OPLIONS . . v v vt ettt e e e e e 237
shortcut to functions. 95, 195
splitter controls 194
status bar, usingin........... oL 93
USINE . oottt e 89
usingexternal. i 96
Editor Colors and Fonts (IDE Options dialog box). 241
editor setup files
OPLIONS .« v e vt ettt e e e et 240
Editor Setup Files (IDE Options dialog). 240

375

376

Editor window 194
CONEXEMENU . . . oottt ettt e 195
Editor window tab contextmenu. 195
Editor (IDE Options dialog box). 237
EEC++ syntax (compiler option) 292
EEPROM, definitionof. 358
Embedded C++
definitionof L 358
syntax, enabling in compiler 292
tatorial L 47
Embedded C++ (compiler option) 292
embedded system, definitionof 358
Embedded Workbench
editor 89
exiting from. i 69
mainwindow, 68, 184
reference information. oL L. 183
TUNMINZ. « ot v vttt e e e e e e e e e ee e 68
version number, displaying 255
Embedded Workbench Startup dialog box (Help menu) . . 256
Embedded Workbench User Guide (Help menu) 255
emulator (C-SPY version)
definitionof 359
third-party 4
Enable multibyte support (assembler option) 303
Enable multibyte support (compiler option) 293
Enable remarks (compiler option). 300
Enable Virtual Space (editor option). 238
enabled transformations, in compiler 295
__enablelnterrupts (C-SPY system macro)............ 341
Enter Location (Breakpoints dialogbox) 206
enumeration, definitionof. 359
EPROM, definitionof 358
error messages
compiler. 301
XLINK. . oo 319
ewd (filename extension)ou..n.. 16
ewp (filename extension)uenon.. 16
eww (filename extension) 16

IAR Embedded Workbench® IDE
User Guide

$EW_DIRS (argument variable). 225

examples

assembler

mixing C and assembler 43

viewing listfile L. 45
breakpoints

EXECUtiNZ UP O . v v vttt e e 39

SELHNG . . o et 38

using dialogbox. oL 57
USINZ MACTO .« v v v ve e et eaens 59

calling convention, examining 43
compiling. 28
ddffile,using.o 55
debuggingaprogram............ 33
disassembly mode debugging. 36
displaying function calls in C-SPY 56
displaying Terminal /O 41
interrupts

HMer interrupt. . .. oottt 178

USINE MACTO. .+« v v v v e ettt eeen 59
linking

acompiler program. 31

viewingthemapfile 32
macros

checking latest value. 136

checking status of register. 140

checking statusof WDT 140

creatingalogmacro 141

for interrupts and breakpoints 59

using Quick Watch 140
Memory window, Uusingoueueeaen.n. 40
mixing C/C++ and assembler. 44
MONItOTING MEMOTY .« + .+« v vt v e vt et et eeeeeaenenn 40
MONItOTING TEZISIEIS . « .« vt v e vt e e e eee e e 40
performing tasks without stopping execution. 123
project

addingfiles i 26

CIEAtING . . . vttt et 23-24
reaching program exitcuenuen.n. 41

Scan for Changed Files (editor option), using 30
setting project optionsouiiienon.. 27
SEEPPING -« v v v ee e et e e 34
tracing incorrect function arguments 123
using libraries i, 61
variables
setting awatchpoint. 37
watchinginC-SPY 36
viewing compiler listfiles 29
workspace, creating anew 23
exceptions, definitionof 359
execUserExit (C-SPY setupmacro) 337
execUserFlashExit (C-SPY setup macro) 337
execUserFlashlnit (C-SPY setup macro). 337
execUserFlashReset (C-SPY setup macro) 337
execUserPreload (C-SPY setup macro). 336
execUserReset (C-SPY setupmacro) 337
execUserSetup (C-SPY setup macro) 337
example 53,59
Executables (output directory) 286
executing a program up to a breakpoint 39
$EXE_DIRS (argument variable) 225
Exit(Filemenu)c0itiriiiinnnnnn.. 69
exit, of user application. 113
expensive memory access, definitionof 359

expressions. See C-SPY expressions

Extended Embedded C++ syntax, enabling in compiler . . 292
extended keywords, definitionof 359
extended linker command line file. See linker command file
extensions. See filename extensions or language extensions

External Editor (IDE Options dialog box). 233
Extra Options
forassembler........................ 307, 326, 331
forcompiler.......... i 301
Extra Output (XLINK options) 316

Index

F

factory settings

restoring default settings 85
XLINK. .o 328
features
assembler. 10
[&0) 1) o3 1 < 9
CdItOr . o vt 5
source codecontrol 4
XLIB .o 12
file extensions. See filename extensions
Filemenu, 211
file types
device descriptiono.itiiiiaann 14
specifying in Embedded Workbench. 106
documentationouuititiiiiaanann 15
header 15
include. 15
Hbraryoonini i 15
linker command file templates. 14
11 F21e) (o 105, 330
INAD © ettt et e 320
projecttemplates 14
read Me ..ottt e 14
readme . . oottt e 15
special function registers description files 14
syntax coloring configuration. 14
filename extensions., 15
ASTNL &ttt e e e 15
XK+ e e e e e e e 15
Gttt e e e 15
g e 16, 241
1675) 2P 16
dbg. .o 16
dbgt ..o 16
ddf ..o 16
dep. .o 16
dni. ..o 16-17

—e

377

378

WA 16
(34 o T P 16
BWW & e et e e e e 16
fmt. . 16
P 16
et e e 16
INC ettt e e e 16
1 17
ISt 16
INAC & v ottt et et e e 16
TNAD &t vttt e e e 16-17
Pbd. . 16
Phi . 16
0 16-17
L 17
] 17
) 17
WS, oo 17
XCl o 17
1 L 17
Filename Extensions dialog box (Tools menu) 251
Filename Extensions Overrides
dialog box (Toolsmenu)coouen... 252
files
addingtoaproject 26
compiling, example 28
editingot 89
NAVIgAtINGottt e 77
readme.htm 17
$FILE_DIRS (argument variable)................... 225
$FILE_FNAMES (argument variable) 225
$FILE_PATHS (argument variable) 225
Fill dialog boX.o vi i 263
USING « vttt e 129
Fill pattern (XLINK option) 324
Fill unused code memory (XLINK option)............ 324
Find dialog box (Editmenu). 216
Find in Files dialog box (Edit menu). 217
Find in Files window (View menu). 208

IAR Embedded Workbench® IDE
User Guide

Find In Trace

dialog boxes. 157
WINdOW 156
Find (button). i, 185
First activation time, definitionof................... 170
fmt (filename extension). 16
for (macro statement) 335
Forced Interrupt window (Simulator menu) 175
Forced Interrupts (Simulatormenu) 152
format specifiers, definitionof 359
Format (XLINK option), 314
formats
assembler listfile.............................. 45
compiler listfile........... 29
C-SPYinput.ot 8
XLINK output
default, overriding., 315, 317
specifying 314
function calls
displaying in C-SPY, example 56
Function Trace (C-SPY window) 155
functions
C-SPY running to when starting 105, 330
intrinsic, definitionof. 360
shortcut to in editor windows. 95, 195
general OptionsSo vttt 285
definitionof 359
specifying,example. 27
Library Configurations. 287
Library Options ovinn i 288
OULPUL &« o v ettt 285
Stack/Heap optionscovivnenn.. 289
Target. . oot 285
Generate checksum (XLINK option) 324
Generate debug info (assembler option) 305
Generate debug information (compiler option) 296

Generate extra output file (XLINK option)............ 316
Generate linker listing (XLINK option) 320
generating extraoutputfile................ 315
generic pointers, definitionof 359
gloSSary. . .o 355
Go to function (editor button) 95, 195
Goto(button)t 185
Go(button) 259
Go(Debugmenu)..........c.ouiniiiiiiiinn... 112
groups, definitionof L L L, 75
h (filename extension).c.ciuiren.... 16
Harvard architecture, definitionof 359
headerfiles i 15
heap memory, definitionof 359
heap size, definitionof 360
Helpmenu i, 255

Assembler Reference Guide. 255

Compiler Reference Guide. 255

Embedded Workbench User Guide 255

Linker and Library Tools Reference Guide 255
highlight color, paler variantof..................... 112
Hold time, definitionof. 170
host, definitionof 360
i (filename exXtension)ouurinrenenen.. 16
IAR Assembler Reference Guide 18
IAR Compiler Reference Guide 18
IAR Linker and Library Tools Reference Guide 18
IAR Systems website. 19
iarbuild, building from the command line.............. 86
TarldePm.exe. 68
IDE. . 3-4

definitionof L 360
if else (macro statement). 334

Index °

if (macro statement), 334
Ignore standard include directories (compiler option)298, 305
illegal acCess. . ..o vt 158
inc (filename extension)uut.n.. 16
inc (subdirectory) 15
Include compiler call frame
information (compiler option). 297
includefiles. 15
assembler, specifyingpath...................... 305
compiler, specifying path. 298, 305
definitionof 360
XLINK, specifyingpath. 323
Include source (compiler option) 297
Include suppressed entries (XLINK option) 321
Incremental Search dialog box (Edit menu) 219
Indent Size (editoroption) 237
indentation, ineditor., 92
information, product i 17
ini (filename extension)c...uurnn.. 17
inline assembler, definitionof. 360
inlining, definitionof 360
input
redirecting to Terminal I/O window 272
special characters in Terminal I/O window 272
input formats, C-SPY i 8
installation path, default 13
installed files. 13
documentation 14-15
executable 13
include. 15
lbraryooini e 15
instruction mnemonics, definitionof. 360
Integrated Development Environment (IDE). 3-4
definitionof 360
Intel-extended, C-SPY input format 8, 103
Internet, IAR Systems web site. 19
Interrupt Log window (Simulator menu). 177
Interrupt Setup dialog box (Simulator menu) 172
interrupt vector table, definitionof 360
interrupt vector, definitionof 360

379

380

interrupts

adapting C-SPY system for target hardware 172
definitionof L i 360
nested, definitionof 362
simulated, definitionof 169
timer interrupt, example. 178
USINg SYStemM MACIOS . . o v v vvvv vt eeeeeene 176
Interrupts (Simulatormenu), 152
intrinsic functions, definitionof 360
intrinsic, definitionof 360
ISO/ANSI C
adheringto.........., 293
Key bindings (IDE Options dialog box) 235
key bindings, definitionof 360
key summary, editor 197
keywords, definitionof L .. 360
Language conformance (compiler option) 292
language extensions
definitionof L il 361
disablingincompiler........... 292
language facilities, incompiler. 9
Language (assembler options). 303
Language (compiler options) 291
lib (subdirectory) 15
librarian. See XLIB
libraries
creating aprojectfor il 62
TUNGIME. . o oottt e 10
library builder. See XAR
Library Configurations (general options) 287
Library file (general option) 287
library files 12,15
library functions, configurable 15

IAR Embedded Workbench® IDE
User Guide

library modules

example 61
specifying in compiler 296
USINE oottt 61
Library Options (general options). 288
Library (general option)c.oovuinien... 287
library, definitionof 364
#line directives, generating
inassembler......... L L L L., 306
incompiler. i 299
Lines/page (XLINK option) 321

Linker and Library Tools Reference Guide (Help menu) . 255
linker command file

definitionof L L. 361
path, specifying i 323
specifyingin XLINKo oo ot 322
templates 14
Linker command file configuration tool 322
Linker command file (XLINK option) 322
linker. See XLINK
list files
assembler. 45
compiler runtime information, including. 297
compiler
assembler mnemonics, including 297
example. 29
generating. i 297
source code, including 297
option for specifying destination 286
XLINK
GENETALNG . . . o\ vttt 320
including segmentmap 320
specifying lines perpage.c.... 321
List (assembler options), 305
List (compileroptions) 297
List (XLINK options)o oviii e 320
$LIST_DIRS (argument variable)................... 225
Live Watchwindow 268
CONEXEMENU . . o\ v ot e e et e e e eeenenns 268,270

Ims.log, licence management system log file 255
local variables, definitionof 355
Localswindow i, 267

CONEXEMENU &« + o v v v et e e e et e et e e eeeeeanenn 267
location counter, definitionof 363
-log (iarbuild command line option) 86
Log File dialog box (Debug menu). 283
logical address, definitionof....................... 367
loop statements, in C-SPY macros 335
Ist (filename extension).c..ouui.n... 16
L-value, definitionof 361

M

mac (filename extension) 16
Macro Configuration dialog box (Debug menu) 281
macro files, specifying 105, 330
Macro quote characters (assembler option). 304
MACTO SLAtEMENLS . . o\ vt o ettt et ie e e eeen s 334
macros
definitionof 361
EXECULING « oo v ot ettt e e e 137
] 153 1 PP 333
MAQC, definitionof i 361
mailbox (RTOS), definitionof 361
main function, C-SPY running to when starting 105, 330
main.sxx (assembler tutorial file) 61
-make (iarbuild command line option) 86
MAanNaging PrOjECS. .« o v vt vt vt e e eeeen 4
mapfiles........ ... i 320
example 32
VIEWING ottt e 32
map (filename extension) 16-17
maxmin.sxx (assembler tutorial file). 61
memory
fillingunused.o i 324
fillingwithvalue 129
MONIOTING « . v v ettt e e e et eeene 128
eXample. 40

Index

memory access cost, definitionof................... 362
Memory Access Setup dialog box
(Simulatormenu). i 159
memory area, definitionof 362
memory bank, definitionof. 362
100180010 728 11T o PP 159
definitionof L i 362
memory model, definitionof. 362
memory usage, summary of, 321
Memory window. 261
COMEEXEMMENIU « . e vt ettt et ettt e eeeeeenes 262
OPETALIONS « . v vttt ettt e e e 262
USINE @ oottt e e 128
MEMOTY ZONES. « . ¢ v et et e eeee et e e e e e 127
menubar. ... 184
C-SPY-specific.cooviiii i 258
menus
Debug ... 280
Edit ... 213
File. ..o 211
Help.o 255
Project o 223
Simulator. 152
TOOIS .o 232
VIBW. oot 221
Windowo 254
message (C-SPY macro statement). 335
Messages window, amount of output 236
Messages (IDE Options dialogbox) 236
messages, printing during macro execution. 335
microcontroller, definitionof 362
microprocessor, definitionof 362
migration, from earlier AR compilers 293
module map, inmapfiles 32
module name, specifying in compiler................ 296
Module summary (XLINK option) 321
Module type (compiler option) 296
MODULE (assembler directive) 62
modules
definitionof i 362

—e

381

382

including local symbols ininput 316

MaiNtainIngottt 61
Module-local symbols (XLINK option) 316
Motorola, C-SPY input format 8, 103
Multiply and accumulate, definitionof 361
multitasking, definitionof. 363
Navigate Backward (button) 185
NDEBUG, preprocessor symbol. 75
nested interrupts, definitionof 362
New Configuration dialog box. (Project menu). 227
Next Bookmark (button) 185
Next Statement (button) 259
No global type checking (XLINK option). 318
non-banked memory, definitionof 362
non-initialized memory, definitionof 362
non-volatile storage, definitionof................... 362
NOP, definitionof 362
object files, specifying output directory 286
Object module name (compiler option). 296
OBJ_DIRS (argument variable) 225
online documentation

guides. 14-15, 255

help ... 255
onlinehelp 18
Open Workspace (Filemenu) 212
__openFile (C-SPY systemmacro). 341
operator precedence, definitionof. 362
operators, definitionof 362
optimization levels 294
optimizationmodels 294
Optimizations page (compiler options). 294
Optimizations (compiler option). 294
optimizations, effects on variables 117

IAR Embedded Workbench® IDE
User Guide

options
assembler. L i 303
CustomBuild. 309, 311
Custom Tool Configuration 309
C-SPY ... 229, 329
editor 237
general 27,285
setup files foreditor. 240
XAR . 327
XLINK. .o 313
Options dialog box (Projectmenu) 229
USINE oottt 84
output
assembler
including debug information. 304
Preprocessor, generatingo i 306
compiler
including debug information. 296
Preprocessor, generatingo i 299
formats. 314
debug (ubrof) 314
from C-SPY, redirectingtoafile 107
generating extrafile........... 315
XLINK
GENETALNG . . . o\ vttt 318
specifying filename. 313
specifying filename on extra output 316
Output assembler file (compiler option) 297
Output file (XLINK option) 313
Output format (XLINK option). 315,317
Output list file (compiler option) 297
Output (assembler option).cooveinnon. .. 304
Output (compiler options). 295
Output (general options), 285
Output (XAR options)ccouiuiiinenen... 327
Output (XLINK options).covvvniniinnn. 313

P

parentheses and brackets, matching (in editor) 93
paths

assembler include files. 305

compiler include files. 298

relative, in Embedded Workbench 77,197

sourcefiles. il 197

XLINK include files 323
pbd (filename extension).cooivuinn... 16
pbi (filename extension) 16
peripherals, definitionof. 363
pew (filename extension)ooueuenn... 16
pipeline, definitionof 363
Plain ‘char’ is (compiler option) 293
Plugins (C-SPY options).ovvviieeenen.. 332
plugins (subdirectory).oviiiiia.. 15
plugins, common (subdirectory) 14
pointers, definitionof 363
#pragma directive, definitionof 363
precedence, definitionof. L. 362
preemptive multitasking, definitionof 363
Preinclude file (compiler option) 299
preprocessing directives, definitionof. 363
preprocessor

definition of. See C-style preprocessor
Preprocessor output to file (assembler option) 306
Preprocessor output to file (compiler option) 299
Preprocessor (assembler option) 305
preprocessor (compiler options) 298
prerequisites, programming experience. XXiX
Printf formatter (general option). 288
prj (filename extension) 17
Probability, definitionof 170
Processing options (XLINK) 324
processor variant, definitionof 363
product information, obtaining detailed 255

product overview
assembler. L Lo i 10

Index °

compiler. 9
C-SPY Debugger.coiiiiiiinnnn.. 5
directory Structureo.euitiinenenonn 13
documentation 17
filetypesovnin i 15
IAR Embedded WorkbenchIDE 3
XAR 12
XLIB oottt 12
XLINK. .o 11
Profiling
columns 276
commands 275
COMEXEMENU . . . oo ottt et e e e e e 275
window 274
program counter, definitionof. 363
program execution, inC-SPY 109
program location counter, definitionof............... 363
programming eXperience. « v.vu et et XXIX
Project Make, optionsot 242
Projectmenu. i 223
Projectmodel 73
project options, definitionof.............. 363
Project page (IDE Options dialogbox)............... 242
projects
addingfilesto 76,223
example. 26
build configuration, creating 76
building 85
compiling, example ool 28
CIEALINE « v vttt et et 24,76
example. 62
definitionof, 74,363
excluding groups and files 76
for debugging externally built applications 107
GrOUPS, CTEALNG . .« . vttt ettt e et 76
MANAZING .« o v o e ettt e 4,73
moving files. L 77
OFANIZALION . . . o vttt et 73
FEMOVING IeMSo\ttt e 77

383

384

SEttiNg OPHioNS « .« vttt 83

EESHNE v vttt e 86

workspace, creating 76
$PROJ_DIRS (argument variable) 225
$PROJ_FNAMES$ (argument variable) 225
$PROJ_PATHS (argument variable) 225
PROM, definitionof 363
PUBLIC (assembler directive) 62

Q

qualifiers, definition of. See type qualifiers

Quick Watch
executing C-SPYmacros. 140
USIIE © vttt ettt e e e e 118
Quick Watch window (View menu) 269
Range checks (XLINK option) 319
Raw binary image (XLINK option) 323
__readFile (C-SPY system macro) 343
__readFileByte (C-SPY system macro) 344
readmefiles............. L 14-15
readmehtm ool 17
__readMemoryByte (C-SPY system macro)........... 344
__readMemory16 (C-SPY system macro) 345
__readMemory32 (C-SPY system macro) 345
__readMemory8 (C-SPY system macro) 345
real-time operating system, definitionof.............. 364
real-time system, definitionof 364
reference information
C-SPYIDE i 257
QUIdES. . oo 18
IAR Embedded Workbench 183
register constant, definitionof. 364
Register Filter (IDE Options dialogbox) 244
Register groups.ot 130
application-specific, defining. 131

IAR Embedded Workbench® IDE
User Guide

pre-defined, enabling 130
register locking, definitionof 364
register variables, definitionof 364
Register windowt 264

example 40

USINE @ oottt e 130
__registerMacroFile (C-SPY system macro). 346
registers, definitionof L. 364
relativepaths. Lo 717,197
Relaxed ISO/ANSI (compiler option). 292
release notes, in doc directory. 14-15
relocatable segments, definitionof 364
remarks, compiler diagnostics. 300
Remove trailing blanks (editor option) 238
Repeat interval, definitionof. 170
Replace dialog box (Editmenu) 216
Replace (button) 185
Require prototypes (compiler option) 292
Reset(button) i, 259
Reset (Debug menu), example 42
__resetFile (C-SPY system macro). 346
reset, definitionof 364
restoring default factory settings. 85
return (macro statement).t 335
ROM-monitor, definitionof 364
TOOt dITECLOTY . o v vttt e e e 13
Round Robin, definitionof 364
RTOS, definitionof., 364
Runto Cursor (button)cvvuuen.... 259
Runto (C-SPY option), 105, 330
runtime libraries 10
runtime library, definitionof....................... 364
runtime model attributes

definitionof 364

inmapfiles 32
rxx (filename extension)t 17
R-value, definitionof 363

S

saturated mathematics, definitionof 365
Save All (Filemenu).covvun.... 212
Save As(Filemenu) 212
Save Current Layout As Default (Debug menu) 152
Save Workspace (Filemenu). 212
Save (Filemenu). uuino... 212
Scan for Changed Files (editor option) 238

USIE &« vttt ettt e e e e 30
scanf formatter (general option) 288
scheduler (RTOS), definitionof 365
scope, definitionof 365
Search paths (XLINK option). 323
SEArChing.ottt e 95
Segment map (XLINK option) 320
segment map, definitionof 365
Segment overlap warnings (XLINK option) 318
segment parts, including all in list file. 321
segments

definitionof 365

overlap errors, reducing 318

range checks, controlling 319

sectioninmapfiles 32
Select SCC Provider

dialogboxes.t 191
semaphores, definitionofo L. 365
Set Log file dialog box (Debug menu) 281
__setCodeBreak (C-SPY system macro). 347
__setDataBreak (C-SPY system macro) 348
__setSimBreak (C-SPY system macro) 349
settings (directory)covn v 17
Setup macros (C-SPY option). 330
setup macros, in C-SPY. See C-SPY macros
Setup (C-SPY options) 329
severity level, definitionof 365
SFR

definitionof 366

headerfiles. i 15

Index °

sfr (filename extension) 17
short addressing, definitionof...................... 365
shortcut Keys. . ..o vvvnt 91
Show Bookmarks (editor option) 238
Show Line Number (editor option) 238
Show right margin (editor option). 237
side-effect, definitionof 365
signals, definitionof L L. 365
simulating interrupts, enabling/disabling 173
simulator
definitionof 366
features 8
Simulatormenu.c..o i 152
Size OptimizZation.ouveiini .. 294
Size (Breakpoints dialog) 164, 203
skeleton code, definitionof. 366
Source Browser window context menu. 200
Source Browser window (View menu) 199
Source Browser, usingc..o .. 79
Source Code Control contextmenu. 189
Source Code Control (IDE Options dialog box) 245
source code control, features., 4
source code, including in compiler listfile 297
source filepaths 77,197
source files 75
adding toa projectoviii i 26
editing 89
special function registers (SFR)
definitionof 366
descriptionfiles il 14
headerfiles. i 15
using as assembler symbols 116
speed optimization 294
SIC (SUDAITECtOrY) .« v v ottt et e 15
src, common (subdirectory) 14
stack frames, definitionof. 366
stack segments, definitionof. 366
Stackwindow 277
USIE « v e ettt et e e e 132

385

386

Stack (IDE Options dialogbox) 247

Stack/Heap (general options) 289
starting the Embedded Workbench 68
static objects, definitionof 366
Static overlay map (XLINK option) 321
static overlay, definitionof 366
statically allocated memory, definitionof 366
status bar. 186
stdin and stdout
redirecting to C-SPY window 114
redirectingtofile L ... 114
Step Into
button. 259
example 36
Step Out (button)c.vuiniinnenenenen .. 259
Step Over (bUtton)c.ouvninnunenenenen .. 259
step points, definitionof L L. 110
SEEPPING - ¢ v vt e e 110
definitionof L 366
example 34
Stop Debugging (button). 259
__strFind (C-SPY systemmacro) 349
Strict ISO/ANSI (compiler option) 293
structure value, definitionof 366
__subString (C-SPY system macro) 350
support, technical 19
Suppress all warnings (XLINK option). 319
Suppress these diagnostics (compiler option) 300
Suppress these diagnostics (XLINK option)........... 319
sxx (filename extension).uuion... 17
symbolic location, definitionof 366
symbols
See also user symbols
defining inassembler. 306
defining in compiler. 299
definingin XLINK. 317
definitionof L. 366
ininputmodules 316
using in C-SPY expressions. 115

IAR Embedded Workbench® IDE
User Guide

syntax coloring

configurationfiles 14

Meditorou i 91
Syntax Highlighting (editor option) 237
syntax highlighting, in Editor window 91
SYSEEIM NACTOS. « ¢ v v oe ettt e et e e eeeeenes 333
Tab Key Function (editor option) 237
Tab Size (editoroption)ccovuiuiinn. 237
Target options, specifying., 285
ArZEL PIOCESSOTS « « . v v vttt e e et et e e 73
Target (general Options)c.oouvrvrennenn. 285
target, definitionof 366
$TARGET_BNAMES$ (argument variable). 225
$TARGET_BPATHS (argument variable). 225
$TARGET_DIRS (argument variable) 225
$TARGET_FNAMES$ (argument variable) 225
$TARGET_PATHS$ (argument variable) 225
task, definitionof 366
technical support. 19
Template dialog box (Editmenu) 220
tentative definition, definitionof.................... 367
Terminal IO LogFile 114
terminal I/O

definitionof 367

simulatingo it 314
Terminal I/O Log File dialog box (Debug menu) 284
Terminal /O window 272

eXAMPIE . . oo 41
Terminal I/O (IDE Options dialog).................. 246
terminology. 355
testing,of code 86
thread, definitionof. 366
timer, definitionof 367
timeslice, definitionof 367
Toggle Bookmark (button) 185
Toggle Breakpoint (button). 185

toggle breakpoint, example. 38, 58
__toLower (C-SPY system macro) 350
tool chain
extending 87
specifying 24
Tool Output window (View menu) 209
toolbar. 185
debug. 258
Traceovviin 154
$TOOLKIT_DIRS (argument variable) 225
Toolsmenuottt 232
tools, user-configured L. 249
__toUpper (C-SPY system macro) 351
Trace
toolbar 154
WINdOW 153
Trace Expressions window 155
transformations, enabled in compiler 295
translation unit, definitionof. 367
trap, definitionof L . 367
Treat all warnings as errors (compiler option). 301
Treat these as errors (compiler option) 301
Treat these as errors (XLINK option) 319
Treat these as remarks (compiler option) 300
Treat these as warnings (compiler option). 301
Treat these as warnings (XLINK option) 319
tutor (Subdirectory)t 15
type qualifiers, definitionof 367
type-checking i 10-11
disabling at link time 318
typographic conventions XXXiii
UBROF. . .. e 8, 11
definitionof 367
Use Code Templates (editor option) 240
Use Custom Keyword File (editor option) 240
User symbols are case sensitive (assembler option) 303

Index

A\

variables
effects of optimizations 117
information, limitationon 117
USING iN arguments.vvvenenenenenenen... 249
using in C-SPY expressions. 115
watching inC-SPY 118
example. 36
Variance, definitionof. 170
version number, of Embedded Workbench 255
VIEW MENU . . vttt et e e e e ie et 221
virtual address, definitionof 367
virtual space, definitionof 367
volatile storage, definitionof 367
von Neumann architecture, definitionof.............. 367
warnings
compiler. 301
XLINK. .« ot e 319
Warnings/Errors (XLINK option) 319
Watchwindow 265
COMEXEMENIU « . v v vttt et et e et eeeeeenes 266
USINE . oee ettt e e 118
watchpoints
definitionof L i 367
SELHNG .« ottt 36
web site, IAR Systems oL 19
while (macro statement) 335
Window menu.ttt 254
windows
AULO. . ot 267
Breakpoints i 201
Build 207
Call Stack. 270
Code CoVerage. oovvnin e 273
DebugLog.coiiui 210

—e

387

388

Disassembly. 259
Editor. 194
FindinFiles......... 208
Forced Interrupt. 175
Interrupt Logo 177
LiveWatch. L 268
Localso i 267
Memoryoovii i 261
Profiling. 274
Quick Watch (Viewmenu). 269
Register 264
Source Browser L oL 199
Terminal /O 272
Tool Outputo 209
Watch. ... 265
Workspace 186
With I/O emulation modules (XLINK option) 314
USING « ettt e 114
With runtime control modules (XLINK option) 314
workspace
CIEAING .« . o vttt et 24
definitionof 74
theprocedure. i 76
Workspace window (Viewmenu) 186
CONEXEMENU . o o v v e et e e e e eeeenenns 187, 201
drag-and-drop of files 77
example 25
__writeFile (C-SPY systemmacro) 351
__writeFileByte (C-SPY system macro). 351
__writeMemoryByte (C-SPY system macro) 352
__writeMemory16 (C-SPY system macro)............ 352
__writeMemory32 (C-SPY system macro)............ 353
__writeMemory8 (C-SPY system macro). 352
wsdt (filename extension) 17
WWW.AALCOMI. « ottt vttt et e e e e e e eeas 19

IAR Embedded Workbench® IDE
User Guide

XAR . 61
documentation 18
OVEIVIEW . o\ v ittt e e 12

XAR options
definitionof i 367
OULPUL &« o v ettt 327

xcl (filename extension)c.uuiiiuninnn... 17

xlb (filename extension)c.coiinui.n.. 17

XLIB. o 61
documentation i 18
features 12
options, definitionof 367
OVEIVIEW . o i ittt ittt e 12

XLINK
diagnostics, suppressing. 319
documentation i 18
EXAMPIE . . oot 31
OVEIVIEW . o\ i ittt e e 11

XLINK list files
GENeTAtiNgottt 320
including segmentmap 320
specifying lines perpagec. ... 321

XLINK Options. . ..o vvvvoee e 313, 324
definitionof 368
factory settings.t 328
Allow C-SPY-specific outputfile................. 315
Always generate output 318
Buffered terminal output 315
Command file configurationtool 322
Config ...ovvii 322
Debug information for C-SPY 314
Definesymbol 317
Diagnosticsot 318
ExtraOutputo, 316
Fill pattern 324
Fill unused code memory. 324
Format........ i 314

Generate checksum 324
Generate extraoutputfile. 316
Generate linker listing 320
Include suppressed entries 321
Lines/page oo 321
Linkercommandfile 322
LSt oot 320
Module summary. 321
Module-local symbols 316
No global type checking 318
OULPUL . oottt e 313
Outputfile ...t 313
Outputformat o vo... 315, 317
Rangechecks........... L., 319
Raw binary image 323
Searchpaths. i i 323
SegMeNt mMap . « o v vv ottt e 320
Segment overlap warnings. 318
Staticoverlaymap i 321
Suppress all warnings 319
Suppress these diagnostics. 319
Treatthese as €rrors oo vv v e 319
Treat these as warnings 319
Warnings/Errors. i 319
With I/O emulation modules 314
With runtime control modules 314
XLINK output, overriding default format. 315, 317
XLINK symbols, defining. 317
zero-overhead loop, definitionof 368
zone
definitionof ool 368
inC-SPY 127

Index

Symbols

#define options (XLINK) 317
#define statement, in compiler 299
#line directives, generating in assembler. 306
#line directives, generating in compiler 299
#pragma directive, definitionof 363
CUR_DIRS (argument variable) 225
CUR_LINES (argument variable). 225
$EW_DIRS (argument variable). 225
$EXE_DIRS (argument variable) 225
$FILE_DIRS (argument variable)................... 225
$FILE_FNAMES$ (argument variable) 225
$FILE_PATHS (argument variable) 225
$LIST_DIRS (argument variable)................... 225
$OBJ_DIRS (argument variable) 225
$PROJ_DIRS (argument variable) 225
$PROJ_FNAMES$ (argument variable) 225
$PROJ_PATHS (argument variable) 225
$TARGET_BNAMES$ (argument variable). 225
$TARGET_BPATHS (argument variable). 225
$TARGET_DIRS (argument variable) 225
$TARGET_FNAMES (argument variable) 225
$TARGET_PATHS (argument variable) 225
$TOOLKIT_DIRS$ (argument variable) 225
__cancelAlllnterrupts (C-SPY system macro) 339
__cancellnterrupt (C-SPY system macro). 339
__clearBreak (C-SPY systemmacro) 339
__closeFile (C-SPY systemmacro) 340
__disablelnterrupts (C-SPY system macro) 340
__driverType (C-SPY systemmacro) 340
__enablelnterrupts (C-SPY system macro). 341
__openFile (C-SPY system macro). 341
__orderInterrupt (C-SPY system macro). 342-343
__readFile (C-SPY systemmacro) 343
__readFileByte (C-SPY system macro) 344
__readMemoryByte (C-SPY system macro)........... 344
__readMemory16 (C-SPY system macro) 345
__readMemory32 (C-SPY system macro) 345

—e

389

__readMemory8 (C-SPY system macro) 345

__registerMacroFile (C-SPY system macro). 346
__resetFile (C-SPY systemmacro). 346
__setCodeBreak (C-SPY system macro). 347
__setDataBreak (C-SPY system macro) 348
__setSimBreak (C-SPY system macro) 349
__strFind (C-SPY system macro) 349
__subString (C-SPY system macro) 350
__toLower (C-SPY system macro) 350
__toUpper (C-SPY system macro) 351
__writeFile (C-SPY systemmacro) 351
__writeFileByte (C-SPY system macro).............. 351
__writeMemoryByte (C-SPY system macro) 352
__writeMemory16 (C-SPY system macro)............ 352
__writeMemory32 (C-SPY system macro)............ 353
__writeMemory8 (C-SPY system macro). 352

IAR Embedded Workbench® IDE
390 User Guide

	Brief contents
	Contents
	Tables
	Figures
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Product overview
	Part 2. Tutorials
	Part 3. Project management and building
	Part 4. Debugging
	Glossary

	Other documentation
	Document conventions

	Part 1. Product overview
	Product introduction
	The IAR Embedded Workbench IDE
	An extensible and modular environment
	Features
	Project management
	Source code control
	Window management
	The text editor

	Documentation

	IAR C-SPY® Debugger
	General C-SPY Debugger features
	Source and disassembly level debugging
	Single-stepping on a function call level
	Code and data breakpoints
	Monitoring variables and expressions
	Container awareness
	Call stack information
	Powerful macro system
	Additional general C-SPY Debugger features

	RTOS awareness
	IAR C-SPY Simulator
	Features

	Documentation

	IAR C/C++ Compiler
	Features
	Code generation
	Language facilities
	Type checking

	Runtime environment
	Documentation

	IAR Assembler
	Features
	Documentation

	IAR XLINK Linker
	Features
	Documentation

	IAR XAR Library Builder and IAR XLIB Librarian
	Features
	Documentation

	Installed files
	Directory structure
	Root directory
	The common directory
	The common\bin directory
	The common\config directory
	The common\doc directory
	The common\plugins directory
	The common\src directory

	The CPUNAME directory
	The cpuname\bin directory
	The cpuname\config directory
	The cpuname\doc directory
	The cpuname\inc directory
	The cpuname\lib directory
	The cpuname\plugins directory
	The cpuname\src directory
	The cpuname\tutor directory

	File types
	Documentation
	The user and reference guides
	IAR Embedded Workbench® IDE User Guide
	IAR C/C++ Compiler Reference Guide
	IAR Assembler Reference Guide
	IAR Linker and Library Tools Reference Guide

	Online help
	IAR on the web

	Part 2. Tutorials
	Creating an application project
	Setting up a new project
	Creating a workspace window
	Creating the new project
	Adding files to the project
	Setting project options

	Compiling and linking the application
	Compiling the source files
	Viewing the list file
	Linking the application
	Output format
	Linker command file
	Linker map file

	Viewing the map file

	Debugging using the IAR C-SPY® Debugger
	Debugging the application
	Starting the debugger
	Organizing the windows
	Inspecting source statements
	Inspecting variables
	Using the Auto window
	Setting a watchpoint

	Setting and monitoring breakpoints
	Executing up to a breakpoint

	Monitoring registers
	Monitoring memory
	Viewing terminal I/O
	Reaching program exit

	Mixing C and assembler modules
	Examining the calling convention
	Adding an assembler module to the project
	Setting up the project
	Viewing the assembler list file

	Using C++
	Creating a C++ application
	Compiling and linking the C++ application
	Setting a breakpoint and executing to it
	Looking at the function calls

	Printing the Fibonacci numbers

	Simulating an interrupt
	Adding an interrupt handler
	The application-a brief description
	Writing an interrupt handler
	Setting up the project

	Setting up the simulation environment
	Defining a C-SPY setup macro file
	Specifying C-SPY options
	Building the project
	Starting the simulator
	Specifying a simulated interrupt
	Setting an immediate breakpoint

	Simulating the interrupt
	Executing the application

	Using macros for interrupts and breakpoints

	Working with library modules
	Using libraries
	The Main.sxx program
	The library routines
	Creating a new project
	Creating a library project
	Using the library in your application project

	Part 3. Project management and building
	The development environment
	The IAR Embedded Workbench IDE
	Running the IAR Embedded Workbench IDE
	Double-clicking the workspace filename

	Exiting

	Customizing the environment
	Organizing the windows on the screen
	Using docked versus floating windows
	Organizing windows

	Customizing the IDE
	Communicating with external tools
	Adding command line commands

	Managing projects
	The project model
	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files

	Creating and managing workspaces
	Drag and drop
	Source file paths

	Navigating project files
	Viewing the workspace
	Displaying browse information

	Source code control
	Interacting with source code control systems
	Setting up an SCC project in the SCC client application
	Connecting projects in IAR Embedded Workbench
	Viewing the SCC states
	Configuring the source code control system

	Building
	Building your application
	Setting options
	Using the Options dialog box

	Building a project
	Building multiple configurations in a batch
	Correcting errors found during build
	Building from the command line

	Extending the tool chain
	Tools that can be added to the tool chain
	Adding an external tool

	Editing
	Using the IAR Embedded Workbench editor
	Editing a file
	Accessing reference information for DLIB library functions
	Using and customizing editor commands and shortcut keys
	Splitting the editor window into panes
	Dragging and dropping of text
	Syntax coloring
	Automatic text indentation
	Matching brackets and parentheses
	Displaying status information

	Using and adding code templates
	Enabling code templates
	Inserting a code template in your source code
	Adding your own code templates

	Navigating in and between files
	Searching

	Customizing the editor environment
	Using an external editor

	Part 4. Debugging
	The IAR C-SPY® Debugger
	Debugger concepts
	IAR C-SPY Debugger and target systems
	Debugger
	Target system
	User application
	IAR C-SPY Debugger systems
	ROM-monitor program
	Third-party debuggers

	The C-SPY environment
	An integrated environment

	Setting up the IAR C-SPY Debugger
	Choosing a debug driver
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules
	The IAR C-SPY RTOS awareness plugin modules

	Starting the IAR C-SPY Debugger
	Executable files built outside of the Embedded Workbench
	Redirecting debugger output to a file

	Executing your application
	Source and disassembly mode debugging
	Executing
	Step
	Go
	Run to Cursor
	Highlighting
	Using breakpoints to stop
	Using the Break button to stop
	Stop at program exit

	Call stack information
	Terminal input and output
	Directing stdin and stdout to a file

	Working with variables and expressions
	C-SPY expressions
	C symbols
	Assembler symbols
	Macro functions
	Macro variables

	Limitations on variable information
	Effects of optimizations

	Viewing variables and expressions
	Working with the windows
	Using the Quick Watch window

	Using the trace system
	The Trace window and its browse mode
	Searching in the trace data

	Viewing assembler variables

	Using breakpoints
	The breakpoint system
	Defining breakpoints
	Toggling a simple code breakpoint
	Setting a breakpoint in the Memory window
	Defining breakpoints using the dialog box
	Tracing incorrect function arguments
	Performing a task with or without stopping execution

	Defining breakpoints using system macros
	Defining breakpoints at C-SPY startup using a setup macro file

	Viewing all breakpoints
	Using the Breakpoint Usage dialog box
	Breakpoint consumers

	Monitoring memory and registers
	Memory addressing
	Using the Memory window
	Memory window operations
	Memory Fill
	Setting a breakpoint in the Memory window

	Working with registers
	Register groups
	Enabling predefined register groups
	Defining application-specific groups

	Using the Stack window
	Graphical stack display
	Detecting stack overflows
	Viewing the stack contents

	Using the C-SPY macro system
	The macro system
	The macro language
	Example

	The macro file
	Setup macro file

	Setup macro functions

	Using C-SPY macros
	Using the Macro Configuration dialog box
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint

	Analyzing your application
	Function-level profiling
	Using the profiler
	Profiling information is displayed in the window.
	Viewing the figures
	Producing reports

	Code coverage
	Using Code Coverage
	Viewing the figures
	What parts of the code are displayed?
	Producing reports

	Part 5. IAR C-SPY® Simulator
	Simulator-specific debugging
	The IAR C-SPY Simulator introduction
	Simulator-specific menus
	Using the trace system in the simulator
	Trace window
	Trace toolbar
	Function Trace window
	Trace Expressions window
	Find In Trace window
	Find in Trace dialog box
	Text search

	Memory access checking
	Memory Access setup dialog box
	Use ranges based on
	Use manual ranges
	Memory Access Checking
	Buttons

	Edit Memory Access dialog box
	Memory range
	Access type
	Cycle costs

	Using breakpoints
	Data breakpoints
	Data breakpoints dialog box

	Immediate breakpoints
	Immediate breakpoints dialog box

	Breakpoint Usage dialog box

	Simulating interrupts
	The C-SPY interrupt simulation system
	Using the interrupt simulation system
	Target-adapting the interrupt simulation system
	Interrupt Setup dialog box
	Edit Interrupt dialog box
	Forced interrupt window
	C-SPY system macros for interrupts
	Defining simulated interrupts at C-SPY startup using a setup file
	Interrupt simulation in a multi-task system

	Interrupt Log window

	Simulating a simple interrupt

	Part 6. Reference information
	IAR Embedded Workbench® IDE reference
	Windows
	IAR Embedded Workbench IDE window
	Menu bar
	Toolbar
	Status bar

	Workspace window
	Workspace window context menu
	Source Code Control menu
	Source code control states

	Editor window
	Split commands
	Go to function
	Editor window tab context menu
	Editor window context menu
	Source file paths
	Editor key summary

	Source Browser window
	Source Browser window context menu

	Breakpoints window
	Breakpoints window context menu

	Build window
	Find in Files window
	Tool Output window
	Debug Log window

	Menus
	File menu
	Edit menu
	View menu
	Project menu
	Argument variables summary

	Tools menu
	Tools menu commands
	Specifying command line commands or batch files

	Window menu
	Window menu commands

	Help menu

	C-SPY® Debugger reference
	C-SPY windows
	Editing in C-SPY windows
	IAR C-SPY Debugger main window
	Menu bar
	Debug toolbar

	Disassembly window
	Disassembly window operations
	Disassembly context menu

	Memory window
	Memory window operations
	Memory window context menu
	Data coverage display
	Fill dialog box

	Register window
	Watch window
	Watch window context menu

	Locals window
	Locals window context menu

	Auto window
	Auto window context menu

	Live Watch window
	Live Watch window context menu

	Quick Watch window
	Quick Watch window context menu

	Call Stack window
	Call Stack window context menu

	Terminal I/O window
	Code Coverage window
	Code coverage commands

	Profiling window
	Profiling commands
	Profiling columns

	Stack window
	The stack drop-down menu
	The graphical stack bar
	The Stack window columns
	The Stack window context menu

	C-SPY menus
	Debug menu

	General options
	Target
	Output
	Library Configuration
	Library Options
	Stack/Heap

	Compiler options
	Language
	C
	Embedded C++
	Extended Embedded C++
	Automatic

	Code
	Optimizations
	Output
	List
	Preprocessor
	Diagnostics
	Extra Options

	Assembler options
	Language
	Output
	List
	Preprocessor
	Diagnostics
	Extra Options

	Custom build options
	Custom Tool Configuration

	Build actions options
	Build Actions Configuration

	Linker options
	Output
	Override default
	Debug information for C-SPY
	With runtime control modules
	With I/O emulation modules
	Buffered terminal output
	Allow C-SPY-specific extra output file
	Other
	Module-local symbols

	Extra Output
	#define
	Diagnostics
	Suppress all warnings
	Suppress these diagnostics
	Treat these as warnings
	Treat these as errors

	List
	Segment map
	Symbols
	Module summary
	Include suppressed entries
	Static overlay map
	File format
	Lines/page

	Config
	Processing
	Fill pattern
	Generate checksum

	Extra Options

	Library builder options
	Output

	Debugger options
	Setup
	Extra Options
	Plugins

	C-SPY® macros reference
	The macro language
	Macro functions
	Predefined system macro functions
	Macro variables
	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks
	Printing messages

	Setup macro functions summary
	C-SPY system macros summary
	Description of C-SPY system macros

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols

