

C-SPY® Debugging Guide

for the 8051
Microcontroller Architecture
UCS8051-5

2

COPYRIGHT NOTICE
© 2011–2018 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, IAR Connect, C-SPY, C-RUN, C-STAT,
IAR Visual State, visualSTATE, IAR KickStart Kit, I-jet, I-jet Trace, I-scope, IAR
Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Intel® is a registered trademark of Intel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fifth edition: April 2018

Part number: UCS8051-5

This guide applies to version 10.x of IAR Embedded Workbench® for 8051.

The C-SPY® Debugging Guide for 8051 replaces all debugging information in the IAR
Embedded Workbench IDE User Guide and the hardware debugger guides for 8051.

Internal reference: M23, Mym8.0, IJOA.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Brief contents
Tables ... 21

Preface .. 23

Part 1. Basic debugging .. 29

The IAR C-SPY Debugger ... 31

Getting started using C-SPY ... 43

Executing your application .. 57

Variables and expressions .. 79

Breakpoints .. 103

Memory and registers .. 129

Part 2. Analyzing your application 171

Trace ... 173

The application timeline .. 187

Profiling .. 209

Code coverage ... 219

Part 3. Advanced debugging ... 223

Interrupts .. 225

C-SPY macros ... 249

The C-SPY command line utility—cspybat 303

Part 4. Additional reference information 355

Debugger options ... 357
AFE1_AFE2-1:1

3

4

Additional information on C-SPY drivers .. 383

Target-adapting the ROM-monitor .. 393

Index ... 409
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Contents
Tables ... 21

Preface .. 23

Who should read this guide ... 23

Required knowledge .. 23

What this guide contains ... 23

Part 1. Basic debugging ... 23

Part 2. Analyzing your application .. 24

Part 3. Advanced debugging .. 24

Part 4. Additional reference information ... 24

Other documentation ... 25

User and reference guides .. 25

The online help system .. 25

Web sites .. 26

Document conventions .. 26

Typographic conventions ... 26

Naming conventions .. 27

Part 1. Basic debugging .. 29

The IAR C-SPY Debugger ... 31

Introduction to C-SPY .. 31

An integrated environment ... 31

General C-SPY debugger features ... 32

RTOS awareness .. 33

Debugger concepts .. 33

C-SPY and target systems .. 34

The debugger .. 35

The target system ... 35

The application ... 35

C-SPY debugger systems ... 35

The ROM-monitor program ... 36
AFE1_AFE2-1:1

5

6

Third-party debuggers .. 36

C-SPY plugin modules ... 36

C-SPY drivers overview ... 37

Differences between the C-SPY drivers ... 37

The IAR C-SPY Simulator .. 38

The C-SPY hardware debugger drivers .. 39

Installing extra software ... 39

Target system with or without a debug probe 40

The C-SPY Infineon driver .. 41

ROM-monitor on target hardware .. 41

Getting started using C-SPY ... 43

Setting up C-SPY .. 43

Setting up for debugging .. 43

Executing from reset .. 44

Using a setup macro file ... 44

Selecting a device description file ... 44

Loading plugin modules ... 45

Starting C-SPY ... 45

Starting a debug session ... 45

Loading executable files built outside of the IDE 46

Starting a debug session with source files missing 46

Loading multiple images ... 47

Editing in C-SPY windows .. 48

Adapting for target hardware ... 48

Modifying a device description file ... 49

Initializing target hardware before C-SPY starts 49

Reference information on starting C-SPY 50

C-SPY Debugger main window ... 50

Images window .. 54

Get Alternative File dialog box .. 56

Executing your application .. 57

Introduction to application execution ... 57

Briefly about application execution ... 57
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Contents

Source and disassembly mode debugging ... 57

Single stepping ... 58

Troubleshooting slow stepping speed .. 60

Running the application ... 61

Highlighting ... 62

Viewing the call stack .. 62

Terminal input and output .. 63

Debug logging .. 63

Reference information on application execution 64

Disassembly window ... 64

Call Stack window ... 69

Terminal I/O window ... 71

Terminal I/O Log File dialog box .. 72

Debug Log window .. 73

Log File dialog box .. 74

Report Assert dialog box .. 75

Autostep settings dialog box .. 76

Cores window .. 76

Variables and expressions .. 79

Introduction to working with variables and expressions 79

Briefly about working with variables and expressions 79

C-SPY expressions ... 80

Limitations on variable information .. 82

Working with variables and expressions 83

Using the windows related to variables and expressions 83

Viewing assembler variables ... 84

Reference information on working with variables and
expressions .. 85

Auto window .. 85

Locals window ... 87

Watch window ... 89

Live Watch window ... 91

Statics window ... 94
AFE1_AFE2-1:1

7

8

Quick Watch window ... 97

Symbols window .. 99

Resolve Symbol Ambiguity dialog box ... 101

Breakpoints .. 103

Introduction to setting and using breakpoints 103

Reasons for using breakpoints ... 103

Briefly about setting breakpoints ... 103

Breakpoint types .. 104

Breakpoint icons .. 106

Breakpoints in the C-SPY simulator .. 106

Breakpoints in the C-SPY hardware debugger drivers 106

Breakpoint consumers .. 108

Setting breakpoints .. 109

Various ways to set a breakpoint ... 109

Toggling a simple code breakpoint .. 110

Setting breakpoints using the dialog box ... 110

Setting a data breakpoint in the Memory window 111

Setting breakpoints using system macros .. 112

Useful breakpoint hints .. 113

Reference information on breakpoints 114

Breakpoints window .. 115

Breakpoint Usage window ... 117

Code breakpoints dialog box .. 118

Log breakpoints dialog box .. 119

Range breakpoints dialog box .. 121

Data breakpoints dialog box .. 122

Data Log breakpoints dialog box ... 124

Immediate breakpoints dialog box ... 125

Enter Location dialog box .. 126

Resolve Source Ambiguity dialog box .. 128

Memory and registers .. 129

Introduction to monitoring memory and registers 129

Briefly about monitoring memory and registers 129
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Contents

C-SPY memory zones .. 130

Memory configuration for the C-SPY simulator 131

Memory configuration for C-SPY hardware debugger drivers 132

Monitoring memory and registers .. 133

Defining application-specific register groups 133

Monitoring stack usage .. 134

Reference information on memory and registers 136

Memory window .. 137

Memory Save dialog box ... 141

Memory Restore dialog box ... 142

Fill dialog box .. 143

Symbolic Memory window .. 144

Stack window ... 147

Registers window ... 151

Register User Groups Setup window ... 154

SFR Setup window ... 156

Edit SFR dialog box ... 159

Memory Configuration dialog box,

in C-SPY hardware debugger drivers .. 161

Edit Memory Range dialog box,

for C-SPY hardware debugger drivers ... 164

Memory Access Setup dialog box ... 166

Edit Memory Access dialog box .. 168

Part 2. Analyzing your application 171

Trace ... 173

Introduction to using trace .. 173

Reasons for using trace .. 173

Briefly about trace .. 173

Requirements for using trace ... 174

Collecting and using trace data .. 174

Getting started with trace ... 174

Trace data collection using breakpoints ... 174
AFE1_AFE2-1:1

9

10

Searching in trace data ... 175

Browsing through trace data .. 175

Reference information on trace ... 176

Trace window ... 176

Function Trace window ... 179

Trace Start breakpoints dialog box .. 180

Trace Stop breakpoints dialog box ... 181

Trace Expressions window .. 182

Find in Trace dialog box ... 184

Find in Trace window .. 185

The application timeline .. 187

Introduction to analyzing your application’s timeline 187

Briefly about analyzing the timeline .. 187

Requirements for timeline support .. 188

Analyzing your application’s timeline .. 188

Displaying a graph in the Timeline window 189

Navigating in the graphs .. 189

Analyzing performance using the graph data 190

Getting started using data logging ... 191

Reference information on application timeline 192

Timeline window—Call Stack graph .. 192

Timeline window—Data Log graph ... 196

Data Log window ... 200

Data Log Summary window .. 203

Viewing Range dialog box ... 206

Profiling .. 209

Introduction to the profiler .. 209

Reasons for using the profiler .. 209

Briefly about the profiler .. 209

Requirements for using the profiler ... 210

Using the profiler .. 210

Getting started using the profiler on function level 210

Analyzing the profiling data .. 211
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Contents

Getting started using the profiler on instruction level 213

Reference information on the profiler .. 214

Function Profiler window .. 214

Code coverage ... 219

Introduction to code coverage ... 219

Reasons for using code coverage ... 219

Briefly about code coverage .. 219

Requirements and restrictions for using code coverage 219

Reference information on code coverage 219

Code Coverage window ... 220

Part 3. Advanced debugging ... 223

Interrupts .. 225

Introduction to interrupts .. 225

Briefly about the interrupt simulation system 225

Interrupt characteristics .. 226

Interrupt simulation states .. 227

C-SPY system macros for interrupt simulation 228

Target-adapting the interrupt simulation system 229

Briefly about interrupt logging .. 229

Using the interrupt system .. 230

Simulating a simple interrupt ... 230

Simulating an interrupt in a multi-task system 232

Getting started using interrupt logging .. 233

Reference information on interrupts ... 233

Interrupt Setup dialog box .. 234

Edit Interrupt dialog box .. 236

Forced Interrupt window .. 237

Interrupt Status window ... 238

Interrupt Log window .. 240

Interrupt Log Summary window .. 243

Timeline window—Interrupt Log graph .. 245
AFE1_AFE2-1:1

11

12

C-SPY macros ... 249

Introduction to C-SPY macros ... 249

Reasons for using C-SPY macros .. 249

Briefly about using C-SPY macros .. 250

Briefly about setup macro functions and files 250

Briefly about the macro language .. 250

Using C-SPY macros ... 251

Registering C-SPY macros—an overview 252

Executing C-SPY macros—an overview ... 252

Registering and executing using setup macros and setup files 253

Executing macros using Quick Watch .. 253

Executing a macro by connecting it to a breakpoint 254

Aborting a C-SPY macro ... 255

Reference information on the macro language 256

Macro functions ... 256

Macro variables ... 256

Macro parameters ... 257

Macro strings .. 257

Macro statements ... 258

Formatted output .. 259

Reference information on
reserved setup macro function names .. 261

execUserPreload ... 261

execUserExecutionStarted ... 262

execUserExecutionStopped ... 262

execUserSetup .. 262

execUserPreReset ... 263

execUserReset .. 263

execUserExit .. 263

Reference information on C-SPY system macros 264

__abortLaunch ... 266

__cancelAllInterrupts .. 266

__cancelInterrupt ... 266
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Contents

__clearBreak .. 267

__closeFile ... 267

__delay ... 268

__disableInterrupts .. 268

__driverType .. 268

__enableInterrupts ... 269

__evaluate .. 269

__fillMemory8 .. 270

__fillMemory16 .. 271

__fillMemory32 .. 272

__isBatchMode .. 273

__loadImage .. 273

__memoryRestore .. 274

__memorySave .. 275

__messageBoxYesCancel .. 276

__messageBoxYesNo .. 276

__openFile ... 277

__orderInterrupt ... 278

__popSimulatorInterruptExecutingStack .. 279

__readFile .. 280

__readFileByte ... 280

__readMemory8, __readMemoryByte .. 281

__readMemory16 ... 281

__readMemory32 ... 282

__registerMacroFile ... 282

__resetFile .. 283

__setCodeBreak ... 283

__setDataBreak .. 284

__setDataLogBreak ... 285

__setLogBreak ... 286

__setSimBreak ... 288

__setTraceStartBreak ... 288

__setTraceStopBreak ... 289

__sourcePosition .. 290
AFE1_AFE2-1:1

13

14

__strFind .. 291

__subString .. 291

__targetDebuggerVersion .. 292

__toLower .. 292

__toString .. 293

__toUpper .. 293

__unloadImage .. 294

__writeFile ... 294

__writeFileByte ... 295

__writeMemory8, __writeMemoryByte ... 295

__writeMemory16 ... 296

__writeMemory32 ... 296

Graphical environment for macros .. 297

Macro Registration window ... 297

Debugger Macros window ... 299

Macro Quicklaunch window .. 301

The C-SPY command line utility—cspybat 303

Using C-SPY in batch mode ... 303

Starting cspybat .. 303

Output ... 304

Invocation syntax ... 304

Summary of C-SPY command line options 305

General cspybat options ... 305

Options available for all C-SPY drivers .. 306

Options available for the simulator driver 307

Options available for the Texas Instruments driver 308

Options available for the FS2 driver ... 309

Options available for the Infineon driver ... 309

Options available for the Segger J-Link driver 310

Options available for the Nordic Semiconductor driver 310

Options available for the ROM-monitor driver 310

Options available for the Analog Devices driver 311

Options available for the Silicon Labs driver 311
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Contents

Reference information on C-SPY command line options ... 312

--ADe_protocol .. 312

--attach_to_running_target ... 312

--backend .. 313

--banked_xdata ... 313

--baud_rate ... 314

--boot_lock ... 315

--code_coverage_file .. 315

--communication_logfile .. 316

--connect_to ... 316

--core .. 316

--core_clock_frequency ... 317

--cycles ... 317

--debugfile .. 317

--debug_lock .. 318

--devices_after .. 318

--devices_before ... 319

--disable_interrupts .. 319

--download_only .. 319

--drv_communication_log .. 320

--drv_silabs_page_size ... 320

--drv_suppress_download .. 320

--drv_verify_download .. 321

--erase_data_flash .. 321

--erase_flash ... 321

-f ... 322

--fs2_configuration ... 322

--fs2_flash_cfg_entry ... 323

--fs2_flash_in_code .. 323

--fs2_ram_in_code ... 323

--function_profiling .. 324

--handshake_at_9600 ... 324

--infineon_ram_in_code ... 325

--jlink_connection_id ... 325
AFE1_AFE2-1:1

15

16

--jlink_log_file ... 325

--jlink_power .. 326

--jlink_speed ... 326

--key_noN ... 327

--leave_target_running ... 327

--lock_bits .. 328

--lock_bits_pages ... 328

--macro ... 329

--macro_param ... 329

--mapu .. 330

--multiple_devices .. 330

--nr_of_extra_images ... 330

--number_of_banks .. 331

-p .. 331

--plugin ... 332

--power_target .. 332

--preserve_hex_files ... 333

--proc_code_model .. 333

--proc_codebank_end ... 333

--proc_codebank_mask .. 334

--proc_codebank_reg ... 334

--proc_codebank_start .. 335

--proc_core ... 335

--proc_data_addr_24 .. 335

--proc_data_model ... 336

--proc_DPHn .. 336

--proc_DPLn .. 337

--proc_dptr_automod_op ... 337

--proc_dptr_automod_type ... 338

--proc_dptr_DPC .. 338

--proc_dptr_DPS .. 338

--proc_dptr_mask ... 339

--proc_dptr_nr_of ... 339

--proc_dptr_switch_method ... 339
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Contents

--proc_dptr_visibility ... 340

--proc_DPXn .. 340

--proc_driver .. 341

--proc_exclude_exit_breakpoint .. 342

--proc_exclude_getchar_breakpoint ... 342

--proc_exclude_putchar_breakpoint .. 342

--proc_extended_stack ... 343

--proc_nr_virtual_regs ... 343

--proc_pc_readonly .. 343

--proc_pdata_bank_ext_reg_addr .. 344

--proc_pdata_bank_reg_addr ... 344

--proc_silent ... 344

--proc_xdata_banking .. 345

--reduce_speed ... 345

--registers_after .. 345

--registers_before ... 346

--retain_memory ... 346

--retain_pages ... 346

--rom_serial_port ... 347

--serial_port .. 347

--server_address ... 348

--server_name ... 348

--silabs_2wire_interface ... 349

--silent .. 349

--sim_guard_stacks .. 350

--software_breakpoints ... 350

--stack_overflow .. 350

--suppress_download ... 351

--timeout ... 351

--toggle_DTR ... 351

--toggle_RTS .. 352

--usb_id .. 352

--usb_interface ... 352

--verify_all ... 353
AFE1_AFE2-1:1

17

18

--verify_download .. 353

Part 4. Additional reference information 355

Debugger options ... 357

Setting debugger options .. 357

Reference information on general debugger options 358

Setup ... 359

Images .. 360

Extra Options ... 361

Plugins .. 362

Third-Party Driver options ... 363

Reference information on the C-SPY simulator 364

Setup options for the simulator ... 364

Reference information on
C-SPY Texas Instruments driver options 365

Download options for Texas Instruments 365

Target options for Texas Instruments ... 367

Reference information on C-SPY FS2 driver options 368

Download options for FS2 .. 368

Target options for FS2 .. 369

Reference information on C-SPY Infineon driver options .. 370

Download options for Infineon ... 370

Target options for Infineon ... 371

Reference information on
C-SPY Segger J-Link driver options ... 372

Download options for Segger J-Link .. 372

Communication options for Segger J-Link 373

Reference information on
C-SPY Nordic Semiconductor driver options 374

Download options for Nordic Semiconductor 374

Reference information on C-SPY Nu-Link driver options .. 375

Setup options for the C-SPY Nu-Link driver 375
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Contents

Reference information on
C-SPY ROM-monitor driver options .. 375

Download options for the ROM-monitor .. 376

Serial Port options for the ROM-monitor .. 377

Reference information on
C-SPY Analog Devices driver options ... 378

Download options for Analog Devices .. 378

Serial Port options for Analog Devices .. 379

Reference information on
C-SPY Silicon Labs driver options .. 379

Download options for Silicon Labs .. 380

Serial Port options for Silicon Labs ... 381

Additional information on C-SPY drivers .. 383

Reference information on C-SPY driver menus 383

C-SPY driver .. 383

Simulator menu .. 384

Texas Instruments Emulator menu .. 386

Infineon Emulator menu .. 386

J-Link menu ... 387

Silicon Labs Emulator menu .. 387

Reference information on the C-SPY simulator 387

Simulated Frequency dialog box .. 388

Reference information on
the C-SPY hardware debugger drivers 388

Serial Number dialog box .. 388

Server Selection dialog box ... 389

USB Device Selection dialog box .. 389

Resolving problems .. 390

Write failure during load .. 390

No contact with the target hardware .. 391

Monitor works, but application will not run 391

No contact with the monitor ... 391
AFE1_AFE2-1:1

19

20

Target-adapting the ROM-monitor .. 393

Building your own ROM-monitor .. 393

Setting up your ROM-monitor project ... 393

Adapting the source files .. 394

Debugging the ROM-monitor .. 396

Building and downloading your ROM-monitor 397

The ROM-monitor in detail ... 398

Early initializations .. 399

The protocol loop ... 402

Leaving the ROM-monitor ... 405

Entering the ROM-monitor .. 407

Resources used by the ROM-monitor .. 408

Index ... 409
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Tables
1: Typographic conventions used in this guide ... 26

2: Naming conventions used in this guide .. 27

3: Driver differences .. 37

4: C-SPY assembler symbols expressions .. 81

5: Handling name conflicts between hardware registers and assembler labels 81

6: Available breakpoints in C-SPY hardware debugger drivers 107

7: C-SPY macros for breakpoints .. 112

8: Supported graphs in the Timeline window ... 188

9: Project options for enabling the profiler ... 210

10: Project options for enabling code coverage .. 220

11: Timer interrupt settings ... 232

12: Examples of C-SPY macro variables .. 257

13: Summary of system macros .. 264

14: __cancelInterrupt return values ... 267

15: __disableInterrupts return values .. 268

16: __driverType return values ... 269

17: __enableInterrupts return values ... 269

18: __evaluate return values ... 270

19: __isBatchMode return values ... 273

20: __loadImage return values .. 273

21: __messageBoxYesCancel return values ... 276

22: __messageBoxYesNo return values ... 277

23: __openFile return values ... 277

24: __readFile return values ... 280

25: __setCodeBreak return values .. 284

26: __setDataBreak return values ... 285

27: __setDataLogBreak return values ... 286

28: __setLogBreak return values .. 287

29: __setSimBreak return values .. 288

30: __setTraceStartBreak return values .. 289

31: __setTraceStopBreak return values .. 290
AFE1_AFE2-1:1

21

22

32: __sourcePosition return values ... 290

33: __unloadImage return values .. 294

34: cspybat parameters .. 304

35: Options specific to the C-SPY drivers you are using .. 358
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Preface
Welcome to the C-SPY® Debugging Guide. The purpose of this guide is to help
you fully use the features in the IAR C-SPY® Debugger for debugging your
application based on the 8051 microcontroller.

Who should read this guide
Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features available in C-SPY.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

● The architecture and instruction set of the 8051 microcontroller (refer to the chip
manufacturer's documentation)

● The C or C++ programming language

● Application development for embedded systems

● The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 25.

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

Note: Some of the screenshots in this guide are taken from a similar product and not
from IAR Embedded Workbench for 8051.

PART 1. BASIC DEBUGGING

● The IAR C-SPY Debugger introduces you to the C-SPY debugger and to the
concepts that are related to debugging in general and to C-SPY in particular. The
chapter also introduces the various C-SPY drivers. The chapter briefly shows the
difference in functionality that the various C-SPY drivers provide.

● Getting started using C-SPY helps you get started using C-SPY, which includes
setting up, starting, and adapting C-SPY for target hardware.
AFE1_AFE2-1:1

23

24

What this guide contains

● Executing your application describes the conceptual differences between source
and disassembly mode debugging, the facilities for executing your application, and
finally, how you can handle terminal input and output.

● Variables and expressions describes the syntax of the expressions and variables
used in C-SPY, as well as the limitations on variable information. The chapter also
demonstrates the various methods for monitoring variables and expressions.

● Breakpoints describes the breakpoint system and the various ways to set
breakpoints.

● Memory and registers shows how you can examine memory and registers.

PART 2. ANALYZING YOUR APPLICATION

● Trace describes how you can inspect the program flow up to a specific state using
trace data.

● The application timeline describes the Timeline window, and how to use the
information in it to analyze your application’s behavior.

● Profiling describes how the profiler can help you find the functions in your
application source code where the most time is spent during execution.

● Code coverage describes how the code coverage functionality can help you verify
whether all parts of your code have been executed, thus identifying parts which have
not been executed.

PART 3. ADVANCED DEBUGGING

● Interrupts contains detailed information about the C-SPY interrupt simulation
system and how to configure the simulated interrupts to make them reflect the
interrupts of your target hardware.

● C-SPY macros describes the C-SPY macro system, its features, the purposes of
these features, and how to use them.

● The C-SPY command line utility—cspybat describes how to use C-SPY in batch
mode.

PART 4. ADDITIONAL REFERENCE INFORMATION

● Debugger options describes the options you must set before you start the C-SPY
debugger.

● Additional information on C-SPY drivers describes menus and features provided by
the C-SPY drivers not described in any dedicated topics.

● Target-adapting the ROM-monitor describes how you can easily adapt the generic
ROM-monitor provided with IAR Embedded Workbench to suit a device that does
not have an existing debug solution supported by IAR Systems.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Preface

Other documentation
User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

● System requirements and information about how to install and register the IAR
Systems products, is available in the booklet Quick Reference (available in the
product box) and the Installation and Licensing Guide.

● Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide for 8051.

● Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide
for 8051.

● Programming for the IAR C/C++ Compiler for 8051, is available in the IAR C/C++
Compiler User Guide for 8051.

● Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, is available in the IAR Linker and Library Tools Reference Guide.

● Programming for the IAR Assembler for 8051, is available in the IAR Assembler
User Guide for 8051.

● Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

● Developing safety-critical applications using the MISRA C guidelines, is available
in the IAR Embedded Workbench® MISRA C:2004 Reference Guide or the IAR
Embedded Workbench® MISRA C:1998 Reference Guide.

● Porting application code and projects created with a previous version of the IAR
Embedded Workbench for 8051, is available in the IAR Embedded Workbench®
Migration Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

● Information about project management, editing, and building in the IDE

● Information about debugging using the IAR C-SPY® Debugger
AFE1_AFE2-1:1

25

26

Document conventions

● Reference information about the menus, windows, and dialog boxes in the IDE

● Compiler reference information

● Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1. Note that if you select a function name in the editor window and press F1 while
using the CLIB C standard library, you will get reference information for the DLIB
C/EC++ standard library.

WEB SITES

Recommended web sites:

● The chip manufacturer’s web site.

● The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

● The web site of the C standardization working group,
www.open-std.org/jtc1/sc22/wg14.

● The web site of the C++ Standards Committee, www.open-std.org/jtc1/sc22/wg21.

● The C++ programming language web site, isocpp.org.

This web site also has a list of recommended books about C++ programming.

● The C and C++ reference web site, en.cppreference.com.

Document conventions
When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example 8051\doc, the
full path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench N.n\8051\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

TYPOGRAPHIC CONVENTIONS

The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

Table 1: Typographic conventions used in this guide
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Preface

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a directive, where [and] are not part of the actual
directive, but any [,], {, or } are part of the directive syntax.

{option} A mandatory part of a directive, where { and } are not part of the
actual directive, but any [,], {, or } are part of the directive syntax.

[option] An optional part of a command.

[a|b|c] An optional part of a command with alternatives.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Brand name Generic term

IAR Embedded Workbench® for 8051 IAR Embedded Workbench®

IAR Embedded Workbench® IDE for 8051 the IDE

IAR C-SPY® Debugger for 8051 C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for 8051 the compiler

IAR Assembler™ for 8051 the assembler

Table 2: Naming conventions used in this guide

Style Used for

Table 1: Typographic conventions used in this guide (Continued)
AFE1_AFE2-1:1

27

28

Document conventions

Note: In this guide, 8051 microcontroller refers to all microcontrollers compatible with
the 8051 microcontroller architecture.

IAR XLINK Linker™ XLINK, the linker

IAR XAR Library Builder™ the library builder

IAR XLIB Librarian™ the librarian

IAR DLIB Runtime Environment™ the DLIB runtime environment

IAR CLIB Runtime Environment™ the CLIB runtime environment

Brand name Generic term

Table 2: Naming conventions used in this guide (Continued)
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Part 1. Basic debugging
This part of the C-SPY® Debugging Guide for 8051 includes these chapters:

● The IAR C-SPY Debugger

● Getting started using C-SPY

● Executing your application

● Variables and expressions

● Breakpoints

● Memory and registers
29

30

The IAR C-SPY Debugger
● Introduction to C-SPY

● Debugger concepts

● C-SPY drivers overview

● The IAR C-SPY Simulator

● The C-SPY hardware debugger drivers

Introduction to C-SPY
These topics are covered:

● An integrated environment

● General C-SPY debugger features

● RTOS awareness

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR Systems compilers and assemblers, and is completely integrated in the
IDE, providing development and debugging within the same application. This will give
you possibilities such as:

● Editing while debugging. During a debug session, you can make corrections directly
in the same source code window that is used for controlling the debugging. Changes
will be included in the next project rebuild.

● Setting breakpoints at any point during the development cycle. You can inspect and
modify breakpoint definitions also when the debugger is not running, and
breakpoint definitions flow with the text as you edit. Your debug settings, such as
watch properties, window layouts, and register groups will be preserved between
your debug sessions.

All windows that are open in the Embedded Workbench workspace will stay open when
you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows are opened.
AFE1_AFE2-1:1

31

32

Introduction to C-SPY

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire toolchain, the output from the compiler and
linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you.

C-SPY offers these general features:

● Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required,
for both C or C++ and assembler source code.

● Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function call—
inside expressions, and function calls that are part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging
C++ code, where numerous extra function calls are made, for example to object
constructors.

● Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest.
For example, you set breakpoints to investigate whether your program logic is correct
or to investigate how and when the data changes.

● Monitoring variables and expressions

For variables and expressions there is a wide choice of facilities. You can easily
monitor values of a specified set of variables and expressions, continuously or on
demand. You can also choose to monitor only local variables, static variables, etc.

● Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and
debugging opportunities when you work with C++ STL containers.

● Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the
program counter is. You can select any function in the call stack, and for each
function you get valid information for local variables and available registers.

● Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex
sets of actions to be performed. C-SPY macros can be used on their own or in
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The IAR C-SPY Debugger

conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY debugger features

This list shows some additional features:

● Threaded execution keeps the IDE responsive while running the target application

● Automatic stepping

● The source browser provides easy navigation to functions, types, and variables

● Extensive type recognition of variables

● Configurable registers (CPU and peripherals) and memory windows

● Graphical stack view with overflow detection

● Support for code coverage and function level profiling

● The target application can access files on the host PC using file I/O (requires the
DLIB library)

● UBROF, Intel-extended, and Motorola input formats supported

● Optional terminal I/O emulation.

RTOS AWARENESS

C-SPY supports RTOS-aware debugging. For information about which operating
systems that are currently supported, see the Information Center, available from the
Help menu.

RTOS plugin modules can be provided by IAR Systems, and by third-party suppliers.
Contact your software distributor or IAR Systems representative, alternatively visit the
IAR Systems web site, for information about supported RTOS modules.

A C-SPY RTOS awareness plugin module gives you a high level of control and visibility
over an application built on top of an RTOS. It displays RTOS-specific items like task
lists, queues, semaphores, mailboxes, and various RTOS system variables. Task-specific
breakpoints and task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own menu, set of windows, and buttons when a debug
session is started (provided that the RTOS is linked with the application). For
information about other RTOS awareness plugin modules, refer to the manufacturer of
the plugin module.

Debugger concepts
This section introduces some of the concepts and terms that are related to debugging in
general and to C-SPY in particular. This section does not contain specific information
AFE1_AFE2-1:1

33

34

Debugger concepts

related to C-SPY features. Instead, you will find such information in the other chapters
of this documentation. The IAR Systems user documentation uses the terms described
in this section when referring to these concepts.

These topics are covered:

● C-SPY and target systems

● The debugger

● The target system

● The application

● C-SPY debugger systems

● The ROM-monitor program

● Third-party debuggers

● C-SPY plugin modules

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The IAR C-SPY Debugger

This figure gives an overview of C-SPY and possible target systems:

THE DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

THE TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

THE APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a target-specific back end. The back end consists of two components: a processor
module—one for every microcontroller, which defines the properties of the
microcontroller, and a C-SPY driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides the user
AFE1_AFE2-1:1

35

36

Debugger concepts

interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints. Typically, there are three main types of C-SPY
drivers:

● Simulator driver

● ROM-monitor driver

● Emulator driver.

C-SPY is available with a simulator driver, and depending on your product package,
optional drivers for hardware debugger systems. For an overview of the available C-SPY
drivers and the functionality provided by each driver, see C-SPY drivers overview, page
37.

THE ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the IAR Systems toolchain as long as
the third-party debugger can read any of the output formats provided by XLINK, such
as UBROF, ELF/DWARF, COFF, Intel-extended, Motorola, or any other available
format. For information about which format to use with a third-party debugger, see the
user documentation supplied with that tool.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR Systems, or can be supplied by third-party vendors.
Examples of such modules are:

● Code Coverage, which is integrated in the IDE.

● The various C-SPY drivers for debugging using certain debug systems.

● RTOS plugin modules for support for real-time OS aware debugging.

● C-SPYLink that bridges IAR visualSTATE and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to
the normal C level symbolic debugging. For more information, see the
documentation provided with IAR visualSTATE.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The IAR C-SPY Debugger

For more information about the C-SPY SDK, contact IAR Systems.

C-SPY drivers overview
These topics are covered:

● Differences between the C-SPY drivers

At the time of writing this guide, the IAR C-SPY Debugger for the 8051
microcontrollers is available with drivers for these target systems and evaluation boards:

● Simulator

● Texas instruments CCxxxx evaluation boards and the CC debugger

● FS2 System Navigator for CAST 8051, Mentor Graphics M8051EW, and
processors from Handshake Solutions and NXP Semiconductors

● Infineon’s DAS (Device Access Server) protocol for debugging all XC8xx devices

● Nordic Semiconductor’s nRFGo development platform

● Nuvoton Technology Corporation’s Nu-Link debug adapter for Nuvoton’s N76E
Series MCUs

● IAR ROM-monitor (including prebuilt ROM-monitors for NXP 93x, Analog
Devices ADu 84x, and Texas Instruments MSC 1211 evaluation boards and a
template project for building your own ROM-monitor)

● Analog Devices’ ADuC8xx and ADe development boards

● Silicon Labs’ USB and serial debug adapters for C8051Fxxx MCUs.

● Segger J-Link debug probe for Silicon Labs’ 8051 EFM8 MCUs.

Note: In addition to the drivers supplied with IAR Embedded Workbench, you can also
load debugger drivers supplied by a third-party vendor; see Third-Party Driver options,
page 363.

DIFFERENCES BETWEEN THE C-SPY DRIVERS

This table summarizes the key differences between the C-SPY drivers:

Feature Simulator

TI / Nordic Semi /

Analog Devices /

Segger J-Link /

Nu-Link

FS2 / Infineon /

Silicon Labs

ROM-

monitor

Code
breakpoints1

Yes Yes Yes Yes

Data breakpoints Yes — Yes Yes

Table 3: Driver differences
AFE1_AFE2-1:1

37

38

The IAR C-SPY Simulator

1 With specific requirements or restrictions, see the respective chapter in this guide.

The IAR C-SPY Simulator
The C-SPY Simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

The C-SPY Simulator supports:

● Instruction-level simulation

● Memory configuration and validation

● Interrupt simulation

● Peripheral simulation (using the C-SPY macro system in conjunction with
immediate breakpoints).

Execution in real
time

— Yes Yes Yes

Zero memory
footprint1

Yes Yes Yes —

Simulated
interrupts

Yes — — —

Real interrupts — Yes Yes Yes

Interrupt logging Yes — — —

Data logging Yes — — —

Live watch Yes — — —

Cycle counter Yes — — —

Code coverage Yes — — —

Data coverage Yes — — —

Function/
instruction
profiling

Yes — — —

Trace Yes — — —

Feature Simulator

TI / Nordic Semi /

Analog Devices /

Segger J-Link /

Nu-Link

FS2 / Infineon /

Silicon Labs

ROM-

monitor

Table 3: Driver differences (Continued)
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The IAR C-SPY Debugger

Simulating hardware instead of using a hardware debugging system means that some
limitations do not apply, but that there are other limitations instead. For example:

● You can set an unlimited number of breakpoints in the simulator.

● When you stop executing your application, time actually stops in the simulator.
When you stop application execution on a hardware debugging system, there might
still be activities in the system. For example, peripheral units might still be active
and reading from or writing to SFR ports.

● Application execution is significantly much slower in a simulator compared to when
using a hardware debugging system. However, during a debug session, this might
not necessarily be a problem.

● The simulator is not cycle accurate.

● Peripheral simulation is limited in the C-SPY Simulator and therefore the simulator
is suitable mostly for debugging code that does not interact too much with
peripheral units.

The C-SPY hardware debugger drivers
C-SPY can connect to a hardware debugger using a C-SPY hardware debugger driver as
an interface. The C-SPY hardware debugger drivers are automatically installed during
the installation of IAR Embedded Workbench.

IAR Embedded Workbench for 8051 comes with several C-SPY hardware debugger
drivers and you use the driver that matches the hardware debugger you are using.

These topics are covered:

● Installing extra software

● Target system with or without a debug probe

● The C-SPY Infineon driver

● ROM-monitor on target hardware

INSTALLING EXTRA SOFTWARE

For these drivers, you might need to install extra software:

● Texas Instruments

● FS2 System Navigator

● Infineon

● Nordic Semiconductor

● Nuvoton Nu-Link

● Analog Devices
AFE1_AFE2-1:1

39

40

The C-SPY hardware debugger drivers

● Segger J-Link

See the release notes for these drivers, available from the Information Center.

TARGET SYSTEM WITH OR WITHOUT A DEBUG PROBE

Some systems have an emulator, a debug probe or a debug adapter connected between
the host computer and the evaluation board:
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The IAR C-SPY Debugger

Other target systems have all debugger functionality located on the target board itself::

THE C-SPY INFINEON DRIVER

The C-SPY Infineon driver works as an interface to the DAS server from Infineon. The
C-SPY driver connects to a DAS server, which in turn connects to the target system.

ROM-MONITOR ON TARGET HARDWARE

There are still devices that lack on-chip debug support. For these, a ROM-monitor
provides a working debug solution. It has a small memory footprint, it occupies only
4 Kbytes of non-volatile memory and uses 256 bytes in xdata memory and 5–7 bytes in
idata memory.

IAR Embedded Workbench comes with a set of ready-made ROM-monitors for some
devices. In addition, a generic ROM-monitor framework is provided, which you can
adapt for your own target board.
AFE1_AFE2-1:1

41

42

The C-SPY hardware debugger drivers

Using the C-SPY ROM-monitor driver, C-SPY can connect to various target hardware
that have the ROM-monitor located in memory.

Before you can use the IAR C-SPY ROM-monitor driver, you must make sure that
ROM-monitor firmware is located on the target board. A template for creating firmware
is available from the Create New Project dialog box. There are firmware images for
some devices in the 8051\src\rom\monitor_image directory. The source code for
these images is located in the 8051\src\rom directory.

A set of ready-made ROM-monitors for some devices are located in the directory
8051\src\rom. For a generic ROM-monitor framework which you can adapt for your
own target board, see the chapter Target-adapting the ROM-monitor, page 393.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Getting started using
C-SPY
● Setting up C-SPY

● Starting C-SPY

● Adapting for target hardware

● Reference information on starting C-SPY

Setting up C-SPY
These tasks are covered:

● Setting up for debugging

● Executing from reset

● Using a setup macro file

● Selecting a device description file

● Loading plugin modules

SETTING UP FOR DEBUGGING

1 Before you start C-SPY, choose Project>Options>Debugger>Setup and select the
C-SPY driver that matches your debugger system: simulator or a hardware debugger
system.

2 In the Category list, select the appropriate C-SPY driver and make your settings.

For information about these options, see Debugger options, page 357.

3 Click OK.

4 Choose Tools>Options to open the IDE Options dialog box:

● Select Debugger to configure the debugger behavior

● Select Stack to configure the debugger’s tracking of stack usage.

For more information about these options, see the IDE Project Management and
Building Guide for 8051.

See also Adapting for target hardware, page 48.
AFE1_AFE2-1:1

43

44

Setting up C-SPY

EXECUTING FROM RESET

The Run to option—available on the Debugger>Setup page—specifies a location you
want C-SPY to run to when you start a debug session as well as after each reset. C-SPY
will place a temporary breakpoint at this location and all code up to this point is executed
before stopping at the location. Note that this temporary breakpoint is removed when the
debugger stops, regardless of how. If you stop the execution before the Run to location
has been reached, the execution will not stop at that location when you start the
execution again.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will contain the regular hardware
reset address at each reset

If no breakpoints are available when C-SPY starts, a warning message notifies you that
single stepping will be required and that this is time-consuming. You can then continue
execution in single-step mode or stop at the first instruction. If you choose to stop at the
first instruction, the debugger starts executing with the PC (program counter) at the
default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where breakpoints
are unlimited.

USING A SETUP MACRO FILE

A setup macro file is a macro file that you choose to load automatically when C-SPY
starts. You can define the setup macro file to perform actions according to your needs,
using setup macro functions and system macros. Thus, if you load a setup macro file you
can initialize C-SPY to perform actions automatically.

For more information about setup macro files and functions, see Introduction to C-SPY
macros, page 249. For an example of how to use a setup macro file, see Initializing
target hardware before C-SPY starts, page 49.

To register a setup macro file:

1 Before you start C-SPY, choose Project>Options>Debugger>Setup.

2 Select Use macro file and type the path and name of your setup macro file, for
example Setup.mac. If you do not type a filename extension, the extension mac is
assumed.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY uses device description files to handle device-specific information.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Getting started using C-SPY

A default device description file is automatically used based on your project settings. If
you want to override the default file, you must select your device description file. Device
description files are provided in the 8051\config directory and they have the filename
extension ddf.

For more information about device description files, see Adapting for target hardware,
page 48.

To override the default device description file:

1 Before you start C-SPY, choose Project>Options>Debugger>Setup.

2 Enable the use of a device description file and select a file using the Device
description file browse button.

Note: You can easily view your device description files that are used for your project.
Choose Project>Open Device Description File and select the file you want to view.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules to load and make available
during debug sessions. Plugin modules can be provided by IAR Systems, and by
third-party suppliers. Contact your software distributor or IAR Systems representative,
or visit the IAR Systems web site, for information about available modules.

For more information, see Plugins, page 362.

Starting C-SPY
When you have set up the debugger, you are ready to start a debug session.

These tasks are covered:

● Starting a debug session

● Loading executable files built outside of the IDE

● Starting a debug session with source files missing

● Loading multiple images

● Editing in C-SPY windows

STARTING A DEBUG SESSION

You can choose to start a debug session with or without loading the current executable
file.

To start C-SPY and download the current executable file, click the Download and
Debug button. Alternatively, choose Project>Download and Debug.
AFE1_AFE2-1:1

45

46

Starting C-SPY

To start C-SPY without downloading the current executable file, click the Debug
without Downloading button. Alternatively, choose Project>Debug without
Downloading.

LOADING EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with an application that was built outside the IDE, for example
applications built on the command line. To load an externally built executable file and
to set build options you must first create a project for it in your workspace.

To create a project for an externally built file:

1 Choose Project>Create New Project, and specify a project name.

2 To add the executable file to the project, choose Project>Add Files and make sure to
choose All Files in the Files of type drop-down list. Locate the executable file.

3 To start the executable file, click the Download and Debug button. The project can be
reused whenever you rebuild your executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

STARTING A DEBUG SESSION WITH SOURCE FILES MISSING

Normally, when you use the IAR Embedded Workbench IDE to edit source files, build
your project, and start the debug session, all required files are available and the process
works as expected.

However, if C-SPY cannot automatically find the source files, for example if the
application was built on another computer, the Get Alternative File dialog box is
displayed:

Typically, you can use the dialog box like this:

● The source files are not available: Click If possible, don’t show this dialog again
and then click Skip. C-SPY will assume that there simply is no source file available.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Getting started using C-SPY

The dialog box will not appear again, and the debug session will not try to display
the source code.

● Alternative source files are available at another location: Specify an alternative
source code file, click If possible, don’t show this dialog again, and then click Use
this file. C-SPY will assume that the alternative file should be used. The dialog box
will not appear again, unless a file is needed for which there is no alternative file
specified and which cannot be located automatically.

If you restart the IAR Embedded Workbench IDE, the Get Alternative File dialog box
will be displayed again once even if you have clicked If possible, don’t show this
dialog again. This gives you an opportunity to modify your previous settings.

For more information, see Get Alternative File dialog box, page 56.

LOADING MULTIPLE IMAGES

Normally, a debuggable application consists of exactly one file that you debug.
However, you can also load additional debug files (images). This means that the
complete program consists of several images.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided
features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files.

If more than one image has been loaded, you will have access to the combined debug
information for all the loaded images. In the Images window you can choose whether
you want to have access to debug information for one image or for all images.

To load additional images at C-SPY startup:

1 Choose Project>Options>Debugger>Images and specify up to three additional
images to be loaded. For more information, see Images, page 360.

2 Start the debug session.

To load additional images at a specific moment:

Use the __loadImage system macro and execute it using either one of the methods
described in Using C-SPY macros, page 251.

To display a list of loaded images:

Choose Images from the View menu. The Images window is displayed, see Images
window, page 54.
AFE1_AFE2-1:1

47

48

Adapting for target hardware

EDITING IN C-SPY WINDOWS

You can edit the contents of the Memory, Symbolic Memory, Registers, Register
User Groups Setup, Auto, Watch, Locals, Statics, Live Watch, and Quick Watch
windows.

Use these keyboard keys to edit the contents of these windows:

In windows where you can edit the Expression field and in the Quick Watch window,
you can specify the number of elements to be displayed in the field by adding a
semicolon followed by an integer. For example, to display only the three first elements
of an array named myArray, or three elements in sequence starting with the element
pointed to by a pointer, write:

myArray;3

To display three elements pointed to by myPtr, myPtr+1, and myPtr+2, write:

myPtr;3

Optionally, add a comma and another integer that specifies which element to start with.
For example, to display elements 10–14, write:

myArray;5,10

To display myPtr+10, myPtr+11, myPtr+12, myPtr+13, and myPtr+14, write:

myPtr;5,10

Note: For pointers, there are no built-in limits on displayed element count, and no
validation of the pointer value.

Adapting for target hardware
These tasks are covered:

● Modifying a device description file

● Initializing target hardware before C-SPY starts

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Getting started using C-SPY

MODIFYING A DEVICE DESCRIPTION FILE

C-SPY uses device description files provided with the product to handle several of the
target-specific adaptations, see Selecting a device description file, page 44. They contain
device-specific information such as:

● Memory information for device-specific memory zones, see C-SPY memory zones,
page 130. If you are using a C-SPY hardware debugger driver, the memory
information retrieved from the device description file is not always sufficient, see
Memory Configuration dialog box, in C-SPY hardware debugger drivers, page 161.

● Definitions for device-specific interrupts, which makes it possible to simulate these
interrupts in the C-SPY simulator; see Interrupts, page 225.

● Definitions of interrupt vectors, SFR banked registers, memory-mapped peripheral
units, device-specific CPU registers, and groups of these.

Normally, you do not need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. Note, however,
that the format of these descriptions might be updated in future upgrades of the product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file. Reload the project to make the changes take
effect.

For information about how to load a device description file, see Selecting a device
description file, page 44.

INITIALIZING TARGET HARDWARE BEFORE C-SPY STARTS

You can use C-SPY macros to initialize target hardware before C-SPY starts. For
example, if your hardware uses external memory that must be enabled before code can
be downloaded to it, C-SPY needs a macro to perform this action before your
application can be downloaded.

1 Create a new text file and define your macro function.

By using the built-in execUserPreload setup macro function, your macro function
will be executed directly after the communication with the target system is established
but before C-SPY downloads your application.
AFE1_AFE2-1:1

49

50

Reference information on starting C-SPY

For example, a macro that enables external SDRAM could look like this:

/* Your macro function. */
enableExternalSDRAM()
{
 __message "Enabling external SDRAM\n";
 __writeMemory32(...);
}

/* Setup macro determines time of execution. */
execUserPreload()
{
 enableExternalSDRAM();
}

2 Save the file with the filename extension mac.

3 Before you start C-SPY, choose Project>Options>Debugger and click the Setup tab.

4 Select the option Use Setup file and choose the macro file you just created.

Your setup macro will now be loaded during the C-SPY startup sequence.

Reference information on starting C-SPY
Reference information about:

● C-SPY Debugger main window, page 50

● Images window, page 54

● Get Alternative File dialog box, page 56

See also:

● Tools options for the debugger in the IDE Project Management and Building Guide
for 8051.

C-SPY Debugger main window
When you start a debug session, these debugger-specific items appear in the main IAR
Embedded Workbench IDE window:

● A dedicated Debug menu with commands for executing and debugging your
application

● Depending on the C-SPY driver you are using, a driver-specific menu, often
referred to as the Driver menu in this documentation. Typically, this menu contains
menu commands for opening driver-specific windows and dialog boxes.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Getting started using C-SPY

● A special debug toolbar

● Several windows and dialog boxes specific to C-SPY.

The C-SPY main window might look different depending on which components of the
product installation you are using.

Menu bar

These menus are available during a debug session:

Debug

Provides commands for executing and debugging the source application. Most
of the commands are also available as icon buttons on the debug toolbar.

C-SPY driver menu
Provides commands specific to a C-SPY driver. The driver-specific menu is only
available when the driver is used. For information about the driver-specific
menu commands, see Reference information on C-SPY driver menus, page 383.

Debug menu

The Debug menu is available during a debug session. The Debug menu provides
commands for executing and debugging the source application. Most of the commands
are also available as icon buttons on the debug toolbar.

These commands are available:

Go (F5)

Executes from the current statement or instruction until a breakpoint or program
exit is reached.
AFE1_AFE2-1:1

51

52

Reference information on starting C-SPY

Break

Stops the application execution.

Reset

Resets the target processor. Click the drop-down button to access a menu with
additional commands.

Enable Run to 'label', where label typically is main. Enables and disables
the project option Run to without exiting the debug session. This menu
command is only available if you have selected Run to in the Options dialog
box.

Reset strategies, which contains a list of reset strategies supported by the C-SPY
driver you are using. This means that you can choose a different reset strategy
than the one used initially without exiting the debug session. Reset strategies are
only available if the C-SPY driver you are using supports alternate reset
strategies.

Stop Debugging (Ctrl+Shift+D)

Stops the debugging session and returns you to the project manager.

Step Over (F10)

Executes the next statement, function call, or instruction, without entering C or
C++ functions or assembler subroutines.

Step Into (F11)

Executes the next statement or instruction, or function call, entering C or C++
functions or assembler subroutines.

Step Out (Shift+F11)

Executes from the current statement up to the statement after the call to the
current function.

Next Statement

Executes directly to the next statement without stopping at individual function
calls.

Run to Cursor

Executes from the current statement or instruction up to a selected statement or
instruction.

Autostep

Displays a dialog box where you can customize and perform autostepping, see
Autostep settings dialog box, page 76.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Getting started using C-SPY

Set Next Statement

Moves the program counter directly to where the cursor is, without executing
any source code. Note, however, that this creates an anomaly in the program
flow and might have unexpected effects.

C++ Exceptions>Break on Throw

This menu command is not supported by your product package.

C++ Exceptions>Break on Uncaught Exception

This menu command is not supported by your product package.

Memory>Save

Displays a dialog box where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 141.

Memory>Restore

Displays a dialog box where you can load the contents of a file in, for example
Intel-extended or Motorola s-record format to a specified memory zone, see
Memory Restore dialog box, page 142.

Refresh

Refreshes the contents of all debugger windows. Because window updates are
automatic, this is needed only in unusual situations, such as when target memory
is modified in ways C-SPY cannot detect. It is also useful if code that is
displayed in the Disassembly window is changed.

Logging>Set Log file

Displays a dialog box where you can choose to log the contents of the Debug
Log window to a file. You can select the type and the location of the log file. You
can choose what you want to log: errors, warnings, system information, user
messages, or all of these. See Log File dialog box, page 74.

Logging>Set Terminal I/O Log file

Displays a dialog box where you can choose to log simulated target access
communication to a file. You can select the destination of the log file. See
Terminal I/O Log File dialog box, page 72

C-SPY windows

Depending on the C-SPY driver you are using, these windows specific to C-SPY are
available during a debug session:

● C-SPY Debugger main window

● Disassembly window

● Memory window
AFE1_AFE2-1:1

53

54

Reference information on starting C-SPY

● Symbolic Memory window

● Registers window

● Watch window

● Locals window

● Auto window

● Live Watch window

● Quick Watch window

● Statics window

● Call Stack window

● Trace window

● Function Trace window

● Timeline window, see Reference information on application timeline, page 192

● Terminal I/O window

● Code Coverage window

● Function Profiler window

● Images window

● Stack window

● Symbols window.

Additional windows are available depending on which C-SPY driver you are using.

Images window
The Images window is available from the View menu.

This window lists all currently loaded images (debug files).

Normally, a source application consists of exactly one image that you debug. However,
you can also load additional images. This means that the complete debuggable unit
consists of several images. See also Loading multiple images, page 47.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Getting started using C-SPY

Requirements

None; this window is always available.

Display area

C-SPY can either use debug information from all of the loaded images simultaneously,
or from one image at a time. Double-click on a row to show information only for that
image. The current choice is highlighted.

This area lists the loaded images in these columns:

Name

The name of the loaded image.

Path

The path to the loaded image.

Context menu

This context menu is available:

These commands are available:

Show all images

Shows debug information for all loaded debug images.

Show only image

Shows debug information for the selected debug image.

Related information

For related information, see:

● Loading multiple images, page 47

● Images, page 360

● __loadImage, page 273.
AFE1_AFE2-1:1

55

56

Reference information on starting C-SPY

Get Alternative File dialog box
The Get Alternative File dialog box is displayed if C-SPY cannot automatically find
the source files to be loaded, for example if the application was built on another
computer.

See also Starting a debug session with source files missing, page 46.

Could not find the following source file

The missing source file.

Suggested alternative

Specify an alternative file.

Use this file

After you have specified an alternative file, Use this file establishes that file as the alias
for the requested file. Note that after you have chosen this action, C-SPY will
automatically locate other source files if these files reside in a directory structure similar
to the first selected alternative file.

The next time you start a debug session, the selected alternative file will be preloaded
automatically.

Skip

C-SPY will assume that the source file is not available for this debug session.

If possible, don’t show this dialog again

Instead of displaying the dialog box again for a missing source file, C-SPY will use the
previously supplied response.

Related information

For related information, see Starting a debug session with source files missing, page 46.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Executing your application
● Introduction to application execution

● Reference information on application execution

Introduction to application execution
These topics are covered:

● Briefly about application execution

● Source and disassembly mode debugging

● Single stepping

● Troubleshooting slow stepping speed

● Running the application

● Highlighting

● Viewing the call stack

● Terminal input and output

● Debug logging

BRIEFLY ABOUT APPLICATION EXECUTION

C-SPY allows you to monitor and control the execution of your application. By
single-stepping through it, and setting breakpoints, you can examine details about the
application execution, for example the values of variables and registers. You can also use
the call stack to step back and forth in the function call chain.

The terminal I/O and debug log features let you interact with your application.

You can find commands for execution on the Debug menu and on the toolbar.

SOURCE AND DISASSEMBLY MODE DEBUGGING

C-SPY allows you to switch between source mode and disassembly mode debugging as
needed.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.
AFE1_AFE2-1:1

57

58

Introduction to application execution

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control of the application code. You can open a
disassembly window which displays a mnemonic assembler listing of your application
based on actual memory contents rather than source code, and lets you execute the
application exactly one machine instruction at a time.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

SINGLE STEPPING

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just
stepping on statements.

There are several factors that can slow down the stepping speed. If you find it too slow,
see Troubleshooting slow stepping speed, page 60 for some tips.

The step commands

There are four step commands:

● Step Into

● Step Over

● Next Statement

● Step Out.

Using the Autostep settings dialog box, you can automate the single stepping. For more
information, see Autostep settings dialog box, page 76.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Executing your application

Consider this example and assume that the previous step has taken you to the f(i)
function call (highlighted):

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}
int main()
{
 ...
 f(i);
 value ++;
}

Step Into

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine g(n-1):

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Step Over

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the g(n-2) function
call, which is not a statement on its own but part of the same statement as g(n-1). Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

AFE1_AFE2-1:1

59

60

Introduction to application execution

Next Statement

The Next Statement command executes directly to the next statement, in this case
return value, allowing faster stepping:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

Step Out

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) g(n-3);
 return value;
}
int main()
{
 ...
 f(i);
 value ++;
}

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for C++, which tends to have many implicit function calls,
such as constructors, destructors, assignment operators, and other user-defined
operators.

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.

TROUBLESHOOTING SLOW STEPPING SPEED

If you find that stepping speed is slow, these troubleshooting tips might speed up
stepping:

● If you are using a hardware debugger system, keep track of how many hardware
breakpoints that are used and make sure some of them are left for stepping.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Executing your application

Stepping in C-SPY is normally performed using breakpoints. When C-SPY performs
a step command, a breakpoint is set on the next statement and the application
executes until it reaches this breakpoint. If you are using a hardware debugger
system, the number of hardware breakpoints—typically used for setting a stepping
breakpoint in code that is located in flash/ROM memory—is limited. If you, for
example, step into a C switch statement, breakpoints are set on each branch; this
might consume several hardware breakpoints. If the number of available hardware
breakpoints is exceeded, C-SPY switches into single stepping on assembly level,
which can be very slow.

For more information, see Breakpoints in the C-SPY hardware debugger drivers,
page 106 and Breakpoint consumers, page 108.

● Disable trace data collection, using the Enable/Disable button in both the Trace
and the Function Profiling windows. Trace data collection might slow down
stepping because the collected trace data is processed after each step. Note that it is
not sufficient to just close the corresponding windows to disable trace data
collection.

● Choose to view only a limited selection of SFR registers. You can choose between
two alternatives. Either type #SFR_name (where SFR_name reflects the name of the
SFR you want to monitor) in the Watch window, or create your own filter for
displaying a limited group of SFRs in the Registers window. Displaying many SFR
registers might slow down stepping because all registers must be read from the
hardware after each step. See Defining application-specific register groups, page
133.

● Close the Memory and Symbolic Memory windows if they are open, because the
visible memory must be read after each step and that might slow down stepping.

● Close any window that displays expressions such as Watch, Live Watch, Locals,
Statics if it is open, because all these windows read memory after each step and that
might slow down stepping.

● Close the Stack window if it is open. Choose Tools>Options>Stack and disable the
Enable graphical stack display and stack usage tracking option if it is enabled.

● If possible, increase the communication speed between C-SPY and the target
board/emulator.

RUNNING THE APPLICATION

Go

The Go command continues execution from the current position until a breakpoint or
program exit is reached.
AFE1_AFE2-1:1

61

62

Introduction to application execution

Run to Cursor

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the windows was last active.

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

VIEWING THE CALL STACK

The compiler generates extensive call frame information. This allows C-SPY to show,
without any runtime penalty, the complete function call chain at any time.

Typically, this is useful for two purposes:

● Determining in what context the current function has been called

● Tracing the origin of incorrect values in variables and in parameters, thus locating
the function in the call chain where the problem occurred.

The Call Stack window shows a list of function calls, with the current function at the
top. When you inspect a function in the call chain, the contents of all affected windows
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Executing your application

are updated to display the state of that particular call frame. This includes the editor,
Locals, Register, Watch, and Disassembly windows. A function would normally not
make use of all registers, so these registers might have undefined states and be displayed
as dashes (---).

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command to execute to that function.

Assembler source code does not automatically contain any call frame information. To
see the call chain also for your assembler modules, you can add the appropriate CFI
assembler directives to the assembler source code. For more information, see the IAR
Assembler User Guide for 8051.

TERMINAL INPUT AND OUTPUT

Sometimes you might have to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window lets you enter input to your application, and display output from it. You can also
direct terminal I/O to a file, using the Terminal I/O Log Files dialog box.

This facility is useful in two different contexts:

● If your application uses stdin and stdout

● For producing debug trace printouts.

For more information, see Terminal I/O window, page 71 and Terminal I/O Log File
dialog box, page 72.

DEBUG LOGGING

The Debug Log window displays debugger output, such as diagnostic messages,
macro-generated output, and information about trace.

It can sometimes be convenient to log the information to a file where you can easily
inspect it, see Log File dialog box, page 74. The two main advantages are:

● The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

● The file provides history about how you have controlled the execution, for instance,
which breakpoints that have been triggered etc.
AFE1_AFE2-1:1

63

64

Reference information on application execution

Reference information on application execution
Reference information about:

● Disassembly window, page 64

● Call Stack window, page 69

● Terminal I/O window, page 71

● Terminal I/O Log File dialog box, page 72

● Debug Log window, page 73

● Log File dialog box, page 74

● Report Assert dialog box, page 75

● Autostep settings dialog box, page 76

● Cores window, page 76

See also Terminal I/O options in the IDE Project Management and Building Guide for
8051.

Disassembly window
The C-SPY Disassembly window is available from the View menu.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Executing your application

This window shows the application being debugged as disassembled application code.

To change the default color of the source code in the Disassembly window:

1 Choose Tools>Options>Debugger.

2 Set the default color using the Source code coloring in disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
window and drag it to the Disassembly window.

See also Source and disassembly mode debugging, page 57.

Requirements

None; this window is always available.

Toolbar

The toolbar contains:

Go to

The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Toggle Mixed-Mode

Toggles between displaying only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information

Display area

The display area shows the disassembled application code.
AFE1_AFE2-1:1

65

66

Reference information on application execution

This area contains these graphic elements:

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has
been executed.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic, which means that the commands on the
menu might depend on your product package.

Green highlight Indicates the current position, that is the next assembler
instruction to be executed. To move the cursor to any line in
the Disassembly window, click the line. Alternatively, move
the cursor using the navigation keys.

Yellow highlight Indicates a position other than the current position, such as
when navigating between frames in the Call Stack window
or between items in the Trace window.

Red dot Indicates a breakpoint. Double-click in the gray left-side
margin of the window to set a breakpoint. For more
information, see Breakpoints, page 103.

Green diamond Indicates code that has been executed—that is, code
coverage.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Executing your application

These commands are available:

Move to PC

Displays code at the current program counter location.

Run to Cursor

Executes the application from the current position up to the line containing the
cursor.

Code Coverage

Displays a submenu that provides commands for controlling code coverage.
This command is only enabled if the driver you are using supports it.

Instruction Profiling

Displays a submenu that provides commands for controlling instruction
profiling. This command is only enabled if the driver you are using supports it.

Toggle Breakpoint (Code)

Toggles a code breakpoint. Assembler instructions and any corresponding label
at which code breakpoints have been set are highlighted in red. For more
information, see Code breakpoints dialog box, page 118.

Toggle Breakpoint (Log)

Toggles a log breakpoint for trace printouts. Assembler instructions at which log
breakpoints have been set are highlighted in red. For more information, see Log
breakpoints dialog box, page 119.

Enable Toggles code coverage on or off.

Show Toggles the display of code coverage on or off.
Executed code is indicated by a green diamond.

Clear Clears all code coverage information.

Enable Toggles instruction profiling on or off.

Show Toggles the display of instruction profiling on or off.
For each instruction, the left-side margin displays
how many times the instruction has been executed.

Clear Clears all instruction profiling information.
AFE1_AFE2-1:1

67

68

Reference information on application execution

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, the trace
data collection starts. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Start breakpoints dialog box, page 180.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, the trace
data collection stops. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Stop breakpoints dialog box, page 181.

Enable/Disable Breakpoint

Enables and Disables a breakpoint. If there is more than one breakpoint at a
specific line, all those breakpoints are affected by the Enable/Disable
command.

Edit Breakpoint

Displays the breakpoint dialog box to let you edit the currently selected
breakpoint. If there is more than one breakpoint on the selected line, a submenu
is displayed that lists all available breakpoints on that line.

Set Next Statement

Sets the program counter to the address of the instruction at the insertion point.

Copy Window Contents

Copies the selected contents of the Disassembly window to the clipboard.

Mixed-Mode

Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

Find in Trace

Searches the contents of the Trace window for occurrences of the given
location—the position of the insertion point in the source code—and reports the
result in the Find in Trace window. This menu command requires support for
Trace in the C-SPY driver you are using, see Differences between the C-SPY
drivers, page 37.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Executing your application

Call Stack window
The Call Stack window is available from the View menu.

This window displays the C function call stack with the current function at the top. To
inspect a function call, double-click it. C-SPY now focuses on that call frame instead.

If the next Step Into command would step to a function call, the name of the function is
displayed in the gray bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

See also Viewing the call stack, page 62.

Requirements

None; this window is always available.

Display area

Each entry in the display area is formatted in one of these ways:

function(values)*** A C/C++ function with debug information.

Provided that Show Arguments is enabled, values
is a list of the current values of the parameters, or
empty if the function does not take any parameters.

***, if present, indicates that the function has been
inlined by the compiler. For information about
function inlining, see the IAR C/C++ Compiler User
Guide for 8051.

[label + offset] An assembler function, or a C/C++ function without
debug information.

<exception_frame> An interrupt.
AFE1_AFE2-1:1

69

70

Reference information on application execution

Context menu

This context menu is available:

These commands are available:

Go to Source

Displays the selected function in the Disassembly or editor windows.

Show Arguments

Shows function arguments.

Run to Cursor

Executes until return to the function selected in the call stack.

Toggle Breakpoint (Code)

Toggles a code breakpoint.

Toggle Breakpoint (Log)

Toggles a log breakpoint.

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Enable/Disable Breakpoint

Enables or disables the selected breakpoint
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Executing your application

Terminal I/O window
The Terminal I/O window is available from the View menu.

Use this window to enter input to your application, and display output from it.

To use this window, you must:

1 Link your application with the option With I/O emulation modules.

C-SPY will then direct stdin, stdout and stderr to this window. If the Terminal I/O
window is closed, C-SPY will open it automatically when input is required, but not for
output.

See also Terminal input and output, page 63.

Requirements

None; this window is always available.

Input

Type the text that you want to input to your application.
AFE1_AFE2-1:1

71

72

Reference information on application execution

Ctrl codes

Opens a menu for input of special characters, such as EOF (end of file) and NUL.

Options

Opens the IDE Options dialog box where you can set options for terminal I/O. For
reference information about the options available in this dialog box, see Terminal I/O
options in IDE Project Management and Building Guide for 8051.

Terminal I/O Log File dialog box
The Terminal I/O Log File dialog box is available by choosing Debug>Logging>Set
Terminal I/O Log File.

Use this dialog box to select a destination log file for terminal I/O from C-SPY.

See also Terminal input and output, page 63.

Requirements

None; this dialog box is always available.

Terminal IO Log Files

Controls the logging of terminal I/O. To enable logging of terminal I/O to a file, select
Enable Terminal IO log file and specify a filename. The default filename extension is
log. A browse button is available for your convenience.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Executing your application

Debug Log window
The Debug Log window is available by choosing View>Messages.

This window displays debugger output, such as diagnostic messages, macro-generated
output, and information about trace. This output is only available during a debug
session. When opened, this window is, by default, grouped together with the other
message windows, see IDE Project Management and Building Guide for 8051.

Double-click any rows in one of the following formats to display the corresponding
source code in the editor window:

<path> (<row>):<message>
<path> (<row>,<column>):<message>

See also Debug logging, page 63 and Log File dialog box, page 74.

Requirements

None; this window is always available.

Context menu

This context menu is available:

These commands are available:

All

Shows all messages sent by the debugging tools and drivers.

Messages

Shows all C-SPY messages.
AFE1_AFE2-1:1

73

74

Reference information on application execution

Warnings

Shows warnings and errors.

Errors

Shows errors only.

Copy

Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All

Clears the contents of the window.

Log File dialog box
The Log File dialog box is available by choosing Debug>Logging>Set Log File.

Use this dialog box to log output from C-SPY to a file.

Requirements

None; this dialog box is always available.

Enable log file

Enables or disables logging to the file.

Include

The information printed in the file is, by default, the same as the information listed in
the Debug Log window. Use the browse button, to override the default file and location
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Executing your application

of the log file (the default filename extension is log). To change the information logged,
choose between:

Errors

C-SPY has failed to perform an operation.

Warnings

An error or omission of concern.

User

Messages from C-SPY macros, that is, your messages using the __message
statement.

Info

Progress information about actions C-SPY has performed.

Report Assert dialog box
The Report Assert dialog box appears if you have a call to the assert function in your
application source code, and the assert condition is false. In this dialog box you can
choose how to proceed.

Abort

The application stops executing and the runtime library function abort, which is part
of your application on the target system, will be called. This means that the application
itself terminates its execution.

Debug

C-SPY stops the execution of the application and returns control to you.

Ignore

The assertion is ignored and the application continues to execute.
AFE1_AFE2-1:1

75

76

Reference information on application execution

Autostep settings dialog box
The Autostep settings dialog box is available from the Debug menu.

Use this dialog box to customize autostepping.

The drop-down menu lists the available step commands, see Single stepping, page 58.

Requirements

None; this dialog box is always available.

Delay

Specify the delay between each step in milliseconds.

Cores window
The Cores window is available from the View menu.

This window displays information about the executing core, such as its execution state.
This information is primarily useful for IAR Embedded Workbench products that
support multicore debugging.

Requirements

None; this window is always available.

Display area

A row in this area shows information about a core, in these columns:

Execution state
Displays one of these icons to indicate the execution state of the core.

 in focus, not executing
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Executing your application

Core

The name of the core.

Status

The status of the execution, which can be one of Stopped, Running, or
Sleeping.

PC

The value of the program counter.

Cycles | Time

The value of the cycle counter or the execution time since the start of the
execution, depending on the debugger driver you are using.

 not in focus, not executing

 in focus, executing

 not in focus, executing

 in focus, in sleep mode

 not in focus, in sleep mode
AFE1_AFE2-1:1

77

78

Reference information on application execution

AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions
● Introduction to working with variables and expressions

● Working with variables and expressions

● Reference information on working with variables and expressions

Introduction to working with variables and expressions
This section introduces different methods for looking at variables and introduces some
related concepts.

These topics are covered:

● Briefly about working with variables and expressions

● C-SPY expressions

● Limitations on variable information.

BRIEFLY ABOUT WORKING WITH VARIABLES AND
EXPRESSIONS

There are several methods for looking at variables and calculating their values. These
methods are suitable for basic debugging:

● Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

● The Auto window displays a useful selection of variables and expressions in, or
near, the current statement. The window is automatically updated when execution
stops.

● The Locals window displays the local variables, that is, auto variables and function
parameters for the active function. The window is automatically updated when
execution stops.

● The Watch window allows you to monitor the values of C-SPY expressions and
variables. The window is automatically updated when execution stops.

● The Live Watch window repeatedly samples and displays the values of expressions
while your application is executing. Variables in the expressions must be statically
located, such as global variables.

● The Statics window displays the values of variables with static storage duration.
The window is automatically updated when execution stops.
AFE1_AFE2-1:1

79

80

Introduction to working with variables and expressions

● The Macro Quicklaunch window and the Quick Watch window give you precise
control over when to evaluate an expression.

● The Symbols window displays all symbols with a static location, that is, C/C++
functions, assembler labels, and variables with static storage duration, including
symbols from the runtime library.

These additional methods for looking at variables are suitable for more advanced
analysis:

● The Data Log window and the Data Log Summary window display logs of
accesses to up to four different memory locations you choose by setting data log
breakpoints. Data logging can help you locate frequently accessed data. You can
then consider whether you should place that data in more efficient memory.

For more information about these windows, see Trace, page 173.

C-SPY EXPRESSIONS

C-SPY expressions can include any type of C expression, except for calls to functions.
The following types of symbols can be used in expressions:

● C/C++ symbols

● Assembler symbols (register names and assembler labels)

● C-SPY macro functions

● C-SPY macro variables.

Expressions that are built with these types of symbols are called C-SPY expressions and
there are several methods for monitoring these in C-SPY. Examples of valid C-SPY
expressions are:

i + j
i = 42
myVar = cVar
cVar = myVar + 2
#asm_label
#R2
#PC
my_macro_func(19)

If you have a static variable with the same name declared in several different functions,
use the notation function::variable to specify which variable to monitor.

C/C++ symbols

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions (functions can be used as symbols but
cannot be executed). C symbols can be referenced by their names. Note that C++
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions

symbols might implicitly contain function calls which are not allowed in C-SPY
symbols and expressions.

Note: Some attributes available in C/C++, like volatile, are not fully supported by
C-SPY. For example, this line will not be accepted by C-SPY:

sizeof(unsigned char volatile __memattr *)

However, this line will be accepted:

sizeof(unsigned char __memattr *)

Assembler symbols

Assembler symbols can be assembler labels or registers, for example the program
counter, the stack pointer, or other CPU registers. If a device description file is used, all
memory-mapped peripheral units, such as I/O ports, can also be used as assembler
symbols in the same way as the CPU registers. See Modifying a device description file,
page 49.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes ` (ASCII character 0x60). For example:

Which processor-specific symbols are available by default can be seen in the Registers
window, using the CPU Registers register group. See Registers window, page 151.

C-SPY macro functions

Macro functions consist of C-SPY macro variable definitions and macro statements
which are executed when the macro is called.

Example What it does

#PC++ Increments the value of the program counter.

myVar = #SP Assigns the current value of the stack pointer register to your
C-SPY variable.

myVar = #label Sets myVar to the value of an integer at the address of label.

myptr = &#label7 Sets myptr to an int * pointer pointing at label7.

Table 4: C-SPY assembler symbols expressions

Example What it does

#PC Refers to the program counter.

#`PC` Refers to the assembler label PC.

Table 5: Handling name conflicts between hardware registers and assembler labels
AFE1_AFE2-1:1

81

82

Introduction to working with variables and expressions

For information about C-SPY macro functions and how to use them, see Briefly about
the macro language, page 250.

C-SPY macro variables

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assign both its value and type.

For information about C-SPY macro variables and how to use them, see Reference
information on the macro language, page 256.

Using sizeof

According to standard C, there are two syntactical forms of sizeof:

sizeof(type)
sizeof expr

The former is for types and the latter for expressions.

Note: In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

LIMITATIONS ON VARIABLE INFORMATION

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice, the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

Effects of optimizations

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. The optimization can affect the code so that
debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions

Consider this example:

myFunction()
{
 int i = 42;
 ...
 x = computer(i); /* Here, the value of i is known to C-SPY */
 ...
}

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means that C-SPY will not be able to display the value until it is actually used. If
you try to view the value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Working with variables and expressions
These tasks are covered:

● Using the windows related to variables and expressions

● Viewing assembler variables

See also Analyzing your application’s timeline, page 188.

USING THE WINDOWS RELATED TO VARIABLES AND
EXPRESSIONS

Where applicable, you can add, modify, and remove expressions, and change the display
format in the windows related to variables and expressions.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click the Value field and modify
its content. To remove an expression, select it and press the Delete key.

For text that is too wide to fit in a column—in any of the these windows, except the
Trace window—and thus is truncated, just point at the text with the mouse pointer and
tooltip information is displayed.

Right-click in any of the windows to access the context menu which contains additional
commands. Convenient drag-and-drop between windows is supported, except for in the
AFE1_AFE2-1:1

83

84

Working with variables and expressions

Locals window, Data logging windows, and the Quick Watch window where it is not
relevant.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY by default treats all data located at assembler labels as
variables of type int. However, in the Watch, Live Watch, and Quick Watch
windows, you can select a different interpretation to better suit the declaration of the
variables.

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions

Reference information on working with variables and expressions
Reference information about:

● Auto window, page 85

● Locals window, page 87

● Watch window, page 89

● Live Watch window, page 91

● Statics window, page 94

● Quick Watch window, page 97

● Symbols window, page 99

● Resolve Symbol Ambiguity dialog box, page 101

See also:

● Reference information on trace, page 176 for trace-related reference information

● Macro Quicklaunch window, page 301

Auto window
The Auto window is available from the View menu.

This window displays a useful selection of variables and expressions in, or near, the
current statement. Every time execution in C-SPY stops, the values in the Auto window
are recalculated. Values that have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 48.

Requirements

None; this window is always available.
AFE1_AFE2-1:1

85

86

Reference information on working with variables and expressions

Context menu

This context menu is available:

These commands are available:

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 84.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions

Options

Displays the IDE Options dialog box where you can set various options, for
example the Update interval option. The default value of this option is 1000
milliseconds, which means the Live Watch window will be updated once every
second during program execution.

Save to File

Saves content to a file in a tab-separated format.

Locals window
The Locals window is available from the View menu.

This window displays the local variables and parameters for the current function. Every
time execution in C-SPY stops, the values in the window are recalculated. Values that
have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 48.

Requirements

None; this window is always available.
AFE1_AFE2-1:1

87

88

Reference information on working with variables and expressions

Context menu

This context menu is available:

These commands are available:

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 84.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions

Options

Displays the IDE Options dialog box where you can set various options, for
example the Update interval option. The default value of this option is 1000
milliseconds, which means the Live Watch window will be updated once every
second during program execution.

Save to File

Saves content to a file in a tab-separated format.

Watch window
The Watch window is available from the View menu.

Use this window to monitor the values of C-SPY expressions or variables. You can open
up to four instances of this window, where you can view, add, modify, and remove
expressions. Tree structures of arrays, structs, and unions are expandable, which means
that you can study each item of these.

Every time execution in C-SPY stops, the values in the Watch window are recalculated.
Values that have changed since the last stop are highlighted in red.

Be aware that expanding very huge arrays can cause an out-of-memory crash. To avoid
this, expansion is automatically performed in steps of 5000 elements.

See also Editing in C-SPY windows, page 48.

Requirements

None; this window is always available.
AFE1_AFE2-1:1

89

90

Reference information on working with variables and expressions

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove

Removes the selected expression from the window.

Remove All

Removes all expressions listed in the window.

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 84.

Save to File

Saves content to a file in a tab-separated format.

Options

Displays the IDE Options dialog box where you can set various options, for
example the Update interval option. The default value of this option is 1000
milliseconds, which means the Live Watch window will be updated once every
second during program execution.

Live Watch window
The Live Watch window is available from the View menu.

This window repeatedly samples and displays the value of expressions while your
application is executing. Variables in the expressions must be statically located, such as
global variables.

See also Editing in C-SPY windows, page 48.

Requirements

The C-SPY simulator.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.
AFE1_AFE2-1:1

91

92

Reference information on working with variables and expressions

Display area

This area contains these columns:

Expression

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Value

The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location

The location in memory where this variable is stored.

Type

The data type of the variable.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove

Removes the selected expression from the window.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions

Remove All

Removes all expressions listed in the window.

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 84.

Save to File

Saves content to a file in a tab-separated format.

Options

Displays the IDE Options dialog box where you can set various options, for
example the Update interval option. The default value of this option is 1000
milliseconds, which means the Live Watch window will be updated once every
second during program execution.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.
AFE1_AFE2-1:1

93

94

Reference information on working with variables and expressions

Statics window
The Statics window is available from the View menu.

This window displays the values of variables with static storage duration that you have
selected. Typically, that is variables with file scope but it can also be static variables in
functions and classes. Note that volatile declared variables with static storage
duration will not be displayed.

Every time execution in C-SPY stops, the values in the Statics window are recalculated.
Values that have changed since the last stop are highlighted in red.

Click any column header (except for Value) to sort on that column.

See also Editing in C-SPY windows, page 48.

To select variables to monitor:

1 In the window, right-click and choose Select statics from the context menu. The
window now lists all variables with static storage duration.

2 Either individually select the variables you want to display, or choose one of the Select
commands from the context menu.

3 When you have made your selections, choose Select statics from the context menu to
toggle back to normal display mode.

Requirements

None; this window is always available.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions

Display area

This area contains these columns:

Expression

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Value

The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location

The location in memory where this variable is stored.

Type

The data type of the variable.

Module

The module of the variable.
AFE1_AFE2-1:1

95

96

Reference information on working with variables and expressions

Context menu

This context menu is available:

These commands are available:

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Save to File

Saves the content of the Statics window to a log file.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions

Select Statics

Selects all variables with static storage duration; this command also enables all
Select commands below. Select the variables you want to monitor. When you
have made your selections, select this menu command again to toggle back to
normal display mode.

Select All

Selects all variables.

Select None

Deselects all variables.

Select All in module
Selects all variables in the selected module.

Select None in module
Deselects all variables in the selected module.

Quick Watch window
The Quick Watch window is available from the View menu and from the context menu
in the editor window.

Use this window to watch the value of a variable or expression and evaluate expressions
at a specific point in time.

In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be necessary,
but for expressions with possible side effects, such as assignments and C-SPY macro
functions, it allows you to perform evaluations under controlled conditions.

See also Editing in C-SPY windows, page 48.

To evaluate an expression:

1 In the editor window, right-click on the expression you want to examine and choose
Quick Watch from the context menu that appears.

2 The expression will automatically appear in the Quick Watch window.
AFE1_AFE2-1:1

97

98

Reference information on working with variables and expressions

Alternatively:

3 In the Quick Watch window, type the expression you want to examine in the
Expressions text box.

4 Click the Recalculate button to calculate the value of the expression.

For an example, see Using C-SPY macros, page 251.

Requirements

None; this window is always available.

Context menu

This context menu is available:

These commands are available:

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 84.

Options

Displays the IDE Options dialog box where you can set various options, for
example the Update interval option. The default value of this option is 1000
milliseconds, which means the Live Watch window will be updated once every
second during program execution.

Save to File

Saves content to a file in a tab-separated format.

Symbols window
The Symbols window is available from the View menu after you have enabled the
Symbols plugin module.

This window displays all symbols with a static location, that is, C/C++ functions,
assembler labels, and variables with static storage duration, including symbols from the
runtime library.

To enable the Symbols plugin module, choose Project>Options>Debugger>Select
plugins to load>Symbols.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.
AFE1_AFE2-1:1

99

100

Reference information on working with variables and expressions

Requirements

None; this window is always available.

Display area

This area contains these columns:

Symbol

The symbol name.

Location

The memory address.

Full name

The symbol name; often the same as the contents of the Symbol column but
differs for example for C++ member functions.

Click the column headers to sort the list by symbol name, location, or full name.

Context menu

This context menu is available:

These commands are available:

Functions

Toggles the display of function symbols on or off in the list.

Variables

Toggles the display of variables on or off in the list.

Labels

Toggles the display of labels on or off in the list.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Variables and expressions

Resolve Symbol Ambiguity dialog box
The Resolve Symbol Ambiguity dialog box appears, for example, when you specify a
symbol in the Disassembly window to go to, and there are several instances of the same
symbol due to templates or function overloading.

Requirements

None; this window is always available.

Ambiguous symbol

Indicates which symbol that is ambiguous.

Please select one symbol

A list of possible matches for the ambiguous symbol. Select the one you want to use.
AFE1_AFE2-1:1

101

102

Reference information on working with variables and expressions

AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints
● Introduction to setting and using breakpoints

● Setting breakpoints

● Reference information on breakpoints

Introduction to setting and using breakpoints
These topics are covered:

● Reasons for using breakpoints

● Briefly about setting breakpoints

● Breakpoint types

● Breakpoint icons

● Breakpoints in the C-SPY simulator

● Breakpoints in the C-SPY hardware debugger drivers

● Breakpoint consumers

REASONS FOR USING BREAKPOINTS

C-SPY® lets you set various types of breakpoints in the application you are debugging,
allowing you to stop at locations of particular interest. You can set a breakpoint at a code
location to investigate whether your program logic is correct, or to get trace printouts.
In addition to code breakpoints, and depending on what C-SPY driver you are using,
additional breakpoint types might be available. For example, you might be able to set a
data breakpoint, to investigate how and when the data changes.

You can let the execution stop under certain conditions, which you specify. You can also
let the breakpoint trigger a side effect, for instance executing a C-SPY macro function,
by transparently stopping the execution and then resuming. The macro function can be
defined to perform a wide variety of actions, for instance, simulating hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

BRIEFLY ABOUT SETTING BREAKPOINTS

You can set breakpoints in many various ways, allowing for different levels of
interaction, precision, timing, and automation. All the breakpoints you define will
AFE1_AFE2-1:1

103

104

Introduction to setting and using breakpoints

appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new
breakpoints. The Breakpoint Usage window also lists all internally used breakpoints,
see Breakpoint consumers, page 108.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping; for more information about the precision, see Single stepping, page
58.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

Note: For most hardware debugger systems it is only possible to set breakpoints when
the application is not executing.

BREAKPOINT TYPES

Depending on the C-SPY driver you are using, C-SPY supports different types of
breakpoints.

Code breakpoints

Code breakpoints are used for code locations to investigate whether your program logic
is correct or to get trace printouts. Code breakpoints are triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop, before the
instruction is executed.

Log breakpoints

Log breakpoints provide a convenient way to add trace printouts without having to add
any code to your application source code. Log breakpoints are triggered when an
instruction is fetched from the specified location. If you have set the breakpoint on a
specific machine instruction, the breakpoint will be triggered and the execution will
temporarily stop and print the specified message in the C-SPY Debug Log window.

Trace Start and Stop breakpoints

Trace Start and Stop breakpoints start and stop trace data collection—a convenient way
to analyze instructions between two execution points.

Data breakpoints

Data breakpoints are primarily useful for variables that have a fixed address in memory.
If you set a breakpoint on an accessible local variable, the breakpoint is set on the
corresponding memory location. The validity of this location is only guaranteed for
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

small parts of the code. Data breakpoints are triggered when data is accessed at the
specified location. The execution will usually stop directly after the instruction that
accessed the data has been executed.

Data Log breakpoints

Data log breakpoints are triggered when a specified memory address is accessed. A log
entry is written in the Data Log window for each access. Data logs can also be displayed
on the Data Log graph in the Timeline window, if that window is enabled.

You can set data log breakpoints using the Breakpoints window, the Memory window,
and the editor window.

Using a single instruction, the microcontroller can only access values that are one byte.
If you specify a data log breakpoint on a memory location that cannot be accessed by
one instruction, for example a double or a too large area in the Memory window, the
result might not be what you intended.

Immediate breakpoints

The C-SPY Simulator lets you set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
simulated processor is about to read data from a location or immediately after it has
written data. Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the simulated processor reads from a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the simulated processor writes to a memory-mapped
location, a C-SPY macro function can act on the value that was written.
AFE1_AFE2-1:1

105

106

Introduction to setting and using breakpoints

BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
varies with the type of breakpoint:

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options in the IDE Project Management and Building Guide for
8051.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage window.

Note: The breakpoint icons might look different for the C-SPY driver you are using.

BREAKPOINTS IN THE C-SPY SIMULATOR

The C-SPY simulator supports all breakpoint types and you can set an unlimited amount
of breakpoints.

BREAKPOINTS IN THE C-SPY HARDWARE DEBUGGER
DRIVERS

Using the C-SPY drivers for hardware debugger systems you can set various breakpoint
types. The amount of breakpoints you can set depends on the number of hardware
breakpoints available on the target system or—if the driver and the device support
them—whether you have enabled software breakpoints, in which case the number of
breakpoints you can set is unlimited.

A software breakpoint instruction temporarily replaces the application code with an
instruction that hands the execution over to the driver. There are several ways of doing
this, for example:

● Inserting an LCALL #monitor instruction, if you are using the IAR ROM-monitor

● Using an exception operation code, for example 0xA5, to halt the execution.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

This table summarizes the characteristics of breakpoints for the different target systems:

* The number of available hardware breakpoints depends on the target system you are
using.

If the driver and the device support software breakpoints and they are enabled, the
debugger will first use any available hardware breakpoints before using software
breakpoints. Exceeding the number of available hardware breakpoints, when software
breakpoints are not enabled, causes the debugger to single step. This will significantly
reduce the execution speed. For this reason you must be aware of the different
breakpoint consumers.

Padding for safe insertion of breakpoint instruction(s)

When using the LCALL instruction as a code breakpoint, for example as in the IAR
C-SPY ROM-monitor, padding with extra memory space might be needed to avoid
overwriting application memory. In an assembler program this padding must be done

C-SPY hardware debugger driver
Code and Log

breakpoints
Data breakpoints

Texas Instruments

 using 4 hardware breakpoints* 4 —

FS2 System Navigator

 using 2 hardware breakpoints* 2 2

 using software breakpoints† Unlimited —

Infineon

 using 4 hardware breakpoints 4 4

 using software breakpoints Unlimited —

Segger J-Link

 using 4 hardware breakpoints* 4 —

Nordic Semiconductor

 using 2 hardware breakpoints* 2 2

Nuvoton Nu-Link

 using 8 hardware breakpoints* 8 —

ROM-monitor – depends on the device

Analog Devices

 using software breakpoints Unlimited —

Silicon Labs

 using 4 hardware breakpoints 4 4

Table 6: Available breakpoints in C-SPY hardware debugger drivers
AFE1_AFE2-1:1

107

108

Introduction to setting and using breakpoints

manually. In C programs you can use the compiler option --rom_mon_bp_padding.
See the IAR C/C++ Compiler User Guide for 8051 for reference information about this
option.

To set the equivalent option in the IAR Embedded Workbench IDE, choose
Project>Options>C/C++ Compiler>Code>Padding for ROM-monitor
breakpoints.

Using this option makes it possible to set a breakpoint on every C statement.

Breakpoints in flash memory

When you set a software breakpoint in flash memory, the driver must flash the page(s)
containing the breakpoint instruction byte(s) once.

If you set a conditional breakpoint, the driver must flash the page(s) every time the
breakpoint is evaluated to check if the condition is met.

Every step you take at C level forces the driver to temporarily set breakpoints on each
possible endup statement.

Note: The Analog Devices driver will cache breakpoints, and it will not flash the page
until the execution has started.

BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

User breakpoints

The breakpoints you define in the breakpoint dialog box or by toggling breakpoints in
the editor window often consume one physical breakpoint each, but this can vary greatly.
Some user breakpoints consume several physical breakpoints and conversely, several
user breakpoints can share one physical breakpoint. User breakpoints are displayed in
the same way both in the Breakpoint Usage window and in the Breakpoints window,
for example Data @[R] callCount.

C-SPY itself

C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

● The debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set during a debug session. This
means that they are not visible in the Breakpoints window.

● The linker option With I/O emulation modules has been selected.

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

In the CLIB runtime environment, C-SPY will set a breakpoint if:

● the library functions putchar and getchar are used (low-level routines used by
functions like printf and scanf)

● the application has an exit label.

You can disable the setting of system breakpoints on the putchar and getchar
functions and on the exit label; see Exclude system breakpoints on, page 359.

These types of breakpoint consumers are displayed in the Breakpoint Usage window,
for example, C-SPY Terminal I/O & libsupport module.

C-SPY plugin modules

For example, modules for real-time operating systems can consume additional
breakpoints. Specifically, by default, the Stack window consumes one physical
breakpoint.

To disable the breakpoint used by the Stack window:

1 Choose Tools>Options>Stack.

2 Deselect the Stack pointer(s) not valid until program reaches: label option.

To disable the Stack window entirely, choose Tools>Options>Stack and make sure all
options are deselected.

Setting breakpoints
These tasks are covered:

● Various ways to set a breakpoint

● Toggling a simple code breakpoint

● Setting breakpoints using the dialog box

● Setting a data breakpoint in the Memory window

● Setting breakpoints using system macros

● Useful breakpoint hints.

VARIOUS WAYS TO SET A BREAKPOINT

You can set a breakpoint in various ways:

● Toggling a simple code breakpoint.

● Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and
AFE1_AFE2-1:1

109

110

Setting breakpoints

in the Disassembly window. The dialog boxes give you access to all breakpoint
options.

● Setting a data breakpoint on a memory area directly in the Memory window.

● Using predefined system macros for setting breakpoints, which allows automation.

The different methods offer different levels of simplicity, complexity, and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:

● Click in the gray left-side margin of the window

● Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

● Choose Edit>Toggle Breakpoint

● Right-click and choose Toggle Breakpoint from the context menu.

SETTING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

To set a new breakpoint:

1 Choose View>Breakpoints to open the Breakpoints window.

2 In the Breakpoints window, right-click, and choose New Breakpoint from the context
menu.

3 On the submenu, choose the breakpoint type you want to set.

Depending on the C-SPY driver you are using, different breakpoint types are available.

4 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

To modify an existing breakpoint:

1 In the Breakpoints window, editor window, or in the Disassembly window, select the
breakpoint you want to modify and right-click to open the context menu.

If there are several breakpoints on the same source code line, the breakpoints will be
listed on a submenu.

2 On the context menu, choose the appropriate command.

3 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted in the Memory window; instead, you can see, edit,
and remove it using the Breakpoints window, which is available from the View menu.
The breakpoints you set in the Memory window will be triggered for both read and
AFE1_AFE2-1:1

111

112

Setting breakpoints

write accesses. All breakpoints defined in this window are preserved between debug
sessions.

Note: Setting breakpoints directly in the Memory window is only possible if the driver
you use supports this.

SETTING BREAKPOINTS USING SYSTEM MACROS

You can set breakpoints not only in the breakpoint dialog box but also by using built-in
C-SPY system macros. When you use system macros for setting breakpoints, the
breakpoint characteristics are specified as macro parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session
will be documented, and that several engineers involved in the development project can
share the macro files.

Note: If you use system macros for setting breakpoints, you can still view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros are removed when you
exit the debug session.

These breakpoint macros are available:

For information about each breakpoint macro, see Reference information on C-SPY
system macros, page 264.

Setting breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Using C-SPY macros, page 251.

C-SPY macro for breakpoints Simulator

TI / Nordic Semi /

Analog Devices /

Segger J-Link

FS2 / Infineon

/ROM-monitor /

Silicon Labs

Nu-Link

__setCodeBreak Yes Yes Yes Yes

__setDataBreak Yes — Yes —

__setLogBreak Yes Yes Yes —

__setSimBreak Yes — — —

__setTraceStartBreak Yes — — —

__setTraceStopBreak Yes — — —

__clearBreak Yes Yes Yes Yes

Table 7: C-SPY macros for breakpoints
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

USEFUL BREAKPOINT HINTS

Below are some useful hints related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, you might want to debug that behavior. These methods can be useful:

● Set a breakpoint on the first line of the function with a condition that is true only
when the parameter is 0. The breakpoint will then not be triggered until the
problematic situation actually occurs. The advantage of this method is that no extra
source code is needed. The drawback is that the execution speed might become
unacceptably low.

● You can use the assert macro in your problematic function, for example:

int MyFunction(int * MyPtr)
{
 assert(MyPtr != 0); /* Assert macro added to your source
 code. */
 /* Here comes the rest of your function. */
}

The execution will break whenever the condition is true. The advantage is that the
execution speed is only very slightly affected, but the drawback is that you will get a
small extra footprint in your source code. In addition, the only way to get rid of the
execution stop is to remove the macro and rebuild your source code.

● Instead of using the assert macro, you can modify your function like this:

int MyFunction(int * MyPtr)
{
 if(MyPtr == 0)
 MyDummyStatement; /* Dummy statement where you set a
 breakpoint. */
 /* Here comes the rest of your function. */
}

You must also set a breakpoint on the extra dummy statement, so that the execution
will break whenever the condition is true. The advantage is that the execution speed
is only very slightly affected, but the drawback is that you will still get a small extra
footprint in your source code. However, in this way you can get rid of the execution
stop by just removing the breakpoint.

Performing a task and continuing execution

You can perform a task when a breakpoint is triggered and then automatically continue
execution.
AFE1_AFE2-1:1

113

114

Reference information on breakpoints

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed. In this case, the execution
will not continue automatically.

Instead, you can set a condition which returns 0 (false). When the breakpoint is
triggered, the condition—which can be a call to a C-SPY macro that performs a task—
is evaluated and because it is not true, execution continues.

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count()
{
 my_counter += 1;
 return 0;
}

To use this function as a condition for the breakpoint, type count() in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Reference information on breakpoints
Reference information about:

● Breakpoints window, page 115

● Breakpoint Usage window, page 117

● Code breakpoints dialog box, page 118

● Log breakpoints dialog box, page 119

● Range breakpoints dialog box, page 121

● Data breakpoints dialog box, page 122

● Data Log breakpoints dialog box, page 124

● Immediate breakpoints dialog box, page 125

● Enter Location dialog box, page 126

● Resolve Source Ambiguity dialog box, page 128.

See also:

● Reference information on C-SPY system macros, page 264

● Reference information on trace, page 176.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

Breakpoints window
The Breakpoints window is available from the View menu.

This window lists all breakpoints you define.

Use this window to conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

Requirements

None; this window is always available.

Display area

This area lists all breakpoints you define. For each breakpoint, information about the
breakpoint type, source file, source line, and source column is provided.

Context menu

This context menu is available:

These commands are available:

Go to Source

Moves the insertion point to the location of the breakpoint, if the breakpoint has
a source location. Double-click a breakpoint in the Breakpoints window to
perform the same command.
AFE1_AFE2-1:1

115

116

Reference information on breakpoints

Edit

Opens the breakpoint dialog box for the breakpoint you selected.

Delete

Deletes the breakpoint. Press the Delete key to perform the same command.

Enable

Enables the breakpoint. The check box at the beginning of the line will be
selected. You can also perform the command by manually selecting the check
box. This command is only available if the breakpoint is disabled.

Disable

Disables the breakpoint. The check box at the beginning of the line will be
deselected. You can also perform this command by manually deselecting the
check box. This command is only available if the breakpoint is enabled.

Enable All

Enables all defined breakpoints.

Disable All

Disables all defined breakpoints.

Delete All

Deletes all defined breakpoints.

New Breakpoint

Displays a submenu where you can open the breakpoint dialog box for the
available breakpoint types. All breakpoints you define using this dialog box are
preserved between debug sessions.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

Breakpoint Usage window
The Breakpoint Usage window is available from the menu specific to the C-SPY driver
you are using.

This window lists all breakpoints currently set in the target system, both the ones you
have defined and the ones used internally by C-SPY. The format of the items in this
window depends on the C-SPY driver you are using.

The window gives a low-level view of all breakpoints, related but not identical to the list
of breakpoints displayed in this window.

C-SPY uses breakpoints when stepping. If your target system has a limited number of
hardware breakpoints and software breakpoints are not enabled, exceeding the number
of available hardware breakpoints will cause the debugger to single step. This will
significantly reduce the execution speed. Therefore, in a debugger system with a limited
amount of hardware breakpoints, you can use the Breakpoint Usage window for:

● Identifying all breakpoint consumers

● Checking that the number of active breakpoints is supported by the target system

● Configuring the debugger to use the available breakpoints in a better way, if
possible.

Requirements

None; this window is always available.

Display area

For each breakpoint in the list, the address and access type are displayed. Each
breakpoint in the list can also be expanded to show its originator.
AFE1_AFE2-1:1

117

118

Reference information on breakpoints

Code breakpoints dialog box
The Code breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

This figure reflects the C-SPY simulator.

Use the Code breakpoints dialog box to set a code breakpoint, see Setting breakpoints
using the dialog box, page 110.

Requirements

None; this dialog box is always available.

Break At

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 126.

Size

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto

The size will be set automatically, typically to 1.

Manual

Specify the size of the breakpoint range in the text box.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 113.

Conditions

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see C-SPY expressions, page 80.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Log breakpoints dialog box
The Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

This figure reflects the C-SPY simulator.

Use the Log breakpoints dialog box to set a log breakpoint, see Setting breakpoints
using the dialog box, page 110.
AFE1_AFE2-1:1

119

120

Reference information on breakpoints

Requirements

One of these alternatives:

● The C-SPY Texas Instruments driver

● The C-SPY FS2 System Navigator driver

● The C-SPY Infineon driver

● The C-SPY ROM-monitor driver

● The C-SPY Analog Devices driver

● The C-SPY Silicon Labs driver

● The C-SPY Segger J-Link driver

● The C-SPY simulator.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 126.

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
"__message" style—a comma-separated list of arguments.

C-SPY macro "__message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 259.

Conditions

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see C-SPY expressions, page 80.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

Range breakpoints dialog box
The Range breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Use the Range breakpoints dialog box to set a breakpoint for a range, either in code or
data memory.

Requirements

The C-SPY Infineon driver.

Trigger at

Specify the location of the breakpoint. Alternatively, click the Edit button to open the
Enter Location dialog box, see Enter Location dialog box, page 126.

Range

Specify the range of memory where an access triggers the breakpoint:

Auto

Automatically calculates the range based on the type of the object where the
breakpoint is set.

Size

Specify a size of the range in the text field.

End location

Specify the end location of the of the range in the text field. Alternatively, click
the Edit button to display the Enter Location dialog box where you can specify
the end location.
AFE1_AFE2-1:1

121

122

Reference information on breakpoints

Memory Space

Specify the memory space for the breakpoint:

Code

The breakpoint will be set in the code memory space.

Idata

The breakpoint will be set in the Idata memory space.

Access Type

Selects the type of memory access that triggers the range breakpoint:

Fetch

Fetches from code memory.

Read

Reads from location.

Write

Writes to location.

Data breakpoints dialog box
The Data breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

This figure reflects the C-SPY simulator.

Use the Data breakpoints dialog box to set a data breakpoint, see Setting breakpoints
using the dialog box, page 110. Data breakpoints never stop execution within a single
instruction. They are recorded and reported after the instruction is executed.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

Requirements

One of these alternatives:

● The C-SPY FS2 System Navigator driver

● The C-SPY Infineon driver

● The C-SPY ROM-monitor driver

● The C-SPY simulator.

Break At

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 126.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read/Write

Reads from or writes to location.

Read

Reads from location.

Write

Writes to location.

Size

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto

The size will automatically be based on the type of expression the breakpoint is
set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes.

Manual

Specify the size of the breakpoint range in the text box.

For data breakpoints, this can be useful if you want the breakpoint to be triggered on
accesses to data structures, such as arrays, structs, and unions.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 113.
AFE1_AFE2-1:1

123

124

Reference information on breakpoints

Conditions

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see C-SPY expressions, page 80.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Data Log breakpoints dialog box
The Data Log breakpoints dialog box is available from the context menu in the
Breakpoints window.

Use the Data Log breakpoints dialog box to set a maximum of four data log breakpoints
on memory addresses, see Setting breakpoints using the dialog box, page 110.

See also Data Log breakpoints, page 105 and Getting started using data logging, page
191.

Requirements

The C-SPY simulator

Break At

Specify a memory location as a variable (with static storage duration) or as an address.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

Access Type

Selects the type of access to the variable that generates a log entry:

Read/Write

Read and write accesses from or writes to location of the variable.

Read

Read accesses from the location of the variable.

Write

Write accesses to location of the variable.

Immediate breakpoints dialog box
The Immediate breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

In the C-SPY simulator, use the Immediate breakpoints dialog box to set an immediate
breakpoint, see Setting breakpoints using the dialog box, page 110. Immediate
breakpoints do not stop execution at all; they only suspend it temporarily.

Requirements

The C-SPY simulator.

Trigger at

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 126.
AFE1_AFE2-1:1

125

126

Reference information on breakpoints

Access Type

Selects the type of memory access that triggers the breakpoint:

Read

Reads from location.

Write

Writes to location.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 113.

Enter Location dialog box
The Enter Location dialog box is available from the breakpoints dialog box, either
when you set a new breakpoint or when you edit a breakpoint.

Use the Enter Location dialog box to specify the location of the breakpoint.

Note: This dialog box looks different depending on the Type you select.

Type

Selects the type of location to be used for the breakpoint, choose between:

Expression

A C-SPY expression, whose value evaluates to a valid code or data location.

A code location, for example the function main, is typically used for code
breakpoints.

A data location is the name of a variable and is typically used for data
breakpoints. For example, my_var refers to the location of the variable my_var,
and arr[3] refers to the location of the fourth element of the array arr. For
static variables declared with the same name in several functions, use the syntax
my_func::my_static_variable to refer to a specific variable.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Breakpoints

For more information about C-SPY expressions, see C-SPY expressions, page
80.

Absolute address

An absolute location on the form zone:hexaddress or simply hexaddress
(for example Memory:0x42). zone refers to C-SPY memory zones and
specifies in which memory the address belongs, see C-SPY memory zones, page
130.

Source location

A location in your C source code using the syntax:
{filename}.row.column.

filename specifies the filename and full path.

row specifies the row in which you want the breakpoint.

column specifies the column in which you want the breakpoint.

For example, {C:\src\prog.c}.22.3
sets a breakpoint on the third character position on row 22 in the source file
prog.c. Note that in quoted form, for example in a C-SPY macro, you must
instead write {C:\\src\\prog.c}.22.3.

Note that the Source location type is usually meaningful only for code locations
in code breakpoints. Depending on the C-SPY driver you are using, Source
location might not be available for data and immediate breakpoints.
AFE1_AFE2-1:1

127

128

Reference information on breakpoints

Resolve Source Ambiguity dialog box
The Resolve Source Ambiguity dialog box appears, for example, when you try to set a
breakpoint on templates and the source location corresponds to more than one function.

To resolve a source ambiguity, perform one of these actions:

● In the text box, select one or several of the listed locations and click Selected.

● Click All.

All

The breakpoint will be set on all listed locations.

Selected

The breakpoint will be set on the source locations that you have selected in the text box.

Cancel

No location will be used.

Automatically choose all

Determines that whenever a specified source location corresponds to more than one
function, all locations will be used.

Note that this option can also be specified in the IDE Options dialog box, see Debugger
options in the IDE Project Management and Building Guide for 8051.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers
● Introduction to monitoring memory and registers

● Monitoring memory and registers

● Reference information on memory and registers

Introduction to monitoring memory and registers
These topics are covered:

● Briefly about monitoring memory and registers

● C-SPY memory zones

● Memory configuration for the C-SPY simulator

● Memory configuration for C-SPY hardware debugger drivers

BRIEFLY ABOUT MONITORING MEMORY AND REGISTERS

C-SPY provides many windows for monitoring memory and registers, each of them
available from the View menu:

● The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Data coverage along with execution of your application is
highlighted with different colors. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. You can open several
instances of this window, to monitor different memory areas. The content of the
window can be regularly updated while your application is executing.

● The Symbolic Memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

● The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, integrity checks of the stack can be performed to detect and
warn about problems with stack overflow. For example, the Stack window is useful
for determining the optimal size of the stack. You can open up to two instances of
this window, each showing different stacks or different display modes of the same
stack.

AFE1_AFE2-1:1

129

130

Introduction to monitoring memory and registers

● The Registers window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them. Because of the large amount of registers—memory-mapped
peripheral unit registers and CPU registers—it is inconvenient to show all registers
concurrently in the Registers window. Instead you can divide registers into
application-specific groups. You can choose to load either predefined register groups
or define your own groups. You can open several instances of this window, each
showing a different register group.

● The SFR Setup window

Displays the currently defined SFRs that C-SPY has information about, both
factory-defined (retrieved from the device description file) and custom-defined
SFRs. If required, you can use the Edit SFR dialog box to customize the SFR
definitions.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic memory window. The memory area where the
variable is located will appear.

Reading the value of some registers might influence the runtime behavior of your
application. For example, reading the value of a UART status register might reset a
pending bit, which leads to the lack of an interrupt that would have processed a received
byte. To prevent this from happening, make sure that the Registers window containing
any such registers is closed when debugging a running application.

C-SPY MEMORY ZONES

In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. By default,
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

the 8051 architecture has four zones—Code, XData, IData, and SFR—that cover the
whole 8051 memory range.

Memory zones are used in several contexts, most importantly in the Memory and
Disassembly windows, and in C-SPY macros. In the windows, use the Zone box to
choose which memory zone to display.

Device-specific zones

Memory information for device-specific zones is defined in the device description files.
When you load a device description file, additional zones that adhere to the specific
memory layout become available.

See the device description file for information about available memory zones.

For more information, see Selecting a device description file, page 44 and Modifying a
device description file, page 49.

MEMORY CONFIGURATION FOR THE C-SPY SIMULATOR

To simulate the target system properly, the C-SPY simulator needs information about
the memory configuration. By default, C-SPY uses a configuration based on
information retrieved from the device description file.

The C-SPY simulator provides various mechanisms to improve the configuration
further:

● If the default memory configuration does not specify the required memory address
ranges, you can specify the memory address ranges shall be based on:

● The zones predefined in the device description file

● The section information available in the debug file

● Or, you can define your own memory address ranges, which you typically might
want to do if the files do not specify memory ranges for the specific device that

Code

0x0000

0xFFFF(FF)

XData
0x00

0xFF

IData

Data
direct

0x80

SFR

0xFF

0x80

SFR
direct
AFE1_AFE2-1:1

131

132

Introduction to monitoring memory and registers

you are using, but instead for a family of devices (perhaps with various amounts
of on-chip RAM).

● For each memory address range, you can specify an access type. If a memory access
occurs that does not agree with the specified access type, C-SPY will regard this as
an illegal access and warn about it. In addition, an access to memory that is not
defined is regarded as an illegal access. The purpose of memory access checking is
to help you to identify memory access violations.

For more information, see Memory Access Setup dialog box, page 166.

MEMORY CONFIGURATION FOR C-SPY HARDWARE
DEBUGGER DRIVERS

To handle memory as efficiently as possible during debugging, C-SPY needs
information about the memory configuration. By default, C-SPY uses a configuration
based on information retrieved from the device description file.

You should make sure the memory address ranges match the memory available on your
device. Providing C-SPY with information about the memory layout of the target system
is helpful in terms of both performance and functionality:

● Reading (and writing) memory (if your debug probe is connected through a USB
port) can be fast, but is usually the limiting factor when C-SPY needs to update
many debugger windows. C-SPY can cache memory contents to speed up
performance, provided it has correct information about the target memory.

● You can inform C-SPY that the content of certain memory address ranges will not
be changed during a debug session. C-SPY can keep a copy of that memory
readable even when the target system does not normally allow reading (such as
when it is executing).

Note that if you specify the cache type ROM/Flash, C-SPY treats such memory as
constant during the whole debug session (which improves efficiency, when updating
some C-SPY windows). If your application modifies flash memory during runtime,
do not use the ROM/Flash cache type.

● You can prevent C-SPY from accessing memory outside specified memory address
ranges, which can be important for certain hardware.

The Memory Configuration dialog box is automatically displayed the first time you
start the C-SPY driver for a given project, unless the device description file contains a
memory description which is explicitly tagged as correct and complete. Subsequent
starts will not display the dialog box unless you have made project changes that might
cause the memory configuration to change, for example if you have selected another
device description file.

For more information, see Memory Configuration dialog box, in C-SPY hardware
debugger drivers, page 161.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Monitoring memory and registers
These tasks are covered:

● Defining application-specific register groups, page 133

● Monitoring stack usage, page 134

DEFINING APPLICATION-SPECIFIC REGISTER GROUPS

Defining application-specific register groups minimizes the amount of registers
displayed in the Registers windows and makes the debugging easier.

1 Choose View>Registers>Register User Groups Setup during a debug session.

Right-clicking in the window displays a context menu with commands. For information
about these commands, see Register User Groups Setup window, page 154.

2 Click on <click to add group> and specify the name of your group, for example
My Timer Group and press Enter.

3 Underneath the group name, click on <click to add reg> and type the name of a
register, and press Enter. You can also drag a register name from another window in the
IDE. Repeat this for all registers that you want to add to your group.

4 As an optional step, right-click any registers for which you want to change the integer
base, and choose Format from the context menu to select a suitable base.

5 When you are done, your new group is now available in the Registers windows.
AFE1_AFE2-1:1

133

134

Monitoring memory and registers

If you want to define more application-specific groups, repeat this procedure for each
group you want to define.

Note: If a certain SFR that you need cannot be added to a group, you can register your
own SFRs. For more information, see SFR Setup window, page 156.

MONITORING STACK USAGE

These are the two main use cases for the Stack window:

● Monitoring stack memory usage

● Monitoring the stack memory content.

In both cases, C-SPY retrieves information about the defined stack size and its allocation
from the definition in the linker configuration file of the segment holding the stack. If
you, for some reason, have modified the stack initialization in the system startup code,
cstartup, you should also change the segment definition in the linker configuration
file accordingly; otherwise the Stack window cannot track the stack usage. For more
information about this, see the IAR C/C++ Compiler User Guide for 8051.

To monitor stack memory usage:

1 Before you start C-SPY, choose Tools>Options. On the Stack page:

● Select Enable graphical stack display and stack usage tracking. This option also
enables the option Warn when exceeding stack threshold. Specify a suitable
threshold value.

● Notice also the option Warn when stack pointer is out of bounds. Any such
warnings are displayed in the Debug Log window.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

2 Start C-SPY.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.

3 Choose View>Stack>Stack 1 to open the Stack window.

Notice that you can open up to two Stack windows, each showing a different stack—if
several stacks are available—or the same stack with different display settings.

4 Start executing your application.

Whenever execution stops, the stack memory is searched from the end of the stack until
a byte whose value is not 0xCD is found, which is assumed to be how far the stack has
been used. The light gray area of the stack bar represents the unused stack memory area,
whereas the dark gray area of the bar represents the used stack memory.

For this example, you can see that only 44% of the reserved memory address range was
used, which means that it could be worth considering decreasing the size of memory:

Note: Although this is a reasonably reliable way to track stack usage, there is no
guarantee that a stack overflow is detected. For example, a stack can incorrectly grow
outside its bounds, and even modify memory outside the stack area, without actually
modifying any of the bytes near the end of the stack range. Likewise, your application
might modify memory within the stack area by mistake.

To monitor the stack memory content:

1 Before you start monitoring stack memory, you might want to disable the option
Enable graphical stack display and stack usage tracking to improve performance
during debugging.

2 Start C-SPY.

3 Choose View>Stack>Stack 1 to open the Stack window.
AFE1_AFE2-1:1

135

136

Reference information on memory and registers

Notice that you can access various context menus in the display area from where you
can change display format, etc.

4 Start executing your application.

Whenever execution stops, you can monitor the stack memory, for example to see
function parameters that are passed on the stack:

Reference information on memory and registers
Reference information about:

● Memory window, page 137

● Memory Save dialog box, page 141

● Memory Restore dialog box, page 142

● Fill dialog box, page 143

● Symbolic Memory window, page 144

● Stack window, page 147

● Registers window, page 151

● Register User Groups Setup window, page 154

● SFR Setup window, page 156

● Edit SFR dialog box, page 159

● Memory Configuration dialog box, in C-SPY hardware debugger drivers, page 161

● Edit Memory Range dialog box, for C-SPY hardware debugger drivers, page 164

● Memory Access Setup dialog box, page 166

● Edit Memory Access dialog box, page 168.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Memory window
The Memory window is available from the View menu.

This window gives an up-to-date display of a specified area of memory—a memory
zone—and allows you to edit it. You can open several instances of this window, which
is very convenient if you want to keep track of several memory or register zones, or
monitor different parts of the memory.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

See also Editing in C-SPY windows, page 48.

Requirements

None; this window is always available.

Toolbar

The toolbar contains:

Go to

The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Context menu button

Displays the context menu.
AFE1_AFE2-1:1

137

138

Reference information on memory and registers

Update Now

Updates the content of the Memory window while your application is
executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing.

Live Update

Updates the contents of the Memory window regularly while your application
is executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing. To set
the update frequency, specify an appropriate frequency in the IDE
Options>Debugger dialog box.

Display area

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and—provided that the display mode is set to 1x Units—
the memory contents in ASCII format. You can edit the contents of the display area, both
in the hexadecimal part and the ASCII part of the area.

Data coverage is displayed with these colors:

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY Simulator.

Yellow Indicates data that has been read.

Blue Indicates data that has been written

Green Indicates data that has been both read and written.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Context menu

This context menu is available:

These commands are available:

Copy, Paste

Standard editing commands.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

1x Units

Displays the memory contents as single bytes.

2x Units

Displays the memory contents as 2-byte groups.

4x Units

Displays the memory contents as 4-byte groups.

8x Units

Displays the memory contents as 8-byte groups.

Little Endian

Displays the contents in little-endian byte order.
AFE1_AFE2-1:1

139

140

Reference information on memory and registers

Big Endian

Displays the contents in big-endian byte order.

Data Coverage

Choose between:

Enable toggles data coverage on or off.

Show toggles between showing or hiding data coverage.

Clear clears all data coverage information.

These commands are only available if your C-SPY driver supports data
coverage.

Find

Displays a dialog box where you can search for text within the Memory
window; read about the Find dialog box in the IDE Project Management and
Building Guide for 8051.

Replace

Displays a dialog box where you can search for a specified string and replace
each occurrence with another string; read about the Replace dialog box in the
IDE Project Management and Building Guide for 8051.

Memory Fill

Displays a dialog box, where you can fill a specified area with a value, see Fill
dialog box, page 143.

Memory Save

Displays a dialog box, where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 141.

Memory Restore

Displays a dialog box, where you can load the contents of a file in Intel-hex or
Motorola s-record format to a specified memory zone, see Memory Restore
dialog box, page 142.

Set Data Breakpoint

Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog box. The
breakpoints you set in this window will be triggered for both read and write
access. For more information, see Setting a data breakpoint in the Memory
window, page 111.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Set Data Log Breakpoint

Sets a breakpoint on the start address of a memory selection directly in the
Memory window. The breakpoint is not highlighted; you can see, edit, and
remove it in the Breakpoints dialog box. The breakpoints you set in this
window will be triggered by both read and write accesses; to change this, use the
Breakpoints window. For more information, see Data Log breakpoints, page
105 and Getting started using data logging, page 191.

Memory Save dialog box
The Memory Save dialog box is available by choosing Debug>Memory>Save or from
the context menu in the Memory window.

Use this dialog box to save the contents of a specified memory area to a file.

Requirements

None; this dialog box is always available.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Start address

Specify the start address of the memory range to be saved.

End address

Specify the end address of the memory range to be saved.

File format

Selects the file format to be used, which is Intel-extended by default.
AFE1_AFE2-1:1

141

142

Reference information on memory and registers

Filename

Specify the destination file to be used; a browse button is available for your convenience.

Save

Saves the selected range of the memory zone to the specified file.

Memory Restore dialog box
The Memory Restore dialog box is available by choosing Debug>Memory>Restore
or from the context menu in the Memory window.

Use this dialog box to load the contents of a file in Intel-extended or Motorola S-record
format to a specified memory zone.

Requirements

None; this dialog box is always available.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Filename

Specify the file to be read; a browse button is available for your convenience.

Restore

Loads the contents of the specified file to the selected memory zone.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Fill dialog box
The Fill dialog box is available from the context menu in the Memory window.

Use this dialog box to fill a specified area of memory with a value.

Requirements

None; this dialog box is always available.

Start address

Type the start address—in binary, octal, decimal, or hexadecimal notation.

Length

Type the length—in binary, octal, decimal, or hexadecimal notation.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Value

Type the 8-bit value to be used for filling each memory location.

Operation

These are the available memory fill operations:

Copy

Value will be copied to the specified memory area.

AND

An AND operation will be performed between Value and the existing contents of
memory before writing the result to memory.

XOR

An XOR operation will be performed between Value and the existing contents of
memory before writing the result to memory.
AFE1_AFE2-1:1

143

144

Reference information on memory and registers

OR

An OR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

Symbolic Memory window
The Symbolic Memory window is available from the View menu during a debug
session.

This window displays how variables with static storage duration, typically variables
with file scope but also static variables in functions and classes, are laid out in memory.
This can be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example buffer overruns. Other areas of use
are spotting alignment holes or for understanding problems caused by buffers being
overwritten.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Symbolic Memory window.

See also Editing in C-SPY windows, page 48.

Requirements

None; this window is always available.

Toolbar

The toolbar contains:

Go to

The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Previous

Highlights the previous symbol in the display area.

Next

Highlights the next symbol in the display area.

Display area

This area contains these columns:

Location

The memory address.

Data

The memory contents in hexadecimal format. The data is grouped according to
the size of the symbol. This column is editable.

Variable

The variable name; requires that the variable has a fixed memory location. Local
variables are not displayed.

Value

The value of the variable. This column is editable.

Type

The type of the variable.

There are several different ways to navigate within the memory space:

● Text that is dropped in the window is interpreted as symbols

● The scroll bar at the right-side of the window

● The toolbar buttons Next and Previous

● The toolbar list box Go to can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.
AFE1_AFE2-1:1

145

146

Reference information on memory and registers

Context menu

This context menu is available:

These commands are available:

Next Symbol

Highlights the next symbol in the display area.

Previous Symbol

Highlights the previous symbol in the display area.

1x Units

Displays the memory contents as single bytes. This applies only to rows which
do not contain a variable.

2x Units

Displays the memory contents as 2-byte groups.

4x Units

Displays the memory contents as 4-byte groups.

Add to Watch

Adds the selected symbol to the Watch window.

Add to Live Watch

Adds the selected symbol to the Live Watch window.

Default format

Displays the memory contents in the default format.

Binary format

Displays the memory contents in binary format.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Octal format

Displays the memory contents in octal format.

Decimal format

Displays the memory contents in decimal format.

Hexadecimal format

Displays the memory contents in hexadecimal format.

Char format

Displays the memory contents in char format.

Stack window
The Stack window is available from the View menu.

This window is a memory window that displays the contents of the stack. The graphical
stack bar shows stack usage.

Note: By default, this window uses one physical breakpoint. For more information, see
Breakpoint consumers, page 108.

For information about options specific to the Stack window, see the IDE Project
Management and Building Guide for 8051.

Requirements

None; this window is always available.
AFE1_AFE2-1:1

147

148

Reference information on memory and registers

Toolbar

The toolbar contains:

Stack

Selects which stack to view. This applies to microcontrollers with multiple
stacks.

The graphical stack bar

Displays the state of the stack graphically.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory address range reserved for the stack. The graphical stack bar turns red
when the stack usage exceeds a threshold that you can specify.

To enable the stack bar, choose Tools>Options>Stack>Enable graphical stack
display and stack usage tracking. This means that the functionality needed to detect
and warn about stack overflows is enabled.

Place the mouse pointer over the stack bar to get tooltip information about stack usage.

Display area

This area contains these columns:

Location

Displays the location in memory. The addresses are displayed in increasing
order. If your target system has a stack that grows toward high addresses, the top
of the stack will consequently be located at the bottom of the window. The
address referenced by the stack pointer, in other words the top of the stack, is
highlighted in a green color.

Data

Displays the contents of the memory unit at the given location. From the Stack
window context menu, you can select how the data should be displayed; as a 1-,
2-, or 4-byte group of data.

Variable

Displays the name of a variable, if there is a local variable at the given location.
Variables are only displayed if they are declared locally in a function, and
located on the stack and not in registers.

Value

Displays the value of the variable.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Type

Displays the data type of the variable.

Frame

Displays the name of the function that the call frame corresponds to.

Context menu

This context menu is available:

These commands are available:

Show variables

Displays separate columns named Variables, Value, and Frame in the Stack
window. Variables located at memory addresses listed in the Stack window are
displayed in these columns.

Show offsets

Displays locations in the Location column as offsets from the stack pointer.
When deselected, locations are displayed as absolute addresses.

1x Units

Displays the memory contents as single bytes.

2x Units

Displays the memory contents as 2-byte groups.

4x Units

Displays the memory contents as 4-byte groups.
AFE1_AFE2-1:1

149

150

Reference information on memory and registers

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Options

Opens the IDE Options dialog box where you can set options specific to the
Stack window, see the IDE Project Management and Building Guide for 8051.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Registers window
The Registers windows are available from the View menu.

These windows give an up-to-date display of the contents of the processor registers and
special function registers, and allows you to edit the content of some of the registers.
Optionally, you can choose to load either predefined register groups or your own
user-defined groups.

You can open up to four instances of this window, which is very convenient if you want
to keep track of different register groups.

See also Editing in C-SPY windows, page 48.

To enable predefined register groups:

1 Select a device description file that suits your device, see Selecting a device description
file, page 44.

2 Display the register groups that are defined in the device description file in the
Registers window by right-clicking in the window and choosing View Group from the
context menu.

For information about creating your own user-defined register groups, see Defining
application-specific register groups, page 133.

Requirements

None; this window is always available.
AFE1_AFE2-1:1

151

152

Reference information on memory and registers

Toolbar

The toolbar contains:

<find register>

Specify the name of a register that you want to find. Press the Enter key and the
first register group where this register is found is displayed. User-defined
register groups are not searched. The register search box has a history depth of
20 search entries.

Display area

Displays registers and their values. Some registers are expandable, which means that the
register contains interesting bits or subgroups of bits.

If you drag a numerical value, a valid expression, or a register name from another part
of the IDE to an editable value cell in a Registers window, the value will be changed to
that of what you dragged. If you drop a register name somewhere else in the window,
the window contents will change to display the first register group where this register is
found.

Register group name
The name of the register.

Value

The current value of the register. Every time C-SPY stops, a value that has
changed since the last stop is highlighted. Some of the registers are editable. To
edit the contents of an editable register, click it and modify its value. Press Esc
to cancel the change.

To change the display format of the value, right-click on the register and choose
Format from the context menu.

Access

The access type of the register. Some of the registers are read-only, some of the
registers are write-only.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

For the C-SPY Simulator (and some C-SPY hardware debugger drivers), these
additional support registers are available in the Basic Registers group:

Context menu

This context menu is available:

These commands are available:

View Group

Selects which predefined register group to display, by default CPU Registers.
Additional register groups are predefined in the device description files that
make SFR registers available in the Registers windows. The device description
file contains a section that defines the special function registers and their groups.
If some of your SFRs are missing, you can register your own SFRs in a Custom
group, see SFR Setup window, page 156.

View User Group

Selects which user-defined register group to display. For information about
creating your own user-defined register groups, see Defining
application-specific register groups, page 133.

Format

Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

CYCLECOUNTER Cleared when an application is started or reset and is
incremented with the number of used cycles during
execution.

CCSTEP Shows the number of used cycles during the last performed
C/C++ source or assembler step.

CCTIMER1 and
CCTIMER2

Two trip counts that can be cleared manually at any given
time. They are incremented with the number of used cycles
during execution.
AFE1_AFE2-1:1

153

154

Reference information on memory and registers

Open User Groups Setup Window

Opens a window where you can create your own user-defined register groups,
see Register User Groups Setup window, page 154.

Save to File

Opens a standard save dialog box to save the contents of the window to a
tab-separated text file.

Register User Groups Setup window
The Register User Groups Setup window is available from the View menu or from the
context menu in the Registers windows.

Use this window to define your own application-specific register groups. These register
groups can then be viewed in the Registers windows.

Defining application-specific register groups means that the Registers windows can
display just those registers that you need to watch for your current debugging task. This
makes debugging much easier.

Requirements

None; this window is always available.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Display area

This area contains these columns:

Group

The names of register groups and the registers they contain. Clicking on <click
to add group> or <click to add reg> and typing the name of a register
group or register, adds new groups and registers, respectively. You can also drag
a register name from another window in the IDE. Click a name to change it.

A dimmed register name indicates that it is not supported by the selected device.

Format

Shows the display format for the register’s value. To change the display format
of the value, right-click on the register and choose Format from the context
menu. The selected format is used in all Registers windows.

Context menu

This context menu is available:

These commands are available:

Format

Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

Remove

Removes the register or group you clicked on.

Clear Group

Removes all registers from the group you clicked on.

Remove All Groups

Deletes all user-defined register groups from your project.

Save to File

Opens a standard save dialog box to save the contents of the window to a
tab-separated text file.
AFE1_AFE2-1:1

155

156

Reference information on memory and registers

SFR Setup window
The SFR Setup window is available from the Project menu.

This window displays the currently defined SFRs that C-SPY has information about.
You can choose to display only factory-defined or custom-defined SFRs, or both. If
required, you can use the Edit SFR dialog box to customize the SFR definitions, see
Edit SFR dialog box, page 159. For factory-defined SFRs (that is, retrieved from the ddf
file in use), you can only customize the access type.

To quickly find an SFR, drag a text or hexadecimal number string and drop in this
window. If what you drop starts with a 0 (zero), the Address column is searched,
otherwise the Name column is searched.

Any custom-defined SFRs are added to a dedicated register group called Custom, which
you can choose to display in the Registers window. Your custom-defined SFRs are
saved in projectCustomSFR.sfr. This file is automatically loaded in the IDE when
you start C-SPY with a project whose name matches the prefix of the filename of the
sfr file.

You can only add or modify SFRs when the C-SPY debugger is not running.

Requirements

None; this window is always available.

Display area

This area contains these columns:

Status

A character that signals the status of the SFR, which can be one of:

blank, a factory-defined SFR.

C, a factory-defined SFR that has been modified.

+, a custom-defined SFR.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

?, an SFR that is ignored for some reason. An SFR can be ignored when a
factory-defined SFR has been modified, but the SFR is no longer available, or it
is located somewhere else or with a different size. Typically, this might happen
if you change to another device.

Name

A unique name of the SFR.

Address

The memory address of the SFR.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Size

The size of the register, which can be any of 8, 16, 32, or 64.

Access

The access type of the register, which can be one of Read/Write, Read only,
Write only, or None.

You can click a name or an address to change the value. The hexadecimal 0x prefix for
the address can be omitted, the value you enter will still be interpreted as hexadecimal.
For example, if you enter 4567, you will get 0x4567.

You can click a column header to sort the SFRs according to the column property.

Color coding used in the display area:

● Green, which indicates that the corresponding value has changed

● Red, which indicates an ignored SFR.
AFE1_AFE2-1:1

157

158

Reference information on memory and registers

Context menu

This context menu is available:

These commands are available:

Show All

Shows all SFR.

Show Custom SFRs only

Shows all custom-defined SFRs.

Show Factory SFRs only

Shows all factory-defined SFRs retrieved from the ddf file.

Add

Displays the Edit SFR dialog box where you can add a new SFR, see Edit SFR
dialog box, page 159.

Edit

Displays the Edit SFR dialog box where you can edit an SFR, see Edit SFR
dialog box, page 159.

Delete

Deletes an SFR. This command only works on custom-defined SFRs.

Delete/revert All Custom SFRs

Deletes all custom-defined SFRs and reverts all modified factory-defined SFRs
to their factory settings.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Save Custom SFRs

Opens a standard save dialog box to save all custom-defined SFRs.

8|16|32|64 bits

Selects display format for the selected SFR, which can be 8, 16, 32, or 64 bits.
Note that the display format can only be changed for custom-defined SFRs.

Read/Write|Read only|Write only|None

Selects the access type of the selected SFR, which can be Read/Write, Read
only, Write only, or None. Note that for factory-defined SFRs, the default
access type is indicated.

Edit SFR dialog box
The Edit SFR dialog box is available from the context menu in the SFR Setup window.

Definitions of the SFRs are retrieved from the device description file in use. Use this
dialog box to either modify these factory-defined definitions or define new SFRs. See
also SFR Setup window, page 156.

Requirements

None; this dialog box is always available.

Name

Specify the name of the SFR that you want to add or edit.
AFE1_AFE2-1:1

159

160

Reference information on memory and registers

Address

Specify the address of the SFR that you want to add or edit. The hexadecimal 0x prefix
for the address can be omitted, the value you enter will still be interpreted as
hexadecimal. For example, if you enter 4567, you will get 0x4567.

Zone

Selects the memory zone for the SFR you want to add or edit. The list of zones is
retrieved from the ddf file that is currently used.

Size

Selects the size of the SFR. Choose between 8, 16, 32, or 64 bits. Note that the display
format can only be changed for custom-defined SFRs.

Access

Selects the access type of the SFR. Choose between Read/Write, Read only, Write
only, or None. Note that for factory-defined SFRs, the default access type is indicated.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Memory Configuration dialog box, in C-SPY hardware debugger drivers
The Memory Configuration dialog box is available from the C-SPY driver menu.

C-SPY uses a default memory configuration based on information retrieved from the
device description file that you select, or if memory configuration is missing in the
device description file, tries to provide a usable factory default. See Selecting a device
description file, page 44.

Use this dialog box to verify, and if needed, modify the memory areas so that they match
the memory available on your device. Providing C-SPY with information about the
AFE1_AFE2-1:1

161

162

Reference information on memory and registers

memory layout of the target system is helpful both in terms of performance and
functionality:

● Reading (and writing) memory (if your debug probe is connected through a USB
port) can be fast, but is usually the limiting factor when C-SPY needs to update
many debugger windows. Caching memory can speed up the performance, but then
C-SPY needs information about the target memory.

● If C-SPY has been informed that the content of certain memory areas will be
changed during a debug session, C-SPY can keep a copy of that memory readable
even when the target does not normally allow reading (such as when executing).

● C-SPY can prevent accesses to areas without any memory at all, which can be
important for certain hardware.

The Memory Configuration dialog box is automatically displayed the first time you
start the C-SPY driver for a given project, unless the device description file contains a
memory description which is already specified as correct and complete. Subsequent
starts will not display the dialog box unless you have made project changes that might
cause the memory configuration to change, for example if you have selected another
device description file.

You can only change the memory configuration when C-SPY is not running.

See also Memory configuration for C-SPY hardware debugger drivers, page 132.

Requirements

The C-SPY Segger J-Link driver

Factory ranges

Identifies which device description file that is currently selected and lists the default
memory address ranges retrieved from the file in these columns:

Zone

The memory zone, see C-SPY memory zones, page 130.

Name

The name of the memory address range.

Start

The start address for the memory address range, in hexadecimal notation.

End

The end address for the memory address range, in hexadecimal notation.

Type

The access type of the memory address range.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Size

The size of the memory address range.

Used ranges

These columns list the memory address ranges that will be used by C-SPY. The columns
are normally identical to the factory ranges, unless you have added, removed, or
modified ranges.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Start

The start address for the memory address range, in hexadecimal notation.

End

The end address for the memory address range, in hexadecimal notation.

Cache Type

The cache type of the memory address range.

Size

The size of the memory address range.

Comment

Memory area information.

Use the buttons to override the default memory address ranges that are retrieved from
the device description file.

Graphical bar

A graphical bar that visualizes the entire theoretical memory address range for the
device. Defined ranges are highlighted in green.

Buttons

These buttons are available for manual ranges:

New

Opens the Edit Memory Range dialog box, where you can specify a new
memory address range and associate a cache type with it, see Edit Memory
Range dialog box, for C-SPY hardware debugger drivers, page 164.

Edit

Opens the Edit Memory Range dialog box, where you can edit the selected
memory address area. See Edit Memory Range dialog box, for C-SPY hardware
debugger drivers, page 164.
AFE1_AFE2-1:1

163

164

Reference information on memory and registers

Remove

Removes the selected memory address range definition.

Use Factory

Restores the list of used ranges to the factory ranges.

Edit Memory Range dialog box, for C-SPY hardware debugger drivers
The Edit Memory Range dialog box is available from the Memory Configuration
dialog box.

Use this dialog box to specify the memory address ranges, and assign a cache type to
each range.

See also Memory configuration for C-SPY hardware debugger drivers, page 132.

Requirements

The C-SPY Segger J-Link driver

Memory range

Defines the memory address range specific to your device:

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Start address

Specify the start address for the memory address range, in hexadecimal
notation.

End address

Specify the end address for the memory address range, in hexadecimal notation.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Cache type

Selects a cache type to the memory address range. Choose between:

RAM

When the target CPU is not executing, all read accesses from memory are loaded
into the cache. For example, if two Memory windows show the same part of
memory, the actual memory is only read once from the hardware to update both
windows. If you modify memory from a C-SPY window, your data is written to
cache only. Before any target execution, even stepping a single machine
instruction, the RAM cache is flushed so that all modified bytes are written to
the memory on your hardware.

ROM/Flash

This memory is assumed not to change during a debug session. Any code within
such a range that is downloaded when you start a debug session (or technically,
any such code that is part of the application being debugged) is stored in the
cache and remains there. Other parts of such ranges are loaded into the cache
from memory on demand, but are then kept during the debug session. Note that
C-SPY will not allow you to modify such memory from C-SPY windows.

Even though flash memory is normally used as a fixed read-only memory, there
are applications that modify parts of flash memory at runtime. For example,
some part of flash memory might be used for a file system or simply to store
non-volatile information. To reflect this in C-SPY, you should choose the RAM
cache type for those instead. Then C-SPY will assume that those parts can
change at any time during execution.

SFR/Uncached

A range of this type is completely uncached. All read or write commands from
a C-SPY window will access the hardware immediately. Typically, this type is
useful for special function registers, which can have all sorts of unusual
behavior, such as having different values at every read access. This can in turn
have side-effects on other registers when they are written, not containing the
same value as was previously written, etc.

If you do not have the appropriate information about your device, you can specify an
entire memory as SFR/Uncached. This is not incorrect, but might make C-SPY slower
when updating windows. In fact, this caching type is sometimes used by the default
when there is no memory address range information available.

If required, you can disable caching; choose C-SPY driver>Disable Debugger Cache.

Extra attributes

Provides extra attributes.
AFE1_AFE2-1:1

165

166

Reference information on memory and registers

This option might not be available in the C-SPY driver you are using.

Memory Access Setup dialog box
The Memory Access Setup dialog box is available from the C-SPY driver menu.

Use this dialog box to specify which set of memory address ranges to be used by C-SPY
during debugging.

Note: If you enable both the Use ranges based on and the Use manual ranges option,
memory accesses are checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 168. See also Memory configuration for the C-SPY simulator,
page 131.

Requirements

The C-SPY simulator.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

Use ranges based on

Specify if the memory configuration should be retrieved from a predefined
configuration. Choose between:

Device description file

Retrieves the memory configuration from the device description file that you
have specified. See Selecting a device description file, page 44.

This option is used by default.

Debug file segment information

Retrieves the memory configuration from the debug file, which has retrieved it
from the linker configuration file. This information is only available during a
debug session. The advantage of using this option is that the simulator can catch
memory accesses outside the linked application.

Use manual ranges

Specify your own ranges manually via the Edit Memory Access dialog box. To open
this dialog box, click New to specify a new memory address range, or select an existing
memory address range and choose Edit to modify it. For more information, see Edit
Memory Access dialog box, page 168.

The ranges you define manually are saved between debug sessions.

Memory access checking

Check for determines what to check for:

● Access type violation

● Access to unspecified ranges

Action selects the action to be performed if an access violation occurs. Choose between:

● Log violations

● Log and stop execution

Any violations are logged in the Debug Log window.

Buttons

These buttons are available for manual ranges:

New

Opens the Edit Memory Access dialog box, where you can specify a new
memory address range and associate an access type with it, see Edit Memory
Access dialog box, page 168.
AFE1_AFE2-1:1

167

168

Reference information on memory and registers

Edit

Opens the Edit Memory Access dialog box, where you can edit the selected
memory address range. See Edit Memory Access dialog box, page 168.

Delete

Deletes the selected memory address range definition.

Delete All

Deletes all defined memory address range definitions.

Edit Memory Access dialog box
The Edit Memory Access dialog box is available from the Memory Access Setup
dialog box.

Use this dialog box to specify your memory address ranges for which you want to detect
illegal accesses during the simulation, and assign an access type to each range.

Requirements

The C-SPY simulator.

Memory range

Defines the memory address range specific to your device:

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Start address

Specify the start address for the memory address range, in hexadecimal
notation.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Memory and registers

End address

Specify the end address for the memory address range, in hexadecimal notation.

Access type

Selects an access type to the memory address range. Choose between:

● Read and write

● Read only

● Write only
AFE1_AFE2-1:1

169

170

Reference information on memory and registers

AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Part 2. Analyzing your
application
This part of the C-SPY® Debugging Guide for 8051 includes these chapters:

● Trace

● The application timeline

● Profiling

● Code coverage
171

172

Trace
● Introduction to using trace

● Collecting and using trace data

● Reference information on trace

Introduction to using trace
These topics are covered:

● Reasons for using trace

● Briefly about trace

● Requirements for using trace

See also:

● Getting started using data logging, page 191

● Getting started using interrupt logging, page 233

● Profiling, page 209

REASONS FOR USING TRACE

By using trace, you can inspect the program flow up to a specific state, for instance an
application crash, and use the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have irregular symptoms and occur
sporadically.

BRIEFLY ABOUT TRACE

To use trace in C-SPY requires that your target system can generate trace data. Once
generated, C-SPY can collect it and you can visualize and analyze the data in various
windows and dialog boxes.

Trace features in C-SPY

In C-SPY, you can use the trace-related windows Trace, Function Trace, Timeline, and
Find in Trace.

Depending on your C-SPY driver, you:

● Can set various types of trace breakpoints to control the collection of trace data.
AFE1_AFE2-1:1

173

174

Collecting and using trace data

● Have access to windows such as the Interrupt Log, Interrupt Log Summary,
Data Log, and Data Log Summary.

In addition, several other features in C-SPY also use trace data, features such as
Profiling, Code coverage, and Instruction profiling.

REQUIREMENTS FOR USING TRACE

The C-SPY simulator supports trace-related functionality, and there are no specific
requirements.

The IAR C-SPY hardware debugger drivers do not support trace.

Collecting and using trace data
These tasks are covered:

● Getting started with trace

● Trace data collection using breakpoints

● Searching in trace data

● Browsing through trace data.

GETTING STARTED WITH TRACE

To collect trace data, no specific build settings are required.

1 After you have built your application and started C-SPY, open the Trace window—
available from the driver-specific menu—and click the Activate button to enable
collecting trace data.

2 Start the execution. When the execution stops, for example because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 176.

TRACE DATA COLLECTION USING BREAKPOINTS

A convenient way to collect trace data between two execution points is to start and stop
the data collection using dedicated breakpoints. Choose between these alternatives:

● In the editor or Disassembly window, position your insertion point, right-click, and
toggle a Trace Start or Trace Stop breakpoint from the context menu.

● In the Breakpoints window, choose Trace Start or Trace Stop.

● The C-SPY system macros __setTraceStartBreak and
__setTraceStopBreak can also be used.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Trace

For more information about these breakpoints, see Trace Start breakpoints dialog box,
page 180 and Trace Stop breakpoints dialog box, page 181, respectively.

SEARCHING IN TRACE DATA

When you have collected trace data, you can perform searches in the collected data to
locate the parts of your code or data that you are interested in, for example, a specific
interrupt or accesses of a specific variable.

You specify the search criteria in the Find in Trace dialog box and view the result in the
Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

To search in your trace data:

1 On the Trace window toolbar, click the Find button.

2 In the Find in Trace dialog box, specify your search criteria.

Typically, you can choose to search for:

● A specific piece of text, for which you can apply further search criteria

● An address range

● A combination of these, like a specific piece of text within a specific address range.

For more information about the various options, see Find in Trace dialog box, page 184.

3 When you have specified your search criteria, click Find. The Find in Trace window
is displayed, which means you can start analyzing the trace data. For more information,
see Find in Trace window, page 185.

BROWSING THROUGH TRACE DATA

To follow the execution history, simply look and scroll in the Trace window.
Alternatively, you can enter browse mode.

To enter browse mode, double-click an item in the Trace window, or click the Browse
toolbar button.

The selected item turns yellow and the source and disassembly windows will highlight
the corresponding location. You can now move around in the trace data using the up and
down arrow keys, or by scrolling and clicking; the source and Disassembly windows
will be updated to show the corresponding location. This is like stepping backward and
forward through the execution history.
AFE1_AFE2-1:1

175

176

Reference information on trace

Double-click again to leave browse mode.

Reference information on trace
Reference information about:

● Trace window, page 176

● Function Trace window, page 179

● Trace Start breakpoints dialog box, page 180

● Trace Stop breakpoints dialog box, page 181

● Trace Expressions window, page 182

● Find in Trace dialog box, page 184

● Find in Trace window, page 185.

Trace window
The Trace window is available from the C-SPY driver menu.

This window displays the collected trace data.

See also Collecting and using trace data, page 174.

Requirements

The C-SPY simulator.

Trace toolbar

The toolbar in the Trace window and in the Function Trace window contains:

Enable/Disable

Enables and disables collecting and viewing trace data in this window. This
button is not available in the Function Trace window.

Clear trace data

Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

Toggle source

Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse

Toggles browse mode on or off for a selected item in the Trace window.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Trace

Find

Displays a dialog box where you can perform a search, see Find in Trace dialog
box, page 184.

Save

Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

Edit Settings

In the C-SPY simulator, this button is not enabled.

Edit Expressions (C-SPY simulator only)

Opens the Trace Expressions window, see Trace Expressions window, page
182.

Progress bar
When a large amount of trace data has been collected, there might be a delay
before all of it has been processed and can be displayed. The progress bar
reflects that processing.

Display area

This area displays a collected sequence of executed machine instructions. In addition,
the window can display trace data for expressions.

This area contains these columns for the C-SPY simulator:

#

A serial number for each row in the trace buffer. Simplifies the navigation within
the buffer.

Cycles

The number of cycles elapsed to this point.
AFE1_AFE2-1:1

177

178

Reference information on trace

Trace

The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

Expression
Each expression you have defined to be displayed appears in a separate column.
Each entry in the expression column displays the value after executing the
instruction on the same row. You specify the expressions for which you want to
collect trace data in the Trace Expressions window, see Trace Expressions
window, page 182.

A red-colored row indicates that the previous row and the red row are not consecutive.
This means that there is a gap in the collected trace data, for example because trace data
has been lost due to an overflow.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Enable

Enables and disables collecting and viewing trace data in this window.

Clear

Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

Embed source

Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse

Toggles browse mode on or off for a selected item in the Trace window.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Trace

Find All

Displays a dialog box where you can perform a search in the Trace window, see
Find in Trace dialog box, page 184. The search results are displayed in the Find
in Trace window—available by choosing the View>Messages command, see
Find in Trace window, page 185.

Save

Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

Open Trace Expressions Window

Opens the Trace Expressions window, see Trace Expressions window, page
182.

Function Trace window
The Function Trace window is available from the C-SPY driver menu during a debug
session.

This window displays a subset of the trace data displayed in the Trace window. Instead
of displaying all rows, the Function Trace window shows:

● The functions called or returned to, instead of the traced instruction

● The corresponding trace data.

See also Memory configuration for the C-SPY simulator, page 131.

Requirements

The C-SPY simulator.

Toolbar

For information about the toolbar, see Trace window, page 176.
AFE1_AFE2-1:1

179

180

Reference information on trace

Display area

For information about the columns in the display area, see Trace window, page 176

Trace Start breakpoints dialog box
The Trace Start dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

Use this dialog box to set a Trace Start breakpoint where you want to start collecting
trace data. If you want to collect trace data only for a specific range, you must also set a
Trace Stop breakpoint where you want to stop collecting data.

See also Trace Stop breakpoints dialog box, page 181 and Trace data collection using
breakpoints, page 174.

To set a Trace Start breakpoint:

1 In the editor or Disassembly window, right-click and choose Trace Start from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Start.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Break at text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection starts.

Requirements

The C-SPY simulator.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Trace

Break at

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 126.

Trace Stop breakpoints dialog box
The Trace Stop dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

Use this dialog box to set a Trace Stop breakpoint where you want to stop collecting
trace data. If you want to collect trace data only for a specific range, you might also need
to set a Trace Start breakpoint where you want to start collecting data.

See also Trace Start breakpoints dialog box, page 180 and Trace data collection using
breakpoints, page 174.

To set a Trace Stop breakpoint:

1 In the editor or Disassembly window, right-click and choose Trace Stop from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Stop.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Break at text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection stops.
AFE1_AFE2-1:1

181

182

Reference information on trace

Requirements

The C-SPY simulator.

Break at

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 126.

Trace Expressions window
The Trace Expressions window is available from the Trace window toolbar.

Use this window to specify, for example, a specific variable (or an expression) for which
you want to collect trace data.

Requirements

The C-SPY simulator.

Display area

Use the display area to specify expressions for which you want to collect trace data:

Expression

Specify any expression that you want to collect data from. You can specify any
expression that can be evaluated, such as variables and registers.

Format

Shows which display format that is used for each expression. Note that you can
change display format via the context menu.

Each row in this area will appear as an extra column in the Trace window.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Trace

Context menu

This context menu is available:

These commands are available:

Move Up

Moves the selected expression upward in the window.

Move Down

Moves the selected expression downward in the window.

Remove

Removes the selected expression from the window.

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.
AFE1_AFE2-1:1

183

184

Reference information on trace

Find in Trace dialog box
The Find in Trace dialog box is available by clicking the Find button on the Trace
window toolbar or by choosing Edit>Find and Replace>Find.

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

Use this dialog box to specify the search criteria for advanced searches in the trace data.

The search results are displayed in the Find in Trace window—available by choosing
the View>Messages command, see Find in Trace window, page 185.

See also Searching in trace data, page 175.

Requirements

The C-SPY simulator.

Text search

Specify the string you want to search for. To specify the search criteria, choose between:

Match Case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise int will also find INT and Int and so on.

Match whole word

Searches only for the string when it occurs as a separate word. Otherwise int
will also find print, sprintf and so on.

Only search in one column

Searches only in the column you selected from the drop-down list.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Trace

Address Range

Specify the address range you want to display or search. The trace data within the
address range is displayed. If you also have specified a text string in the Text search
field, the text string is searched for within the address range.

Find in Trace window
The Find in Trace window is available from the View>Messages menu. Alternatively,
it is automatically displayed when you perform a search using the Find in Trace dialog
box or perform a search using the Find in Trace command available from the context
menu in the editor window.

This window displays the result of searches in the trace data. Double-click an item in the
Find in Trace window to bring up the same item in the Trace window.

Before you can view any trace data, you must specify the search criteria in the Find in
Trace dialog box, see Find in Trace dialog box, page 184.

See also Searching in trace data, page 175.

Requirements

The C-SPY simulator.

Display area

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria.
AFE1_AFE2-1:1

185

186

Reference information on trace

AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The application timeline
● Introduction to analyzing your application’s timeline

● Analyzing your application’s timeline

● Reference information on application timeline

Introduction to analyzing your application’s timeline
These topics are covered:

● Briefly about analyzing the timeline

● Requirements for timeline support

See also:

● Trace, page 173

BRIEFLY ABOUT ANALYZING THE TIMELINE

C-SPY can provide information for various aspects of your application, collected when
the application is running. This can help you to analyze the application’s behavior.

You can view the timeline information in different representations:

● As different graphs that correlate with the running application in relation to a shared
time axis.

● As detailed logs

● As summaries of the logs.

Timeline information can be provided for:

Call stack Can be represented in the Timeline window, as a graph that displays the
sequence of function calls and returns collected by the trace system. You
get timing information between the function invocations.

Note that there is also a related Call Stack window and a Function
Trace window, see Call Stack window, page 69 and Function Trace
window, page 179, respectively.
AFE1_AFE2-1:1

187

188

Analyzing your application’s timeline

REQUIREMENTS FOR TIMELINE SUPPORT

Trace-based timeline information is supported for:

For more information about requirements related to trace data, see Requirements for
using trace, page 174.

Analyzing your application’s timeline
These tasks are covered:

● Displaying a graph in the Timeline window, page 189

● Navigating in the graphs, page 189

● Analyzing performance using the graph data, page 190

● Getting started using data logging, page 191

Data logging Based on data logs collected by the trace system for up to four different
variables or address ranges, specified by means of Data Log
breakpoints. Choose to display the data logs:

● In the Timeline window, as a graph of how the values change over
time.

● In the Data Log window and the Data Log Summary window.

Interrupt
logging

Based on interrupt logs collected by the trace system. Choose to display
the interrupt logs:

● In the Timeline window, as a graph of the interrupt events during
the execution of your application.

● In the Interrupt Log window and the Interrupt Log Summary
window.

Interrupt logging can, for example, help you locate which interrupts you
can fine-tune to make your application more efficient. For more
information, see the chapter Interrupts.

Target system Call Stack Data Logging
Interrupt

Logging

C-SPY simulator Yes Yes Yes

C-SPY hardware debugger drivers — — —

Table 8: Supported graphs in the Timeline window
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The application timeline

See also:

● Using the interrupt system, page 230

DISPLAYING A GRAPH IN THE TIMELINE WINDOW

The Timeline window can display several graphs; follow this example procedure to
display any of these graphs. For an overview of the graphs and what they display, see
Briefly about analyzing the timeline, page 187.

1 Choose Timeline from the C-SPY driver menu to open the Timeline window.

2 In the Timeline window, right-click in the window and choose Select graphs from the
context menu to select which graphs to be displayed.

3 In the Timeline window, right-click in the graph area and choose Enable from the
context menu to enable a specific graph.

4 For the Data Log graph, you must set a Data Log breakpoint for each variable you want
a graphical representation of in the Timeline window. See Data Log breakpoints
dialog box, page 124.

5 Click Go on the toolbar to start executing your application. The graphs that you have
enabled appear.

NAVIGATING IN THE GRAPHS

After you have performed the steps in Displaying a graph in the Timeline window, page
189, you can use any of these alternatives to navigate in the graph:

● Right-click and from the context menu choose Zoom In or Zoom Out.
Alternatively, use the + and – keys. The graph zooms in or out depending on which
command you used.

● Right-click in the graph and from the context menu choose Navigate and the
appropriate command to move backwards and forwards on the graph. Alternatively,
use any of the shortcut keys: arrow keys, Home, End, and Ctrl+End.

● Double-click on a sample of interest to highlight the corresponding source code in
the editor window and in the Disassembly window.

● Click on the graph and drag to select a time interval, which will correlate to the
running application. The selection extends vertically over all graphs, but appears
highlighted in a darker color for the selected graph. Press Enter or right-click and
AFE1_AFE2-1:1

189

190

Analyzing your application’s timeline

from the context menu choose Zoom>Zoom to Selection. The selection zooms in.
Use the navigation keys in combination with the Shift key to extend the selection.

ANALYZING PERFORMANCE USING THE GRAPH DATA

The Timeline window provides a set of tools for analyzing the graph data.

1 In the Timeline window, right-click and choose Time Axis Unit from the context
menu. Select which unit to be used on the time axis; choose between Seconds and
Cycles. If Cycles is not available, the graphs are based on different clock sources.

2 Execute your application to display a graph, following the steps described in
Displaying a graph in the Timeline window, page 189.

3 Whenever execution stops, point at the graph with the mouse pointer to get detailed
tooltip information for that location.

Note that if you have enabled several graphs, you can move the mouse pointer over the
different graphs to get graph-specific information.

4 Click in the graph and drag to select a time interval. Point in the graph with the mouse
pointer to get timing information for the selection.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The application timeline

GETTING STARTED USING DATA LOGGING

1 To set a data log breakpoint, use one of these methods:

● In the Breakpoints window, right-click and choose New Breakpoint>Data Log to
open the breakpoints dialog box. Set a breakpoint on the memory location that you
want to collect log information for. This can be specified either as a variable or as an
address.

● In the Memory window, select a memory area, right-click and choose Set Data Log
Breakpoint from the context menu. A breakpoint is set on the start address of the
selection.

● In the editor window, select a variable, right-click and choose Set Data Log
Breakpoint from the context menu. The breakpoint will be set on the part of the
variable that the microcontroller can access using one instruction.

You can set up to four data log breakpoints. For more information about data log
breakpoints, see Data Log breakpoints, page 105.

2 Choose C-SPY driver>Data Log to open the Data Log window. Optionally, you can
also choose:

● C-SPY driver>Data Log Summary to open the Data Log Summary window

● C-SPY driver>Timeline to open the Timeline window to view the Data Log graph.

3 From the context menu, available in the Data Log window, choose Enable to enable
the logging.

4 Start executing your application program to collect the log information.

5 To view the data log information, look in the Data Log window, the Data Log
Summary window, or the Data graph in the Timeline window.

6 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.
AFE1_AFE2-1:1

191

192

Reference information on application timeline

7 To disable data logging, choose Disable from the context menu in each window where
you have enabled it.

Reference information on application timeline
Reference information about:

● Timeline window—Call Stack graph, page 192

● Timeline window—Data Log graph, page 196

● Data Log window, page 200

● Data Log Summary window, page 203

● Viewing Range dialog box, page 206

See also:

● Timeline window—Interrupt Log graph, page 245

● Interrupt Log window, page 240

● Interrupt Log Summary window, page 243

Timeline window—Call Stack graph
The Timeline window is available from the C-SPY driver menu during a debug session.

This window displays trace data represented as different graphs, in relation to a shared
time axis.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The application timeline

The Call Stack graph displays the sequence of function calls and returns collected by the
trace system.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements

The C-SPY simulator.

Display area for the Call Stack graph

Each function invocation is displayed as a horizontal bar which extends from the time
of entry until the return. Called functions are displayed above its caller. The horizontal
bars use four different colors:

● Medium green for normal C functions with debug information

● Light green for functions known to the debugger only through an assembler label

● Medium yellow for normal interrupt handlers, with debug information

● Light yellow for interrupt handlers known to the debugger only through an
assembler label

The timing information represents the number of cycles spent in, or between, the
function invocations.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

Click in the graph to display the corresponding source code.
AFE1_AFE2-1:1

193

194

Reference information on application timeline

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Navigate

Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The application timeline

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: –

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Call Stack

A heading that shows that the Call stack-specific commands below are available.

Enable

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Show Timing

Toggles the display of the timing information on or off.

Go To Source

Displays the corresponding source code in an editor window, if applicable.

Save to File

Saves all contents (or the selected contents) of the Call Stack graph to a file. The
menu command is only available when C-SPY is not running.

Select Graphs

Selects which graphs to be displayed in the Timeline window.

Time Axis Unit

Selects the unit used in the time axis; choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

Profile Selection

Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling.
AFE1_AFE2-1:1

195

196

Reference information on application timeline

Timeline window—Data Log graph
The Timeline window is available from the C-SPY driver menu during a debug session.

This window displays trace data represented as different graphs, in relation to a shared
time axis.

The Data Log graph displays the data logs collected by the trace system, for up to four
different variables or address ranges specified as Data Log breakpoints.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements

The C-SPY simulator.

Display area for the Data Log graph

Where:

● The label area at the left end of the graph displays the variable name or the address
for which you have specified the Data Log breakpoint.

● The graph itself displays how the value of the variable changes over time. The label
area also displays the limits, or range, of the Y-axis for a variable. You can use the
context menu to change these limits. The graph is a graphical representation of the
information in the Data Log window, see Data Log window, page 200.

● The graph can be displayed either as a thin line between consecutive logs or as a
rectangle for every log (optionally color-filled).
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The application timeline

● A red vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system. A red question mark indicates
a log without a value.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Navigate

Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.
AFE1_AFE2-1:1

197

198

Reference information on application timeline

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: –

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Data Log

A heading that shows that the Data Log-specific commands below are available.

Enable

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear

Deletes the log information. Note that this will happen also when you reset the
debugger.

Variable
The name of the variable for which the Data Log-specific commands below
apply. This menu command is context-sensitive, which means it reflects the
Data Log graph you selected in the Timeline window (one of up to four).

Viewing Range

Displays a dialog box, see Viewing Range dialog box, page 206.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The application timeline

Size

Determines the vertical size of the graph; choose between Small, Medium, and
Large.

Solid Graph

Displays the graph as a color-filled solid graph instead of as a thin line.

Show Numerical Value

Shows the numerical value of the variable, in addition to the graph.

Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Go To Source

Displays the corresponding source code in an editor window, if applicable.

Select Graphs

Selects which graphs to be displayed in the Timeline window.

Time Axis Unit

Selects the unit used in the time axis; choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.
AFE1_AFE2-1:1

199

200

Reference information on application timeline

Data Log window
The Data Log window is available from the C-SPY driver menu.

Use this window to log accesses to up to four different memory locations or areas.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Getting started using data logging, page 191.

Requirements

The C-SPY simulator.

Display area

Each row in the display area shows the time, the program counter, and, for every tracked
data object, its value and address. All information is cleared on reset. The information
is displayed in these columns:

Time

If the time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show time from the context
menu.

Cycles

The number of cycles from the start of the execution until the event.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The application timeline

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show cycles from the context
menu.

Program Counter*

Displays one of these:

An address, which is the content of the PC, that is, the address of the instruction
that performed the memory access.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

Value
Displays the access type and the value (using the access size) for the location or
area you want to log accesses to. For example, if zero is read using a byte access
it will be displayed as 0x00, and for a long access it will be displayed as
0x00000000.

To specify what data you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 105.

Address

The actual memory address that is accessed. For example, if only a byte of a
word is accessed, only the address of the byte is displayed. The address is
calculated as base address + offset, where the base address is retrieved from the
Data Log breakpoint dialog box and the offset is retrieved from the logs. If the
log from the target system does not provide the debugger with an offset, the
offset contains + ?.

* You can double-click a line in the display area. If the value of the PC for that line is
available in the source code, the editor window displays the corresponding source code
(this does not include library source code).
AFE1_AFE2-1:1

201

202

Reference information on application timeline

Context menu

This context menu is available:

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will happen also when you reset the
debugger.

Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time

Displays the Time column.

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles

Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The application timeline

Data Log Summary window
The Data Log Summary window is available from the C-SPY driver menu.

This window displays a summary of data accesses to specific memory location or areas.

See also Getting started using data logging, page 191.

Requirements

The C-SPY simulator.

Display area

Each row in this area displays the type and the number of accesses to each memory
location or area in these columns. Summary information is listed at the bottom of the
display area.

Data

The name of the data object you have selected to log accesses to. To specify
what data object you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 105.

Total Accesses

The total number of accesses.

If the sum of read accesses and write accesses is less than the total accesses, the
target system for some reason did not provide valid access type information for
all accesses.

Read Accesses

The total number of read accesses.

Write Accesses

The total number of write accesses.
AFE1_AFE2-1:1

203

204

Reference information on application timeline

Unknown Accesses

The number of unknown accesses, in other words, accesses where the access
type is not known.

Approximative time count

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero. In this case, all logs have an exact time stamp.

For other C-SPY drivers, a non-zero value is displayed. The value represents the
amount of logs with an approximative time stamp. This might happen if the
bandwidth in the communication channel is too low compared to the amount of
data packets generated by the CPU or if the CPU generated packets with an
approximative time stamp.

Overflow count

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero.

For other C-SPY drivers, the number represents the amount of overflows in the
communication channel which can cause logs to be lost. If this happens, it
indicates that logs might be incomplete. To solve this, make sure not to use all
C-SPY log features simultaneously or check used bandwidth for the
communication channel.

Current time|cycles

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, the value is always zero or not visible at all.

For other C-SPY drivers, the number represents the current time or cycles—the
number of cycles or the execution time since the start of execution.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The application timeline

Context menu

This context menu is available:

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time

Displays the Time column.

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles

Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.
AFE1_AFE2-1:1

205

206

Reference information on application timeline

Viewing Range dialog box
The Viewing Range dialog box is available from the context menu that appears when
you right-click in any graph in the Timeline window that uses the linear, levels or
columns style.

Use this dialog box to specify the value range, that is, the range for the Y-axis for the
graph.

Requirements

The C-SPY simulator.

Range for ...

Selects the viewing range for the displayed values:

Auto

Uses the range according to the range of the values that are actually collected,
continuously keeping track of minimum or maximum values. The currently
computed range, if any, is displayed in parentheses. The range is rounded to
reasonably even limits.

Factory

For the Power Log graph: Uses the range according to the properties of the
measuring hardware (only if supported by the product edition you are using).

For the other graphs: Uses the range according to the value range of the variable,
for example 0–65535 for an unsigned 16-bit integer.

Custom

Use the text boxes to specify an explicit range.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The application timeline

Scale

Selects the scale type of the Y-axis:

● Linear

● Logarithmic.
AFE1_AFE2-1:1

207

208

Reference information on application timeline

AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Profiling
● Introduction to the profiler

● Using the profiler

● Reference information on the profiler

Introduction to the profiler
These topics are covered:

● Reasons for using the profiler

● Briefly about the profiler

● Requirements for using the profiler

REASONS FOR USING THE PROFILER

Function profiling can help you find the functions in your source code where the most
time is spent during execution. You should focus on those functions when optimizing
your code. A simple method of optimizing a function is to compile it using speed
optimization. Alternatively, you can move the data used by the function into more
efficient memory. For detailed information about efficient memory usage, see the IAR
C/C++ Compiler User Guide for 8051.

Alternatively, you can use filtered profiling, which means that you can exclude, for
example, individual functions from being profiled. To profile only a specific part of your
code, you can select a time interval—using the Timeline window—for which C-SPY
produces profiling information.

Instruction profiling can help you fine-tune your code on a very detailed level, especially
for assembler source code. Instruction profiling can also help you to understand where
your compiled C/C++ source code spends most of its time, and perhaps give insight into
how to rewrite it for better performance.

BRIEFLY ABOUT THE PROFILER

Function profiling information is displayed in the Function Profiler window, that is,
timing information for the functions in an application. Profiling must be turned on
explicitly using a button on the window’s toolbar, and will stay enabled until it is turned
off.
AFE1_AFE2-1:1

209

210

Using the profiler

Instruction profiling information is displayed in the Disassembly window, that is, the
number of times each instruction has been executed.

Profiling sources

The profiler can use different mechanisms, or sources, to collect profiling information.
Depending on the available trace source features, one or more of the sources can be used
for profiling:

● Trace (calls)

The full instruction trace is analyzed to determine all function calls and returns.
When the collected instruction sequence is incomplete or discontinuous, the
profiling information is less accurate.

● Trace (flat)

Each instruction in the full instruction trace or each PC Sample is assigned to a
corresponding function or code fragment, without regard to function calls or returns.
This is most useful when the application does not exhibit normal call/return
sequences, such as when you are using an RTOS, or when you are profiling code
which does not have full debug information.

REQUIREMENTS FOR USING THE PROFILER

The C-SPY simulator support the profiler; there are no specific requirements.

Using the profiler
These tasks are covered:

● Getting started using the profiler on function level

● Analyzing the profiling data

● Getting started using the profiler on instruction level

GETTING STARTED USING THE PROFILER ON FUNCTION
LEVEL

To display function profiling information in the Function Profiler window:

1 Build your application using these options:

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Output>Format>Debug information for C-SPY

Table 9: Project options for enabling the profiler
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Profiling

2 When you have built your application and started C-SPY, choose C-SPY
driver>Function Profiler to open the Function Profiler window, and click the
Enable button to turn on the profiler. Alternatively, choose Enable from the context
menu that is available when you right-click in the Function Profiler window.

3 Start executing your application to collect the profiling information.

4 Profiling information is displayed in the Function Profiler window. To sort, click on
the relevant column header.

5 When you start a new sampling, you can click the Clear button—alternatively, use the
context menu—to clear the data.

ANALYZING THE PROFILING DATA

Here follow some examples of how to analyze the data.

The first figure shows the result of profiling using Source: Trace (calls). The profiler
follows the program flow and detects function entries and exits.

● For the InitFib function, Flat Time 231 is the time spent inside the function itself.

● For the InitFib function, Acc Time 487 is the time spent inside the function itself,
including all functions InitFib calls.

● For the InitFib/GetFib function, Acc Time 256 is the time spent inside GetFib (but
only when called from InitFib), including any functions GetFib calls.
AFE1_AFE2-1:1

211

212

Using the profiler

● Further down in the data, you can find the GetFib function separately and see all of
its subfunctions (in this case none).

The second figure shows the result of profiling using Source: Trace (flat). In this case,
the profiler does not follow the program flow, instead the profiler only detects whether
the PC address is within the function scope. For incomplete trace data, the data might
contain minor errors.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Profiling

For the InitFib function, Flat Time 231 is the time (number of hits) spent inside the
function itself.

To secure valid data when using a debug probe, make sure to use the maximum trace
buffer size and set a breakpoint in your code to stop the execution before the buffer is
full.

GETTING STARTED USING THE PROFILER ON INSTRUCTION
LEVEL

To display instruction profiling information in the Disassembly window:

1 When you have built your application and started C-SPY, choose View>Disassembly
to open the Disassembly window, and choose Instruction Profiling>Enable from the
context menu that is available when you right-click in the left-hand margin of the
Disassembly window.

2 Make sure that the Show command on the context menu is selected, to display the
profiling information.

3 Start executing your application to collect the profiling information.

4 When the execution stops, for instance because the program exit is reached or a
breakpoint is triggered, you can view instruction level profiling information in the
left-hand margin of the window.
AFE1_AFE2-1:1

213

214

Reference information on the profiler

For each instruction, the number of times it has been executed is displayed.

Reference information on the profiler
Reference information about:

● Function Profiler window, page 214

See also:

● Disassembly window, page 64

Function Profiler window
The Function Profiler window is available from the C-SPY driver menu.

This window displays function profiling information.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Profiling

When Trace(flat) is selected, a checkbox appears on each line in the left-side margin of
the window. Use these checkboxes to include or exclude lines from the profiling.
Excluded lines are dimmed but not removed.

See also Using the profiler, page 210.

Requirements

The C-SPY simulator.

Toolbar

The toolbar contains:

Enable/Disable

Enables or disables the profiler.

Clear

Clears all profiling data.

Save

Opens a standard Save As dialog box where you can save the contents of the
window to a file, with tab-separated columns. Only non-expanded rows are
included in the list file.

Graphical view

Overlays the values in the percentage columns with a graphical bar.

Progress bar
Displays a backlog of profiling data that is still being processed. If the rate of
incoming data is higher than the rate of the profiler processing the data, a
backlog is accumulated. The progress bar indicates that the profiler is still
processing data, but also approximately how far the profiler has come in the
process. Note that because the profiler consumes data at a certain rate and the
target system supplies data at another rate, the amount of data remaining to be
processed can both increase and decrease. The progress bar can grow and shrink
accordingly.

Display area

The content in the display area depends on which source that is used for the profiling
information:

● For the Trace (calls) source, the display area contains one line for each function
compiled with debug information enabled. When some profiling information has
been collected, it is possible to expand rows of functions that have called other
AFE1_AFE2-1:1

215

216

Reference information on the profiler

functions. The child items for a given function list all the functions that have been
called by the parent function and the corresponding statistics.

● For the Trace (flat) source, the display area contains one line for each C function of
your application, but also lines for sections of code from the runtime library or from
other code without debug information, denoted only by the corresponding
assembler labels. Each executed PC address from trace data is treated as a separate
sample and is associated with the corresponding line in the Profiling window. Each
line contains a count of those samples.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 210.

More specifically, the display area provides information in these columns:

Function (All sources)
The name of the profiled C function.

Calls (Trace (calls))

The number of times the function has been called.

Flat time (Trace (calls))

The time expressed as the estimated number of cycles spent inside the function.

Flat time (%) (Trace (calls))

Flat time expressed as a percentage of the total time.

Acc. time (Trace (calls))

The time expressed as the estimated number of cycles spent inside the function
and everything called by the function.

Acc. time (%) (Trace (calls))

Accumulated time expressed as a percentage of the total time.

PC Samples (Trace (flat))

The number of PC samples associated with the function.

PC Samples (%) (Trace (flat))

The number of PC samples associated with the function as a percentage of the
total number of samples.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Profiling

Context menu

This context menu is available:

The contents of this menu depend on the C-SPY driver you are using.

These commands are available:

Enable

Enables the profiler. The system will collect information also when the window
is closed.

Clear

Clears all profiling data.

Filtering

Selects which part of your code to profile. Choose between:

Check All—Excludes all lines from the profiling.

Uncheck All—Includes all lines in the profiling.

Load—Reads all excluded lines from a saved file.

Save—Saves all excluded lines to a file. Typically, this can be useful if you are
a group of engineers and want to share sets of exclusions.

These commands are only available when using Trace (flat).

Source*

Selects which source to be used for the profiling information. See also Profiling
sources, page 210. Choose between:

Trace (calls)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Trace (flat)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Save to File

Saves all profiling data to a file.
AFE1_AFE2-1:1

217

218

Reference information on the profiler

Show Source

Opens the editor window (if not already opened) and highlights the selected
source line.

* The available sources depend on the C-SPY driver you are using.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Code coverage
● Introduction to code coverage

● Reference information on code coverage.

Introduction to code coverage
These topics are covered:

● Reasons for using code coverage

● Briefly about code coverage

● Requirements and restrictions for using code coverage.

REASONS FOR USING CODE COVERAGE

The code coverage functionality is useful when you design your test procedure to verify
whether all parts of the code have been executed. It also helps you identify parts of your
code that are not reachable.

BRIEFLY ABOUT CODE COVERAGE

The Code Coverage window reports the status of the current code coverage analysis for
C code. For every program, module, and function, the analysis shows the percentage of
code that has been executed since code coverage was turned on up to the point where the
application has stopped. In addition, all statements that have not been executed are
listed. The analysis will continue until turned off.

Note: Assembler code is not covered by the code coverage analysis. To view assembler
code, use the Disassembly window.

REQUIREMENTS AND RESTRICTIONS FOR USING CODE
COVERAGE

Code coverage is supported by the C-SPY Simulator and there are no specific
requirements or restrictions.

Reference information on code coverage
Reference information about:

● Code Coverage window, page 220.
AFE1_AFE2-1:1

219

220

Reference information on code coverage

See also Single stepping, page 58.

Code Coverage window
The Code Coverage window is available from the View menu.

This window reports the status of the current code coverage analysis. For every program,
module, and function, the analysis shows the percentage of code that has been executed
since code coverage was turned on up to the point where the application has stopped. In
addition, all statements that have not been executed are listed. The analysis will continue
until turned off.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window must be refreshed because the displayed information is no
longer up to date. To update the information, use the Refresh button.

To get started using code coverage:

1 Before using the code coverage functionality you must build your application using
these options:

2 After you have built your application and started C-SPY, choose View>Code
Coverage to open the Code Coverage window.

3 Click the Activate button, alternatively choose Activate from the context menu, to
switch on code coverage.

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Format>Debug information for C-SPY

Debugger Plugins>Code Coverage

Table 10: Project options for enabling code coverage
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Code coverage

4 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button to view the code
coverage information.

Requirements

The C-SPY simulator.

Display area

The code coverage information is displayed in a tree structure, showing the program,
module, function, and statement levels. The window displays only source code that was
compiled with debug information. Thus, startup code, exit code, and library code is not
displayed in the window. Furthermore, coverage information for statements in inlined
functions is not displayed. Only the statement containing the inlined function call is
marked as executed. The plus sign and minus sign icons allow you to expand and
collapse the structure.

These icons give you an overview of the current status on all levels:

The percentage displayed at the end of every program, module, and function line shows
the amount of statements that has been covered so far, that is, the number of executed
statements divided with the total number of statements.

For statements that have not been executed (yellow diamond), the information displayed
is the column number range and the row number of the statement in the source window,
followed by the address of the step point:

<column_start>-<column_end>:row address.

A statement is considered to be executed when one of its instructions has been executed.
When a statement has been executed, it is removed from the window and the percentage
is increased correspondingly.

Double-clicking a statement or a function in the Code Coverage window displays that
statement or function as the current position in the editor window, which becomes the

Red diamond Signifies that 0% of the modules or functions has been
executed.

Green diamond Signifies that 100% of the modules or functions has been
executed.

Red and green diamond Signifies that some of the modules or functions have been
executed.

Yellow diamond Signifies a statement that has not been executed.
AFE1_AFE2-1:1

221

222

Reference information on code coverage

active window. Double-clicking a module on the program level expands or collapses the
tree structure.

Context menu

This context menu is available:

These commands are available:

Activate

Switches code coverage on and off during execution.

Clear

Clears the code coverage information. All step points are marked as not
executed.

Refresh

Updates the code coverage information and refreshes the window. All step
points that have been executed since the last refresh are removed from the tree.

Auto-refresh

Toggles the automatic reload of code coverage information on and off. When
turned on, the code coverage information is reloaded automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As

Saves the current code coverage result in a text file.

Save session

Saves your code coverage session data to a *.dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Part 3. Advanced
debugging
This part of the C-SPY® Debugging Guide for 8051 includes these chapters:

● Interrupts

● C-SPY macros

● The C-SPY command line utility—cspybat
223

224

Interrupts
● Introduction to interrupts

● Using the interrupt system

● Reference information on interrupts

Introduction to interrupts
These topics are covered:

● Briefly about the interrupt simulation system

● Interrupt characteristics

● Interrupt simulation states

● C-SPY system macros for interrupt simulation

● Target-adapting the interrupt simulation system

● Briefly about interrupt logging

See also:

● Reference information on C-SPY system macros, page 264

● Breakpoints, page 103

● The IAR C/C++ Compiler User Guide for 8051

BRIEFLY ABOUT THE INTERRUPT SIMULATION SYSTEM

By simulating interrupts, you can test the logic of your interrupt service routines and
debug the interrupt handling in the target system long before any hardware is available.
If you use simulated interrupts in conjunction with C-SPY macros and breakpoints, you
can compose a complex simulation of, for instance, interrupt-driven peripheral devices.

The C-SPY Simulator includes an interrupt simulation system where you can simulate
the execution of interrupts during debugging. You can configure the interrupt simulation
system so that it resembles your hardware interrupt system.

The interrupt system has the following features:

● Simulated interrupt support for the 8051 microcontroller

● Single-occasion or periodical interrupts based on the cycle counter

● Predefined interrupts for various devices
AFE1_AFE2-1:1

225

226

Introduction to interrupts

● Configuration of hold time, probability, and timing variation

● State information for locating timing problems

● Configuration of interrupts using a dialog box or a C-SPY system macro—that is,
one interactive and one automating interface. In addition, you can instantly force an
interrupt.

● A log window that continuously displays events for each defined interrupt.

● A status window that shows the current interrupt activities.

All interrupts you define using the Interrupt Setup dialog box are preserved between
debug sessions, unless you remove them. A forced interrupt, on the other hand, exists
only until it has been serviced and is not preserved between sessions.

The interrupt simulation system is activated by default, but if not required, you can turn
off the interrupt simulation system to speed up the simulation. To turn it off, use either
the Interrupt Setup dialog box or a system macro.

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, a variance, and a probability.

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options probability—
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Interrupts

the probability, in percent, that the interrupt will actually appear in a period—and
variance—a time variation range as a percentage of the repeat interval. These options
make it possible to randomize the interrupt simulation. You can also specify a hold time
which describes how long the interrupt remains pending until removed if it has not been
processed. If the hold time is set to infinite, the corresponding pending bit will be set
until the interrupt is acknowledged or removed.

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that you can use for locating
timing problems in your application. The Interrupt Status window displays the
available status information. For an interrupt, these states can be displayed: Idle,
Pending, Executing, or Suspended.
AFE1_AFE2-1:1

227

228

Introduction to interrupts

Normally, a repeatable interrupt has a specified repeat interval that is longer than the
execution time. In this case, the status information at different times looks like this:

However, if the interrupt repeat interval is shorter than the execution time, and the
interrupt is reentrant (or non-maskable), the status information at different times looks
like this:

An execution time that is longer than the repeat interval might indicate that you should
rewrite your interrupt handler and make it faster, or that you should specify a longer
repeat interval for the interrupt simulation system.

C-SPY SYSTEM MACROS FOR INTERRUPT SIMULATION

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. If you write a macro function containing
definitions for the simulated interrupts, you can execute the functions automatically
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Interrupts

be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides these predefined system macros related to interrupts:

__enableInterrupts

__disableInterrupts

__orderInterrupt

__cancelInterrupt

__cancelAllInterrupts

__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupt Setup dialog box.

For more information about each macro, see Reference information on C-SPY system
macros, page 264.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using.

The behavior of the interrupt simulation resembles the hardware—the main difference
is that the simulation does not have interrupt priority. This means that the execution of
an interrupt is dependent on the status of the global interrupt enable bit. The execution
of maskable interrupts is also dependent on the status of the individual interrupt enable
bits.

To simulate device-specific interrupts, the interrupt system must have detailed
information about each available interrupt. This information is provided in the device
description files.

For information about device description files, see Selecting a device description file,
page 44.

BRIEFLY ABOUT INTERRUPT LOGGING

Interrupt logging provides you with comprehensive information about the interrupt
events. This might be useful for example, to help you locate which interrupts you can
fine-tune to become faster. You can log entrances and exits to and from interrupts. You
AFE1_AFE2-1:1

229

230

Using the interrupt system

can also log internal interrupt status information, such as triggered, expired, etc. In the
IDE:

● The logs are displayed in the Interrupt Log window

● A summary is available in the Interrupt Log Summary window

● The Interrupt graph in the Timeline window provides a graphical view of the
interrupt events during the execution of your application.

Requirements for interrupt logging

Interrupt logging is supported by the C-SPY simulator.

See also Getting started using interrupt logging, page 233.

Using the interrupt system
These tasks are covered:

● Simulating a simple interrupt

● Simulating an interrupt in a multi-task system

● Getting started using interrupt logging.

See also:

● Using C-SPY macros, page 251 for details about how to use a setup file to define
simulated interrupts at C-SPY startup

● The tutorial Simulating an interrupt in the Information Center.

SIMULATING A SIMPLE INTERRUPT

This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Interrupts

To simulate and debug an interrupt:

1 Assume this simple application which contains an interrupt service routine for a timer,
which increments a tick variable. The main function sets the necessary status registers.
The application exits when 100 interrupts have been generated.

#include "io8051.h"
#include <stdio.h>
#include <intrinsics.h>

volatile int ticks = 0;
void main (void)
{

 /* Setup timer 0 */
 TCON_bit.TF0 = 0;
 TCON_bit.TR0 = 1; /* Start timer 0 */

 /* 16 bit timer mode */
 TMOD_bit.M00 = 1;
 TMOD_bit.M10 = 0;

 /* Set the time with 16 bits. To get a repeat interval of 2000
 cycles we loads TLH0:TL0 with 0xFFFF - 1 - 2000 = 0xF82E. */
 TL0 = 0x2E;
 TH0 = 0xF8;

 IE_bit.ET0 = 1; /* Enable timer 0 interrupts */
 __enable_interrupt(); /* Enable interrupts */
 while (ticks < 100); /* Endless loop */
 printf("Done\n");
}

#pragma vector = TFO_int
__interrupt void basic_timer(void)
{
 ticks += 1;
 TCON_bit.TF0 = 0;
}

2 Add your interrupt service routine to your application source code and add the file to
your project.

3 Choose Project>Options>Debugger>Setup and select a device description file. The
device description file contains information about the interrupt that C-SPY needs to be
able to simulate it. Use the Use device description file browse button to locate the ddf
file—io8051.ddf in the config\devices_generic directory.
AFE1_AFE2-1:1

231

232

Using the interrupt system

4 Build your project and start the simulator.

5 Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. For the Timer example, verify these settings:

Click OK.

6 Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

● Generate an interrupt when the cycle counter has passed 1000

● Continuously repeat the interrupt after approximately 500 cycles.

7 To watch the interrupt in action, choose Simulator>Interrupt Log to open the
Interrupt Log window.

8 From the context menu, available in the Interrupt Log window, choose Enable to
enable the logging. If you restart program execution, status information about
entrances and exits to and from interrupts will now appear in the Interrupt Log
window.

For information about how to get a graphical representation of the interrupts correlated
with a time axis, see Timeline window—Interrupt Log graph, page 245.

SIMULATING AN INTERRUPT IN A MULTI-TASK SYSTEM

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If too
many interrupts are executing simultaneously, a warning might be issued.

To simulate a normal interrupt exit:

1 Set a code breakpoint on the instruction that returns from the interrupt function.

Option Settings

Interrupt TF0_int

First activation 1000

Repeat interval 500

Hold time 10

Probability (%) 100

Variance (%) 0

Table 11: Timer interrupt settings
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Interrupts

2 Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

GETTING STARTED USING INTERRUPT LOGGING

1 Choose C-SPY driver>Interrupt Log to open the Interrupt Log window. Optionally,
you can also choose:

● C-SPY driver>Interrupt Log Summary to open the Interrupt Log Summary
window

● C-SPY driver>Timeline to open the Timeline window and view the Interrupt
graph.

2 From the context menu in the Interrupt Log window, choose Enable to enable the
logging.

3 Start executing your application program to collect the log information.

4 To view the interrupt log information, look in the Interrupt Log or Interrupt Log
Summary window, or at the Interrupt graph in the Timeline window.

5 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

6 To disable interrupt logging, from the context menu in the Interrupt Log window,
toggle Enable off.

Reference information on interrupts
Reference information about:

● Interrupt Setup dialog box, page 234

● Edit Interrupt dialog box, page 236

● Forced Interrupt window, page 237

● Interrupt Status window, page 238

● Interrupt Log window, page 240

● Interrupt Log Summary window, page 243.

● Timeline window—Interrupt Log graph, page 245.
AFE1_AFE2-1:1

233

234

Reference information on interrupts

Interrupt Setup dialog box
The Interrupt Setup dialog box is available by choosing Simulator>Interrupt Setup.

This dialog box lists all defined interrupts. Use this dialog box to enable or disable the
interrupt simulation system, as well as to enable or disable individual interrupts.

See also Using the interrupt system, page 230.

Requirements

The C-SPY simulator.

Enable interrupt simulation

Enables or disables interrupt simulation. If the interrupt simulation is disabled, the
definitions remain but no interrupts are generated. Note that you can also enable and
disable installed interrupts individually by using the check box to the left of the interrupt
name in the list of installed interrupts.

Display area

This area contains these columns:

Interrupt

Lists all interrupts. Use the checkbox to enable or disable the interrupt.

ID

A unique interrupt identifier.

Type

Shows the type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt window.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Interrupts

Single, a single-occasion interrupt.

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro) is
added, for example: Repeat(macro).

Timing

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

Buttons

These buttons are available:

New

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 236.

Edit

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 236.

Delete

Removes the selected interrupt.

Delete All

Removes all interrupts.
AFE1_AFE2-1:1

235

236

Reference information on interrupts

Edit Interrupt dialog box
The Edit Interrupt dialog box is available from the Interrupt Setup dialog box.

Use this dialog box to interactively fine-tune the interrupt parameters. You can add the
parameters and quickly test that the interrupt is generated according to your needs.

Note: You can only edit or remove non-forced interrupts.

See also Using the interrupt system, page 230.

Requirements

The C-SPY simulator.

Interrupt

Selects the interrupt that you want to edit. The drop-down list contains all available
interrupts. Your selection will automatically update the Description box. The list is
populated with entries from the device description file that you have selected.

Description

A description of the selected interrupt, if available. The description is retrieved from the
selected device description file For interrupts specified using the system macro
__orderInterrupt, the Description box is empty.

First activation

Specify the value of the cycle counter after which the specified type of interrupt will be
generated.

Repeat interval

Specify the periodicity of the interrupt in cycles.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Interrupts

Variance %

Selects a timing variation range, as a percentage of the repeat interval, in which the
interrupt might occur for a period. For example, if the repeat interval is 100 and the
variance 5%, the interrupt might occur anywhere between T=95 and T=105, to simulate
a variation in the timing.

Hold time

Specify how long, in cycles, the interrupt remains pending until removed if it has not
been processed. If you select Infinite, the corresponding pending bit will be set until the
interrupt is acknowledged or removed.

Probability %

Selects the probability, in percent, that the interrupt will actually occur within the
specified period.

Forced Interrupt window
The Forced Interrupt window is available from the C-SPY driver menu.

Use this window to force an interrupt instantly. This is useful when you want to check
your interrupt logic and interrupt routines. Just start typing an interrupt name and focus
shifts to the first line found with that name.

The hold time for a forced interrupt is infinite, and the interrupt exists until it has been
serviced or until a reset of the debug session.

To sort the window contents, click on either the Interrupt or the Description column
header. A second click on the same column header reverses the sort order.

To force an interrupt:

1 Enable the interrupt simulation system, see Interrupt Setup dialog box, page 234.

2 Double-click the interrupt in the Forced Interrupt window, or activate it by using the
Force command available on the context menu.

Requirements

The C-SPY simulator.
AFE1_AFE2-1:1

237

238

Reference information on interrupts

Display area

This area lists all available interrupts and their definitions. This information is retrieved
from the selected device description file. See this file for a detailed description.

Context menu

This context menu is available:

This command is available:

Force

Triggers the interrupt you selected in the display area.

Interrupt Status window
The Interrupt Status window is available from the C-SPY driver menu.

This window shows the status of all the currently active interrupts, in other words
interrupts that are either executing or waiting to be executed.

Requirements

The C-SPY simulator.

Display area

This area contains these columns:

Interrupt

Lists all interrupts.

ID

A unique interrupt identifier.

Type

The type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt window.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Interrupts

Single, a single-occasion interrupt.

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro) is
added, for example: Repeat(macro).

Status

The state of the interrupt:

Idle, the interrupt activation signal is low (deactivated).

Pending, the interrupt activation signal is active, but the interrupt has not been
yet acknowledged by the interrupt handler.

Executing, the interrupt is currently being serviced, that is the interrupt handler
function is executing.

Suspended, the interrupt is currently suspended due to execution of an interrupt
with a higher priority.

(deleted) is added to Executing and Suspended if you have deleted a currently
active interrupt. (deleted) is removed when the interrupt has finished executing.

Next Time

The next time an idle interrupt is triggered. Once a repeatable interrupt stats
executing, a copy of the interrupt will appear with the state Idle and the next time
set. For interrupts that do not have a next time—that is pending, executing, or
suspended—the column will show --.

Timing

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.
AFE1_AFE2-1:1

239

240

Reference information on interrupts

Interrupt Log window
The Interrupt Log window is available from the C-SPY driver menu.

This window logs entrances to and exits from interrupts. The C-SPY simulator also logs
internal state changes.

The information is useful for debugging the interrupt handling in the target system.
When the Interrupt Log window is open, it is updated continuously at runtime.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

For more information, see Getting started using interrupt logging, page 233.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window—Interrupt Log graph, page 245.

Requirements

The C-SPY simulator.

Display area

This area contains these columns:

Time

The time for the interrupt entrance, based on an internally specified clock
frequency.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Interrupts

This column is available when you have selected Show Time from the context
menu.

Cycles

The number of cycles from the start of the execution until the event.

This column is available when you have selected Show Cycles from the context
menu.

Interrupt

The interrupt as defined in the device description file.

Status

Shows the event status of the interrupt:

Triggered, the interrupt has passed its activation time.

Forced, the same as Triggered, but the interrupt was forced from the Forced
Interrupt window.

Enter, the interrupt is currently executing.

Leave, the interrupt has been executed.

Expired, the interrupt hold time has expired without the interrupt being
executed.

Rejected, the interrupt has been rejected because the necessary interrupt
registers were not set up to accept the interrupt.

Program Counter

The value of the program counter when the event occurred.

Execution Time/Cycles

The time spent in the interrupt, calculated using the Enter and Leave
timestamps. This includes time spent in any subroutines or other interrupts that
occurred in the specific interrupt.
AFE1_AFE2-1:1

241

242

Reference information on interrupts

Context menu

This context menu is available:

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time

Displays the Time column.

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles

Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Interrupts

Interrupt Log Summary window
The Interrupt Log Summary window is available from the C-SPY driver menu.

This window displays a summary of logs of entrances to and exits from interrupts.

For more information, see Getting started using interrupt logging, page 233.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window—Interrupt Log graph, page 245.

Requirements

The C-SPY simulator.

Display area

Each row in this area displays statistics about the specific interrupt based on the log
information in these columns:

Interrupt

The type of interrupt that occurred.

At the bottom of the column, the current time or cycles is displayed—the
number of cycles or the execution time since the start of execution.

Count

The number of times the interrupt occurred.

First time

The first time the interrupt was executed.

Total (Time)**

The accumulated time spent in the interrupt.

Total (%)

The time in percent of the current time.
AFE1_AFE2-1:1

243

244

Reference information on interrupts

Fastest**

The fastest execution of a single interrupt of this type.

Slowest**

The slowest execution of a single interrupt of this type.

Min interval

The shortest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

Max interval

The longest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

** Calculated in the same way as for the Execution time/cycles in the Interrupt Log
window.

Context menu

This context menu is available:

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Interrupts

Show Time

Displays the Time column.

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles

Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

Timeline window—Interrupt Log graph
The Interrupt Log graph displays interrupts collected by the trace system. In other
words, the graph provides a graphical view of the interrupt events during the execution
of your application.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements

The C-SPY simulator.

Display area

● The label area at the left end of the graph displays the names of the interrupts.

● The graph itself shows active interrupts as a thick green horizontal bar where the
white figure indicates the time spent in the interrupt. This graph is a graphical
representation of the information in the Interrupt Log window, see Interrupt Log
window, page 240.

● If the bar is displayed without horizontal borders, there are two possible causes:

● The interrupt is reentrant and has interrupted itself. Only the innermost interrupt
will have borders.
AFE1_AFE2-1:1

245

246

Reference information on interrupts

● There are irregularities in the interrupt enter-leave sequence, probably due to
missing logs.

● If the bar is displayed without a vertical border, the missing border indicates an
approximate time for the log.

● A red vertical line indicates overflow, which means that the communication channel
failed to transmit all interrupt logs from the target system.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Context menu

This context menu is available:

Note: The exact contents of the context menu you see on the screen depends on which
features that your combination of software and hardware supports. However, the list of
menu commands below is complete and covers all possible commands.

These commands are available:

Navigate

Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Interrupts

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: –

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Interrupt

A heading that shows that the Interrupt Log-specific commands below are
available.

Enable

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear

Deletes the log information. Note that this will happen also when you reset the
debugger.

Go To Source

Displays the corresponding source code in an editor window, if applicable.

Sort by

Sorts the entries according to their ID or name. The selected order is used in the
graph when new interrupts appear.

source
Goes to the previous/next log for the selected source.
AFE1_AFE2-1:1

247

248

Reference information on interrupts

Select Graphs

Selects which graphs to be displayed in the Timeline window.

Time Axis Unit

Selects the unit used in the time axis; choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros
● Introduction to C-SPY macros

● Using C-SPY macros

● Reference information on the macro language

● Reference information on reserved setup macro function names

● Reference information on C-SPY system macros

● Graphical environment for macros

Introduction to C-SPY macros
These topics are covered:

● Reasons for using C-SPY macros

● Briefly about using C-SPY macros

● Briefly about setup macro functions and files

● Briefly about the macro language

REASONS FOR USING C-SPY MACROS

You can use C-SPY macros either by themselves or in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks. Some examples
where macros can be useful:

● Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

● Hardware configuring, such as initializing hardware registers.

● Feeding your application with simulated data during runtime.

● Simulating peripheral devices, see the chapter Interrupts. This only applies if you
are using the simulator driver.

● Developing small debug utility functions.
AFE1_AFE2-1:1

249

250

Introduction to C-SPY macros

BRIEFLY ABOUT USING C-SPY MACROS

To use C-SPY macros, you should:

● Write your macro variables and functions and collect them in one or several macro
files

● Register your macros

● Execute your macros.

For registering and executing macros, there are several methods to choose between.
Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register or execute your macro.

BRIEFLY ABOUT SETUP MACRO FUNCTIONS AND FILES

There are some reserved setup macro function names that you can use for defining
macro functions which will be called at specific times, such as:

● Once after communication with the target system has been established but before
downloading the application software

● Once after your application software has been downloaded

● Each time the reset command is issued

● Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register
a macro function with one of the reserved names. For instance, if you want to clear a
specific memory area before you load your application software, the macro setup
function execUserPreload should be used. This function is also suitable if you want
to initialize some CPU registers or memory-mapped peripheral units before you load
your application software.

You should define these functions in a setup macro file, which you can load before
C-SPY starts. Your macro functions will then be automatically registered each time you
start C-SPY. This is convenient if you want to automate the initialization of C-SPY, or
if you want to register multiple setup macros.

For more information about each setup macro function, see Reference information on
reserved setup macro function names, page 261.

BRIEFLY ABOUT THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are:

● Macro statements, which are similar to C statements.

● Macro functions, which you can define with or without parameters and return
values.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

● Predefined built-in system macros, similar to C library functions, which perform
useful tasks such as opening and closing files, setting breakpoints, and defining
simulated interrupts.

● Macro variables, which can be global or local, and can be used in C-SPY
expressions.

● Macro strings, which you can manipulate using predefined system macros.

For more information about the macro language components, see Reference information
on the macro language, page 256.

Example

Consider this example of a macro function which illustrates the various components of
the macro language:

__var oldVal;
CheckLatest(val)
{
 if (oldVal != val)
 {
 __message "Message: Changed from ", oldVal, " to ", val, "\n";
 oldVal = val;
 }
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

Using C-SPY macros
These tasks are covered:

● Registering C-SPY macros—an overview

● Executing C-SPY macros—an overview

● Registering and executing using setup macros and setup files

● Executing macros using Quick Watch

● Executing a macro by connecting it to a breakpoint

● Aborting a C-SPY macro

For more examples using C-SPY macros, see:

● The tutorial about simulating an interrupt, which you can find in the Information
Center

● Initializing target hardware before C-SPY starts, page 49.
AFE1_AFE2-1:1

251

252

Using C-SPY macros

REGISTERING C-SPY MACROS—AN OVERVIEW

C-SPY must know that you intend to use your defined macro functions, and thus you
must register your macros. There are various ways to register macro functions:

● You can register macro functions during the C-SPY startup sequence, see
Registering and executing using setup macros and setup files, page 253.

● You can register macros interactively in the Macro Registration window, see
Macro Registration window, page 297. Registered macros appear in the Debugger
Macros window, see Debugger Macros window, page 299.

● You can register a file containing macro function definitions, using the system
macro __registerMacroFile. This means that you can dynamically select which
macro files to register, depending on the runtime conditions. Using the system
macro also lets you register multiple files at the same moment. For information
about the system macro, see __registerMacroFile, page 282.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register your macro.

EXECUTING C-SPY MACROS—AN OVERVIEW

There are various ways to execute macro functions:

● You can execute macro functions during the C-SPY startup sequence and at other
predefined stages during the debug session by defining setup macro functions in a
setup macro file, see Registering and executing using setup macros and setup files,
page 253.

● The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions. For an example, see Executing macros using Quick
Watch, page 253.

● The Macro Quicklaunch window is similar to the Quick Watch window, but is
more specified on designed for C-SPY macros. See Macro Quicklaunch window,
page 301.

● A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro is executed. For an example, see Executing a macro by connecting it to a
breakpoint, page 254.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to execute your macro.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence. To do
this, specify a macro file which you load before starting the debug session. Your macro
functions will be automatically registered each time you start the debugger.

If you use the reserved setup macro function names to define the macro functions, you
can define exactly at which stage you want the macro function to be executed.

To define a setup macro function and load it during C-SPY startup:

1 Create a new text file where you can define your macro function.

For example:

execUserSetup()
{
 ...
 __registerMacroFile("MyMacroUtils.mac");
 __registerMacroFile("MyDeviceSimulation.mac");

}

This macro function registers the additional macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the function
name execUserSetup, it will be executed directly after your application has been
downloaded.

2 Save the file using the filename extension mac.

3 Before you start C-SPY, choose Project>Options>Debugger>Setup. Select Use
Setup file and choose the macro file you just created.

The macros will now be registered during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window lets you dynamically choose when to execute a macro
function.

1 Consider this simple macro function that checks the status of a timer enable bit:

TimerStatus()
{
 if ((TimerStatreg & 0x01) != 0)/* Checks the status of reg */
 return "Timer enabled"; /* C-SPY macro string used */
 else
 return "Timer disabled"; /* C-SPY macro string used */
}

AFE1_AFE2-1:1

253

254

Using C-SPY macros

2 Save the macro function using the filename extension mac.

3 To load the macro file, choose View>Macros>Macro Registration. The Macro
Registration window is displayed. Click Add and locate the file using the file browser.
The macro file appears in the list of macros in the Macro Registration window.

4 Select the macro you want to register and your macro will appear in the Debugger
Macros window.

5 Choose View>Quick Watch to open the Quick Watch window, type the macro call
TimerStatus() in the text field and press Return,

Alternatively, in the macro file editor window, select the macro function name
TimerStatus(). Right-click, and choose Quick Watch from the context menu that
appears.

The macro will automatically be displayed in the Quick Watch window.

For more information, see Quick Watch window, page 97.

EXECUTING A MACRO BY CONNECTING IT TO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed when the
breakpoint is triggered. The advantage is that you can stop the execution at locations of
particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers change. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

To create a log macro and connect it to a breakpoint:

1 Assume this skeleton of a C function in your application source code:

int fact(int x)
{
 ...
}

AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

2 Create a simple log macro function like this example:

logfact()
{
 __message "fact(" ,x, ")";
}

The __message statement will log messages to the Debug Log window.

Save the macro function in a macro file, with the filename extension mac.

3 To register the macro, choose View>Macros>Macro Registration to open the Macro
Registration window and add your macro file to the list. Select the file to register it.
Your macro function will appear in the Debugger Macros window.

4 To set a code breakpoint, click the Toggle Breakpoint button on the first statement
within the function fact in your application source code. Choose View>Breakpoints
to open the Breakpoints window. Select your breakpoint in the list of breakpoints and
choose the Edit command from the context menu.

5 To connect the log macro function to the breakpoint, type the name of the macro
function, logfact(), in the Action field and click OK to close the dialog box.

6 Execute your application source code. When the breakpoint is triggered, the macro
function will be executed. You can see the result in the Debug Log window.

● Note that the expression in the Action field is evaluated only when the breakpoint
causes the execution to really stop. If you want to log a value and then automatically
continue execution, you can either:

Use a Log breakpoint, see Log breakpoints dialog box, page 119

● Use the Condition field instead of the Action field. For an example, see Performing
a task and continuing execution, page 113.

7 You can easily enhance the log macro function by, for instance, using the __fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 259.

For an example where a serial port input buffer is simulated using the method of
connecting a macro to a breakpoint, see the tutorial Simulating an interrupt in the
Information Center.

ABORTING A C-SPY MACRO

To abort a C-SPY macro:

1 Press Ctrl+Shift+. (period) for a short while.

2 A message that says that the macro has terminated is displayed in the Debug Log
window.
AFE1_AFE2-1:1

255

256

Reference information on the macro language

This method can be used if you suspect that something is wrong with the execution, for
example because it seems not to terminate in a reasonable time.

Reference information on the macro language
Reference information about:

● Macro functions, page 256

● Macro variables, page 256

● Macro parameters, page 257

● Macro strings, page 257

● Macro statements, page 258

● Formatted output, page 259.

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has this form:

macroName (parameterList)
{
 macroBody
}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.

MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application. It can then
be used in a C-SPY expression, or you can assign application data—values of the
variables in your application—to it. For more information about C-SPY expressions, see
C-SPY expressions, page 80.

The syntax for defining one or more macro variables is:

__var nameList;

where nameList is a list of C-SPY variable names separated by commas.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

MACRO PARAMETERS

A macro parameter is intended for parameterization of device support. The named
parameter will behave as a normal C-SPY macro variable with these differences:

● The parameter definition can have an initializer

● Values of a parameters can be set through options (either in the IDE or in cspybat).

● A value set from an option will take precedence over a value set by an initializer

● A parameter must have an initializer, be set through an option, or both. Otherwise, it
has an undefined value, and accessing it will cause a runtime error.

The syntax for defining one or more macro parameters is:

__param param[= value, ...;]

Use the command line option --macro_param to specify a value to a parameter, see
--macro_param, page 329.

MACRO STRINGS

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello!", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subString. The result can be a new macro string. You can

Expression What it means

myvar = 3.5; myvar is now type double, value 3.5.

myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 12: Examples of C-SPY macro variables
AFE1_AFE2-1:1

257

258

Reference information on the macro language

concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example str[3]. You can get the
length of a string using sizeof(str). Note that a macro string is not
NULL-terminated.

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char[]) to a macro string. For example, assume
this definition of a C string in your application:

char const *cstr = "Hello";

Then examine these macro examples:

__var str; /* A macro variable */
str = cstr /* str is now just a pointer to char */
sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */
str[1] /* 101, the ASCII code for 'e' */
str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 259.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions

expression;

For more information about C-SPY expressions, see C-SPY expressions, page 80.

Conditional statements

if (expression)
 statement

if (expression)
 statement
else
 statement
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

Loop statements

for (init_expression; cond_expression; update_expression)
 statement

while (expression)
 statement

do
 statement
while (expression);

Return statements

return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
 statement1
 statement2
 .
 .
 .
 statementN
}

FORMATTED OUTPUT

C-SPY provides various methods for producing formatted output:

where argList is a comma-separated list of C-SPY expressions or strings, and file is
the result of the __openFile system macro, see __openFile, page 277.

__message argList; Prints the output to the Debug Log window.

__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.
AFE1_AFE2-1:1

259

260

Reference information on the macro language

To produce messages in the Debug Log window:

var1 = 42;
var2 = 37;
__message "This line prints the values ", var1, " and ", var2,
" in the Debug Log window.";

This produces this message in the Debug Log window:

This line prints the values 42 and 37 in the Debug Log window.

To write the output to a designated file:

__fmessage myfile, "Result is ", res, "!\n";

To produce strings:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer.".

Specifying display format of arguments

To override the default display format of a scalar argument (number or pointer) in
argList, suffix it with a : followed by a format specifier. Available specifiers are:

These match the formats available in the Watch and Locals windows, but number
prefixes and quotes around strings and characters are not printed. Another example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

Depending on the value of the variables, this produces this message:

The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%c;

%b for binary scalar arguments

%o for octal scalar arguments

%d for decimal scalar arguments

%x for hexadecimal scalar arguments

%c for character scalar arguments
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

would produce:

65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the %x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

Reference information on reserved setup macro function names
There are reserved setup macro function names that you can use for defining your setup
macro functions. By using these reserved names, your function will be executed at
defined stages during execution. For more information, see Briefly about setup macro
functions and files, page 250.

Reference information about:

● execUserPreload

● execUserExecutionStarted

● execUserExecutionStopped

● execUserSetup

● execUserPreReset

● execUserReset

● execUserExit

execUserPreload

Syntax execUserPreload

For use with All C-SPY drivers.

Description Called after communication with the target system is established but before
downloading the target application

Implement this macro to initialize memory locations and/or registers which are vital for
loading data properly.
AFE1_AFE2-1:1

261

262

Reference information on reserved setup macro function names

execUserExecutionStarted

Syntax execUserExecutionStarted

For use with The C-SPY simulator

The C-SPY Texas Instruments driver

The C-SPY Infineon driver

The C-SPY ROM-monitor driver

The C-SPY Analog Devices driver

The C-SPY Silicon Labs driver

The C-SPY Segger J-Link driver

Description Called when the debugger is about to start or resume execution. The macro is not called
when performing a one-instruction assembler step, in other words, Step or Step Into in
the Disassembly window.

execUserExecutionStopped

Syntax execUserExecutionStopped

For use with The C-SPY simulator

The C-SPY Texas Instruments driver

The C-SPY Infineon driver

The C-SPY ROM-monitor driver

The C-SPY Analog Devices driver

The C-SPY Silicon Labs driver

The C-SPY Segger J-Link driver

Description Called when the debugger has stopped execution. The macro is not called when
performing a one-instruction assembler step, in other words, Step or Step Into in the
Disassembly window.

execUserSetup

Syntax execUserSetup
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

For use with All C-SPY drivers.

Description Called once after the target application is downloaded.

Implement this macro to set up the memory map, breakpoints, interrupts, register macro
files, etc.

If you define interrupts or breakpoints in a macro file that is executed at system start
(using execUserSetup) we strongly recommend that you also make sure that they are
removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see the tutorials in the Information Center.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

execUserPreReset

Syntax execUserPreReset

For use with All C-SPY drivers.

Description Called each time just before the reset command is issued.

Implement this macro to set up any required device state.

execUserReset

Syntax execUserReset

For use with All C-SPY drivers.

Description Called each time just after the reset command is issued.

Implement this macro to set up and restore data.

execUserExit

Syntax execUserExit

For use with All C-SPY drivers.

Description Called once when the debug session ends.
AFE1_AFE2-1:1

263

264

Reference information on C-SPY system macros

Implement this macro to save status data etc.

Reference information on C-SPY system macros
This section gives reference information about each of the C-SPY system macros.

This table summarizes the pre-defined system macros:

Macro Description

__abortLaunch Aborts the launch of the debugger

__cancelAllInterrupts Cancels all ordered interrupts

__cancelInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

__closeFile Closes a file that was opened by __openFile

__delay Delays execution

__disableInterrupts Disables generation of interrupts

__driverType Verifies the driver type

__enableInterrupts Enables generation of interrupts

__evaluate Interprets the input string as an expression and
evaluates it.

__fillMemory8 Fills a specified memory area with a byte value.

__fillMemory16 Fills a specified memory area with a 2-byte value.

__fillMemory32 Fills a specified memory area with a 4-byte value.

__isBatchMode Checks if C-SPY is running in batch mode or not.

__loadImage Loads an image.

__memoryRestore Restores the contents of a file to a specified memory
zone

__memorySave Saves the contents of a specified memory area to a
file

__messageBoxYesCancel Displays a Yes/Cancel dialog box for user interaction

__messageBoxYesNo Displays a Yes/No dialog box for user interaction

__openFile Opens a file for I/O operations

__orderInterrupt Generates an interrupt

__popSimulatorInterruptExec

utingStack

Informs the interrupt simulation system that an
interrupt handler has finished executing

__readFile Reads from the specified file

Table 13: Summary of system macros
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

__readFileByte Reads one byte from the specified file

__readMemory8,

__readMemoryByte

Reads one byte from the specified memory location

__readMemory16 Reads two bytes from the specified memory location

__readMemory32 Reads four bytes from the specified memory location

__registerMacroFile Registers macros from the specified file

__resetFile Rewinds a file opened by __openFile

__setCodeBreak Sets a code breakpoint

__setDataBreak Sets a data breakpoint

__setDataLogBreak Sets a data log breakpoint

__setLogBreak Sets a log breakpoint

__setSimBreak Sets a simulation breakpoint

__setTraceStartBreak Sets a trace start breakpoint

__setTraceStopBreak Sets a trace stop breakpoint

__sourcePosition Returns the file name and source location if the
current execution location corresponds to a source
location

__strFind Searches a given string for the occurrence of another
string

__subString Extracts a substring from another string

__targetDebuggerVersion Returns the version of the target debugger

__toLower Returns a copy of the parameter string where all the
characters have been converted to lower case

__toString Prints strings

__toUpper Returns a copy of the parameter string where all the
characters have been converted to upper case

__unloadImage Unloads a debug image

__writeFile Writes to the specified file

__writeFileByte Writes one byte to the specified file

__writeMemory8,

__writeMemoryByte

Writes one byte to the specified memory location

__writeMemory16 Writes a two-byte word to the specified memory
location

Macro Description

Table 13: Summary of system macros
AFE1_AFE2-1:1

265

266

Reference information on C-SPY system macros

__abortLaunch

Syntax __abortLaunch(message)

Parameters message

A string that is printed as an error message when the macro executes.

Return value None.

For use with All C-SPY drivers.

Description This macro can be used for aborting a debugger launch, for example if another macro
sees that something goes wrong during initialization and cannot perform a proper setup.

This is an emergency stop when launching, not a way to end an ongoing debug session
like the C library function abort().

Example if (!__messageBoxYesCancel("Do you want to mass erase to unlock
 the device?", "Unlocking device"))
{ __abortLaunch("Unlock canceled. Debug session cannot
 continue."); }

__cancelAllInterrupts

Syntax __cancelAllInterrupts()

Return value int 0

For use with The C-SPY Simulator.

Description Cancels all ordered interrupts.

__cancelInterrupt

Syntax __cancelInterrupt(interrupt_id)

__writeMemory32 Writes a four-byte word to the specified memory
location

Macro Description

Table 13: Summary of system macros
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

Parameters interrupt_id

The value returned by the corresponding __orderInterrupt macro call
(unsigned long).

Return value

For use with The C-SPY Simulator.

Description Cancels the specified interrupt.

__clearBreak

Syntax __clearBreak(break_id)

Parameters break_id

The value returned by any of the set breakpoint macros.

Return value int 0

For use with All C-SPY drivers.

Description Clears a user-defined breakpoint.

See also Breakpoints, page 103.

__closeFile

Syntax __closeFile(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value int 0

For use with All C-SPY drivers.

Description Closes a file previously opened by __openFile.

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 14: __cancelInterrupt return values
AFE1_AFE2-1:1

267

268

Reference information on C-SPY system macros

__delay

Syntax __delay(value)

Parameters value

The number of milliseconds to delay execution.

Return value int 0

For use with All C-SPY drivers.

Description Delays execution the specified number of milliseconds.

__disableInterrupts

Syntax __disableInterrupts()

Return value

For use with The C-SPY Simulator.

Description Disables the generation of interrupts.

__driverType

Syntax __driverType(driver_id)

Parameters driver_id

A string corresponding to the driver you want to check for. Choose one of these:

"sim" corresponds to the simulator driver.

"emu_cc" corresponds to the C-SPY Texas Instruments driver.

"emu_fs2" corresponds to the C-SPY FS2 System Navigator driver.

"emu_if" corresponds to the C-SPY Infineon driver.

"emu_jlink" corresponds to the C-SPY Segger J-Link driver.

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 15: __disableInterrupts return values
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

"emu_ns" corresponds to the C-SPY Nordic Semiconductor driver.

"rom" corresponds to the C-SPY ROM-monitor driver.

"rom_ad2" corresponds to the C-SPY Analog Devices driver.

"rom_sl" corresponds to the C-SPY Silicon Labs driver

Return value

For use with All C-SPY drivers

Description Checks to see if the current C-SPY driver is identical to the driver type of the
driver_id parameter.

Example __driverType("sim")

If the simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__enableInterrupts

Syntax __enableInterrupts()

Return value

For use with The C-SPY Simulator.

Description Enables the generation of interrupts.

__evaluate

Syntax __evaluate(string, valuePtr)

Parameters string

Expression string.

Result Value

Successful 1

Unsuccessful 0

Table 16: __driverType return values

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 17: __enableInterrupts return values
AFE1_AFE2-1:1

269

270

Reference information on C-SPY system macros

valuePtr

Pointer to a macro variable storing the result.

Return value

For use with All C-SPY drivers.

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valuePtr.

Example This example assumes that the variable i is defined and has the value 5:

__evaluate("i + 3", &myVar)

The macro variable myVar is assigned the value 8.

__fillMemory8

Syntax __fillMemory8(value, address, zone, length, format)

Parameters value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

length

An integer that specifies how many bytes are affected.

format

A string that specifies the exact fill operation to perform. Choose between:

Result Value

Successful int 0

Unsuccessful int 1

Table 18: __evaluate return values

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

Return value int 0

For use with All C-SPY drivers.

Description Fills a specified memory area with a byte value.

Example __fillMemory8(0x80, 0x700, "", 0x10, "OR");

__fillMemory16

Syntax __fillMemory16(value, address, zone, length, format)

Parameters value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

length

An integer that defines how many 2-byte entities to be affected.

format

A string that specifies the exact fill operation to perform. Choose between:

OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.
AFE1_AFE2-1:1

271

272

Reference information on C-SPY system macros

Return value int 0

For use with All C-SPY drivers.

Description Fills a specified memory area with a 2-byte value.

Example __fillMemory16(0xCDCD, 0x7000, "", 0x200, "Copy");

__fillMemory32

Syntax __fillMemory32(value, address, zone, length, format)

Parameters value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

length

An integer that defines how many 4-byte entities to be affected.

format

A string that specifies the exact fill operation to perform. Choose between:

Return value int 0

For use with All C-SPY drivers.

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value
and the existing contents of memory before writing
the result to memory.

OR An OR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

XOR An XOR operation will be performed between value
and the existing contents of memory before writing
the result to memory.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

Description Fills a specified memory area with a 4-byte value.

Example __fillMemory32(0x0000FFFF, 0x4000, "", 0x1000, "XOR");

__isBatchMode

Syntax __isBatchMode()

Return value

For use with All C-SPY drivers.

Description This macro returns True if the debugger is running in batch mode, otherwise it returns
False.

__loadImage

Syntax __loadImage(path, offset, debugInfoOnly)

Parameters path

A string that identifies the path to the image to download. The path must either
be absolute or use argument variables. For information about argument
variables, see the IDE Project Management and Building Guide for 8051.

offset

An integer that identifies the offset to the destination address for the downloaded
image.

debugInfoOnly

A non-zero integer value if no code or data should be downloaded to the target
system, which means that C-SPY will only read the debug information from the
debug file. Or, 0 (zero) for download.

Return value

Result Value

True int 1

False int 0

Table 19: __isBatchMode return values

Value Result

Non-zero integer number A unique module identification.

Table 20: __loadImage return values
AFE1_AFE2-1:1

273

274

Reference information on C-SPY system macros

For use with All C-SPY drivers.

Description Loads an image (debug file).

Example 1 Your system consists of a ROM library and an application. The application is your active
project, but you have a debug file corresponding to the library. In this case you can add
this macro call in the execUserSetup macro in a C-SPY macro file, which you
associate with your project:

__loadImage("ROMfile", 0x8000, 1);

This macro call loads the debug information for the ROM library ROMfile without
downloading its contents (because it is presumably already in ROM). Then you can
debug your application together with the library.

Example 2 Your system consists of a ROM library and an application, but your main concern is the
library. The library needs to be programmed into flash memory before a debug session.
While you are developing the library, the library project must be the active project in the
IDE. In this case you can add this macro call in the execUserSetup macro in a C-SPY
macro file, which you associate with your project:

__loadImage("ApplicationFile", 0x8000, 0);

The macro call loads the debug information for the application and downloads its
contents (presumably into RAM). Then you can debug your library together with the
application.

See also Images, page 360 and Loading multiple images, page 47.

__memoryRestore

Syntax __memoryRestore(zone, filename)

Parameters zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

int 0 Loading failed.

Value Result

Table 20: __loadImage return values (Continued)
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

filename

A string that specifies the file to be read. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide for
8051.

Return value int 0

For use with All C-SPY drivers.

Description Reads the contents of a file and saves it to the specified memory zone.

Example __memoryRestore("", "c:\\temp\\saved_memory.hex");

See also Memory Restore dialog box, page 142.

__memorySave

Syntax __memorySave(start, stop, format, filename)

Parameters start

A string that specifies the first location of the memory area to be saved.

stop

A string that specifies the last location of the memory area to be saved.

format

A string that specifies the format to be used for the saved memory. Choose
between:

intel-extended

motorola

motorola-s19

motorola-s28

motorola-s37.

filename

A string that specifies the file to write to. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide for
8051.
AFE1_AFE2-1:1

275

276

Reference information on C-SPY system macros

Return value int 0

For use with All C-SPY drivers.

Description Saves the contents of a specified memory area to a file.

Example __memorySave(":0x00", ":0xFF", "intel-extended",
"c:\\temp\\saved_memory.hex");

See also Memory Save dialog box, page 141.

__messageBoxYesCancel

Syntax __messageBoxYesCancel(message, caption)

Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Return value

For use with All C-SPY drivers.

Description Displays a Yes/Cancel dialog box when called and returns the user input. Typically, this
is useful for creating macros that require user interaction.

__messageBoxYesNo

Syntax __messageBoxYesNo(message, caption)

Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Result Value

Yes 1

No 0

Table 21: __messageBoxYesCancel return values
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

Return value

For use with All C-SPY drivers.

Description Displays a Yes/No dialog box when called and returns the user input. Typically, this is
useful for creating macros that require user interaction.

__openFile

Syntax __openFile(filename, access)

Parameters filename

The file to be opened. The filename must include a path, which must either be
absolute or use argument variables. For information about argument variables,
see the IDE Project Management and Building Guide for 8051.

access

The access type (string).

These are mandatory but mutually exclusive:

"a" append, new data will be appended at the end of the open file

"r" read (by default in text mode; combine with b for binary mode: rb)

"w" write (by default in text mode; combine with b for binary mode: wb)

These are optional and mutually exclusive:

"b" binary, opens the file in binary mode

"t" ASCII text, opens the file in text mode

This access type is optional:

"+" together with r, w, or a; r+ or w+ is read and write, while a+ is read and
append

Return value

Result Value

Yes 1

No 0

Table 22: __messageBoxYesNo return values

Result Value

Successful The file handle

Table 23: __openFile return values
AFE1_AFE2-1:1

277

278

Reference information on C-SPY system macros

For use with All C-SPY drivers.

Description Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (*.ewp) is located. The argument to __openFile can
specify a location relative to this directory. In addition, you can use argument variables
such as $PROJ_DIR$ and $TOOLKIT_DIR$ in the path argument.

Example __var myFileHandle; /* The macro variable to contain */
 /* the file handle */
myFileHandle = __openFile("$PROJ_DIR$\\Debug\\Exe\\test.tst",
"r");
if (myFileHandle)
{
 /* successful opening */
}

See also For information about argument variables, see the IDE Project Management and
Building Guide for 8051.

__orderInterrupt

Syntax __orderInterrupt(specification, first_activation,
 repeat_interval, variance, infinite_hold_time,
 hold_time, probability)

Parameters specification

The interrupt (string). The specification can either be the full specification used
in the device description file (ddf) or only the name. In the latter case the
interrupt system will automatically get the description from the device
description file.

first_activation

The first activation time in cycles (integer)

repeat_interval

The periodicity in cycles (integer)

variance

The timing variation range in percent (integer between 0 and 100)

Unsuccessful An invalid file handle, which tests as False

Result Value

Table 23: __openFile return values
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

infinite_hold_time

1 if infinite, otherwise 0.

hold_time

The hold time (integer)

probability

The probability in percent (integer between 0 and 100)

Return value The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.

For use with The C-SPY Simulator.

Description Generates an interrupt.

Example This example generates a repeating interrupt using an infinite hold time first activated
after 4000 cycles:

__orderInterrupt("USARTR_VECTOR", 4000, 2000, 0, 1, 0, 100);

__popSimulatorInterruptExecutingStack

Syntax __popSimulatorInterruptExecutingStack(void)

Return value int 0

For use with The C-SPY Simulator.

Description Informs the interrupt simulation system that an interrupt handler has finished executing,
as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

See also Simulating an interrupt in a multi-task system, page 232.
AFE1_AFE2-1:1

279

280

Reference information on C-SPY system macros

__readFile

Syntax __readFile(fileHandle, valuePtr)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

valuePtr

A pointer to a variable.

Return value

For use with All C-SPY drivers.

Description Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Only printable characters representing hexadecimal digits and white-space characters
are accepted, no other characters are allowed.

Example __var number;
if (__readFile(myFileHandle, &number) == 0)
{
 // Do something with number
}

In this example, if the file pointed to by myFileHandle contains the ASCII characters
1234 abcd 90ef, consecutive reads will assign the values 0x1234 0xabcd 0x90ef
to the variable number.

__readFileByte

Syntax __readFileByte(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value -1 upon error or end-of-file, otherwise a value between 0 and 255.

Result Value

Successful 0

Unsuccessful Non-zero error number

Table 24: __readFile return values
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

For use with All C-SPY drivers.

Description Reads one byte from a file.

Example __var byte;
while ((byte = __readFileByte(myFileHandle)) != -1)
{
 /* Do something with byte */
}

__readMemory8, __readMemoryByte

Syntax __readMemory8(address, zone)
__readMemoryByte(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

Return value The macro returns the value from memory.

For use with All C-SPY drivers.

Description Reads one byte from a given memory location.

Example __readMemory8(0x0108, "");

__readMemory16

Syntax __readMemory16(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

Return value The macro returns the value from memory.

For use with All C-SPY drivers.
AFE1_AFE2-1:1

281

282

Reference information on C-SPY system macros

Description Reads a two-byte word from a given memory location.

Example __readMemory16(0x0108, "");

__readMemory32

Syntax __readMemory32(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

Return value The macro returns the value from memory.

For use with All C-SPY drivers.

Description Reads a four-byte word from a given memory location.

Example __readMemory32(0x0108, "");

__registerMacroFile

Syntax __registerMacroFile(filename)

Parameters filename

A file containing the macros to be registered (string). The filename must include
a path, which must either be absolute or use argument variables. For information
about argument variables, see the IDE Project Management and Building Guide
for 8051.

Return value int 0

For use with All C-SPY drivers.

Description Registers macros from a setup macro file. With this function you can register multiple
macro files during C-SPY startup.

Example __registerMacroFile("c:\\testdir\\macro.mac");
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

See also Using C-SPY macros, page 251.

__resetFile

Syntax __resetFile(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value int 0

For use with All C-SPY drivers.

Description Rewinds a file previously opened by __openFile.

__setCodeBreak

Syntax __setCodeBreak(location, count, condition, cond_type, action)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 126.

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.
AFE1_AFE2-1:1

283

284

Reference information on C-SPY system macros

Return value

For use with All C-SPY drivers.

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

Examples __setCodeBreak("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode()");

This example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

See also Breakpoints, page 103.

__setDataBreak

Syntax __setDataBreak(location, count, condition, cond_type, access,
 action)

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
126.

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

access

The memory access type: "R", for read, "W" for write, or "RW" for read/write.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 25: __setCodeBreak return values
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value

For use with The C-SPY Simulator.

The C-SPY FS2 System Navigator driver

The C-SPY Infineon driver

The C-SPY ROM-monitor driver

Description Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

Example __var brk;
brk = __setDataBreak(":0x4710", 3, "d>6", "TRUE",
 "W", "ActionData()");
...
__clearBreak(brk);

See also Breakpoints, page 103.

__setDataLogBreak

Syntax __setDataLogBreak(variable, access)

Parameters variable

A string that defines the variable the breakpoint is set on, a variable of integer
type with static storage duration. The microcontroller must also be able to
access the variable with a single-instruction memory access, which means that
you can only set data log breakpoints on 8-bit variables.

access

The memory access type: "R", for read, "W" for write, or "RW" for read/write.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 26: __setDataBreak return values
AFE1_AFE2-1:1

285

286

Reference information on C-SPY system macros

Return value

For use with The C-SPY Simulator.

Description Sets a data log breakpoint, that is, a breakpoint which is triggered when a specified
variable is accessed. Note that a data log breakpoint does not stop the execution, it just
generates a data log.

Example __var brk;
brk = __setDataLogBreak("MyVar", "R");
...
__clearBreak(brk);

See also Breakpoints, page 103 and Getting started using data logging, page 191.

__setLogBreak

Syntax __setLogBreak(location, message, msg_type, condition,
 cond_type)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 126.

message

The message text.

msg_type

The message type; choose between:

TEXT, the message is written word for word.

ARGS, the message is interpreted as a comma-separated list of C-SPY
expressions or strings.

condition

The breakpoint condition (string).

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 27: __setDataLogBreak return values
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

Return value

For use with The C-SPY Simulator

The C-SPY Texas Instruments driver

The C-SPY FS2 System Navigator driver

The C-SPY Infineon driver

The C-SPY ROM-monitor driver

The C-SPY Analog Devices driver

The C-SPY Silicon Labs driver

The C-SPY Segger J-Link driver

Description Sets a log breakpoint, that is, a breakpoint which is triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will temporarily halt and
print the specified message in the C-SPY Debug Log window.

Example __var logBp1;
__var logBp2;

logOn()
{
 logBp1 = __setLogBreak ("{C:\\temp\\Utilities.c}.23.1",
 "\"Entering trace zone at :\", #PC:%X", "ARGS", "1", "TRUE");
 logBp2 = __setLogBreak ("{C:\\temp\\Utilities.c}.30.1",
 "Leaving trace zone...", "TEXT", "1", "TRUE");
}

logOff()
{
 __clearBreak(logBp1);
 __clearBreak(logBp2);
}

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 28: __setLogBreak return values
AFE1_AFE2-1:1

287

288

Reference information on C-SPY system macros

See also Formatted output, page 259 and Breakpoints, page 103.

__setSimBreak

Syntax __setSimBreak(location, access, action)

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
126.

access

The memory access type: "R" for read or "W" for write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value

For use with The C-SPY Simulator.

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

__setTraceStartBreak

Syntax __setTraceStartBreak(location)

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 29: __setSimBreak return values
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 126.

Return value

For use with The C-SPY Simulator.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is started.

Example __var startTraceBp;
__var stopTraceBp;

traceOn()
{
 startTraceBp = __setTraceStartBreak
 ("{C:\\TEMP\\Utilities.c}.23.1");
 stopTraceBp = __setTraceStopBreak
 ("{C:\\temp\\Utilities.c}.30.1");
}

traceOff()
{
 __clearBreak(startTraceBp);
 __clearBreak(stopTraceBp);
}

See also Breakpoints, page 103.

__setTraceStopBreak

Syntax __setTraceStopBreak(location)

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 30: __setTraceStartBreak return values
AFE1_AFE2-1:1

289

290

Reference information on C-SPY system macros

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 126.

Return value

For use with The C-SPY Simulator.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is stopped.

Example See __setTraceStartBreak, page 288.

See also Breakpoints, page 103.

__sourcePosition

Syntax __sourcePosition(linePtr, colPtr)

Parameters linePtr

Pointer to the variable storing the line number

colPtr

Pointer to the variable storing the column number

Return value

For use with All C-SPY drivers.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful int 0

Table 31: __setTraceStopBreak return values

Result Value

Successful Filename string

Unsuccessful Empty ("") string

Table 32: __sourcePosition return values
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

Description If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind

Syntax __strFind(macroString, pattern, position)

Parameters macroString

A macro string.

pattern

The string pattern to search for

position

The position where to start the search. The first position is 0

Return value The position where the pattern was found or -1 if the string is not found.

For use with All C-SPY drivers.

Description This macro searches a given string (macroString) for the occurrence of another string
(pattern).

Example __strFind("Compiler", "pile", 0) = 3
__strFind("Compiler", "foo", 0) = -1

See also Macro strings, page 257.

__subString

Syntax __subString(macroString, position, length)

Parameters macroString

A macro string.

position

The start position of the substring. The first position is 0.

length

The length of the substring

Return value A substring extracted from the given macro string.
AFE1_AFE2-1:1

291

292

Reference information on C-SPY system macros

For use with All C-SPY drivers.

Description This macro extracts a substring from another string (macroString).

Example __subString("Compiler", 0, 2)

The resulting macro string contains Co.

__subString("Compiler", 3, 4)

The resulting macro string contains pile.

See also Macro strings, page 257.

__targetDebuggerVersion

Syntax __targetDebuggerVersion()

Return value A string that represents the version number of the C-SPY debugger processor module.

For use with All C-SPY drivers.

Description This macro returns the version number of the C-SPY debugger processor module.

Example __var toolVer;
toolVer = __targetDebuggerVersion();
__message "The target debugger version is, ", toolVer;

__toLower

Syntax __toLower(macroString)

Parameters macroString

A macro string.

Return value The converted macro string.

For use with All C-SPY drivers.

Description This macro returns a copy of the parameter macroString where all the characters have
been converted to lower case.

Example __toLower("IAR")
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

The resulting macro string contains iar.

__toLower("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 257.

__toString

Syntax __toString(C_string, maxlength)

Parameters C_string

Any null-terminated C string.

maxlength

The maximum length of the returned macro string.

Return value Macro string.

For use with All C-SPY drivers.

Description This macro is used for converting C strings (char* or char[]) into macro strings.

Example Assuming your application contains this definition:

char const * hptr = "Hello World!";

this macro call:

__toString(hptr, 5)

would return the macro string containing Hello.

See also Macro strings, page 257.

__toUpper

Syntax __toUpper(macroString)

Parameters macroString

A macro string.

Return value The converted string.
AFE1_AFE2-1:1

293

294

Reference information on C-SPY system macros

For use with All C-SPY drivers.

Description This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

Example __toUpper("string")

The resulting macro string contains STRING.

See also Macro strings, page 257.

__unloadImage

Syntax __unloadImage(module_id)

Parameters module_id

An integer which represents a unique module identification, which is retrieved
as a return value from the corresponding __loadImage C-SPY macro.

Return value

For use with All C-SPY drivers.

Description Unloads debug information from an already downloaded image.

See also Loading multiple images, page 47 and Images, page 360.

__writeFile

Syntax __writeFile(fileHandle, value)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.

Value Result

module_id A unique module identification (the same as the input
parameter).

int 0 The unloading failed.

Table 33: __unloadImage return values
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

Return value int 0

For use with All C-SPY drivers.

Description Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __fmessage statement can do the same thing. The __writeFile macro is
provided for symmetry with __readFile.

__writeFileByte

Syntax __writeFileByte(fileHandle, value)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.

Return value int 0

For use with All C-SPY drivers.

Description Writes one byte to the file fileHandle.

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8(value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

Return value int 0

For use with All C-SPY drivers.
AFE1_AFE2-1:1

295

296

Reference information on C-SPY system macros

Description Writes one byte to a given memory location.

Example __writeMemory8(0x2F, 0x8020, "");

__writeMemory16

Syntax __writeMemory16(value, address, zone)

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

Return value int 0

For use with All C-SPY drivers.

Description Writes two bytes to a given memory location.

Example __writeMemory16(0x2FFF, 0x8020, "");

__writeMemory32

Syntax __writeMemory32(value, address, zone)

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

Return value int 0

For use with All C-SPY drivers.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

Description Writes four bytes to a given memory location.

Example __writeMemory32(0x5555FFFF, 0x8020, "");

Graphical environment for macros
Reference information about:

● Macro Registration window, page 297

● Debugger Macros window, page 299

● Macro Quicklaunch window, page 301

Macro Registration window
The Macro Registration window is available from the View>Macros submenu during
a debug session.

Use this window to list, register, and edit your debugger macro files.

Double-click a macro file to open it in the editor window and edit it.

See also Registering C-SPY macros—an overview, page 252.

Requirements

None; this window is always available.

Display area

This area contains these columns:

File

The name of an available macro file. To register the macro file, select the check
box to the left of the filename. The name of a registered macro file appears in
bold style.
AFE1_AFE2-1:1

297

298

Graphical environment for macros

Full path

The path to the location of the added macro file.

Context menu

This context menu is available:

These commands are available:

Add

Opens a file browser where you can locate the macro file that you want to add
to the list. This menu command is also available as a function button at the top
of the window.

Remove

Removes the selected debugger macro file from the list. This menu command is
also available as a function button at the top of the window.

Remove All

Removes all macro files from the list. This menu command is also available as
a function button at the top of the window.

Reload

Registers the selected macro file. Typically, this is useful when you have edited
a macro file. This menu command is also available as a function button at the
top of the window.

Open File

Opens the selected macro file in the editor window.

Open Debugger Macros Window

Opens the Debugger Macros window.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

Debugger Macros window
The Debugger Macros window is available from the View>Macros submenu during a
debug session.

Use this window to list all registered debugger macro functions, either predefined
system macros or your own. This window is useful when you edit your own macro
functions and want an overview of all available macros that you can use.

● Click the column headers Name or File to sort alphabetically on either function
name or filename.

● Double-clicking a macro defined in a file opens that file in the editor window.

● To open a macro in the Macro Quicklaunch window, drag it from the Debugger
Macros window and drop it in the Macro Quicklaunch window.

● Select a macro and press F1 to get online help information for that macro.

Requirements

None; this window is always available.

Display area

This area contains these columns:

Name

The name of the debugger macro.

Parameters

The parameters of the debugger macro.

File

For macros defined in a file, the name of the file is displayed. For predefined
system macros, -System Macro- is displayed.
AFE1_AFE2-1:1

299

300

Graphical environment for macros

Context menu

This context menu is available:

These commands are available:

Open File

Opens the selected debugger macro file in the editor window.

Add to Quicklaunch Window

Adds the selected macro to the Macro Quicklaunch window.

User Macros

Lists only the debugger macros that you have defined yourself.

System Macros

Lists only the predefined system macros.

All Macros

Lists all debugger macros, both predefined system macros and your own.

Open Macro Registration Window

Opens the Macro Registration window.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

C-SPY macros

Macro Quicklaunch window
The Macro Quicklaunch window is available from the View menu.

Use this window to evaluate expressions, typically C-SPY macros.

For some devices, there are predefined C-SPY macros available with device support,
typically provided by the chip manufacturer. These macros are useful for performing
certain device-specific tasks. The macros are available in the Macro Quicklaunch
window and are easily identified by their green icon,

The Macro Quicklaunch window is similar to the Quick Watch window, but is
primarily designed for evaluating C-SPY macros. The window gives you precise control
over when to evaluate an expression.

See also Executing C-SPY macros—an overview, page 252.

To add an expression:

1 Choose one of these alternatives:

● Drag the expression to the window

● In the Expression column, type the expression you want to examine.

If the expression you add and want to evaluate is a C-SPY macro, the macro must first
be registered, see Registering C-SPY macros—an overview, page 252.

To evaluate an expression:

1 Double-click the Recalculate icon to calculate the value of that expression.

Requirements

None; this window is always available.
AFE1_AFE2-1:1

301

302

Graphical environment for macros

Display area

This area contains these columns:

Recalculate icon

To evaluate the expression, double-click the icon. The latest evaluated
expression appears in bold style.

Expression

One or several expressions that you want to evaluate. Click <click to add>
to add an expression. If the return value has changed since last time, the value
will be displayed in red.

Result

Shows the return value from the expression evaluation.

Context menu

This context menu is available:

These commands are available:

Evaluate Now

Evaluates the selected expression.

Remove

Removes the selected expression.

Remove All

Removes all selected expressions.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line
utility—cspybat
● Using C-SPY in batch mode

● Summary of C-SPY command line options

● Reference information on C-SPY command line options.

Using C-SPY in batch mode
You can execute C-SPY in batch mode if you use the command line utility cspybat,
installed in the directory common\bin.

These topics are covered:

● Starting cspybat

● Output

● Invocation syntax

STARTING CSPYBAT

1 To start cspybat you must first create a batch file. An easy way to do that is to use one
of the batch files that C-SPY automatically generates when you start C-SPY in the
IDE.

C-SPY generates a batch file projectname.buildconfiguration.cspy.bat every
time C-SPY is initialized. In addition, two more files are generated:

● project.buildconfiguration.general.xcl, which contains options specific
to cspybat.

● project.buildconfiguration.driver.xcl, which contains options specific to
the C-SPY driver you are using.

You can find the files in the directory $PROJ_DIR$\settings. The files contain the
same settings as the IDE, and provide hints about additional options that you can use.

2 To start cspybat, you can use this command line:

project.cspybat.bat [debugfile]
AFE1_AFE2-1:1

303

304

Using C-SPY in batch mode

Note that debugfile is optional. You can specify it if you want to use a different debug
file than the one that is used in the project.buildconfiguration.general.xcl
file.

OUTPUT

When you run cspybat, these types of output can be produced:

● Terminal output from cspybat itself

All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

● Terminal output from the application you are debugging

All such terminal output is directed to stdout, provided that you have used the
--plugin option. See --plugin, page 332.

● Error return codes

cspybat returns status information to the host operating system that can be tested in
a batch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor_DLL driver_DLL debug_file
 [cspybat_options] --backend driver_options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.

Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file; available in 8051\bin.

driver_DLL The C-SPY driver DLL file; available in 8051\bin.

debug_file The object file that you want to debug (filename extension d51). See
also --debugfile, page 317.

cspybat_options The command line options that you want to pass to cspybat. Note
that these options are optional. For information about each option,
see Reference information on C-SPY command line options, page 312.

Table 34: cspybat parameters
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Summary of C-SPY command line options
Reference information about:

● General cspybat options

● Options available for all C-SPY drivers

● Options available for the simulator driver

● Options available for the Texas Instruments driver

● Options available for the FS2 driver

● Options available for the Infineon driver

● Options available for the Segger J-Link driver

● Options available for the Nordic Semiconductor driver

● Options available for the ROM-monitor driver

● Options available for the Analog Devices driver

● Options available for the Silicon Labs driver

GENERAL CSPYBAT OPTIONS

--backend Marks the beginning of the parameters to the C-SPY driver; all
options that follow will be sent to the driver. Note that this option is
mandatory.

driver_options The command line options that you want to pass to the C-SPY driver.
Note that some of these options are mandatory and some are
optional. For information about each option, see Reference information
on C-SPY command line options, page 312.

Parameter Description

Table 34: cspybat parameters (Continued)

--attach_to_running_ta

rget

Makes the debugger attach to a running application at
its current location, without resetting the target system.

--backend Marks the beginning of the parameters to be sent to the
C-SPY driver (mandatory).

--code_coverage_file Enables the generation of code coverage information
and places it in a specified file.

--cycles Specifies the maximum number of cycles to run.

--debugfile Specifies an alternative debug file.
AFE1_AFE2-1:1

305

306

Summary of C-SPY command line options

OPTIONS AVAILABLE FOR ALL C-SPY DRIVERS

--download_only Downloads a code image without starting a debug
session afterwards.

-f Extends the command line.

--macro Specifies a macro file to be used.

--macro_param Assigns a value to a C-SPY macro parameter.

--plugin Specifies a plugin file to be used.

--silent Omits the sign-on message.

--timeout Limits the maximum allowed execution time.

--core Specifies the core to be used.

--nr_of_extra_images Specifies that extra debug images will be downloaded.

-p Specifies the device description file to be used.

--proc_code_model Specifies the code model.

--proc_codebank_end Specifies the end address of the banked area.

--proc_codebank_mask Sets the bank register as the active bits.

--proc_codebank_reg Specifies the SFR address for the code bank register.

--proc_codebank_start Specifies the start address of the banked area.

--proc_core Specifies the core type.

--proc_data_addr_24 Enables the use of 24 bits wide data addresses.

--proc_data_model Specifies the data model.

--proc_DPHn Specifies the SFR address for the DPH registers.

--proc_DPLn Specifies the SFR address for the DPL registers.

--proc_dptr_automod_o
p

Specifies the DPTR auto-modification operation.

--proc_dptr_automod_t
ype

Specifies the type of DPTR auto-modification.

--proc_dptr_DPC Specifies the SFR address for the DPTR configuration
register.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

OPTIONS AVAILABLE FOR THE SIMULATOR DRIVER

--proc_dptr_DPS Specifies the SFR address of the DPTR select register.

--proc_dptr_mask Specifies the active bits in the DPTR select register.

--proc_dptr_nr_of Specifies the number of DPTRs on the device.

--proc_dptr_switch_me
thod

Specifies the method to change the DPTR select register.

--proc_dptr_visibilit
y

Specifies the type of DPTR visibility in the SFR area.

--proc_DPXn Specifies the SFR address for the DPX registers.

--proc_driver Specifies which driver to use.

--proc_exclude_exit_b
reakpoint

Disables the breakpoint on the exit label.

--proc_exclude_getcha
r_breakpoint

Disables the breakpoint on the getchar function.

--proc_exclude_putcha
r_breakpoint

Disables the breakpoint on the putchar function.

--proc_extended_stack Specifies the address of the extended stack.

--proc_nr_virtual_reg
s

Specifies the number of virtual registers.

--proc_pc_readonly Informs the IDE that the hardware does not support
writing to the PC register when C-SPY is running.

--proc_pdata_bank_ext
_reg_addr

Specifies the address of the MOVX@R0 instructions on
devices with a 24-bit address bus.

--proc_pdata_bank_reg
_addr

Specifies the address of the MOVX@R0 instructions on
devices with an 8- or 16-bit address bus.

--proc_silent Sets silent operation.

--proc_xdata_banking Makes registers display correctly in C-SPY for devices
that support banked XDATA memory.

--disable_interrupts Disables the interrupt simulation.

--function_profiling Analyzes your source code to find where the most time is
spent during execution.
AFE1_AFE2-1:1

307

308

Summary of C-SPY command line options

OPTIONS AVAILABLE FOR THE TEXAS INSTRUMENTS
DRIVER

--mapu Activates memory access checking.

--sim_guard_stacks Stops execution of the simulator if your application
attempts to write outside any of the stacks.

--boot_lock Locks the boot sector.

--communication_logfil
e

Logs communication between C-SPY and the target
system.

--debug_lock Locks the debug interface.

--erase_flash Erases all flash memory before download.

--leave_target_running Makes the debugger leave the application running on
the target after the debug session is closed.

--lock_bits Protects the downloaded code against read/write
accesses.

--lock_bits_pages Locks the flash memory.

--number_of_banks Sets the number of memory banks on the device.

--reduce_speed Slows down communication between your host and the
target board.

--retain_memory Makes sure only the changed, new, or updated pages
will be downloaded to flash.

--retain_pages Makes certain pages remain untouched during
download.

--stack_overflow Enables stack overflow warnings.

--suppress_download Suppresses download of your application to flash
memory.

--usb_id Specifies the ID of the evaluation board you are using.

--verify_download Verifies that the program data has been correctly
transferred.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

OPTIONS AVAILABLE FOR THE FS2 DRIVER

OPTIONS AVAILABLE FOR THE INFINEON DRIVER

--fs2_configuration Specifies the core to be used.

--fs2_flash_cfg_entry Specifies how to write to the flash memory.

--fs2_flash_in_code Specifies where program flash memory is located.

--fs2_ram_in_code Specifies the location for program code in RAM.

--suppress_download Suppresses download of your application to flash
memory.

--verify_download Verifies that the program data has been correctly
transferred.

--connect_to Specifies which DAS debug port to connect to.

--erase_flash Erases all flash memory before download.

--infineon_ram_in_code Specifies the memory ranges where your device has
program code in the XRAM memory area.

--key_noN Specifies the key value for DAS server security key
number N.

--leave_target_running Makes the debugger leave the application running on
the target after the debug session is closed.

--server_address Specifies the address for the server on which the DAS
server software is running.

--server_name Specifies the type of DAS server to connect to.

--software_breakpoints Enables the use of software breakpoints.

--suppress_download Suppresses download of your application to flash
memory.

--verify_download Verifies that the program data has been correctly
transferred.
AFE1_AFE2-1:1

309

310

Summary of C-SPY command line options

OPTIONS AVAILABLE FOR THE SEGGER J-LINK DRIVER

OPTIONS AVAILABLE FOR THE NORDIC SEMICONDUCTOR
DRIVER

OPTIONS AVAILABLE FOR THE ROM-MONITOR DRIVER

--drv_suppress_download Suppresses download of your application to flash
memory.

--drv_verify_download Verifies that the program data has been correctly
transferred.

--jlink_connection_id Specifies the ID of the debug probe you are using.

--jlink_log_file Logs communication between the debug probe and
the target system.

--jlink_power Specifies that the debug probe provides the
evaluation board with power.

--jlink_speed Specifies the communication speed between the
debug probe and the evaluation board.

--suppress_download Suppresses download of your application to flash
memory.

--verify_download Verifies that the program data has been correctly
transferred.

--drv_communication_lo
g

Logs communication between C-SPY and the
ROM-monitor firmware.

--rom_serial_port Specifies communication options for the ROM-monitor
driver.

--suppress_download Suppresses download of your application to flash
memory.

--toggle_DTR Toggles the DTR signal on the target board whenever
the debugger is reset.

--toggle_RTS Toggles the RTS signal on the target board whenever
the debugger is reset.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

OPTIONS AVAILABLE FOR THE ANALOG DEVICES DRIVER

OPTIONS AVAILABLE FOR THE SILICON LABS DRIVER

--verify_all Verifies that the program data has been correctly
transferred.

--ADe_protocol Specifies the use of an ADe device.

--baud_rate Specifies the communication speed between C-SPY
and the evaluation board.

--core_clock_frequency Specifies the default CPU clock frequency.

--erase_data_flash Erases the data flash area during download.

--handshake_at_9600 Handshakes at 9600 baud.

--serial_port Specifies the port to be used for contact with the
evaluation board.

--suppress_download Suppresses download of your application to flash
memory.

--verify_all Verifies that the program data has been correctly
transferred.

--banked_xdata Specifies the support for banked XDATA.

--baud_rate Specifies the communication speed between C-SPY
and the evaluation board.

--devices_after Specifies the number of devices in the chain after the
device to be debugged.

--devices_before Specifies the number of devices in the chain before
the device to be debugged.

--drv_silabs_page_size Selects the size of the flash page.

--multiple_devices Specifies that more than one device is connected to
the same JTAG interface.

--power_target Provides power to the target hardware.

--preserve_hex_files Preserves hexadecimal files when flashing the
device.
AFE1_AFE2-1:1

311

312

Reference information on C-SPY command line options

Reference information on C-SPY command line options
This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

--ADe_protocol

Syntax --ADe_protocol

For use with The C-SPY Analog Devices driver.

Description Specifies that you are debugging using an ADe device.

Project>Options>Debugger>Analog Devices>Download>ADe device protocol

--attach_to_running_target

Syntax --attach_to_running_target

For use with cspybat.

--registers_after Specifies the number of JTAG registers in the chain
after the device to be debugged.

--registers_before Specifies the number of JTAG registers in the chain
before the device to be debugged.

--serial_port Specifies the port to be used for contact with the
evaluation board.

--silabs_2wire_interface Specifies the interface to the Silicon Labs 2-wire
debugging interface.

--suppress_download Suppresses download of your application to flash
memory.

--usb_interface Specifies the download interface to USB.

--verify_all Verifies that the program data has been correctly
transferred.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Note: This option might not be supported by the combination of C-SPY driver and
device that you are using. If you are using this option with an unsupported combination,
C-SPY produces a message.

Description Use this option to make the debugger attach to a running application at its current
location, without resetting the target system.

If you have defined any breakpoints in your project, the C-SPY driver will set them
during attachment. If the C-SPY driver cannot set them without stopping the target
system, the breakpoints will be disabled. The option also suppresses download and the
Run to option.

Project>Attach to Running Target

--backend

Syntax --backend {driver options}

Parameters driver options

Any option available to the C-SPY driver you are using.

For use with cspybat (mandatory).

Description Use this option to send options to the C-SPY driver. All options that follow --backend
will be passed to the C-SPY driver, and will not be processed by cspybat itself.

This option is not available in the IDE.

--banked_xdata

Syntax --banked_xdata

For use with The C-SPY Silicon Labs driver.

Description Use this option to inform C-SPY that your hardware system has an external memory
module for XDATA that is larger than 64 Kbytes.

Note: This option must be used in combination with the options --data_model=far
and --proc_DPX=param, where param specifies the SFR address of the port that holds
the address of the high byte.
AFE1_AFE2-1:1

313

314

Reference information on C-SPY command line options

Project>Options>Debugger>Silicon Labs>Download>Banked XDATA

--baud_rate

Syntax --baud_rate rate

Parameters rate is a value corresponding to the communication speed that you want to set.

For the Analog Devices driver, rate can be one of these:

For the Silicon Labs driver, rate can be one of these:

For use with ● The C-SPY Analog Devices driver (for both serial and USB communication)

● The C-SPY Silicon Labs driver.

Description This option specifies the communication speed between C-SPY and the evaluation
board. For the Analog Devices driver, if the option --handshake_at_9600 is not used
the only available speed is 115200.

See also --handshake_at_9600, page 324.

2400 Sets the communication speed to 2400 bps

4800 Sets the communication speed to 4800 bps

9600 Sets the communication speed to 9600 bps

19200 Sets the communication speed to 19200 bps

38400 Sets the communication speed to 38400 bps

57600 Sets the communication speed to 57600 bps

115200 Sets the communication speed to 115200 bps

1 Sets the communication speed to 115200 bps

2 Sets the communication speed to 57600 bps

3 Sets the communication speed to 38400 bps

4 Sets the communication speed to 9600 bps

5 Sets the communication speed to 2400 bps
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Project>Options>Debugger>Driver>Serial Port>Baud rate

--boot_lock

Syntax --boot_lock

For use with The C-SPY Texas Instruments driver.

Description Use this option to protect your application on the microcontroller by locking the boot
sector. To remove this lock, you must use the --erase_flash option.

Project>Options>Debugger>Texas Instruments>Download>Flash Lock
Protection>Boot block lock

--code_coverage_file

Syntax --code_coverage_file file

Note that this option must be placed before the --backend option on the command line.

Parameters file

The name of the destination file for the code coverage information.

For use with cspybat

Description Use this option to enable the generation of a text-based report file for code coverage
information. The code coverage information will be generated after the execution has
completed and you can find it in the specified file. Because most embedded applications
do not terminate, you might have to use this option in combination with --timeout or
--cycles.

Note that this option requires that the C-SPY driver you are using supports code
coverage. If you try to use this option with a C-SPY driver that does not support code
coverage, an error message will be directed to stderr.

See also Code coverage, page 219, --cycles, page 317, --timeout, page 351.

To set this option, choose View>Code Coverage, right-click and choose Save As when
the C-SPY debugger is running.
AFE1_AFE2-1:1

315

316

Reference information on C-SPY command line options

--communication_logfile

Syntax --communication_logfile path

Parameters path

Where the log file will be saved.

For use with The C-SPY Texas Instruments driver.

Description Use this option to log communication between C-SPY and the target system to a file. To
interpret the result, detailed knowledge of the communication protocol is required. This
log file can be useful if you intend to contact IAR Systems support for assistance.

Project>Options>Debugger>Texas Instruments>Target>Log communication

--connect_to

Syntax --connect_to jtag|usb

Parameters jtag|usb

The type of debug port to connect to.

For use with The C-SPY Infineon driver.

Description Use this option to specify which DAS debug port to connect to.

This option is not available in the IDE.

--core

Syntax --core {plain|pl|extended1|e1|extended2|e2}

Parameters plain|pl|extended1|e1|extended2|ex2

The core you are using. This option reflects the corresponding compiler option.
For information about the cores, see the IAR C/C++ Compiler User Guide for
8051.

For use with All C-SPY drivers.

Description Use this option to specify the core you are using.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Project>Options>General Options>Target>CPU core

--core_clock_frequency

Syntax --core_clock_frequency n

Parameters n

The frequency, from 0 to 999999999 Hz.

For use with The C-SPY Analog Devices driver.

Description Use this option if you have modified the hardware in such a way that the CPU clock
frequency has changed.

Project>Options>Debugger>Analog Devices>Serial Port>Override default CPU
clock frequency

--cycles

Syntax --cycles cycles

Note that this option must be placed before the --backend option on the command line.

Parameters cycles

The number of cycles to run.

For use with cspybat

Description Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.
Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

This option is not available in the IDE.

--debugfile

Syntax --debugfile filename
AFE1_AFE2-1:1

317

318

Reference information on C-SPY command line options

Parameters filename

The name of the debug file to use.

For use with cspybat

This option can be placed both before and after the --backend option on the command
line.

Description Use this option to make cspybat use the specified debug file instead of the one used in
the generated cpsybat.bat file.

This option is not available in the IDE.

--debug_lock

Syntax --debug_lock

For use with The C-SPY Texas Instruments driver.

Description Use this option to protect your application on the microcontroller from read and write
accesses by locking the debug interface. To remove this lock, you must use the
--erase_flash option.

Project>Options>Debugger>Texas Instruments>Download>Flash Lock
Protection>Debug interface lock

--devices_after

Syntax --devices_after number

Parameters number

The number of devices after the device to be debugged.

For use with The C-SPY Silicon Labs driver.

Description Use this option to specify the number of devices in the chain after the device to be
debugged. This option must be specified when the option --multiple_devices is
used.

See also --multiple_devices, page 330.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Project>Options>Debugger>Silicon Labs>Download>JTAG chain>Multiple
devices>Devices>After

--devices_before

Syntax --devices_before number

Parameters number

The number of devices before the device to be debugged.

For use with The C-SPY Silicon Labs driver.

Description Use this option to specify the number of devices in the chain before the device to be
debugged. This option must be specified when the option --multiple_devices is
used.

See also --multiple_devices, page 330.

Project>Options>Debugger>Silicon Labs>Download>JTAG chain>Multiple
devices>Devices>Before

--disable_interrupts

Syntax --disable_interrupts

For use with The C-SPY Simulator driver.

Description Use this option to disable the interrupt simulation.

To set this option, choose Simulator>Interrupt Setup and deselect the Enable
interrupt simulation option.

--download_only

Syntax --download_only

Note that this option must be placed before the --backend option on the command line.

For use with cspybat

Description Use this option to download the code image without starting a debug session afterwards.
AFE1_AFE2-1:1

319

320

Reference information on C-SPY command line options

To set a related option, choose:

Project>Options>Debugger>Setup and deselect Run to.

--drv_communication_log

Syntax --drv_communication_log path

Parameters path

Where the log file will be saved.

For use with The C-SPY ROM-monitor driver.

Description Use this option to log communication between C-SPY and the ROM-monitor firmware
to a file.

Project>Options>Debugger>ROM-Monitor>Serial Port>Log communication

--drv_silabs_page_size

Syntax --drv_silabs_page_size {512|1024}

Parameters 512|1024

The flash page size in bytes.

For use with The C-SPY Silicon Labs driver.

Description Informs C-SPY of the size of the flash page.

Project>Options>Debugger>Silicon Labs>Download>Flash page size

--drv_suppress_download

Syntax --drv_suppress_download

For use with The C-SPY Segger J-Link driver.

Description Use this option to suppress download of your application to flash memory. If you do, it
is highly recommended that you also use --verify_download.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

See also --drv_verify_download, page 321 and --retain_memory, page 346.

Project>Options>Debugger>Segger J-Link>Download>Suppress download

--drv_verify_download

Syntax --drv_verify_download

For use with The C-SPY Segger J-Link driver.

Description Use this option to verify that the downloaded code image can be read back from target
memory with the correct contents.

Project>Options>Debugger>Segger J-Link>Download>Verify download

--erase_data_flash

Syntax --erase_data_flash

For use with The C-SPY Analog Devices driver.

Description Use this option to erase the data flash area during download.

Project>Options>Debugger>Analog Devices>Download>Erase data flash

--erase_flash

Syntax --erase_flash

For use with ● The C-SPY Texas Instruments driver

● The C-SPY Infineon driver.

Description Use this option to erase all flash memory before download.

Project>Options>Debugger>Driver>Download>Erase flash
AFE1_AFE2-1:1

321

322

Reference information on C-SPY command line options

-f

Syntax -f filename

Parameters filename

A text file that contains the command line options (default filename extension
xcl).

For use with cspybat

This option can be placed either before or after the --backend option on the command
line.

Description Use this option to make cspybat read command line options from the specified file.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character is treated
like a space or tab character.

Both C/C++ style comments are allowed in the file. Double quotes behave in the same
way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>Debugger>Extra Options.

--fs2_configuration

Syntax --fs2_configuration core

Parameters core is the core type of your device. Choose between:

For use with The C-SPY FS2 driver.

Description Use this option to specify which core your device is.

Project>Options>Debugger>FS2 System Navigator>Target>Configuration

cast51-single-core

m8051ew-single-core

philips51-single-core

handshake51-single-core
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

--fs2_flash_cfg_entry

Syntax --fs2_flash_cfg_entry label

Parameters label

The label for the entry in the flash.cfg file that describes how to program the
flash memory of the device.

For use with The C-SPY FS2 driver.

Description Use this option to describe to the debugger how to program the flash memory of the
device.

Project>Options>Debugger>FS2 System Navigator>Target>Entry in flash.cfg

--fs2_flash_in_code

Syntax --fs2_flash_in_code ranges

Parameters ranges

One or more memory ranges separated by commas, like this:
0x0000-0x1111,0x2222-0x3333.

For use with The C-SPY FS2 driver.

Description Use this option to specify where the device has program flash memory.

Project>Options>Debugger>FS2 System Navigator>Target>Flash areas

--fs2_ram_in_code

Syntax --fs2_ram_in_code ranges

Parameters ranges

One or more memory ranges separated by commas, like this:
0x0000-0x1111,0x2222-0x3333.

For use with The C-SPY FS2 driver.
AFE1_AFE2-1:1

323

324

Reference information on C-SPY command line options

Description Use this option to specify where the device has program code in RAM memory, if your
device supports code in RAM. This means that software breakpoints will be used in this
memory area.

Project>Options>Debugger>FS2 System Navigator>Target>RAM areas

--function_profiling

Syntax --function_profiling filename

Parameters filename

The name of the log file where the profiling data is saved.

For use with The C-SPY simulator driver.

Description Use this option to find the functions in your source code where the most time is spent
during execution. The profiling information is saved to the specified file. For more
information about function profiling, see Profiling, page 209.

C-SPY driver>Function Profiling

--handshake_at_9600

Syntax --handshake_at_9600

For use with The C-SPY Analog Devices driver.

Description Use this option to handshake at 9600 baud before initiating communication. This option
must be used if you debug via the UART interface.

Project>Options>Debugger>Analog Devices>Download>UART debug mode
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

--infineon_ram_in_code

Syntax --infineon_ram_in_code ranges

Parameters ranges

One or more memory ranges where your device has program code in the
Infineon XRAM memory area, for example 0x0000–0x1111,0x2222–
0x3333.

For use with The C-SPY Infineon driver.

Description Use this option to specify one or more memory ranges (separated by commas) where
your device has program code in the Infineon XRAM memory area. Use this option to
make software breakpoints faster.

Project>Options>Debugger>Infineon>Target>Has code in XRAM

--jlink_connection_id

Syntax --jlink_connection_id {usb0|usb1|usb2|usb3|serial_no}

Parameters usb0|usb1|usb2|usb3

The USB device number of the debug probe you are using.

serial_no

The serial number of the debug probe you are using.

For use with The C-SPY Segger J-Link driver.

Description Use this option to specify which debug probe you are using. If not specified, you will be
prompted every time you start your debug session if more than one debug probe is
connected.

Project>Options>Debugger>Segger J-Link>Communication>Connection type

--jlink_log_file

Syntax --jlink_log_file filepath
AFE1_AFE2-1:1

325

326

Reference information on C-SPY command line options

Parameters filepath

The file path of the log file.

For use with The C-SPY Segger J-Link driver.

Description Use this option to log the communication between the debug probe and the target system
to a file. To interpret the result, detailed knowledge of the communication protocol is
required.

Project>Options>Debugger>Segger J-Link>Communication>Communication log

--jlink_power

Syntax --jlink_power

For use with The C-SPY Segger J-Link driver.

Description Use this option to supply the target hardware with power from the Segger J-Link debug
probe.

Project>Options>Debugger>Segger J-Link>Communication>Power supply from
J-Link

--jlink_speed

Syntax --jlink_speed comm_speed

Parameters comm_speed

The communication speed in kHz that you want to set.

For use with The C-SPY Segger J-Link driver.

Description This option specifies the communication speed between C-SPY and the evaluation
board.

For information about the possible communication speeds, see the technical
specifications for your debug probe.

Project>Options>Debugger>Segger J-Link>Communication>Communication
speed
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

--key_noN

Syntax --key_noN value

Parameters N

The number of the key, from 1 to 4.

value

The key value, 0x00000000–0x7FFFFFFF.

For use with The C-SPY Infineon driver.

Description The DAS server has security keys that can be used if they are enabled. The keys can be
used to protect access to the device that is debugged. If used, specify the key value for
each security key to connect to the server.

Project>Options>Debugger>Infineon>Target>Security keys>Key #n

--leave_target_running

Syntax --leave_target_running

For use with cspybat.

For any of these C-SPY drivers:

● The C-SPY Infineon driver.

● The C-SPY Texas Instruments driver.

Note: Even if this option is supported by the C-SPY driver you are using, there might
be device-specific limitations.

Description Use this option to make the debugger leave the application running on the target
hardware after the debug session is closed.

Any existing breakpoints will not be automatically removed. You might want to
consider disabling all breakpoints before using this option.

C-SPY driver>Leave Target Running
AFE1_AFE2-1:1

327

328

Reference information on C-SPY command line options

--lock_bits

Syntax --lock_bits n

Parameters n

The bit range to lock, from 0 to 7. 0 protects the whole flash memory from
read/write accesses. If the parameter is 1–7, a section of flash pages is protected.
Exactly which section varies from device to device; see the documentation for
your device.

For use with The C-SPY Texas Instruments driver.

Description Protects your application on the device by locking the flash memory. To remove this
lock, you must use the --erase_flash option.

Note: For newer devices (for example CC2530) you should use the option
--lock_bits_pages instead.

Project>Options>Debugger>Texas Instruments>Download>CC111x, CC243x,
CC251x

--lock_bits_pages

Syntax --lock_bits_pages pages

Parameters pages

A comma-separated string that specifies the pages or page intervals that will be
protected. For example, 0-6,8,12.

For use with The C-SPY Texas Instruments driver.

Description Protects your application on the device by locking the flash memory. To remove this
lock, you must use the --erase_flash option.

Note: For older devices (for example CC2430) you should use the option --lock_bits
instead.

Project>Options>Debugger>Texas Instruments>Download>CC253x, CC254x
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

--macro

Syntax --macro filename

Note that this option must be placed before the --backend option on the command line.

Parameters filename

The C-SPY macro file to be used (filename extension mac).

For use with cspybat

Description Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

See also Briefly about using C-SPY macros, page 250.

Project>Options>Debugger>Setup>Setup macros>Use macro file

--macro_param

Syntax --macro_param [param=value]

Note that this option must be placed before the --backend option on the command line.

Parameters param = value

param is a parameter defined using the __param C-SPY macro construction.
value is a value.

For use with cspybat

Description Use this option to assign av value to a C-SPY macro parameter.This option can be used
more than once on the command line.

See also Macro parameters, page 257.

Project>Options>Debugger>Extra Options
AFE1_AFE2-1:1

329

330

Reference information on C-SPY command line options

--mapu

Syntax --mapu

For use with The C-SPY simulator driver.

Description Specify this option to use the segment information in the debug file for memory access
checking. During the execution, the simulator will then check for accesses to
unspecified memory ranges. If any such access is found, the C function call stack and a
message will be printed on stderr and the execution will stop.

See also Monitoring memory and registers, page 133.

To set related options, choose:

Simulator>Memory Access Setup

--multiple_devices

Syntax --multiple_devices

For use with The C-SPY Silicon Labs driver.

Description Use this option to specify that more than one device is connected to the same JTAG
interface. In this case, you must also specify --devices_after, --devices_before,
--registers_after, and --registers_before.

See also --devices_after, page 318, --devices_before, page 319, --registers_after, page 345, and
--registers_before, page 346.

Project>Options>Debugger>Silicon Labs>Download>JTAG chain>Multiple
devices

--nr_of_extra_images

Syntax --nr_of_extra_images n

Parameters n

The number of extra images you want to download.

For use with All C-SPY drivers.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Description Use this option to specify that extra debug images will be downloaded to the target
system.

Project>Options>Debugger>Images

--number_of_banks

Syntax --number_of_banks {1|2|4|8|16}

Parameters 1|2|4|8|16

The number of banks.

For use with The C-SPY Texas Instruments driver.

Description Informs C-SPY of the number of memory banks on the device.

Some Texas Instrument devices have built-in support for expanding the program
memory. See the device hardware manual to see how much program memory (flash
memory) your device has.

Project>Options>Debugger>Texas Instruments>Target>Number of banks

-p

Syntax -p filename

Parameters filename

The device description file to be used.

For use with All C-SPY drivers.

Description Use this option to specify the device description file to be used.

See also Selecting a device description file, page 44.

Project>Options>Debugger>Setup>Device description file
AFE1_AFE2-1:1

331

332

Reference information on C-SPY command line options

--plugin

Syntax --plugin filename

Note that this option must be placed before the --backend option on the command line.

Parameters filename

The plugin file to be used (filename extension dll).

For use with cspybat

Description Certain C/C++ standard library functions, for example printf, can be supported by
C-SPY—for example, the C-SPY Terminal I/O window—instead of by real hardware
devices. To enable such support in cspybat, a dedicated plugin module called
8051bat.dll located in the \bin directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

Note: You can use this option to include also other plugin modules, but in that case the
module must be able to work with cspybat specifically. This means that the C-SPY
plugin modules located in the common\plugin directory cannot normally be used with
cspybat.

Project>Options>Debugger>Plugins

--power_target

Syntax --power_target

For use with The C-SPY Silicon Labs driver.

Description Use this option to provide power to the target hardware even after the debug session has
been closed. This option is only applicable when --usb_interface is used.

See also --usb_interface, page 352.

Project>Options>Debugger>Silicon Labs>Download>USB
interface>Continuously power target
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

--preserve_hex_files

Syntax --preserve_hex_files

For use with The C-SPY Silicon Labs driver.

Description Use this option to preserve the hexadecimal file generated during the download process.

To set this option, use Project>Options>Debugger>Extra Options.

--proc_code_model

Syntax --proc_code_model {near|banked|banked_ext2|far}

Parameters near

Selects Near as the default code model.

banked

Selects Banked as the default code model.

banked_ext2

Selects Banked_ext2 as the default code model.

far

Selects Far as the default code model.

For use with All C-SPY drivers (mandatory).

Description Use this option to specify the default code model.

Project>Options>General Options>Target>Code model

--proc_codebank_end

Syntax --proc_codebank_end address

Parameters address

The end address of the banked area, from 0000 to FFFF.

For use with All C-SPY drivers.
AFE1_AFE2-1:1

333

334

Reference information on C-SPY command line options

Description Use this option to specify the end address of the banked area. The end address must be
specified when --proc_code_model is set to banked.

Project>Options>General Options>Code Bank>Bank end

--proc_codebank_mask

Syntax --proc_codebank_mask address

Parameters address

The active bits in the bank register, from 0x80 to 0xFF.

For use with All C-SPY drivers.

Description Use this option to set the active bits in the bank register when --proc_code_model is
set to banked.

Project>Options>General Options>Code bank>Register mask

--proc_codebank_reg

Syntax --proc_codebank_reg address

Parameters address

The SFR address for the code bank register, from 0x80 to 0xFF.

For use with All C-SPY drivers.

Description Use this option to specify the SFR address for the code bank register when
--proc_code_model is set to banked.

Project>Options>General Options>Code Bank>Register address
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

--proc_codebank_start

Syntax --proc_codebank_start address

Parameters address

The start address of the banked area, from 0000 to FFFF.

For use with All C-SPY drivers.

Description Use this option to specify the start address of the banked area. The start address must be
specified when --proc_code_model banked is specified.

Project>Options>General Options>Code Bank>Bank start

--proc_core

Syntax --proc_core core

Parameters core

The type of 8051 core you are using. Choose between:

plain|extended1|extended2

For use with All C-SPY drivers (mandatory).

Description Use this option to specify the instruction set extensions and other extensions that your
application uses.

Project>Options>General Options>Target>CPU core

--proc_data_addr_24

Syntax --proc_data_addr_24

For use with All C-SPY drivers.

Description Use this option to enable the use of 24-bit data addresses; mandatory when the device
has a 24-bit address bus. If the option is omitted, the default is 16-bit addresses.

Project>Options>General Options>Data Pointer>Size
AFE1_AFE2-1:1

335

336

Reference information on C-SPY command line options

--proc_data_model

Syntax --proc_data_model {tiny|small|large|far|generic}

Parameters tiny

Selects Tiny as the default data model.

small

Selects Small as the default data model.

large

Selects Large as the default data model.

far

Selects Far as the default data model.

generic

Selects Generic as the default data model.

For use with All C-SPY drivers (mandatory).

Description Use this option to specify the default data model.

Project>Options>General Options>Target>Code model

--proc_DPHn

Syntax --proc_DPHn address

Parameters n

The register number; n can be 1-7.

address

The address can be from 0x80 to 0xFF.

For use with All C-SPY drivers.

Description Use this option to specify the SFR address of the high part of the DPTR1–DPTR7 registers
for your device. This option requires that --proc_dptr_nr_of is set to greater than 1
and that --proc_dptr_visibility is used.

See also --proc_dptr_nr_of, page 339 and --proc_dptr_visibility, page 340
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Project>Options>General Options>Data Pointer>DPTR addresses>Configure

--proc_DPLn

Syntax --proc_DPHn address

Parameters n

The register number; n can be 1-7.

address

The address can be from 0x80 to 0xFF.

For use with All C-SPY drivers.

Description Use this option to specify the SFR address of the low part of the DPTR1–DPTR7 registers
for your device. This option requires --proc_dptr_nr_of to be set to greater than 1
and --proc_dptr_visibility to be set to separate.

See also --proc_dptr_nr_of, page 339 and --proc_dptr_visibility, page 340

Project>Options>General Options>Data Pointer>DPTR addresses>Configure

--proc_dptr_automod_op

Syntax --proc_dptr_automod_op toggle

Parameters toggle

Makes the compiler use the DPTR auto-modification operation Toggle for
derivatives that support this.

For use with All C-SPY drivers.

Description Use this option to specify the auto-modification operation for the DPTR register. This
option requires that --proc_dptr_automod_type is used.

This option is not available in the IDE.
AFE1_AFE2-1:1

337

338

Reference information on C-SPY command line options

--proc_dptr_automod_type

Syntax --proc_dptr_automod_type {cast_xc|maxim_89c430|analog_adu}

Parameters cast_xc|maxim_89c430|analog_adu

The type of auto-modification used for the DPTR register.

For use with All C-SPY drivers.

Description Use this option to specify the type of auto-modification for the DPTR register. Not all
devices have auto-modification capabilities. This option requires that
--proc_dptr_nr_of is set to a value higher than 1.

This option is not available in the IDE.

--proc_dptr_DPC

Syntax --proc_dptr_DPC address

Parameters address

The SFR address of the DPTR configuration register, from 0x80 to 0xFF.

For use with All C-SPY drivers.

Description Use this option to specify the SFR address of the DPTR configuration register that
determines the properties and behavior of the DPTR register. This option can only be
used if your device supports this type of register.

Project>Options>General Options>Data Pointer>Separate DPTR control register

--proc_dptr_DPS

Syntax --proc_dptr_DPS address

Parameters address

The SFR address of the DPTR select register, from 0x80 to 0xFF.

For use with All C-SPY drivers.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Description Use this option to specify the SFR address of the DPTR select register that switches
DPTRs on your device. This option requires --proc_dptr_nr_of to be set to greater
than 1 and --proc_dptr_visibility to be set to separate.

Project>Options>General Options>Data Pointer>DPTR select>Select register

--proc_dptr_mask

Syntax --proc_dptr_mask number

Parameters number

The active bits in the DPTR select register, from 0x80 to 0xFF.

For use with All C-SPY drivers.

Description Use this option to specify the active bits in the DPTR select register.

Project>Options>General Options>Data Pointer>DPTR select>Set using
XOR/AND>Mask

--proc_dptr_nr_of

Syntax --proc_dptr_nr_of number

Parameters number

The number of DPTRs on the device, from 1 to 8.

For use with All C-SPY drivers.

Description Use this option to specify the number of DPTRs on the device. The default value is 1.

Project>Options>General Options>Data Pointer>Number of DPTRs

--proc_dptr_switch_method

Syntax --proc_dptr_switch_method {INC|XOR}

Parameters INC|XOR

The method to change the DPTR select register.
AFE1_AFE2-1:1

339

340

Reference information on C-SPY command line options

For use with All C-SPY drivers.

Description Use this option to specify the method to change the DPTR select register. You can use
the INC method if your device has the DPTR mask register in the least significant bit
and is followed by a write-protected bit.

You must specify the switch method if --proc_dptr_nr_of is greater than 1.

Project>Options>General Options>Data Pointer>DPTR select>Toggle using INC

Project>Options>General Options>Data Pointer>DPTR select>Set using
XOR/AND

--proc_dptr_visibility

Syntax --proc_dptr_visibility {separate|shadowed}

Parameters separate|shadowed

The type of DPTR visibility in the SFR area.

For use with All C-SPY drivers.

Description Use this option to specify the number of DPTRs on the device. If all DPTRs share the
same address for DPL, DPH, and DPX (if applicable), choose shadowed. Otherwise,
choose separate. The visibility must be specified if --proc_dptr_nr_of is greater
than 1.

Project>Options>General Options>Data Pointer>DPTR addresses

--proc_DPXn

Syntax --proc_DPXn address

Parameters n

The register number; n can be 1–7. Omit n when you are referring to the DPX
register.

address

The address can be from 0x80 to 0xFF.

For use with All C-SPY drivers.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Description Use this option to specify the SFR address for the DPTR1–DPTR7 registers if your device
has a 24-bit address bus. This option requires --proc_dptr_nr_of to be set to greater
than 1 and --proc_dptr_visibility to be set to separate.

See also --proc_dptr_nr_of, page 339 and --proc_dptr_visibility, page 340

Project>Options>General Options>Data Pointer>DPTR addresses>Configure

--proc_driver

Syntax --proc_driver
{ad|chipcon|infineon|jlink|rom|silabs|sim|3rd_party}

Parameters ad

Specifies the Analog Devices driver.

chipcon

Specifies the Texas Instruments driver.

infineon

Specifies the Infineon driver.

jlink

Specifies the Segger J-Link driver.

rom

Specifies the ROM-monitor driver.

silabs

Specifies the Silicon Labs driver.

sim

Specifies the simulator driver.

3rd_party

Specifies the third-party driver.

For use with All C-SPY drivers (mandatory).

Description Use this option to specify the driver you are using.

Project>Options>Debugger>Setup>Driver
AFE1_AFE2-1:1

341

342

Reference information on C-SPY command line options

--proc_exclude_exit_breakpoint

Syntax --proc_exclude_exit_breakpoint

For use with All C-SPY drivers.

Description Use this option in the CLIB runtime environment to disable the system breakpoint on
the exit label. Breakpoints are a critical resource in many hardware drivers. For more
information, see Breakpoint consumers, page 108.

Project>Options>Debugger>Setup>Exclude system breakpoints on

--proc_exclude_getchar_breakpoint

Syntax --proc_exclude_getchar_breakpoint

For use with All C-SPY drivers.

Description Use this option in the CLIB runtime environment to disable the system breakpoint on
the getchar function when your application is linked with I/O emulation modules.
Breakpoints are a critical resource in many hardware drivers. For more information, see
Breakpoint consumers, page 108.

Project>Options>Debugger>Setup>Exclude system breakpoints on

--proc_exclude_putchar_breakpoint

Syntax --proc_exclude_putchar_breakpoint

For use with All C-SPY drivers.

Description Use this option in the CLIB runtime environment to disable the system breakpoint on
the putchar function when your application is linked with I/O emulation modules.
Breakpoints are a critical resource in many hardware drivers. For more information, see
Breakpoint consumers, page 108.

Project>Options>Debugger>Setup>Exclude system breakpoints on
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

--proc_extended_stack

Syntax --proc_extended_stack address

Parameters address

The address of the extended stack; 00-FFFFFF.

For use with All C-SPY drivers.

Description Use this option to specify the address of the extended stack if your application supports
and uses an extended stack.

Project>Options>General Options>Target>Extended stack at

--proc_nr_virtual_regs

Syntax --proc_nr_virtual_regs number

Parameters number

The number of virtual registers, from 8 to 32.

For use with All C-SPY drivers.

Description Use this option to specify the number of virtual registers.

Project>Options>General Options>Target>Number of virtual registers

--proc_pc_readonly

Syntax --proc_pc_readonly

For use with Any C-SPY hardware debugger driver.

Description Use this option to inform the IDE that the hardware does not support writing to the PC
register when C-SPY is running.

This option is not available in the IDE.
AFE1_AFE2-1:1

343

344

Reference information on C-SPY command line options

--proc_pdata_bank_ext_reg_addr

Syntax --proc_pdata_bank_ext_reg_addr address

Parameters address

The address can be from 0x80 to 0xFF.

For use with All C-SPY drivers.

Description Use this option to specify the address of the MOVX@R0 instructions on devices with a
24-bit address bus.

Project>Options>General Options>Data Pointer>Page register address>Bit 16-23

--proc_pdata_bank_reg_addr

Syntax --proc_pdata_bank_reg_addr address

Parameters address

The address can be from 0x80 to 0xFF.

For use with All C-SPY drivers.

Description Use this option to specify the address of the MOVX@R0 instructions on devices with a
16-bit address bus or the lower byte of the address on devices with a 24-bit address bus.

Project>Options>General Options>Data Pointer>Page register address>Bit 8-15

--proc_silent

Syntax --proc_silent

For use with All C-SPY drivers.

Description Use this option to disable the output of messages during the debugging.

This option is not available in the IDE.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

--proc_xdata_banking

Syntax --proc_xdata_banking

For use with All C-SPY drivers.

Description Use this option to make registers display correctly in C-SPY for devices that support
banked XDATA memory.

This option is not available in the IDE.

--reduce_speed

Syntax --reduce_speed

For use with The C-SPY Texas Instruments driver.

Description Use this option to reduce the communication speed between your host computer and the
target board. This can be very useful if you use a long cable or encounter communication
problems or interference.

Project>Options>Debugger>Texas Instruments>Target>Reduce interface speed

--registers_after

Syntax --registers_after number

Parameters number

Specifies the number of registers after the device to be debugged, 0–n.

For use with The C-SPY Silicon Labs driver.

Description Use this option to specify the number of JTAG registers in the chain after the device to
be debugged. This option must be specified when --multiple_devices is used.

See also --multiple_devices, page 330.

Project>Options>Debugger>Silicon Labs>Download>JTAG chain>Multiple
devices>Devices>After
AFE1_AFE2-1:1

345

346

Reference information on C-SPY command line options

--registers_before

Syntax --registers_before number

Parameters number

Specifies the number of registers before the device to be debugged, 0–n.

For use with The C-SPY Silicon Labs driver.

Description Use this option to specify the number of JTAG registers in the chain before the device
to be debugged. This option must be specified when the option --multiple_devices
is used.

See also --multiple_devices, page 330.

Project>Options>Debugger>Silicon Labs>Download>JTAG chain>Multiple
devices>Devices>Before

--retain_memory

Syntax --retain_memory

For use with The C-SPY Texas Instruments driver.

Description Use this option to make sure only the changed, new, or updated bytes are downloaded
to flash memory, to save flash cycles.

See also --suppress_download, page 351.

Project>Options>Debugger>Texas Instruments>Download>Retain unchanged
pages

--retain_pages

Syntax --retain_pages n

Parameters n

The page number, 1–n.

For use with The C-SPY Texas Instruments driver.

Description Use this option to make sure that certain flash pages are not rewritten during download.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Project>Options>Debugger>Texas Instruments>Download>Retain flash pages

--rom_serial_port

Syntax --rom_serial_port port speed parity data stop handshake

Parameters port

The communication port can be any port from COM1 to COM64.

speed

The communication speed can be 300, 600, 1200, 2400, 4800, 9600, 19200,
38400, 57600, or 115200 baud.

parity

The parity value must be N.

data

Only 8 data bits is supported.

stop

The stop bit can be 1 or 2.

handshake

The handshaking value can be any of NONE, NONELOW, or RTSCTS.

For use with The C-SPY ROM-monitor driver.

Description Use this option to specify the communication options for the ROM-monitor driver.
C-SPY connects at 9600 baud and then changes to the communication speed of the
selected serial port after making the first contact with the evaluation board. If these
options have not been specified, C-SPY will try using the COM1 port.

Project>Options>Debugger>ROM-monitor>Serial Port

--serial_port

Syntax --serial_port port

Parameters port is the communication port that you want to use.
AFE1_AFE2-1:1

347

348

Reference information on C-SPY command line options

For the Silicon Labs driver, choose between:

1|2|3|4

Sets the communication port to COM1, COM2, COM3, or COM4, respectively.

For the Analog Devices driver, choose between:

COM1|COM2|COM3|COM4|COM5|COM6|COM7|COM8|COM9

Sets the communication port to COM1, COM2, COM3, COM4, COM5, COM6,
COM7, COM8, or COM9, respectively

For use with ● The C-SPY Silicon Labs driver

● The C-SPY Analog Devices driver.

Description Use this option to specify the communication options for the driver. C-SPY tries to
connect with the selected serial port when making the first contact with the evaluation
board. If you do not specify a port, C-SPY will try using the COM1 port.

Project>Options>Debugger>Driver>Serial Port>Port

--server_address

Syntax --server_address address

Parameters address

The name or IP address of the connected server. Specify localhost if the
server software is located on your host computer.

For use with The C-SPY Infineon driver.

Description Use this option to specify the server on which the DAS server software is running.

Project>Options>Debugger>Infineon>Target>Server>Address

--server_name

Syntax --server_name name
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Parameters name is the type of DAS server to connect to (case sensitive). Choose between:

For use with The C-SPY Infineon driver.

Description Use this option to specify the type of DAS server. If the server is not specified, a dialog
box will prompt you for a server name when the debug session starts.

Project>Options>Debugger>Infineon>Target>Server>Address

--silabs_2wire_interface

Syntax --silabs_2wire_interface

For use with The C-SPY Silicon Labs driver.

Description The Silicon Labs C8051F3xx/F4xx/F5xx/F9xx devices use the Silicon Labs 2-wire
debugging interface (C2). Use this option to set the interface to the Silicon Labs 2-wire
debugging interface. You must specify this option to connect to any of these devices.

Project>Options>Debugger>Silicon Labs>Download>Silicon Labs 2-wire (C2)
interface

--silent

Syntax --silent

Note that this option must be placed before the --backend option on the command line.

For use with cspybat

Description Use this option to omit the sign-on message.

This option is not available in the IDE.

"JTAG over USB Box"

"JTAG over USB Chip"

"UDAS"

"JTAG over Tantino"
AFE1_AFE2-1:1

349

350

Reference information on C-SPY command line options

--sim_guard_stacks

Syntax --sim_guard_stacks

For use with The C-SPY Simulator driver.

Description Use this option to be alerted if the stack pointers are out of bounds.

Project>Options>Debugger>Simulator>Simulator>Guard stack pointers

--software_breakpoints

Syntax --software_breakpoints

For use with The C-SPY Infineon driver.

Description To extend the number of code breakpoints, software breakpoints can be used. Use this
option to make C-SPY use software breakpoints for code breakpoint when you run out
of hardware breakpoints.

Project>Options>Debugger>Infineon>Target>Software breakpoints

--stack_overflow

Syntax --stack_overflow

For use with The C-SPY Texas Instruments driver.

Description Use this option to enable IData stack overflow warnings. This is not a runtime check,
but is done at the next stop, which means that it will not stop the execution if an IData
stack overflow is encountered.

Project>Options>Debugger>Texas Instruments>Target>Enable stack overflow
warning
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

--suppress_download

Syntax --suppress_download

For use with ● The C-SPY Texas Instruments driver

● The C-SPY FS2 driver

● The C-SPY Infineon driver

● The C-SPY Nordic Semiconductor driver

● The C-SPY ROM-monitor driver

● The C-SPY Silicon Labs driver.

Description Use this option to suppress download of your application to flash memory. If you do, it
is highly recommended that you also use --verify_download.

See also --verify_download, page 353 and --retain_memory, page 346.

Project>Options>Debugger>Driver>Download>Suppress download

--timeout

Syntax --timeout milliseconds

Note that this option must be placed before the --backend option on the command line.

Parameters milliseconds

The number of milliseconds before the execution stops.

For use with cspybat

Description Use this option to limit the maximum allowed execution time.

This option is not available in the IDE.

--toggle_DTR

Syntax --toggle_DTR

For use with The C-SPY ROM-monitor driver.
AFE1_AFE2-1:1

351

352

Reference information on C-SPY command line options

Description Use this option to toggle the DTR signal on your target board whenever the debugger is
reset. If the DTR signal is connected to the RESET pin on the microcontroller, toggling
the signal will force a target hardware reset.

Project>Options>Debugger>ROM-Monitor>Serial Port>On Reset>Toggle DTR

--toggle_RTS

Syntax --toggle_RTS

For use with The C-SPY ROM-monitor driver.

Description Use this option to toggle the RTS signal on your target board whenever the debugger is
reset. If the RTS signal is connected to the RESET pin on the microcontroller, toggling
the signal will force a target hardware reset.

Project>Options>Debugger>ROM-Monitor>Serial Port>On Reset>Toggle RTS

--usb_id

Syntax --usb_id id

Parameters id

The ID of the evaluation board you are using.

For use with The Texas Instruments driver.

Description Use this option to specify which evaluation board you are using. If not specified, you
will be prompted every time you start your debug session if more than one evaluation
board is connected.

Project>Options>Debugger>Texas Instruments>Target>Communication

--usb_interface

Syntax --usb_interface

For use with The C-SPY Silicon Labs driver.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

The C-SPY command line utility—cspybat

Description Use this option to specify the download interface as USB. Use this option if you are
using a USB debugger adapter.

See also The option --power_target, page 332.

Project>Options>Debugger>Silicon Labs>Download>USB interface

--verify_all

Syntax --verify_all

For use with ● The C-SPY ROM-monitor driver

● The C-SPY Analog Devices driver

● The C-SPY Silicon Labs driver.

Description Use this option to verify that the application data is correctly transferred from the driver
to the device. This verification increases the programming sequence time.

Project>Options>Debugger>Driver>Download>Verify download

--verify_download

Syntax --verify_download {read_back_memory|use_crc16}

Parameters Parameters for the Texas Instruments driver only:

read_back_memory

Verifies a target by reading back memory.

use_crc16

Verifies a target using on-chip page CRC16.

For use with ● The C-SPY Texas Instruments driver

● The C-SPY FS2 driver

● The C-SPY Infineon driver

● The C-SPY Nordic Semiconductor driver.

Description Use this option to verify that the application data is correctly transferred from the driver
to the device. This verification increases the programming sequence time, but the
AFE1_AFE2-1:1

353

354

Reference information on C-SPY command line options

read_back_memory method increases the time overhead more than the use_crc16
method.

Project>Options>Debugger>Driver>Download>Verify download
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Part 4. Additional
reference information
This part of the C-SPY® Debugging Guide for 8051 includes these chapters:

● Debugger options

● Additional information on C-SPY drivers

● Target-adapting the ROM-monitor
355

356

Debugger options
● Setting debugger options

● Reference information on general debugger options

● Reference information on the C-SPY simulator

● Reference information on C-SPY Texas Instruments driver options

● Reference information on C-SPY FS2 driver options

● Reference information on C-SPY Infineon driver options

● Reference information on C-SPY Segger J-Link driver options

● Reference information on C-SPY Nordic Semiconductor driver options

● Reference information on C-SPY Nu-Link driver options

● Reference information on C-SPY ROM-monitor driver options

● Reference information on C-SPY Analog Devices driver options

● Reference information on C-SPY Silicon Labs driver options

Setting debugger options
Before you start the C-SPY debugger you might need to set some options—both C-SPY
generic options and options required for the target system (C-SPY driver-specific
options). This section gives detailed information about the options in the Debugger
category.

To set debugger options in the IDE:

1 Choose Project>Options to display the Options dialog box.

2 Select Debugger in the Category list.
AFE1_AFE2-1:1

357

358

Reference information on general debugger options

For more information about the generic options, see Reference information on general
debugger options, page 358.

3 On the Setup page, select the appropriate C-SPY driver from the Driver drop-down
list.

4 To set the driver-specific options, select the appropriate driver from the Category list.
Depending on which C-SPY driver you are using, different options are available.

5 To restore all settings to the default factory settings, click the Factory Settings button.

6 When you have set all the required options, click OK in the Options dialog box.

Reference information on general debugger options
Reference information about:

● Setup

● Images

● Extra Options

C-SPY driver Available options pages

C-SPY simulator Setup options for the simulator, page 364

C-SPY Texas Instruments driver Download options for Texas Instruments, page 365
Target options for Texas Instruments, page 367

C-SPY FS2 System Navigator driver Download options for FS2, page 368
Target options for FS2, page 369

C-SPY Infineon driver Download options for Infineon, page 370
Target options for Infineon, page 371

C-SPY Segger J-Link driver Download options for Segger J-Link, page 372
Communication options for Segger J-Link, page 373

C-SPY Nordic Semiconductor
driver

Download options for Nordic Semiconductor, page 374

C-SPY ROM-monitor driver Download options for the ROM-monitor, page 376
Serial Port options for the ROM-monitor, page 377

C-SPY Analog Devices driver Download options for Analog Devices, page 378
Serial Port options for Analog Devices, page 379

C-SPY Silicon Labs driver Download options for Silicon Labs, page 380
Serial Port options for Silicon Labs, page 381

Third-party driver Third-Party Driver options, page 363.

Table 35: Options specific to the C-SPY drivers you are using
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

● Plugins

● Third-Party Driver options

Setup
The general Setup options select the C-SPY driver, the setup macro file, and device
description file to use, and specify which default source code location to run to.

Driver

Selects the C-SPY driver for the target system you have.

Run to

Specifies the location C-SPY runs to when the debugger starts after a reset. By default,
C-SPY runs to the main function.

To override the default location, specify the name of a different location you want
C-SPY to run to. You can specify assembler labels or whatever can be evaluated as such,
for example function names.

If the option is deselected, the program counter will contain the regular hardware reset
address at each reset.

See also Executing from reset, page 44.

Exclude system breakpoints on

Controls the use of system breakpoints in the CLIB runtime environment. If the C-SPY
Terminal I/O window is not required or if you do not need a breakpoint on the exit
label, you can save hardware breakpoints by not reserving system breakpoints. Deselect
or select the options exit, putchar, and getchar, respectively, if you want or do not want
C-SPY to use system breakpoints for these. For more information, see Breakpoint
consumers, page 108.
AFE1_AFE2-1:1

359

360

Reference information on general debugger options

Setup macros

Registers the contents of a setup macro file in the C-SPY startup sequence. Select Use
macro file and specify the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

Device description file

A default device description file is selected automatically based on your project settings.
To override the default file, select Override default and specify an alternative file. A
browse button is available for your convenience.

For information about the device description file, see Modifying a device description
file, page 49.

Device description files for each 8051 device are provided in the directory
8051\config and have the filename extension ddf.

Images
The Images options control the use of additional debug files to be downloaded.

Download extra Images

Controls the use of additional debug files to be downloaded:

Path

Specify the debug file to be downloaded. A browse button is available for your
convenience.

Offset

Specify an integer that determines the destination address for the downloaded
debug file.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

Debug info only

Makes the debugger download only debug information, and not the complete
debug file.

If you want to download more than three images, use the related C-SPY macro, see
__loadImage, page 273.

For more information, see Loading multiple images, page 47.

Extra Options
The Extra Options page provides you with a command line interface to C-SPY.

Use command line options

Specify command line arguments that are not supported by the IDE to be passed to
C-SPY.

Note that it is possible to use the /args option to pass command line arguments to the
debugged application.

Syntax: /args arg0 arg1 ...

Multiple lines with /args are allowed, for example:

/args --logfile log.txt

/args --verbose
AFE1_AFE2-1:1

361

362

Reference information on general debugger options

If you use /args, these variables must be defined in your application:

/* __argc, the number of arguments in __argv. */
__no_init int __argc;

/* __argv, an array of pointers to strings that holds the
arguments; must be large enough to fit the number of
parameters.*/
__no_init const char * __argv[MAX_ARGS];

/* __argvbuf, a storage area for __argv; must be large enough to
hold all command line parameters. */
__no_init __root char __argvbuf[MAX_ARG_SIZE];

Plugins
The Plugins options select the C-SPY plugin modules to be loaded and made available
during debug sessions.

Select plugins to load

Selects the plugin modules to be loaded and made available during debug sessions. The
list contains the plugin modules delivered with the product installation.

Description

Describes the plugin module.

Location

Informs about the location of the plugin module.

Generic plugin modules are stored in the common\plugins directory. Target-specific
plugin modules are stored in the 8051\plugins directory.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

Originator

Informs about the originator of the plugin module, which can be modules provided by
IAR Systems or by third-party vendors.

Version

Informs about the version number.

Third-Party Driver options
The Third-Party Driver options are used for loading any driver plugin provided by a
third-party vendor. These drivers must be compatible with the C-SPY debugger driver
specification.

In addition to the options you can set here, you can set options for the third-party driver
using the Project>Options>Debugger>Extra Options page.

IAR debugger driver plugin

Specify the file path to the third-party driver plugin DLL file. A browse button is
available for your convenience.

Suppress download

Disables the downloading of code, while preserving the present content of the flash.
This command is useful if you want to debug an application that already resides in target
memory.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.
AFE1_AFE2-1:1

363

364

Reference information on the C-SPY simulator

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

Reference information on the C-SPY simulator
Reference information about:

● Setup options for the simulator

This section gives reference information on the C-SPY simulator options.

Setup options for the simulator
The simulator Setup options control the C-SPY simulator.

Peripheral simulation

These options set up peripheral simulation, which requires a plugin from a third-party
vendor. For information, see the PDF EW_PeripheralSimulationGuide.pdf in the
EW_DIR\8051\doc\ directory and the examples in the
EW_DIR\8051\plugins\simulation directory.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

Reference information on C-SPY Texas Instruments driver options
This section gives reference information on C-SPY Texas Instruments driver options.

Download options for Texas Instruments
The Texas Instruments Download options control the download.

Erase flash

Erases all flash memories before download.

Suppress download

Disables the downloading of code, while preserving the present content of the flash
memory. This command is useful if you want to debug an application that already
resides in target memory. The implicit reset performed by C-SPY at startup is not
disabled, though.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.

Retain unchanged pages

Specifies that only changed, new, or updated pages are downloaded to flash memory, to
save flash cycles.

Retain flash pages

Specify any flash pages that should not rewritten during download. Type the page
numbers separated by commas, as page intervals, or a combination of these, like
0-6,8,12.
AFE1_AFE2-1:1

365

366

Reference information on C-SPY Texas Instruments driver options

Verify download

Verifies that the program data has been correctly transferred from the driver to the
device. Choose between:

CRC-16

Verifies a target using on-chip page CRC16.

Read back memory

Verifies a target by reading back memory.

Lock flash memory

Protects your application on the device by locking the flash memory. Select the device
family you are using and the parts of the flash memory you want to protect:

CC111x, CC243x, CC251x

Locks the flash memory of CC111x, CC243x, or CC251x devices.

Boot block lock

Locks the boot sector of CC111x, CC243x, or CC251x devices. Choose the lock
bits from the drop-down menu. Lock bits 000b protects the whole flash
memory, what the other options protect varies from device to device. The
protected area is displayed under the drop-down menu.

CC253x, CC254x

Locks the flash memory of CC253x or CC254x devices. Type the flash pages
you want to lock in the text box, separated by commas, as page intervals, or a
combination of these, like 0-6,8,12.

To remove these locks, you must select the Erase flash option.

Debug interface lock

Protects your application on the microcontroller from read and write accesses by locking
the debug interface. To remove the lock, you must select the Erase flash option.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

Target options for Texas Instruments
The Texas Instruments Target options control target-specific features of the Texas
Instruments driver.

Reduce interface speed

Reduces the communication speed between your host computer and the evaluation
board. This can be very useful if you use a long cable or encounter communication
problems or interference.

Enable stack overflow warning

Enables stack overflow warnings. This is not a runtime check, but is performed at the
next stop, which means that it will not stop the execution if a stack overflow is
encountered.

Number of banks

Specify the number of actual hardware memory banks on the device.

Communication

Specify the ID of the evaluation board you are using. If it is not specified, you will be
prompted every time you start your debug session if more than one evaluation board is
connected.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the communication protocol is required. This log file can
be useful if you intend to contact IAR Systems support for assistance.
AFE1_AFE2-1:1

367

368

Reference information on C-SPY FS2 driver options

Reference information on C-SPY FS2 driver options
This section gives reference information on C-SPY FS2 driver options.

Download options for FS2
The FS2 Download options control the download.

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Suppress download

Disables the downloading of code, while preserving the present content of the flash
memory. This command is useful if you want to debug an application that already
resides in target memory. The implicit reset performed by C-SPY at startup is not
disabled, though.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

Target options for FS2
The FS2 Target options control target-specific features of the Infineon driver.

Configuration

Specify which core your device is. Choose between:

Has program flash

Describes to the debugger how to program the flash memory of the device.

Entry in flash.cfg

The label for the entry in the flash.cfg file that describes how to program the
flash memory of the device.

Flash areas

One or more memory ranges separated by commas, like this:
0x0000-0x1111,0x2222-0x3333.

Has program RAM

Specify where the device has program code in RAM memory, if your device supports
code in RAM. This means that software breakpoints will be used in this memory area.

cast51-single-core

m8051ew-single-core

philips51-single-core

handshake51-single-core
AFE1_AFE2-1:1

369

370

Reference information on C-SPY Infineon driver options

RAM areas

One or more memory ranges separated by commas, like this:
0x0000-0x1111,0x2222-0x3333.

Reference information on C-SPY Infineon driver options
This section gives reference information on C-SPY Infineon driver options.

Download options for Infineon
The Infineon Download options control the download.

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Suppress download

Disables the downloading of code, while preserving the present content of the flash
memory. This command is useful if you want to debug an application that already
resides in target memory. The implicit reset performed by C-SPY at startup is not
disabled, though.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.

Erase data flash

Erases the data flash area during download.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

Target options for Infineon
The Infineon Target options control target-specific features of the Infineon driver.

Server

Specify the server on which the DAS server is running:

Address

The name or the IP address of the connected server. Specify localhost if the
server is located on your host computer.

Name

Choose the DAS server to connect to.

Security keys

The DAS server has security keys which can be enabled and used to protect access to
the device. If security keys are used, you must type the value for each key to connect to
the server.

Software breakpoints

Enables software breakpoints, which increases the number of code breakpoints. If there
are no hardware breakpoints available, software breakpoints will be used instead.

Note: Software breakpoints can only be used when the application is located in
read/write memory. When you use this option, the breakpoints are implemented by a
temporary substitution of the actual instruction. Before execution resumes, the original
instruction will be restored. This generates some overhead.

Has code in XRAM

Specify the memory range where your device has program code in the Infineon XRAM
memory area. Use this option to make software breakpoints faster.
AFE1_AFE2-1:1

371

372

Reference information on C-SPY Segger J-Link driver options

Reference information on C-SPY Segger J-Link driver options
This section gives reference information on C-SPY Segger J-Link driver options.

Download options for Segger J-Link
The Segger J-Link Download options control the download.

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Suppress download

Disables the downloading of code, while preserving the present content of the flash
memory. This command is useful if you want to debug an application that already
resides in target memory. The implicit reset performed by C-SPY at startup is not
disabled, though.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

Communication options for Segger J-Link
The Segger J-Link Communication options control how the C-SPY Segger J-Link
driver communicates with the evaluation board.

Connection type

Specify how to identify the debug probe that the debug session will use. Choose
between:

USB device n
Identifies the debug probe using the USB device ID.

Serial number

Identifies the debug probe using the serial number specified by the Serial
number option.

Serial number

Specify the serial number of the debug probe that the debug session will use. Click
Select to choose one of the detected debug probes connected to your host PC.

Communication speed

Specify the communication speed between C-SPY and the debug probe. Choose
between:

Automatic

C-SPY will use the communication speed set by the Segger J-Link debug probe.

Specific

Specify the communication speed in kHz.
AFE1_AFE2-1:1

373

374

Reference information on C-SPY Nordic Semiconductor driver options

Power supply from J-Link

Supplies the evaluation board with power from the Segger J-Link debug probe.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the communication protocol is required. This log file can
be useful if you intend to contact IAR Systems support for assistance.

Reference information on C-SPY Nordic Semiconductor driver options
This section gives reference information on C-SPY Nordic Semiconductor driver
options.

Download options for Nordic Semiconductor
The Nordic Semiconductor Download options control the download.

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Suppress download

Disables the downloading of code, while preserving the present content of the flash
memory. This command is useful if you want to debug an application that already
resides in target memory. The implicit reset performed by C-SPY at startup is not
disabled, though.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.

Reference information on C-SPY Nu-Link driver options
Reference information about:

● Setup options for the C-SPY Nu-Link driver

This section gives reference information on the C-SPY Nu-Link driver options.

Setup options for the C-SPY Nu-Link driver
The Setup options page for the C-SPY Nu-Link driver is empty.

There are no options to set for the C-SPY Nu-Link driver.

Reference information on C-SPY ROM-monitor driver options
This section gives reference information on C-SPY ROM-monitor driver options.
AFE1_AFE2-1:1

375

376

Reference information on C-SPY ROM-monitor driver options

Download options for the ROM-monitor
The ROM-monitor Download options control the download.

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Suppress download

Disables the downloading of code, while preserving the present content of the flash
memory. This command is useful if you want to debug an application that already
resides in target memory. The implicit reset performed by C-SPY at startup is not
disabled, though.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

Serial Port options for the ROM-monitor
The ROM-monitor Serial Port options determine how the serial port should be used.

Port

Selects one of the supported ports: COM1–COM64.

Baud rate

Selects one of these speeds: 2400, 4800, 9600, 14400, 19200, 38400, 57600, or
115200 baud.

C-SPY always tries to connect at 9600 baud and then changes to the speed of the
selected serial port when making the first contact with the evaluation board. If these
options have not been specified, C-SPY will try using the COM1 port.

Parity

Selects the parity; None, Even, or Odd.

Data bits

Selects the number of data bits; only 8 data bits is allowed.

Stop bits

Selects the number of stop bits: 1 or 2.

Handshaking

Selects the handshaking method; None high, None low, RTSCTS, or XONXOFF.

Toggle DTR

Toggles the DTR signal pin on the UART port when C-SPY resets the device.
AFE1_AFE2-1:1

377

378

Reference information on C-SPY Analog Devices driver options

Toggle RTS

Toggles the RTS signal pin on the UART port when C-SPY resets the device.

Log communication

Logs the communication between C-SPY and the target system to the specified log file,
which can be useful for troubleshooting purposes. The communication will be logged in
the file cspycomm.log located in the current working directory. If required, use the
browse button to locate a different file.

Reference information on C-SPY Analog Devices driver options
This section gives reference information on C-SPY Analog Devices driver options.

Download options for Analog Devices
The Analog Devices Download options control the download.

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Erase data flash

Erases the data flash area during download.

Debug interface

Specifies the communication method. Choose between:

● Use 4-wire UART with ADu device
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

● Use 4-wire UART with ADe device

● Use 1-pin POD with ADu device

● Use 1-pin POD with ADe device.

Serial Port options for Analog Devices
The Analog Devices Serial Port options determine how the serial port will be used.

Port

Selects one of the supported ports: COM1–COM64.

Baud rate

Selects one of the supported speeds: 2400–115200 baud. If a debug interface for an
ADe device has been specified, the only available communication speed is 115200
baud.

C-SPY connects at 9600 baud and then changes to the speed of the selected port when
making the first contact with the evaluation board.

Override default CPU clock frequency

Specify the actual CPU clock frequency if you have modified the hardware in such a
way that the clock frequency has changed.

Reference information on C-SPY Silicon Labs driver options
This section gives reference information on C-SPY Silicon Labs driver options.
AFE1_AFE2-1:1

379

380

Reference information on C-SPY Silicon Labs driver options

Download options for Silicon Labs
The Silicon Labs Download options control the download.

Suppress download

Disables the downloading of code, while preserving the present content of the flash
memory. This command is useful if you want to debug an application that already
resides in target memory. The implicit reset performed by C-SPY at startup is not
disabled, though.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

USB interface

Specifies that you are using a USB debugger adapter.

Continuously power target

Provides power to the target hardware even after the debug session has been terminated.

Silicon Labs 2-wire (C2) interface

The Silicon labs C8051F3xx/F4xx/F5xx/F7xx/F9xx devices use the Silicon Labs 2-wire
debugging interface (C2). You must select this option to connect to any of these devices.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Debugger options

Flash page size

Informs C-SPY of the size of the flash page of your device. Choose between 512 and
1024 bytes.

Banked XDATA

Informs C-SPY that your hardware setup has an external memory module for XDATA
that is larger than 64 Kbytes.

Note: This option must be used in combination with the Far data model.

Multiple devices

Informs C-SPY that there is more than one device connected to the same JTAG
interface. In this case, you must also specify:

Devices

The number of devices in the chain before and after the device to be debugged.

Instr. registers

The number of JTAG registers in the chain before and after the device to be
debugged.

Serial Port options for Silicon Labs
The Silicon Labs Serial Port options determine how the serial port will be used.

Port

Selects one of the supported ports: COM1–COM64. C-SPY connects with the selected
serial port when making the first contact with the evaluation board. If you do not specify
a port, C-SPY will try using the COM1 port.
AFE1_AFE2-1:1

381

382

Reference information on C-SPY Silicon Labs driver options

Baud rate

Selects one of the supported speeds: 2400–115200 baud. C-SPY connects at 9600 baud
and then changes to the speed of the selected port when making the first contact with the
evaluation board.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Additional information on
C-SPY drivers
This chapter describes the additional menus and features provided by the
C-SPY® drivers. You will also find some useful hints about resolving problems.

Reference information on C-SPY driver menus
Reference information about:

● C-SPY driver, page 383

● Simulator menu, page 384

● Texas Instruments Emulator menu, page 386.

● Infineon Emulator menu, page 386

● J-Link menu, page 387

● Silicon Labs Emulator menu, page 387

C-SPY driver
Before you start the C-SPY debugger, you must first specify a C-SPY driver in the
Options dialog box, using the option Debugger>Setup>Driver.

When you start a debug session, a menu specific to that C-SPY driver will appear on the
menu bar, with commands specific to the driver.

When we in this guide write “choose C-SPY driver>” followed by a menu command,
C-SPY driver refers to the menu. If the feature is supported by the driver, the command
will be on the menu.
AFE1_AFE2-1:1

383

384

Reference information on C-SPY driver menus

Simulator menu
When you use the simulator driver, the Simulator menu is added to the menu bar.

Menu commands

These commands are available on the menu:

Memory Access Setup

Displays a dialog box to simulate memory access checking by specifying
memory areas with different access types, see Memory Access Setup dialog box,
page 166.

Trace

Opens a window which displays the collected trace data, see Trace window,
page 176.

Function Trace

Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 179.

Trace Expressions

Opens a window where you can specify specific variables and expressions for
which you want to collect trace data, see Trace Expressions window, page 182.

Function Profiler

Opens a window which shows timing information for the functions, see
Function Profiler window, page 214.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Additional information on C-SPY drivers

Data Log

Opens a window which logs accesses to up to four different memory locations
or areas, see Data Log window, page 200.

Data Log Summary

Opens a window which displays a summary of data accesses to specific memory
location or areas, see Data Log Summary window, page 203.

Interrupt Log

Opens a window which displays the status of all defined interrupts, see Interrupt
Log window, page 240.

Interrupt Log Summary

Opens a window which displays a summary of the status of all defined
interrupts, see Interrupt Log Summary window, page 243.

Timeline

Opens a window which gives a graphical view of various kinds of information
on a timeline, see The application timeline, page 187.

Simulated Frequency

Opens the Simulated Frequency dialog box where you can specify the
simulator frequency used when the simulator displays time information, for
example in the log windows. Note that this does not affect the speed of the
simulator. For more information, see Simulated Frequency dialog box.

Interrupt Setup

Displays a dialog box where you can configure C-SPY interrupt simulation, see
Interrupt Setup dialog box, page 234.

Forced Interrupts

Opens a window from where you can instantly trigger an interrupt, see Forced
Interrupt window, page 237.

Interrupt Status

Opens a window from where you can instantly trigger an interrupt, see Interrupt
Status window, page 238.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 117.
AFE1_AFE2-1:1

385

386

Reference information on C-SPY driver menus

Texas Instruments Emulator menu
When you are using the C-SPY Texas Instruments driver, the Texas Instruments
Emulator menu is added to the menu bar.

Menu commands

These commands are available on the menu:

Stop Timers on Halt

Stops the timers when the execution is stopped.

Leave Target Running

Leaves the application running on the target hardware after the debug session
has been terminated.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 117.

Infineon Emulator menu
When you are using the C-SPY Infineon driver, the Infineon Emulator menu is added
to the menu bar.

Menu commands

These commands are available on the menu:

Leave Target Running

Leaves the application running on the target hardware after the debug session
has been terminated.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 117.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Additional information on C-SPY drivers

J-Link menu
When you are using the C-SPY Segger J-Link driver, the J-Link menu is added to the
menu bar.

Menu commands

These commands are available on the menu:

Memory Configuration

Displays a dialog box where you configure C-SPY to match the memory of your
device, see Memory Configuration dialog box, in C-SPY hardware debugger
drivers, page 161.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 117.

Silicon Labs Emulator menu
When you are using the C-SPY Silicon Labs driver, the Silicon Labs Emulator menu
is added to the menu bar.

Menu commands

These commands are available on the menu:

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 117.

Reference information on the C-SPY simulator
This section gives additional reference information the C-SPY simulator, reference
information not provided elsewhere in this documentation.

Reference information about:

● Simulated Frequency dialog box, page 388
AFE1_AFE2-1:1

387

388

Reference information on the C-SPY hardware debugger drivers

Simulated Frequency dialog box
The Simulated Frequency dialog box is available from the C-SPY driver menu.

Use this dialog box to specify the simulator frequency used when the simulator displays
time information.

Requirements

The C-SPY simulator.

Frequency

Specify the frequency in Hz.

Reference information on the C-SPY hardware debugger drivers
This section gives additional reference information on the C-SPY hardware debugger
drivers, reference information not provided elsewhere in this documentation.

Reference information about:

● Serial Number dialog box, page 388

● Server Selection dialog box, page 389

● USB Device Selection dialog box, page 389.

Serial Number dialog box
The Serial Number dialog box is displayed when you click Select on the
Project>Options>Segger J-Link>Communication options page.

Use this dialog box to specify which debug probe that the debug session will use.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Additional information on C-SPY drivers

Connected J-Link emulators

Choose which debug probe that the debug session will use. If the serial number of your
probe does not show, check that the Segger J-Link driver is correctly installed.

Server Selection dialog box
The Server Selection dialog box is displayed if a debug session starts without a DAS
server name specified on the Project>Options>Infineon>Target page.

Use this dialog box to specify the type of DAS server connection.

Requirements

The C-SPY Infineon driver.

USB Device Selection dialog box
The USB Device Selection dialog box is displayed if a debug session starts with more
than one Silicon Labs debug adapter connected to the host computer.

Use this dialog box to select the device you want to use.

Requirements

The C-SPY Silicon Labs driver.
AFE1_AFE2-1:1

389

390

Resolving problems

Resolving problems
These topics are covered:

● Write failure during load

● No contact with the target hardware

● Monitor works, but application will not run

● No contact with the monitor

Debugging using the C-SPY hardware debugger systems requires interaction between
many systems, independent from each other. For this reason, setting up this debug
system can be a complex task. If something goes wrong, it might be difficult to locate
the cause of the problem.

This section includes suggestions for resolving the most common problems that can
occur when debugging with the C-SPY hardware debugger systems.

For problems concerning the operation of the evaluation board, refer to the
documentation supplied with it, or contact your hardware distributor.

WRITE FAILURE DURING LOAD

There are several possible reasons for write failure during load. The most common is
that your application has been incorrectly linked:

● Check the contents of your linker configuration file and make sure that your
application has not been linked to the wrong address

● Check that you are using the correct linker configuration file.

In the IDE, the linker configuration file is automatically selected based on your choice
of device.

To choose a device:

1 Choose Project>Options.

2 Select the General Options category.

3 Click the Target tab.

4 Choose the appropriate device from the Device drop-down list.

To override the default linker configuration file:

1 Choose Project>Options.

2 Select the Linker category.

3 Click the Config tab.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Additional information on C-SPY drivers

4 Choose the appropriate linker configuration file in the Linker configuration file area.

NO CONTACT WITH THE TARGET HARDWARE

There are several possible reasons for C-SPY to fail to establish contact with the target
hardware. Do this:

● Check the communication devices on your host computer

● Verify that the cable is properly plugged in and not damaged or of the wrong type

● Make sure that the evaluation board is supplied with sufficient power

● Check that the correct options for communication have been specified in the IAR
Embedded Workbench IDE.

Examine the linker configuration file to make sure that the application has not been
linked to the wrong address.

MONITOR WORKS, BUT APPLICATION WILL NOT RUN

The application is probably linked to some illegal code area (like the interrupt table).
You might have to check the defined segment allocations in the used linker configuration
file. Verify the start addresses of the CODE and DATA segments.

Make sure you disable the watchdog timer if it is not used. Typically this should be done
in the __low_level_init routine. Otherwise the application program will restart,
which would lead to unexpected behavior.

NO CONTACT WITH THE MONITOR

There are several possible reasons if C-SPY fails to establish contact with the
ROM-monitor firmware.

● The communication speed between C-SPY and the ROM-monitor might make the
connection unreliable. Try a lower communication speed.

● A protocol error might have occurred. Try resetting your evaluation board and
restart C-SPY.

● Check that the correct options for serial communication have been specified in the
IAR Embedded Workbench IDE. See the corresponding sections for the appropriate
driver.

● Verify that the serial cable is properly plugged in and not damaged or of the wrong
type.
AFE1_AFE2-1:1

391

392

Resolving problems

AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Target-adapting the
ROM-monitor
This chapter describes how you can easily adapt the generic ROM-monitor
provided with IAR Embedded Workbench® to suit a device that does not have
an existing debug solution supported by IAR Systems.

This chapter also describes ROM-monitor functionality in detail.

Building your own ROM-monitor
There are a large number of 8051 devices on the market. The variety makes it difficult
for one ROM-monitor firmware to support them all. Therefore, a full ROM-monitor
project is included in IAR Embedded Workbench that you can use to customize the
ROM-monitor for a specific target.

Building your own ROM-monitor in four easy steps:

1 Setting up your ROM-monitor project.

2 Adapting the source files.

3 Debugging the ROM-monitor.

Note: To download your ROM-monitor to the target board, refer to the chip vendor
websites for information about suitable tools. When you have successfully downloaded
the ROM-monitor, you can use it to debug your application via C-SPY. For information
about required C-SPY options, see Debugger options, page 357.

4 Building and downloading your ROM-monitor.

SETTING UP YOUR ROM-MONITOR PROJECT

Choose Project>Create new project and select the ready-made project
ROM-monitor. Click OK and choose a project name and a destination folder in the
Save As dialog box.

This project will contain generic monitor files and files that must be edited. The generic
files are located in src\rom\common_src and are not copied, while the files that must
be edited are copied automatically to the project directory.
AFE1_AFE2-1:1

393

394

Building your own ROM-monitor

ADAPTING THE SOURCE FILES

The ROM-monitor project contains many source and header files, but only a few need
to be adapted to suit your target system:

Setting up the chip_layout.h file

This is one of the most important files in the project, as it sets up the conditions for
making the ROM-monitor work. Some of the sections of this file are highlighted here.
There is more information available in the header file.

● Software and hardware breakpoints

The ROM-monitor uses the LCALL instruction as a generic software breakpoint.
There is also support for target-specific breakpoint instructions, such as 0xA5. Set
SW_BP_TYPE to either BP_OF_LCALL_TYPE or BP_OF_A5_TYPE. If no software
breakpoints are to be used, set SW_BP_TYPE to NO_SW_BP.

If required and if supported by the target board, the ROM-monitor can also handle
code and data hardware breakpoints. In this case, you must set the symbols
CODE_HW_BP and DATA_HW_BP to the number of breakpoints they support.

● Application bus width

The application bus width controls the addressable memory area. It is either 16 or 24
bits depending on the target or the location of the application on the target.

● Remapped IData memory

By default, the ROM-monitor will use 0x00-0x7F in IData memory as working
memory. When the ROM-monitor is running, application data located in this
memory area will be stored in PData(XData)/IData memory. The symbol
MON_REMAP_IDATA_TO_MEM controls which memory segment that is used for this
copy.

iotarget.h Includes the target-specific include file.

chip_layout.h Holds target-specific definitions for special registers, etc.

chip_layout.xcl Template linker command file for the ROM-monitor.

uart_init.c UART initialization and baud rate function support.

code_access.c Read and write functions for code memory.

low_level_init.c Basic initialization code, executed early during system
startup.

high_level_init.c Additional initialization code called from the main function.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Target-adapting the ROM-monitor

● Special SFR registers

Some SFR registers are needed by the ROM-monitor and would be overwritten if
shared with your application. To avoid this, these registers are stored/restored by the
monitor. For this purpose, an SFR information struct is used, where SFRs that need
special care can be added.

● Flash memory information

The flash page section defines the flash page properties such as page size and total
memory size. When writing to memory, C-SPY will send the bytes to write at full
speed via the UART. Depending on how long it takes to update the memory, a
communication delay might have to be introduced to ensure that there is enough time
to finish writing data to the flash memory. For this purpose, FLASH_WRITE_DELAY
can be defined to insert a delay between each byte.

Setting up the serial communication—uart_init.c

You need to configure and initialize a UART to make the serial communication work
between C-SPY and the ROM-monitor. One way to make sure that your UART setup
works as intended is to create a small application that performs the initialization and
then echoes any characters that the UART receives back to the transmitting device.

By doing this, you can debug your UART setup using a standard host computer and a
terminal program (for example, Hyper Terminal) before you include it in your
ROM-monitor.

 The file uart_init.c is available in your ROM-monitor project as a starting point:

● In the function uart_init(), set up the UART.

● By default, for each new debug session the communication starts at 9600 baud.
However, it is recommended to include support for 9600, 38400, and 57600 baud
right from the start. You can achieve this by modifying the function
set_baudrate().

● Use a standard hyper terminal on your host computer to verify the UART setup.

● Once the application is running, you can include your uart_init.c file in your
ROM-monitor project.

Make sure also that the baud rates supported by the device are updated accordingly in
the file chip_layout.h.

Note: To understand how to configure the UART on your device, refer to its
documentation.
AFE1_AFE2-1:1

395

396

Building your own ROM-monitor

Setting up for code memory accesses—code_access.c

Most memory access methods are the same for all 8051-compatible devices, except for
the method for writing code. Writing to code memory is divided into three functions, all
defined in the code_access.c file:

Setting up target-specific details—low_level_init.c, high_level_init.c

In the source files low_level_init.c and high_level_init.c, you can set up the
target-specific details to be performed before system startup, such as enabling memory,
initializing clocks, etc. The low_level_init function is executed after a hard reset
from the cstartup.s51 file before initializing variables. The high_level_init
function is called each time the ROM-monitor is entered.

To read more about the system startup code, see IAR C/C++ Compiler User Guide for
8051.

DEBUGGING THE ROM-MONITOR

Debugging a ROM-monitor can sometimes be difficult, because of the number of
subsystems involved (host computer, host debugger, ROM-monitor firmware, hardware,
and user application). Therefore, you are strongly recommended to use the available
hardware resources on the target system as a way to provide feedback during the
debugging process.

For example, if there is an LCD on the board you can use it to display status messages,
or if a second UART is available the same can be done to a terminal program running
on a host computer. If there is a LED available, it can be used as simple printf
functionality.

Note: Because neither interrupts nor buffers for incoming data are used in the
communication between C-SPY and the ROM-monitor, the overhead introduced by

prepare_download() This function is called before download and should prepare
the target system for code download. If the code is to be
downloaded into flash memory, this function should erase
the flash memory.

erase_flash_page() This function is called when rewriting a page. For example,
when writing a software breakpoint located in flash
memory. This function is usually called by the
prepare_download function when erasing memory
before download.

byte_write_code() This function writes one byte to code memory. Any
overhead, such as reading back, erasing, and writing data is
handled automatically by the C-SPY driver.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Target-adapting the ROM-monitor

making peripheral units log events during debugging can cause the ROM-monitor to
lose its connection with C-SPY.

Divide the work needed to customize the ROM-monitor into small steps, and verify that
each step works as intended before going on to the next step.

Debugging using the C-SPY simulator

You can also use the C-SPY simulator for debugging your ROM-monitor. You can make
C-SPY simulate the UART and read the communication data from a file. There is a
macro file serialData.mac included with the product that will set up the necessary
interrupts and feed the simulated UART with data. There is also a UART data file
SerialData.txt included, which contains some basic driver commands. When the
macro is used, the data from the file will be sent as input to the monitor, triggering the
different actions/calls. The files are located in 8051\src\rom.

Note: In the macro file serialData.mac, the registers SBUF and SCON are used by
default. Depending on the device you are using, you might need to modify the file by
replacing these registers to make the macro simulate your target device.

BUILDING AND DOWNLOADING YOUR ROM-MONITOR

After you have adapted the source code files, you can build your project. Note that it is
a good idea to divide this work into small steps by verifying only one part of the
ROM-monitor at a time. Repeat the work until you have successfully managed to build
and download the complete ROM-monitor.

Make sure that you pay attention to the following issues when you build your
ROM-monitor project:

● It can sometimes be difficult to write to target memory during download; typically,
the function byte_write_code (writing to code) can cause problems. Therefore,
you are recommended to initially select Suppress download. This way you can
start to verify that the ROM-monitor’s basic functions work, such as reading
memory and registers, or single stepping. Once this is done, you can deselect
Suppress download and download a test application.

● The ROM-monitor only uses 1 DPTR. Choose Project>Options>General
Options>Data Pointer and select 1 from the Number of DPTRs drop-down list.

● When you link your application program, you must verify that it is placed in
memory that does not overlap your ROM-monitor. This means that you must also
adapt the linker command file that you use for your application program
accordingly. In other words, make sure to exclude the memory reserved for the
ROM-monitor from the linker command file used when building your application
program. See Resources used by the ROM-monitor, page 408.
AFE1_AFE2-1:1

397

398

The ROM-monitor in detail

Some error messages might be generated; in that case each error is located close to a
function that needs to be corrected. You can easily move from error to error with the F4
key.

When you have successfully built your ROM-monitor project, you can download the
generated ROM-monitor using an appropriate download tool. Create a simple test
project. In the Options dialog box, choose ROM-monitor as the driver and set the baud
rate.

The ROM-monitor in detail
This illustration shows the program flow (thick arrow), as well as actions and events
(thin arrow) that can occur:

The ROM-monitor will be described by investigating source code implementation
details for:

● Early initializations

● The protocol loop

● Leaving the ROM-monitor

● Entering the ROM-monitor

● Resources used by the ROM-monitor.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Target-adapting the ROM-monitor

Note: Functions whose names end in _R10 are ROM-monitor library functions,
delivered with IAR Embedded Workbench.

EARLY INITIALIZATIONS

Before the main function

After a reset, neither variables nor the stack have any known values, which means they
first have to be initialized. The ROM-monitor will execute, beginning with the
cstartup.s51 file which initializes the stack pointer, going on to call
__low_level_init to perform any low-level initializations, and—depending on its
return value—continuing with the initialization of variables.

In the main function

When the main function has been entered, the required subsystems can be initialized.
This is illustrated by the following process:

1 The main function is structured in the following way:

void main(void)
{
/* -
* Enter a known runtime model.
*/
high_level_init();

In high_level_init you should implement all target-specific hardware initializations
that are not time critical.

2 If you have any LEDs on your target system that you want to use for debugging the
ROM-monitor, there is support for this prepared. In this case, the LED needs to be
initialized:

#ifdef DEBUG_METHOD_BLINK
/* -
* Initialize the LED used for debugging.
*/
led_init();

To use this debug method, you must define the DEBUG_METHOD_BLINK symbol, for
example in debug_method.h. In the same way, other visual and audible devices
available can be used.

3 For communication between the ROM-monitor and the C-SPY debugger, you must
initialize the UART for serial communication:
AFE1_AFE2-1:1

399

400

The ROM-monitor in detail

/* -
* Initialize the low level communication.
*/
uart_init();

Modify the uart_init function according to the needs of your target device.

The uart_init function will call the function set_baudrate to set the
communication speed, which initially is set to 9600 baud. If required, you can add
support for additional rates, for example 38400 and 57600. In this case, you must also
modify the function set_baudrate.

Make sure the communication speeds supported by set_baudrate are also defined in
the file chip_layout.h.

4 The following source code lines initialize the flags and variables used by the
ROM-monitor protocol loop:

/* -
* Initialize the ROM-monitor protocol.
*/
communication_init();

You should not need to modify this function.

5 To notify C-SPY that a hardware reset has occurred and that the ROM-monitor has
been reinitialized, the reset command 0xD8 is sent to C-SPY. This must be performed
during the early initialization:

/* -
* Let the host debugger know that there is a reset.
* You will see the character 'Ø' (the hexadecimal value
* 0xD8) in a terminal that is connected to the UART.
*/
send_hw_reset();

You should not need to modify this function.

6 The ROM-monitor requires some space in the IData memory area 0x00–0x7F. Any
application data in this area will be temporarily stored in an array named
remapped_idata while the ROM-monitor is executing. A small part of the IData
memory, the special register area, is reserved for the ROM-monitor.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Target-adapting the ROM-monitor

During the early initialization, registers are set to their initial values by the following
part of the source code:

/* -
* Application reset values for the critical registers
*/

spec_reg_A = 0xCE;
spec_reg_PSW = 0xCE;
spec_reg_R0 = 0xCE;
spec_reg_R1 = 0xCE;

#ifdef CHIP_PBANK_SFR
 spec_reg_PBANK = 0xCE;

 CHIP_PBANK_SFR = (MON_REMAPPED_IDATA_ADDR >> 8);
#endif /* CHIP_PBANK */

#ifdef CHIP_PBANK_EXT
 spec_reg_PDATA_EXT = 0xCE;

 CHIP_PBANK_EXT = (MON_REMAPPED_IDATA_ADDR >> 16);
#endif /* CHIP_PBANK_EXT */

#ifdef CHIP_XDATA_EN_SFR
 spec_reg_XDATA_EN = 0xCE;
#endif /* CHIP_XDATA_EN_REG */

There are additional fixed return codes that are used:

● 0xCC is returned when reading a protected SFR

● 0xCD is returned when the memory zone cannot be verified

● 0xCE is the uninitialized value for internal ROM-monitor registers.

7 To minimize stack consumption, entering the protocol loop is not performed using a
standard function call. Instead a jump instruction is used. In addition, the return
address is popped from the stack as the ROM-monitor never will return.

* Go to communication() step. Free the stack and LJMP to
* communication() because we will never exit. */

 asm("POP A");
 asm("POP A");

 asm("LJMP communication");

#endif /* STEP2_BAUDRATE */
AFE1_AFE2-1:1

401

402

The ROM-monitor in detail

THE PROTOCOL LOOP

After all initializations have been performed, the ROM-monitor is ready to be used for
debugging. The function communication in the file communication.c holds the
main protocol loop. In this loop, the Rx flag is continuously polled to monitor whether
a byte has been received on the UART. The Tx flag is used for two different purposes.
In the main loop, the Tx flag is continuously polled to check whether data should be
transmitted. While the application program is executing, the Tx flag is used for catching
any requests for execution stops.

This illustrates the protocol loop:

Enter the loop

1 Before the execution enters the actual loop, the Tx flag is checked:

 if(CHIP_Tx_bit)
 {
 CHIP_Tx_bit = 0;

 modeRegister |= Mode_HALTED;

 /* Tell host driver that we have stopped */
 sendByte_R10(Ind_BREAK_REACHED);
 }

This means that the application execution has stopped, either by:

● A stop execution command

● Single step

● Breakpoint hit.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Target-adapting the ROM-monitor

In the loop

1 The protocol loop will loop while the halted flag MODE_HALTED is set, which means
until the Go or any step commands are ordered by C-SPY:

 while(modeRegister & Mode_HALTED) /* Main loop */
 {...

Check Rx

1 The Rx flag is continuously checked and if it is set, a character has been received from
C-SPY. The data is moved to the receiveBuffer and the Rx flag is cleared.

 /* A byte was received */
 if(CHIP_Rx_bit)
 {
 receiveBuffer = CHIP_SBUF;

 CHIP_Rx_bit = 0;

 /* decode the received byte */
 received_byte = byteReceived_R10();

 /* if receivedByte != 0x0 then send the byte back */
 if(received_byte)
 sendByte_R10(received_byte);
 }

The byteRecieved_R10() function call will decode the received byte and update the
ROM-monitor state accordingly. A packet of data is constructed by a start byte, payload,
checksum, and a stop byte. If the received byte is part of a larger packet of data, the data
is stored and the loop is re-entered.

The byteRecieved_R10 function might sometimes also return a value to be sent back
to C-SPY. In most cases, this return value is an acknowledgment for the received data.

Check Tx

1 After the Rx flag has been checked, the Tx flag is checked for transmitted data. When
sending data packets to C-SPY, each byte is sent as soon as the UART is free. A
protocol library function holds the next byte to be sent, and the getNextByte_R10
function is used for getting it.

 /* A byte has been transmitted */
 if(CHIP_Tx_bit)
 {
 CHIP_Tx_bit = 0;
AFE1_AFE2-1:1

403

404

The ROM-monitor in detail

 if(modeRegister & Mode_MEMORY_READ)
 {
 /* load TXData with next character */
 getNextByte_R10();

 /* check if this is the last byte to send */
 if(TXData == Resp_END)
 modeRegister &= ~Mode_MEMORY_READ;

 /* send byte */
 sendByte_R10(TXData);
 }
 }

Leave the loop

1 When the Mode_HALTED flag is cleared, the ROM-monitor execution leaves the main
loop to initiate a step or Go of the application program being debugged. Before
application data and registers are restored, and before the execution is handed over to
the application, the Rx and Tx flags are set/cleared.

 if(flagRegister & Flag_LETS_STEP)
 {
 CHIP_Rx_bit = 0;
 CHIP_Tx_bit = 1;
 }
 else /* GO is implicit */
 {
 CHIP_Rx_bit = 0;
 CHIP_Tx_bit = 0;
 }

 c_runtime_leave();

}

The ROM-monitor uses the Tx interrupt mechanism by setting the Tx flag to execute one
single instruction of the application (single step). Otherwise (Go), both Rx and Tx are
cleared before continuing with the leave sequence.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Target-adapting the ROM-monitor

LEAVING THE ROM-MONITOR

When the execution leaves the ROM-monitor, shared resources such as registers and
data memory must be restored. This is done by the functions c_runtime_leave
(written in C) and monitor_leave (written in assembler):

 /* copy user R0 and R1 to special register area */
 /* from user register bank */
 spec_reg_R0 = remapped_idata[PSW & 0x18];
 spec_reg_R1 = remapped_idata[(PSW & 0x18) + 1];

 /* restore DPTR and SP */
#ifdef APP_EXTENDED_DPTR
 CHIP_DPX0 = app_reg[SPEC_SFR_DPX];
#endif /* APP_EXTENDED_DPTR */

 DPH = app_reg[SPEC_SFR_DPH];
 DPL = app_reg[SPEC_SFR_DPL];
 SP = app_reg[SPEC_SFR_SP];

 /* Leave C-runtime level */
 asm("LJMP monitor_leave");

Before jumping to the monitor_leave function, the registers R0, R1, and DPTR, as well
as the stack pointer of the application are restored.

The main reason for splitting the leave sequence into one C and one assembler routine
is to keep as much source code as possible in C, which benefits portability and makes
the code less device-specific.

The monitor_leave routine differs depending on where the IData memory of the
debugged application is stored during ROM-monitor execution. This is controlled by the
symbol MON_REMAP_IDATA_TO_MEM which is defined in chip_layout.h. In the
following example, the source code for PData storage is used:

monitor_leave:

 MOV R0, #MON_IDATA_END_ADDR ; destination source end
address -8 since we dont copy 0x78-0x7F
 MOV R1, #BYTE1(remapped_idata) + MON_IDATA_END_ADDR ;
source end address

#ifdef CHIP_PBANK_SFR
 MOV CHIP_PBANK_SFR,#BYTE2(remapped_idata) ; PData bank
#else
 #pragma message="CHIP_PBANK_SFR not set (defined in
chip_config.h)"
#endif
AFE1_AFE2-1:1

405

406

The ROM-monitor in detail

#ifdef CHIP_PBANK_EXT_SFR
 MOV CHIP_PBANK_EXT_SFR, #BYTE3(remapped_idata) ; high
bank
#endif

loop:
 MOVX A, @R1
 XCH A, @R0
 MOVX @R1, A
 DEC R1
 DEC R0
 CJNE R0, #0x01, loop

 ;; restore register values
#ifdef CHIP_XDATA_EN_SFR
 MOV CHIP_XDATA_EN_SFR,DATA_XDATA_EN
#endif

#ifdef CHIP_PBANK_SFR
 MOV CHIP_PBANK_SFR,DATA_PBANK
#endif ; CHIP_PBANK_SFR

#ifdef CHIP_PBANK_EXT_SFR
 MOV CHIP_PBANK_EXT_SFR, DATA_PBANK_EXT
#endif ; CHIP_PBANK_EXT_SFR

#ifdef CHIP_PBANK_SFR
 MOV CHIP_PBANK_SFR, DATA_PBANK
#endif

 MOV R1,DATA_R1
 MOV R0,DATA_R0
 MOV PSW,DATA_PSW
 MOV A,DATA_A

 SETB CHIP_EA_reab
 RETI

This assembler routine can be divided into two parts—copying data and restoring
registers.

● Copying

R0 is loaded with the destination address in IData (0x7F). Then, R1 is set to the used
offset within PData. The PData bank used is also initiated. The loop will then
exchange data between the two memory areas and thus restore application IData
memory.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Target-adapting the ROM-monitor

● Restoring

Because the debugged application might also use the PData bank, its control register
also needs to be restored, as well as the XData enable register if used. R0, R1, PSW,
and A are restored. Interrupts are enabled. Finally, executing RETI will make the
application PC be loaded from the stack, and thus the application program starts
executing.

ENTERING THE ROM-MONITOR

While the application is executing, the ROM-monitor can be entered by one of the
following possible reasons:

● Stop execution

● Single step

● Breakpoint hit.

In all these three cases, the status of the application execution is stored and the PC will
be located on the application stack.

For any custom breakpoint implementations, you must make sure that the PC is stored
on the stack in the same way as for interrupts and function calls, and to call the
assembler routine __monitor_enter with all registers unchanged.

Stop execution When you click the Stop icon in the C-SPY toolbar or choose
Debug>Stop Debugging, a stop command is sent to the
ROM-monitor. The UART will then initiate an interrupt and thus
break the application execution, and then jump back to the
ROM-monitor. Then, the ROM-monitor will be entered again via the
UART interrupt vector call to __monitor_enter.

Single step Because single step execution is initialized by setting the Tx interrupt
flag before leaving the ROM-monitor, this will trigger the interrupt
after executing one instruction. Then, the ROM-monitor will be
entered again via the UART interrupt vector call to
__monitor_enter.

Breakpoint hit Depending on which breakpoints that are supported, hitting a
breakpoint might need some extra handling. Assuming that software
breakpoints are supported, the original instruction is replaced by
CALL __monitor_enter. In this case, a breakpoint hit is more like
a change of program flow rather than an interrupt of program
execution. Nevertheless, __monitor_enter will be executed and
from there the ROM-monitor main protocol loop is entered.
AFE1_AFE2-1:1

407

408

The ROM-monitor in detail

Note: Because execution of both single step and stop rely on triggering the UART
interrupt, these stop mechanisms will be disabled if the debugged application program
disables global interrupt handling.

RESOURCES USED BY THE ROM-MONITOR

The ROM-monitor executes in the same environment as your application program,
which means it is vital that the two do not use the same resources concurrently. The
ROM-monitor uses the following resources:

● The UART interrupt

● Approximately 128 bytes of IData/XData/PData memory

● Approximately 3.5 Kbytes of code memory

● Approximately 7 bytes of Data memory for the special register area.

When the ROM-monitor is executing, it uses IData memory for variables and the stack,
and it stores application data.

The following illustration shows the ROM-monitor working memory:

All memory except for the range 0x78–0x7F is restored when switching between the
ROM-monitor and the application program.
AFE1_AFE2-1:1

C-SPY® Debugging Guide
for 8051

Index

Index

A
Abort (Report Assert option) . 75
__abortLaunch (C-SPY system macro). 266
absolute location, specifying for a breakpoint. 127
Access Type (Data breakpoints option) 122
Access type (Edit Memory Access option) 169
Access (Edit SFR option) . 160
Add to Watch Window (Symbolic Memory window context
menu) . 146
Add (SFR Setup window context menu). 158
Address Range (Find in Trace option) 185
Address (Edit SFR option) . 160
--ADe_protocol (C-SPY command line option) 312
Ambiguous symbol (Resolve Symbol Ambiguity option). 101
Analog Devices (C-SPY driver)

command line options . 311
setting options for . 378

application, built outside the IDE . 46
assembler labels, viewing . 84
assembler source code, fine-tuning 209
assembler symbols, using in C-SPY expressions 81
assembler variables, viewing . 84
assumptions, programming experience 23
Auto Scroll (Timeline
window context menu) 194, 198, 247
Auto window . 85
Autostep settings dialog box . 76
Autostep (Debug menu) . 52

B
--attach_to_running_target (C-SPY command line option)312
--backend (C-SPY command line option) 313
backtrace information

viewing in Call Stack window . 69
--banked_xdata (C-SPY command line option) 313
batch mode, using C-SPY in . 303
Baud rate (ROM-monitor option) 377

--baud_rate (C-SPY command line option). 314
Big Endian (Memory window context menu) 140
blocks, in C-SPY macros . 259
bold style, in this guide . 27
--boot_lock (C-SPY command line option). 315
Break on Throw (Debug menu) . 53
Break on Uncaught Exception (Debug menu). 53
Break (Debug menu). 52
breakpoint condition, example . 113
Breakpoint Usage window . 117
Breakpoint Usage (Infineon Emulator menu) 386
Breakpoint Usage (J-Link menu) 387
Breakpoint Usage (Silicon Labs Emulator menu) 387
Breakpoint Usage (TI emulator menu) 386
breakpoints

code, example . 284
connecting a C-SPY macro . 254
consumers of . 108
data . 122
data log . 124
description of . 103
disabling used by Stack window 109
icons for in the IDE . 106
in different target systems . 107
in flash memory . 108
in Memory window . 111
listing all . 117
reasons for using . 103
setting

in memory window . 111
using system macros . 112
using the dialog box . 110

single-stepping if not available 44
toggling . 110
types of . 104
useful tips. 113

Breakpoints dialog box
Code . 118
Data . 122
IX_Glossary-1

 409

410

Data Log . 124
Immediate . 125
Log . 119
Range. 121
Trace Start . 180
Trace Stop . 181

Breakpoints window . 115
Browse (Trace toolbar) . 176
byte order, setting in Memory window 139

C
C function information, in C-SPY. 62
C symbols, using in C-SPY expressions 80
C variables, using in C-SPY expressions 80
Cache type (Edit Memory Range option) 165
call chain, displaying in C-SPY . 62
Call stack information. 62
Call Stack window . 69

for backtrace information. 62
Call Stack (Timeline window context menu) 195
__cancelAllInterrupts (C-SPY system macro) 266
__cancelInterrupt (C-SPY system macro). 266
Clear All (Debug Log window context menu) 74
Clear Group (Registers User Groups
Setup window context menu) . 155
Clear Group (Registers User
Groups Setup window context menu) 155
Clear trace data (Trace toolbar). 176
__clearBreak (C-SPY system macro) 267
CLIB

consuming breakpoints . 109
library reference information for 26
naming convention. 28

clock frequency, simulated . 388
__closeFile (C-SPY system macro) 267
code breakpoints

overview . 104
padding . 107

toggling . 110
Code Coverage window . 220
Code Coverage (Disassembly window context menu) 67
Code in XRAM (Infineon driver) 371
--code_coverage_file (C-SPY command line option) 315
code, covering execution of . 220
command line options. 312

typographic convention . 27
command prompt icon, in this guide 27
communication problems . 391

reducing speed (Texas Instruments driver) 367
communication (Analog Devices driver) 379
communication (ROM-monitor driver). 377
communication (Silicon Labs driver) 381
Communication (Texas Instruments driver) 367
--communication_logfile (C-SPY command line option) . 316
computer style, typographic convention 26
conditional statements, in C-SPY macros 258
--connect_to (C-SPY command line option) 316
context menu, in windows . 83
conventions, used in this guide . 26
Copy Window Contents (Disassembly
window context menu) . 68
Copy (Debug Log window context menu) 74
copyright notice . 2
--core (C-SPY command line option) 316
Core (Cores window) . 77
cores

inspecting state of . 76
Cores window. 76
--core_clock_frequency (C-SPY command line option) . . 317
CPU clock frequency, overriding (Analog Devices driver)379
cspybat . 303

reading options from file (-f) . 322
current position, in C-SPY Disassembly window 66
cursor, in C-SPY Disassembly window 66
--cycles (C-SPY command line option) 317
Cycles (Cores window). 77
C-SPY

batch mode, using in . 303
IX_Glossary-1

C-SPY® Debugging Guide
for 8051

Index

debugger systems, overview of 35
environment overview . 31
plugin modules, loading. 45
scripting. See macros
setting up . 43–44
starting the debugger . 45

C-SPY drivers
differences between drivers . 37
overview . 37
specifying . 359
types of . 36

C-SPY expressions . 80
evaluating, using Macro Quicklaunch window 301
evaluating, using Quick Watch window. 97
in C-SPY macros . 258
Tooltip watch, using . 79
Watch window, using. 79

C-SPY macros
blocks. 259
conditional statements . 258
C-SPY expressions . 258
examples . 251

checking status of register. 253
creating a log macro . 254

executing . 251
connecting to a breakpoint 254
using Quick Watch . 253
using setup macro and setup file 253

functions . 81, 256
keywords . 256–257, 259
loop statements . 259
macro statements . 258
parameters . 257
setup macro file . 250

executing. 253
setup macro functions . 250

summary . 261
system macros, summary of. 264
using . 249

variables. 82, 256
C-SPY options

Extra Options. 361
Images . 360
Plugins . 362
Setup . 359

C-SPYLink . 36
C-STAT for static analysis, documentation for. 25
C++ terminology. 26

D
DAS server . 41

specifying connection . 389
Data bits (ROM-monitor option) 377
data breakpoints, overview . 104
Data Coverage (Memory window context menu) 140
data coverage, in Memory window. 138
data log breakpoints, overview . 105
Data Log Summary window . 203
Data Log Summary (Simulator menu) 385
Data Log window . 200
Data Log (Simulator menu) . 385
Data Log (Timeline window context menu) 198
ddf (filename extension), selecting a file 45
Debug Log window . 73
Debug menu (C-SPY main window). 51
Debug (Report Assert option) . 75
--debugfile (cspybat option) . 317
debugger concepts, definitions of . 33
debugger drivers

setting options for . 357
simulator . 38

debugger drivers. See C-SPY drivers
Debugger Macros window . 299
debugger system overview . 35
debugging projects

externally built applications . 46
loading multiple images. 47
IX_Glossary-1

 411

412

debugging, RTOS awareness . 33
--debug_lock (C-SPY command line option) 318
__delay (C-SPY system macro) . 268
Delay (Autostep Settings option) . 76
Delete All (Breakpoints window context menu) 116
Delete (Breakpoints window context menu) 116
Delete (SFR Setup window context menu) 158
Delete/revert All Custom SFRs (SFR Setup window context
menu) . 158
Description (Edit Interrupt option) 236
description (interrupt property) . 236
Device description file (debugger option) 360
device description files . 45

definition of . 49
memory zones . 131
modifying . 49
register zone. 131
specifying interrupts . 278

--devices_after (C-SPY command line option) 318
--devices_before (C-SPY command line option) 319
Disable All (Breakpoints window context menu) 116
Disable (Breakpoints window context menu) 116
__disableInterrupts (C-SPY system macro) 268
--disable_interrupts (C-SPY command line option) 319
Disassembly window . 64

context menu . 66
disclaimer . 2
DLIB

consuming breakpoints . 108
naming convention. 28

do (macro statement) . 259
document conventions . 26
documentation

overview of guides. 25
overview of this guide . 23

Download options (Analog Devices driver) 378
Download options (FS2 driver). 368
Download options (Infineon driver) 370
Download options (Nordic Semiconductor driver) 374
Download options (ROM-monitor driver) 376

Download options (Segger J-Link driver) 372
Download options (Silicon Labs driver) 380
Download options (Texas Instruments driver) 365
--download_only (C-SPY command line option) 319
Driver (debugger option) . 359
__driverType (C-SPY system macro) 268
--drv_communication_log (C-SPY command line option) 320
--drv_silabs_page_size (C-SPY command line option). . . 320
--drv_suppress_download (C-SPY command line option) 320
--drv_verify_download (C-SPY command line option) . . 321

E
Edit Expressions (Trace toolbar). 177
Edit Interrupt dialog box. 236
Edit Memory Access dialog box . 168
Edit Memory Range dialog box 159, 164
Edit Settings (Trace toolbar) . 177
Edit (Breakpoints window context menu). 116
Edit (SFR Setup window context menu) 158
edition, of this guide . 2
Enable All (Breakpoints window context menu). 116
Enable interrupt simulation (Interrupt Setup option). 234
Enable Log File (Log File option). 74
Enable (Breakpoints window context menu). 116
Enable (Timeline window context menu) 195
__enableInterrupts (C-SPY system macro) 269
Enable/Disable Breakpoint (Call
Stack window context menu) . 70
Enable/Disable Breakpoint (Disassembly window context
menu) . 68
Enable/Disable (Trace toolbar) . 176
End address (Memory Save option) 141
endianness. See byte order
Enter Location dialog box. 126
--erase_data_flash (C-SPY command line option) 321
--erase_flash (C-SPY command line option). 321
__evaluate (C-SPY system macro) 269
Evaluate Now (Macro Quicklaunch
window context menu) . 302
IX_Glossary-1

C-SPY® Debugging Guide
for 8051

Index

examples
C-SPY macros . 251
interrupts

interrupt logging . 233
timer . 230

macros
checking status of register. 253
creating a log macro . 254
using Quick Watch . 253

performing tasks and continue execution 113
tracing incorrect function arguments 113

Exclude system breakpoints on (debugger option) 359
execUserExecutionStarted (C-SPY setup macro) 262
execUserExecutionStopped (C-SPY setup macro) 262
execUserExit (C-SPY setup macro) 263
execUserPreload (C-SPY setup macro) 261
execUserPreReset (C-SPY setup macro). 263
execUserReset (C-SPY setup macro) 263
execUserSetup (C-SPY setup macro) 262
executed code, covering . 220
execution history, tracing . 175
Execution state (Cores window) . 76
expressions. See C-SPY expressions
extended command line file, for cspybat. 322
Extra Options, for C-SPY . 361

F
-f (cspybat option). 322
Factory ranges (Memory Configuration option) 162
File format (Memory Save option) 141
file types

device description, specifying in IDE 45
macro . 44, 360

filename extensions
ddf, selecting device description file 45
mac, using macro file . 44

Filename (Memory Restore option) 142
Filename (Memory Save option) 142

Fill dialog box. 143
__writeMemory8 (C-SPY system macro) 270
__writeMemory16 (C-SPY system macro) 271
__writeMemory32 (C-SPY system macro) 272
Find in Trace dialog box . 184
Find in Trace window. 185
Find in Trace (Disassembly window context menu) 68
Find (Memory window context menu) 140
Find (Trace toolbar) . 177
first activation time (interrupt property)
definition of . 226
First activation (Edit Interrupt option) 236
flash

erasing (Analog Devices driver) 378
erasing (Infineon driver) . 370
erasing (Texas Instruments driver). 365
protecting (Texas Instruments driver) 366
size of page (Silicon Labs driver) 381

flash memory, load library module to 274
__fmessage (C-SPY macro keyword) 259
for (macro statement) . 259
Force (Forced Interrupt window context menu) 238
Forced Interrupt window. 237
Forced Interrupts (Simulator menu) 385
Format (Registers User Groups
Setup window context menu) . 155
Format (Registers window context menu) 153
formats, C-SPY input . 33
FS2 System Navigator (C-SPY driver)

command line options . 309
setting options for . 368

--fs2_configuration (C-SPY command line option) 322
--fs2_flash_cfg_entry (C-SPY command line option). . . . 323
--fs2_flash_in_code (C-SPY command line option) 323
--fs2_ram_in_code (C-SPY command line option) 323
Function Profiler window . 214
Function Profiler (Simulator menu) 384
Function Trace window . 179
functions

C-SPY running to when starting 44, 359
IX_Glossary-1

 413

414

most time spent in, locating . 209
--function_profiling (cspybat option) 324

G
Go to Source (Breakpoints window context menu). 115
Go to Source (Call Stack window context menu) 70
Go To Source (Timeline
window context menu) 195, 199, 247
Go (Debug menu) . 51, 61
Graphical bar (Memory Configuration dialog box). 163

H
--handshake_at_9600 (C-SPY command line option) 324
Handshaking (ROM-monitor option) 377
highlighting, in C-SPY . 62
Hold time (Edit Interrupt option) 237
hold time (interrupt property), definition of 227

I
IAR debugger driver plugin (debugger option) 363
icons, in this guide . 27
if else (macro statement) . 258
if (macro statement) . 258
Ignore (Report Assert option) . 75
Images window. 54
Images, loading multiple. 360
immediate breakpoints, overview 105
Include (Log File option) . 74
Infineon (C-SPY driver)

command line options . 309
setting options for . 370

--infineon_ram_in_code (C-SPY command line option). . 325
input formats, C-SPY . 33
Input Mode dialog box . 72
input, special characters in Terminal I/O window. 72
installation directory . 26

Instruction Profiling (Disassembly window context menu) 67
Intel-extended, C-SPY input format 33
Intel-extended, C-SPY output format 36
Interrupt Log graph in Timeline window 245
Interrupt Log Summary window. 243
Interrupt Log window . 240
Interrupt Setup dialog box . 234
Interrupt Setup (Simulator menu) 385
Interrupt Status window . 238
interrupt system, using device description file 229
Interrupt (Edit Interrupt option) . 236
Interrupt (Timeline window context menu). 247
interrupts

adapting C-SPY system for target hardware 229
simulated, introduction to . 225
timer, example . 230
using system macros . 228

__isBatchMode (C-SPY system macro) 273
italic style, in this guide . 27
I/O register. See SFR

J
--jlink_connection_id (C-SPY command line option). . . . 325
--jlink_log_file (C-SPY command line option). 325
--jlink_power (C-SPY command line option) 326
--jlink_speed (C-SPY command line option) 326
J-Link menu . 387

K
--key_noN (C-SPY command line option) 327

L
labels (assembler), viewing. 84
Leave Target Running (Infineon Emulator menu) 386
Leave Target Running (Texas
Instruments Emulator menu). 386
IX_Glossary-1

C-SPY® Debugging Guide
for 8051

Index

--leave_target_running (C-SPY command line option). . . 327
Length (Fill option). 143
library functions

C-SPY support for using, plugin module 332
online help for . 26

lightbulb icon, in this guide. 27
linker options

typographic convention . 27
consuming breakpoints . 108

Little Endian (Memory window context menu) 139
Live Watch window . 91
__loadImage (C-SPY system macro) 273
loading multiple debug files, list currently loaded 54
loading multiple images . 47
Locals window . 87
--lock_bits (C-SPY command line option) 328
--lock_bits_pages (C-SPY command line option) 328
log breakpoints, overview. 104
Log communication (debugger option) 364
Log communication (ROM-monitor option). 378
Log File dialog box. 74
Logging>Set Log file (Debug menu) 53
Logging>Set Terminal I/O Log file (Debug menu). 53
loop statements, in C-SPY macros 259

M
mac (filename extension), using a macro file 44
--macro (C-SPY command line option) 329
macro files, specifying . 44, 360
Macro Quicklaunch window. 301
Macro Registration window . 297
macro statements . 258
macros

executing . 251
using . 249

--macro-param (C-SPY command line option) 329
main function, C-SPY running to when starting 44, 359
--mapu (C-SPY command line option) 330

Memory access checking (Memory Access Setup option) 167
Memory Access Setup dialog box. 166
Memory Access Setup (Simulator menu) 384
Memory Configuration dialog box 161
Memory Configuration (J-Link menu) 387
Memory Fill (Memory window context menu) 140
memory map. 166
Memory Restore dialog box . 142
Memory Restore (Memory window context menu) 140
Memory Save dialog box . 141
Memory Save (Memory window context menu). 140
Memory window. 137
memory zones. 130

in device description file . 131
__memoryRestore (C-SPY system macro) 274
__memorySave (C-SPY system macro) 275
Memory>Restore (Debug menu) . 53
Memory>Save (Debug menu). 53
menu bar, C-SPY-specific . 51
__message (C-SPY macro keyword) 259
__messageBoxYesCancel (C-SPY system macro) 276
__messageBoxYesNo (C-SPY system macro) 276
Messages window, amount of output 73
migration, from earlier IAR compilers 25
MISRA C

documentation . 25
Mixed Mode (Disassembly window context menu) 68
Motorola, C-SPY input format . 33
Motorola, C-SPY output format . 36
Move to PC (Disassembly window context menu) 67
--multiple_devices (C-SPY command line option) 330

N
Name (Edit SFR option) . 159
naming conventions . 27
Navigate (Timeline window
context menu) . 194, 197, 246
New Breakpoint (Breakpoints window context menu) . . . 116
IX_Glossary-1

 415

416

Next Statement (Debug menu) . 52
Next Symbol (Symbolic Memory window context menu) 146
Nordic Semiconductor (C-SPY driver)

command line options . 310
setting options for . 374

--nr_of_extra_images (C-SPY command line option). . . . 330
--number_of_banks (C-SPY command line option) 331
Nu-Link (C-SPY driver)

setup options for . 375

O
Open User Groups Setup Window (Registers window context
menu) . 154
__openFile (C-SPY system macro). 277
Operation (Fill option) . 143
operators, sizeof in C-SPY . 82
optimizations, effects on variables 82
options

in the IDE . 357
on the command line . 312, 361

Options (Stack window context menu) 150
__orderInterrupt (C-SPY system macro). 278
Originator (debugger option) . 363

P
-p (C-SPY command line option) 331
__param (C-SPY macro keyword) 257
parameters

tracing incorrect values of . 62
typographic convention . 27

Parity (ROM-monitor option) . 377
part number, of this guide . 2
PC (Cores window). 77
Peripheral simulation (C-SPY simulator option). 364
peripheral units

displayed in Registers window. 130
in C-SPY expressions . 81

initializing using setup macros. 250
simulating . 364

peripherals register. See SFR
Please select one symbol
(Resolve Symbol Ambiguity option) 101
--plugin (C-SPY command line option) 332
plugin modules (C-SPY). 36

loading . 45
Plugins (C-SPY options). 362
__popSimulatorInterruptExecutingStack (C-SPY
system macro). 279
pop-up menu. See context menu
Port (ROM-monitor option) . 377
--power_target (C-SPY command line option) 332
prerequisites, programming experience 23
--preserve_hex_files (C-SPY command line option). 333
Previous Symbol (Symbolic
Memory window context menu) . 146
probability (interrupt property) . 237

definition of . 226
Probability % (Edit Interrupt option) 237
--proc_codebank_end (C-SPY command line option). . . . 333
--proc_codebank_mask (C-SPY command line option) . . 334
--proc_codebank_reg (C-SPY command line option) 334
--proc_codebank_start (C-SPY command line option) . . . 335
--proc_code_model (C-SPY command line option) 333
--proc_core (C-SPY command line option). 335
--proc_data_addr_24 (C-SPY command line option) 335
--proc_data_model (C-SPY command line option) 336
--proc_DPHn (C-SPY command line option) 336
--proc_DPLn (C-SPY command line option) 337
--proc_dptr_automod_op (C-SPY command line option) . 337
--proc_dptr_automod_type
(C-SPY command line option) . 338
--proc_dptr_DPC (C-SPY command line option) 338
--proc_dptr_DPS (C-SPY command line option) 338
--proc_dptr_mask (C-SPY command line option). 339
--proc_dptr_nr_of (C-SPY command line option). 339
--proc_dptr_switch_method (C-SPY
command line option) . 339
IX_Glossary-1

C-SPY® Debugging Guide
for 8051

Index

--proc_dptr_visibility (C-SPY command line option) 340
--proc_DPXn (C-SPY command line option) 340
--proc_driver (C-SPY command line option) 341
--proc_exclude_exit_breakpoint (C-SPY
command line option) . 342
--proc_exclude_getchar_breakpoint (C-SPY
command line option) . 342
--proc_exclude_putchar_breakpoint (C-SPY
command line option) . 342
--proc_extended_stack (C-SPY command line option) . . . 343
--proc_nr_virtual_regs (C-SPY command line option) . . . 343
--proc_pc_readonly (C-SPY command line option) 343
--proc_pdata_bank_ext_reg_addr (C-SPY
command line option) . 344
--proc_pdata_bank_reg_addr (C-SPY
command line option) . 344
--proc_silent (C-SPY command line option). 344
--proc_xdata_banking (C-SPY command line option) . . . 345
Profile Selection (Timeline window context menu) 195
profiling

analyzing data . 211
on function level . 210
on instruction level. 213

profiling information, on functions and instructions 209
profiling sources

trace (calls) . 210, 215
trace (flat) . 210, 216

program execution
breaking . 104–105
in C-SPY . 57

programming experience . 23
program. See application
projects, for debugging externally built applications. 46
publication date, of this guide . 2

Q
Quick Watch window . 97

executing C-SPY macros . 253

R
RAM (Edit Memory Access option) 165
Range for (Viewing Range option) 206
Range (Range breakpoints option) 121–122
__readFile (C-SPY system macro) 280
__readFileByte (C-SPY system macro) 280
__readMemoryByte (C-SPY system macro) 281
__readMemory8 (C-SPY system macro) 281
__readMemory16 (C-SPY system macro) 281
__readMemory32 (C-SPY system macro) 282
--reduce_speed (C-SPY command line option). 345
reference information, typographic convention. 27
Refresh (Debug menu) . 53
register groups . 130

predefined, enabling. 151
Register User Groups Setup window 154
registered trademarks . 2
__registerMacroFile (C-SPY system macro) 282
Registers window . 151
--registers_after (C-SPY command line option) 345
--registers_before (C-SPY command line option) 346
registers, displayed in Registers window 151
Remove All (Macro Quicklaunch window
context menu) . 302
Remove (Macro Quicklaunch window context menu) . . . 302
Remove (Registers User Groups
Setup window context menu) . 155
Repeat interval (Edit Interrupt option) 236
repeat interval (interrupt property), definition of 226
Replace (Memory window context menu) 140
Report Assert dialog box . 75
Reset (Debug menu) . 52
__resetFile (C-SPY system macro) 283
Resolve Source Ambiguity dialog box 128
Restore (Memory Restore option). 142
--retain_memory (C-SPY command line option) 346
--retain_pages (C-SPY command line option) 346
return (macro statement) . 259
IX_Glossary-1

 417

418

--rom_mon_bp_padding (padding breakpoints) 108
--rom_serial_port (C-SPY command line option) 347
ROM-monitor (C-SPY driver)

command line options . 310
setting options for . 375

ROM-monitor, definition of . 36
ROM/Flash (Edit Memory Access option) 165
RTOS awareness debugging . 33
RTOS awareness (C-SPY plugin module) 33
Run to Cursor (Call Stack window context menu) 70
Run to Cursor (Debug menu) . 52
Run to Cursor (Disassembly window context menu) 67
Run to Cursor, command for executing 62
Run to (C-SPY option) . 44, 359

S
Save Custom SFRs (SFR Setup window context menu) . . 159
Save to File (Register User Groups
Setup window context menu) . 155
Save to File (Registers window context menu) 154
Save to File (Timeline window context menu) 195
Save (Memory Save option) . 142
Save (Trace toolbar) . 177
Scale (Viewing Range option) . 207
scripting C-SPY. See macros
security keys (Infineon driver) . 371
Segger J-Link (C-SPY driver)

See also J-Link
command line options . 310
menu . 387
setting options for . 372

Select All (Debug Log window context menu) 74
Select Graphs
(Timeline window context menu) 195, 199, 248
Select plugins to load (debugger option). 362
Serial Number dialog box . 388
Serial Port options (Analog Devices driver) 379
Serial Port options (ROM-monitor driver) 377

Serial Port options (Silicon Labs driver) 381
--serial_port (C-SPY command line option) 347
Server Selection dialog box . 389
--server_address (C-SPY command line option) 348
--server_name (C-SPY command line option) 348
Set Data Breakpoint (Memory window context menu) . . . 140
Set Data Log
Breakpoint (Memory window context menu) 141
Set Next Statement (Debug menu) 53
Set Next Statement (Disassembly window context menu) . 68
__setCodeBreak (C-SPY system macro). 283
__setDataBreak (C-SPY system macro) 284
__setDataLogBreak (C-SPY system macro) 285
__setLogBreak (C-SPY system macro) 286
__setSimBreak (C-SPY system macro) 288
__setTraceStartBreak (C-SPY system macro) 288
__setTraceStopBreak (C-SPY system macro). 289
setup macro file, registering . 44
setup macro functions . 250

reserved names. 261
Setup macros (debugger option) . 360
Setup (C-SPY options) . 359
SFR

in Registers window. 153
using as assembler symbols . 81

SFR Setup window . 156
SFR/Uncached (Edit Memory Access option) 165
shortcut menu. See context menu
Show all images (Images window context menu) 55
Show All (SFR Setup window context menu). 158
Show Arguments (Call Stack window context menu). 70
Show Custom SFRs only (SFR Setup
window context menu) . 158
Show Factory SFRs only (SFR Setup
window context menu) . 158
Show Numerical Value (Timeline
window context menu) . 199
Show offsets (Stack window context menu) 149
Show only (Image window context menu) 55
Show variables (Stack window context menu) 149
IX_Glossary-1

C-SPY® Debugging Guide
for 8051

Index

Silabs (C-SPY driver)
command line options . 311
setting options for . 379

--silabs_2wire_interface (C-SPY command line option). . 349
--silent (C-SPY command line option) 349
Silicon Labs 2-wire interface (Cygnal Emulator option). . 380
Simulated Frequency dialog box. 388
simulating interrupts, enabling/disabling 234
Simulator menu. 384
simulator, introduction . 38
--sim_guard_stacks (C-SPY command line option) 350
Size (Edit SFR option) . 160
Size (Timeline window context menu) 199
sizeof . 82
__smessage (C-SPY macro keyword). 259
software breakpoints

behavior . 106
enabling (Infineon driver) . 371
use of . 107

--software_breakpoints (C-SPY command line option) . . 350
Solid Graph (Timeline window context menu) 199
Sort by (Timeline window context menu). 247
__sourcePosition (C-SPY system macro) 290
special function registers (SFR)

in Registers window. 153
using as assembler symbols . 81

stack overflow warnings (Texas Instruments driver) 367
Stack window . 147
--stack_overflow (C-SPY command line option) 350
standard C, sizeof operator in C-SPY 82
Start address (Fill option) . 143
Start address (Memory Save option) 141
static analysis

documentation for . 25
Statics window . 94
Status (Cores window) . 77
stdin and stdout, redirecting to C-SPY window 71
Step Into (Debug menu) . 52
Step Into, description . 59

Step Out (Debug menu) . 52
Step Out, description. 60
Step Over (Debug menu) . 52
Step Over, description. 59
step points, definition of . 58
Stop bits (ROM-monitor option). 377
Stop Debugging (Debug menu) . 52
Stop Timers on Halt (Texas Instruments Emulator menu) 386
__strFind (C-SPY system macro) 291
__subString (C-SPY system macro) 291
Suppress download (debugger option) 363
--suppress_download (C-SPY command line option) 351
Symbolic Memory window. 144
Symbols window . 99
symbols, using in C-SPY expressions. 80

T
Target options (FS2 driver). 369, 373
Target options (Infineon driver) . 371
Target options (Texas Instruments driver) 367
target system, definition of . 35
__targetDebuggerVersion (C-SPY system macro) 292
Terminal IO Log Files (Terminal IO Log Files option) . . . 72
Terminal I/O Log Files dialog box 72
Terminal I/O window . 63, 71
terminology. 26
Texas Instruments (C-SPY driver)

command line options . 308
setting options for . 365

Text search (Find in Trace option) 184
Third-Party Driver (debugger options) 363
Time Axis Unit (Timeline
window context menu) 195, 199, 248
Timeline window . 192, 196, 245
--timeout (C-SPY command line option) 351
timer interrupt, example . 230
Toggle Breakpoint (Code) (Call
Stack window context menu) . 70
IX_Glossary-1

 419

420

Toggle Breakpoint (Code) (Disassembly
window context menu) . 67
Toggle Breakpoint (Log) (Call
Stack window context menu) . 70
Toggle Breakpoint (Log) (Disassembly
window context menu) . 67
Toggle Breakpoint (Trace Start) (Call
Stack window context menu) . 70
Toggle Breakpoint (Trace Start) (Disassembly
window context menu) . 68
Toggle Breakpoint (Trace Stop) (Call
Stack window context menu) . 70
Toggle Breakpoint (Trace Stop) (Disassembly
window context menu) . 68
Toggle DTR (ROM-monitor option). 377
Toggle RTS (ROM-monitor option) 378
Toggle source (Trace toolbar). 176
--toggle_DTR (C-SPY command line option). 351
--toggle_RTS (C-SPY command line option) 352
__toLower (C-SPY system macro) 292
tools icon, in this guide . 27
__toString (C-SPY system macro) 293
__toUpper (C-SPY system macro) 293
trace . 173, 187
Trace Expressions window . 182
trace start and stop breakpoints, overview 104
Trace Start breakpoints dialog box 180
Trace Stop breakpoints dialog box 181
Trace window . 176
trace (calls), profiling source 210, 215
trace (flat), profiling source 210, 216
trace, in Timeline window . 192, 196
trademarks . 2
Trigger At (breakpoints option) . 121
typographic conventions . 26

U
UBROF. 33
Unavailable, C-SPY message . 83

Universal Binary Relocatable Object Format. See UBROF
__unloadImage(C-SPY system macro) 294
USB Device Selection dialog box. 389
--usb_id (C-SPY command line option) 352
--usb_interface (C-SPY command line option) 352
Use command line options (debugger option). 361
Use Extra Images (debugger option). 360
Use manual ranges (Memory Access Setup option) 167
Use ranges based on (Memory Access Setup option) 167
Used ranges (Memory Configuration option) 163
user application, definition of . 35

V
Value (Fill option) . 143
__var (C-SPY macro keyword). 256
variables

effects of optimizations . 82
information, limitation on . 82
using in C-SPY expressions. 80

variance (interrupt property), definition of 227
Variance % (Edit Interrupt option) 237
--verify_all (C-SPY command line option) 353
--verify_download (C-SPY command line option) 353
version of this guide . 2
View Group (Registers window context menu) 153
View User Group (Registers window context menu) 153
Viewing Range dialog box . 206
Viewing Range (Timeline window
context menu) . 198
visualSTATE, C-SPY plugin module for 36

W
warnings icon, in this guide . 27
Watch window . 89

using . 79
web sites, recommended . 26
while (macro statement) . 259
IX_Glossary-1

C-SPY® Debugging Guide
for 8051

Index

windows, specific to C-SPY . 53
With I/O emulation modules (linker option), using. 71
__writeFile (C-SPY system macro) 294
__writeFileByte (C-SPY system macro) 295
__writeMemoryByte (C-SPY system macro) 295
__writeMemory8 (C-SPY system macro) 295
__writeMemory16 (C-SPY system macro) 296
__writeMemory32 (C-SPY system macro) 296

X
XRAM, code in RAM (Infineon driver) 371

Z
zone

defined in device description file 131
in C-SPY . 130
part of an absolute address . 127

Zone (Edit SFR option). 160
Zoom (Timeline window
context menu) . 194, 198, 247

Symbols
__abortLaunch (C-SPY system macro). 266
__cancelAllInterrupts (C-SPY system macro) 266
__cancelInterrupt (C-SPY system macro). 266
__clearBreak (C-SPY system macro) 267
__closeFile (C-SPY system macro) 267
__delay (C-SPY system macro) . 268
__disableInterrupts (C-SPY system macro) 268
__driverType (C-SPY system macro) 268
__enableInterrupts (C-SPY system macro) 269
__evaluate (C-SPY system macro) 269
__fillMemory8 (C-SPY system macro) 270
__fillMemory16 (C-SPY system macro). 271
__fillMemory32 (C-SPY system macro). 272
__fmessage (C-SPY macro keyword) 259

__isBatchMode (C-SPY system macro) 273
__loadImage (C-SPY system macro) 273
__memoryRestore (C-SPY system macro) 274
__memorySave (C-SPY system macro) 275
__message (C-SPY macro keyword) 259
__messageBoxYesCancel (C-SPY system macro) 276
__messageBoxYesNo (C-SPY system macro) 276
__openFile (C-SPY system macro). 277
__orderInterrupt (C-SPY system macro). 278
__param (C-SPY macro keyword) 257
__popSimulatorInterruptExecutingStack (C-SPY
system macro). 279
__readFile (C-SPY system macro) 280
__readFileByte (C-SPY system macro) 280
__readMemoryByte (C-SPY system macro) 281
__readMemory8 (C-SPY system macro) 281
__readMemory16 (C-SPY system macro) 281
__readMemory32 (C-SPY system macro) 282
__registerMacroFile (C-SPY system macro) 282
__resetFile (C-SPY system macro) 283
__setCodeBreak (C-SPY system macro). 283
__setDataBreak (C-SPY system macro) 284
__setDataLogBreak (C-SPY system macro) 285
__setLogBreak (C-SPY system macro) 286
__setSimBreak (C-SPY system macro) 288
__setTraceStartBreak (C-SPY system macro) 288
__setTraceStopBreak (C-SPY system macro). 289
__smessage (C-SPY macro keyword). 259
__sourcePosition (C-SPY system macro) 290
__strFind (C-SPY system macro) 291
__subString (C-SPY system macro) 291
__targetDebuggerVersion (C-SPY system macro) 292
__toLower (C-SPY system macro) 292
__toString (C-SPY system macro) 293
__toUpper (C-SPY system macro) 293
__unloadImage (C-SPY system macro) 294
__var (C-SPY macro keyword). 256
__writeFile (C-SPY system macro) 294
__writeFileByte (C-SPY system macro) 295
__writeMemoryByte (C-SPY system macro) 295
IX_Glossary-1

 421

422

__writeMemory8 (C-SPY system macro) 295
__writeMemory16 (C-SPY system macro) 296
__writeMemory32 (C-SPY system macro) 296
-f (cspybat option). 322
-p (C-SPY command line option) 331
--ADe_protocol (C-SPY command line option) 312
--attach_to_running_target (C-SPY command line option)312
--backend (C-SPY command line option) 313
--banked_xdata (C-SPY command line option) 313
--baud_rate (C-SPY command line option). 314
--boot_lock (C-SPY command line option). 315
--code_coverage_file (C-SPY command line option) 315
--communication_logfile (C-SPY command line option) . 316
--connect_to (C-SPY command line option) 316
--core (C-SPY command line option) 316
--core_clock_frequency (C-SPY command line option) . . 317
--cycles (C-SPY command line option) 317
--debugfile (cspybat option) . 317
--debug_lock (C-SPY command line option) 318
--devices_after (C-SPY command line option) 318
--devices_before (C-SPY command line option) 319
--disable_interrupts (C-SPY command line option) 319
--download_only (C-SPY command line option) 319
--drv_communication_log (C-SPY command line option) 320
--drv_silabs_page_size (C-SPY command line option). . . 320
--drv_suppress_download (C-SPY command line option) 320
--drv_verify_download (C-SPY command line option) . . 321
--erase_data_flash (C-SPY command line option) 321
--erase_flash (C-SPY command line option). 321
--fs2_configuration (C-SPY command line option) 322
--fs2_flash_cfg_entry (C-SPY command line option). . . . 323
--fs2_flash_in_code (C-SPY command line option) 323
--fs2_ram_in_code (C-SPY command line option) 323
--function_profiling (cspybat option) 324
--handshake_at_9600 (C-SPY command line option) 324
--infineon_ram_in_code (C-SPY command line option). . 325
--jlink_connection_id (C-SPY command line option) 325
--jlink_log_file (C-SPY command line option). 325
--jlink_power (C-SPY command line option) 326

--jlink_speed (C-SPY command line option) 326
--key_noN (C-SPY command line option) 327
--leave_target_running (C-SPY command line option). . . 327
--lock_bits (C-SPY command line option) 328
--lock_bits_pages (C-SPY command line option) 328
--macro (C-SPY command line option) 329
--macro_param (C-SPY command line option). 329
--mapu (C-SPY command line option) 330
--multiple_devices (C-SPY command line option) 330
--nr_of_extra_images (C-SPY command line option). . . . 330
--number_of_banks (C-SPY command line option) 331
--plugin (C-SPY command line option) 332
--power_target (C-SPY command line option) 332
--preserve_hex_files (C-SPY command line option). 333
--proc_codebank_end (C-SPY command line option). . . . 333
--proc_codebank_mask (C-SPY command line option) . . 334
--proc_codebank_reg (C-SPY command line option) 334
--proc_codebank_start (C-SPY command line option) . . . 335
--proc_code_model (C-SPY command line option) 333
--proc_core (C-SPY command line option). 335
--proc_data_addr_24 (C-SPY command line option) 335
--proc_data_model (C-SPY command line option) 336
--proc_DPHn (C-SPY command line option) 336
--proc_DPLn (C-SPY command line option) 337
--proc_dptr_automod_op (C-SPY command line option) . 337
--proc_dptr_automod_type
(C-SPY command line option) . 338
--proc_dptr_DPC (C-SPY command line option) 338
--proc_dptr_DPS (C-SPY command line option) 338
--proc_dptr_mask (C-SPY command line option). 339
--proc_dptr_nr_of (C-SPY command line option). 339
--proc_dptr_switch_method (C-SPY
command line option) . 339
--proc_dptr_visibility (C-SPY command line option) 340
--proc_DPXn (C-SPY command line option) 340
--proc_driver (C-SPY command line option) 341
--proc_exclude_exit_breakpoint (C-SPY
command line option) . 342
--proc_exclude_getchar_breakpoint (C-SPY
command line option) . 342
IX_Glossary-1

C-SPY® Debugging Guide
for 8051

Index

--proc_exclude_putchar_breakpoint (C-SPY
command line option) . 342
--proc_extended_stack (C-SPY command line option) . . . 343
--proc_nr_virtual_regs . 307
--proc_nr_virtual_regs (C-SPY command line option) . . . 343
--proc_pc_readonly (C-SPY command line option) 343
--proc_pdata_bank_ext_reg_addr (C-SPY
command line option) . 344
--proc_pdata_bank_reg_addr (C-SPY
command line option) . 344
--proc_silent (C-SPY command line option). 344
--proc_xdata_banking (C-SPY command line option) . . . 345
--reduce_speed (C-SPY command line option). 345
--registers_after (C-SPY command line option) 345
--registers_before (C-SPY command line option) 346
--retain_memory (C-SPY command line option) 346
--retain_pages (C-SPY command line option) 346
--rom_mon_bp_padding (padding breakpoints) 108
--rom_serial_port (C-SPY command line option) 347
--serial_port (C-SPY command line option) 347
--server_address (C-SPY command line option) 348
--server_name (C-SPY command line option) 348
--silabs_2wire_interface (C-SPY command line option). . 349
--silent (C-SPY command line option) 349
--sim_guard_stacks (C-SPY command line option) 350
--software_breakpoints (C-SPY command line option) . . 350
--stack_overflow (C-SPY command line option) 350
--suppress_download (C-SPY command line option) 351
--timeout (C-SPY command line option) 351
--toggle_DTR (C-SPY command line option). 351
--toggle_RTS (C-SPY command line option) 352
--usb_id (C-SPY command line option) 352
--usb_interface (C-SPY command line option) 352
--verify_all (C-SPY command line option) 353
--verify_download (C-SPY command line option) 353

Numerics
1x Units (Symbolic Memory window context menu) 146
8x Units (Memory window context menu) 139
IX_Glossary-1

 423

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	What this guide contains
	Part 1. Basic debugging
	Part 2. Analyzing your application
	Part 3. Advanced debugging
	Part 4. Additional reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Basic debugging
	The IAR C-SPY Debugger
	Introduction to C-SPY
	An integrated environment
	General C-SPY debugger features
	Additional general C-SPY debugger features

	RTOS awareness

	Debugger concepts
	C-SPY and target systems
	The debugger
	The target system
	The application
	C-SPY debugger systems
	The ROM-monitor program
	Third-party debuggers
	C-SPY plugin modules

	C-SPY drivers overview
	Differences between the C-SPY drivers

	The IAR C-SPY Simulator
	The C-SPY hardware debugger drivers
	Installing extra software
	Target system with or without a debug probe
	The C-SPY Infineon driver
	ROM-monitor on target hardware

	Getting started using C-SPY
	Setting up C-SPY
	Setting up for debugging
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules

	Starting C-SPY
	Starting a debug session
	Loading executable files built outside of the IDE
	Starting a debug session with source files missing
	Loading multiple images
	Editing in C-SPY windows

	Adapting for target hardware
	Modifying a device description file
	Initializing target hardware before C-SPY starts

	Reference information on starting C-SPY
	C-SPY Debugger main window
	Menu bar
	Debug menu
	C-SPY windows

	Images window
	Requirements
	Display area
	Context menu
	Related information

	Get Alternative File dialog box
	Could not find the following source file
	Suggested alternative
	Use this file
	Skip
	If possible, don’t show this dialog again
	Related information

	Executing your application
	Introduction to application execution
	Briefly about application execution
	Source and disassembly mode debugging
	Single stepping
	The step commands
	Step Into
	Step Over
	Next Statement
	Step Out

	Troubleshooting slow stepping speed
	Running the application
	Go
	Run to Cursor

	Highlighting
	Viewing the call stack
	Terminal input and output
	Debug logging

	Reference information on application execution
	Disassembly window
	Requirements
	Toolbar
	Display area
	Context menu

	Call Stack window
	Requirements
	Display area
	Context menu

	Terminal I/O window
	Requirements
	Input
	Ctrl codes
	Options

	Terminal I/O Log File dialog box
	Requirements
	Terminal IO Log Files

	Debug Log window
	Requirements
	Context menu

	Log File dialog box
	Requirements
	Enable log file
	Include

	Report Assert dialog box
	Abort
	Debug
	Ignore

	Autostep settings dialog box
	Requirements
	Delay

	Cores window
	Requirements
	Display area

	Variables and expressions
	Introduction to working with variables and expressions
	Briefly about working with variables and expressions
	C-SPY expressions
	C/C++ symbols
	Assembler symbols
	C-SPY macro functions
	C-SPY macro variables
	Using sizeof

	Limitations on variable information
	Effects of optimizations

	Working with variables and expressions
	Using the windows related to variables and expressions
	Viewing assembler variables

	Reference information on working with variables and expressions
	Auto window
	Requirements
	Context menu

	Locals window
	Requirements
	Context menu

	Watch window
	Requirements
	Context menu

	Live Watch window
	Requirements
	Display area
	Context menu

	Statics window
	Requirements
	Display area
	Context menu

	Quick Watch window
	Requirements
	Context menu

	Symbols window
	Requirements
	Display area
	Context menu

	Resolve Symbol Ambiguity dialog box
	Requirements
	Ambiguous symbol
	Please select one symbol

	Breakpoints
	Introduction to setting and using breakpoints
	Reasons for using breakpoints
	Briefly about setting breakpoints
	Breakpoint types
	Code breakpoints
	Log breakpoints
	Trace Start and Stop breakpoints
	Data breakpoints
	Data Log breakpoints
	Immediate breakpoints

	Breakpoint icons
	Breakpoints in the C-SPY simulator
	Breakpoints in the C-SPY hardware debugger drivers
	Padding for safe insertion of breakpoint instruction(s)
	Breakpoints in flash memory

	Breakpoint consumers
	User breakpoints
	C-SPY itself
	C-SPY plugin modules

	Setting breakpoints
	Various ways to set a breakpoint
	Toggling a simple code breakpoint
	Setting breakpoints using the dialog box
	Setting a data breakpoint in the Memory window
	Setting breakpoints using system macros
	Setting breakpoints at C-SPY startup using a setup macro file

	Useful breakpoint hints
	Tracing incorrect function arguments
	Performing a task and continuing execution

	Reference information on breakpoints
	Breakpoints window
	Requirements
	Display area
	Context menu

	Breakpoint Usage window
	Requirements
	Display area

	Code breakpoints dialog box
	Requirements
	Break At
	Size
	Action
	Conditions

	Log breakpoints dialog box
	Requirements
	Trigger at
	Message
	C-SPY macro "__message" style
	Conditions

	Range breakpoints dialog box
	Requirements
	Trigger at
	Range
	Memory Space
	Access Type

	Data breakpoints dialog box
	Requirements
	Break At
	Access Type
	Size
	Action
	Conditions

	Data Log breakpoints dialog box
	Requirements
	Break At
	Access Type

	Immediate breakpoints dialog box
	Requirements
	Trigger at
	Access Type
	Action

	Enter Location dialog box
	Type

	Resolve Source Ambiguity dialog box
	All
	Selected
	Cancel
	Automatically choose all

	Memory and registers
	Introduction to monitoring memory and registers
	Briefly about monitoring memory and registers
	C-SPY memory zones
	Device-specific zones

	Memory configuration for the C-SPY simulator
	Memory configuration for C-SPY hardware debugger drivers

	Monitoring memory and registers
	Defining application-specific register groups
	Monitoring stack usage

	Reference information on memory and registers
	Memory window
	Requirements
	Toolbar
	Display area
	Context menu

	Memory Save dialog box
	Requirements
	Zone
	Start address
	End address
	File format
	Filename
	Save

	Memory Restore dialog box
	Requirements
	Zone
	Filename
	Restore

	Fill dialog box
	Requirements
	Start address
	Length
	Zone
	Value
	Operation

	Symbolic Memory window
	Requirements
	Toolbar
	Display area
	Context menu

	Stack window
	Requirements
	Toolbar
	The graphical stack bar
	Display area
	Context menu

	Registers window
	Requirements
	Toolbar
	Display area
	Context menu

	Register User Groups Setup window
	Requirements
	Display area
	Context menu

	SFR Setup window
	Requirements
	Display area
	Context menu

	Edit SFR dialog box
	Requirements
	Name
	Address
	Zone
	Size
	Access

	Memory Configuration dialog box, in C-SPY hardware debugger drivers
	Requirements
	Factory ranges
	Used ranges
	Graphical bar
	Buttons

	Edit Memory Range dialog box, for C-SPY hardware debugger drivers
	Requirements
	Memory range
	Cache type
	Extra attributes

	Memory Access Setup dialog box
	Requirements
	Use ranges based on
	Use manual ranges
	Memory access checking
	Buttons

	Edit Memory Access dialog box
	Requirements
	Memory range
	Access type

	Part 2. Analyzing your application
	Trace
	Introduction to using trace
	Reasons for using trace
	Briefly about trace
	Trace features in C-SPY

	Requirements for using trace

	Collecting and using trace data
	Getting started with trace
	Trace data collection using breakpoints
	Searching in trace data
	Browsing through trace data

	Reference information on trace
	Trace window
	Requirements
	Trace toolbar
	Display area
	Context menu

	Function Trace window
	Requirements
	Toolbar
	Display area

	Trace Start breakpoints dialog box
	Requirements
	Break at

	Trace Stop breakpoints dialog box
	Requirements
	Break at

	Trace Expressions window
	Requirements
	Display area
	Context menu

	Find in Trace dialog box
	Requirements
	Text search
	Address Range

	Find in Trace window
	Requirements
	Display area

	The application timeline
	Introduction to analyzing your application’s timeline
	Briefly about analyzing the timeline
	Requirements for timeline support

	Analyzing your application’s timeline
	Displaying a graph in the Timeline window
	Navigating in the graphs
	Analyzing performance using the graph data
	Getting started using data logging

	Reference information on application timeline
	Timeline window—Call Stack graph
	Requirements
	Display area for the Call Stack graph
	Context menu

	Timeline window—Data Log graph
	Requirements
	Display area for the Data Log graph
	Context menu

	Data Log window
	Requirements
	Display area
	Context menu

	Data Log Summary window
	Requirements
	Display area
	Context menu

	Viewing Range dialog box
	Requirements
	Range for ...
	Scale

	Profiling
	Introduction to the profiler
	Reasons for using the profiler
	Briefly about the profiler
	Profiling sources

	Requirements for using the profiler

	Using the profiler
	Getting started using the profiler on function level
	Analyzing the profiling data
	Getting started using the profiler on instruction level

	Reference information on the profiler
	Function Profiler window
	Requirements
	Toolbar
	Display area
	Context menu

	Code coverage
	Introduction to code coverage
	Reasons for using code coverage
	Briefly about code coverage
	Requirements and restrictions for using code coverage

	Reference information on code coverage
	Code Coverage window
	Requirements
	Display area
	Context menu

	Part 3. Advanced debugging
	Interrupts
	Introduction to interrupts
	Briefly about the interrupt simulation system
	Interrupt characteristics
	Interrupt simulation states
	C-SPY system macros for interrupt simulation
	Target-adapting the interrupt simulation system
	Briefly about interrupt logging
	Requirements for interrupt logging

	Using the interrupt system
	Simulating a simple interrupt
	Simulating an interrupt in a multi-task system
	Getting started using interrupt logging

	Reference information on interrupts
	Interrupt Setup dialog box
	Requirements
	Enable interrupt simulation
	Display area
	Buttons

	Edit Interrupt dialog box
	Requirements
	Interrupt
	Description
	First activation
	Repeat interval
	Variance %
	Hold time
	Probability %

	Forced Interrupt window
	Requirements
	Display area
	Context menu

	Interrupt Status window
	Requirements
	Display area

	Interrupt Log window
	Requirements
	Display area
	Context menu

	Interrupt Log Summary window
	Requirements
	Display area
	Context menu

	Timeline window—Interrupt Log graph
	Requirements
	Display area
	Context menu

	C-SPY macros
	Introduction to C-SPY macros
	Reasons for using C-SPY macros
	Briefly about using C-SPY macros
	Briefly about setup macro functions and files
	Briefly about the macro language
	Example

	Using C-SPY macros
	Registering C-SPY macros—an overview
	Executing C-SPY macros—an overview
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint
	Aborting a C-SPY macro

	Reference information on the macro language
	Macro functions
	Macro variables
	Macro parameters
	Macro strings
	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output
	Specifying display format of arguments

	Reference information on reserved setup macro function names
	execUserPreload
	Syntax
	For use with
	Description

	execUserExecutionStarted
	Syntax
	For use with
	Description

	execUserExecutionStopped
	Syntax
	For use with
	Description

	execUserSetup
	Syntax
	For use with
	Description

	execUserPreReset
	Syntax
	For use with
	Description

	execUserReset
	Syntax
	For use with
	Description

	execUserExit
	Syntax
	For use with
	Description

	Reference information on C-SPY system macros
	_ _abortLaunch
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _cancelAllInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _cancelInterrupt
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _clearBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	See also

	_ _closeFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _delay
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _disableInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _driverType
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _enableInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _evaluate
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory8
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _isBatchMode
	Syntax
	Return value
	For use with
	Description

	_ _loadImage
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example 1
	Example 2
	See also

	_ _memoryRestore
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _memorySave
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _messageBoxYesCancel
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _messageBoxYesNo
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _openFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _orderInterrupt
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _popSimulatorInterruptExecutingStack
	Syntax
	Return value
	For use with
	Description
	See also

	_ _readFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readFileByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory8, _ _readMemoryByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _registerMacroFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _resetFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _setCodeBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Examples
	See also

	_ _setDataBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setDataLogBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setLogBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setSimBreak
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _setTraceStartBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setTraceStopBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _sourcePosition
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _strFind
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _subString
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _targetDebuggerVersion
	Syntax
	Return value
	For use with
	Description
	Example

	_ _toLower
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _toString
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _toUpper
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _unloadImage
	Syntax
	Parameters
	Return value
	For use with
	Description
	See also

	_ _writeFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _writeFileByte
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _writeMemory8, _ _writeMemoryByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _writeMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _writeMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	Graphical environment for macros
	Macro Registration window
	Requirements
	Display area
	Context menu

	Debugger Macros window
	Requirements
	Display area
	Context menu

	Macro Quicklaunch window
	Requirements
	Display area
	Context menu

	The C-SPY command line utility—cspybat
	Using C-SPY in batch mode
	Starting cspybat
	Output
	Invocation syntax
	Parameters

	Summary of C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver
	Options available for the Texas Instruments driver
	Options available for the FS2 driver
	Options available for the Infineon driver
	Options available for the Segger J-Link driver
	Options available for the Nordic Semiconductor driver
	Options available for the ROM-monitor driver
	Options available for the Analog Devices driver
	Options available for the Silicon Labs driver

	Reference information on C-SPY command line options
	--ADe_protocol
	Syntax
	For use with
	Description

	--attach_to_running_target
	Syntax
	For use with
	Description

	--backend
	Syntax
	Parameters
	For use with
	Description

	--banked_xdata
	Syntax
	For use with
	Description

	--baud_rate
	Syntax
	Parameters
	For use with
	Description
	See also

	--boot_lock
	Syntax
	For use with
	Description

	--code_coverage_file
	Syntax
	Parameters
	For use with
	Description
	See also

	--communication_logfile
	Syntax
	Parameters
	For use with
	Description

	--connect_to
	Syntax
	Parameters
	For use with
	Description

	--core
	Syntax
	Parameters
	For use with
	Description

	--core_clock_frequency
	Syntax
	Parameters
	For use with
	Description

	--cycles
	Syntax
	Parameters
	For use with
	Description

	--debugfile
	Syntax
	Parameters
	For use with
	Description

	--debug_lock
	Syntax
	For use with
	Description

	--devices_after
	Syntax
	Parameters
	For use with
	Description
	See also

	--devices_before
	Syntax
	Parameters
	For use with
	Description
	See also

	--disable_interrupts
	Syntax
	For use with
	Description

	--download_only
	Syntax
	For use with
	Description

	--drv_communication_log
	Syntax
	Parameters
	For use with
	Description

	--drv_silabs_page_size
	Syntax
	Parameters
	For use with
	Description

	--drv_suppress_download
	Syntax
	For use with
	Description
	See also

	--drv_verify_download
	Syntax
	For use with
	Description

	--erase_data_flash
	Syntax
	For use with
	Description

	--erase_flash
	Syntax
	For use with
	Description

	-f
	Syntax
	Parameters
	For use with
	Description

	--fs2_configuration
	Syntax
	Parameters
	For use with
	Description

	--fs2_flash_cfg_entry
	Syntax
	Parameters
	For use with
	Description

	--fs2_flash_in_code
	Syntax
	Parameters
	For use with
	Description

	--fs2_ram_in_code
	Syntax
	Parameters
	For use with
	Description

	--function_profiling
	Syntax
	Parameters
	For use with
	Description

	--handshake_at_9600
	Syntax
	For use with
	Description

	--infineon_ram_in_code
	Syntax
	Parameters
	For use with
	Description

	--jlink_connection_id
	Syntax
	Parameters
	For use with
	Description

	--jlink_log_file
	Syntax
	Parameters
	For use with
	Description

	--jlink_power
	Syntax
	For use with
	Description

	--jlink_speed
	Syntax
	Parameters
	For use with
	Description

	--key_noN
	Syntax
	Parameters
	For use with
	Description

	--leave_target_running
	Syntax
	For use with
	Description

	--lock_bits
	Syntax
	Parameters
	For use with
	Description

	--lock_bits_pages
	Syntax
	Parameters
	For use with
	Description

	--macro
	Syntax
	Parameters
	For use with
	Description
	See also

	--macro_param
	Syntax
	Parameters
	For use with
	Description
	See also

	--mapu
	Syntax
	For use with
	Description
	See also

	--multiple_devices
	Syntax
	For use with
	Description
	See also

	--nr_of_extra_images
	Syntax
	Parameters
	For use with
	Description

	--number_of_banks
	Syntax
	Parameters
	For use with
	Description

	-p
	Syntax
	Parameters
	For use with
	Description
	See also

	--plugin
	Syntax
	Parameters
	For use with
	Description

	--power_target
	Syntax
	For use with
	Description
	See also

	--preserve_hex_files
	Syntax
	For use with
	Description

	--proc_code_model
	Syntax
	Parameters
	For use with
	Description

	--proc_codebank_end
	Syntax
	Parameters
	For use with
	Description

	--proc_codebank_mask
	Syntax
	Parameters
	For use with
	Description

	--proc_codebank_reg
	Syntax
	Parameters
	For use with
	Description

	--proc_codebank_start
	Syntax
	Parameters
	For use with
	Description

	--proc_core
	Syntax
	Parameters
	For use with
	Description

	--proc_data_addr_24
	Syntax
	For use with
	Description

	--proc_data_model
	Syntax
	Parameters
	For use with
	Description

	--proc_DPHn
	Syntax
	Parameters
	For use with
	Description
	See also

	--proc_DPLn
	Syntax
	Parameters
	For use with
	Description
	See also

	--proc_dptr_automod_op
	Syntax
	Parameters
	For use with
	Description

	--proc_dptr_automod_type
	Syntax
	Parameters
	For use with
	Description

	--proc_dptr_DPC
	Syntax
	Parameters
	For use with
	Description

	--proc_dptr_DPS
	Syntax
	Parameters
	For use with
	Description

	--proc_dptr_mask
	Syntax
	Parameters
	For use with
	Description

	--proc_dptr_nr_of
	Syntax
	Parameters
	For use with
	Description

	--proc_dptr_switch_method
	Syntax
	Parameters
	For use with
	Description

	--proc_dptr_visibility
	Syntax
	Parameters
	For use with
	Description

	--proc_DPXn
	Syntax
	Parameters
	For use with
	Description
	See also

	--proc_driver
	Syntax
	Parameters
	For use with
	Description

	--proc_exclude_exit_breakpoint
	Syntax
	For use with
	Description

	--proc_exclude_getchar_breakpoint
	Syntax
	For use with
	Description

	--proc_exclude_putchar_breakpoint
	Syntax
	For use with
	Description

	--proc_extended_stack
	Syntax
	Parameters
	For use with
	Description

	--proc_nr_virtual_regs
	Syntax
	Parameters
	For use with
	Description

	--proc_pc_readonly
	Syntax
	For use with
	Description

	--proc_pdata_bank_ext_reg_addr
	Syntax
	Parameters
	For use with
	Description

	--proc_pdata_bank_reg_addr
	Syntax
	Parameters
	For use with
	Description

	--proc_silent
	Syntax
	For use with
	Description

	--proc_xdata_banking
	Syntax
	For use with
	Description

	--reduce_speed
	Syntax
	For use with
	Description

	--registers_after
	Syntax
	Parameters
	For use with
	Description
	See also

	--registers_before
	Syntax
	Parameters
	For use with
	Description
	See also

	--retain_memory
	Syntax
	For use with
	Description
	See also

	--retain_pages
	Syntax
	Parameters
	For use with
	Description

	--rom_serial_port
	Syntax
	Parameters
	For use with
	Description

	--serial_port
	Syntax
	Parameters
	For use with
	Description

	--server_address
	Syntax
	Parameters
	For use with
	Description

	--server_name
	Syntax
	Parameters
	For use with
	Description

	--silabs_2wire_interface
	Syntax
	For use with
	Description

	--silent
	Syntax
	For use with
	Description

	--sim_guard_stacks
	Syntax
	For use with
	Description

	--software_breakpoints
	Syntax
	For use with
	Description

	--stack_overflow
	Syntax
	For use with
	Description

	--suppress_download
	Syntax
	For use with
	Description
	See also

	--timeout
	Syntax
	Parameters
	For use with
	Description

	--toggle_DTR
	Syntax
	For use with
	Description

	--toggle_RTS
	Syntax
	For use with
	Description

	--usb_id
	Syntax
	Parameters
	For use with
	Description

	--usb_interface
	Syntax
	For use with
	Description
	See also

	--verify_all
	Syntax
	For use with
	Description

	--verify_download
	Syntax
	Parameters
	For use with
	Description

	Part 4. Additional reference information
	Debugger options
	Setting debugger options
	Reference information on general debugger options
	Setup
	Driver
	Run to
	Exclude system breakpoints on
	Setup macros
	Device description file

	Images
	Download extra Images

	Extra Options
	Use command line options

	Plugins
	Select plugins to load
	Description
	Location
	Originator
	Version

	Third-Party Driver options
	IAR debugger driver plugin
	Suppress download
	Log communication

	Reference information on the C-SPY simulator
	Setup options for the simulator
	Peripheral simulation

	Reference information on C-SPY Texas Instruments driver options
	Download options for Texas Instruments
	Erase flash
	Suppress download
	Retain unchanged pages
	Retain flash pages
	Verify download
	Lock flash memory
	Debug interface lock

	Target options for Texas Instruments
	Reduce interface speed
	Enable stack overflow warning
	Number of banks
	Communication
	Log communication

	Reference information on C-SPY FS2 driver options
	Download options for FS2
	Verify download
	Suppress download

	Target options for FS2
	Configuration
	Has program flash
	Has program RAM

	Reference information on C-SPY Infineon driver options
	Download options for Infineon
	Verify download
	Suppress download
	Erase data flash

	Target options for Infineon
	Server
	Security keys
	Software breakpoints
	Has code in XRAM

	Reference information on C-SPY Segger J-Link driver options
	Download options for Segger J-Link
	Verify download
	Suppress download

	Communication options for Segger J-Link
	Connection type
	Serial number
	Communication speed
	Power supply from J-Link
	Log communication

	Reference information on C-SPY Nordic Semiconductor driver options
	Download options for Nordic Semiconductor
	Verify download
	Suppress download

	Reference information on C-SPY Nu-Link driver options
	Setup options for the C-SPY Nu-Link driver

	Reference information on C-SPY ROM-monitor driver options
	Download options for the ROM-monitor
	Verify download
	Suppress download

	Serial Port options for the ROM-monitor
	Port
	Baud rate
	Parity
	Data bits
	Stop bits
	Handshaking
	Toggle DTR
	Toggle RTS
	Log communication

	Reference information on C-SPY Analog Devices driver options
	Download options for Analog Devices
	Verify download
	Erase data flash
	Debug interface

	Serial Port options for Analog Devices
	Port
	Baud rate
	Override default CPU clock frequency

	Reference information on C-SPY Silicon Labs driver options
	Download options for Silicon Labs
	Suppress download
	Verify download
	USB interface
	Continuously power target
	Silicon Labs 2-wire (C2) interface
	Flash page size
	Banked XDATA
	Multiple devices

	Serial Port options for Silicon Labs
	Port
	Baud rate

	Additional information on C-SPY drivers
	Reference information on C-SPY driver menus
	C-SPY driver
	Simulator menu
	Menu commands

	Texas Instruments Emulator menu
	Menu commands

	Infineon Emulator menu
	Menu commands

	J-Link menu
	Menu commands

	Silicon Labs Emulator menu
	Menu commands

	Reference information on the C-SPY simulator
	Simulated Frequency dialog box
	Requirements
	Frequency

	Reference information on the C-SPY hardware debugger drivers
	Serial Number dialog box
	Connected J-Link emulators

	Server Selection dialog box
	Requirements

	USB Device Selection dialog box
	Requirements

	Resolving problems
	Write failure during load
	No contact with the target hardware
	Monitor works, but application will not run
	No contact with the monitor

	Target-adapting the ROM-monitor
	Building your own ROM-monitor
	Setting up your ROM-monitor project
	Adapting the source files
	Setting up the chip_layout.h file
	Setting up the serial communication — uart_init.c
	Setting up for code memory accesses — code_access.c
	Setting up target-specific details — low_level_init.c, high_level_init.c

	Debugging the ROM-monitor
	Debugging using the C-SPY simulator

	Building and downloading your ROM-monitor

	The ROM-monitor in detail
	Early initializations
	Before the main function
	In the main function

	The protocol loop
	Enter the loop
	In the loop
	Check Rx
	Check Tx
	Leave the loop

	Leaving the ROM-monitor
	Entering the ROM-monitor
	Resources used by the ROM-monitor

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

