
MM16C-1

M16C/R8C IAR Embedded
Workbench
Migration Guide

for Renesas
M16C/1X–3X, 6X, and R8C

Series of CPU Cores

MM16C-1

COPYRIGHT NOTICE
© Copyright 1995–2004 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Embedded Workbench, IAR visualSTATE, IAR MakeApp, and IAR PreQual are
registered trademarks owned by IAR Systems. C-SPY is a trademark registered in the
European Union and Japan by IAR Systems. IAR, IAR XLINK Linker, IAR XAR
Library Builder, and IAR XLIB Librarian are trademarks owned by IAR Systems.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

First edition: October 2004

Part number: MM16C-1

This guide applies to the M16C/R8C IAR Embedded Workbench™ version 3.x

Contents
Tables .. v

Migrating from version 2.x to version 3.x .. 1

Migration considerations ... 1

IAR Embedded Workbench IDE .. 1

Project file and project setup .. 2

Migrating project options ... 2

C-SPY layout files ... 3

Runtime library and object files ... 3

Compiling and linking with the DLIB runtime library 3

Dynamic memory allocation—heap .. 4

Program entry ... 5

System initialization—Cstartup ... 5

Migrating from CLIB to DLIB .. 6

Migrating from version 1.x to version 2.x ... 7

Differences ... 7

The migration process ... 7

Compiler options .. 9

Removed options .. 9

Identical options ... 10

Renamed or modified options .. 10

Filenames ... 11

List files .. 11

Extended keywords .. 12

Storage modifiers ... 12

Calling convention ... 13

__no_init .. 13

Bit variables ... 13

Interrupt functions and vectors .. 15

using .. 15

sfr and absolute located variables ... 15
MM16C-1

iii

iv
Pragma directives ... 16

Removed directives .. 16

Modified directives .. 16

Identical directives ... 17

New directives .. 17

Predefined symbols .. 18

Intrinsic functions ... 18

Removed intrinsic functions .. 18

Renamed intrinsic functions ... 19

Other changes .. 19

Object file format ... 19

Nested comments ... 20

Preprocessor file ... 20

Sizeof in preprocessor directives ... 20
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Tables
1: Version 1.x compiler options not available in version 2.x 9

2: Compiler options identical in both compiler versions .. 10

3: Renamed or modified options ... 10

4: Specifying filename and directory in version 1.x and version 2.x 11

5: Old and new pragma directives ... 16

6: Version 1.x and version 2.x intrinsic functions ... 19
MM16C-1

v

vi
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Migrating from version 2.x
to version 3.x
This guide presents the major differences between version 2.x and version 3.x
of M16C/R8C IAR Embedded Workbench, and describes the migration
considerations. Hereafter, the two versions are referred to as version 2.x and
version 3.x, respectively.

Note that if you are migrating from M16C/R8C IAR Embedded Workbench
version 1.x, you must first read the chapter Migrating from version 1.x to version
2.x.

Migration considerations
To migrate your old project consider the following:

● Changes in IAR Embedded Workbench, see IAR Embedded Workbench IDE, page 1
● Changes in the runtime environment, see Runtime library and object files, page 3
● Location of functions declared __tiny_func. In version 3.x, functions declared

__tiny_func will be automatically located in the TINYFUNC segment, which
should be placed in the special page area. In version 2.x, you have to manually
make sure that these functions are located in a specific segment, which is to be
placed within the appropriate address range.

Note that not all items in the migration procedure may be relevant for your project.
Consider carefully what actions are needed in your case.

IAR Embedded Workbench IDE
Version 3.x provides new improved project management with support for complex
project setup. The former project window—which could manage one separate
project—has been exchanged with a workspace window. This workspace window can
manage several projects and multiple build configurations for each project. For more
information about project management in version 3.x, see the IAR Embedded
Workbench™ IDE User Guide.
MM16C-1

1

2

IAR Embedded Workbench IDE
Upgrading to the new version of the IAR Embedded Workbench IDE should still be a
smooth process, but you should consider the following:

● Project file and project setup
● Project options
● C-SPY layout files.

PROJECT FILE AND PROJECT SETUP

If you are using the IAR Embedded Workbench IDE, follow these steps to verify that
your project file has been properly converted:

1 Start your new version of M16C/R8C IAR Embedded Workbench and create a new
workspace by choosing File>New and then Workspace.

2 Choose Project>Add Existing Project to insert your old project into the workspace.
This step will create two new project files with the same name as the old file, but with
the extensions ewp and ewd. The ewp file contains all settings required to build the
application, while the ewd file contains all settings related to the debugger. The old
project file will remain untouched.

3 Verify that your options have been set up correctly.

To generate a text file with the command line equivalents of the project options in your
old project, see Migrating project options, page 2.

Also, set any new options.

4 If you have your own linker command file, compare this file with the original file in the
old installation and make the required changes in a copy of the corresponding file in
the new installation.

MIGRATING PROJECT OPTIONS

Since the available compiler options differ between version 1.x and version 2.x, you
should verify your option settings after you have converted an old project.

If you are using the command line interface, you can simply compare your makefile with
the option tables in this section, and modify the makefile accordingly.

If you are using the IAR Embedded Workbench IDE, all option settings are
automatically converted during the project conversion.

However, it is still recommended to verify the options manually. Follow these steps:

1 Open the old project in the old IAR Embedded Workbench version.

2 In the project window, select the project level to get information about options on all
levels in your project.
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Migrating from version 2.x to version 3.x
3 To save the project settings to a file, right-click in the project window. On the context
menu that appears, choose Save As Text, and save the settings to an appropriate
destination.

4 Use this file and the option tables in this section to verify whether the options you used
in your old project are still available or needed. Also check whether you need to use
any of the new options.

For information about where to set the equivalent options in the IAR Embedded
Workbench IDE, see the M16C/R8C IAR C/C++ Compiler Reference Guide.

A new compiler optimization, Type-based alias analysis, is enabled by default. This
optimization can be disabled with the option --no_tbaa or by deselecting the IAR
Embedded Workbench counterpart.

C-SPY LAYOUT FILES

Due to a new improved window management system, the C-SPY layout files support in
version 2.x has been removed. Any custom-made lew files can be safely removed
from your projects.

Runtime library and object files
In version 3.x, two sets of runtime libraries are provided—CLIB and DLIB. CLIB can
be used in the same way as before. DLIB has been extended with new possibilities for
configuration.

To build code produced by version 3.x of the compiler, you must use the runtime
environment components it provides. It is not possible to link object code produced
using version 3.x with components provided with version 2.x.

For information about how to migrate from CLIB to DLIB, see Migrating from CLIB to
DLIB, page 6. For more information about the two libraries, and the runtime
environment they provide see the IAR Runtime Environment and Library Guide.

COMPILING AND LINKING WITH THE DLIB RUNTIME
LIBRARY

In earlier versions, the choice of runtime library did not have any impact on the
compilation. In M16C/R8C IAR Embedded Workbench version 3.x, this has changed.
Now you can configure the runtime library to contain the features that are needed by
your application.
MM16C-1

3

4

Runtime library and object files
One example is input and output. An application may use the fprintf function for
terminal I/O (stdout), but the application does not use file I/O functionality on file
descriptors associated with the files. In this case the library can be configured so that
code related to file I/O is removed but still provides terminal I/O functionality.

This configuration involves the library header files, for example stdio.h. This means
that when you build your application, the same header file setup must be used as when
the library was built. The library setup is specified in a library configuration file, which
is a header file that defines the library functionality.

When building an application using the IAR Embedded Workbench, there are three
library configuration alternatives to choose between: Normal, Full, and Custom.
Normal and Full are prebuilt library configurations delivered with the product, where
Normal should be used in the above example with file I/O. Custom is used for
custom-built libraries. Note that the choice of the library configuration file is handled
automatically.

When building an application from the command line, you must use the same library
configuration file as when the library was built. For the prebuilt libraries (r34) there is
a corresponding library configuration file (h), which has the same name as the library.
The files are located in the m16c\lib directory. The command lines for specifying the
library configuration file and library object file could look like this:

iccm16c --DLIB_config ...\m16c\lib\dlib dlm16cffffwc.h
xlink dlm16cffffwc.r34

In case you intend to build your own library version, use the default library configuration
file dlm16cCustom.h.

To take advantage of the new features it is recommended that you read about the runtime
environment in the IAR Runtime Environment and Library Guide.

DYNAMIC MEMORY ALLOCATION—HEAP

In version 3.x, dynamic memory allocation is possible in the memories data13, data20,
and far. To access a heap in a specific memory, use the appropriate memory attribute as
a prefix to the standard functions malloc, free, calloc, and so forth. For example:

__data16_malloc

Each heap will reside in a segment with the name _HEAP prefixed by a memory attribute,
for example:

DATA16_HEAP

Read more about this in the IAR Linker and Library Tools Reference Guide.
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Migrating from version 2.x to version 3.x
PROGRAM ENTRY

By default, the linker includes all root declared segment parts in program modules
when building an application. However, there is a new mechanism that affects the load
procedure.

There is a new linker option Entry label (-s) to specify a start label. By specifying the
start label, the linker will look in all modules for a matching start label, and start loading
from that point. Like before, any program modules containing a root segment part will
also be loaded.

In version 3.x, the default program entry label in cstartup.s34 is
__program_start, which means the linker will start loading from there. The
advantage of this new behavior is that it is much easier to override cstartup.s34.

If you build your application in the IAR Embedded Workbench, just add your
customized cstartup file to your project. It will then be used instead of the cstartup
module in the library. It is also possible to switch startup files just by overriding the
name of the program entry point.

If you build your application from the command line, the -s option must be explicitly
specified when linking a C/C++ application. If you link without the option, the resulting
output executable will be empty because no modules will be referred to.

SYSTEM INITIALIZATION—CSTARTUP

The content of the cstartup.s34 file has been split up into three files:

cstartup.s34, cmain.s34, cexit.s34

Now, the cstartup.s34 file only contains exception vectors and initial startup code to
setup stacks and processor mode. Note that the cstartup.s34 file is the only one of
these three files that may require any modifications.

The cmain.s34 file initializes data segments and executes C++ constructors. The
cexit.s34 file contains termination code, for example, execution of C++ destructors.

For applications that use a modified copy of cstartup.s34, you must adapt it to the
new file structure.
MM16C-1

5

6

Runtime library and object files
MIGRATING FROM CLIB TO DLIB

There are some considerations to have in mind when if you want to migrate from the
CLIB, the legacy C library, to the modern DLIB C/C++ library:

● The CLIB exp10() function defined in iccext.h is not available in DLIB.
● The DLIB library uses the low-level I/O routines __write and __read instead of

putchar and getchar.
● If the heap size in your version 2.x project using CLIB was defined in a file named

heap.c, you must now set the heap size either in the extended linker command file
(*.xcl) or in the Embedded Workbench to use the DLIB library.

You should also see the chapter The DLIB runtime environment in the IAR Runtime
Environment and Library Guide.
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Migrating from version 1.x
to version 2.x
This chapter contains information about migrating from version 1.x to version
2.x of M16C IAR Embedded Workbench. Follow the instructions in this
chapter first if you are migrating from version 1.x and then read the chapter
Migrating from version 2.x to version 3.x, which contains information about
migrating projects from M16C/R8C IAR Embedded Workbench version 2.x to
3.x.

Differences
The major differences between version 1.x and 2.x are:

The most obvious difference between version 1.x and 2.x is that with version 2.x,
support for Embedded C++ is available.

Moreover, version 2.x adheres more strictly to the ISO/ANSI C standard; for example,
it is possible to use pragma directives instead of extended keywords for defining special
function registers (SFRs).

The checking of data types now adheres more strictly to the ISO/ANSI C standard,
compared to version 1.x.

Note: It is important to be aware of the fact that code written for version 1.x may
generate warnings or errors in version 2.x.

The migration process
To migrate your old project, follow the described migration process. Note that not all
steps in the described migration process may be relevant for your project.

In short, to migrate from version 1.x to version 2.x, consider the following:

1 Replace version 1.x extended keywords in the source code with version 2.x keywords.
For more information, see Extended keywords, page 12.

2 Replace version 1.x pragma directives with version 2.x directives. Notice that the
behavior differs between the two versions; for more information, see Pragma
directives, page 16.
MM16C-1

7

8

The migration process
3 Replace version 1.x intrinsic functions with version 2.x intrinsic functions, whenever
needed. For more information, see Intrinsic functions, page 18.

4 Choose the appropriate version 2.x compiler options. For more information, see
Compiler options, page 9.

5 Modify a copy of the supplied version 2.x linker command file template to suit your
application requirements.

6 Link the code and run the project in the IAR C-SPY™ Debugger.

Note: A file migration.h, which contains translation macros that make the
migration easier, is provided with the product. If you use this file, you can skip steps 1
and 3 above.

7 Make sure not to use nested comments in your source code. In version 2.x, nested
comments are never allowed.

8 The version 2.x compiler uses a different C parser, and a large number of new
optimizations have been added. Depending on your old source code, this might require
you to modify your source code. One example of this is a simple delay loop, such as:

i = 50000;
do {i--;}
while (i-- != 0);

This code will be removed by the optimizer, unless you declare the variable i as
volatile.

In order to produce more efficient code, the compiler performs transformations like, for
example, removing redundant calculations, replacing division by shift, and removing
useless calculations. Code that the compiler considers as not useful is removed; this may
cause unexpected effects like in this example.

9 Version 2.x will by default not accept preprocessor expressions containing any of the
following:

● Floating-point expressions
● Basic type names and sizeof
● All symbol names (including typedefs and variables).

With the option --migration_preprocessor_extensions, version 2.x will accept
such non-standard expressions. For details about this option, see the M16C/R8C IAR
C/C++ Compiler Reference Guide.

The remainder of this chapter describes the differences between version 1.x and 2.x in
detail.
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Migrating from version 1.x to version 2.x
Compiler options
The command line options in version 2.x follow two different syntax styles:

● Long option names containing one or more words prefixed with two dashes, and
sometimes followed by an equal sign and a modifier, for example --strict_ansi
and --module_name=test.

● Short option names consisting of a single letter prefixed with a single dash, and
sometimes followed by a modifier, for example -r.

Some options appear in one style only, while other options appear as synonyms in both
styles. A number of new command line options have been added. For a complete list of
the available command line options, see the M16C/R8C IAR C/C++ Compiler
Reference Guide.

REMOVED OPTIONS

The following table shows the command line options that have been removed:

Old option Description

-C Nested comments

-F Form-feed in list file after each function

-G Opens standard input as source; replaced by - (dash) as source file
name in version 2.x

-g Global strict type checking; in version 2.x, global strict type checking is
always enabled

-gO No type information in object code

-i Adds #include file text

-K '//' comments; in version 2.x, '//' comments are allowed unless
the option --strict_ansi is used

-m[sSmMlLbB] Replaced by --data_model, --constant_data, and
--variable_data

-pnn Lines/page

-T Active lines only

-tn Tab spacing

-Usymb Undefined preprocessor symbol

-X Explains C declarations

-x[DFT2] Cross-reference

Table 1: Version 1.x compiler options not available in version 2.x
MM16C-1

9

10

Compiler options
IDENTICAL OPTIONS

The following table shows the command line options that are identical in version 1.x and
version 2.x:

RENAMED OR MODIFIED OPTIONS

The following version 1.x command line options have been renamed and/or modified:

Option Comment

-Dsymb=value Defines symbols

-e Language extensions

-f filename Extends the command line

-h Enables debug code for HP debugger

-I Defines include paths (The syntax is more free in version 2.x)

-o filename Sets object filename

-s[0–9] Optimizes for speed

-u Data alignment

-z[0–9] Optimizes for size

-y Writable strings

-2 Treats doubles as 64-bit floating-point numbers.

Table 2: Compiler options identical in both compiler versions

Old option New option Description

-A

-a filename
-la .

-la filename

Assembler output; see Filenames, page 11

-b --library_module Makes an object a library module

-c --char_is_signed ‘char’ is ‘signed char’

-gA --strict_ansi Flags old-style functions

-Hname --module_name=name Sets object module name

-L[prefix], -l filename -l[c|C|a|A][N][H] filename Generates list file; the modifiers specify the
type of list file to create

-Nprefix, -n filename --preprocess=[c][n][l]

filename

Preprocessor output

-q -lA .

-lC .

Inserts mnemonics; list file syntax has
changed

-r[012][i][n] -r

--debug

Generates debug information; the
modifiers have been removed

Table 3: Renamed or modified options
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Migrating from version 1.x to version 2.x
Note: A number of new command line options have been added in version 2.x. For a
complete list of the available command line options, see M16C/R8C IAR C/C++
Compiler Reference Guide.

FILENAMES

In version 1.x, file references can be made in either of the following ways:

● With a specific filename, and in some cases with a default extension added, using a
command line option such as -a filename (assembler output to named file).

● With a prefix string added to the default name, using a command line option such as
-A[prefix] (assembler output to prefixed filename).

In version 2.x, a file reference is always regarded as a file path that can be a directory
which the compiler will check and then add a default filename to, or a filename.

The following table shows some examples where it is assumed that the source file is
named test.c, myfile is not a directory, and mydir is a directory:

LIST FILES

In version 1.x, only one C list file and one assembler list file can be produced; in version
2.x there is no upper limit on the number of list files that can be generated. The new
command line option -l[c|C|a|A][N][H] filename is used for specifying the
behavior of each list file.

-S --silent Sets silent operation

-W{rs} --workseg_area{=rs} Specifies the space reserved in the saddr
area for the WRKSEG segment.

Old option New option Description

Table 3: Renamed or modified options (Continued)

Old command New command Result

-l myfile -l myfile myfile.lst

-Lmyfile -l myfiletest myfiletest.lst

-L -l . test.lst

-Lmydir/ -l mydir mydir/test.lst

Table 4: Specifying filename and directory in version 1.x and version 2.x
MM16C-1

11

12

Extended keywords
Extended keywords
The set of language extensions has changed in version 2.x. Some extensions have been
added, some extensions have been removed, and for some of them the syntax has
changed. There is also a rare case where an extension has a different interpretation if
typedefs are used. This is described in the following section.

In version 2.x, all extended keywords except asm start with two underscores, for
example __data16. For detailed information about the extended keywords, see the
M16C/R8C IAR C/C++ Compiler Reference Guide.

STORAGE MODIFIERS

Both version 1.x and version 2.x allow keywords that specify memory location. Each
of these keywords can be used either as a placement attribute for an object, or as a
pointer type attribute denoting a pointer that can point to the specified memory.

When the keywords are used directly in the source code, they behave in a similar way in
version 1.x and version 2.x. The usage of type definitions and extended keywords is,
however, more strict in version 2.x than in version 1.x.

Usage in version 1.x

Products based on the previous compiler technology behave unexpectedly in some
cases:

typedef int near NINT;
NINT a,b;
NINT huge c; /* Illegal */
NINT *p; /* p stored in near memory, points to

 default memory attribute */

The first variable declaration works as expected, that is a and b are located in near
memory.

The declaration of c is however illegal, except when near is the default memory, in
which case there is no need for an extended keyword in the typedef.

In the last declaration, the near keyword of the typedef affects the location of the
pointer variable p, not the pointer type. The pointer type is the default, which is given
by the memory model.
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Migrating from version 1.x to version 2.x
Usage in version 2.x

The corresponding example for version 2.x is:

typedef int __data16 NINT;
NINT a,b;
NINT __data20 c; /* c stored in data20 memory --

 override attribute in typedef */
NINT *p; /* p stored in default memory, points
 to data16 memory */

The declarations of c and p differ. The __data20 keyword in the declaration of c will
always compile. It overrides the keyword of the typedef. In the last declaration the
__data16 keyword of the typedef affects the type of the pointer. It is thus a
__data16 pointer to int. The location of the variable p is however not affected.

CALLING CONVENTION

For backward compatibility, the M16C/R8C IAR C/C++ Compiler version 2.x also
supports the calling convention used by version 1.x of the compiler. For information
about the old calling conventions, see the user documentation provided with that
compiler version. To use the old calling conventions, define and declare your functions
with the __simple keyword, which is available for backward compatibility.

Regardless of using the __simple keyword, it will not be possible to link user object
files (r34) created with the compiler version 1.x with object files created with version
2.x.

__NO_INIT

In version 2.x __no_init can be used, optionally together with a keyword, for
suppressing initialization of a variable at system startup, for example:

__near __no_init char buffer [1000];

In version 1.x, this keyword was not available.

BIT VARIABLES

A bit variable in version 1.x is a volatile boolean variable that can have an absolute
bit-address, be co-located with an SFR or be a relocatable object, like ordinary variables.
For example:

bit a = 87; /* at bit-address 87 (1.x) */
bit p0 = PORT.5; /* bit 5 of port (1.x) */
bit r; /* relocatable bit (1.x) */
MM16C-1

13

14

Extended keywords
Version 2.x uses bitfields of width 1 to implement bit variables. The extended language
feature anonymous structs allows the bits, which are struct members, to be used as if
they were variables in the enclosing scope. The keyword bit is not available in version
2.x. For additional information about anonymous structs, see the M16C/R8C IAR
C/C++ Compiler Reference Guide.

The following example shows an anonymous struct in version 2.x:

/* anonymous struct */
struct {
 char b0:1, b1:1, b2:1, :5, b7:1;
};
char foo() { return b7; }
void bar() { b0 = 1; }

A relocatable bit variable my_bit can be declared in version 2.x using the __bitvar
keyword. The variable will be stored in the BITVARS segment, where each variable only
occupies one bit. For example:

__bitvar struct {unsigned char my_bit:1;}

For more information, see __bitvar, page 126.

To declare an absolute-located bit, the bit address must first be converted to a byte
address. The bit a, in the above example, has bit address 87. Division by 8 yields byte
address 10 and remainder 7, the latter of which is the bit-offset in that byte. Thus the
corresponding version 2.x declaration is:

volatile __near struct { char :7, a:1; } @ 10;

Anonymous unions are used for locating an SFR and a bit field at the same address.

The declaration of PORT (address 100) and p0 (bit 5 of PORT) are combined in the
following way:

/* anonymous union */
volatile __near union {
char PORT;
struct { char :5, p0:1; };
} @ 100;

The version 2.x notation is not as brief as the one used in version 1.x. It is, on the other
hand, more flexible. Bit fields can have any width (not only 1), can be located in any
memory (not restricted to near) and are not necessarily volatile.
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Migrating from version 1.x to version 2.x
INTERRUPT FUNCTIONS AND VECTORS

In version 1.x, a vector offset can be attached to an interrupt function with the
#pragma function directive or directly in the source code, for example:

interrupt [32] void f(void);

where 32 is the vector offset in the vector table. The vector offset is the vector number
times the size of a vector entry, which could be 2 or 4 bytes depending on the memory
model used.

In version 2.x a vector number can be attached to an __interrupt function only by
using the #pragma vector directive, for example:

#pragma vector=8
__interrupt void f(void);

where 8 is the vector number.

USING

The using keyword is not available in version 2.x. Consider the following example
from version 1.x:

interrupt [32]using [ALTERNATE_SET] void f(void);

In version 2.x, the corresponding definition is (using the __regbank_interrupt
keyword):

#pragma vector = 8
__regbank_interrupt void f(void);

Note: ALTERNATE_SET was the only value accepted by version 1.x for the using
keyword.

SFR AND ABSOLUTE LOCATED VARIABLES

In version 1.x, the sfr and sfrp keywords denote an object of byte or word size
residing in the SFR (Special Function Register) memory area for the chip, and being of
the volatile type. The SFR is always located at an absolute address, for example:

sfr PORT=100;

In version 2.x, sfr and sfrp are not available. Instead you can:

● Place any object into the SFR memory, or any other memory, by using a memory
attribute.

● Locate any object at an absolute address by using the #pragma location
directive or by using the locator operator @, for example:
__no_init long PORT @ 100;
MM16C-1

15

16

Pragma directives
● Use the volatile attribute on any type, for example:
volatile __no_init char PORT@100;

See the M16C/R8C IAR C/C++ Compiler Reference Guide for detailed information
about the extended keywords.

Pragma directives
Version 1.x and version 2.x have different sets of pragma directives for specifying
attributes, and they also behave differently:

● In version 1.x, #pragma memory specifies the default location of data objects, and
#pragma function specifies the default location of functions. They change the
default attribute to use for declared objects; they do not have an effect on pointer
types.

● In version 2.x, the #pragma type_attribute and #pragma object_attribute
directives only change the next declared object or typedef.

See the M16C/R8C IAR C/C++ Compiler Reference Guide for information about the
pragma directives.

REMOVED DIRECTIVES

The following pragma directives have been removed:

● alignment
● codeseg
● function

● memory

● warnings

They are recognized and will give a diagnostic message but will not work in version 2.x.

Note: Instead of the #pragma codeseg directive, you can use the #pragma location
directive or the @ operator for specifying an absolute location.

MODIFIED DIRECTIVES

The following table shows the mapping of pragma directives:

Old directive New pragma directive

#pragma function=interrupt #pragma type_attribute=__interrupt

#pragma function=monitor #pragma type_attribute=__monitor

#pragma memory=constseg #pragma constseg, #pragma location

Table 5: Old and new pragma directives
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Migrating from version 1.x to version 2.x
It is important to note that the new directives #pragma type_attribute, #pragma
object_attribute, and #pragma vector affect only the first of the declarations that
follow after the directive. In the following example, x is affected, but z and y are not
affected by the directive:

#pragma object_attribute=__no_init
int x,z;
int y;

The version 2.x directives #pragma constseg and #pragma dataseg are active
until they are explicitly turned off with the directive #pragma constseg=default
and #pragma dataseg=default, respectively. For example:

#pragma constseg=myseg
__no_init f;
#pragma constseg=default

IDENTICAL DIRECTIVES

The following pragma directives are identical in version 1.x and version 2.x:

#pragma language=extended
#pragma language=default

NEW DIRECTIVES

The following pragma directives have been added in version 2.x:

#pragma constseg
#pragma dataseg
#pragma diag_default
#pragma diag_error
#pragma diag_remark
#pragma diag_suppress
#pragma diag_warning
#pragma inline
#pragma location
#pragma message
#pragma object_attribute
#pragma optimize
#pragma type_attribute
#pragma vector

#pragma memory=dataseg #pragma dataseg, #pragma location

#pragma memory=near #pragma memory=__data16

Old directive New pragma directive

Table 5: Old and new pragma directives (Continued)
MM16C-1

17

18

Predefined symbols
Specific segment placement

In version 1.x, the #pragma memory directive supports a syntax that enables subsequent
data objects that match certain criteria to end up in a specified segment. Each object
found after the invocation of a segment placement directive will be placed in the
segment, provided that it does not have a memory attribute placement, and that it has the
correct constant attribute. For constseg, it must be a constant, while for dataseg, it
cannot be declared const.

In version 2.x, the directive #pragma location and the @ operator are available for this
purpose.

Predefined symbols
All predefined symbols supported in version 1.x are supported also in version 2.x.
version 2.x, however, have additional ones.

See the M16C/R8C IAR C/C++ Compiler Reference Guide for information about the
predefined symbols.

Intrinsic functions
Version 1.x and version 2.x have different sets of intrinsic functions. In version 2.x,
some intrinsic functions have been removed and some have been renamed.

REMOVED INTRINSIC FUNCTIONS

The following version 1.x intrinsic functions are not available in version 2.x:

__args$
__argt$
interrupt_on_overflow
overflow_flag_value

Note: Even though there is no interrupt_on_overflow function available in
version 2.x, you can use __RMPA_B_INTO or __RMPA_W_INTO to combine an RMPA
instruction with an INTO instruction. Likewise, even though the
overflow_flag_value is not available, you can use __overflow after a call to
__RMPA_B_overflow or __RMPA_W_overflow to find out if an RMPA instruction
resulted in an overflow.
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Migrating from version 1.x to version 2.x
RENAMED INTRINSIC FUNCTIONS

The following table shows the intrinsic functions that have been renamed in version 2.x:

See the M16C/R8C IAR C/C++ Compiler Reference Guide for information about the
intrinsic functions.

Other changes
This section describes changes related to:

● Object file format
● Nested comments
● Preprocessor file
● Cross-reference information
● Sizeof in preprocessor directives.

OBJECT FILE FORMAT

In version 1.x, two types of source references can be generated in the object file. When
the command line option -r is used, the source statements are being referred to. When
the command line option -re is used, the actual source code is embedded in the object
format.

In version 2.x, when the command line option -r or --debug is used, source file
references are always generated. Embedding of the source code is not supported.

Intrinsic functions in version 1.x Intrinsic functions in version 2.x

break_instruction __break

disable_interrupt __disable_interrupt

enable_interrupt __enable_interrupt

nop_instruction __no_operation

read_ipl __get_interrupt_level

rmpa_instruction __RMPA_W

set_interrupt_table __set_INTB_register

short_rmpa_instruction __RMPA_B

software_interrupt __software_interrupt

und_instruction __illegal_opcode

wait_for_interrupt __wait_for_interrupt

write_ipl __set_interrupt_level

Table 6: Version 1.x and version 2.x intrinsic functions
MM16C-1

19

20

Other changes
NESTED COMMENTS

In the old version, nested comments are allowed if the option -C is used. In version 2.x,
nested comments are never allowed. For example, if a comment was used for removing
a statement as in the following example, it would not have the desired effect.

/*
/* x is a counter */
int x = 0;
*/

The variable x will still be defined, there will be a warning where the inner comment
begins, and there will be an error where the outer comment ends.

 /* x is a counter */
 ^
"c:\bar.c",2 Warning[Pe009]: nested comment is not allowed

 */
 ^
"c:\bar.c",4 Error[Pe040]: expected an identifier

The solution is to use #if 0 to “hide” portions of the source code when compiling:

#if 0
/* x is a counter */
int x = 0;
#endif

Note: #if statements may be nested.

PREPROCESSOR FILE

In version 1.x, a preprocessor file can be generated as a side effect of compiling a source
file.

In version 2.x a preprocessor file is either generated as a side effect, or as the whole
purpose when parsing of the source code is not required. You may also choose to include
or exclude comments and/or #line directives.

SIZEOF IN PREPROCESSOR DIRECTIVES

In version 1.x, sizeof could be used in #if directives, for example:

#if sizeof(int)==2
int i = 0;
#endif
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

Migrating from version 1.x to version 2.x
In version 2.x, sizeof is not allowed in #if directives. The following error message
will be produced:

 #if sizeof(int)==2
 ^
"c:\bar.c",1 Error[Pe059]: function call is not allowed in a
constant expression.

Macros can be used instead, for example SIZEOF_INT. Macros can be defined using the
-D option, or a #define in the source code:

#if SIZEOF_INT==2
int i = 0;
#endif

To find the size of a predefined data type, see the M16C/R8C IAR C/C++ Compiler
Reference Guide.

Complex data types may be computed using one of several methods:

1 Write a small program and run it in the simulator, with terminal I/O.

#include <stdio.h>
struct s { char c; int a; };

void main(void)
{
 printf("sizeof(struct s)=%d \n", sizeof(struct s));
}

2 Write a small program, compile it with the option -la . to get an assembler listing in
the current directory, and look for the definition of the constant x.

struct s { char c; int a; };
const int x = sizeof(struct s);
MM16C-1

21

22

Other changes
MM16C-1

M16C/R8C IAR Embedded Workbench
Migration Guide

	Contents
	Tables
	Migrating from version 2.x to version 3.x
	Migration considerations
	IAR Embedded Workbench IDE
	Project file and project setup
	Migrating project options
	C-SPY layout files

	Runtime library and object files
	Compiling and linking with the DLIB runtime library
	Dynamic memory allocation-heap
	Program entry
	System initialization-Cstartup
	Migrating from CLIB to DLIB

	Migrating from version 1.x to version 2.x
	Differences
	The migration process
	Compiler options
	Removed options
	Identical options
	Renamed or modified options
	Filenames
	List files

	Extended keywords
	Storage modifiers
	Usage in version 1.x
	Usage in version 2.x

	Calling convention
	_ _no_init
	Bit variables
	Interrupt functions and vectors
	using
	sfr and absolute located variables

	Pragma directives
	Removed directives
	Modified directives
	Identical directives
	New directives
	Specific segment placement

	Predefined symbols
	Intrinsic functions
	Removed intrinsic functions
	Renamed intrinsic functions

	Other changes
	Object file format
	Nested comments
	Preprocessor file
	Sizeof in preprocessor directives

