
M8051-2

8051 IAR Embedded Workbench
Migration Guide

for the
MCS-51 Microcontroller Family

M8051-2

COPYRIGHT NOTICE
© Copyright 1991–2005 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, From Idea to Target, IAR Embedded Workbench, visualSTATE, IAR
MakeApp and C-SPY are trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Second edition: July 2005

Part number: M8051-2

This guide applies to version 7.x of 8051 IAR Embedded Workbench®.

M8051-2

 iii

Contents
Tables .. v

Migrating from version 6.x to version 7.10A 1

Key advantages .. 1

Migration considerations ... 2

IAR Embedded Workbench IDE .. 2

Workspace and projects ... 2

C-SPY layout files ... 2

Project options .. 2

Runtime library and object files considerations 3

Compiling and linking with the DLIB runtime library 3

Program entry ... 4

System initialization—Cstartup ... 4

Migrating from CLIB to DLIB .. 4

Linker considerations ... 5

Migrating from version 5.x to version 6.x ... 7

Key advantages .. 7

IDE ... 7

Compiler ... 8

Debugger .. 8

Migration considerations ... 8

Project file and project setup .. 9

Source code and compiler considerations 10

Predefined symbols .. 10

Memory models ... 11

Assembler considerations ... 12

Byte order ... 12

Removed operators .. 12

New operators .. 13

Removed directives .. 13

New directives .. 13

M8051-2

iv
8051 IAR Embedded Workbench
Migration Guide

Runtime environment considerations ... 14

Runtime library .. 14

Calling conventions .. 16

Generic pointers ... 16

Constants and strings ... 17

Byte order ... 18

 Linker considerations .. 19

Segment control directives ... 19

Object file format ... 20

Compiler options .. 21

Migrating project options ... 21

Filenames ... 24

List files .. 25

Environment variables ... 25

Extended keywords .. 25

Bits ... 26

Storage modifiers ... 27

Interrupt functions and vectors .. 28

Absolute located variables ... 28

Pragma directives ... 29

Intrinsic functions ... 32

Segments .. 33

Assembler source code ... 35

Other changes .. 35

Nested comments ... 35

Sizeof in preprocessor directives ... 36

M8051-2

 v

Tables
1: Converting from version 5.x memory models .. 11

2: Default pointers used for selected data models in version 6.x 17

3: Conversion of constant and string location keywords .. 18

4: Version 5.x compiler options not available in version 6.x 22

5: Compiler options identical in both compiler versions .. 22

6: Renamed or modified options ... 23

7: Specifying filename and directory in version 5.x and version 6.x 24

8: Old and new extended keywords .. 25

9: Old and new pragma directives ... 30

10: Old and new intrinsic functions .. 32

11: Old and new segments .. 33

M8051-2

vi
8051 IAR Embedded Workbench
Migration Guide

M8051-2

1

Migrating from version 6.x
to version 7.10A
This guide gives hints for porting your application code and projects to the
new version 7.10A.

C source code that was originally written for the 8051 IAR C Compiler
version 6.x can be used also with the new 8051 IAR C/C++ Compiler version
7.10A. However, some small modifications may be required.

This guide presents the major differences between the 8051 IAR Embedded
Workbench version 6.x and the 8051 IAR Embedded Workbench version
7.10A, and describes the migration considerations.

Note that if you are migrating from the 8051 IAR Embedded Workbench
version 5.x , you must first read the chapter Migrating from version 5.x to version
6.x.

Key advantages
This section lists the major advantages in the 8051 IAR Embedded Workbench version
6.x as compared to the 8051 IAR Embedded Workbench version 7.10A. Hereafter, the
two versions are referred to as version 6.x and version 7.10A, respectively.

● Efficient window management through dockable windows optionally organized in
tab groups

● Source browser with a catalog of functions, classes, and variables, for a quick
navigation to symbol definitions

● Template projects to get a project that links and runs out of the box for a smooth
development start-up

● Batch build with ordered lists of configurations to build
● Improved context-sensitive help for C/C++ library functions
● Smart display of STL containers at debugging
● Auto-display debugger watch window
● Support for the C++ language
● Support for the DLIB runtime environment
● A broad range of small feature enhancements.

M8051-2

2

Migration considerations

8051 IAR Embedded Workbench
Migration Guide

Migration considerations
To migrate your old project consider changes related to:

● IAR Embedded Workbench IDE
● Project options
● Runtime library and object files.

Note that not all items in the list may be relevant for your project. Consider carefully
what actions are needed in your case.

Note: It is important to be aware of the fact that code written for version 6.x may
generate warnings or errors in version 7.10A.

IAR Embedded Workbench IDE
Upgrading to the new version of the IAR Embedded Workbench IDE should be a
smooth process as the improvements hot have any major influence on the compatibility
between the versions.

WORKSPACE AND PROJECTS

The workpaces and projects you have created with 6.x are compatible with 7.10A. Note
that there are some differences in the project settings. Therefore, make sure to check
the options carefully. For further information, see Project options, page 2.

C-SPY LAYOUT FILES

Due to new improved window management system, the C-SPY layout files support in
6.x has been removed. Any custom made lew files can safely be removed from your
projects.

Project options
In version 7.10A, there are several new project options, for instance for the new support
for the DLIB runtime environment, MISRA C, and C++. Note also that the option layout
and syntax has been changed. For information about the command line variants, see the
8051 IAR C/C++ Compiler Reference Guide. For information about the IAR Embedded
Workbench variants, see the IAR Embedded Workbench® IDE User Guide.

M8051-2

Migration and portability

Migrating from version 6.x to version 7.10A

3

Runtime library and object files considerations
In version 7.10A, two sets of runtime libraries are provided—CLIB and DLIB. CLIB
corresponds to the runtime library provided with version 6.x, and it can be used in the
same way as before.

To build code produced by version 7.10A of the compiler, you must use the runtime
environment components it provides. It is not possible to link object code produced
using version 7.10A with components provided with version 6.x.

For information about how to migrate from CLIB to DLIB, see Migrating from CLIB to
DLIB, page 4. For more information about the two libraries, and the runtime
environment they provide see the 8051 IAR C/C++ Compiler Reference Guide.

COMPILING AND LINKING WITH THE DLIB RUNTIME
LIBRARY

With DLIB you can configure the runtime library to contain the features that are needed
by your application.

One example is input and output. An application may use the fprintf function for
terminal I/O (stdout), but the application does not use file I/O functionality on file
descriptors associated with the files. In this case the library can be configured so that
code related to file I/O is removed but still provides terminal I/O functionality.

This configuration involves the library header files, for example stdio.h. This means
that when you build your application, the same header file setup must be used as when
the library was built. The library setup is specified in a library configuration file, which
is a header file that defines the library functionality.

When building an application using the IAR Embedded Workbench, there are three
library configuration alternatives to choose between: Normal, Full, and Custom.
Normal and Full are prebuilt library configurations delivered with the product, where
Normal should be used in the above example with file I/O. Custom is used for custom
built libraries. Note that the choice of the library configuration file is handled
automatically.

When building an application from the command line, you must use the same library
configuration file as when the library was built. For the prebuilt libraries (r51) there is
a corresponding library configuration file (h), which has the same name as the library.
The files are located in the 8051\lib directory. The command lines for specifying the
library configuration file and library object file could look like this:

icc8051 --dlib_config ...\8051\lib dl8051Normal.h
xlink dl-ele-ffxd-2e24inc.r51

In case you intend to build your own library version, use the default library configuration
file dl8051Custom.h.

M8051-2

4

Runtime library and object files considerations

8051 IAR Embedded Workbench
Migration Guide

To take advantage of the features it is recommended that you read about the runtime
environment in the 8051 IAR C/C++ Compiler Reference Guide.

PROGRAM ENTRY

By default, the linker includes all root declared segment parts in program modules
when building an application. However, there is a new mechanism that affects the load
procedure.

There is a new linker option Entry label (-s) to specify a start label. By specifying the
start label, the linker will look in all modules for a matching start label, and start loading
from that point. Like before, any program modules containing a root segment part will
also be loaded.

In version 7.10A, the default program entry label in cstartup.s51 is
__program_start, which means the linker will start loading from there. The
advantage of this new behavior is that it is much easier to override cstartup.s51.

If you build your application in the IAR Embedded Workbench, just add your
customized cstartup file to your project. It will then be used instead of the cstartup
module in the library. It is also possible to switch startup files just by overriding the
name of the program entry point.

If you build your application from the command line, the -s option must be explicitly
specified when linking a C/C++ application. If you link without the option, the resulting
output executable will be empty because no modules will be referred to.

SYSTEM INITIALIZATION—CSTARTUP

The content of the cstartup.s51 file has been split up into three files:

cstartup.s51, cmain.s51, cexit.s51

Now, the cstartup.s51 only contains exception vectors and initial startup code to
setup stacks and processor mode. Note that the cstartup.s51 file is the only one of
these three files that may require any modifications.

The cmain.s51 file initializes data segments and executes C++ constructors. The
cexit.s51 file contains termination code, for example, execution of C++ destructors.

For applications that use a modified copy of cstartup.s51, you must adapt it to the
new file structure.

MIGRATING FROM CLIB TO DLIB

There are some considerations to have in mind if you want to migrate from the CLIB,
the legacy C library, to the modern DLIB C/C++ library:

● The CLIB exp10() function defined in iccext.h is not available in DLIB.

M8051-2

Migration and portability

Migrating from version 6.x to version 7.10A

5

● The DLIB library uses the low-level I/O routines __write and __read instead of
putchar and getchar.

● If the heap size in your version 6.x project using CLIB was defined in a file named
heap.c, you must now set the heap size either in the extended linker command file
(*.xcl) or in the Embedded Workbench to use the DLIB library.

You should also see the chapter The DLIB runtime environment in the 8051 IAR C/C++
Compiler Reference Guide.

LINKER CONSIDERATIONS

If you have created your own customized linker command file, compare this file with
the original file in the old installation and make the required changes in a copy of the
corresponding file in the new installation. Note that many of the segment names have
changed, see the chapter Segments in the 8051 IAR C/C++ Compiler Reference Guide.

Segment control directive -b vs -P

If you were using the linker segment control directive -b for locating your banked code
in memory, be aware that this directive is now obsolete and superseded by the new linker
segment control directive -P. For details of the -P directive, see the IAR Linker and
Library Tools Reference Guide.

M8051-2

6

Runtime library and object files considerations

8051 IAR Embedded Workbench
Migration Guide

M8051-2

7

Migrating from version 5.x
to version 6.x
This guide gives hints for porting your application code and projects to the
8051 IAR Embedded Workbench IDE version 6.x.

C source code that was originally written for the 8051 IAR C Compiler
version 5.x can be used also with the new 8051 C/EC++ Compiler version 6.x.

However, some modifications may be required.

This guide contains information about migrating from 8051 IAR Embedded
Workbench 5.x to version 6.x. It presents the major differences between 8051
IAR Embedded Workbench version 5.x and 8051 IAR Embedded Workbench
version 6.x, and describes the migration considerations.

Key advantages
This section lists the major advantages in the 8051 IAR Embedded Workbench version
6.x as compared to version 5.x.

● Improved compiler optimizations
● Highly optimized reentrant code generation
● Pre-configured device support
● Full support for multiple DPTRs
● More flexible runtime models
● Auto-display and live debugger watch window
● Easy configuration of the C/C++ libraries
● A broad range of feature enhancements.

IDE

● Batch build with ordered lists of configurations to build
● Total integration of compiler and debugger toolkit under a modular and extensible

IDE
● Full support for both classic and extended 8051 architectures, like those from

Maxim/Dallas Semiconductor and Analog Devices
● Multiple projects in the same workspace

M8051-2

8

Migration considerations

8051 IAR Embedded Workbench
Migration Guide

● Hierarchical project representation shows all different source and output files and
gives an overview of their settings

● XML-based project files
● Multibyte editor
● Easy to integrate external tools in the build process
● Preconfigured device support for most derivatives on the 8051 market.

COMPILER

● Highly optimized ISO/ANSI standard C compiler generating the most compact
code on the market

● Multiple levels of both size and speed optimizations
● Easy and fast interrupt handling directly in C
● User control of register usage for optimal performance
● Support for multiple DPTRs in compiler and libraries
● Local bit and bit parameters
● Possibility to use up to 32 virtual registers.

DEBUGGER

● Complex code and data breakpoints with resume functionality
● Function call stack window
● Support for stack unwinding even at high optimization levels
● Fine-grain single stepping on a function call level
● Terminal I/O, peripheral and interrupt simulation
● Memory configuration and validation
● Versatile monitoring of CPU/peripherals, registers, structures, call chain, local and

global variables
● RTOS-aware debugging
● Window for viewing stack contents.

Migration considerations
In short, to migrate to the new version, pay attention to the following:

● Project file and project setup
● Source code and compiler considerations
● Assembler considerations
● Runtime environment considerations
● Linker considerations

M8051-2

Migrating from version 5.x to version 6.x

9

Moreover, version 6.x adheres more strictly to the ISO/ANSI C standard; for example,
it is possible to use pragma directives instead of extended keywords for defining special
function registers (SFRs). The checking of data types also adheres more strictly to the
ISO/ANSI C standard, compared to version 5.x.

Note: Code written for version 5.x may generate warnings or errors in version 6.x.

Project file and project setup
To migrate your old project, follow the described migration process. Note that not all
steps in the process might be relevant for your project. Consider carefully what actions
are needed in your case.

Project files created in version 5.x and version 6.x of 8051 IAR Embedded Workbench
are not compatible. Therefore a version 5.x project file cannot be converted to a version
6.x project file. A new workspace and project must be created for a version 6.x project.
Follow these steps:

1 Start your new version of 8051 IAR Embedded Workbench and create a new
workspace by choosing File>New and then Workspace.

2 Choose Project>Create New Project to create a new project in the workspace. For
more information about creating and setting up projects, see the IAR Embedded
Workbench® IDE User Guide.

3 Make sure you have a backup of your old project and manually add all files from the
version 5.x project to the new project.

4 Select the appropriate runtime model, see Runtime environment considerations, page
14, and Memory models, page 11.

5 Set the appropriate compiler options, see Compiler options, page 21. To generate a text
file with the command line equivalents of the project options in your old project, see
Migrating project options, page 21.

6 Make sure to use the header files delivered with version 6.x, since the header files that
define peripheral registers delivered with version 5.x cannot be used with version 6.x.

7 Convert the version 5.x source code to code that is accepted by version 6.x of the
compiler and the assembler, see Source code and compiler considerations, page 10.

8 Make a copy of the linker command file—lnk51n.xcl, supplied with version
6.x—that matches your chip best. Compare it with the file used to link the version 5.x
project, and make the required changes. Do not use your old linker command file, and
do not make any changes in lnk_base.xcl. For information about changes related to
segments, see Segments, page 33.

M8051-2

10

Source code and compiler considerations

8051 IAR Embedded Workbench
Migration Guide

The specification of the runtime library has, together with the possibility to ignore
cstartup in the library, been moved from the linker command file. This means that it
is now possible to use the same linker command file for both C/EC++ and assembler
code. The Ignore CSTARTUP in library option can be set on the Include options
page in the XLINK category.

Source code and compiler considerations
In short, the process of migrating from version 5.x to version 6.x involves the following
steps:

1 Decide which data model, code model and calling convention to use, see Memory
models, page 11.

2 Find all generic pointers in the version 5.x application that are used to access memory
not reachable by the version 6.x default pointer, see Generic pointers, page 16.

3 Replace or modify extended keywords according to the description in the section
Extended keywords, page 25.

4 Replace or modify pragma directives according to the section Pragma directives, page
29.

5 Make sure not to use nested comments in your source code. In version 6.x, nested
comments are never allowed.

6 Replace or modify intrinsic functions according to the section Intrinsic functions, page
32.

Note: Version 6.x will by default not accept preprocessor expressions containing any
of the following:

● Floating-point expressions
● Basic type names and sizeof
● All symbol names (including typedefs and variables).

With the option --migration_preprocessor_extensions, version 6.x will accept
such non-standard expressions. For details about this option, see the 8051 IAR C/C++
Compiler Reference Guide.

To set the equivalent option in the IAR Embedded Workbench IDE choose
Project>Options>ICC8051>Language.

PREDEFINED SYMBOLS

All predefined symbols supported in version 5.x of the compiler are also supported in
version 6.x. Note that the semantics for the __TID__ has changed in version 6.x.

M8051-2

Migrating from version 5.x to version 6.x

11

Version 6.x does not support the concept of memory models used in version 5.x; the
correspondence is instead what calling convention as well as data and code models are
used. There are also additional predefined symbols in version 6.x.

See the chapter Predefined symbols in the 8051 IAR C/C++ Compiler Reference Guide
for information about the predefined symbols available in version 6.x.

MEMORY MODELS

Version 5.x of the compiler uses memory models to select the default location for local
and global data. This is not the case in version 6.x, which instead uses the concepts of
data model, code model and calling convention. The data model affects where global
data is stored and also which default pointer is used. The code model specifies in which
memory the functions are located. The calling convention affects where local data and
parameters are stored. The following table can be used when converting an old version
5.x memory model to the new version 6.x data model, code model and calling
convention.

Note: There are more combinations of these options available than the ones listed in the
table; the table only lists a few possible combinations as a guideline.

The compact and medium memory models in version 5.x do not have a similar
counterpart in version 6.x. However, the option combinations listed in the table might
be the best choice.

The memory model option in version 5.x of the compiler affects several different
parameters that have now been separated into different options. This makes version 6.x
much more flexible. However, not all combinations of the data models and calling
conventions in version 6.x can be combined with each other. The reason for this is that
the default pointer depends on the selected data model and must be able to reach locally

Memory

model

(version 5.x)

Data model

(version 6.x)

Code model

(version 6.x)
Calling convention (version 6.x)

Tiny Tiny Tiny/near Data overlay, Idata overlay, Idata
reentrant

Small Small Near Idata overlay, Idata reentrant

Compact Large Near Pdata reentrant

Medium Large Near Pdata reentrant, Xdata reentrant

Large Large,
(Generic)

Near Xdata reentrant

Banked Large,
(Generic)

 Banked Xdata reentrant

Table 1: Converting from version 5.x memory models

M8051-2

12

Assembler considerations

8051 IAR Embedded Workbench
Migration Guide

defined variables. The location for these variables depends on the selected calling
convention. For more information about the data model, code model and calling
convention in version 6.x and about how these can be combined, see Customization in
the 8051 IAR C/C++ Compiler Reference Guide.

By default all constants are placed in data memory in version 6.x. Version 6.x of the
compiler offers the same support regarding the location of constants and strings as in
version 5.x, see Constants and strings, page 17.

Note: Even though version 6.x of the compiler supports a data model that uses the
generic pointer as the default pointer, we do not recommend using this because it does
not generate optimized code.

In 8051 IAR Embedded Workbench there are tools for source code conversion available
from the Tools menu. One of the tools can convert large parts of your old C source code
to the new version 6.x syntax.The tool comments each statement that has to be modified
in order to comply with the new syntax.

Assembler considerations
Version 6.x of the compiler uses a completely different calling convention than version
5.x. Any C code that interfaces with assembler routines and vice versa must be adapted
to the new calling convention. C code calling an assembler routine must be changed so
that the correct registers are used for parameters and return values. An assembler routine
called from C must be changed so that arguments and return values passed to and from
it are located in the registers that adhere to the version 6.x calling convention. For more
information on the calling convention used in version 6.x, see Assembler language
interface in the 8051 IAR C/C++ Compiler Reference Guide.

BYTE ORDER

The byte order has changed between version 5.x and version 6.x. Version 6.x adheres to
little endian byte order. The static overlay mechanism has also changed from version 5.x
to version 6.x. Thus all old version 5.x operators used for handling static overlay have
been removed and replaced by new operators.

REMOVED OPERATORS

The following operators have been removed:

● $BYTE3
● $PRMBB
● $PRMBD
● $PRMBI
● $PRMBX

M8051-2

Migrating from version 5.x to version 6.x

13

● $LOCBB
● $LOCBD
● $LOCBI
● $LOCBX
● $REFFN
● $IFREF
● $REFFNT

NEW OPERATORS

The following operators have been added:

● PRM
● LOC
● BYTE1
● BYTE4

REMOVED DIRECTIVES

The following directives have been removed:

● CYCLES
● CYCMAX
● CYCMEAN
● CYCMIN
● LSTWID
● LSTFOR
● TITL
● HEADER
● PTITL
● STITL
● PSTITL
● $deffn

NEW DIRECTIVES

The following directives have been added:

● REQUIRE
● CFI
● RTMODEL
● ODD
● PUBWEAK
● FUNCTION
● ARGFRAME
● LOCFRAME

M8051-2

14

Runtime environment considerations

8051 IAR Embedded Workbench
Migration Guide

● FUNCALL
● DC8
● DC16
● DC24
● DC32
● DS8
● DS16
● DS24
● DS32

For more information about the new assembler functionality, see the 8051 IAR
Assembler Reference Guide.

Runtime environment considerations
To build an application produced by version 6.x of the compiler, you must use the
runtime environment components it provides and rebuild your projects. It is not possible
to link object code produced using version 6.x with components provided with version
5.x, see Linker considerations, page 19.

RUNTIME LIBRARY

A newer version of the IAR CLIB library is used together with the 8051 IAR C/C++
Compiler version 6.x. The old source code for the IAR CLIB library distributed with
version 5.x of the compiler cannot be used together with version 6.x. The complete
source code for the IAR CLIB library is delivered with the product. When linking your
application, use a runtime library that matches the runtime options selected for the
compiled application.

Version 6.x uses a new naming convention for runtime library names. For information
about this naming convention, see Runtime library in the 8051 IAR C/C++ Compiler
Reference Guide.

There is a great number of runtime options available in the 8051 IAR C/C++ Compiler.
Therefore the number of possible runtime libraries is huge. It is only feasible to deliver
a few of all possible libraries with the product. For a list of all delivered libraries see
Combinations and dependencies in the 8051 IAR C/C++ Compiler Reference Guide.

If your application uses a set of runtime options for which no runtime library is
delivered, you have to compile your own library from the library source code. Any
changes made to the assembler- or C-written library modules distributed together with
version 5.x of the compiler must be migrated to the corresponding module in the CLIB

M8051-2

Migrating from version 5.x to version 6.x

15

library, distributed with version 6.x. For more information about how to compile your
own library see Building your own runtime library in the IAR Embedded Workbench®
IDE User Guide, and Building a runtime library in the 8051 IAR C/C++ Compiler
Reference Guide.

For more information about the library, see Library functions in the 8051 IAR C/C++
Compiler Reference Guide. For information about the runtime environment, see
Runtime environment in the same guide.

Dynamic memory allocation—the heap

The interface to the runtime library functions used to allocate and deallocate memory on
the heap has changed. This affects the functions malloc, realloc, calloc, and free.
As in version 5.x, a heap is only supported in external data memory; if the
microcontroller does not have external memory, no heap can be used. For more
information about the new interface see Alternative memory allocation functions in the
chapter Data storage in the 8051 IAR C/C++ Compiler Reference Guide.

When converting a version 5.x application to version 6.x it is recommended that all calls
to the functions malloc, calloc, realloc, and free are changed to the corresponding
functions __xdata_malloc, __xdata_calloc, __xdata_realloc, and
__xdata_free.

Constants and strings in code memory

If you want to locate constants and strings in code memory, the runtime library must be
compiled with the option --place_constants=code. Unfortunately, the unmodified
runtime library only compiles correctly if the generic pointer is used as the default
pointer (selected by using the data model generic). Since your application must use the
same runtime options as the runtime library the whole application must use generic
pointers. This is undesirable since the 8051 IAR C/C++ Compiler is not optimized for
generic pointers. Another solution is to modify the source code for the runtime library
so that pointers accessing code memory are explicitly declared __code or __generic
and pointers that need to access any data regardless of in which memory it is located,
are declared __generic. In this case constants and strings can be located in code
memory without the need for using the generic pointer as the default pointer. To modify
the library source so that constants are located in code memory, compile the library
project and explicitly type the pointers that generate compiler errors.

For more information about constants and strings, see Constants and strings, page 17.

M8051-2

16

Runtime environment considerations

8051 IAR Embedded Workbench
Migration Guide

CALLING CONVENTIONS

The 8051 IAR C/C++ Compiler version 6.x does not support the calling conventions
used by version 5.x of the compiler.

Local variables and parameters are handled differently in version 6.x compared to
version 5.x. It is no longer possible to explicitly locate local variables and parameters.
Instead version 6.x supports six different calling conventions. The selected calling
convention affects the location of local data and parameters. The available calling
conventions are:

● Data overlay
● Idata overlay
● Idata reentrant
● Pdata reentrant
● Xdata reentrant
● Extended stack reentrant

The overlay calling conventions use a static overlay frame for local data and parameters.
The overlay frame will be located in data memory for data overlay functions and in idata
memory for idata overlay functions. Note that all local variables and parameters will be
located in this memory. The static overlay calling convention is no longer supported for
xdata memory. The overlay calling convention does not support recursive or reentrant
functions; these functions must use one of the reentrant calling conventions. The
reentrant calling conventions use a stack in the respective memory; all local data and
parameters will be located on this stack. In addition, the return address is saved on the
respective stacks. For more information about the calling conventions in version 6.x, see
Calling convention in the 8051 IAR C/C++ Compiler Reference Guide.

GENERIC POINTERS

In version 5.x of the compiler generic pointers were used as the default pointer in all
memory models. This is not the case in version 6.x—which is indeed one of the most
important changes between version 5.x and version 6.x. Even though generic pointers
are supported in version 6.x we recommend against using them as the default pointer,
since the resulting code will be unnecessarily large and slow. However, it can be a good
idea to use a few explicitly typed generic pointers in an application. When converting a
version 5.x application to version 6.x, generic pointers can be troublesome to convert to
a more suitable pointer type. A version 5.x application using the more general generic
pointer should be rewritten to use more restrictive pointers. Generic pointers are only
needed if the same pointer must be able to access data located in different memory types,
i.e. internal data memory, external data memory and code memory. This is not a
recommended programming practice; it is often better to use different pointers when
accessing different memories.

M8051-2

Migrating from version 5.x to version 6.x

17

When converting a version 5.x application to version 6.x, you should first decide which
data model, calling convention, and code model that best suit the application. Use Table
1, Converting from version 5.x memory models as a guideline. Then find all pointers
(generic pointers) in the version 5.x application that are used to access memory not
reachable by the version 6.x default pointer. The table below shows which default
pointer version 6.x of the compiler uses for the selected data model. Data that cannot be
reached with the version 6.x default pointer must be explicitly typed to a pointer type
that can access the object in question. Note that if a pointer in the version 5.x application
is used to access data in different memories, it might be a good idea to instead use
several different pointers. Only when the same pointer needs to access data in different
memories should it be explicitly declared as generic.

CONSTANTS AND STRINGS

Version 6.x of the compiler offers the same support regarding the location of constants
and strings as in version 5.x. However, the default placement and the way the default
placement is overridden differ between the two versions. The difference is due to the fact
that a generic pointer is no longer always the default pointer in version 6.x, while generic
pointers are always the default pointer in version 5.x. In version 5.x constants and
strings are by default located in code memory and they are referred to with generic
pointers. In version 6.x where the default pointer cannot always reach the code memory,
constants and strings can instead be located in the data memory range.

The concept of writable strings (-y) in version 5.x is not supported in version 6.x.

In version 6.x of the compiler, the placement of constants and string can be handled in
one of three ways:

● Constants and strings are copied from non-volatile memory to volatile memory at
system initialization; in this case strings and constants will be handled in the same
way as initialized variables. This is the default behavior in version 6.x, and all
prebuilt libraries delivered with the product use this method. Note: This method
requires space for constants and strings both in non-volatile and volatile memory.

Data model Default data memory attribute Default data pointer attribute

Tiny __data __idata

Small __idata __idata

Large __xdata __xdata

Generic __xdata __generic

Far __far __far

Table 2: Default pointers used for selected data models in version 6.x

M8051-2

18

Runtime environment considerations

8051 IAR Embedded Workbench
Migration Guide

● Constants are located in non-volatile memory located in the external data memory
addressing range. Thus constants and strings are accessed using the same access
method as ordinary external data memory. This is the most efficient method but only
possible if the microcontroller has non-volatile memory in the external data
memory addressing range. This method is used if the constant or string is explicitly
declared as __xdata_rom/__far_rom/__huge_rom. This is also the default
behavior if the option --place_constants=data_rom has been used.

Note: This option has no effect if none of the data models far, generic, or large have
been used.

● Constants and strings are located in code memory and are not copied to data
memory. This method does not use any additional data memory. However, constants
and strings located in code memory can only be accessed through the pointers
__code, __far_code, __huge_code, or __generic.

When converting an application from version 5.x to version 6.x, select the default
placement method that suits the application best. If the microcontroller has non-volatile
memory in the extended data memory range, method two should be selected. If the
application only uses a small amount of constants and strings and the microcontroller
does not have non-volatile memory in the external data memory range, or if it has no
external memory at all, method one should be selected. Method three should only be
considered if a large amount of strings and constants are used and none of the other two
methods are appropriate. There are some complications when using the runtime library
together with method three, see Constants and strings in code memory, page 15.

The old version 5.x keywords for constant and string location can be converted in the
following way:

More information about the placement of constants and strings can be found in the
chapters Compiler options and Extended keywords in the 8051 IAR C/C++ Compiler
Reference Guide.

BYTE ORDER

There are differences in byte order between compiler version 5.x and 6.x that can affect
your code. Most applications will not be affected by the change in byte order. However,
variables of different types stored at the same memory location, like the union construct
in C, or access of a part of a variable, may not work correctly, see the example below.
Therefore you should review your pointers carefully.

Version 5.x keyword Version 6.x keyword

code __code

xdataconst __xdata_rom

Table 3: Conversion of constant and string location keywords

M8051-2

Migrating from version 5.x to version 6.x

19

Example

#include <stdio.h>
void main(void)
{
 long l = 0xAABBCCDD;
 char* c;
 int i;

 c = (char*)&l;
 for(i = 0; i < 4; i++)
 {
 printf("0x%X:",*c);
 c++;
 }
}

When version 5.x performs memory accesses in big-endian byte order, the program
gives the following result:

0xAA:0xBB:0xCC:0xDD:

When version 6.x adheres to little-endian byte order the result is reversed compared to
version 5.x:

0xDD:0xCC:0xBB:0xAA:

 Linker considerations
If you have created your own customized linker command file, we recommend that you
create a new one based on a new template supplied in the \config directory. Note that
many of the segment names have changed, see Segments, page 33.

When linking code compiled with version 6.x of the compiler, use the XLINK option
-cx51. However, when linking code compiled with version 5.x, use the XLINK option
-c8051.

SEGMENT CONTROL DIRECTIVES

The segment control directive -b should not be used together with version 6.x of the
compiler. If you were using this directive for locating your banked code in memory, be
aware that it is now obsolete and superseded by the new linker segment control directive
-P. The -b directive can be used, but it might not generate the same result as in version
5.x and a warning will be issued.

M8051-2

20

Linker considerations

8051 IAR Embedded Workbench
Migration Guide

Syntax

The syntax of the -P directive is as follows:

P(type)segments=[start-end]*number+increment

Example

The following statement declares 4 code banks at the addresses 0x08000–0x0B000,
0x18000–0x1B000, 0x28000–0x2B000, 0x38000–0x3B000.

Version 6.x:

--P(CODE)BANKED_CODE=[0x8000-0xB000]*4+10000

Version 5.x:

-b(CODE)CODE=8000,4000,10000

For details of the -P directive, see the IAR Linker and Library Tools Reference Guide.
For more information about placing segments in memory, see the 8051 IAR C/C++
Compiler Reference Guide.

OBJECT FILE FORMAT

In version 5.x of the compiler, there are a number of command line modifiers used with
the command line option -r that cause the compiler to include different types of
additional information required by the debugger. By default, the version 6.x compiler
does not include debugging information, for code efficiency. In version 6.x, when the
command line option -r or --debug is used, source file references are always
generated. Embedding of the source code is not supported.

Parameter Definition

type Specifies the memory type of the segment

segments A list of banked segments to be linked

start The beginning of the banked segment block

end the end of the banked segment block

number The number of banked segment blocks

increment The increment factor between banks

M8051-2

Migrating from version 5.x to version 6.x

21

Compiler options
The command line options in version 6.x follow two different syntax styles:

● Long option names containing one or more words prefixed with two dashes, and
sometimes followed by an equal sign and a modifier, for example --strict_ansi
and --module_name=test.

● Short option names consisting of a single letter prefixed with a single dash, and
sometimes followed by a modifier, for example -r.

Some options appear in one style only, while other options appear as synonyms in both
styles. For more information, see Compiler options in the 8051 IAR C/C++ Compiler
Reference Guide.

Note: A number of new command line options have been added. For a complete list of
the available command line options, see Options summary in the 8051 IAR C/C++
Compiler Reference Guide.

MIGRATING PROJECT OPTIONS

Since the available compiler options differ between version 5.x and version 6.x, you
should verify your option settings after you have converted an old project.

If you are using the command line interface, you can simply compare your makefile with
the option tables in this section, and modify the makefile accordingly.

If you are using the IAR Embedded Workbench IDE, you can check the settings in
version 5.x and set the corresponding options in version 6.x. Follow these steps:

1 Open the old project in the old IAR Embedded Workbench version.

2 In the project window, select the Target you are about to migrate.

3 To save the project settings to a file, right-click in the project window. On the context
menu that appears, choose Save As Text, and save the settings to an appropriate
destination.

4 Use this file and the option tables in this section to verify whether the options you used
in your old project are still available or needed. Also check whether you need to use
any of the new options.

For information about where to set the equivalent options in the IAR Embedded
Workbench IDE, see Descriptions of options in the 8051 IAR C/C++ Compiler
Reference Guide.

M8051-2

22

Compiler options

8051 IAR Embedded Workbench
Migration Guide

Removed options

The following table shows the command line options that have been removed:

Identical options

The following table shows the command line options that are identical in version 5.x and
version 6.x:

Old option Description

-C Nested comments

-F Form-feed in list file after each function

-G Opens standard input as source; replaced by - (dash) as source file
name in version 6.x

-g Global strict type checking; in version 6.x, global strict type checking is
always enabled

-gO No type information in object code

-i Adds #include file text

-K // comments; in version 6.x, // comments are allowed unless the
option --strict_ansi is used

-P Generates PROMable code

-pnn Lines/page

-R Sets code segment name

-T Active lines only

-tn Tab spacing

-Usymb Undefines preprocessor symbol

-X Explains C declarations

Table 4: Version 5.x compiler options not available in version 6.x

Option Description

-Dsymb=value Defines symbols

-e Language extensions

-f filename Extends the command line

-I Include paths (The syntax is more free in 8051 IAR C/C++ Compiler
version 6.x)

-s[0–9] Optimizes for speed

-z[0–9] Optimizes for size

Table 5: Compiler options identical in both compiler versions

M8051-2

Migrating from version 5.x to version 6.x

23

Renamed or modified options

The following version 5.x command line options have been renamed and/or modified:

Version 5.x option Version 6.x option Description

-A

-a filename

-la .

-la filename

Assembler output; see Filenames, page 24.

-b --library_module Makes an object a library module

-c --char_is_signed char is signed char

-E --calling_convention=

idata_reentrant

Specifies the default calling convention

-EL --calling_convention=

xdata_reentrant

Specifies the default calling convention

-ES --calling_convention=

idata_reentrant

Specifies the default calling convention

-gA --strict_ansi Flags old-style functions

-Hname --module_name=name Sets object module name

-I[prefix] Ipath Includes paths for #include files

-L[prefix], -l filename -l[c|C|a|A][N][H] filename Generates list file; the modifiers specify the
type of list file to create

-mb --code_model=banked,

--data_model=large,

--calling_convention=

xdata_reentrant

Uses the banked CODE memory and sets
all data to XDATA memory.

-ml --code_model=near,

--data_model=large,

--calling_convention=

xdata_reentrant

Sets the CODE memory to 64 Kbytes of
ROM and all data to XDATA memory

-ms --code_model=near

--data_model=small,

--calling_convention=

idata_overlay

Sets the CODE memory to 64 Kbytes of
ROM and all data to IDATA

-mt --code_model=near

--data_model=tiny,

--calling_convention=

data_overlay

Sets the CODE memory to 64 Kbytes of
ROM and variables to DATA

-Nprefix, -n filename --preprocess=[c][n][l]

filename

Preprocessor output

Table 6: Renamed or modified options

M8051-2

24

Compiler options

8051 IAR Embedded Workbench
Migration Guide

Note: There is no exact match between the options -mc and -mm in version 5.x and the
corresponding options in version 6.x. For more information, see Table 1, Converting
from version 5.x memory models, page 11.

FILENAMES

In version 5.x, file references could be made in either of the following ways:

● With a specific filename, and in some cases with a default extension added, using a
command line option such as -a filename (assembler output to named file).

● With a prefix string added to the default name, using a command line option such as
-A[prefix] (assembler output to prefixed filename).

In version 6.x, a file reference is always regarded as a file path that can be either a
directory which the compiler will check and then add a default filename to, or a
filename.

The following table shows some examples where it is assumed that the source file is
named test.c, myfile is not a directory, and mydir is a directory:

-o filename, -Oprefix -o {filename|directory} Sets object filename

-q -lA .

-lC .

Inserts mnemonics; list file syntax has
changed

-r[012][i][n][r][e] -r

--debug

Generates debug information; the
modifiers have been removed

-S --silent Sets silent operation

-u --disable_data_alignment Disables data alignment of data objects

-v[0|1] --core={tiny|ti|plain|pl|

extended1|e1}

Specifies the microcontroller core

-w [s] --no_warnings Disables warnings

Version 5.x option Version 6.x option Description

Table 6: Renamed or modified options (Continued)

Old command New command Result

-l myfile -l myfile myfile.lst

-Lmyfile -l myfiletest myfiletest.lst

-L -l . test.lst

-Lmydir/ -l mydir mydir/test.lst

Table 7: Specifying filename and directory in version 5.x and version 6.x

M8051-2

Migrating from version 5.x to version 6.x

25

LIST FILES

In version 5.x, only one C list file and one assembler list file can be produced; in version
6.x there is no upper limit on the number of list files that can be generated. The new
command line option -l[c|C|a|A][N][H] filename is used for specifying the
behavior of each list file.

ENVIRONMENT VARIABLES

The version 5.x environment variable QCC8051 has the corresponding environment
variable QCCX51 in version 6.x.

Extended keywords
The set of extended keywords has changed in version 6.x of the compiler. Some
keywords have been added, some keywords have been removed, and for some keywords
the syntax has changed. In addition, memory attributes have a different interpretation if
used in combination with typedef.

In version 6.x, all extended keywords start with two underscores, for example
__no_init.

The following table lists the old keywords, their new equivalents, and completely new
keywords:

Keyword in version 5.x Keyword in version 6.x

bdata __bdata

bit __bit bool

code __code

__far_code

__huge_code

data __data

idata __idata

reentrant_idata __idata_reentrant

interrupt __interrupt

The interrupt vector v and bank register number n have to be
declared using #pragma vector=v and #pragma
register_bank=n respectively

monitor __monitor

non_banked __near_func

__tiny_func

Table 8: Old and new extended keywords

M8051-2

26

Extended keywords

8051 IAR Embedded Workbench
Migration Guide

The incompatibilities between old and new keywords can be solved by using an include
file which defines the old names, for instance: #define near __near

For detailed information about the extended keywords available in version 6.x, see the
chapter Extended keywords in the 8051 IAR C/C++ Compiler Reference Guide.

BITS

To be ANSI-compliant the semantics of bit operations has changed.

In version 5.x a cast from a character to a bit depends on the least significant bit in the
byte. For example, assigning a bool the value of a char with the value 4 (00000100)
gives the result 0, because the bit 0 in the char is 0; hence the truncation is applied by
the cast. In version 6.x the cast operation acts like a bool in the C++ standard for bool,
which means the cast is interpreted as

 bit = !(char == 0)

The result of the assignment of a char variable of value 4 (00000100) is 1, because !(4
== 0) gives 1.

The C++ standard for the bool standard also introduces integer promotion.

This means that an expression must give the same result as if all of its operands were of
the type int. This behavior was not implemented in version 5.x, which means that there
might be serious bit problems in your old code.

As an example of the difference between version 5.x and 6.x we examine how the ~bit
construction differs in the two versions.

In version 5.x ~bit gives 0 if bit is 1 and gives 1 if bit is 0. This is not the case in
version 6.x.

no_init __no_init

pdata __pdata

plm Not available

sfr __sfr unsigned char

xdata __xdata

xdataconst __xdata_rom

reentrant __xdata_reentrant

__pdata_reentrant

using[n] The bank number n has to be declared using #pragma
register_bank=n

Keyword in version 5.x Keyword in version 6.x

Table 8: Old and new extended keywords (Continued)

M8051-2

Migrating from version 5.x to version 6.x

27

In version 6.x ~bit gives 1 if bit is 1 and gives 1 if bit is 0. This is because the C++
standard for bool states that the ~bit operation must act like bit where it is of the type
int. We take a closer look at the example when bit is 1.

The promoted value of bit is 1, which is the same as the binary number
0000000000000001. The ~ operator toggles the bits and the result is the binary number
1111111111111110 (0xFFFE). If—as we explained above—you do the assignment:
bit = ~bit you get the result 1, because !(0xFFFE == 0) gives 1.

The ANSI-compliant way to toggle a bit is as follows: bit = !bit.

STORAGE MODIFIERS

Both version 5.x and version 6.x of the compiler allow keywords that specify the
memory location of an object; the memory attributes. Each of these attributes can be
used either as a placement attribute for an object, or as a pointer type attribute denoting
a pointer that can point to the specified memory.

Replace all storage modifiers used in the version 5.x source code with the corresponding
version 6.x keywords, as shown in Table 8, Old and new extended keywords. Another
declaration syntax is also supported in version 6.x. For example, in version 5.x an idata
pointer located in xdata memory is declared as:

xdata char idata *p; /* p stored in xdata memory, points
 to idata memory */

In version 6.x the following two declarations correspond to the version 5.x declaration:

 __xdata char __idata *p; /* old syntax */
char __idata * __xdata p; /* recommended syntax */

More information about pointer syntax in version 6.x can be found in the 8051 IAR
C/C++ Compiler Reference Guide.

Furthermore, the usage of memory attributes in combination with the keyword typedef
is stricter in version 6.x than in version 5.x. Version 5.x behaves unexpectedly in some
cases:

typedef int xdata XINT;
XINT a, b;
XINT data c; /* Illegal */
XINT *p; /* p stored in xdata memory, points to
 default memory type */

The first variable declaration works as expected, which means that a and b are located
in xdata memory. However, the declaration of c is illegal.

M8051-2

28

Extended keywords

8051 IAR Embedded Workbench
Migration Guide

In the last declaration, the xdata keyword of the type definition affects the location of
the pointer variable p, whereas in version 6.x it would have affected the pointer type.
Instead the pointer type is default in version 5.x.

The corresponding example for version 6.x is:

typedef int __xdata XINT;
XINT a, b;
XINT __data c; /* c stored in __data memory; override
 attribute in typedef */
XINT *p; /* p stored in default memory, points to
 __xdata memory */

The declarations of c and p differ. The __data keyword in the declaration of c will
always compile. It overrides the keyword of the typedef. In the last declaration the
__xdata keyword of the typedef affects the type of the pointer. It is thus an __xdata
pointer to int. However, the location of the variable p is the default memory location.

INTERRUPT FUNCTIONS AND VECTORS

The syntax for defining interrupt functions has changed from version 5.x.

Old syntax

The syntax when defining interrupt functions using version 5.x:

interrupt [vector] using [bankno] void function_name(void);

where vector is the vector offset in the vector table and bankno is the register bank to
be used.

New syntax

The syntax when defining interrupt functions using version 6.x:

#pragma register_bank=bankno
#pragma vector=vector
__interrupt void function_name(void);

where vector is the vector offset in the vector table and bankno is the register bank to
be used.

ABSOLUTE LOCATED VARIABLES

In version 6.x you can locate any object at an absolute address by using the #pragma
location directive, for example:

#pragma location=100
__no_init long PORT;

M8051-2

Migrating from version 5.x to version 6.x

29

or by using the locator operator @, for example:

__no_init long PORT @ 100;

You can also use the volatile attribute on any type, for example:

__sfr __no_init volatile unsigned char PORT @ 0x10;

In version 5.x the corresponding syntax was:

sfr PORT = 0x90;

Pragma directives
Version 5.x and version 6.x have different sets of pragma directives for specifying
attributes, and they also behave differently:

● In version 5.x, #pragma memory specifies the default location of data objects, and
#pragma function specifies the default location of functions. They change the
default attribute to use for declared objects up to the next #pragma memory and
#pragma function; they do not have an effect on pointer types.

● In version 6.x, the #pragma type_attribute and #pragma object_attribute
directives only change the next declared object or typedef.

See the chapter Pragma directives in the 8051 IAR C/C++ Compiler Reference Guide
for information about the pragma directives available in version 6.x.

Removed pragma directives

The following pragma directives have been removed:

● codeseg

● function

● memory

● warnings

These pragma directives are recognized and will give a diagnostic message but will have
no effect on the generated code in version 6.x.

Note: Instead of the #pragma codeseg directive, we recommend using the #pragma
location directive or the @ operator for specifying an absolute location.

M8051-2

30

Pragma directives

8051 IAR Embedded Workbench
Migration Guide

Correspondence between old and new pragma directives

The following table shows the mapping of pragma directives from version 5.x to version
6.x:

Pragma directive in version 5.x Pragma directive in version 6.x

#pragma bitfields=default #pragma bitfields=default

#pragma bitfields=reversed #pragma bitfields=reversed

#pragma codeseg (seg_name) Not applicable

#pragma function=default Not applicable

#pragma function=interrupt #pragma type_attribute=__interrupt

#pragma function=monitor #pragma type_attribute=__monitor

#pragma function=non_banked #pragma type_attribute=__near_func

#pragma function=plm Not applicable

#pragma function=reentrant #pragma

type_attribute=__xdata_reentrant

#pragma

function=reentrant_idata

#pragma

type_attribute=__idata_reentrant

#pragma language=default #pragma language=default

#pragma language=extended #pragma language=extended

#pragma maxargs Not applicable

#pragma memory=code #pragma type_attribute=__code

#pragma memory=data #pragma type_attribute=__data

#pragma memory=default Not applicable

#pragma memory=idata #pragma type_attribute=__idata

#pragma memory=pdata #pragma type_attribute=__pdata

#pragma memory=xdata #pragma type_attribute=__xdata

#pragma memory=xdataconst #pragma type_attribute=__xdata_rom

#pragma

memory=constseg(seg_name)

#pragma constseg=seg_name, #pragma

location=address (recommended)

#pragma

memory=dataseg(seg_name)

#pragma dataseg=seg_name, #pragma

location=address (recommended)

#pragma memory=no_init #pragma object_attribute=__no_init

#pragma overlay=off Not applicable

#pragma overlay=default Not applicable

#pragma stringalloc=xdata #pragma type_attribute=__xdata_rom

Table 9: Old and new pragma directives

M8051-2

Migrating from version 5.x to version 6.x

31

Instead of the pragma directive #pragma stringalloc=default, use the compiler
option --place_constants={data|xdata_rom|code}

Note: The new pragma directives #pragma type_attribute, #pragma location,
#pragma object_attribute, #pragma type_attribute and #pragma vector
affect only the first of the declarations that follow after the directive. In the following
example, x is affected, but z and y are not affected by the directive:

#pragma object_attribute=__no_init
int x,z;
int y;

New pragma directives

The following pragma directives have been added in version 6.x of the compiler:

● #pragma constseg
● #pragma dataseg
● #pragma diag_error
● #pragma diag_remark
● #pragma diag_suppress
● #pragma diag_warning
● #pragma data_alignment
● #pragma inline
● #pragma location
● #pragma message
● #pragma object_attribute
● #pragma optimize
● #pragma register_bank
● #pragma required
● #pragma segment
● #pragma type_attribute
● #pragma vector

For information about the new pragma directives, see Pragma directives in the 8051 IAR
C/C++ Compiler Reference Guide.

#pragma stringalloc=default Not applicable

#pragma warning=on #pragma diag_warning=tag,tag

#pragma warning=off #pragma diag_suppress=tag,tag

#pragma warning_default #pragma diag_default=tag,tag

Pragma directive in version 5.x Pragma directive in version 6.x

Table 9: Old and new pragma directives (Continued)

M8051-2

32

Intrinsic functions

8051 IAR Embedded Workbench
Migration Guide

Specific segment placement

In version 5.x of the compiler, the #pragma memory directive supports a syntax that
enables subsequent data objects that match certain criteria to end up in a specified
segment. Each object found after the invocation of a segment placement directive will
be placed in this segment, provided that it does not have a memory attribute placement,
and that it has the correct constant attribute. For constseg, it must be a constant, while
for dataseg, it cannot be declared const.

In version 6.x, the directives #pragma location and #pragma type_attribute,
and the @ operator are available for this purpose. Note that these attributes affect only
the first declaration immediately after the pragma directive.

Intrinsic functions
Version 6.x of the compiler has a new naming convention for intrinsic functions, as well
as additional intrinsic functions.

The old intrinsic functions _args$ and _argt$ available in version 5.x have been
removed and cannot be used in version 6.x.

The following table lists the old intrinsic functions and their new equivalents, as well as
the new intrinsic functions:

Intrinsic function in

version 5.x
Intrinsic function in version 6.x Description

_args$ None Returns an array of the
parameters to a function

_argt$ None Returns the type of a parameter

None __disable_interrupt Inserts a disable interrupt
instruction

None __enable_interrupt Inserts an enable interrupt
instruction

_opc None Inserts operation code

None __no_operation Generates a no operation
instruction

None __parity Indicates the parity of the
argument

_tbac __tbac Atomic read, modify, write
instruction

Table 10: Old and new intrinsic functions

M8051-2

Migrating from version 5.x to version 6.x

33

The asm keyword can be used instead of _opc, see the 8051 IAR C/C++ Compiler
Reference Guide.See the chapter Intrinsic functions in the 8051 IAR C/C++ Compiler
Reference Guide for further information about the intrinsic functions available in
version 6.x of the compiler.

Segments
The segment naming convention has changed since version 5.x of the compiler. For
information about the segment naming convention used in version 6.x, see Segments and
memory in the 8051 IAR C/C++ Compiler Reference Guide.

Version 6.x of the compiler is much more flexible, in the sense that it provides many
more options related to variables, constants and calling conventions. Thus many more
segments are used in version 6.x; some segments from version 5.x correspond to a
certain segment in version 6.x, while other segments from version 5.x can be mapped to
one of several segments in version 6.x. Many of the segments in version 6.x are
completely new and do not correspond to a segment in version 5.x. For more
information about the segments used in version 6.x of the compiler, see Segment
reference in the 8051 IAR C/C++ Compiler Reference Guide. The table below shows
how segments from version 5.x can be mapped to new segments in version 6.x.

This table lists the old segment names, their counterparts in version 6.x, and additional
segments:

Segment in version 5.x Segment in version 6.x

BITVARS BIT_N

B_CDATA BDATA_ID

B_IDATA BDATA_I

B_UDATA BDATA_Z

C_ARGB DOVERLAY, IOVERLAY, ISTACK

C_ARGD DOVERLAY

C_ARGI IOVERLAY, ISTACK

C_ARGX XSTACK, EXT_STACK

CCSTR1 Not available

C_ICALL2 BANKED_CODE, NEAR_CODE,

TINY_CODE

CODE BANKED_CODE, NEAR_CODE,

TINY_CODE

CONST CODE_AC/C/N

Table 11: Old and new segments

M8051-2

34

Segments

8051 IAR Embedded Workbench
Migration Guide

C_RECFN3 BANKED_CODE, NEAR_CODE,

TINY_CODE

CSTACK ISTACK

CSTR BDATA/DATA/IDATA/PDATA/XDA

TA_I, XDATA_ROM_C, CODE_C

D_CDATA DATA_ID

D_IDATA DATA_I

D_UDATA DATA_Z

ECSTR Not available

I_CDATA IDATA_ID

I_IDATA IDATA_I

I_UDATA IDATA_Z

INTVEC INTVEC

NO_INIT XDATA_AN, XDATA_N

P_CDATA PDATA_ID

P_IDATA PDATA_I

P_UDATA PDATA_Z

RCODE RCODE

RF_XDATA4 XSTACK

X_CDATA XDATA_ID

X_CONST XDATA_ROM_AC, XDATA_ROM_C

XCSTR XDATA_ROM_AC, XDATA_ROM_C

X_IDATA XDATA_I

X_UDATA XDATA_Z

XSTACK XSTACK

1) Version 6.x does not support the concept of writable strings. Therefore
the segments used in version 5.x for writable strings have no correspon-
dence in version 6.x.
2) In version 6.x functions called indirectly are located in the same seg-
ment as ordinary functions. Therefore no special segment is needed for
functions called indirectly.
3) In version 6.x recursive functions are located in the same segment as
ordinary functions. Therefore no special segment is needed for recursive
functions.
4) In version 6.x no special stack is used for recursive functions; the stack
specified by the calling convention is used for the specific function. Note
that functions using an overlay calling convention cannot be recursive.

Segment in version 5.x Segment in version 6.x

Table 11: Old and new segments (Continued)

M8051-2

Migrating from version 5.x to version 6.x

35

ASSEMBLER SOURCE CODE

If you have used any of the segments specific to version 5.x in assembler source code,
and if you want to port this assembler code, you must replace all version 5.x segment
names with version 6.x segment names.

If your application is written entirely in assembler, you must use the option Ignore
CSTARTUP in library which can be found on the Include options page in the XLINK
category in version 6.x of the 8051 IAR Embedded Workbench IDE.

Other changes
This section describes changes related to:

● Nested comments
● Sizeof in preprocessor directives.

NESTED COMMENTS

In version 5.x of the compiler, nested comments are allowed if the option -C is used. In
version 6.x, nested comments are never allowed. For example, if a comment was used
for removing a statement like in the following example, it would not have the desired
effect.

/*
/* x is a counter */
int x = 0;
*/

The variable x will still be defined, there will be a warning where the inner comment
begins, and there will be an error where the outer comment ends.

 /* x is a counter */
 ^
"c:\bar.c",2 Warning[Pe009]: nested comment is not allowed

 */
 ^
"c:\bar.c",4 Error[Pe040]: expected an identifier

The solution is to use #if 0 to “hide” portions of the source code when compiling:

#if 0
/* x is a counter */
int x = 0;
#endif

Note: #if statements may be nested.

M8051-2

36

Other changes

8051 IAR Embedded Workbench
Migration Guide

SIZEOF IN PREPROCESSOR DIRECTIVES

In version 5.x, sizeof could be used in #if directives, for example:

#if sizeof(int)==2
int i = 0;
#endif

In version 6.x, sizeof is not allowed in #if directives. The following error message
will be produced:

 #if sizeof(int)==2
 ^
"c:\bar.c",1 Error[Pe059]: function call is not allowed in a
constant expression.

Macros can be used instead, for example SIZEOF_INT. Macros can be defined using the
-D option, or a #define in the source code:

#if SIZEOF_INT==2
int i = 0;
#endif

To find the size of a predefined data type, see Data types in the 8051 IAR C/C++
Compiler Reference Guide.

The size of complex data types may be computed using one of several methods:

● Write a small program and run it in the simulator, with terminal I/O.

#include <stdio.h>
struct s { char c; int a; };

void main(void)
{
 printf("sizeof(struct s)=%d \n", sizeof(struct s));
}

● Write a small program, compile it with the option -la . to get an assembler listing
in the current directory, and look for the definition of the constant x.

struct s { char c; int a; };
const int x = sizeof(struct s);

	Contents
	Tables
	Migrating from version 6.x to version 7.10A
	Key advantages
	Migration considerations
	IAR Embedded Workbench IDE
	Workspace and projects
	C-SPY layout files

	Project options
	Runtime library and object files considerations
	Compiling and linking with the DLIB runtime library
	Program entry
	System initialization-Cstartup
	Migrating from CLIB to DLIB
	Linker considerations

	Migrating from version 5.x to version 6.x
	Key advantages
	IDE
	Compiler
	Debugger

	Migration considerations
	Project file and project setup
	Source code and compiler considerations
	Predefined symbols
	Memory models

	Assembler considerations
	Byte order
	Removed operators
	New operators
	Removed directives
	New directives

	Runtime environment considerations
	Runtime library
	Calling conventions
	Generic pointers
	Constants and strings
	Byte order

	Linker considerations
	Segment control directives
	Object file format

	Compiler options
	Migrating project options
	Filenames
	List files
	Environment variables

	Extended keywords
	Bits
	Storage modifiers
	Interrupt functions and vectors
	Absolute located variables

	Pragma directives
	Intrinsic functions
	Segments
	Assembler source code

	Other changes
	Nested comments
	Sizeof in preprocessor directives

