
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK-650

XLINK-650

COPYRIGHT NOTICE
© 1987–2016 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, C-RUN, C-STAT, visualSTATE,
Focus on Your Code, IAR KickStart Kit, IAR Experiment!, I-jet, I-jet Trace, I-scope,
IAR Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

September 2016

Part number: XLINK-650

Contents
Tables ... 7

Preface .. 9

Who should read this guide ... 9

How to use this guide ... 9

What this guide contains ... 10

Document conventions .. 10

Typographic conventions ... 11

Naming conventions .. 11

Part 1: The IAR XLINK Linker ... 13

Introduction to the IAR XLINK Linker .. 15

Key features .. 15

Large Address Awareness .. 15

Stack usage analysis ... 16

MISRA C ... 16

The linking process ... 17

Object format ... 17

XLINK functions ... 18

Libraries .. 18

Output format ... 18

Input files and modules .. 19

Libraries ... 19

Formatters for printf and scanf ... 20

Segments .. 21

Noalloc content .. 21

Segment control ... 22

Address translation ... 23

Allocation segment types ... 23

Memory segment types .. 24

Overlap errors ... 25
XLINK-650

 3

4

Contents
Range errors .. 25

Segment placement examples .. 26

Listing format ... 27

Header .. 27

Cross-reference .. 28

Checksummed areas and memory usage ... 35

Checksum calculation ... 36

Checksum calculation by the linker ... 37

Adding a checksum function to your source code 38

Things to remember ... 40

Checksum value symbol .. 40

Bytewise and mirrored initial checksum values 41

Bitwise initial values .. 41

Bytewise initial values ... 42

Mirroring .. 42

Logging .. 43

Logging object files ... 43

Logging modules .. 44

Logging segment parts ... 44

Logging automatic redirections ... 47

Logging calls and stack usage .. 48

XLINK options .. 51

Setting XLINK options ... 51

Specifying numbers on the command line ... 51

Summary of options .. 52

Descriptions of XLINK options .. 54

XLINK output formats .. 91

Single output file ... 91

UBROF versions ... 93

Two output files .. 95

Output format variants .. 96

IEEE695 ... 96

ELF ... 98
XLINK-650

IAR Linker and Library Tools
Reference Guide

Contents
XCOFF78K .. 99

Restricting the output to a single address space 100

XLINK environment variables ... 103

Summary of XLINK environment variables 103

XLINK diagnostics ... 107

Introduction .. 107

XLINK warning messages ... 107

XLINK error messages .. 107

XLINK fatal error messages .. 107

XLINK internal error messages ... 107

XLINK stack usage analysis diagnostic messages 108

Error messages .. 108

Warning messages ... 129

Stack usage analysis diagnostic messages 140

Part 2: The IAR Library Tools .. 145

Introduction to the IAR Systems library tools 147

Libraries .. 147

IAR XAR Library Builder and IAR XLIB Librarian 147

Choosing which tool to use .. 148

Using libraries with C/C++ programs .. 148

Using libraries with assembler programs 148

The IAR XAR Library Builder .. 151

Using XAR ... 151

Basic syntax .. 151

Summary of XAR options ... 151

Descriptions of XAR options ... 152

XAR diagnostics .. 153

XAR messages ... 153
XLINK-650

 5

6

Contents
IAR XLIB Librarian options ... 155

Using XLIB options .. 155

Giving XLIB options from the command line 155

XLIB batch files ... 155

Parameters .. 156

Module expressions .. 156

List format .. 157

Using environment variables ... 157

Summary of XLIB options for all UBROF versions 158

Descriptions of XLIB options for all UBROF versions 159

Summary of XLIB options for older UBROF versions 168

Descriptions of XLIB options for older UBROF versions ... 169

XLIB diagnostics .. 171

XLIB messages .. 171

Index ... 173
XLINK-650

IAR Linker and Library Tools
Reference Guide

Tables
1: Typographic conventions used in this guide ... 11

2: Naming conventions used in this guide .. 11

3: Allocation segment types .. 23

4: Memory segment types ... 24

5: Segment map (-xs) XLINK option .. 30

6: XLINK options summary .. 52

7: Checksumming algorithms .. 63

8: Checksumming flags ... 63

9: Mapping logical to physical addresses (example) .. 70

10: Threaded library redirections for C applications ... 80

11: Threaded library redirections for C++ applications .. 80

12: XLINK formats generating a single output file .. 91

13: Possible information loss with UBROF version mismatch 94

14: XLINK formats generating two output files ... 95

15: XLINK output format variants .. 96

16: IEEE695 format modifier flags ... 96

17: IEEE695 format variant modifiers for specific debuggers 97

18: ELF format modifier flags .. 98

19: ELF format variant modifiers for specific debuggers ... 99

20: XCOFF78K format modifiers ... 99

21: XCOFF78K format variant modifiers for specific debuggers 100

22: XLINK environment variables .. 103

23: XAR parameters .. 151

24: XAR options summary .. 151

25: XLIB parameters ... 156

26: XLIB module expressions ... 156

27: XLIB list option symbols .. 157

28: XLIB environment variables ... 157

29: XLIB options summary ... 158

30: Summary of XLIB options for older compilers .. 168
XLINK-650

 7

8

XLINK-650

IAR Linker and Library Tools
Reference Guide

Preface
Welcome to the IAR Linker and Library Tools Reference Guide. The purpose
of this guide is to provide you with detailed reference information that can
help you to use the IAR Systems linker and library tools to best suit your
application requirements.

Who should read this guide
This guide provides reference information about the IAR XLINK Linker version 6.5.0,
the IAR XAR Library Builder, and the IAR XLIB Librarian. You should read it if you
plan to use the IAR Systems tools for linking your applications and need to get detailed
reference information on how to use the IAR Systems linker and library tools. In
addition, you should have working knowledge of the following:

● The architecture and instruction set of your target microcontroller. Refer to the chip
manufacturer’s documentation.

● Your host operating system.

For information about programming with the IAR Compiler, refer to the IAR Compiler
User Guide.

For information about programming with the IAR Assembler, refer to the IAR
Assembler Reference Guide.

How to use this guide
When you first begin using IAR Systems linker and library tools, you should read the
Introduction to the IAR XLINK Linker and Introduction to the IAR Systems library tools
chapters in this reference guide.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introductions.

If you are new to using IAR Embedded Workbench, we recommend that you first read
the initial chapters of the IDE Project Management and Building Guide (some products
are instead delivered with the IAR Embedded Workbench® IDE User Guide), where you
will find product overviews and information about installing the IAR Systems
development tools. This guide also contains detailed reference information about the
IAR Embedded Workbench IDE. The IAR Information Center contains tutorials that
will help you get started.
XLINK-650

 9

10

What this guide contains
What this guide contains
Below is a brief outline and summary of the chapters in this guide.

Part 1: The IAR XLINK Linker

● Introduction to the IAR XLINK Linker describes the IAR XLINK Linker, and gives
examples of how it can be used. It also explains the XLINK listing format.

● XLINK options describes how to set the XLINK options, gives an alphabetical
summary of the options, and provides detailed information about each option.

● XLINK output formats summarizes the output formats available from XLINK.
● XLINK environment variables gives reference information about the IAR XLINK

Linker environment variables.
● XLINK diagnostics describes the error and warning messages produced by the IAR

XLINK Linker.

Part 2: The IAR Library Tools

● Introduction to the IAR Systems library tools describes the IAR Systems library
tools—IAR XAR Library Builder and IAR XLIB Librarian—which are designed to
allow you to create and maintain relocatable libraries of routines.

● The IAR XAR Library Builder describes how to use XAR and gives a summary of
the XAR command line options.

● XAR diagnostics describes the error and warning messages produced by the IAR
XAR Library Builder.

● IAR XLIB Librarian options gives a summary of the XLIB commands, and
complete reference information about each command. It also gives reference
information about the IAR XLIB Librarian environment variables.

● XLIB diagnostics describes the error and warning messages produced by the IAR
XLIB Librarian.

Document conventions
When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example xxxxx\doc, the
full path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench N.n\xxxxx\doc, where the initial digit of the
version number reflects the initial digit of the version number of the IAR Embedded
Workbench shared components.
XLINK-650

IAR Linker and Library Tools
Reference Guide

Preface
TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file. Note
that this style is also used for xxxxx, configfile, libraryfile,
and other labels representing your product, as well as for the numeric
part of filename extensions.

[option] An optional part of a command.

[a|b|c] An optional part of a command with alternatives.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

Brand name Generic term

IAR Embedded Workbench® IDE the IDE

IAR C-SPY® Debugger C-SPY, the debugger

IAR C-SPY® Simulator the simulator

Table 2: Naming conventions used in this guide
XLINK-650

 11

12

Document conventions
Note that some of these products and tools might not be available in the product package
you are using.

IAR C/C++ Compiler™ the compiler

IAR Assembler™ the assembler

IAR XLINK™ Linker XLINK, the linker

IAR XAR Library builder™ the library builder

IAR XLIB Librarian™ the librarian

IAR DLIB Runtime Environment™ the DLIB runtime environment

IAR CLIB Runtime Environment™ the CLIB runtime environment

Brand name Generic term

Table 2: Naming conventions used in this guide (Continued)
XLINK-650

IAR Linker and Library Tools
Reference Guide

Part 1: The IAR XLINK
Linker
This part of the IAR Linker and Library Tools Reference Guide contains the
following chapters:

● Introduction to the IAR XLINK Linker

● XLINK options

● XLINK output formats

● XLINK environment variables

● XLINK diagnostics.
XLINK-650

13

14
XLINK-650

Introduction to the IAR
XLINK Linker
The following chapter describes the IAR XLINK Linker, and gives examples of
how it can be used.

Note: The IAR XLINK Linker is a general tool. Therefore, some of the options
and segment types described in the following chapters might not be relevant
for your product.

Key features
The IAR XLINK Linker converts one or more relocatable object files produced by the
IAR Systems Assembler or Compiler to machine code for a specified target processor.
It supports a wide range of industry-standard loader formats, in addition to the IAR
Systems debug format used by the IAR C-SPY® Debugger.

The IAR XLINK Linker supports user libraries, and will load only those modules that
are actually needed by the application you are linking.

The final output produced by the IAR XLINK Linker is an absolute, target-executable
object file that can be programmed into an EPROM, downloaded to a hardware
emulator, or run directly on the host PC using the IAR C-SPY Debugger Simulator.

The IAR XLINK Linker offers the following important features:

● Unlimited number of input files.
● Searches user-defined library files and loads only those modules needed by the

application.
● Symbols may be up to 255 characters long with all characters being significant.

Both uppercase and lowercase may be used.
● Global symbols can be defined at link time.
● Flexible segment commands allow full control of the locations of relocatable code

and data in memory.
● Support for over 30 output formats.

LARGE ADDRESS AWARENESS

XLINK is Large Address Aware, which means that XLINK can address 3 Gbytes of
memory instead of the normal 2 if the host computer is prepared for this. Large Address
Awareness is only relevant when linking very large projects where the memory
XLINK-650

 15

16

Key features
requirements can exceed 2 Gbytes. Refer to Microsoft (Memory Support and Windows
Operating Systems) for more details about this.

STACK USAGE ANALYSIS

For some IAR Systems products and under the right circumstances, the linker can
accurately calculate the maximum stack usage for each call graph root (each function
that is not called from another function).

If you enable stack usage analysis, a stack usage chapter will be added to the linker map
file, listing for each call graph root the particular call chain which results in the
maximum stack depth. See --enable_stack_usage, page 58.

This is only accurate if there is accurate stack usage information for each function in the
application.

In general, the compiler will generate this information for each C function, but if there
are indirect calls (calls using function pointers) in your application, you must supply a
list of possible functions that can be called from each calling function. You can do this
by using pragma directives in the source file, or by using a separate stack usage control
file when linking.

If you use a stack usage control file, you can also supply stack usage information for
functions in modules that do not have stack usage information. See
--stack_usage_control, page 79.

For more information about stack usage analysis (if your product supports it), see the
IAR Compiler User Guide.

MISRA C

XLINK supports both MISRA C:2004 and MISRA C:1998. However, MISRA C:2004
does not introduce any new rules, only the rule numbers have been changed since
MISRA C:1998.

MISRA C is a subset of C, suited for use when developing safety-critical systems,
supported by some versions of IAR Embedded Workbench. The rules that make up
MISRA C were published in “Guidelines for the Use of the C Language in Vehicle
Based Software”, and are meant to enforce measures for stricter safety in the ISO
standard for the C programming language [ISO/IEC 9899:1990].

If your version of IAR Embedded Workbench supports checking for adherence to the
MISRA C rules, you can set up the linker to perform these checks, see the IAR
Embedded Workbench® MISRA C:1998 Reference Guide and the IAR Embedded
Workbench® MISRA C:2004 Reference Guide.

The implementation of the MISRA C rules does not affect code generation, and has no
significant effect on the performance of IAR Embedded Workbench. The rules apply to
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
the source code of the applications that you write and not to the code generated by the
compiler. The compiler and linker only generate error messages, they do not actually
prevent you from breaking the rules you are checking for.

The linking process
The IAR XLINK Linker is a powerful, flexible software tool for use in the development
of embedded-controller applications. XLINK reads one or more relocatable object files
produced by the IAR Systems Assembler or Compiler and produces absolute,
machine-code applications as output.

It is equally well suited for linking small, single-file, absolute assembler applications as
it is for linking large, relocatable, multi-module, C/C++, or mixed C/C++ and assembler
applications.

This diagram illustrates the linking process:

OBJECT FORMAT

The object files produced by the IAR Systems Assembler and Compiler use a
proprietary format called UBROF, which stands for Universal Binary Relocatable
Object Format. An application can be made up of any number of UBROF relocatable
files, in any combination of assembler and C/C++ applications.

IAR C Compiler IAR Relocating Macro
Assembler

XLINK Linker XLIB Librarian

C source
program Assembler source program

Relocatable object files

Absolute object file
XLINK-650

 17

18

The linking process
XLINK FUNCTIONS

The IAR XLINK Linker performs four distinct functions when you link an application:

● It loads modules containing executable code or data from the input file(s).
● It links the various modules together by resolving all global (i.e. non-local,

application-wide) symbols that could not be resolved by the assembler or compiler.
● It loads modules needed by the application from user-defined or IAR-supplied

libraries.
● It locates each segment of code or data at a user-specified address.

LIBRARIES

When the IAR XLINK Linker reads a library file (which can contain multiple C/C++ or
assembler modules) it will only load those modules which are actually needed by the
application you are linking. The IAR XLIB Librarian is used for managing these library
files.

OUTPUT FORMAT

The final output produced by the IAR XLINK Linker is an absolute, executable
object file that can be put into an EPROM, downloaded to a hardware emulator, or
executed on your PC using the IAR C-SPY Debugger Simulator.

Note: The default output format in IAR Embedded Workbench is DEBUG.
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
Input files and modules
The following diagram shows how the IAR XLINK Linker processes input files and
load modules for a typical assembler or C/C++ application:

The main application has been assembled from two source files, module_a.snn and
module_b.snn, to produce two relocatable files. Each of these files consists of a single
module, module_a and module_b. By default, the assembler assigns the PROGRAM
attribute to both module_a and module_b. This means that they will always be loaded
and linked whenever the files they are contained in are processed by the IAR XLINK
Linker.

The code and data from a single C/C++ source file ends up as a single module in the file
produced by the compiler. In other words, there is a one-to-one relationship between
C/C++ source files and C/C++ modules. By default, the compiler gives this module the
same name as the original C/C++ source file. Libraries of multiple C/C++ modules can
only be created using the IAR XAR Library Builder or the IAR XLIB Librarian.

Assembler applications can be constructed so that a single source file contains multiple
modules, each of which can be a program module or a library module.

LIBRARIES

In the previous diagram, the file library.rnn consists of multiple modules, each of
which could have been produced by the assembler or the compiler.

module_a
(PROGRAM)

module_b
(PROGRAM)

module_c
(PROGRAM)

module_d
(LIBRARY)

module_e
(LIBRARY)

module_f
(LIBRARY)

XLINK
Universal Linker

Modules:Object files:

module_a.rnn

module_b.rnn

library.rnn

Absolute
object file
XLINK-650

 19

20

Input files and modules
The module module_c, which has the PROGRAM attribute will always be loaded
whenever the library.rnn file is listed among the input files for the linker. In the
run-time libraries, the startup module cstartup (which is a required module in all
C/C++ applications) has the PROGRAM attribute so that it will always get included when
you link a C/C++ project.

The other modules in the library.rnn file have the LIBRARY attribute. Library
modules are only loaded if they contain an entry (a function, variable, or other symbol
declared as PUBLIC) that is referenced in some way by another module that is loaded.
This way, the IAR XLINK Linker only gets the modules from the library file that it
needs to build the application. For example, if the entries in module_e are not
referenced by any loaded module, module_e will not be loaded.

This works as follows:

If module_a makes a reference to an external symbol, the IAR XLINK Linker will
search the other input files for a module containing that symbol as a PUBLIC entry; in
other words a module where the entry itself is located. If it finds the symbol declared as
PUBLIC in module_c, it will then load that module (if it has not already been loaded).
This procedure is iterative, so if module_c makes a reference to an external symbol the
same thing happens.

It is important to understand that a library file is just like any other relocatable object
file. There is really no distinct type of file called a library (modules have a LIBRARY or
PROGRAM attribute). What makes a file a library is what it contains and how it is used.
Put simply, a library is an rnn file that contains a group of related, often-used modules,
most of which have a LIBRARY attribute so that they can be loaded on a demand-only
basis.

Creating libraries

You can create your own libraries, or extend existing libraries, using C/C++ or
assembler modules. The compiler option --library_module (-b for some IAR
Systems products) can be used for making a C/C++ module have a LIBRARY attribute
instead of the default PROGRAM attribute. In assembler applications, the MODULE
directive is used for giving a module the LIBRARY attribute, and the NAME directive is
used for giving a module the PROGRAM attribute.

The IAR XLIB Librarian is used for creating and managing libraries. Among other
tasks, it can be used for altering the attribute (PROGRAM/LIBRARY) of any other module
after it has been compiled or assembled.

FORMATTERS FOR PRINTF AND SCANF

The linker supports automatic selection of the most suitable formatter for printf- and
scanf-related functions, based on your application’s requirements and on information
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
from the compiler. This feature requires support in the compiler and in the library; see
your compiler documentation for information about whether this support exists. If no
function satisfies all the requirements of the application, error 177 is generated.

To override this automatic selection, choose a formatter manually using the option -e.
When automatic selection is used, the map file lists which formatters that were chosen.

SEGMENTS

Once the IAR XLINK Linker has identified the modules to be loaded for an application,
one of its most important functions is to assign load addresses to the various code and
data segments that are being used by the application.

In assembler language applications the programmer is responsible for declaring and
naming relocatable segments and determining how they are used. In C/C++ applications
the compiler creates and uses a set of predefined code and data segments, and the
programmer has only limited control over segment naming and usage.

Each module contains a number of segment parts. Each segment part belongs to a
segment, and contains either bytes of code or data, or reserves space in RAM. Using the
XLINK segment control command line options (-Z or -P), you can cause load addresses
to be assigned to segments and segment parts.

After module linking is completed, XLINK removes the segment parts that were not
required. It accomplishes this by first including all ROOT segment parts in loaded
modules, and then adding enough other segment parts to satisfy all dependencies.
Dependencies are either references to external symbols defined in other modules or
segment part references within a module. The ROOT segment parts normally consists of
the root of the C runtime boot process and any interrupt vector elements.

Compilers and assemblers that produce UBROF 7 or later can put individual functions
and variables into separate segment parts, and can represent all dependencies between
segment parts in the object file. This enables XLINK to exclude functions and variables
that are not required in the build process.

NOALLOC CONTENT

Noalloc content is application content, typically string constants, that resides on the host
PC rather than on the target processor. Such content can only be accessed through the
debugger (or in a similar way), it cannot be directly accessed by the application.

In XLINK, Noalloc content is treated like this:

● Noalloc properties are already present in the input files. You cannot modify any
Noalloc property from XLINK.

● Noalloc segments are not explicitly placed by a placement command. Each such
segment is placed starting on address 0x0.
XLINK-650

 21

22

Segment control
● Noalloc segments are their own address spaces. A Noalloc segment can never
overlap other segments, regardless of whether these are Noalloc or not.

● Noalloc segments, if present, are listed in a separate listing in the map file.
● Noalloc segments are only output in formats that support them, currently

UBROF 11 and later and ELF/DWARF. If the format does not support Noalloc,
such content will not be output in the image.

● Images that have been linked with Noalloc content, but have had the Noalloc parts
removed (for example output in a format that does not support Noalloc) will most
likely not work as expected.

Segment control
The following options control the allocation of segments.

For detailed information about the options, see the chapter XLINK options, page 51.

Segment placement using -Z and -P is performed one placement command at a time,
taking previous placement commands into account. As each placement command is
processed, any part of the ranges given for that placement command that is already in
use is removed from the considered ranges. Memory ranges can be in use either by
segments placed by earlier segment placement commands, by segment duplication, or
by objects placed at absolute addresses in the input fields.

For example, if there are two data segments (Z1, Z2) that must be placed in the zero page
(0-FF) and three data segments (A1, A2, A3) that can be placed anywhere in the available
RAM, they can be placed like this:

-Z(DATA)Z1,Z2=0-FF
-Z(DATA)A1,A2,A3=0-1FFF

This will place Z1 and Z2 from 0 and up, giving an error if they do not fit into the range
given, and then place A1, A2, and A3 from the first address not used by Z1 and Z2.

The -P option differs from -Z in that it does not necessarily place the segments (or
segment parts) sequentially. See page 73 for more information about the -P option. With
-P it is possible to put segment parts into holes left by earlier placements.

-Ksegs=inc,count Duplicate code.

-Ppack_def Define packed segments.

-Zseg_def Define segments.

-Mrange_def Map logical addresses to physical addresses.
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
Use the -Z option when you need to keep a segment in one consecutive chunk, when
you need to preserve the order of segment parts in a segment, or when you need to put
segments in a specific order. (Most reasons for doing this are fairly obscure.)

The most important is to keep variables and their initializers in the same order and in
one block. Compilers using UBROF 7 or later, output attributes that direct the linker to
keep segment parts together, so for these compilers -Z is no longer required for variable
initialization segments.

Use -P when you need to put things into several ranges, for instance when banking.

Bit segments are always placed first, regardless of where their placement commands are
given.

ADDRESS TRANSLATION

XLINK can do logical to physical address translation on output for some output formats.
Logical addresses are the addresses as seen by the application, and these are the
addresses used in all other XLINK command line options. Normally these addresses are
also used in the output object files, but by using the -M option a mapping from the logical
addresses to physical addresses as used in the output object file is established.

ALLOCATION SEGMENT TYPES

This table lists the different types of segments that can be processed by XLINK:

If stack segments are mixed with relative or common segments in a segment definition,
the linker will produce a warning message but will allocate the segments according to
the default allocation set by the first segment in the segment list.

Common segments have a size equal to the largest declaration found for that segment.
That is, if module A declares a common segment COMSEG with size 4, while module B
declares this segment with size 5, the latter size will be allocated for the segment.

Be careful not to overlay common segments containing code or initializers.

Relative and stack segments have a size equal to the sum of the different (aligned)
declarations.

Segment type Description

STACK Allocated from high to low addresses by default. The aligned
segment size is subtracted from the load address before
allocation, and successive segments are placed below the
preceding segment.

RELATIVE Allocated from low to high addresses by default.

COMMON All segment parts are located at the same address.

Table 3: Allocation segment types
XLINK-650

 23

24

Segment control
MEMORY SEGMENT TYPES

The optional type parameter is used for assigning a type to all of the segments in the
list. The type parameter affects how XLINK processes the segment overlaps.
Additionally, it generates information in some of the output formats that are used by
some hardware emulators and by C-SPY:

* The address of a BIT segment is specified in bits, not in bytes. BIT memory is allocated first.

Segment type Description

BIT Bit memory.*

CODE Code memory.

CONST Constant memory.

DATA Data memory.

FAR Data in FAR memory. XLINK will not check access to it, and a part of
a segment straddling a 64 Kbyte boundary will be moved upwards to
start at the boundary.

FARC, FARCONST Constant in FAR memory (behaves as above).

FARCODE Code in FAR memory.

HUGE Data in HUGE memory. No straddling problems.

HUGEC, HUGECONST Constant in HUGE memory.

HUGECODE Code in HUGE memory.

IDATA Internal data memory.

IDATA0 Data memory. This segment type is only used with the OKI 65000
microcontroller.

IDATA1 Internal data memory. This segment type is only used with the OKI
65000 microcontroller.

NEAR Data in NEAR memory. Accessed using 16-bit addressing, this segment
can be located anywhere in the 32-bit address space.

NEARC, NEARCONST Constant in NEAR memory.

NEARCODE Code in NEAR memory.

NPAGE External data memory. This segment type is only used with the
Mitsubishi 740 and Western Design Center 6502 microcontrollers.

UNTYPED Default type.

XDATA External data memory.

ZPAGE Data memory.

Table 4: Memory segment types
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
OVERLAP ERRORS

By default, XLINK checks to be sure that the various segments that have been defined
(by the segment placement option and absolute segments) do not overlap in memory.

If any segments overlap, it will cause error 24: Segment segment overlaps segment
segment. These errors can be reduced to warnings, see the description of -z, page 88.

RANGE ERRORS

Some instructions do not work unless a certain condition holds after linking, for
example, that a branch target must be within a certain distance or that an address must
be even. The compiler or assembler generates tests and XLINK verifies that the
conditions hold when the files are linked. If a condition is not satisfied, XLINK
generates a range error or warning and prints a description of the error.

Example

Error[e18]: Range error, chip’s branch target is out of range
 Where $ = vectorSubtraction + 0xC [0x804C]
 in module "vectorRoutines" (vectorRoutines.r99),
 offset 0xC in segment part 5, segment NEARFUNC_A
 What: vectorNormalization - ($ + 8) [0x866B3FC]
 Allowed range: 0xFDFFFFFC - 0x2000000
 Operand: vectorNormalization [0x8673450]
 in module VectorNorm (vectorNormalization.r99),
 Offset 0x0 in segment part 0, segment NEARFUNC_V

Error[e18]: Range error

The first section is often the most important. The text after Range error is generated
by the compiler and describes of what is being tested. In this case XLINK tests if the
target of a branch instruction is in range.

Where

This is the location of the instruction that caused the range error. $, the address of the
instruction, is 0x804c, or 0xC bytes after the label vectorSubtraction.

The instruction is in the module vectorRoutines in the object file
vectorRoutines.r99. Another way to express the address where the instruction is
located is as 0xC bytes into segment part 5 of segment NEARFUNC_A of the
vectorRoutines module. This can be helpful in locating the instruction in the rare
cases when no label can be supplied.
XLINK-650

 25

26

Segment control
What

This is the symbolic expression that XLINK evaluated and the value it resulted in. In this
case, XLINK performs the calculation 0x8673450 - (0x804C + 8) and gets the result
0x866B3FC.

Allowed range

This is the range that the computed value was permitted to fall within. If the left hand
side of the expression is greater than the right hand side, it should be interpreted as a
negative value. In this case the range is -0x2000004–0x2000000 and represents the
reach of the processor’s branch and link instruction.

Operand

Each symbolic operand in the expression is described in detail here. The format used is
the same as in the definition of $.

Possible solutions

In this case the distance from the instruction in vectorSubtraction to
vectorNormalization is too large for the branch instruction.

Possible solutions include placing the NEARFUNC_V segment closer to the segment
NEARFUNC_A or using some other calling mechanism that can reach the required
distance. It is also possible that the referring function tried to refer to the wrong target
and that this caused the range error.

Different range errors have different solutions. Usually the solution is a variant of the
ones presented above, in other words modifying either the code or the segment
placement mechanism.

Note: Range error messages are not issued for references to segments of all types. See
-R, page 77, for more information.

SEGMENT PLACEMENT EXAMPLES

To locate SEGA at address 0, followed immediately by SEGB:

-Z(CODE)SEGA,SEGB=0

To allocate SEGA downwards from FFFH, followed by SEGB below it:

-Z(CODE)SEGA,SEGB#FFF

To allocate specific areas of memory to SEGA and SEGB:

-Z(CODE)SEGA,SEGB=100-1FF,400-6FF,1000
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
In this example SEGA will be placed between address 100 and 1FF, if it fits in that
amount of space. If it does not, XLINK will try the range 400–6FF. If none of these
ranges are large enough to hold SEGA, it will start at 1000.

SEGB will be placed, according to the same rules, after segment SEGA. If SEGA fits the
100–1FF range then XLINK will try to put SEGB there as well (following SEGA).
Otherwise, SEGB will go into the 400 to 6FF range if it is not too large, or else it will
start at 1000.

-Z(NEAR)SEGA,SEGB=19000-1FFFF

The segments SEGA and SEGB will be dumped at addresses 19000 to 1FFFF but the
default 16-bit addressing mode will be used for accessing the data (i.e. 9000 to FFFF).

Listing format
The default XLINK listing consists of the sections below. Note that the examples given
here are still generic. They are only used for purposes of illustration.

HEADER

Shows the command-line options selected for the XLINK command:

The full list of options shows the options specified on the command line. Options in
command files specified with the -f option are also shown, in brackets.

##

#

IAR Universal Linker Vx.xx

#

Link time = dd/Mmm/yyyy hh:mm:ss

Target CPU = chipname

List file = demo.map

Output file 1 = aout.ann

Output format = motorola

Command line = demo.rnn

#

Copyright 1987-2004 IAR Systems. All rights reserved.

##

Output or device name for the listing
Absolute output

Output file format

Full list of options

Target CPU type
Link time
XLINK-650

 27

28

Listing format
CROSS-REFERENCE

The cross-reference consists of the entry list, module map and/or the segment map. It
includes the program entry point, used in some output formats for hardware emulator
support; see the assembler END directive in the IAR Assembler Reference Guide.

Module map (-xm)

The module map contains a list of files. For each file, those modules that were needed
are listed. For each module, those segment parts that were included are listed. To also
list the segment parts that were not included, use the -xi option. See -x, page 83.
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
The module map also contains a full cross reference, indicating for each segment part or
symbol all references to it.

If the module contains any non-relocatable parts, they are listed before the segments.

 **

 * MODULE MAP *

 **

 FILE NAME : atutor.r99

 PROGRAM MODULE, NAME : atutor

 SEGMENTS IN THE MODULE

 ======================

HUGE_Z

 Relative segment, address: 00100128 - 0010012B (4 bytes), align: 2

 Segment part 2. Intra module refs: do_foreground_process

 main

 ENTRY ADDRESS REF BY

 ===== ======= ======

 call_count 00100128 next_counter (common)

NEARFUNC_A

 Relative segment, address: 00008118 - 00008137 (20 bytes), align: 2

 Segment part 3. Intra module refs: main

 LOCAL ADDRESS

 ===== =======

 do_foreground_process 00008118

 stack 1 = 00000000 (00000004)

NEARFUNC_A

 Relative segment, address: 00008138 - 0000816F (38 bytes), align: 2

 Segment part 4.

 ENTRY ADDRESS REF BY

 ===== ======= ======

 main 00008138 __main (?CSTARTUP)

 stack 1 = 00000000 (00000004)

INITTAB

 Relative segment, address: 00008B8C - 00008B97 (c bytes), align: 2

 Segment part 5. ROOT.

 ENTRY ADDRESS REF BY

 ===== ======= ======

 ?init?tab?HUGE_Z 00008B8C

Segment kind, address,
size and alignment

This is a root segment
part (needs no references
to be included)

Segment name for this
segment part

Internal index of segment
part in module

References to segment
part from within the
module

List of public symbols
defined in segment part

References to public sym-
bol from other modules

List of local (non-
public) symbols defined
in segment part

Stack usage in function
(inside parentheses)
XLINK-650

 29

30

Listing format
Segment map (-xs)

The segment list gives the segments in increasing address order:

This lists the following:

SEGMENT SPACE START ADDRESS END ADDRESS TYPE ALIGN

======= ===== ============= =========== ==== =====

CSTART CODE 0000 - 0011 rel 0

<CODE> 1 CODE 0012 - 00FE rel 0

INTGEN CODE 00FF - 0115 rel 0

<CODE> 2 CODE 0116 - 01DF rel 0

INTVEC CODE 01E0 - 01E1 com 0

<CODE> 3 CODE 01E2 - 01FE rel 0

FETCH CODE 0200 - 0201 rel 0

List of segments

Segment name Segment load address range

Segment type

Segment address space Segment
alignment

Parameter Description

SEGMENT The segment name.

SPACE The segment address space, usually CODE or DATA.

START ADDRESS The start of the segment’s load address range.

END ADDRESS The end of the segment’s load address range.

TYPE The type of segment:
rel Relative
stc Stack.
bnk Banked.
com Common.
dse Defined but not used.

ALIGN The segment is aligned to the next 2^ALIGN address boundary.

Table 5: Segment map (-xs) XLINK option
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
Symbol listing (-xe)

The symbol listing shows the entry name and address for each module and filename.

Module name

List of symbols

Symbol Value

 **

 * ENTRY LIST *

 **

common (c:\projects\debug\obj\common.rnn)

 root DATA 0000

 init_fib CODE 0116

 get_fib CODE 0360

 put_fib CODE 0012

tutor (c:\projects\debug\obj\tutor.rnn)

 call_count DATA 0014

 next_counter CODE 0463

 do_foreground_process CODE 01BB

 main CODE 01E2

Segment
address space
XLINK-650

 31

32

Listing format
Module summary (-xn)

The module summary summarizes the contributions to the total memory use from each
module. Each segment type that is used gets a separate column, with one or two
sub-columns for relocatable (Rel) and absolute (Abs) contributions to memory use.

Only modules with a non-zero contribution to memory use are listed. Contributions
from COMMON segments in a module are listed on a separate line, with the title + common.

Contributions for segment parts defined in more than one module and used in more than
one module are listed for the module whose definition was chosen, with the title
+ shared:

 **

 * MODULE SUMMARY *

 **

Module CODE DATA CONST

------ ---- ---- -----

 (Rel) (Rel) (Rel)

?CSTARTUP 152

?Fclose 308

?Fflush 228

?Fputc 156

?Free 252

?INITTAB 8

?Malloc 348 8

?Memcpy 36

?Memset 28

?Putchar 28

?RESET

 + common 4

?Xfiles 376 296

 + shared 12

?Xfwprep 284

?Xgetmemchunk 96 1

?_EXIT 72

?__dbg_Break 4

?__exit 28

?close 36

?cppinit 100 4

?d__write 44

?div_module 100

?exit 20

?heap 8

?low_level_init 8

?remove 36

?segment_init 120
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
?write 20

atutor 88 4

 + shared 12

atutor2 364 40

 ----- --- ---

Total: 2 960 433 336

Static overlay system map (-xo)

If the Static overlay system map (-xo) option has been specified, the linker list file
includes a listing of the results of performing static overlay.

Static overlay is a system used by some IAR Systems compilers, where local data and
function parameters are stored at static locations in memory. The linker’s static overlay
process lays out the overlay areas—memory areas for parameters and local data—for
each function so they do not overlap the overlay areas for other functions that are in the
call chain at the same time.

The Static overlay system map option is only supported for processors that use the
static overlay system: the 8051, MRK-II, PIC, PIC18, and UC processors. Information
collected from using this option for any other processor might be inaccurate, because the
static overlay system and stack systems are fundamentally different.

The listing is separated into one section for each sub-tree of the function call tree. At the
top of each section, the stack segment and overlay segment that were used are listed.

Each sub-tree section shows either the functions that can be reached from a root function
or the functions that can be reached from a function that can be called indirectly. Called
functions are listed before the calling function, and relationships are displayed using
indentation and numbering.

For each function, information is listed first about stack usage and then about the overlay
area. The stack usage information includes previous stack usage and how much stack
the current function block uses. The static overlay information includes the start location
of the area where parameters and local data are placed, and the amount of memory used
in the current function. The most important information is the static overlay address; it
is used by your application and must be correct.

Example of a sub-tree section:

->Sub-tree of type: Function tree
 CALLSTACK
 | Stack used (prev) : 00000000
 <OVERLAY0,WRKSEG> 1
 | Stat overlay addr : 00000066
XLINK-650

 33

34

Listing format
03 func_1
 | Stack used (prev) : 00000000
 | + function block : 00000002
 | Stat overlay addr : 00000066
 | + in function : 00000002
03 func_2
 | Stack used (prev) : 00000000
 | + function block : 00000002
 | Stat overlay addr : 00000066
 | + in function : 00000001
02 main
 | Stack used (prev) : 00000002
 | + function block : 00000004
 | Stat overlay addr : 00000068
 | + in function : 00000006
01 __CSTARTUP
 | Stack used (prev) : 00000006
 | + function block : 00000000
 | Stat overlay addr : 0000006E
 | + in function : 00000000
<-Sub-tree of type: Function tree
 | Stack used : 00000006
 | Static overlay acc. : 0000006E

In this example, main calls the functions func_1 and func_2. __CSTARTUP is the root
of this function call sub-tree and is a function in the runtime library which calls the main
function of your application.

func_1 needs 2 bytes of stack in the stack segment—CALLSTACK—and a 2-byte
overlay area in the overlay segment <OVERLAY0,WRKSEG> 1 (the result of packed
placement of OVERLAY0 and WRKSEG). The parameters and local variables (2 bytes) of
func_1 are placed at address 0x66.

func_2 also needs 2 bytes of stack, but a 1-byte overlay area. The parameters and local
variables of func_2 are also placed at address 0x66, as func_1 and func_2 are
independent of each other.

main needs 4 bytes of stack and a 6-byte overlay area. Because the overlay area of the
main function must not overlap the overlay area of either func_1 or func_2, it is
placed at address 0x68.
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
CHECKSUMMED AREAS AND MEMORY USAGE

If the Generate checksum (-J), Fill unused code memory (-H), and Checksum
summary (-xr) options have been specified, the listing includes a list of the
checksummed areas, in order, and a checksum summary:

 * *

 * CHECKSUMS *

 * *

Symbol Checksum Memory Start End Initial #Initial

------ -------- ------ ----- --- ------- --------

__checksum1 0x0f CODE 0000 - 000F 0x00 #0x00

__checksum2 0xf71ec814 CODE 0010 - 00FF 0xe2b49f35 #0x00001234

__checksum3 0x2d43 CODE 0100 - 0212 0x0000 #0x0000

 CODE 0215 - 0FFF

 Checksum summary in the Rocksoft model format

Name : __checksum1

Width : 8

Poly : [Not a CRC algorithm]

Init : 00

RefIn : True

RefOut: True

XorOut: 00

Name : __checksum2

Width : 32

Poly : 04C11DB7

Init : 00001234

RefIn : False

RefOut: False

XorOut: FFFFFFFF

Name : __checksum3

Width : 16

Poly : 1021

Init : 0000

RefIn : False

RefOut: False

XorOut: [Cannot express 2's complement]

 * END OF CROSS REFERENCE *

XLINK-650

 35

36

Checksum calculation
 2068 bytes of CODE memory (30700 range fill)

 2064 bytes of DATA memory (12 range fill)

 Errors: none

 Warnings: none

Checksum summary (-xr)

The Checksum summary (-xr) option creates a checksum summary that is compatible
with the Rocksoft™ Model CRC Algorithm presented in section 15 of A painless guide
to CRC error detection algorithms by Ross N. Williams. This guide is easy to find on
the Internet and can also be requested from IAR Systems technical support.

The Rocksoft™ Model CRC Algorithm defines six fields that together describe all
possible CRC checksum configurations:

Width: The size of the checksum value, in bits

Poly: The polynomial’s size with the most significant bit omitted, as a binary value
expressed in hexadecimal notation

Init: The initial value of the checksum

RefIn: A Boolean value that indicates whether input bytes should be mirrored

RefOut: A Boolean value that indicates whether the final output value should be
mirrored

XorOut: The value that should be XOR’ed to the final (possibly mirrored) output
value

This information is followed, irrespective of the options selected, by the memory usage
and the number of errors and warnings.

Checksum calculation
XLINK can be set up to generate a checksum that can be compared to a checksum
calculated by your application or any other checksum calculating process that can
checksum the generated image.

To use checksumming to verify the integrity of your application, you must:

● Set up XLINK to generate a checksum and make sure the checksum bytes are
included in the application by placing the checksum in a named segment and giving
it a name, for details see the XLINK option -J, page 62. See also the option -Z, page
85 for information about placing the checksum in a segment.

● Choose a checksum algorithm and include source code for the algorithm in your
application.
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
● Decide what memory ranges to verify and set up the source code for it in your
application source code.

CHECKSUM CALCULATION BY THE LINKER

Checksum calculation in the linker can be set up in the IDE or by using the -J option.
By default the calculated checksum is placed in the segment CHECKSUM, and the symbol
__checksum is defined.

To set up calculation of the checksum in the IDE, choose
Project>Options>Linker>Checksum

Example 1

For example, to calculate a 2-byte checksum using the generating polynomial 0x11021
and output the one’s complement of the calculated value, specify:

-J2,crc16,1

All available bytes in the application are included in the calculation.

Example 2

-J2,crc16,2m,lowsum=(CODE)0-FF

This example calculates a checksum as above, located in a 2-byte segment part in the
CHECKSUM segment, with the following differences: The output is the mirrored 2’s
complement of the calculation. The symbol lowsum is defined and only bytes in the
range 0x0-FF in the CODE address space are included.

Example 3

-J2,crc16,,highsum,CHECKSUM2,2=(CODE)F000-FFFF;(DATA)FF00-FFFF

This example calculates a checksum as above, now based on all bytes that fall in either
of the ranges given. It is placed in a 2-byte segment part with an alignment of 2 in the
segment CHECKSUM2, and the symbol highsum is defined.

Calculating a Rocksoft™ Model CRC checksum

To calculate a checksum that is compatible with the Rocksoft™ Model CRC Algorithm
(see Checksum summary (-xr), page 36), configure the -J option like this:

Width: Divide the checksum width by 8 (typically this results in 2 or 4) and set the
parameter size to this value.

Poly: Leave out the most significant bit if it does not fit in the width and use this value
in the parameter algo. Some CRC-16 implementations use the polynomial 0x11021;
XLINK-650

 37

38

Checksum calculation
the first 1 (which does not fit in a 16-bit value) is usually omitted and the parameter
becomes crc=0x1021).

Init: Set the parameter val to this value. There are two kinds of initial values, direct and
indirect. The initial value is probably direct, so it should be specified with a # (for
example, #0xFFFF).

RefIn: Specify the parameter flag a. If both RefIn and RefOut are used, you can specify
the parameter flag m instead.

RefOut: Specify the parameter flag z. If both RefIn and RefOut are used, you can
specify the parameter flag m instead.

XorOut: XLINK only supports XorOut being all 0’s or all F’s. If XorOut is all 0’s, you
do not have to do anything. If the value is all F’s, you must use the parameter flag 1.

Limitations

There are some incompatibilities between the Rocksoft model and the CRC
implementation in XLINK.

XLINK only supports:

● Widths of 8, 16 or 32 bits
● XorOut values of all 0’s or all F’s

If the Rocksoft algorithm you want to calculate has a Width or XorOut value that
XLINK does not support, you cannot calculate that checksum in XLINK.

There are also some XLINK options that cannot be expressed as a Rocksoft algorithm:

● 2’s complement of CRC checksums
● Non-CRC checksums (for example arithmetic sum)

If any of these are present in a checksum command that a Rocksoft™ Model CRC
summary is requested for, those fields will say that they cannot be expressed.

ADDING A CHECKSUM FUNCTION TO YOUR SOURCE CODE

To check the value of the checksum generated by XLINK, the checksum must be
compared with a checksum that your application has calculated. This means that you
must add a function for checksum calculation (that uses the same algorithm as the
checksum generated by XLINK) to your application source code, or use some kind of
hardware CRC. Your application must also include a call to this function.
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
A function for checksum calculation

This function—a slow variant but with small memory footprint—uses the CRC16
algorithm:

unsigned short slow_crc16(unsigned short sum, unsigned char *p,
 unsigned int len)
{
 while (len--)
 {
 int i;
 unsigned char byte = *(p++);
 for (i = 0; i < 8; ++i)
 {
 unsigned long osum = sum;
 sum <<= 1;
 if (byte & 0x80)
 sum |= 1;
 if (osum & 0x8000)
 sum ^= POLY;
 byte <<= 1;
 }
 }
 return sum;
}

POLY is the generating polynomial. The checksum is the result of the final call to this
routine.

In all cases it is the least significant 1, 2, or 4 bytes of the result that will be output, in
the natural byte order for the processor. The CRC checksum is calculated as if the
slow_crc16 function was called for each bit in the input, with the most significant bit
of each byte first as default, starting with a CRC of 0 (or the specified initial value).

Calculating a checksum in your source code

This source code gives an example of how the checksum can be calculated:

/* Start and end of the checksum range */
/* Must exclude the checksum itself */
unsigned long ChecksumStart = 0x8000+2;
unsigned long ChecksumEnd = 0x8FFF;

/* The checksum calculated by XLINK */
extern unsigned short __checksum;
XLINK-650

 39

40

Checksum calculation
void TestChecksum()
{
 unsigned short calc = 0;

 /* Run the checksum algorithm */
 calc = slow_crc16(0,
 (unsigned char *) ChecksumStart,
 (ChecksumEnd - ChecksumStart+1));

 /* Rotate out the answer */
 unsigned char zeros[2] = {0, 0};
 calc = slow_crc16(calc, zeros, 2);

 /* Test the checksum */
 if (calc != __checksum)
 {
 abort(); /* Failure */
 }
}

THINGS TO REMEMBER

When calculating a checksum, you must remember that:

● The checksum must be calculated from the lowest to the highest address for every
memory range

● Each memory range must be verified in exactly the same order as defined

● It is OK to have several ranges for one checksum

● If several checksums are used, you should place them in sections with unique names
and use unique symbol names

● If the slow CRC function is used, you must make a final call to the checksum
calculation with as many bytes (with the value 0x00) as you have bytes in the
checksum.

CHECKSUM VALUE SYMBOL

If you want to verify that the contents of the target ROM and the debug file are the same,
use the checksum value symbol, __checksum__value. A generated output file in
UBROF or ELF/DWARF format contains a checksum value symbol for each checksum
symbol (see sym, page 64). The checksum value symbol helps the debugger to see if the
code in target ROM corresponds to the code in the debug file. Because this symbol is
added after linking, it cannot be accessed from your application, and its only use is to
verify that the ROM content in a file is identical to that of the debug file.
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
The checksum value symbol has the same name as the checksum symbol, with __value
added at the end. For example, for the default checksum symbol __checksum, the
checksum value symbol will be __checksum__value.

The value of __checksum__value is the checksum generated by the checksum option
-J. It is not the address of the checksum bytes, but the value of the checksum symbol.

If the CRC16 checksum for a certain application is 0x4711, located at address 0x7FFE,
the output file will, by default, contain the symbol __checksum with the value 0x7FFE
and the symbol __checksum__value with the value 0x4711.

Note: In some cases, the code can be different even when the values of the checksum
value symbol are identical. One such case is when position-independent code is located
at different addresses in different output images, as the checksum only depends on the
contents of bytes and not on their addresses.

Bytewise and mirrored initial checksum values
It is possible to specify bytewise initial values and mirrored initial values. Every
bytewise and mirrored initial value can be expressed equally well as a bitwise
non-mirrored initial value. Specifying bytewise and mirrored initial values is simply a
convenient way to specify the same initial value both in XLINK and in the verification
step in the application or image loader, in cases where the verification step uses bytewise
or mirrored initial values. The application can checksum itself, or an image loader can
checksum the application.

Mirroring is the process of reversing all the bits in a binary number, see Mirroring, page
42.

BITWISE INITIAL VALUES

If a bitwise initial value is specified in the checksum command, that value is used as the
initial value of sum, see the classic bit-by-bit calculation in A function for checksum
calculation, page 39.

For an n-byte checksum you need to feed n * 8 zero bits through the bit-by-bit algorithm
after the last bit has been entered. This allows the last n * 8 bits of the checksum to be
rotated out of the checksum algorithm.

Example

This example specifies a 2-byte CRC16 checksum where the initial value of sum in the
previous bit-by-bit C function is 0x4711.

-J2,crc16,,,,,0x4711
XLINK-650

 41

42

Bytewise and mirrored initial checksum values
Note: The bit-by-bit algorithm is also called slow CRC. Bitwise initial values are
sometimes called indirect initial values in texts about CRC.

BYTEWISE INITIAL VALUES

If a bytewise initial value is specified on the command line, that value is used as the
initial value of sum in this byte-by-byte calculation:

unsigned short
byte_by_byte_crc(uint16_t sum, uint8_t *p, unsigned int len)
{
 while (len--)
 sum = table[sum >> 8) ^ *p++] ^ (sum << 8);
 return sum;
}

Note: The byte-by-byte algorithm does not need any final zero bits.

Byte-by-byte CRC algorithms execute faster than bit-by-bit CRC algorithms, but use
more space. They use a table of precomputed CRC values. For more information about
CRC tables, see the examples in Technical Note 91733 available on the IAR Systems
web site.

Example

This example specifies a 2-byte CRC16 checksum where the initial value of sum in the
byte-by-byte C function is 0x1D0F:

-J2,crc16,,,,,#0x1D0F

The byte-by-byte algorithm computes exactly the same checksum as the bit-by-bit
algorithm (once the final zeros have been fed through the bit-by-bit algorithm). They
cannot use the same initial value due to differences in how the initial values are handled.

Note: The byte-by-byte algorithm is called fast CRC. Bytewise initial values are
sometimes called direct initial values in texts about CRC.

MIRRORING

Mirroring is the process of reversing all the bits in a binary number. If the number has n
bits, bit 0 and bit n-1 are swapped, as are bits 1 and n-2 and so on.

To specify a mirrored initial value, use the m prefix, see the option -J, page 62.
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
Example 1

mirror(0x8000) = 0x0001
mirror(0xF010) = 0x080F
mirror(0x00000002) = 0x40000000
mirror(0x12345678) = 0x1E6A2C48

Example 2

This example specifies a 2-byte CRC checksum with the bytewise initial value 0x5012
(0x480A interpreted as a 16-bit binary number and mirrored):

-J2,crc16,,,,,m0x480A

In XLINK, the size of the checksum determines the number of bits in the initial value
that will be mirrored. -J4,...,m0x2000 specifies the bitwise initial value
0x00040000, not 0x0004, because the initial value is treated as a 4-byte quantity when
the size of the checksum is 4 bytes.

Note: Mirroring is sometimes called reflection in texts about CRC.

Logging
XLINK can be configured to log the linking process. If you enable logging, this can be
listed:

● Object files that are used
● Modules that are included
● Segment parts that are included
● Automatically redirected symbols
● Calls and the corresponding stack usage.

To enable logging, use the XLINK option --log , see --log, page 68.

LOGGING OBJECT FILES

Object files logging lists which object files that are used by the linking process and the
order in which they will be processed.

Example log output

File myObject.rnn =>
 C:\Users\TestUser\Documents\IAR Embedded
 Workbench\TestProject\Debug\Obj\myObject.rnn

The first line contains the filename used in the linker configuration file or on the
command line.
XLINK-650

 43

44

Logging
The second line contains the path of the file that was used to satisfy the filename on the
first line. This can be helpful when sorting out complex include hierarchies.

The order of the listed files is the order in which the files will be processed.

LOGGING MODULES

Modules logging lists how modules are linked, and why a certain module was included.
Modules are included according to these rules:

● PROGRAM modules are always included.
● LIBRARY modules are only included if they supply a definition that is needed by

another included module.

Example log output

Loading program module c6x(c6x.rnn)
 weak def : CE
 weak def : CKCON (suppressed)
 definition: ce_def
 definition: ce_init
 reference : CeCode
 reference : stretch

The module in the example is named c6x and resides in the c6x.rnn object file.
Because it is a program module, it will be included. It defines two weak symbols, CE and
CKON.

CKON was already present in the application when c6x was linked in so it has been
suppressed.

The module contains two definitions, ce_def and ce_init. The module refers to two
externals, CeCode and stretch.

LOGGING SEGMENT PARTS

Segment parts logging lists how segment parts are linked, and why a certain segment
part was included. Segment parts are included according to these rules:

● A ROOT segment part is always included if the module it resides in is included.
● Segment parts that are not ROOT are only included if they are referred to by an

included segment part.

Segment log structure

1 At the top, the segment log lists all ROOT segment parts, like this:

Marking root seg part (5 INTVEC in CSTARTUP)
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
5 is the segment part number, INTVEC is the name of the segment, and CSTARTUP is the
name of the module.

2 Next, all absolute references from modules are listed, like this:

Marking references from command line/config (?ABS_ENTRY_MOD)
 Marking external __program_start
 Seg part (6 CSTART in CSTARTUP) <__program_start>

Symbols from the command line or the linker configuration file are placed in a module
called ?ABS_ENTRY_MOD, created by the linker. In the example it only contains a
command line defined reference to the symbol __program_start.

On the last line, the segment part that was used to satisfy the symbol reference is listed.
Here, __program_start resides in segment part 6 of the segment CSTART, in the
module CSTARTUP.

3 Finally, the rest of the application, everything referenced from the ROOT segment parts,
and the absolute content is listed, like this:

Marking from seg part (3 CODE in Utilities) <PutFib>

If the segment part has a symbol, it is listed inside a <>-pair. If it has several symbols,
only one of them is listed.

A segment part can make three kinds of references:

● References to a segment part, that look like this:

Marking seg part (37 CSTART in ?cmain)

● References to an external label, that look like this:

Marking external __low_level_init_call
 Seg part (6 CSTART in ?cmain) <__low_level_init_call>

What comes after external on the first line is the name of the external, in this case
__low_level_init_call. The second line lists the segment part that the external
corresponds to.

● References to the start/end of a segment, that look like this:

Marking sfb/sfe on CSTACK

sfb/sfe (segment frame begin/end) is a mechanism that refers to the start and end
of a segment. It is typically used for stacks, heaps, and content initialized by copy.
CSTACK is the name of the segment referred to.

*** indicates entries that already have been displayed.

Example log output

*** Marking ROOT segment parts ***
XLINK-650

 45

46

Logging
Marking references from command line/config (?ABS_ENTRY_MOD)
 Marking external __program_start
 Seg part (9 CSTART in ?cstart) <__program_start>
Marking from seg part (9 CSTART in ?cstart) <__program_start>
 Marking seg part (18 CSTART in ?cstart) <?cstart_call_main>
 Marking external ?reset_vector
 Seg part (0 RESET in ?reset_vector) <?reset_vector>
 Marking sfb/sfe on CSTACK)
Marking from seg part (18 CSTART in ?cstart) <?cstart_call_main>
 Marking external main
 Seg part (3 CODE in Tutor) <main>
 Marking external exit
 Seg part (2 CODE in ?clibexit) <exit>
Marking from seg part (0 RESET in ?reset_vector) <?reset_vector>
 Marking external __program_start
 Seg part (9 CSTART in ?cstart) <__program_start> ***
Marking from seg part (1 CSTACK in ?cstart)
Marking from seg part (3 CODE in Tutor) <main>
 Marking seg part (3 CODE in Tutor) <main> ***
 Marking seg part (4 CODE in Tutor) <DoForegroundProcess>
Marking from seg part (2 CODE in ?clibexit) <exit>
 Marking external _exit
 Seg part (0 CODE in ?_exit) <_exit>
Marking from seg part (4 CODE in Tutor) <DoForegroundProcess>
 Marking seg part (5 CODE in Tutor) <NextCounter>
 Marking external GetFib
 Seg part (4 CODE in Utilities) <GetFib>
 Marking external PutFib
 Seg part (3 CODE in Utilities) <PutFib>
Marking from seg part (0 CODE in ?_exit) <_exit>
 Marking seg part (6 CODE in ?_exit)
 Marking external __exit
 Seg part (0 CODE in ?__exit) <__exit>
Marking from seg part (5 CODE in Tutor) <NextCounter>
Marking from seg part (4 CODE in Utilities) <GetFib>
 Marking seg part (2 DATA16_Z in Utilities) <Fib>
 Marking seg part (4 CODE in Utilities) <GetFib> ***
Marking from seg part (3 CODE in Utilities) <PutFib>
 Marking seg part (3 CODE in Utilities) <PutFib> ***
 Marking external ?Epilogue3
 Seg part (5 CODE in ?Epilogue) <?Epilogue3>
 Marking external putchar
 Seg part (2 CODE in ?clibputchar) <putchar>
 Marking external ?DivMod16u
 Seg part (1 CODE in ?DivMod816u) <?DivMod16u>
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
This is a partial log from linking a tutorial project. To understand why a certain segment
part was included, locate it in the log. If you want to know why, for example, PutFib
was included, search for PutFib. You will find it in the line

Marking external PutFib

which is a part of

Marking from seg part (4 CODE in Tutor) <DoForegroundProcess>

PutFib was included because DoForegroundProcess refers to it, and
DoForegroundProcess was included because main refers to it. The backward trace of
the chain of references always ends in a ROOT segment part or an absolute reference.

You might have to use the module map or the module log to locate segment parts that do
not have a label.

LOGGING AUTOMATIC REDIRECTIONS

Redirected symbols logging logs the automatic selection of symbols, why a certain
automatic redirection was made. This is logged:

● Alternative suppliers
● Requirements made by the modules
● Default requirements
● Redirections that were actually made.

Example log output

printf/scanf implementation selection
 _formatted_read:
 _large_read provides
 "assign_suppressions,floats,n_formatters,scansets"
 _medium_read provides
 "assign_suppressions,n_formatters,scansets"
 scanf establishes default "unknown"
 sscanf establishes default "unknown"
 util requires the feature set ""
 Final requirements: ""
 Best provider: _medium_read
 _formatted_write:
 _large_write provides
 "flags,floats,int_specials,n_formatters,qualifiers,widths"
 _medium_write provides
 "flags,int_specials,n_formatters,qualifiers,widths"
 _small_write provides "qualifiers"
 printf establishes default "unknown"
 sprintf establishes default "unknown"
 vprintf establishes default "unknown"
XLINK-650

 47

48

Logging
 vsprintf establishes default "unknown"
 teststuff has no requirement info but uses printf
 which requires the feature set "unknown"
 Final requirements: "unknown"
 Best provider: _large_write

For _formatted_read there are two suppliers, _large_read and _medium_read.
There are no requirements and no use of the defaults. The final requirement is empty so
the smallest one, the one with the fewest features, _medium_read, is selected.

For _formatted_write there are three suppliers, _large_write, _medium_write,
and _small_write. There are no requirements from the application but printf is used
without supplying requirement information. This results in the default for printf
(which is "unknown") being used. The final requirement is "unknown". Therefore the
largest implementation, the one with the most features, _large_write, is selected.

LOGGING CALLS AND STACK USAGE

Stack usage logging logs all calls and the corresponding stack usage. This is logged:

● The stack usage when the function was called
● The name of the function, or a single - to indicate stack usage in a function at a

point where no call was made (typically in a leaf function)
● The stack usage along the deepest call chain from the logged point. If no such value

could be calculated, [---] is printed instead.

Example log output

 Program entry:
 0 __program_start [168]
 0 __cmain [168]
 0 __data_init [16]
 8 __zero_init [8]
 16 - [0]
 8 __copy_init [8]
 16 - [0]
 0 __low_level_init [0]
 0 main [168]
 8 printf [160]
 32 _PrintfTiny [136]
 88 _Prout [80]
 104 putchar [64]
 120 __write [48]
 120 __dwrite [48]
 120 __sh_stdout [48]
 144 __get_ttio [24]
 168 __lookup_ttioh [0]
 120 __sh_write [24]
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR XLINK Linker
 144 - [0]
 88 __uidiv [0]
 88 __idiv0 [0]
 88 strlen [0]
 0 exit [8]
 0 _exit [8]
 0 __exit [8]
 0 __close_ttio [8]
 8 __lookup_ttioh [0] ***
 0 __exit [8] ***

*** indicates functions that have already been displayed.
XLINK-650

 49

50

Logging
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
XLINK options
The XLINK options allow you to control the operation of the IAR XLINK
Linker.

The IDE Project Management and Building Guide describes how to set XLINK
options in the IAR Embedded Workbench IDE, and gives reference
information about the available options.

Setting XLINK options
To set options from the command line, either:

● Specify the options on the command line, after the xlink command.

● Specify the options in the XLINK_ENVPAR environment variable; see the chapter
XLINK environment variables.

● Specify the options in a linker configuration (xcl) file, and include this on the
command line with the -f file command.

Note: You can include C-style /*...*/ or // comments in linker configuration files.

SPECIFYING NUMBERS ON THE COMMAND LINE

By default, numbers on the command line are interpreted as either hexadecimal or
decimal.

All addresses, symbol values (-D), checksum initial values (-J), and the duplicate
increment to -K (diff) use hexadecimal notation by default. In these cases, to specify
a number as decimal instead, use the prefix . (for example: .10). To explicitly specify
a hexadecimal number as hexadecimal, use the prefix 0x (for example: 0x10).

Alignment specifications (checksums (-J), --image_input and the |align| syntax
for –Z) and the count argument to –K use decimal notation by default. In these cases,
10 is interpreted as the number ten.
XLINK-650

Part 1. The IAR XLINK Linker 51

52

Summary of options
Summary of options
The following table summarizes the XLINK command line options:

Command line option Description

-A Loads as program

-a Disables static overlay

-B Always generates output

-C Loads as library

-c Specifies processor type

--call_graph Produces a call graph file in XML format

-D Defines symbol

-d Disables code generation

-E Inherent, no object code

-e Renames external symbols

-F Specifies output format

-f Specifies XCL filename

-G Disables global type checking

-g Requires global entries

-H Fills unused code memory

-h Fills ranges.

-I Specifies a path name to be searched for object files

--image_input Links pure binary files

-J Generates a checksum

-K Duplicates code

-L Lists to directory

-l Lists to named file

--log Enables log output for selected topics

--log_file Directs the log to a file

-M Maps logical addresses to physical addresses

--misrac Enables error messages specific to MISRA-C:1998. This
option is a synonym of --misrac1998 and is only
available for backwards compatibility.

Table 6: XLINK options summary
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
--misrac1998 Enables error messages specific to MISRA-C:1998. See
the IAR Embedded Workbench® MISRA C:1998 Reference
Guide.

--misrac2004 Enables error messages specific to MISRA-C:2004. See
the IAR Embedded Workbench® MISRA C:2004 Reference
Guide.

--misrac_verbose Enables verbose logging of MISRA C checking. See the
IAR Embedded Workbench® MISRA C:1998 Reference
Guide or the IAR Embedded Workbench® MISRA C:2004
Reference Guide.

-n Ignores local symbols

-O Additional output file

-o Output file

--output_checksum_summary Includes a checksum summary in the memory summary.

-P Defines packed segments

-p Specifies lines/page

-Q Scatter loading

-R Disables range check

-r Debug information

-S Silent operation

-s Specifies new application entry point

--segment_mirror Mirrors memory that can be accessed from two
different addresses

--stack_usage Enables stack usage analysis

--stack_usage_control Specifies a stack usage control file

--threaded_lib Sets your embedded system up for use with a threaded
library

-U Address space sharing

-w Sets diagnostics control

-X Forces content to be loaded as not root, even if it has
the root attribute

-x Specifies cross-reference

-Y Format variant

-y Format variant

Command line option Description

Table 6: XLINK options summary (Continued)
XLINK-650

Part 1. The IAR XLINK Linker 53

54

Descriptions of XLINK options
Descriptions of XLINK options
The following sections describe each of the XLINK command line options in detail.

-A

Syntax -A file,…

Description Use this option to temporarily force all of the modules within the specified input files to
be loaded as if they were all program modules, even if some of the modules have the
LIBRARY attribute.

This option is particularly suited for testing library modules before they are installed in
a library file, since the -A option will override an existing library module with the same
entries. In other words, XLINK will load the module from the input file specified in the
-A argument instead of one with an entry with the same name in a library module.

-a

Syntax -a{i|w}[function-list]

Parameters

-Z Defines segments

-z Segment overlap warnings

Command line option Description

Table 6: XLINK options summary (Continued)

No parameter Disables overlaying totally, for debugging purposes.

i Disables indirect tree overlaying.

w Disables warning 16, Function is called from two function trees.
Do this only if you are sure the code is correct.

(function,function…) Function trees will not be overlaid with another function. The (
and) characters are part of the option and must be included.

[function,function…] Function trees will not be allocated unless they are called by
another function. The [and] characters are part of the option
and must be included.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
Description Use this option to control the static memory allocation of variables.The option can also
specify one or more function lists, to specify additional options for specified functions.
Each function list can have the form function,function…, where function
specifies a public function or a module:function combination.

You can specify several -a options, and each -a option can include several parameters,
in any order.

Note: Giving a function list is optional, thus the [and] characters in the syntax
description, but the brackets that surround a function list must be included on the
command line.

-B

Syntax -B

Description Use this option to generate an output file even if a non-fatal error was encountered
during the linking process, such as a missing global entry or a duplicate declaration.
Normally, XLINK will not generate an output file if an error is encountered.

Note: XLINK always aborts on fatal errors, even with -B specified.

The -B option allows missing entries to be patched in later in the absolute output image.

This option is identical to the Always generate output option in the linker category in
the IAR Embedded Workbench IDE.

-C

Syntax -C file,…

Description Use this option to temporarily cause all of the modules within the specified input files
to be treated as if they were all library modules, even if some of the modules have the
PROGRAM attribute. This means that the modules in the input files will be loaded only if
they contain an entry that is referenced by another loaded module.

{function,function…} Indicates that the specified functions are interrupt functions.
The { and } characters are part of the option and must be
included.
XLINK-650

Part 1. The IAR XLINK Linker 55

56

Descriptions of XLINK options
-c

Syntax -cprocessor

Description Use this option to specify the target processor.

The environment variable XLINK_CPU can be set to install a default for the -c option
so that it does not have to be specified on the command line; see the chapter XLINK
environment variables.

This option is related to the Target options in the General category in the IAR
Embedded Workbench IDE.

--call_graph

Syntax --call_graph filename

Description Use this option to produce a call graph file in XML format, in addition to the ordinary
output files. If no filename extension is specified, the extension cgx is used. This option
can only be used once on the command line.

Note: This option requires that your product supports stack usage analysis.

See also The stack usage analysis documentation in the IAR Compiler User Guide.

Project>Options>Linker>Advanced>Call graph output (XML)

-D

Syntax -Dsymbol=[?=]value

Parameters

Description Use this option to define absolute symbols at link time. This is especially useful for
configuration purposes. Any number of symbols can be defined in a linker configuration
file. The symbol(s) defined in this manner will belong to a special module generated by
the linker called ?ABS_ENTRY_MOD.

symbol Any external (EXTERN) symbol in the program that is not defined
elsewhere.

?= Makes the definition weak. A weak definition is only used if no normal
definition exists, otherwise it is ignored.

value The value to be assigned to symbol.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
If a weak definition is used, it has exactly the same effect as a normal definition. The
order of the definitions does not matter, if a normal definition exists, it will always be
used instead of a weak one.

XLINK will display an error message if you attempt to redefine an existing symbol.

Example In this example there is both a weak and a normal definition of the same symbol:

-DMySymbol=42
-DMySymbol=?=4711

The weak definition is ignored and the symbol MySymbol will have the value 42.

This option is identical to the #define option in the linker category in the IAR Embedded
Workbench IDE.

-d

Syntax -d

Description Use this option to disable the generation of output code from XLINK. This option is
useful for the trial linking of programs; for example, checking for syntax errors, missing
symbol definitions, etc. XLINK will run slightly faster for large programs when this
option is used.

-E

Syntax -E file,…

Description Use this option to empty load specified input files; they will be processed normally in
all regards by the linker but output code will not be generated for these files.

One potential use for this feature is in creating separate output files for programming
multiple EPROMs. This is done by empty loading all input files except the ones you
want to appear in the output file.

Example In a project that consists of four files, file1 to file4, we only want object code
generated for file4 to be put into an EPROM:

-E file1,file2,file3
file4
-o project.hex
XLINK-650

Part 1. The IAR XLINK Linker 57

58

Descriptions of XLINK options
-e

Syntax -enew=old [,old] …

Description Use this option to configure a program at link time by redirecting a function call from
one function to another.

This can also be used for creating stub functions; i.e. when a system is not yet complete,
undefined function calls can be directed to a dummy routine until the real function has
been written.

--enable_stack_usage

Syntax --enable_stack_usage

Description Use this option to enable stack usage analysis. When enabled, stack usage analysis
generates a stack usage report in the linker map file. An optional call graph file (see
--call_graph, page 56) and stack usage log (see --log, page 68) can also be created.

Note: This option requires that your product supports stack usage analysis.

See also The stack usage analysis documentation in the IAR Compiler User Guide.

-F

Syntax -Fformat

Parameters format is one of the supported XLINK output formats; see the chapter XLINK output
formats.

Description Use this option to specify the output format.

The environment variable XLINK_FORMAT can be set to install an alternate default
format on your system; see the chapter XLINK environment variables.

Note: Specifying the -F option as DEBUG does not include C-SPY debug support. Use
the -r option instead.

This option is related to the Output options in the linker category in the IAR Embedded
Workbench IDE.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
-f

Syntax -f file

Description Use this option to extend the XLINK command line by reading arguments from a
command file, just as if they were typed in on the command line. If not specified, an
extension of xcl is assumed.

Arguments are entered into the linker configuration file with a text editor using the same
syntax as on the command line. However, in addition to spaces and tabs, the Enter key
provides a valid delimiter between arguments. A command line may be extended by
entering a backslash, \, at the end of line.

Note: You can include C-style /*...*/ or // comments in linker configuration files.

This option is identical to the Linker configuration file option in the linker category in
the IAR Embedded Workbench IDE.

-G

Syntax -G

Description Use this option to disable type checking at link time. While a well-written program
should not need this option, there may be occasions where it is helpful.

By default, XLINK performs link-time type checking between modules by comparing
the external references to an entry with the PUBLIC entry (if the information exists in the
object modules involved). A warning is generated if there are mismatches.

This option is identical to the No global type checking option in the linker category in
the IAR Embedded Workbench IDE.

-g

Syntax -gsymbol1[,symbol2,symbol3,…]

Description XLINK normally only includes segment parts (usually functions and variables) that are
needed, to satisfy all references from segment parts that must be included. Use this
option to add to this set so that something is included even if it appears not to be needed.
XLINK-650

Part 1. The IAR XLINK Linker 59

60

Descriptions of XLINK options
-H

Syntax -Hhexstring

Description Use this option to fill all gaps between segment parts introduced by the linker with the
repeated hexstring.

The linker can introduce gaps because of alignment restrictions, or to fill ranges given
in segment placement options. The normal behavior, when no -H option is given, is that
these gaps are not given a value in the output file.

Example This example fills all the gaps with the value 0xbeef:

-HBEEF

Even bytes will get the value 0xbe, and odd bytes will get the value 0xef.

This option corresponds to the Fill unused code memory option in the linker category
in the IAR Embedded Workbench IDE.

-h

Syntax -h['filler'][(segment_type)]{range1,[range2,…]}

Parameters

Description Use this option to specify the ranges to fill. Normally, all ranges given in
segment-placement commands (-Z and -P) into which any actual content (code or
constant data) is placed, are filled. If no filler string is specified, the fill string
specified by the -H option will be used.

Using -h you can explicitly specify which ranges to fill. The syntax allows you to use
an optional segment type (which can be used for specifying address space for
architectures with multiple address spaces) and one or more address ranges.

The -h option can be specified more than once, in order to specify fill ranges for more
than one address space. It does not restrict the ranges used for calculating checksums.

Examples In this example, all ranges given will be filled:

-Z(CODE)INTVEC=0-FF
-Z(CODE)RCODE,CODE,SHORTAD_ID=0-7FFF,F800-FFFF

filler A string of bytes to fill the specified range(s) with.

segment_type The type of segment to be filled (optional).

range The range(s) to be filled.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
-Z(DATA)SHORTAD_I,SHORTAD_Z=8000-8FFF

If INTVEC contains anything, the range 0-FF will be filled. If RCODE, CODE or
SHORTAD_ID contains anything, the ranges 0-7FFF and F800-FFFF will be filled.
SHORTAD_I and SHORTAD_Z are normally only place holders for variables, which
means that the range 8000-8FFF will not be filled.

Using -h you can explicitly specify which ranges to fill. For example:

-h(CODE)0-FFFF

or, equivalently, as segment type CODE is the default,

-h0-FFFF

will cause the range 0-FFFF to be filled, regardless of what ranges are specified in
segment-placement commands. Often -h will not be needed.

To fill the left-over space in the 0x400–0x4FF range with bytes from the filler string
EDADBEFE, specify:

-h'EDADBEFE'(CODE)400-4FF

And to fill the left-over space in the 0x00–0x3F range with bytes from the filler string
1895:

-h'1895'0-3F

-I

Syntax -Ipathname

Description Specifies a path name to be searched for object files.

By default, XLINK searches for object files only in the current working directory. The
-I option allows you to specify the names of the directories which it will also search if
it fails to find the file in the current working directory.

This option is equivalent to the XLINK_DFLTDIR environment variable.

Example To read object files from v:\general\lib and c:\project\lib:

-Iv:\general\lib
-Ic:\project\lib

See also The chapter XLINK environment variables.

This option is identical to the Search paths option in the linker category in the IAR
Embedded Workbench IDE.
XLINK-650

Part 1. The IAR XLINK Linker 61

62

Descriptions of XLINK options
--image_input

Syntax --image_input=filename,symbol,segment,alignment

Parameters

Description Use this option to link pure binary files in addition to the ordinary input files.

The file’s entire contents is placed in the segment, which means it can only contain pure
binary data (for instance, the raw-binary output format, see Single output file, page 91).

The segment part where the contents of the filename file is placed, is only included if
the symbol symbol is required by your application. Use the -g option if you want to
force a reference to the segment part, see -g, page 59.

Example

--image_input=bootstrap.bin,Bootstrap,CSTARTUPCODE,4

The contents of the pure binary file bootstrap.bin is placed in the segment
CSTARTUPCODE. The segment part where the contents is placed will be 4-byte aligned
and will only be included if your application (or the command line option -g) includes
a reference to the symbol Bootstrap.

This option corresponds to the Raw binary image option in the linker category in the
IAR Embedded Workbench IDE.

-J

Syntax -Jsize,algo[,flags[,sym[,seg[,align[,[m][#]val]]]]][{=|==}ranges]

Description Use this option to calculate a checksum for all generated raw data bytes. This option can
only be used if the -H option has been specified.

Parameters size

size specifies the number of bytes in the checksum, and can be 1, 2, or 4.

filename The pure binary file you want to link

segment The segment where the binary data will be placed.

symbol The symbol defined by the segment part where the binary data is
placed

alignment The alignment of the segment part where the binary data is placed
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
algo

algo specifies the algorithm used, and can be one of the following:

flags

flags can be used to specify complement, the byte order and the bit-order of the
checksum, and the number of bits that are checksummed in each iteration.

Use the W or the L flag to make the linker produce the same checksum as some hardware
CRC implementations that checksum more than 8 bits per iteration. (By default, 8-bit
units are checksummed.) Using the W or the L flag does not add any additional error
detection power to the checksum.

Two examples:

-J2,crc16,x=4000-7FFF

This option calculates a checksum from 0x4000 to 0x7FFF using the CRC16 algorithm
and generates a 2-byte checksum with reversed byte order.

Method Description

sum Simple arithmetic sum.

crc16 CRC16 (generating polynomial 0x1021).

crc32 CRC32 (generating polynomial 0x04C11DB7).

crc=n CRC with a generating polynomial of n.

Table 7: Checksumming algorithms

Flag Description

1 Specifies one’s complement of the final checksum.

2 Specifies two’s complement of the final checksum.

a Reverses (mirrors) the order of the bits within each byte when calculating
the checksum, but only the input bytes and not the final checksum.

m Reverses (mirrors) the order of the bits within each input byte when
calculating the checksum. The final checksum is also mirrored (the entire
checksum, not the individual bytes).

L Calculates a checksum for 4 input bytes in every iteration.

W Calculates a checksum for 2 input bytes in every iteration.

x Changes the byte order of the final checksum from little-endian to
big-endian, or vice versa.

z Reverses (mirrors) the order of the bits within the final checksum, but not
the input bytes, when calculating the checksum.

Table 8: Checksumming flags
XLINK-650

Part 1. The IAR XLINK Linker 63

64

Descriptions of XLINK options
-J4,crc32,m2Wx=0-FFFF

This option calculates a checksum from 0x0 to 0xFFFF using the CRC32 algorithm. It
checksums 16 bits with reversed bit order in each iteration and generates a 4-byte 2’s
complement checksum with reversed byte order.

Three examples of reversed byte order:

● If the 1-byte checksum was 0x73, the reversed byte order checksum will be 0x73.

● If the 2-byte checksum was 0xC2, the reversed byte order checksum will be
0xC200.

● If the 4-byte checksum was 0x3AC25, the reversed byte order checksum will be
0x25AC0300.

sym

sym is an optional user-defined symbol name for the checksum. If you specify the
symbol name yourself, the checksum it symbolizes is only included in the final
application if it is referenced by any included parts of the application, or if the -g
(require global entries) command line option is used for the symbol. If you do not
specify a symbol explicitly, the name __checksum is used. In this case the symbol is
always included in the final application.

seg

seg is an optional user-defined name for the segment to put the checksum in. If you do
not specify a segment name explicitly, the name CHECKSUM is used. This segment must
be placed using the segment placement options like any other segment.

align

align is an optional user-defined alignment for the checksum. If you do not specify an
alignment explicitly, the checksum will not be aligned.

m

m specifies that the initial value val will be mirrored before it is used. m0x2468 is a
bitwise initial value that will be mirrored (0x2468 before mirroring), and m#0x8C18 is
a bytewise initial value that will be mirrored (0x8C18 before mirroring). See Mirroring,
page 40.

#

specifies that val is a bytewise initial value. #0x1D0F is an example of a bytewise
initial value. Bytewise initial values are used if the verification step uses the
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
byte-by-byte algorithm with non-zero initial values. See Bytewise initial values, page
42.

val

val is the initial value in hexadecimal form. By default, the initial value of the checksum
is 0. If you need to change the initial value, supply a different value for val. If nothing
else is specified, the initial value is a bitwise initial value. For example, 0x4711 is a
bitwise initial value. See Bitwise initial values, page 41.

ranges

ranges is one of:

● one or more explicit ranges of hexadecimal addresses, like 200–5FF

● one or more symbolic ranges, like CHECKSUM_START–CHECKSUM_END

● one or more segment names inside a {} pair, like {CODE}.

If more than one address range is specified, the ranges are comma-separated.

Note: If you do not specify any ranges explicitly, all bytes in the final application are
included in the calculation.

=

If one equal sign is used (=), a range is only checksummed once, even if it is specified
more than once. An example:

-J2,crc16=CRC_START-CRC_END,40-7F,{CODE}

If CRC_START has the value 40, CRC_END has the value 4F, and the segment CODE is
placed in the address range 50–113, this checksum command is equivalent to:

-J2,crc16=40-4F,40-7F,50-113

The ranges overlap, so this is equivalent to:

-J2,crc16=40-113

The checksumming will start on address 40 and end on address 113. The byte on each
address will be used exactly once, even though some address ranges were specified more
than once.

==

If two equal signs are used (=), a range is checksummed as many times as it is specified
and in the specified order. If, for instance, two equal signs are used in the example above:

-J2,crc16==CRC_START-CRC_END,40-7F,{CODE}
XLINK-650

Part 1. The IAR XLINK Linker 65

66

Descriptions of XLINK options
this checksum command is equivalent to:

-J2,crc16==40-4F,40-7F,50-113

Because two equal signs are used instead of a single equal sign, the bytes will be
checksummed in this order:

1 The bytes in 40-4F are checksummed

2 The bytes in 40-4F are checksummed a second time (the first half of the range
40-7F)

3 The bytes in 50-7F are checksummed (the second half of the range 40-7F)

4 The bytes in 50-7F are checksummed a second time (the first half of the range
50-113)

5 The bytes in 80-113 are checksummed (the second half of the range 50-113).

To set up calculation of the checksum in the IDE, choose
Project>Options>Linker>Checksum

-K

Syntax -Ksegment1[,segment2,…]=diff,count

Parameters

Description Use this option to duplicate any raw data bytes from one or more segments, one or more
times, placing each copy at a different address. This will typically be used for segments
mentioned in a -Z option.

This can be used for making part of a PROM be non-banked even though the entire
PROM is physically banked. Use the -P option to place the banked segments into the
rest of the PROM.

Example 1 To copy the contents of the RCODE0 and RCODE1 segments four times, using addresses
0x20000 higher each time, specify:

-KRCODE0,RCODE1=20000,4

This will place 5 instances of the bytes from the segments into the output file, at the
addresses x, x+0x20000, x+0x40000, x+0x60000, and x+0x80000.

segment The segment(s) to copy data bytes from.

diff The difference in address between the original segment and where the copied
bytes are placed.

count The number of times to copy data bytes from the segment(s) segment.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
Example 2 If the segment MYSEG is placed at 0x10000, to create 4 duplicates placed at 0xE000,
0xC000, 0xA000, and 0x8000, specify:

-KMYSEG=-0x2000,4

See also Segment control, page 22.

-L

Syntax -L[directory]

Description Causes the linker to generate a listing and send it to the file
directory\outputname.lst. Notice that you must not include a space before the
prefix.

By default, the linker does not generate a listing. To simply generate a listing, you use
the -L option without specifying a directory. The listing is sent to the file with the same
name as the output file, but extension lst.

-L may not be used as the same time as -l.

This option is related to the List options in the linker category in the IAR Embedded
Workbench IDE.

-l

Syntax -l file

Description Causes the linker to generate a listing and send it to the named file. If no extension is
specified, lst is used by default. However, an extension of map is recommended to
avoid confusing linker list files with assembler or compiler list files.

-l may not be used as the same time as -L.

This option is related to the List options in the linker category in the IAR Embedded
Workbench IDE.
XLINK-650

Part 1. The IAR XLINK Linker 67

68

Descriptions of XLINK options
--log

Syntax --log topic[,topic[,topic[,topic]]]

Parameters topic can be one of:

Description Use this option to make the linker log information to stdout. The log information can
be useful for understanding why an executable image became the way it is.

For a detailed description of the logging process, see Logging, page 43.

Example --log files,modules,segments,printf_scanf_selection

This command line will create a complete log of the linking process.

See also Logging, page 43 and --log_file, page 68.

Project>Options>Linker>List>Generate log

--log_file

Syntax --log_file filename

Description Use this option to direct the log output to the specified file.

See also --log, page 68 and Logging, page 43.

This option is related to the Generate log option in the linker category in the IAR
Embedded Workbench IDE.

files Lists all object files that are used by the linking process and
the order in which they will be processed.

modules Lists each module that is selected for inclusion in the
application, and which symbol that caused it to be included.

printf_scanf_selection Lists redirected symbols, and why a certain automatic
redirection was made.

segments Lists each segment part that is selected for inclusion in the
application, and the dependence that caused it to be
included.

stack_usage Lists all calls and the corresponding stack usage.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
-M

Syntax -M[(type)]logical_range=physical_range

Parameters

Description XLINK can do logical to physical address translation on output for some output formats.
Logical addresses are the addresses as seen by the program, and these are the addresses
used in all other XLINK command line options. Normally these addresses are also used
in the output object files, but by using the -M option, a mapping from the logical
addresses to physical addresses, as used in the output object file, is established.

Each occurrence of -M defines a linear mapping from a list of logical address ranges to
a list of physical address ranges, in the order given, byte by byte.

Several -M command line options can be given to establish a more complex mapping.

The -M option only supports some output formats, primarily the simple formats with no
debug information. The following list shows the currently supported formats:

type Specifies the memory type for all
segments if applicable for the target
processor. If omitted it defaults to
UNTYPED.

range start-end The range starting at start and ending
at end.

[start-end]*count+offset Specifies count ranges, where the first
is from start to end, the next is from
start+offset to end+offset, and
so on. The +offset part is optional,
and defaults to the length of the range.

[start-end]/pagesize Specifies the entire range from start
to end, divided into pages of size and
alignment pagesize. Note: The start
and end of the range do not have to
coincide with a page boundary.

aomf80196 ELF pentica-b

aomf8051 extended-tekhex pentica-c

aomf8096 hp-code pentica-d

ashling intel-extended rca
XLINK-650

Part 1. The IAR XLINK Linker 69

70

Descriptions of XLINK options
Example 1 The command:

-M0-FF,200-3FF=1000-11FF,1400-14FF

will define the following mapping:

Example 1 Address translation can be useful in banked systems. The following example assumes a
code bank at address 0x8000 of size 0x4000, replicated 4 times, occupying a single
physical ROM. To define all the banks using physically contiguous addresses in the
output file, the following command is used:

-P(CODE)BANKED=[8000-BFFF]*4+10000 // Place banked code
-M(CODE)[8000-BFFF]*4+10000=10000 // Single ROM at 0x10000

-N

Syntax N filename[,filename,filename,…]

Description Use this option to specify that all content in one or more files is treated as if it had the
root attribute. This means that it is included in the application whether or not it is
referenced from the rest of the application.

Note: Modules will still be removed at link time if they are not referenced, so root
content in a non-referenced module will not be included in the application. Use the
linker options -A myFile.r99 and -N myFile.r99 at the same time to make sure that
all modules in the file are kept and that all content in the file is treated as root.

ashling-6301 intel-standard symbolic

ashling-64180 millenium ti7000

ashling-6801 motorola typed

ashling-8080 mpds-code zax

ashling-8085 mpds-symb

ashling-z80 pentica-a

Logical address Physical address

0x00-0xFF 0x1000-0x10FF

0x200-0x2FF 0x1100-0x11FF

0x300-0x3FF 0x1400-0x14FF

Table 9: Mapping logical to physical addresses (example)
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
-n

Syntax -n[c]

Description Use this option to ignore all local (non-public) symbols in the input modules. This
option speeds up the linking process and can also reduce the amount of host memory
needed to complete a link. If -n is used, locals will not appear in the list file
cross-reference and will not be passed on to the output file.

Use -nc to ignore just compiler-generated local symbols, such as jump or constant
labels. These are usually only of interest when debugging at assembler level.

Note: Local symbols are only included in files if they were compiled or assembled with
the appropriate option to specify this.

This option is related to the Output options in the linker category in the IAR Embedded
Workbench IDE.

-O

Syntax -Oformat[,variant][=filename]

Parameters

Description Use this option to create one or more additional output files, possibly with in a variant
of the specified output format. Any number of -O command line options can be
specified.

Example -Odebug=foo
-Omotorola=.s99
-Ointel-extended,1=abs.x
-Oelf,as=..\MyElfCode\myApp.elf

format The format of the output file you are creating.

variant A modifier that creates a variant of the specified format. This is the
same modifier as given after the -Y or -y option.

filename The name of the output file. If no filename is specified, the output file will
be given the same name as a previously specified output file, or the name
given in a -o option, with the default extension for the format. (Typically
you would want all output files specified using the -O option to have the
same filename.) If filename begins with a . (a period), it will be used as
the filename extension and the name of the file will be as if no name was
specified.
XLINK-650

Part 1. The IAR XLINK Linker 71

72

Descriptions of XLINK options
This will result in:

● one output file named foo.dbg, using the UBROF format

● one output file named foo.s99, using the MOTOROLA format

● one output file named abs.x, using the INTEL-EXTENDED format just as if -Y1
had also been specified

● one output file named myApp.elf created in the overlying directory MyElfCode,
using the ELF format just as if -yas had also been specified

Output files produced by using -O will be in addition to those produced by using the -F,
-o, or -y options. This means that extra output files can be added to the linker
configuration file despite that this feature is not supported in the IAR Embedded
Workbench IDE.

Note: If -r is specified—or its corresponding option in the IAR Embedded Workbench
IDE—only one output file is generated, using the UBROF format and selecting special
runtime library modules for IAR C-SPY.

See also -o, page 72, and Output format variants, page 96.

This option is related to the Extra output options in the linker category in the IAR
Embedded Workbench IDE.

--output_checksum_summary

Syntax --output_checksum_summary[=verbose]

Parameters

Description Use this option to include the checksum information from the linker list file in the
memory summary. This summary is produced during linking. If the parameter verbose
is not specified, only the names and values of the checksums in your application are
included in the summary.

-o

Syntax -o file

Description Use this option to specify the name of the XLINK output file. If a name is not specified,
the linker will use the name aout.hex. If a name is supplied without a file type, the

verbose Includes more detailed output.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
default file type for the selected output format will be used. See -F, page 58, for
additional information.

If a format is selected that generates two output files, the user-specified file type will
only affect the primary output file (first format).

This option is related to the Output options in the linker category in the IAR Embedded
Workbench IDE.

-P

Syntax -P [(type)]segments=range[,range] …

Parameters
type Specifies the memory type for all

segments if applicable for the target
processor. If omitted it defaults to
UNTYPED.

segments A list of one or more segments to be
linked, separated by commas.

range start-end The range starting at start and
ending at end.

[start-end]*count+offset Specifies count ranges, where the
first is from start to end, the next is
from start+offset to
end+offset, and so on. The
+offset part is optional, and
defaults to the length of the range.

[start-end]/pagesize Specifies the entire range from start
to end, divided into pages of size and
alignment pagesize. Note: The
start and end of the range do not
have to coincide with a page
boundary.

start:+size The range starting at start with the
length size.
XLINK-650

Part 1. The IAR XLINK Linker 73

74

Descriptions of XLINK options
Description Use this option to pack the segment parts from the specified segments into the specified
ranges, where a segment part is defined as that part of a segment that originates from one
module. The linker splits each segment into its segment parts and forms new segments
for each of the ranges. All the ranges must be closed; i.e. both start and end (or size)
must be specified. The segment parts will not be placed in any specific order into the
ranges.

Note: All numbers are interpreted as hexadecimal, see Specifying numbers on the
command line, page 51.

Examples

See also Segment control, page 22.

[start:+size]*count+offset Specifies count ranges, where the
first begins at start and has the
length size, the next one begins at
start+ offset and has the same
length, and so on. The +offset part
is optional, and defaults to the length
of the range.

[start:+size]/pagesize Specifies the entire range beginning
at start and with the length size,
divided into pages of size and
alignment pagesize. Note: The
beginning and end of the range do not
have to coincide with a page
boundary.

0-9F,100-1FF Two ranges, one from zero to 9F, one from 100 to 1FF.

[1000-1FFF]*3+2000 Three ranges: 1000-1FFF,3000-3FFF,5000-5FFF.

[1000-1FFF]*3 Three ranges: 1000-1FFF,2000-2FFF,3000-3FFF.

[50-77F]/200 Five ranges: 50-1FF,200-3FF,400-5FF,600-77F.

1000:+1000 One range from 1000 to 1FFF.

[1000:+1000]*3+2000 Three ranges: 1000-1FFF,3000-3FFF,5000-5FFF.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
-p

Syntax -plines

Description Sets the number of lines per page for the XLINK list files to lines, which must be in
the range 10 to 150.

The environment variable XLINK_PAGE can be set to install a default page length on
your system; see the chapter XLINK environment variables.

This option is identical to the Lines/page options in the linker category in the IAR
Embedded Workbench IDE.

-Q

Syntax -Qsegment=initializer_segment

Parameters

Description Use this option to do automatic setup for copy initialization of segments (scatter
loading). This will cause the linker to generate a new segment into which it will place
all data content of an existing segment segment. Everything else, e.g. symbols and
debugging information, will still be associated with the original segment. Code in the
application must at runtime copy the contents of initializer_segment (in ROM) to
segment (in RAM).

This is very similar to what compilers do for initialized variables and is useful for code
that needs to be in RAM memory.

The segment initializer_segment must be placed like any other segment using the
segment placement commands.

Example 1 Assume that the code in the segment RAMCODE should be executed in RAM. -Q can be
used for making the linker transfer the contents of the segment RAMCODE (which will
reside in RAM) into the (new) segment ROMCODE (which will reside in ROM), like this:

-QRAMCODE=ROMCODE

segment The original segment that contains the data content tobe
copied.

initializer_segment The new initializer segment to hold the data content of
segment until the first code in segment is executed.
XLINK-650

Part 1. The IAR XLINK Linker 75

76

Descriptions of XLINK options
Then RAMCODE and ROMCODE need to be placed, using the usual segment placement
commands. RAMCODE needs to be placed in the relevant part of RAM, and ROMCODE in
ROM. Here is an example:

-Z(DATA)RAM segments,RAMCODE,Other RAM=0-1FFF
-Z(CODE)ROM segments,ROMCODE,Other ROM segments=4000-7FFF

This will reserve room for the code in RAMCODE somewhere between address 0 and
address 0x1FFF, the exact address depending on the size of other segments placed
before it. Similarly, ROMCODE (which now contains all the original contents of RAMCODE)
will be placed somewhere between 0x4000 and 0x7FFF, depending on what else is
being placed into ROM.

At some time before executing the first code in RAMCODE, the contents of ROMCODE will
need to be copied into it. This can be done as part of the startup code (in CSTARTUP) or
in some other part of the code.

Example 2 This example is not intended as a guide to writing code that is copied from ROM to
RAM, but as an example of how it can be done without using the assembler. All you
need to add to the example is the -Q command and the placement commands for the
segments RAMCODE and ROMCODE.

/* include memcpy */
#include <string.h>

/* declare that there exist 2 segments, RAMCODE and ROMCODE */
#pragma segment="RAMCODE"
#pragma segment="ROMCODE"

/* place the next function in RAMCODE */
#pragma location="RAMCODE"

/* this function is placed in RAMCODE, it does nothing useful,
 it's just an example of an function copied from ROM to RAM */

int adder(int a, int b)
{
 return a + b;
}

/* enable IAR extensions, this is necessary to get __sfb and
__sfe, it is of course possible to write this function in
assembler instead */
#pragma language=extended

XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
void init_ram_code()
{
 void * ram_start = __sfb("RAMCODE"); /* start of RAMCODE */
 void * ram_end = __sfe("RAMCODE"); /* end of RAMCODE */
 void * rom_start = __sfb("ROMCODE"); /* start of ROMCODE */

 /* compute the number of bytes to copy */
 unsigned long size = (unsigned long)(ram_end) - (unsigned
long)(ram_start);

 /* copy the contents of ROMCODE to RAMCODE */
 memcpy(ram_start, rom_start, size);
}

/* restore the previous mode */
#pragma language=default

int main()
{
 /* copy ROMCODE to RAMCODE, this needs to be done before
anything in RAMCODE is called or referred to */
 init_ram_code();

 /* call the function in RAMCODE */
 return adder(4, 5);
}

-R

Syntax -R[w]

Parameters

Description By default, if an address is relocated out of the target CPU’s address range (code,
external data, or internal data address) an error message is generated. This usually
indicates an error in an assembler language module or in the segment placement.

Use this option to disable or modify the address range check.

This option is related to the Range checks option in the linker category in the IAR
Embedded Workbench IDE.

No parameter Disables the address range checking

w Range errors are treated as warnings
XLINK-650

Part 1. The IAR XLINK Linker 77

78

Descriptions of XLINK options
-r

Syntax -r[t]

Parameters

Description Use this option to output a file in DEBUG (UBROF) format, with a dnn extension, to
be used with the IAR C-SPY Debugger. For emulators that support the IAR Systems
DEBUG format, use -F ubrof.

Specifying -r overrides any -F option.

This option is related to the Output options in the linker category in the IAR Embedded
Workbench IDE.

-S

Syntax -S

Description Use this option to turn off the XLINK sign-on message and final statistics report so that
nothing appears on your screen during execution. However, this option does not disable
error and warning messages or the list file output.

-s

Syntax -s symbol

Description This option adds a new way to specify the entry point for an application.

If the option is used, the specified symbol will be used as the application entry point,
and there must be a definition for the symbol in the application, or an Undefined
External error (error 46) will be generated. This symbol definition will also be
included in the final link image.

This option is identical to the Override default program entry option in the linker
category in the IAR Embedded Workbench IDE.

No parameter No emulation of terminal I/O

t Emulates terminal I/O
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
--segment_mirror

Syntax --segment_mirror [@]segment=[@]content_segment

Parameters

Description Use this option to mirror bytes in a memory range that can be accessed from two
different addresses.

A typical example is when some addresses in RAM (that do not correspond to actual
RAM) are mapped by the hardware to addresses in ROM. The part in RAM, segment,
contains the label and all debug information. The part in ROM, content_segment,
contains the actual bytes.

Note: This option does not involve any actual copying of bytes (which makes it
different from the -Q option).

The segments must be placed on connected addresses. If the address range 0x14000–
0x143FF mirrors the range 0x4000–0x43FF, you must place one segment on 0x14000
and the other on 0x4000, using the –Z placement command. If you move one segment
from the start of the mirrored range, you must also move the other segment exactly the
same distance.

Use the @ modifier to exclude one or both of the segment names from the summary. For
example, if no modifier is used and the segment contains 200 bytes, 200 bytes will be
added to both the CONST and the DATA summary. This is typically not correct because
only 200 bytes of address space is used, not 200 actual bytes of RAM.

--stack_usage_control

Syntax --stack_usage_control=filename

Description Use this option to specify a stack usage control file. This file controls stack usage
analysis, or provides more stack usage information for modules or functions. You can
use this option multiple times to specify multiple stack usage control files. If no filename
extension is specified, the extension suc is used.

Using this option enables stack usage analysis in the linker.

Note: This option requires that your product supports stack usage analysis.

@ Excludes the segment from the summary

segment The segment that contains the label

content_segment The segment that contains the actual bytes
XLINK-650

Part 1. The IAR XLINK Linker 79

80

Descriptions of XLINK options
See also The stack usage analysis documentation in the IAR Compiler User Guide.

Project>Options>Linker>Advanced>Control file

--threaded_lib

Syntax --threaded_lib

Description This option makes it possible to use your application with a library that has been
prepared for threaded use (for more information about threaded libraries, see the IAR
Compiler User Guide).

Note: This option requires that your product supports multi-threading.

When this option is specified, XLINK will make these redirections for C applications:

For C++ applications, XLINK will make these redirections:

The symbol __iar_Locksyslock_mtx is always included.

Label Redirected label

__iar_Locksyslock __iar_Locksyslock_mtx

__iar_Unlocksyslock __iar_Unlocksyslock_mtx

__iar_Lockfilelock __iar_Lockfilelock_mtx

__iar_Unlockfilelock __iar_Unlockfilelock_mtx

Table 10: Threaded library redirections for C applications

Label Redirected label

__iar_Initdynamicfilelock __iar_Initdynamicfilelock_mtx

__iar_Dstdynamicfilelock __iar_Dstdynamicfilelock_mtx

__iar_Lockdynamicfilelock __iar_Lockdynamicfilelock_mtx

__iar_Unlockdynamicfilelock __iar_Unlockdynamicfilelock_mtx

Table 11: Threaded library redirections for C++ applications
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
-U

Syntax -U[(address_space)]range=[(address_space)]range

Parameters

Description Each -U command line option declares that the memory given by the range on the left
side of the = is the same memory as that given by the range on the right side. This has
the effect that, during segment placement, anything occupying some part of either
memory will be considered to reserve the corresponding part of the other memory as
well.

The optional segment type parameter (address_space) that can be included on each
side of the = can be used to specify the address space for architectures with multiple
address spaces.

Example 1 This example assumes an architecture with separate code and address spaces, where the
CODE segment type corresponds to the code address space and the DATA segment type to
the data address space.

-U(CODE)4000-5FFF=(DATA)11000-12FFF
-P(CODE)MYCODE=4000-5FFF
-P(DATA)MYCONST=11000-12FFF

The first line declares that the memory at 4000–5FFF in the code address space is also
mapped at 11000–12FFF in the data address space.

The second line places the MYCODE segment at 4000–5FFF in the code address space.
The corresponding bytes in the data address space will also be reserved. If MYCODE
occupies the addresses 4000–473F, the range 11000–1173F in the data address space
will also be reserved.

The third line will place the MYCONST segment into whatever parts of the 11000–12FFF
memory range are not reserved. In this case it will behave as if we had written:

-P(DATA)MYCONST=11740-12FFF

address_space Specifies the address space if
applicable for the target processor. If
omitted it defaults to CODE.

range start-end The range starting at start and
ending at end.
XLINK-650

Part 1. The IAR XLINK Linker 81

82

Descriptions of XLINK options
Example 2 -U is not transitive. This means that overlapping address spaces specified by the same
placement option will not be distributed correctly to all involved address ranges. See this
example:

-U(CODE)1000-1FFF=(DATA)20000-20FFF
-U(DATA)20000-20FFF=(CONST)30000-30FFF

In this example, if some bytes are placed in the CODE space at address 1000, the
corresponding bytes in the DATA space will be reserved, but not the corresponding bytes
in the CONST space. The workaround is to specify the third (“missing”, so to speak)
address space sharing:

-U(CODE)1000-1FFF=(CONST)30000-30FFF

-w

Syntax -w[n|s|t|ID[=severity]]

Parameters

Description This option disables or reclassifies diagnostic messages. The -w option can be used
several times in order to change the severity of more than one diagnostic message. If no
argument is given, all warnings are disabled.

Fatal errors are not affected by this option.

No parameter Disables all warning messages.

n Disables warning n, where n is the number of the warning.

s If there are warnings but no errors, the linker’s return value is changed from
0 to 1.

t Suppresses the detailed type information given for warning 6 (type conflict)
and warning 35 (multiple structs with the same tag).

ID Changes the severity of the diagnostic message ID, which is either the letter
e followed by an error number, the letter w followed by a warning number,
or just a warning number.

severity The severity of the diagnostic message. Choose between:
i – Ignore this diagnostic message. No diagnostic output. (Default.)
w – Classify this diagnostic message as a warning.
e – Classify this diagnostic message as an error.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
Because the severity of diagnostic messages can be changed, the identity of a particular
diagnostic message includes its original severity as well as its number. That is,
diagnostic messages will typically be output as:

Warning[w6]: Type conflict for external/entry ...

Error[e46]: Undefined external ...

Example 1 -w3 -w7

Disables warnings 3 and 7.

Example 2 -w26
-ww26
-ww26=i

These three are equivalent and turn off warning 26.

Example 3 -we106=w

This causes error 106 to be reported as a warning.

This option is related to the Diagnostics options in the linker category in the IAR
Embedded Workbench IDE.

-X

Syntax -X file[,file2,…]

Description Use this option to temporarily force all content in the specified input files to be loaded
as if it was not root, even if some content actually has the root attribute.

This option can be useful, for example, if you have a library module that contains several
entries that are root (like interrupt functions), but you are only interested in some of the
content in the module. Note that ignoring the root property on content can lead to
unexpected behavior; root content usually has that property for a reason.

-x

Syntax -x[e][h][i][m][n][s][o][r]

Parameters
e An abbreviated list of every entry (global symbol) in every module. This entry

map is useful for quickly finding the address of a routine or data element. See
Symbol listing (-xe), page 31.
XLINK-650

Part 1. The IAR XLINK Linker 83

84

Descriptions of XLINK options
Description Use this option to include a segment map in the XLINK list file. This option is used with
the list options -L or -l.

When the -x option is specified without any of the optional parameters, a default
cross-reference list file will be generated which is equivalent to -xms. This includes:

● A header section with basic program information.

● A module load map with symbol cross-reference information.

● A segment load map in dump order.

Cross-reference information is listed to the screen if neither of the -l or -L options has
been specified.

See also -L, page 67, and -l, page 67.

This option is related to the List options in the linker category in the IAR Embedded
Workbench IDE.

-Y

Syntax -Y[char]

Description Use this option to select enhancements available for some output formats. The affected
formats are PENTICA, MPDS-SYMB, AOMF8051, INTEL-STANDARD, MPDS-CODE,
DEBUG, and INTEL-EXTENDED.

See also The chapter XLINK output formats.

h The list file will be in HTML format, with hyperlinks.

i Includes all segment parts in a linked module in the list file, not just the
segment parts that were included in the output. This makes it possible to
determine exactly which entries that were not needed.

m A list of all segments, local symbols, and entries (public symbols) for every
module in the program. See Module map (-xm), page 28.

n Generates a module summary. See Module summary (-xn), page 32.

s A list of all the segments in dump order. See Segment map (-xs), page 30.

o If the compiler uses static overlay, this parameter includes a listing of the static
overlay system in the list file. See Static overlay system map (-xo), page 33.

r This parameter includes a checksum summary that is compatible with the
Rocksoft™ Model CRC Algorithm. See Checksum summary (-xr), page 36.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
This option is related to the Output options in the linker category in the IAR Embedded
Workbench IDE.

-y

Syntax -y[chars]

Description Use this option to specify output format variants for some formats. A sequence of flag
characters can be specified after the option -y. The affected formats are ELF, IEEE695,
and XCOFF78K.

See also The chapter XLINK output formats.

This option is related to the Output options in the linker category in the IAR Embedded
Workbench IDE.

-Z

Syntax -Z[@][(type)]segment1[|align[|]][,segment2[|align[|]],
… segmentn[|align[|]]][=|#]range[,range] …

Parameters
@ Allocates the segments without taking

into account any other use of the address
ranges given. This is useful if you for some
reason want the segments to overlap.

type Specifies the memory type for all
segments if applicable for the target
processor. If omitted it defaults to
UNTYPED.

segment1

,

segment2

, …

segmentn

A list of one or more segments to be
linked, separated by commas.
The segments are allocated in memory in
the same order as they are listed.
Appending +nnnn to a segment name
increases the amount of memory that
XLINK will allocate for that segment by
nnnn bytes.

align Increases the alignment of the segment,
see Specifying the alignment of a segment,
page 87.
XLINK-650

Part 1. The IAR XLINK Linker 85

86

Descriptions of XLINK options
= or # Specifies how segments are allocated:

= Allocates the segments so they begin at
the start of the specified range (upward
allocation).

Allocates the segment so they finish at the
end of the specified range (downward
allocation).

If an allocation operator (and range) is
not specified, the segments will be
allocated upwards from the last
segment that was linked, or from
address 0 if no segments have been
linked.

range start-end The range starting at start and ending
at end.

[start-end]*count+offset Specifies count ranges, where the first is
from start to end, the next is from
start+offset to end+offset, and
so on. The +offset part is optional, and
defaults to the length of the range.

[start-end]/pagesize Specifies the entire range from start
to end, divided into pages of size and
alignment pagesize. Note: The start
and end of the range do not have to
coincide with a page boundary.

start:+size The range starting at start with the
length size.

[start:+size]*count+offse

t

Specifies count ranges, where the first
begins at start and has the length
size, the next one begins at start+
offset and has the same length, and so
on. The +offset part is optional, and
defaults to the length of the range.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
Description Use this option to specify how and where segments will be allocated in the memory map.

If the linker finds a segment in an input file that is not defined either with -Z or -P, an
error is reported. There can be more than one -Z definition.

Placement into far memory (the FAR, FARCODE, and FARCONST segment types) is treated
separately. Using the -Z option for far memory, places the segments that fit entirely into
the first page and range sequentially, and then places the rest using a special variant of
sequential placement that can move an individual segment part into the next range if it
did not fit. This means that far segments can be split into several memory ranges, but it
is guaranteed that a far segment has a well-defined start and end.

The following examples show the address range syntax:

Note: All numbers are interpreted as hexadecimal, see Specifying numbers on the
command line, page 51.

Specifying the alignment of a segment

If a segment is placed using the -Z placement command, you can increase its alignment.

-Z[(type)]segment1[|align[|]][,segment2…][=ranges]

align can be any integer in the range 0–31

align is treated as a decimal number (XLINK uses hexadecimal notation by default, so
this is an exception). align does not specify the desired alignment in bytes, but the
number of bits that are forced to zero, starting from the least significant bit of the
address. The alignment thus becomes 2 raised to the power of align, so 0 means no

[start:+size]/pagesize Specifies the entire range beginning at
start and with the length size, divided
into pages of size and alignment
pagesize. Note: The beginning and end
of the range do not have to coincide with
a page boundary.

0-9F,100-1FF Two ranges, one from zero to 9F, one from 100 to 1FF.

[1000-1FFF]*3+2000 Three ranges: 1000-1FFF,3000-3FFF,5000-5FFF.

[1000-1FFF]*3 Three ranges: 1000-1FFF,2000-2FFF,3000-3FFF.

[50-77F]/200 Five ranges: 50-1FF,200-3FF,400-5FF,600-77F.

1000:+1000 One range from 1000 to 1FFF.

[1000:+1000]*3+2000 Three ranges: 1000-1FFF,3000-3FFF,5000-5FFF.
XLINK-650

Part 1. The IAR XLINK Linker 87

88

Descriptions of XLINK options
alignment (or 1-byte aligned), 1 means 2-byte aligned, 2 means 4-byte aligned, and so
on. XLINK reports alignment in the segment map part of linker list files in this way.

Example 1 -Z(CODE)MY_ALIGNED_CODE|2=ROMSTART-ROMEND

This aligns the start of the segment MY_ALIGNED_CODE to be 4-byte aligned.

Example 2 -Z(DATA)MY_ALIGNED_DATA|8,MY_OTHER_DATA=RAMSTART-RAMEND

This aligns the start of the segment MY_ALIGNED_DATA to be 256-byte aligned. The
alignment of the MY_OTHER_DATA segment is not affected.

This option has no effect if the specified alignment is less than or equal to the natural
alignment of the segment.

If align is surrounded by vertical bars on both sides (like |2|), the size of the segment
will become a multiple of the segment’s alignment in addition to the segment getting the
alignment set by align.

Example 3 -Z(CODE)ALIGNED_CODE|2|,OTHER_ALIGNED|3,MORE_CODE=ROMSTART-ROMEND

This will result in ALIGNED_CODE becoming 4-byte aligned, and its size will be a
multiple of 4. OTHER_ALIGNED becomes 8-byte aligned, but its size is not affected.
MORE_CODE is not affected by the alignment of the others.

-z

Syntax -z[a][b][i][o][p][r=range[,range[,range…]][s]

Parameters

Description Use this option to reduce segment overlap errors to warnings, making it possible to
produce cross-reference maps, etc.

a Ignore overlapping absolute entries

b Ignore overlaps for bit areas

i Ignore all overlaps

o Check overlaps for bit areas

p Check overlaps for SFR areas

r Ignore overlaps in the specified ranges

range A range in which overlaps are ignored

s Ignore overlaps for the SFR area
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK options
-za suppresses overlap errors between absolute entries. This is useful if you, for
example, have several absolutely placed variables on the same address. Note that -za
only ignores overlaps where both entries are absolutely placed.

By default, all overlaps are reported. You can specify -zb, -zi, -zr, and -zs to ignore
overlaps to specific areas or ranges, or everywhere.

For the 8051 processor, only overlaps that do not involve bit segments or SFRs are
reported. You can specify -zo and -zp to report overlaps.

Using the -zs option requires that the used processor has a dedicated SFR area that
XLINK has been made aware of. The only processor that has a dedicated SFR area for
these purposes is the 8051. Using the -zs option for any other processor will generate
warning 68 but otherwise have no effect.

Use -zb to suppress error 24 (segment overlap) for segment overlaps where at least one
of the involved segments is a bit segment.

This option is identical to the Segment overlap warnings option in the linker category
in the IAR Embedded Workbench IDE.
XLINK-650

Part 1. The IAR XLINK Linker 89

90

Descriptions of XLINK options
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK output formats
This chapter gives a summary of the IAR XLINK Linker output formats.

Single output file
The following formats result in the generation of a single output file:

Format Type
Filename

extension

Address translation

support

Addressing

capability

AOMF8051 binary from CPU Yes 16 bits

AOMF8096 binary from CPU Yes 16 bits

AOMF80196 binary from CPU Yes 32 bits

AOMF80251 binary from CPU No 32 bits

ASHLING binary none Yes 16 bits

ASHLING-6301 binary from CPU Yes 16 bits

ASHLING-64180 binary from CPU Yes 16 bits

ASHLING-6801 binary from CPU Yes 16 bits

ASHLING-8080 binary from CPU Yes 16 bits

ASHLING-8085 binary from CPU Yes 16 bits

ASHLING-Z80 binary from CPU Yes 16 bits

DEBUG (UBROF) binary dbg No 32 bits

ELF* binary elf Yes 32 bits

EXTENDED-TEKHEX ASCII from CPU Yes 32 bits

HP-CODE binary x Yes 32 bits

HP-SYMB binary l Yes 32 bits

IEEE695* binary 695 No 32 bits

INTEL-EXTENDED ASCII from CPU Yes 32 bits

INTEL-STANDARD ASCII from CPU Yes 16 bits

MILLENIUM (Tektronix) ASCII from CPU Yes 16 bits

MOTOROLA** ASCII from CPU Yes 32 bits

MOTOROLA-S19** ASCII from CPU Yes 16 bits

MOTOROLA-S28** ASCII from CPU Yes 32 bits

MOTOROLA-S37** ASCII from CPU Yes 32 bits

Table 12: XLINK formats generating a single output file
XLINK-650

Part 1. The IAR XLINK Linker 91

92

Single output file
MPDS-CODE binary tsk Yes 32 bits

MPDS-SYMB binary sym Yes 32 bits

MSD ASCII sym No 16 bits

MSP430_TXT ASCII txt No 16 bits

NEC-SYMBOLIC ASCII sym No 16 bits

NEC2-SYMBOLIC ASCII sym No 16 bits

NEC78K-SYMBOLIC ASCII sym No 16 bits

PENTICA-A ASCII sym Yes 32 bits

PENTICA-B ASCII sym Yes 32 bits

PENTICA-C ASCII sym Yes 32 bits

PENTICA-D ASCII sym Yes 32 bits

RAW-BINARY† binary bin Yes 32 bits

RCA ASCII from CPU Yes 16 bits

SIMPLE binary raw No 32 bits

SIMPLE-CODE binary sim No 32 bits

SYMBOLIC ASCII from CPU Yes 32 bits

SYSROF binary abs No 32 bits

TEKTRONIX (Millenium) ASCII hex Yes 16 bits

TI7000 (TMS7000) ASCII from CPU Yes 16 bits

TYPED ASCII from CPU Yes 32 bits

UBROF†† binary dbg No 32 bits

UBROF5 binary dbg No 32 bits

UBROF6 binary dbg No 32 bits

UBROF7 binary dbg No 32 bits

UBROF8 binary dbg No 32 bits

UBROF9 binary dbg No 32 bits

UBROF10 binary dbg No 32 bits

UBROF11 binary dbg No 32 bits

XCOFF78k* binary lnk No 32 bits

ZAX ASCII from CPU Yes 32 bits

Format Type
Filename

extension

Address translation

support

Addressing

capability

Table 12: XLINK formats generating a single output file (Continued)
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK output formats
* The format is supported only for certain CPUs and debuggers. See xlink.html and
xman.html for more information.

** The MOTOROLA output format uses a mixture of the record types S1, S2, S3 (any
number of each), S7, S8, and S9 (only one of these record types can be used, and no
more than once), depending on the range of addresses output.

XLINK can generate three variants of the MOTOROLA output format, each using only a
specific set of record types:

MOTOROLA-S19 uses the S1 and S9 record types, which use 16-bit addresses.

MOTOROLA-S28 uses the S2 and S8 record types, which use 24-bit addresses.

MOTOROLA-S37 uses the S3 and S7 record types, which use 32-bit addresses.

† RAW-BINARY is a binary image format. It contains no header, starting point, or address
information, only pure binary data. The first byte of the file is the first byte in the
application. A .bin file contains all bytes between the first and the last byte in the
application, including any and all gaps. Note that there is no way to identify the entry
address of the application from the contents of the file. This information must tracked
of in some other way, for instance, in the filename. To link raw binary files with your
application, see --image_input, page 62.

†† Using -FUBROF (or -FDEBUG) will generate UBROF output matching the latest
UBROF format version in the input. Using -FUBROF5 – -FUBROF9 will force output of
the specified version of the format, irrespective of the input.

UBROF VERSIONS

XLINK reads all UBROF versions from UBROF 3 onwards, and can output all UBROF
versions from UBROF 5 onwards. There is also support for outputting something called
Old UBROF which is an early version of UBROF 5, close to UBROF 4. See Output
format variants, page 96.

Normally, XLINK outputs the same version of UBROF that is used in its input files, or
the latest version if more than one version is found. If you have a debugger that does not
support this version of UBROF, XLINK can be directed to use another version. See -F,
page 58.

For the IAR C-SPY® Debugger, this is not a problem. The command line option -r—
which in addition to specifying UBROF output also selects C-SPY-specific library
modules from the IAR Systems standard library—always uses the same UBROF version
as found in the input.
XLINK-650

Part 1. The IAR XLINK Linker 93

94

Single output file
Debug information loss

When XLINK outputs a version of UBROF that is earlier than the one used in its input,
there is almost always some form of debug information loss, though this is often minor.

This debug information loss can consist of some of the following items:

In each case, XLINK attempts to convert the information to something that is
representable in an earlier version of UBROF, but this conversion is by necessity
incomplete and can cause inconsistencies. However, in most cases the result is almost
indistinguishable from the original as far as debugging is concerned.

UBROF version Information that cannot be fully represented in earlier versions

5 Up to 16 memory keywords resulting in different pointer types and different
function calling conventions.

6 Source in header files.
Assembler source debug.

7 Support for up to 255 memory keywords.
Support for target type and object attributes.
Enum constants connected to enum types.
Arrays with more than 65535 elements.
Anonymous structs/unions.
Slightly more expressive variable tracking info.

8 C++ object names.
Added base types.
Typedefs used in the actual types.
C++ types: references and pointers to members.
Class members.
Target defined base types.

9 Call frame information.
Function call step points.
Inlined function instances.

10 C++ template information.

11 Noalloc content.

Table 13: Possible information loss with UBROF version mismatch
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK output formats
Two output files
The following formats result in the generation of two output files:

Format Code format Ext. Symbolic format Ext.

DEBUG-MOTOROLA DEBUG ann MOTOROLA obj

DEBUG-INTEL-EXT DEBUG ann INTEL-EXT hex

DEBUG-INTEL-STD DEBUG ann INTEL-STD hex

HP HP-CODE x HP-SYMB l

MPDS MPDS-CODE tsk MPDS-SYMB sym

MPDS-I INTEL-STANDARD hex MPDS-SYMB sym

MPDS-M Motorola s19 MPDS-SYMB sym

MSD-I INTEL-STANDARD hex MSD sym

MSD-M Motorola hex MSD sym

MSD-T MILLENIUM hex MSD sym

NEC INTEL-STANDARD hex NEC-SYMB sym

NEC2 INTEL-STANDARD hex NEC2-SYMB sym

NEC78K INTEL-STANDARD hex NEC78K-SYMB sym

PENTICA-AI INTEL-STANDARD obj Pentica-a sym

PENTICA-AM Motorola obj Pentica-a sym

PENTICA-BI INTEL-STANDARD obj Pentica-b sym

PENTICA-BM Motorola obj Pentica-b sym

PENTICA-CI INTEL-STANDARD obj Pentica-c sym

PENTICA-CM Motorola obj Pentica-c sym

PENTICA-DI INTEL-STANDARD obj Pentica-d sym

PENTICA-DM Motorola obj Pentica-d sym

ZAX-I INTEL-STANDARD hex ZAX sym

ZAX-M Motorola hex ZAX sym

Table 14: XLINK formats generating two output files
XLINK-650

Part 1. The IAR XLINK Linker 95

96

Output format variants
Output format variants
The following enhancements can be selected for the specified output formats, using the
Format variant (-Y) option:

Refer to the file xlink.html for information about additional options that may have
become available since this guide was published.

Use Format variant (-y) to specify output format variants for some formats. A
sequence of flag characters can be specified after the option -y. The affected formats are
IEEE695 (see page 96), ELF (see page 98), and XCOFF78K (see page 99).

IEEE695

For IEEE695 the available format modifier flags are:

Output format Option Description

PENTICA-A,B,C,D
and MPDS-SYMB

YO

Y1

Y2

Symbols as module:symbolname.
Labels and lines as module:symbolname.
Lines as module:symbolname.

AOMF8051 Y0

Y1

Extra type of information for Hitex.
This non-standard extension of the format can be
specified to make XLINK use the SEGID field to contain
the bank number (0x0–0xFF) of addresses greater than
0xFFFF. If the option is not used, the SEGID field will
always be 0.

INTEL-STANDARD Y0

Y1

End only with :00000001FF.
End with PGMENTRY, else :0000001FF.

MPDS-CODE Y0 Fill with 0xFF instead.

DEBUG, -r Y# Old UBROF version.

INTEL-EXTENDED Y0

Y1

Y2

Y3

20-bit segmented addresses
32 bit linear addresses
32 bit linear addresses with no entry point
20-bit segmented addresses with no entry point

Table 15: XLINK output format variants

Modifier Description

-yd Do not emit any #define constant records. This can sometimes drastically
reduce the size of the output file.

-yg Output globally visible types in a BB2 block at the beginning of the output file.

-yl Output the globally visible types in a BB1 block at the beginning of each module
in the output file.

Table 16: IEEE695 format modifier flags
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK output formats
The following table shows the recommended IEEE695 format variant modifiers for
some specific debuggers:

-yb XLINK supports the use of IEEE-695 based variables to represent bit variables,
and the use of bit addresses for bit-addressable sections. Turning on this
modifier makes XLINK treat these as if they were byte variables or sections.

-ym Turning on this modifier adjusts the output in some particular ways for the
Mitsubishi PDB30 debugger.
Note: You will need to use the l and b modifiers as well (-ylbm).

-ye Using this modifier will cause XLINK to not emit any block-local constant in
the output file. One way these can occur is if an enum is declared in a block.

-yv Use the variable life time support in IEEE-695 to output more accurate debug
information for variables whose location vary.

-ys Output IEEE-695 stack adjust records to indicate the offset from the stack
pointer of a virtual frame pointer.

-ya Output information about module local symbols in BB10 (assembler level)
blocks as well as in the BB3 (high level) blocks, if any.

-yr Change the source line information for the last return statement in a function
to refer to the last line of the function instead of the line where it is located.

Processor family Debugger Format variant modifier

6812 Noral debugger -ygvs

68HC16 Microtek debugger -ylb

740 Mitsubishi PD38 -ylbma

7700 HP RTC debugger -ygbr

7700 Mitsubishi PD77 -ylbm

H8300 HP RTC debugger -ygbr

H8300H HP RTC debugger -ygbr

H8S HP RTC debugger -ygbr

M16C HP RTC debugger -ygbr

M16C Mitsubishi PD30/PDB30/KDB30 -ylbm

R32C PD30, PD308, PD77, PD100 debuggers -ylbm

T900 Toshiba RTE900 m25 -ygbe

T900 Toshiba RTE900 m15 -ygbed

Table 17: IEEE695 format variant modifiers for specific debuggers

Modifier Description

Table 16: IEEE695 format modifier flags (Continued)
XLINK-650

Part 1. The IAR XLINK Linker 97

98

Output format variants
ELF

For ELF the available format modifier flags are:

Modifier Description

-yb Suppresses the generation of the .debug_pubnames section in the output
file.

-yc Outputs an address_class attribute for pointer types based on the UBROF
memory attribute number. This format variant option requires a DWARF
reader (debugger) that understands these attributes.

-yf Prevents the output of a .debug_frame section (DWARF call frame
information). Note that a .debug_frame section is only generated if enough
information is present in the linker input files.

-ym Normally, all types are output once, in the first compilation unit, and global
debug info references are used to refer to them in the rest of the debug
information. If -ym is specified, all types are output in each compilation unit,
and compilation unit relative references are used to refer to them.

-yn Outputs an ELF/DWARF file without debug information.

-yo Generates DWARF call frame information sections that use non-factored CFA
offsets instead of factored ones. Information about this will be included in the
.note.iar section.

-yp Outputs one ELF program section for each segment, instead of one section for
all segments combined.

-ys Normally, global debug information references (used for references to type
records when -ym is not specified) are offsets into the entire file, in compliance
with the DWARF specification. Specifying -ys causes XLINK to use
.debug_info section offsets for these references, instead. This was the
default behavior in previous XLINK versions (up to version 4.51R). Information
about this will be included in the .note.iar section.

-yv The DWARF standard specifies a use_location semantics that requires
passing complete objects on the DWARF expression stack, which is ill-defined.
Specifying this option causes XLINK to emit use_location attributes where
the addresses of the objects are passed instead. This format variant option
requires a DWARF reader (debugger) that understands these attributes.

-yw Specify the -yw format variant modifier to suppress the .debug_aranges
section in the output file. This section contains information about which
addresses that a compilation unit places bytes at.

Table 18: ELF format modifier flags
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK output formats
The XLINK ELF/DWARF format output includes module-local symbols. The
command line option -n can be used for suppressing module-local symbols in any
output format.

The following table shows the recommended ELF format variant modifiers for some
specific debuggers:

The XLINK output conforms to ELF as described in Executable and Linkable Format
(ELF) and to DWARF version 2, as described in DWARF Debugging Information
Format, revision 2.0.0 (July 27, 1993); both are parts of the Tools Interface Standard
Portable Formats Specification, version 1.1.

XCOFF78K

For XCOFF78K the available format modifier flags are:

-yx Strips the file path of all path information so the reference is only a filename,
C:\MySource\MyProject\MyFile.c and
/home/myuser/mysource/myproject/MyFile.c would both
become references to MyFile.c.

Processor family Debugger Format variant modifier

78K0R Renesas -yspc

H8 Renesas HEW -yspcb

M16C Mitsubishi PD30 -yspc

M32C Mitsubishi KD30 -yspc

MSP430 Texas Instruments CCS -yspco

R32C Renesas -yspc

RL78 Renesas -yspc

V850 Lauterbach Trace32 -ys

Table 19: ELF format variant modifiers for specific debuggers

Modifier Description

-ys Truncates names.
Use this modifier flag to truncate names longer than 31 characters to 31
characters.
Irrespective of the setting of this modifier, section names longer than 7
characters are always truncated to 7 characters and module names are truncated
to 31 characters.

Table 20: XCOFF78K format modifiers

Modifier Description

Table 18: ELF format modifier flags (Continued)
XLINK-650

Part 1. The IAR XLINK Linker 99

100

Restricting the output to a single address space
If you want to specify more than one flag, all flags must be specified after the same -y
option; for example, -ysp.

The following table shows the recommended XCOFF78K format variant modifiers for
some specific debuggers:

Restricting the output to a single address space
It is possible to restrict output in the simple ROM output formats—intel-standard,
intel-extended, motorola, motorola-s19, motorola-s28, motorola-s37, millenium,
ti7000, rca, tektronix, extended-tekhex, hp-code, and mpds-code—to include only bytes
from a single address space. You do this by prefixing a segment type in parentheses to
the format variant. This segment type specifies the desired address space. This feature
is particularly useful when used in combination with the multiple output files option, see
-O, page 71.

Example

-Ointel-extended,(CODE)=file1
-Ointel-extended,(DATA)=file2

-yp Strips source file paths from source file references.
Use this modifier flag to strip source file paths from source file references, if
there are any, leaving only the file name and extension.

-ye Includes module enums.
Normally XLINK does not output module-local constants in the XCOFF78K file.
The way IAR Systems compilers currently work these include all #define
constants as well as all SFRs. Use this modifier flag to have them included.

-yl Hobbles line number info.
When outputting debug information, use this modifier flag to ignore any source
file line number references that are not in a strictly increasing order within a
function.

-yn Sorts line numbers in ascending order.
Normally, XLINK will output the debug information for each function in
ascending address order. Some debuggers prefer to have the debug information in
ascending line number order instead. Use this modifier flag to make XLINK
produce debug information that is sorted in ascending line number order.

Processor family Debugger Format variant modifier

 78K0R NEC ID78K0R-QB -ysp

Table 21: XCOFF78K format variant modifiers for specific debuggers

Modifier Description

Table 20: XCOFF78K format modifiers (Continued)
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK output formats
This will result in two output files, both using the INTEL-EXTENDED output format.
The first (named file1) will contain only bytes in the address space used for the CODE
segment type, while the second (named file2) will contain only bytes in the address
space used for the DATA segment type. If these address spaces are not the same, the
content of the two files will be different.
XLINK-650

Part 1. The IAR XLINK Linker 101

102

Restricting the output to a single address space
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK environment variables
XLINK environment
variables
The IAR XLINK Linker supports a number of environment variables. These
can be used for creating defaults for various XLINK options so that they do
not have to be specified on the command line.

Except for the XLINK_ENVPAR environment variable, the default values can be
overruled by the corresponding command line option. For example, the
-FMPDS command line argument will supersede the default format selected
with the XLINK_FORMAT environment variable.

Summary of XLINK environment variables
The following environment variables can be used by the IAR XLINK Linker:

XLINK_COLUMNS Sets the number of columns per line.

Use XLINK_COLUMNS to set the number of columns in the list file. The default is 80
columns.

Example

To set the number of columns to 132:

set XLINK_COLUMNS=132

Environment variable Description

XLINK_COLUMNS Sets the number of columns per line.

XLINK_CPU Sets the target CPU type.

XLINK_DFLTDIR Sets a path to a default directory for object files.

XLINK_ENVPAR Creates a default XLINK command line.

XLINK_FORMAT Sets the output format.

XLINK_PAGE Sets the number of lines per page.

Table 22: XLINK environment variables
XLINK-650

Part 1. The IAR XLINK Linker 103

104

Summary of XLINK environment variables
XLINK_CPU Sets the target processor.

Use XLINK_CPU to set a default for the -c option so that it does not have to be specified
on the command line.

Example

To set the target processor to Chipname:

set XLINK_CPU=chipname

Related commands

This is equivalent to the XLINK -c option; see -c, page 56.

XLINK_DFLTDIR Sets a path to a default directory for object files.

Use XLINK_DFLTDIR to specify a path for object files. The specified path, which should
end with \, is prefixed to the object filename.

Example

To specify the path for object files as c:\iar\lib:

set XLINK_DFLTDIR=c:\iar\lib\

XLINK_ENVPAR Creates a default XLINK command line.

Use XLINK_ENVPAR to specify XLINK commands that you want to execute each time
you run XLINK.

Example

To create a default XLINK command line:

set XLINK_ENVPAR=-FMOTOROLA

Related commands

For more information about reading linker commands from a file, see -f, page 59.

XLINK_FORMAT Sets the output format.

Use XLINK_FORMAT to set the format for linker output. For a list of the available output
formats, see the chapter XLINK output formats.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK environment variables
Example

To set the output format to Motorola:

set XLINK_FORMAT=MOTOROLA

Related commands

This is equivalent to the XLINK -F option; see -F, page 58.

XLINK_PAGE Sets the number of lines per page.

Use XLINK_PAGE to set the number of lines per page (20–150). The default is a list file
without page breaks.

Examples

To set the number of lines per page to 64:

set XLINK_PAGE=64

Related commands

This is equivalent to the XLINK -p option; see -p, page 75.
XLINK-650

Part 1. The IAR XLINK Linker 105

106

Summary of XLINK environment variables
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
This chapter describes the diagnostic messages produced by the IAR XLINK
Linker.

Introduction
The diagnostic messages produced by the IAR XLINK Linker fall into the following
categories:

● XLINK error messages
● XLINK warning messages
● XLINK fatal error messages
● XLINK internal error messages
● XLINK stack usage analysis diagnostic messages.

XLINK WARNING MESSAGES

XLINK warning messages will appear when XLINK detects something that may be
wrong. The code that is generated might still be correct.

XLINK ERROR MESSAGES

XLINK error messages are produced when XLINK detects that something is incorrect.
The linking process will be aborted unless the Always generate output (-B) option is
specified. The code produced is almost certainly faulty.

XLINK FATAL ERROR MESSAGES

XLINK fatal error messages abort the linking process. They occur when continued
linking is useless, i.e. the fault is irrecoverable.

XLINK INTERNAL ERROR MESSAGES

During linking, a number of internal consistency checks are performed. If any of these
checks fail, XLINK will terminate after giving a short description of the problem. These
errors will normally not occur, but if they do you should report them to the IAR Systems
XLINK-650

Part 1. The IAR XLINK Linker 107

108

Error messages
Technical Support group. Please include information enough to reproduce the problem
from both source and object code. This would typically include:

● The exact internal error message text.
● The object code files, as well as the corresponding source code files, of the program

that generated the internal error. If the file size total is very large, please contact IAR
Systems Technical Support before sending the files.

● A list of the compiler/assembler and XLINK options that were used when the
internal error occurred, including the linker configuration file. If you are using the
IAR Embedded Workbench IDE, these settings are stored in the prj/pew/ewp and
dtp files of your project. See the IAR Embedded Workbench® IDE User Guide for
information about how to view and copy that information.

● Product names and version numbers of the IAR Systems development tools that
were used.

XLINK STACK USAGE ANALYSIS DIAGNOSTIC MESSAGES

XLINK stack usage analysis diagnostic messages will appear when XLINK detects
something that stops stack usage information from being calculated or presented. These
messages only contain information about the linker’s stack usage analysis, and not about
whether the code that is generated is correct.

Note: You can only get these messages if your product supports stack usage analysis.

Error messages
If you get a message that indicates a corrupt object file, reassemble or recompile the
faulty file since an interrupted assembly or compilation may produce an invalid object
file.

The following table lists the IAR XLINK Linker error messages:

0 Format chosen cannot support banking
Format unable to support banking.

1 Corrupt file. Unexpected end of file in module module (file)
encountered
XLINK aborts immediately. Recompile or reassemble, or check the
compatibility between XLINK and C compiler.

2 Too many errors encountered (>100)
XLINK aborts immediately.

3 Corrupt file. Checksum failed in module module (file). Linker
checksum is linkcheck, module checksum is modcheck
XLINK aborts immediately. Recompile or reassemble.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
4 Corrupt file. Zero length identifier encountered in module module
(file)
XLINK aborts immediately. Recompile or reassemble.

5 Address type for CPU incorrect. Error encountered in module
module (file)
XLINK aborts immediately. Check that you are using the right files and
libraries.

6 Program module module redeclared in file file. Ignoring second
module
XLINK will not produce code unless the Always generate output (-B) option
(forced dump) is used.

7 Corrupt file. Unexpected UBROF – format end of file encountered
in module module (file)
XLINK aborts immediately. Recompile or reassemble.

8 Corrupt file. Unknown or misplaced tag encountered in module
module (file). Tag tag
XLINK aborts immediately. Recompile or reassemble.

9 Corrupt file. Module module start unexpected in file file
XLINK aborts immediately. Recompile or reassemble.

10 Corrupt file. Segment no. segno declared twice in module module
(file)
XLINK aborts immediately. Recompile or reassemble.

11 Corrupt file. External no. ext no declared twice in module module
(file)
XLINK aborts immediately. Recompile or reassemble.

12 Unable to open file file
XLINK aborts immediately. If you are using the command line, check the
environment variable XLINK_DFLTDIR.

13 Corrupt file. Error tag encountered in module module (file)
A UBROF error tag was encountered. XLINK aborts immediately. Recompile
or reassemble.

14 Corrupt file. Local local defined twice in module module (file)
XLINK aborts immediately. Recompile or reassemble.

15 This is no error message with this number.

16 Segment segment is too long for segment definition
The segment defined does not fit into the memory area reserved for it. XLINK
aborts immediately.
XLINK-650

Part 1. The IAR XLINK Linker 109

110

Error messages
17 Segment segment is defined twice in segment definition -Zsegdef
XLINK aborts immediately.

18 Range error, compiler/assembler_message
Some instructions do not work unless a certain condition holds after linking.
XLINK has verified that the conditions do not hold when the files are linked.
For information about how to interpret the error message, see Range errors,
page 25.

The check can be suppressed by the -R option.

19 Corrupt file. Undefined segment referenced in module module (file)
XLINK aborts immediately. Recompile or reassemble.

20 Corrupt file. External index out of range in module module (file)
The object file is corrupt. Contact IAR Systems Technical support.

21 Segment segment in module module does not fit bank
The segment is too long. XLINK aborts immediately.

22 Paragraph no. is not applicable for the wanted CPU. Tag
encountered in module module (file)
XLINK aborts immediately. Delete the paragraph number declaration in the
xcl file.

23 Corrupt file. T_REL_FI_8 or T_EXT_FI_8 is corrupt in module
module (file)
The tag T_REL_FI_8 or T_EXT_FI_8 is faulty. XLINK aborts immediately.
Recompile or reassemble.

24 The absolute segment on the address addressrange in the module
module (file) overlaps the segment segmentname (from module
module2, address [addressrange2])
An absolute segment overlaps a relocatable segment. You must move either the
absolute segment or the relocatable segment. You move an absolute segment
by modifying the source code. You move relocatable segments by modifying
the segment placement command.

25 Corrupt file. Unable to find module module (file)
A module is missing. XLINK aborts immediately.

26 Segment segment is too long
This error should never occur unless the program is extremely large. XLINK
aborts immediately.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
27 Entry entry in module module (file) redefined in module module
(file)
There are two or more entries with the same name. XLINK aborts
immediately.

28 File file is too long
The program is too large. Split the file. XLINK aborts immediately.

29 No object file specified in command-line
There is nothing to link. XLINK aborts immediately.

30 Option option also requires the option option
XLINK aborts immediately.

31 Option option cannot be combined with the option option
XLINK aborts immediately.

32 Option option cannot be combined with the option option and the
option option
XLINK aborts immediately.

33 Faulty value value, (range is 10-150)
Faulty page setting. XLINK aborts immediately.

34 Filename too long
The filename is more than 255 characters long. XLINK aborts immediately.

35 Unknown flag flag in cross reference option option
XLINK aborts immediately.

36 Option option does not exist
XLINK aborts immediately.

37 - not succeeded by character
The - (dash) marks the beginning of an option, and must be followed by a
character. XLINK aborts immediately.

38 Option option must not be defined more than once
XLINK aborts immediately.

39 Illegal character specified in option option
XLINK aborts immediately.

40 Argument expected after option option
This option must be succeeded by an argument. XLINK aborts immediately.

41 Unexpected '-' in option option
XLINK aborts immediately.
XLINK-650

Part 1. The IAR XLINK Linker 111

112

Error messages
42 Faulty symbol definition -Dsymbol definition
Incorrect syntax. XLINK aborts immediately.

43 Symbol in symbol definition too long
The symbol name is more than 255 characters. XLINK aborts immediately.

44 Faulty value value, (range 80-300)
Faulty column setting. XLINK aborts immediately.

45 Unknown CPU CPU encountered in context
XLINK aborts immediately. Make sure that the argument to -c is valid. If you
are using the command line you can get a list of CPUs by typing xlink -c?.

46 Undefined external external referred in module (file)
Entry to external is missing.

47 Unknown format format encountered in context
XLINK aborts immediately.

48 This error message number is not used.

49 This error message number is not used.

50 Paragraph no. not allowed for this CPU, encountered in option
option
XLINK aborts immediately. Do not use paragraph numbers in declarations.

51 Input base value expected in option option
XLINK aborts immediately.

52 Overflow on value in option option
XLINK aborts immediately.

53 Parameter exceeded 255 characters in extended command line file
file
XLINK aborts immediately.

54 Extended command line file file is empty
XLINK aborts immediately.

55 Extended command line variable XLINK_ENVPAR is empty
XLINK aborts immediately.

56 Non-increasing range in segment definition segment def
XLINK aborts immediately.

57 No CPU defined
No CPU defined, either in the command line or in XLINK_CPU. XLINK aborts
immediately.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
58 No format defined
No format defined, either in the command line or in XLINK_FORMAT. XLINK
aborts immediately.

59 Revision no. for file is incompatible with XLINK revision no.
XLINK aborts immediately.

If this error occurs after recompilation or reassembly, the wrong version of
XLINK is being used. Check with your supplier.

60 Segment segment defined in bank definition and segment definition.
XLINK aborts immediately.

61 This error message number is not used.

62 Input file file cannot be loaded more than once
XLINK aborts immediately.

63 Trying to pop an empty stack in module module (file)
XLINK aborts immediately. Recompile or reassemble.

64 Module module (file) has not the same debug type as the other
modules
XLINK aborts immediately.

65 Faulty replacement definition -e replacement definition
Incorrect syntax. XLINK aborts immediately.

66 Function with F-index index has not been defined before indirect
reference in module module (file)
Indirect call to an undefined in module. Probably caused by an omitted
function declaration.

67 Function name has same F-index as function-name, defined in
module module (file)
Probably a corrupt file. Recompile file.

68 External function name in module module (file) has no global
definition
If no other errors have been encountered, this error is generated by an
assembler-language call from C where the required declaration using the
$DEFFN assembler-language support directive is missing. The declaration is
necessary to inform XLINK of the memory requirements of the function.

69 Indirect or recursive function name in module module (file) has
parameters or auto variables in nondefault memory
The recursively or indirectly called function name is using extended language
memory specifiers (bit, data, idata, etc) to point to non-default memory,
memory which is not allowed.
XLINK-650

Part 1. The IAR XLINK Linker 113

114

Error messages
Function parameters to indirectly called functions must be in the default
memory area for the memory model in use, and for recursive functions, both
local variables and parameters must be in default memory.

70 This error message number is not used.

71 Segment segment is incorrectly defined (in a bank definition, has
wrong segment type or mixed with other segment types)
This is usually due to misuse of a predefined segment; see the explanation of
segment in the IAR Compiler User Guide. It may be caused by changing the
predefined linker configuration file.

72 Segment name must be defined in a segment option definition (-Z,
-b, or -P)
This is caused either by the omission of a segment in XLINK (usually a
segment needed by the C system control) file or by a spelling error (segment
names are case sensitive).

73 Label ?ARG_MOVE not found (recursive function needs it)
In the library there should be a module containing this label. If it has been
removed it must be restored.

74 There was an error when writing to file file
Either XLINK or your host system is corrupt, or the two are incompatible.

75 SFR address in module module (file), segment segment at address
address, value value is out of bounds
A special function register (SFR) has been defined to an incorrect address.
Change the definition.

76 Absolute segments overlap in module module
XLINK has found two or more absolute segments in module overlapping each
other.

77 The absolute segment on the address addressrange in the module
module (file) overlaps the absolute segment on the address
addressrange2 in the module module2 (file2)
Two absolute segments overlap. You must move at least one of them. You
move absolute segments by modifying the source code.

78 Absolute segment in module module (file) overlaps segment
segment
XLINK has found an absolute segment in module (file) overlapping a
relocatable segment.

79 Faulty allocation definition -a definition
XLINK has discovered an error in an overlay control definition.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
80 Symbol in allocation definition (-a) too long
A symbol in the -a command is too long.

81 Unknown flag in extended format option option
Make sure that the flags are valid.

82 Conflict in segment name. Mixing overlayable and not overlayable
segment parts.
These errors only occur with the 8051 and converted PL/M code.

83 The overlayable segment name may not be banked.
These errors only occur with the 8051 and converted PL/M code.

84 The overlayable segment name must be of relative type.
These errors only occur with the 8051 and converted PL/M code.

85 The far/farc segment name in module module (file) is larger than size
The segment name is too large to be a far segment.

86 This error message number is not used.

87 Function with F-index i has not been defined before tiny_func
referenced in module module (file)
Check that all tiny functions are defined before they are used in a module.

88 Wrong library used (compiler version or memory model
mismatch). Problem found in module (file). Correct library tag is tag
Code from this compiler needs a matching library. A library belonging to a
later or earlier version of the compiler may have been used.

89 Too much object code produced (more than number of bytes bytes)
for this package.
The size limit for this particular code size limited version of the product was
exceeded. Change the code so that the end result is smaller, or upgrade the
product. If you have a permanent license for the product, check that:

● you do not also have a code size limited version of the product installed,
which is started instead

● you have rebuilt the entire project if you have upgraded from a code size
limited version of the product

● no runtime libraries (including any non-IAR libraries) were built with a code
size limited version of the product. If they were, they must be rebuilt.

90 Can only generate UBROF output from these files
This particular demo version can only generate UBROF output. You must use
a KickStart version or a full version of IAR Embedded Workbench if you want
to generate output in another format.
XLINK-650

Part 1. The IAR XLINK Linker 115

116

Error messages
91 This XLINK version cannot link these files
These particular files from a demo version cannot be linked with this version
of XLINK. Download a more recent version of XLINK.

92 Cannot use this format with this CPU
Some formats need CPU-specific information and are only supported for some
CPUs.

93 Non-existant warning number number, (valid numbers are 0-max)
An attempt to suppress a warning that does not exist gives this error.

94 Unknown flag x in local symbols option -nx
The character x is not a valid flag in the local symbols option.

95 Module module (file) uses source file references, which are not
available in UBROF 5 output
This feature cannot be filtered out by XLINK when producing UBROF 5
output.

96 This error message number is not used.

97 This error message number is not used.

98 Unmatched /* comment in extended command file
No matching */ was found in the linker configuration file.

99 Syntax error in segment definition: option
There was a syntax error in the option.

100 Segment name too long: segment in option
The segment name exceeds the maximum length (255 characters).

101 Segment already defined: segment in option
The segment has already been mentioned in a segment definition option.

102 No such segment type: option
The specified segment type is not valid.

103 Ranges must be closed in option
The -P option requires all memory ranges to have an end.

104 Failed to fit all segments into specified ranges. Problem discovered
in segment segment.
The packing algorithm used by XLINK did not manage to fit all the segments.

105 Recursion not allowed for this system. One recursive function is
functionname.
The runtime model used does not support recursion. Each function determined
by the linker to be recursive is marked as such in the module map part of the
linker list file.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
106 Syntax error or bad argument in option
There was an error when parsing the command line argument given.

107 Banked segments do not fit into the number of banks specified
XLINK did not manage to fit all of the contents of the banked segments into
the banks given.

108 Cannot find function function mentioned in -a#
All the functions specified in an indirect call option must exist in the linked
program.

109 Function function mentioned as callee in -a# is not indirectly called
Only functions that actually can be called indirectly can be specified to do so
in an indirect call option.

110 Function function mentioned as caller in -a# does not make indirect
calls
Only functions that actually make indirect calls can be specified to do so in an
indirect call option.

111 The file file is not a UBROF file
The contents of the file are not in a format that XLINK can read.

112 The module module is for an unknown CPU (tid = tid). Either the
file is corrupt or you need a later version of XLINK
The version of XLINK used has no knowledge of the CPU that the file was
compiled/assembled for.

113 Corrupt input file: symptom in module module (file)
The input file indicated appears to be corrupt. This can occur either because
the file has for some reason been corrupted after it was created, or because of
a problem in the compiler/assembler used to create it. If the latter appears to
be the case, please contact IAR Systems Technical Support.

114 This error message number is not used.

115 Unmatched ‘”’ in extended command file or XLINK_ENVPAR
When parsing an extended command file or the environment variable
XLINK_ENVPAR, XLINK found an unmatched quote character.

For filenames with quote characters you need to put a backslash before the
quote character. For example, writing

c:\iar\”A file called \”file\””

will cause XLINK to look for a file called

A file called “file”

in the c:\iar\directory.
XLINK-650

Part 1. The IAR XLINK Linker 117

118

Error messages
116 Definition of symbol in module module1 is not compatible with
definition of symbol in module module2
The symbol symbol has been tentatively defined in one or both of the
modules. Tentative definitions must match other definitions.

117 Incompatible runtime modules. Module module1 specifies that
attribute must be value1, but module module2 has the value value2
These modules cannot be linked together. They were compiled with settings
that resulted in incompatible run-time modules.

118 Incompatible runtime modules. Module module1 specifies that
attribute must be value, but module module2 specifies no value for
this attribute.
These modules cannot be linked together. They were compiled with settings
that resulted in incompatible run-time modules.

119 Cannot handle C++ identifiers in this output format
The selected output format does not support the use of C++ identifiers
(block-scoped names or names of C++ functions).

120 Overlapping address ranges for address translation. address type
address address is in more than one range
The address address (of logical or physical type) is the source or target of
more than one address translation command.

If, for example, both -M0-2FFF=1000 and -M2000-3FFF=8000 are given,
this error may be given for any of the logical addresses in the range
2000-2FFF, for which to separate translation commands have been given.

121 Segment part or absolute content at logical addresses start – end
would be translated into more than one physical address range
The current implementation of address translation does not allow logical
addresses from one segment part (or the corresponding range for absolute parts
from assembler code) to end up in more than one physical address range.

If, for example, -M0-1FFF=10000 and -M2000-2FFF=20000 are used, a
single segment part is not allowed to straddle the boundary at address 2000.

122 The address address is too large to be represented in the output
format format
The selected output format format cannot represent the address address.
For example, the output format INTEL-STANDARD can only represent
addresses in the range 0-FFFF.

123 The output format format does not support address translation (-M,
-b#, or -b@)
Address translation is not supported for all output formats.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
124 Segment conflict for segment segment. In module module1 there is
a segment part that is of type type1, while in module module2 there
is a segment part that is of type type2
All segment parts for a given segment must be of the same type. One reason
for this conflict can be that a COMMON segment is mistakenly declared RSEG
(relocatable) in one module.

125 This error message number is not used.

126 Runtime model attribute “__cpu” not found. Please enter at least
one line in your assembly code that contains the following
statement: RTMODEL “__cpu”, “16C61”. Replace 16C61 with
your chosen CPU. The CPU must be in uppercase.
The __cpu runtime model attribute is needed when producing COFF output.
The compiler always supplies this attribute, so this error can only occur for
programs consisting entirely of assembler modules.

At least one of the assembler modules must supply this attribute.

127 Segment placement command “command” provides no address
range, but the last address range(s) given is the wrong kind (bit
addresses versus byte addresses).
This error will occur if something like this is entered:

 -Z(DATA)SEG=1000-1FFF
 -Z(BIT)BITVARS=

Note: The first uses byte addresses and the second needs bit addresses. To
avoid this, provide address ranges for both.

128 Segments cannot be mentioned more than once in a copy init
command: “-Qargs”
Each segment must be either the source or the target of a copy init command.

129 This error message number is not used.

130 Segment placement needs an address range: "command"
The first segment placement command (-Z, -P) must have an address range.

131 Far segment type illegal in packed placement
command: "command". Use explicit address intervals instead. For
example: [20000-4FFFF]/10000
Using a far segment type (FARCODE, FARDATA, FARCONST) is illegal in packed
placement (-P).
XLINK-650

Part 1. The IAR XLINK Linker 119

120

Error messages
132 Module module (file) uses UBROF version 9.0. This version of
UBROF was temporary and is no longer supported by XLINK
Support for UBROF 9.0.0 has been dropped from XLINK starting with
XLINK 4.53A.

133 The output format format cannot handle multiple address spaces.
Use format variants (-y -O) to specify which address space is
wanted
The output format used has no way to specify an address space. The format
variant modifier used can be prefixed with a segment type to restrict output to
the corresponding address space only. For example, -Fmotorola -y(CODE)
will restrict output to bytes from the address space used for the CODE segment
type.

See Restricting the output to a single address space, page 100 for more
information.

134 The left and right address ranges do not cover the same number of
bytes: range1 range2
The left and right address ranges of this command line option must cover
exactly the same number of bytes.

135 A module in the file file has an empty module name, which is not
supported in the format output format.
This output format cannot handle empty module names. Avoid this error by
giving the module a name when you compile the source file.

136 The output format 'format' does not support the use of relocation
areas (-V option). Did you forget a format modifier flag?
This output format does not support relocatable output. Either the option -y
was specified without the appropriate format modifier flag, or else the output
format does not support relocatable output at all.

137 Duplicate relocation area: relocArea1 relocarea2
A relocation area was defined twice. Each relocation area needs a unique
identifier.

138 Module module (file) contains operations that cannot be used with
relocation areas: error text
Somewhere in the module an address (relocation area + offset) is used as if it
were an absolute address. Since relocation areas usually are aligned, this is not
always an error. Parts of the address could be acceptable to use.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
Possible causes for this are:

● The module was compiled or assembled with a compiler or assembler that
does not support relocatable output (consult your compiler reference guide if
in doubt). Old IAR Systems compilers or assemblers perform checks in ways
that can trigger this error (relocatable output will not work with old IAR
Systems compilers).

● If the module contains handwritten assembler code, it is possible that it uses
some unknown expression that causes this error.

 If the module was compiled with a modern compiler, your relocation areas has
a sufficient alignment, and you get this message, contact IAR Systems
Technical Support.

139 Module module (file) uses relocations (relocation) in ways that are
not supported by the format output format.
The object file contains a relocation that cannot be represented in this output
format. This can be the result of assembler code that uses an instruction format
which is not supported by the relocation directives in this output format.

140 The range declaration used in range declaration is illegal since start
> end.
A range must have a positive size; the end address cannot be lower than the
start address.

141 The SPLIT- keyword in the packed segment placement command
placement command is illegal, SPLIT- is only allowed in sequential
placement commands (-Z).
Only the -Z placement option can use the modifier SPLIT-. Either use -Z or
remove the SPLIT- modifier.

142 Entries included in PUBWEAK/PUBLIC resolution must be in a
named segment (RSEG or ASEGN). Discovered when resolving the
PUBWEAK entry in module module against the PUBLIC entry in
module module.
All symbols involved the PUBWEAK/PUBLIC resolution must be placed in
segments using either the RSEG or the ASEGN directive. Locate the assembler
source code that defines the involved symbol in an absolute segment—using
the ASEG directive—and replace it with a segment definition using the ASEGN
directive.

See the IAR Assembler Reference Guide for information about the ASEG and
ASEGN directives.
XLINK-650

Part 1. The IAR XLINK Linker 121

122

Error messages
143 There is more than one PUBWEAK definition in the segment part
segment part description.
PUBWEAK definitions must be perfectly interchangeable. Segment parts with
multiple PUBWEAK definitions cannot not always be interchanged with other
definitions of the same symbols.

144 The conditional reference at offset offset in segment segment could
not use its definition of last resort, the entry in segment segment.
In order for XLINK to be able to optimize the use of relay functions, each
module must supply relay functions that can be used by every call site in that
module. This error occurs when that precondition is not met. The distance
between the reference and the definition might be too large, or the definition
might be unsuitable because it is in the wrong processor mode, or for some
other reason.

If this occurs for a module produced by a compiler (as opposed to in assembler
code), this is an indication of a problem in either the compiler or the linker. To
test if the problem is in the linker, try linking with the option Relay Function
Optimization disabled (-q).

145 The banked segment segment contains segment parts that have
properties that are unsafe when placed with -b (banked segment
placement). Use -P (packed segment placement) instead.
The segment contains at least one segment part with a property that XLINK
might be unable to handle when the segment is placed using the placement
option -b. Use the placement option -P instead.

146 Type conflict for external/entry “entry1”, in module module1
against external/entry entry2 in module module2 — if objects or
functions are declared more than once, they shall have compatible
declarations. (MISRA C rule 26)

147 External “external” is declared in “file1” and in “file2” — external
objects should not be declared in more than one file “ ”. (MISRA C
rule 27)

148 The names “name1” and “name2” differ only in characters beyond
position 31 — identifiers (internal and external) shall not rely on
significance of more than 31 characters. (MISRA C rule 11)

149 The symbol “symbol” in module module (file) is public but is only
needed by code in the same module — all declarations at file scope
should be static where possible. (MISRA C rule 23)
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
150 The stack depth for the call tree with root root is too large, number
bytes.
The call tree uses more than the allowed number of stack bytes. You must
either increase the maximum allowed call depth, or decrease the depth of the
call tree.

151 Internal consistency check failure, “error description”.
An internal consistency check failed. This is an internal error, but you can
force XLINK to generate output using the -B option.

152 The input file 'file’ could not be found.
The input file could not be found. Check the include path.

153 The input file 'file’ has several forced properties which are mutually
exclusive.
The input file has both the conditional and forced load properties. Locate the
mutually exclusive -A and -C options and remove the filename from one of
them.

154 The increment argument to -K for the segment SEGMENTNAME
resulted in an invalid (negative or above 0xFFFFFFFF) address.
The duplication command for SEGMENTNAME results in at least one duplicated
segment that has an address below 0 or above 0xFFFFFFFF. You must either
modify the -K command (the difference or the number of duplications) or
move the segment to another address, to prevent this from happening.

155 The program uses static overlay, this is not allowed in the basemap
format.
Your application contains 1 or more bytes stored in a static overlay frame.
Static overlay is currently not supported in the basemap output format.

156 Negative addresses are not allowed. The range declaration used in
range description is illegal as range start is negative. Check the range
specification for superfluous parentheses, (START–END) is an
expression, not a range, START–END is a range.
The range declaration has a negative start value. This is not allowed.Check the
range specification for superfluous parentheses and check that the value of
START and END are valid and that START<=END.

157 Debug information must be disabled for the 'cpu' processor in the
'format' output format. Use the appropriate -y option to suppress
the generation of debug information.
Output for the device you have selected is still experimental in this format. No
debug information can currently be generated and the generation must
therefore be disabled.
XLINK-650

Part 1. The IAR XLINK Linker 123

124

Error messages
158 The directory name directory is not valid.
The specified name is not a valid directory name on this system.

159 The file name file is not valid.
The specified name is not a valid filename on this system.

160 No valid license found for this product. Information from the license
management system.
No valid license was found for at least one module that needed a license. You
either do not have the required license or XLINK was unable to contact the
license server.

161 The checksum command defined in checksum command specifies an
initial value that does not fit in the size of the checksum.
The initial value specified is too large for the size of the checksum. Use a
smaller initial value or increase the size of the checksum.

162 Alignment specification (|align[|]) is not allowed for segment
names here: use of segment name
Alignment specification on segments are only allowed in a sequential segment
placement command (-Z).

163 The command line symbol "symbol" in command line option is not
defined.
The indicated command line option contains a symbol with an undefined
value. Define the symbol (-Dsymbol=value) or use a symbol that is defined.

164 The option command line option contains neither a number nor a
command line symbol.
The indicated command line option contains characters that are neither part of
a number (0–9 and A–F) nor valid in a symbol name, in a place where a number
or a symbol was expected.

165 A segment definition in segment placement command uses an
alignment argument that is larger than the currently supported
maximum (31).

XLINK currently only supports alignments up to and including 231.
Remember that the alignment argument in the segment placement command is
the number of bits in the address that are forced to zero, not the byte alignment.
2 results in a 4-byte aligned address, 3 in an 8-byte aligned address, and so on.
See Specifying the alignment of a segment, page 87.

166 In the chosen byte order for the processor processor, you must
specify the code fill option (-hc) or the range fill option (-H without
any -h option).
For this particular processor, in this particular byte order, the Code fill option
must be specified (because of the special requirements of bi-endian code).
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
167 Generation of bi-endian output files is not supported for the 'output
format' output format.
This output format does not currently support generation of bi-endian files.
You must choose another format, or use the processor in either big-endian or
little-endian mode.

168 Alignment error, segment part segment part number ("symbol") in
the module 'module' (file) that generated the bi-endian content on
address address does not have the required alignment.
Bi-endian code must be generated in such a way that every word is either code
or non-code. In the segment part specified above, this requirement is not met.
If the object file was generated by the compiler, this is probably a compiler
problem. If the object file was generated by the assembler, the code probably
needs to be aligned and/or padded.

169 Processor specific code fill (-hc) requires all ranges to be closed.
The placement command "segment placement command" contains
an open range.
All ranges must be closed when you use this option. Use either START-END or
START:+SIZE to specify a closed range.

170 The segment “segment” that is used in a checksum command has
not been defined.
The specified segment does not exist. Define it using the option -Z or use a
different segment in the checksum command.

171 The segment “segment” that is used in a checksum command is a
packed segment.
Segment names used in a checksum command must be sequentially placed.
Place the segment using the option -Z or use an explicit address range (like
0x200–0x37F) in the checksum command.

172 Output for the processor processor in this byte order will use
bi-endian code segments. This requires the code segments to be
aligned (both start and size) to alignment bytes. The following
segments do not have the required alignment: list of segments
Bi-endian code that is not properly aligned will not work. Align the listed
segments (see Specifying the alignment of a segment, page 87) or make sure
that the code is aligned in the compiler/assembler.

173 Unable to locate the dll dll
XLINK was unable to find the DLL. Make sure that the DLL is present in the
expected location and that the path to the location is made available through
use of the –I option (or use an absolute path).
XLINK-650

Part 1. The IAR XLINK Linker 125

126

Error messages
174 The dll dll reports a problem. It will not be able to descramble the
file file
The DLL encountered a problem while attempting to descramble the file.
Some possible explanations are:

● Problems with the file, it might be corrupt.
● Problems with the DLL itself, it might be corrupt.
● Problems with the license checking system in the DLL (if any).

175 Banked segment placement (-b, used in the placement command
placement command) is no longer supported. Use packed segment
placement (-P) instead.
Banked segment placement (the option -b) is not supported in this version of
the linker. Instead, you must use an older version (5.0.x or earlier) or use the
option -P.

176 Relay Function Optimization is no longer supported from XLINK
5.1.0. You have to use an older version of XLINK to link this
program. The module 'module' (file) contains at least one
MULTWEAK symbol.
Relay Function Optimization (the option -q) is not supported in this version
of the linker. Instead, you must use an older version of the linker (5.0.x or
earlier) or make sure that no required module uses MULTWEAK symbols.

177 No definition for function provides all needed features: [list of
features] Use the -e option if you want to select the function
manually.
No supplied object file contains a version of the function that provides all of
the required features. You can:

● supply an object file that provides a version of the function that does provide
the features

● make sure that your application requires fewer features
● use the option -e to manually specify the function you want.

178 This error message number is not used.

179 The -h option “fill_option” has an address range that overlaps
previous segment fill options.
You can only specify one filler string per address. Change the fill ranges so that
no address is included in more than one fill range.

180 Bad filler string in “fill_option”. A filler string must contain an even
number of hex digits, and cannot be empty.
Every character in a filler string must be a hexadecimal digit (0–F). Every such
character specifies four bits. Filler bytes in XLINK are byte-oriented, so two
such characters are needed for every filler byte.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
181 The checksum range address_range has a size that is not a multiple
of the specified unit length (unit_length).
The checksum command uses a flag (L or W) to specify units longer than 8 bits
(1 byte). The size of the specified address range is not a multiple of that unit
length, so the checksum cannot be computed. Update the range specification
to match the unit length or remove the L or W flag.

182 The checksummed segments segments have a size (size) that is not
a multiple of the specified checksum unit length (unit_length). Use
the aligned size option of the -Z segment placement option to
extend the size to the desired multiple. For example:
-Z(CODE)segments|2|
The checksum command uses a flag (L or W) to specify units longer than 8 bits
(1 byte). The size of the specified address range is not a multiple of that unit
length, so the checksum cannot be computed. The placement modifier
|align| on segments placed with –Z can be used for aligning the start and the
size of such segments (see -Z, page 85, note in particular how alignment is
specified).

183 Static overlay map generation (-xo) is not supported for the
processor processor
The indicated microprocessor does not use static overlay. The -xo option is
only accurate for static overlay systems, so the generated information is
potentially inaccurate, stack usage information in particular. For more
information about using this option, see Static overlay system map (-xo), page
33.

184 Topic is not a valid log request.
The requested topic is not supported. See --log, page 68 for information about
supported topics.

185 The workseg segment segment_name is not included in the image.
Your application does not contain a work segment area segment with this
name. If you override this error, the start address of the workseg segment will
be 0x0. This will most likely result in incorrect debug information for
variables residing in the work segment area.

186 The option option_name is no longer supported.
The option is no longer supported. Use a different option that achieves the
same or a similar result or use an older version of XLINK.

187 The format_name output format is no longer supported.
The output format is no longer supported. Use a different output format or use
an older version of XLINK.
XLINK-650

Part 1. The IAR XLINK Linker 127

128

Error messages
188 The cpu_name processor is no longer supported.
The microprocessor is no longer supported. Use an older version of XLINK.

189 Unable to place the empty segment segment (align alignment). At
the moment of placement there were no available addresses where
the segment could be placed. Try changing the order the segments
are placed in. description of the placement command
The (empty) segment cannot be placed. An empty segment does not occupy
any space but the address that is assigned to it must still comply with the
requested address range and any alignment requirements must still be
satisfied. In this case, all of the allowed ranges from the placement command
are occupied by other content and the empty segment could not be placed.

Empty segments can often be placed before segments with content because
they do not take up significant amount of space. If you place segments in the
order A, B, C where C is empty and could not be placed, you can try the order
A, C, B or C, A, B instead. Provided that segment C does not have to be the
last segment in the sequence, the reordering should work.

If segment C must be placed last, you can try to:

● extend the allowed placement range
● reduce the space that the earlier segments use
● reduce the alignment requirement of the empty segment (if it has one).

190 The range specification of the fill command "command" does not
specify any addresses to fill
The fill command needs an explicit range to fill. The linker option -h(CODE)
does not instruct the linker to fill all CODE segments. Make sure to specify the
range that you want to fill. For more information, see -h, page 60.

191 More than 2 gigabytes of fill could be needed for the specified range:
range
A range to be filled is larger than 2 gigabytes; generating that amount of filler
bytes would result in a very large output file. If you want to generate that
amount of filler bytes, you can disable this error; see -w, page 82.

If this error was caused by the use of the linker option -h, you must reduce the
size of the range to fill.

If you have specified the linker option -H but not -h, you can either use -h
(because -h overrides -H) or you can reduce the size of the ranges in question,
in the segment placement commands. When you use the linker option -H,
every ROM address that is listed in a segment placement command gets a filler
byte if no content is placed on that address.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
Warning messages
The following section lists the IAR XLINK Linker warning messages:

0 Too many warnings
Too many warnings encountered.

1 Error tag encountered in module module (file)
A UBROF error tag was encountered when loading file file. This indicates a
corrupt file and will generate an error in the linking phase.

2 Symbol symbol is redefined in command-line
A symbol has been redefined.

3 Type conflict. Segment segment, in module module, is incompatible
with earlier segment(s) of the same name
Segments of the same name should have the same type.

4 Close/open conflict. Segment segment, in module module, is
incompatible with earlier segment of the same name
Segments of the same name should be either open or closed.

5 Segment segment cannot be combined with previous segment
The segments will not be combined.

6 Type conflict for external/entry entry, in module module, against
external/entry in module module
Entries and their corresponding externals should have the same type.

7 Module module declared twice, once as program and once as
library. Redeclared in file file, ignoring library module
The program module is linked.

8 This warning message number is not used.

9 Ignoring redeclared program entry in module module (file), using
entry from module module1
Only the program entry found first is chosen.

10 No modules to link
XLINK has no modules to link.

11 Module module declared twice as library. Redeclared in file file,
ignoring second module
The module found first is linked.

12 Using SFB in banked segment segment in module module (file)
The SFB assembler directive may not work in a banked segment.
XLINK-650

Part 1. The IAR XLINK Linker 129

130

Warning messages
13 Using SFE in banked segment segment in module module (file)
The SFE assembler directive may not work in a banked segment.

14 Entry entry duplicated. Module module (file) loaded, module module
(file) discarded
Duplicated entries exist in conditionally loaded modules; i.e. library modules
or conditionally loaded program modules (with the -C option).

15 Predefined type sizing mismatch between modules module (file)
and module (file)
The modules have been compiled with different options for predefined types,
such as different sizes of basic C types (e.g. integer, double).

16 Function name in module module (file) is called from two function
trees (with roots name1 and name2)
The probable cause is module interrupt function calls another function that
also could be executed by a foreground program, and this could lead to
execution errors.

17 Segment name is too large or placed at wrong address
This error occurs if a given segment overruns the available address space in the
named memory area. To find out the extent of the overrun do a dummy link,
moving the start address of the named segment to the lowest address, and look
at the linker map file. Then relink with the correct address specification.

18 Segment segment overlaps segment segment
XLINK has found two relocatable segments overlapping each other. Check the
segment placement option parameters.

19 Absolute segments overlaps in module module (file)
XLINK has found two or more absolute segments in module module
overlapping each other.

20 The absolute segment on the address addressrange in the module
module (file) overlaps the segment segmentname (from module
module2, address [addressrange2])
An absolute segment overlaps a relocatable segment. You must move either the
absolute segment or the relocatable segment. You move an absolute segment
by modifying the source code. You move relocatable segments by modifying
the segment placement command.

21 The absolute segment on the address addressrange in the module
module (file) overlaps the absolute segment on the address
addressrange2 in the module module2 (file2)
Two absolute segments overlap. You must move at least one of them. You
move absolute segments by modifying the source code.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
22 Interrupt function name in module module (file) is called from other
functions
Interrupt functions may not be called.

23 limitation-specific warning
Due to some limitation in the used output format, or in the debug information
available, XLINK cannot produce correct debug output for this application.
This only affects the debug information; the generated code remains the same
as in an output format where the debug information can be expressed. Only
one warning for each specific limitation is given.

24 num counts of warning total
For each warning of type 23 emitted, a summary is provided at the end.

25 Using -Y# discards and distorts debug information. Use with care.
If possible find an updated debugger that can read modern UBROF
Using the UBROF format modifier -Y# is not recommended.

26 No reset vector found
Failed in determining the LOCATION setting for XCOFF output format for the
78400 processor, because no reset vector was found.

27 No code at the start address
Failed in determining the LOCATION setting for XCOFF output format for the
78400 processor, because no code was found at the address specified in the
reset vector.

28 Parts of segment name are initialized, parts not
Segments should not be partially initialized and partially uninitialized, if the
result of the linking is meant to be promable.

29 Parts of segment name are initialized, even though it is of type type
(and thus not promable)
DATA memory should not be initialized if the result of the linking is meant to
be promable.

30 Module name is compiled with tools for cpu1 expected cpu2
You are building an executable for CPU cpu2, but module name is compiled
for CPU cpu1.

31 Modules have been compiled with possibly incompatible settings:
more information
According to the contents of the modules, they are not compatible.

32 Format option set more than once. Using format format
The format option can only be given once. XLINK uses the format format.
XLINK-650

Part 1. The IAR XLINK Linker 131

132

Warning messages
33 Using -r overrides format option. Using UBROF
The -r option specifies UBROF format and C-SPY® library modules. It
overrides any -F (format) option.

34 The 20 bit segmented variant of the INTEL EXTENDED format
cannot represent the addresses specified. Consider using -Y1 (32 bit
linear addressing).
The program uses addresses higher than 0xFFFFF, and the segmented variant
of the chosen format cannot handle this. The linear-addressing variant can
handle full 32-bit addresses.

35 There is more than one definition for the struct/union type with tag
tag
Two or more different structure/union types with the same tag exist in the
program. If this is not intentional, it is likely that the declarations differ
slightly. It is very likely that there will also be one or more warnings about type
conflicts (warning 6). If this is intentional, consider turning this warning off.

36 There are indirectly called functions doing indirect calls. This can
make the static overlay system unreliable
XLINK does not know what functions can call what functions in this case,
which means that it cannot make sure static overlays are safe.

37 More than one interrupt function makes indirect calls. This can
make the static overlay system unreliable. Using -ai will avoid this
If a function is called from an interrupt while it is already running, its params
and locals will be overwritten.

38 There are indirect calls both from interrupts and from the main
program. This can make the static overlay system unreliable. Using
-ai will avoid this
If a function is called from an interrupt while it is already running, its params
and locals will be overwritten.

39 The function function in module module (file) does not appear to be
called. No static overlay area will be allocated for its params and
locals
As far as XLINK can tell, there are no callers for the function, so no space is
needed for its params and locals. To make XLINK allocate space anyway, use
-a(function).

40 The module module contains obsolete type information that will
not be checked by the linker
This kind of type information is no longer used.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
41 The function function in module module (file) makes indirect calls
but is not mentioned in the left part of any -a# declaration
If any -a# indirect call options are given they must, taken together, specify the
complete picture.

42 This warning message number is not used.

43 The function function in module module (file) is indirectly called but
is not mentioned in the right part of any -a# declaration
If any -a# indirect call options are given they must, taken together, specify the
complete picture.

44 C library routine localtime failed. Timestamps will be wrong
XLINK is unable to determine the correct time. This primarily affects the dates
in the list file. This problem has been observed on one host platform if the date
is after the year 2038.

45 Memory attribute info mismatch between modules module1 (file1)
and module2 (file2)
The UBROF 7 memory attribute information in the given modules is not the
same.

46 External function function in module module (file) has no global
definition
This warning replaces error 68.

47 Range error in module module (file), segment segment at address
address. Value value, in tag tag, is out of bounds bounds
This replaces error 18 when -Rw is specified.

48 Corrupt input file: symptom in module module (file)
The input file indicated appears to be corrupt. This warning is used in
preference to error 113 when the problem is not serious, and is unlikely to
cause trouble.

49 Using SFB/SFE in module module (file) for segment segment, which
has no included segment parts
SFB/SFE (assembler directives for getting the start or end of a segment) has
been used on a segment for which no segment parts were included.

50 There was a problem when trying to embed the source file source
in the object file
This warning is given if the file source could not be found or if there was an
error reading from it. XLINK searches for source files in the same places as it
searches for object files, so including the directory where the source file is
located in the XLINK Include (-I) option could solve the problem.
XLINK-650

Part 1. The IAR XLINK Linker 133

134

Warning messages
51 Some source reference debug info was lost when translating to
UBROF 5 (example: statements in function in module module)
UBROF 6 file references can handle source code in more than one source file
for a module. This is not possible in UBROF 5 embedded source, so any
references to files not included have been removed.

52 More than one definition for the byte at address address in common
segment segment
The most probable cause is that more than one module defines the same
interrupt vector.

53 Some untranslated addresses overlap translation ranges. Example:
Address addr1 (untranslated) conflicts with logical address addr2
(translated to addr1)
 This can be caused by something like this:

 -Z(CODE)SEG1=1000-1FFF
 -Z(CODE)SEG2=2000-2FFF
 -M(CODE)1000=2000

This will place SEG1 at logical address 1000 and SEG2 at logical address
2000. However, the translation of logical address 1000 to physical address
2000 and the absence of any translation for logical address 1000 will mean
that in the output file, both SEG1 and SEG2 will appear at physical address
1000.

54 This warning message has not been implemented yet.

55 No source level debug information will be generated for modules
using the UBROF object format version 8 or earlier. One such
module is module (file)
When generating UBROF 9 output, essential debug information is not present
in input files using UBROF 8 or earlier. For these files all debug information
will be suppressed in the output file.

56 A long filename may cause MPLAB to fail to display the source file:
’pathname’
When outputting COFF output for the PIC and PIC18 processors on a Windows
host, the output file contains a reference to a source file that needs long
filenames in order to work. MPLAB cannot handle long filenames.

57 The file filename is empty and will be ignored.
The file is completely empty (0 bytes). It is not a valid UBROF file, but some
IAR Systems assemblers generate completely empty files instead of a valid
UBROF file with no content.

This file will be ignored. If the file was not generated by an IAR Systems
assembler, you should find out why it is empty.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
58 The name name was too long (more than number characters) and
has been truncated to fit the chosen output format. This warning is
only issued once.
Normally, this will not affect debugging to any great extent, but if two or more
long names are truncated to the same 255-character string, the code can
become harder to debug.

The most common case where long names occur is when C++ names are
flattened into simple strings, which occurs when translating into UBROF
version 7 or earlier, or into other debug formats with limited symbol name
length.

59 Too many COFF format line number records (number) needed. All
in excess of 65535 will not be accessible.
There are too many line number records in one COFF section. This can make
the application much harder to debug if the original number of records greatly
exceeds 65535.

One way to avoid this is to put code in more than one segment, because one
COFF section is output for each segment.

This problem is most likely to occur in the MPLAB debugger for the PIC
processor family, because it needs one line number record for each instruction
in the code.

60 The entry point label “label” was not found in any input file. The
image will not have an entry point.
The chosen entry point label could not be found in any input file. Choose an
entry point that exists in the program or make sure that the file that contains
the entry point is included in the input files.

61 The ‘format’ output format is not supported for this cpu.
Support for the chosen output format is experimental for this cpu.

62 The struct “struct” is too large for the ‘format’ format, debug
information will only be available for the first maximum size bytes.
The program contains a class, struct, or union that is too large to represent in
the chosen debug format. Debug information will be generated for as many
bytes as the format can represent.

63 No debug information will be generated for the function “function
in the module “module” as no debug information could be found.
This likely because of a rename entry operation in the IAR XLIB Librarian.
XLINK-650

Part 1. The IAR XLINK Linker 135

136

Warning messages
64 The address space used in the command segment placement
command is incompatible with the address space of the ranges
ranges that were inherited from previous placements. Address
ranges can only be inherited from compatible address spaces.
Addresses should not be inherited from previous placement commands, if
those previous commands placed segments in an incompatible address space.
This technique was used in some older IAR tools to make sure that segments
placed in overlapping address spaces did not overlap each other. Use the -U
option instead to prevent this.

65 There are both MULTWEAK and PUBWEAK definitions for the
symbol named name. This does not work in the general case.
PUBWEAK definitions occur in the module(s) modules.
MULTWEAK definitions occur in the module(s) modules.
MULTWEAK definitions were introduced to be used by ARM/Thumb Relay
Function Optimization in the ARM® IAR C/C++ Compiler v3.41. PUBWEAK
definitions were used for the same purpose in earlier versions of the ARM IAR
C/C++ Compiler. In order to avoid this problem, ensure that all modules are
built for use with the same Relay Function model.

66 There is a gap between the addresses address1 and address2. This
gap of gap_size bytes will be padded with zeroes. Raw-binary might
not be the format you want for this particular image.
There is a huge “hole” in the image. This might result in an unnecessarily large
file. A format that uses address records (like Intel-extended, Motorola or
simple-code) might be a better choice for this particular image.

67 Using “-r” causes XLINK to select modules that are adapted for use
with the C-SPY Debugger. This affects all output files, including
those generated by -O.
The linker command line option -r has two effects. It causes XLINK to select
modules from the IAR standard library designed to work with the IAR
C-SPY® Debugger and it makes XLINK use the IAR UBROF object format
for its main output file. The first of these effects also changes the contents of
any extra output files produced by the use of the -O command line option.

If you need extra output files not meant for use with the IAR C-SPY Debugger,
you need to run XLINK separately, without the -r command line option.

68 The option to ignore overlaps in SFR areas has been specified but
the ‘processor’ processor does not have an SFR area. The option has
no effect for this processor.
The processor you are using does not have a dedicated SFR area (an address
range in an address space that can only contain SFRs). You cannot use the -zs
option to suppress segment overlap errors when using this processor.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
69 Address translation (-M, -b# or -b@) has no effect on the output
format 'format'. The output file will be generated but no address
translation will be performed.
Address translation is not supported for the indicated output format. Output
files in that output format will be generated without address translation.
However, if there are also output files in a format for which address translation
is supported, those files will use translated addresses.

70 The segment “segment” on address address overlaps previous
content in the raw-binary output file. The previous content will be
overwritten.
Your application contains at least one overlap between segments with content.
Locate and correct those overlaps.

71 This warning message number is not used.

72 The format output format does not support line numbers above
number. All line numbers above this limit will be set to number.
Source information for such functions will not be available. This will
affect the following functions: list of function names, their segment
part numbers, the module and file where they were defined
The chosen output format cannot represent line numbers as high as the ones in
the specified files. To debug the specified functions on C level, you must take
one of these actions:

● Use a different output format
● Edit the source code file(s) so that no function that you wish to debug

resides on a higher line number than the limit (move the function or split
the file into two or more smaller files)

Even if you take neither action, assembly level debugging and variable
information is still available.

73 Total number of warnings for unsupported line numbers: number of
warnings
This warning is connected to warning 72. It is, for example, useful if you
suppress warning 72 (because you do not want to list all functions on line
numbers that are too high every time you link), but you still want to know if
the number of warnings change.
XLINK-650

Part 1. The IAR XLINK Linker 137

138

Warning messages
74 The checksum polynomial polynomial is unsuitable for use with the
bytewise initial value #initial value as the polynomial can not always
generate a bitwise equivalent for the bytewise initial value. Use a
bitwise initial value or use a polynomial with the least significant bit
set.
The specified polynomial does not have its least significant bit set. When the
least significant bit is not set, it is not always possible to convert a bytewise
initial value to a bitwise initial value. This has no real effect on the checksum
that XLINK generates, but it can matter if the verification step uses bitwise
initial values. Because some bytewise initial values lack a corresponding
bitwise initial value for this polynomial, it might be impossible to get the
checksums to match.

75 The program does not contain any content. If this is not the intent
use the content control linker options (-g and -s) or make content
__root to ensure that it is included.
The link process resulted in a completely empty application. The linker
removes all content that there are no references to, and in this case there were
no references to your application.

References can be specified on the command line by using the -g option (for
any symbol) or -s (for the start symbol of the application).

You can also specify that a certain function or variable should always be
present in the application by making it __root (in C/C++, IAR extensions
must be enabled).

An application usually contains something that is always included, for
example an interrupt table made root or referenced using -g or -s, which in
turns refers to the startup code, which in turn refers to main, which in turn
refers to the rest of the application.

76 The checksum command checksum_command contains more than
one specification of checksum unit size. You should use a single W
or L flag.
The specified checksum command cannot have both a W and an L flag.

77 [stack usage analysis] The module module (file) has references to
some functions that are not listed as being called in the stack usage
control file: filename
There are functions that are not listed in the stack usage control file as being
called. Update the file with the relevant information or rewrite the referring
code in the module(s) in question to remove calls to code for which there is no
information.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
78 [stack usage analysis] The function function is defined in both the
application and the .suc file. Use the override keyword, remove the
function directive from the .suc-file or remove the function from
the application.
Use the keyword override or remove the function directive.

79 [stack usage analysis] The segment part number in module module
contains incorrect stack usage information. The caller name is
invalid.
The stack usage information for the function in the specified segment part is
corrupt (the name is not available so no information from the function will be
used). If the module was assembler-generated, there might be a problem with
the name of the function. If the module was compiler-generated, this is an error
and should be reported as a problem.

80 Modules have different stack names for index index. The module
“module 1” uses “stack name 1”, and the module “module 2” uses
“stack name 2”.
The names and indexes of all involved stacks must match across all linked
modules. Right now, no stack usage information is reliable because the stack
usage information might be using an incorrect stack index. This is most likely
a compiler error and should be reported as a problem.

81 This warning message number is reserved for future use.

82 This warning message number is reserved for future use.

83 Segment part number label information in the module module
description contains stack usage information despite being empty.
Empty segment parts cannot affect the stack depth so the
information will be ignored.
The stack usage of the specified segment part will be ignored. If the file was
compiler-generated, this is incorrect output (equivalent to incorrect stack
usage information). If the file was assembler-generated, you should rewrite the
code (typically the empty segment part should be merged with the
immediately succeeding segment part).
XLINK-650

Part 1. The IAR XLINK Linker 139

140

Stack usage analysis diagnostic messages
Stack usage analysis diagnostic messages
The following table lists the IAR XLINK Linker stack usage analysis diagnostic
messages:

Ls001 Could not open file "filename"
The file could not be opened. Make sure that the file exists in the specified
location, that the tool has the correct include paths set up, and that the directory
is not read- or write-protected.

Ls002 Expected tokens
At least one of the listed tokens was expected at the specified location. Use one
of the listed tokens.

Ls003 There is already 'possible calls' information for function
The listed function already has a possible calls declaration. Remove all
possible calls declarations except one.

Ls004 Value out of range or illegal: value,
The listed stack usage value is not legal. Use a legal value.

Ls005 There is already 'function' information for function
The function in question already has a function directive. Remove one of the
declarations.

Ls006 The name name matches more than one symbol
The listed name matches more than one symbol. Use a more specific pattern.
Example: symb* matches both symb12 and symb34. Using the more specific
symb1* matches only one of them.

Ls007 The function function is already a call graph root in a different
category “category"
A function cannot be a call graph root in more than one category. Remove all
call graph root declarations except one.

Ls008 No function matching "function" found
No function matching the specified name was found. Make sure that your
application actually contains a function with that name. If you tried to match
a local function, you must specify the module as well (see the stack usage
analysis documentation in the IAR Compiler User Guide.).

Ls009 A max recursion depth has already been set for this function
(function)
The specified function already has a maximum recursion depth. Remove all
maximum recursion depth specifications except one.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
Ls0010 The function function matches both this directive and the one
recursion depth specification, but the max depths are different
If a function matches more than one recursion depth specification, the
maximum depth must be the same in all of them. Use a more specific pattern
or change the recursion depth in at least one of the involved specifications.

Ls011 This message is for internal use

Ls012 Zero depth not allowed
The maximum recursion depth of a recursion nest cannot be 0.

Ls013 Max recursion depth conflict. "function" has a max depth of value,
but "function", which is in the same recursion nest, has a max depth
of value
If two or more functions reside in the same recursion nest, they must use the
same maximum recursion depth. Update the recursion depth specifications so
that the depth specifications match.

Ls014 [stack usage analysis] At least one function does not have stack
usage information. Example: function. A complete list of such
functions is in the map file.
The listed function (the complete list of functions can be found in the map file)
does not have stack usage information. Only annotated assembler files and
C/C++ files compiled with a sufficiently modern compiler supply stack usage
information.

When a function lacks information, the information can be supplied using the
function directive in the stack usage control file.

Ls015 [stack usage analysis] At least one function appears to be uncalled.
Example: function A complete list of uncalled functions is in the
map file.
The listed function (the complete list of functions can be found in the map file)
is included in your application but it does not appear to be called. Typically, a
function that is referenced by the application should be called by someone;
otherwise it would not have been included.

This might be intentional (as with ROOT segment parts, interrupt functions, or
indirectly called functions), but if it is not, it might be a missing reference
(possibly from assembler code from a manual entry/override in the stack usage
control file).

Various options in the stack usage control file can be used to disable this
diagnostic message. The function can be included in the calls part of the
function directive and the possible calls directive. You can also use the
no calls from directive.
XLINK-650

Part 1. The IAR XLINK Linker 141

142

Stack usage analysis diagnostic messages
Ls016 [stack usage analysis] The program contains at least one indirect
call. Example: from function. A complete list of such functions is in
the map file.
The listed function (the complete list of functions can be found in the map file)
performs unknown indirect calls. The destination of indirect calls can be
specified by using pragma directives (see the pragma directives documentation
in the IAR Compiler User Guide) or in the stack usage control file (see the
stack usage analysis documentation in the IAR Compiler User Guide).

Ls017 [stack usage analysis] The program contains at least one instance
of recursion for which stack usage analysis has not been able to
calculate a maximum stack depth. One function involved is function
A complete list of all recursion nests is in the map file.
The listed function (the complete list of functions can be found in the map file)
performs recursive calls. The stack depth analysis cannot determine the
maximum number of cycles in a recursive nest, but you can specify a
maximum number in the stack usage control file (see the stack usage analysis
documentation in the IAR Compiler User Guide).

Ls018 [stack usage analysis] The function function is a call graph root, but
there are calls to it
A call graph root cannot be called; if it is called it is not a root. Remove the
call graph root specification or remove the call.

Ls019 Unable to get size of block
The size of the specified block (this will typically be the size of a stack
segment) could not be computed. Check that the name of the block is correct
and that a segment with that name actually exists in your application.

Ls020 No stack usage could be calculated for at least one function in
category "category"
The stack usage could not be calculated. The most likely explanations are
missing stack usage information, unknown indirect calls, or an unknown
maximum recursion depth. These can all be taking care of by using pragma
directives or in the stack usage control file.

Ls021 No call graph root function in category "category"
The specified category does not have a call graph root. Specify a call graph
root in the stack usage control file (see the stack usage analysis documentation
in the IAR Compiler User Guide).

Ls022 Check failed check failed text
The specified check that directive failed. This typically means that
whatever the checks are supposed to detect just occurred (like the computed
stack size of your application exceeding the size of the allocated stack
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLINK diagnostics
including the safety margin). Modify the test expression to allow the detected
occurrence, or modify the application to pass the test.

Ls023 This message is for internal use

Ls024 Evaluation error: expression
There was an error evaluating the expression. Check the expression carefully
and make sure that, for example, sizes are not negative, there are no divisions
by zero, etc.
XLINK-650

Part 1. The IAR XLINK Linker 143

144

Stack usage analysis diagnostic messages
XLINK-650

IAR Linker and Library Tools
Reference Guide

Part 2: The IAR Library
Tools
This part of the IAR Linker and Library Tools Reference Guide contains the
following chapters:

● Introduction to the IAR Systems library tools

● The IAR XAR Library Builder

● XAR diagnostics

● IAR XLIB Librarian options

● XLIB diagnostics.
XLINK-650

145

146
XLINK-650

Introduction to the IAR
Systems library tools
This chapter describes XAR Library Builder and IAR XLIB Librarian—the IAR
Systems library tools that enable you to manipulate the relocatable object files
produced by the IAR Systems assembler and compiler.

Both tools use the UBROF standard object format (Universal Binary
Relocatable Object Format).

Libraries
A library is a single file that contains a number of relocatable object modules, each of
which can be loaded independently from other modules in the file as it is needed.

Often, modules in a library file have the LIBRARY attribute, which means that they will
only be loaded by the linker if they are actually needed in the program. This is referred
to as demand loading of modules.

On the other hand, a module with the PROGRAM attribute is always loaded when the file
in which it is contained is processed by the linker.

A library file is no different from any other relocatable object file produced by the
assembler or compiler, it can include modules of both the LIBRARY and the PROGRAM
type.

IAR XAR Library Builder and IAR XLIB Librarian
There are two library tools included with your IAR Systems product. The first of them,
IAR XAR Library Builder can only do one thing: combine a set of UBROF object files
into a library file. IAR XLIB Librarian, on the other hand, can do a number of things in
addition to building libraries: modify the size and contents of existing libraries, list
information about individual library modules, and more.

Note: XAR does not distinguish between UBROF versions for different processors. It
is up to you to make sure that you are not building a library consisting of files from
different CPUs.
XLINK-650

Part 2: The IAR Library Tools 147

148

Using libraries with C/C++ programs
Also note that XAR allows you to specify the same object file twice or even more times.
Make sure to avoid this, as the result would be a library file with multiply defined
contents.

CHOOSING WHICH TOOL TO USE

Whether you should use XAR or XLIB depends on what you want to achieve, and on
the complexity of your project. If all you need to do is to combine a number of source
object files into a library file, XAR is enough for your purposes, and simpler to use than
XLIB. However, if you need to modify a library or the modules it consists of, you must
use XLIB.

Using libraries with C/C++ programs
All C/C++ programs make use of libraries, and the IAR Systems compilers are supplied
with a number of standard library files.

Most C or C++ programmers will use one or both of the IAR Systems library tools at
some point, for one of the following reasons:

● To replace or modify a module in one of the standard libraries. For example, XLIB
can be used for replacing the distribution versions of the CSTARTUP and/or
putchar modules with ones that you have customized.

● To add C, C++, or assembler modules to the standard library file so they will always
be available whenever a C/C++ program is linked. You use XLIB for this.

● To create custom library files that can be linked into their programs, as needed,
along with the IAR DLIB library. You can use both XAR and XLIB for this.

Using libraries with assembler programs
If you are only using assembler you do not need to use libraries. However, libraries
provide the following advantages, especially when writing medium- and large-sized
assembler applications:

● They allow you to combine utility modules used in more than one project into a
simple library file. This simplifies the linking process by eliminating the need to
include a list of input files for all the modules you need. Only the library module(s)
needed for the program will be included in the output file.

● They simplify program maintenance by allowing multiple modules to be placed in a
single assembler source file. Each of the modules can be loaded independently as a
library module.

● They reduce the number of object files that make up an application, maintenance,
and documentation.
XLINK-650

IAR Linker and Library Tools
Reference Guide

Introduction to the IAR Systems library tools
You can create your assembler language library files using one of two basic methods:

● A library file can be created by assembling a single assembler source file which
contains multiple library-type modules. The resulting library file can then be
modified using XLIB.

● A library file can be produced by using XAR or XLIB to merge any number of
existing modules together to form a user-created library.

The NAME and MODULE assembler directives are used for declaring modules as being of
PROGRAM or LIBRARY type, respectively.

For additional information, see the IAR Assembler Reference Guide.
XLINK-650

Part 2: The IAR Library Tools 149

150

Using libraries with assembler programs
XLINK-650

IAR Linker and Library Tools
Reference Guide

The IAR XAR Library
Builder
This chapter describes how to use the IAR XAR Library Builder.

Using XAR
XAR is run from the command line, using the command xar.

BASIC SYNTAX

If you run the IAR XAR Library Builder without giving any command line options, the
default syntax is:

xar libraryfile objectfile1 ... objectfileN

Parameters

The parameters are:

Example

The following example creates a library file called mylibrary.r19 from the source
object files module1.r19, module2.r19, and module3.r19:

xar mylibrary.r19 module1.r19 module2.r19 module3.r19

Summary of XAR options
The following table shows a summary of the XAR options:

Parameter Description

libraryfile The file to which the module(s) in the object file(s) will be sent.

objectfile1 ...

objectfileN

The object file(s) containing the module(s) to build the library from.

Table 23: XAR parameters

Option Description

-o Specifies the library file.

-V Provides user feedback.

Table 24: XAR options summary
XLINK-650

Part 2: The IAR Library Tools 151

152

Descriptions of XAR options
Descriptions of XAR options
The following sections give detailed reference information for each XAR option.

-o -o libraryfile

By default, XAR assumes the first argument after the xar command to be the name of
the destination library file. Use the -o option if you want to specify the library file you
are creating elsewhere on the command line instead.

Example

The following example creates a library file called mylibrary.r19 from the source
modules module1.r19, module2.r19, and module3.r19:

xar module1.r19 module2.r19 module3.r19 -o mylibrary.r19

-V -V

When this command is used, XAR reports which operations it performs, in addition to
giving diagnostic messages. This is the default setting when running XAR from the IAR
Embedded Workbench® IDE.
XLINK-650

IAR Linker and Library Tools
Reference Guide

XAR diagnostics
This chapter lists the messages produced by the IAR XAR Library Builder.

XAR messages
The following section lists the XAR messages.

0 Not enough memory
XAR was unable to acquire the memory that it needed.

1 -o option requires an argument
XAR expects an argument after -o.

2 Unknown option option
XAR encountered an unknown option on the command line.

3 Too few arguments
XAR expects to find more arguments

4 Same file as both input and output: filename
One of the files is used as both source object file and destination library. This
is illegal since it would overwrite the source object file. If you want to give the
new library a name that is used by one of the source object files, you must use
a temporary filename for the library you are building with XAR and rename
that temporary file afterwards.

5 Can't open library file filename for writing
XAR was unable to open the library file for writing. Make sure that the library
file is not write protected.

6 Can't open object file filename
XAR was unable to open the object file. Make sure that the file exists.

7 Error occurred while writing to library file
An error occurred while XAR was writing to the file.

8 filename is not a valid UBROF file
The file is not a valid UBROF file.

9 Error occurred while reading from filename
An error occurred while XAR was reading the file.

10 Error occurred while closing filename
An error occurred while XAR was closing the file.
XLINK-650

Part 2: The IAR Library Tools 153

154

XAR messages
11 XAR didn't find any bytes to read in filename
The object file seems to be empty.

12 filename didn't end as a valid UBROF file should
The file did not end as a UBROF file is supposed to end. Either the file is
corrupt or the assembler/compiler produces corrupt output.

13 XAR can't fseek in library file
The call to fseek failed.

14 -x option requires an argument
You must specify an argument for the -x option.

15 A file name in the file filename exceeds the maximum filename
length of number characters.
A filename in the extended command line file is too long. The only recognized
delimiter in the input file is the newline character, everything else is
interpreted as a part of the filename.
XLINK-650

IAR Linker and Library Tools
Reference Guide

IAR XLIB Librarian
options
This chapter summarizes the IAR XLIB Librarian options, classified according
to their function, and gives a detailed syntactic and functional description of
each XLIB option.

Using XLIB options
XLIB can be run from the command line or from a batch file.

GIVING XLIB OPTIONS FROM THE COMMAND LINE

The -c command line option allows you to run XLIB options from the command line.
Each argument specified after the -c option is treated as one XLIB option.

For example, specifying:

xlib -c "LIST-MOD math.rnn" "LIST-MOD mod.rnn m.txt"

is equivalent to entering the following options in XLIB:

*LIST-MOD math.rnn
*LIST-MOD mod.rnn m.txt
*QUIT

Note: Each command line argument must be enclosed in double quotes if it includes
spaces.

The individual words of an identifier can be abbreviated to the limit of ambiguity. For
example, LIST-MODULES can be abbreviated to L-M.

When running XLIB you can press Enter at any time to prompt for information, or
display a list of the possible options.

XLIB BATCH FILES

Running XLIB with a single command-line parameter specifying a file, causes XLIB to
read options from that file instead of from the console.
XLINK-650

Part 2: The IAR Library Tools 155

156

Using XLIB options
PARAMETERS

The following parameters are common to many of the XLIB options.

MODULE EXPRESSIONS

In most of the XLIB options you can or must specify a source module (like oldname in
RENAME-MODULE), or a range of modules (startmodule, endmodule).

Internally in all XLIB operations, modules are numbered from 1 in ascending order.
Modules may be referred to by the actual name of the module, by the name plus or minus
a relative expression, or by an absolute number. The latter is very useful when a module
name is very long, unknown, or contains unusual characters such as space or comma.

The following table shows the available variations on module expressions:

The option LIST-MOD FILE,,$-2 will thus list the three last modules in FILE on the
terminal.

Parameter What it means

objectfile File containing object modules.

start, end The first and last modules to be processed, in one of the following
forms:

listfile File to which a listing will be sent.

source A file from which modules will be read.

destination The file to which modules will be sent.

Table 25: XLIB parameters

Name Description

3 The third module.

$ The last module.

name+4 The module 4 modules after name.

name-12 The module 12 modules before name.

$-2 The module 2 modules before the last module.

Table 26: XLIB module expressions

n The nth module.

$ The last module.

name Module name.

name+n The module n modules after name.

$-n The module n modules before the last.
XLINK-650

IAR Linker and Library Tools
Reference Guide

IAR XLIB Librarian options
LIST FORMAT

The LIST options give a list of symbols, where each symbol has one of the following
prefixes:

USING ENVIRONMENT VARIABLES

The IAR XLIB Librarian supports a number of environment variables. These can be
used for creating defaults for various XLIB options so that they do not have to be
specified on the command line.

The following environment variables can be used by XLIB:

Prefix Description

nn.Pgm A program module with relative number nn.

nn.Lib A library module with relative number nn.

Ext An external in the current module.

Ent An entry in the current module.

Loc A local in the current module.

Rel A standard segment in the current module.

Stk A stack segment in the current module.

Com A common segment in the current module.

Table 27: XLIB list option symbols

Environment variable Description

XLIB_COLUMNS Sets the number of list file columns in the range 80–132. The
default is 80. For example, to set the number of columns to 132:

set XLIB_COLUMNS=132

XLIB_CPU Sets the CPU type so that the DEFINE-CPU option will not be
required when you start an XLIB session. For example, to set
the CPU type to chipname:

set XLIB_CPU=chipname

Table 28: XLIB environment variables
XLINK-650

Part 2: The IAR Library Tools 157

158

Summary of XLIB options for all UBROF versions
Summary of XLIB options for all UBROF versions
The following table shows a summary of the XLIB options:

XLIB_PAGE Sets the number of lines per list file page in the range 10–100.
The default is a listing without page breaks. For example, to set
the number of lines per page to 66:

set XLIB_PAGE=66

XLIB_SCROLL_BREAK Sets the scroll pause in number of lines to make the XLIB output
pause and wait for the Enter key to be pressed after the
specified number of lines (16–100) on the screen have scrolled
by. For example, to pause every 22 lines:

set XLIB_SCROLL_BREAK=22

Environment variable Description

Table 28: XLIB environment variables (Continued)

Option Description

COMPACT-FILE Shrinks library file size.

DEFINE-CPU Specifies CPU type.

DELETE-MODULES Removes modules from a library.

DIRECTORY Displays available object files.

DISPLAY-OPTIONS Displays XLIB options.

ECHO-INPUT Command file diagnostic tool.

EXIT Returns to operating system.

FETCH-MODULES Adds modules to a library.

HELP Displays help information.

INSERT-MODULES Moves modules in a library.

LIST-ALL-SYMBOLS Lists every symbol in modules.

LIST-CRC Lists CRC values of modules.

LIST-DATE-STAMPS Lists dates of modules.

LIST-ENTRIES Lists PUBLIC symbols in modules.

LIST-EXTERNALS Lists EXTERN symbols in modules.

LIST-MODULES Lists modules.

Table 29: XLIB options summary
XLINK-650

IAR Linker and Library Tools
Reference Guide

IAR XLIB Librarian options
Note: There are some XLIB options that do not work with the output from modern IAR
Systems C/C++ compilers or assemblers. See Summary of XLIB options for older
UBROF versions, page 168.

Descriptions of XLIB options for all UBROF versions
The following section gives detailed reference information for each option.

COMPACT-FILE COMPACT-FILE objectfile

Use COMPACT-FILE to reduce the size of the library file by concatenating short,
absolute records into longer records of variable length. This will decrease the size of a
library file by about 5%, in order to give library files which take up less time during the
loader/linker process.

Example

The following option compacts the file maxmin.rnn:

COMPACT-FILE maxmin

This displays:

20 byte(s) deleted

LIST-OBJECT-CODE Lists low-level relocatable code.

LIST-SEGMENTS Lists segments in modules.

MAKE-LIBRARY Changes a module to library type.

MAKE-PROGRAM Changes a module to program type.

ON-ERROR-EXIT Quits on a batch error.

QUIT Returns to operating system.

REMARK Comment in command file.

RENAME-MODULE Renames one or more modules.

RENAME-SEGMENT Renames one or more segments.

REPLACE-MODULES Updates executable code.

Option Description

Table 29: XLIB options summary (Continued)
XLINK-650

Part 2: The IAR Library Tools 159

160

Descriptions of XLIB options for all UBROF versions
DEFINE-CPU DEFINE-CPU cpu

Use this option to specify the CPU type cpu. This option must be issued before any
operations on object files can be done.

Examples

The following option defines the CPU as chipname:

DEF-CPU chipname

DELETE-MODULES DELETE-MODULES objectfile start end

Use DELETE-MODULES to remove the specified modules from a library.

Examples

The following option deletes module 2 from the file math.rnn:

DEL-MOD math 2 2

DIRECTORY DIRECTORY [specifier]

Use DIRECTORY to display on the terminal all available object files of the type that
applies to the target processor. If no specifier is given, the current directory is listed.

Examples

The following option lists object files in the current directory:

DIR

It displays:

general 770
math 502
maxmin 375

DISPLAY-OPTIONS DISPLAY-OPTIONS [listfile]

Displays XLIB options.

Use DISPLAY-OPTIONS to list in the listfile the names of all the CPUs which are
recognized by this version of the IAR XLIB Librarian. After that a list of all UBROF
tags is output.
XLINK-650

IAR Linker and Library Tools
Reference Guide

IAR XLIB Librarian options
Examples

To list the options to the file opts.lst:

DISPLAY-OPTIONS opts

ECHO-INPUT ECHO-INPUT

ECHO-INPUT is a command file diagnostic tool which you may find useful when
debugging command files in batch mode as it makes all command input visible on the
terminal. In the interactive mode it has no effect.

Examples

In a batch file

ECHO-INPUT

echoes all subsequent XLIB options.

EXIT EXIT

Use EXIT to exit from XLIB after an interactive session and return to the operating
system.

Examples

To exit from XLIB:

EXIT

EXTENSION EXTENSION extension

Use EXTENSION to set the default file extension.

FETCH-MODULES FETCH-MODULES source destination [start] [end]

Use FETCH-MODULES to add the specified modules to the destination library file. If
destination already exists, it must be empty or contain valid object modules;
otherwise it will be created.

Examples

The following option copies the module mean from math.rnn to general.rnn:

FETCH-MOD math general mean
XLINK-650

Part 2: The IAR Library Tools 161

162

Descriptions of XLIB options for all UBROF versions
HELP HELP [option] [listfile]

Parameters

Use this option to display help information.

If the HELP option is given with no parameters, a list of the available options will be
displayed on the terminal. If a parameter is specified, all options which match the
parameter will be displayed with a brief explanation of their syntax and function. A *
matches all options. HELP output can be directed to any file.

Examples

For example, the option:

HELP LIST-MOD

displays:

LIST-MODULES <Object file> [<List file>] [<Start module>] [<End
module>]
 List the module names from [<Start module>] to
 [<End module>].

INSERT-MODULES INSERT-MODULES objectfile start end {BEFORE | AFTER} dest

Use INSERT-MODULES to insert the specified modules in a library, before or after the
dest.

Examples

The following option moves the module mean before the module min in the file
math.rnn:

INSERT-MOD math mean mean BEFORE min

LIST-ALL-SYMBOLS LIST-ALL-SYMBOLS objectfile [listfile] [start] [end]

Use LIST-ALL-SYMBOLS to list all symbols (module names, segments, externals,
entries, and locals) for the specified modules in the objectfile. The symbols are listed
to the listfile.

Each symbol is identified with a prefix; see List format, page 157.

option Option for which help is displayed.
XLINK-650

IAR Linker and Library Tools
Reference Guide

IAR XLIB Librarian options
Examples

The following option lists all the symbols in math.rnn:

LIST-ALL-SYMBOLS math

This displays:

 1. Lib max
 Rel CODE
 Ent max
 Loc A
 Loc B
 Loc C
 Loc ncarry
 2. Lib mean
 Rel DATA
 Rel CODE
 Ext max
 Loc A
 Loc B
 Loc C
 Loc main
 Loc start
 3. Lib min
 Rel CODE
 Ent min
 Loc carry

LIST-CRC LIST-CRC objectfile [listfile] [start] [end]

Use LIST-CRC to list the module names and their associated CRC values of the
specified modules.

Each symbol is identified with a prefix; see List format, page 157.

Examples

The following option lists the CRCs for all modules in math.rnn:

LIST-CRC math

This displays:

 EC41 1. Lib max
 ED72 2. Lib mean
 9A73 3. Lib min
XLINK-650

Part 2: The IAR Library Tools 163

164

Descriptions of XLIB options for all UBROF versions
LIST-DATE-STAMPS LIST-DATE-STAMPS objectfile [listfile] [start] [end]

Use LIST-DATE-STAMPS to list the module names and their associated generation dates
for the specified modules.

Each symbol is identified with a prefix; see List format, page 157.

Examples

The following option lists the date stamps for all the modules in math.rnn:

LIST-DATE-STAMPS math

This displays:

 15/Feb/98 1. Lib max
 15/Feb/98 2. Lib mean
 15/Feb/98 3. Lib min

LIST-ENTRIES LIST-ENTRIES objectfile [listfile] [start] [end]

Use LIST-ENTRIES to list the names and associated entries (PUBLIC symbols) for the
specified modules.

Each symbol is identified with a prefix; see List format, page 157.

Examples

The following option lists the entries for all the modules in math.rnn:

LIST-ENTRIES math

This displays:

 1. Lib max
 Ent max
 2. Lib mean
 3. Lib min
 Ent min

LIST-EXTERNALS LIST-EXTERNALS objectfile [listfile] [start] [end]

Use LIST-EXTERNALS to list the module names and associated externals (EXTERN
symbols) for the specified modules.

Each symbol is identified with a prefix; see List format, page 157.
XLINK-650

IAR Linker and Library Tools
Reference Guide

IAR XLIB Librarian options
Examples

The following option lists the externals for all the modules in math.rnn:

LIST-EXT math

This displays:

 1. Lib max
 2. Lib mean
 Ext max
 3. Lib min

LIST-MODULES LIST-MODULES objectfile [listfile] [start] [end]

Use LIST-MODULES to list the module names for the specified modules.

Each symbol is identified with a prefix; see List format, page 157.

Examples

The following option lists all the modules in math.rnn:

LIST-MOD math

It produces the following output:

 1. Lib max
 2. Lib min
 3. Lib mean

LIST-OBJECT-CODE LIST-OBJECT-CODE objectfile [listfile]

Lists low-level relocatable code.

Use LIST-OBJECT-CODE to list the contents of the object file on the list file in ASCII
format.

Each symbol is identified with a prefix; see List format, page 157.

Examples

The following option lists the object code of math.rnn to object.lst:

LIST-OBJECT-CODE math object
XLINK-650

Part 2: The IAR Library Tools 165

166

Descriptions of XLIB options for all UBROF versions
LIST-SEGMENTS LIST-SEGMENTS objectfile [listfile] [start] [end]

Use LIST-SEGMENTS to list the module names and associated segments for the
specified modules.

Each symbol is identified with a prefix; see List format, page 157.

Examples

The following option lists the segments in the module mean in the file math.rnn:

LIST-SEG math,,mean mean

Notice the use of two commas to skip the listfile parameter.

This produces the following output:

 2. Lib mean
 Rel DATA
 Repl CODE

MAKE-LIBRARY MAKE-LIBRARY objectfile [start] [end]

Changes a module to library type.

Use MAKE-LIBRARY to change the module header attributes to conditionally loaded for
the specified modules.

Examples

The following option converts all the modules in main.rnn to library modules:

MAKE-LIB main

MAKE-PROGRAM MAKE-PROGRAM objectfile [start] [end]

Changes a module to program type.

Use MAKE-PROGRAM to change the module header attributes to unconditionally loaded
for the specified modules.

Examples

The following option converts module start in main.rnn into a program module:

MAKE-PROG main start
XLINK-650

IAR Linker and Library Tools
Reference Guide

IAR XLIB Librarian options
ON-ERROR-EXIT ON-ERROR-EXIT

Use ON-ERROR-EXIT to make the librarian abort if an error is found. It is suited for use
in batch mode.

Examples

The following batch file aborts if the FETCH-MODULES option fails:

ON-ERROR-EXIT
FETCH-MODULES math new

QUIT QUIT

Use QUIT to exit and return to the operating system.

Examples

To quit from XLIB:

QUIT

REMARK REMARK text

Use REMARK to include a comment in an XLIB command file.

Examples

The following example illustrates the use of a comment in an XLIB command file:

REM Now compact file
COMPACT-FILE math

RENAME-MODULE RENAME-MODULE objectfile old new

Use RENAME-MODULE to rename a module. Notice that if there is more than one module
with the name old, only the first one encountered is changed.

Examples

The following example renames the module average to mean in the file math.rnn:
RENAME-MOD math average mean
XLINK-650

Part 2: The IAR Library Tools 167

168

Summary of XLIB options for older UBROF versions
RENAME-SEGMENT RENAME-SEGMENT objectfile old new [start] [end]

Use RENAME-SEGMENT to rename all occurrences of a segment from the name old to
new in the specified modules.

Examples

The following example renames all CODE segments to ROM in the file math.rnn:

RENAME-SEG math CODE ROM

REPLACE-MODULES REPLACE-MODULES source destination

Use REPLACE-MODULES to update executable code by replacing modules with the same
name from source to destination. All replacements are logged on the terminal. The
main application for this option is to update large runtime libraries etc.

Examples

The following example replaces modules in math.rnn with modules from
newmath.rnn:

REPLACE-MOD newmath math

This displays:

Replacing module 'max'
Replacing module 'mean'
Replacing module 'min'

Summary of XLIB options for older UBROF versions
There are some XLIB options that do not work with output from IAR Systems C/C++
compilers or assemblers that output object files in UBROF 8 format and later. This
means that these options cannot be used together with compiler/assembler versions
delivered with IAR Embedded Workbench version 3.0 and later, and a few products that
were released just before version 3.0. The following table shows a summary of these
XLIB options:

Option Description

RENAME-ENTRY Renames PUBLIC symbols.

RENAME-EXTERNAL Renames EXTERN symbols.

RENAME-GLOBAL Renames EXTERN and PUBLIC symbols.

Table 30: Summary of XLIB options for older compilers
XLINK-650

IAR Linker and Library Tools
Reference Guide

IAR XLIB Librarian options
Descriptions of XLIB options for older UBROF versions
The following section gives detailed reference information for each option.

RENAME-ENTRY RENAME-ENTRY objectfile old new [start] [end]

Use RENAME-ENTRY to rename all occurrences of a PUBLIC symbol from old to new
in the specified modules.

Examples

The following option renames the entry for modules 2 to 4 in math.rnn from mean to
average:

RENAME-ENTRY math mean average 2 4

Note: This option does not work with the output from modern IAR Systems C/C++
compilers or assemblers that produce UBROF 8 or later.

RENAME-EXTERNAL RENAME-EXTERN objectfile old new [start] [end]

Use RENAME-EXTERN to rename all occurrences of an external symbol from old to new
in the specified modules.

Examples

The following option renames all external symbols in math.rnn from error to err:

RENAME-EXT math error err

Note: This option does not work with the output from modern IAR Systems C/C++
compilers or assemblers that produce UBROF 8 or later.

RENAME-GLOBAL RENAME-GLOBAL objectfile old new [start] [end]

Use RENAME-GLOBAL to rename all occurrences of an external or public symbol from
old to new in the specified modules.

Examples

The following option renames all occurrences of mean to average in math.rnn:

RENAME-GLOBAL math mean average

Note: This option does not work with the output from modern IAR Systems C/C++
compilers or assemblers that produce UBROF 8 or later.
XLINK-650

Part 2: The IAR Library Tools 169

170

Descriptions of XLIB options for older UBROF versions
XLINK-650

IAR Linker and Library Tools
Reference Guide

XLIB diagnostics
This chapter lists the messages produced by the IAR XLIB Librarian.

XLIB messages
The following section lists the XLIB messages. Options flagged as erroneous never alter
object files.

0 Bad object file, EOF encountered
Bad or empty object file, which could be the result of an aborted assembly or
compilation.

1 Unexpected EOF in batch file
The last command in a command file must be EXIT.

2 Unable to open file file
Could not open the command file or, if ON-ERROR-EXIT has been specified,
this message is issued on any failure to open a file.

3 Variable length record out of bounds
Bad object module, could be the result of an aborted assembly.

4 Missing or non-default parameter
A parameter was missing in the direct mode.

5 No such CPU
A list with the possible choices is displayed when this error is found.

6 CPU undefined
DEFINE-CPU must be issued before object file operations can begin. A list
with the possible choices is displayed when this error is found.

7 Ambiguous CPU type
A list with the possible choices is displayed when this error is found.

8 No such command
Use the HELP option.

9 Ambiguous command
Use the HELP option.

10 Invalid parameter(s)
Too many parameters or a misspelled parameter.

11 Module out of sequence
Bad object module, could be the result of an aborted assembly.
XLINK-650

Part 2: The IAR Library Tools 171

172

XLIB messages
12 Incompatible object, consult distributor!
Bad object module, could be the result of an aborted assembly, or that the
assembler/compiler revision used is incompatible with the version of XLIB
used.

13 Unknown tag: hh
Bad object module, could be the result of an aborted assembly.

14 Too many errors
More than 32 errors will make XLIB abort.

15 Assembly/compilation error?
The T_ERROR tag was found. Edit and re-assemble/re-compile your program.

16 Bad CRC, hhhh expected
Bad object module; could be the result of an aborted assembly.

17 Can't find module: xxxxx
Check the available modules with LIST-MOD file.

18 Module expression out of range
Module expression is less than one or greater than $.

19 Bad syntax in module expression: xxxxx
The syntax is invalid.

20 Illegal insert sequence
The specified destination in the INSERT-MODULES option must not be within
the start-end sequence.

21 <End module> found before <Start module>!
Source module range must be from low to high order.

22 Before or after!
Bad BEFORE/AFTER specifier in the INSERT-MODULES option.

23 Corrupt file, error occurred in tag
A fault is detected in the object file tag. Reassembly or recompilation may
help. Otherwise contact your supplier.

24 Filename is write protected
The file filename is write protected and cannot be written to.

25 Non-matching replacement module name found in source file
In the source file, a module name with no corresponding entry in the
destination file was found.
XLINK-650

IAR Linker and Library Tools
Reference Guide

Index
A
-A (XLINK option). 54
-a (XLINK option) . 54
address range check, disabling . 77
address space

restricting output to one . 100
sharing . 81

address translation . 23, 69
addresses

hexadecimal on the command line 51
mapping logical to physical . 69

alignment
for checksums . 64
of a segment. 87

allocation, segment types . 23
Always generate output (XLINK option) 55, 107
anonymous structs/unions, support for in UBROF versions 94
AOMF80196 (linker output format) 91
AOMF80251 (linker output format) 91
AOMF8051 (linker output format) 91, 96
AOMF8096 (linker output format) 91
arrays (large), support for in UBROF versions 94
ASCII format, of object code listing 165
ASHLING (linker output format) . 91
ASHLING-Z80 (linker output format) 91
ASHLING-6301 (linker output format) 91
ASHLING-64180 (linker output format) 91
ASHLING-6801 (linker output format) 91
ASHLING-8080 (linker output format) 91
ASHLING-8085 (linker output format) 91
assembler directives

MODULE . 149
NAME . 149

assembler symbols, defining at link time 56
assumptions (programming experience) 9

B
-B (XLINK option) . 55, 107
-b (XLINK option) . 126
banked segments, defining . 73
binary files, linking. 62
BIT (segment type) . 24
bold style, in this guide . 11
byte order of checksum, reversing 63
bytewise initial value, of checksum 64

C
-C (XLINK option) . 55
-c (XLINK option) . 56, 104
call frame information, support for in UBROF versions . . . 94
call graph file, specifying in XLINK. 56
--call_graph (XLINK option) . 56
checksum

checksummed areas . 35
generating in XLINK . 62
initial value of . 65
mirroring initial value . 42, 64
summary in list file . 36

__checksum (default label) . 64
checksum calculation, included bytes 65
checksum summary, producing. 72
checksum value symbol . 40
CHECKSUM (default segment name) 64
__checksum__value (default checksum value symbol). . . . 41
class members, support for in UBROF versions 94
code duplication, in XLINK . 66
code generation, disabling in XLINK 57
code memory, filling unused. 60
CODE (segment type). 24
command file comments, including in XLIB 167
command files, debugging . 161
command line options

numbers format . 51

Index
XLINK-650

 173

174
typographic convention . 11
XAR . 152
XLIB . 159
XLINK. 51

command prompt icon, in this guide 11
comments, including in XLIB command files. 167
COMMON (segment type) . 23
COMPACT-FILE (XLIB option) 159
computer style, typographic convention 11
CONST (segment type). 24
conventions, used in this guide . 10
copyright notice . 2
CPU, defining in XLIB. 160
CRC value of modules, listing . 163
crc=n (checksum algorithm) . 63
crc16 (checksum algorithm) . 63
crc32 (checksum algorithm) . 63
cross-reference, in XLINK listing. 28, 83

See also -x (XLINK option)
C++ object names, support for in UBROF versions 94
C++ pointers to members, support for in UBROF versions 94
C++ references, support for in UBROF versions 94
C++ template information, support for in UBROF versions 94
C++ terminology. 10

D
-D (XLINK option). 56
-d (XLINK option) . 57
DATA (segment type) . 24
data, storing locals at static locations 33
debug information

generating in XLINK . 78
loss of . 94

DEBUG (linker output format) 91, 96
DEBUG-INTEL-EXT (linker output format) 95
DEBUG-INTEL-STD (linker output format) 95
DEBUG-MOTOROLA (linker output format) 95
decimal notation, forcing . 51

default extension, setting in XLIB 161
#define (XLINK option) . 57
DEFINE-CPU (XLIB option) . 160
DELETE-MODULES (XLIB options) 160
diagnostics

XAR . 153
XLIB . 171
XLINK. 107

diagnostics control, XLINK . 82
direct initial values . 42
DIRECTORY (XLIB option) . 160
directory, specifying in XLINK . 67
disclaimer . 2
DISPLAY-OPTIONS (XLIB option) 160
document conventions . 10
dtp (file type) . 108
duplicating code, in XLINK . 66
DWARF (linker output format) . 98

E
-E (XLINK option) . 57
-e (XLINK option) . 58
ECHO-INPUT (XLIB option). 161
edition, of this guide . 2
ELF (linker output format) . 91, 98
--enable_stack_usage (XLINK option) 58
endianness. See byte order
entry list, XLINK . 31
entry point for applications, specifying in XLINK 78
enum constants connected to enum types, support for in
UBROF versions. 94
environment variables

XLIB, summary of. 157
XLINK. 103
XLINK_COLUMNS . 103
XLINK_CPU. 56
XLINK_DFLTDIR . 61
XLINK_ENVPAR. 51
XLINK-650

IAR Linker and Library Tools
Reference Guide

Index
XLINK_FORMAT . 58, 104
XLINK_PAGE . 75, 105

error messages
range . 25
segment overlap . 25
XAR . 153
XLIB . 171
XLINK. 107

ewp (file type). 108
EXIT (XLIB option) . 161
experience, programming . 9
EXTENDED-TEKHEX (linker output format). 91
EXTENSION (XLIB option) . 161
extension, setting default in XLIB 161
EXTERN symbols, renaming in XLIB 169
external symbols

defining at link time. 56
listing . 164
renaming in XLIB . 169
renaming in XLINK. 58

Extra output (XLINK option) . 72

F
-F (XLINK option) . 58, 78, 105
-f (XLINK option) . 59, 104
far memory, placing segments in . 87
FAR (segment type) . 24
FARC (segment type) . 24
FARCODE (segment type) . 24
FARCONST (segment type) . 24
fast CRC . 42
features, XLINK . 15
FETCH-MODULES (XLIB option) 161
file types

dtp . 108
ewp . 108
hex . 72
lst . 67

map . 67
pew . 108
prj . 108
xcl . 51

filename
specifying for XLINK listing . 67
specifying for XLINK log . 68

Fill unused code memory (XLINK option) 60
filler bytes. 60
filling ranges . 60
filling unused code memory . 60
Format variant (XLINK option) . 96
format variant, specifying in XLINK 84
formats

assembler object file . 17
assembler output . 18
compiler object file . 17
UBROF . 17
XLIB list file . 157, 165
XLINK listing . 27
XLINK output . 91

variants . 96
formatter for printf, choosing . 20
formatter for scanf, choosing . 20
function call step points, support for in UBROF versions. . 94
function instances (inlined), support
for in UBROF versions . 94
functions, in XLINK. 18

G
-G (XLINK option). 59
-g (XLINK option) . 59
global entries . 59
global type checking, disabling. 59

H
-H (XLINK option). 35, 60, 62
XLINK-650

 175

176
-h (XLINK option) . 60
help information, displaying in XLIB 162
HELP (XLIB option) . 162
hex (file type) . 72
hexadecimal notation on the command line 51
HP (linker output format) . 95
HP-CODE (linker output format) . 91
HP-SYMB (linker output format) . 91
HUGE (segment type) . 24
HUGEC (segment type) . 24
HUGECODE (segment type) . 24
HUGECONST (segment type) . 24

I
-I (XLINK option) . 61
IAR XAR Library Builder. See XAR
IAR XLIB Librarian. See XLIB
IAR XLINK Linker. See XLINK
icons, in this guide . 11
IDATA (segment type) . 24
IDATA0 (segment type) . 24
IDATA1 (segment type) . 24
IEEE695 (linker output format) . 91
IEEE695 (XLINK output format) . 96
--image_input (XLINK option). 62
include paths, specifying to XLINK 61
included modules, logging (--log). 68
included segment parts, logging (--log) 68
indirect initial values. 42
Init (Rocksoft CRC algorithm field) 36
initial value, of checksum . 65
inlined function instances, support for in UBROF versions 94
input files and modules, XLINK. 19
INSERT-MODULES (XLIB option) 162
instruction set of microcontroller . 9
INTEL-EXTENDED (linker output format) 91, 96
INTEL-STANDARD (linker output format). 91, 96

introduction
MISRA C. 16
XAR . 147
XLIB . 147
XLINK. 15

italic style, in this guide . 11

J
-J (XLINK option) . 35, 62

K
-K (XLINK option). 22, 66

L
-L (XLINK option) . 67
-l (XLINK option). 67
large address awareness . 15
librarian. See XLIB or XAR
libraries. 147

See also library modules
building . 152
file size, reducing. 159
module type, changing . 166
threaded . 80
using with assembler programs 148
using with C programs . 148

library modules
adding . 161
building and managing. 147
inserting . 162
loading . 18–19, 55
removing . 160

lightbulb icon, in this guide. 11
Lines/page (XLINK option) . 75
linker configuration file . 51

specifying . 59
XLINK-650

IAR Linker and Library Tools
Reference Guide

Index
Linker configuration file (XLINK option) 59
linker. See XLINK
linking. 17
list file formats

XLIB . 157
XLINK. 27

List (XLINK option). 67, 84
listings

generating in XLINK . 67
lines per page . 75

LIST-ALL-SYMBOLS (XLIB option) 162
LIST-CRC (XLIB option). 163
LIST-DATE-STAMPS (XLIB option) 164
LIST-ENTRIES (XLIB option) . 164
LIST-EXTERNALS (XLIB option) 164
LIST-MODULES (XLIB option) 165
LIST-OBJECT-CODE (XLIB option) 165
LIST-SEGMENTS (XLIB option) 166
local data, storing at static locations 33
local symbols, ignoring. 71
--log (XLINK option) . 68
logging . 43

calls and stack usage . 48
included modules . 44
included object files . 43
included segment parts. 44
output example. 43–44, 47
redirections . 47
--log . 68
--log_file . 68

--log_file (XLINK option) . 68
lst (file type) . 67

M
-M (XLINK option) . 22, 69
MAKE-LIBRARY (XLIB option) 166
MAKE-PROGRAM (XLIB option) 166
map (file type) . 67

memory
accessing from two different addresses 79
code, filling unused . 60
far, placing segments in . 87
segment types . 24

microcontroller instruction set . 9
MILLENIUM (linker output format) 91
mirroring memory to be accessed
from two different addresses. 79
mirroring the initial value of checksums 42, 64
MISRA C . 16
--misrac (XLINK option) . 52
--misrac_verbose (XLINK option) 53
--misrac1998 (XLINK option) . 53
--misrac2004 (XLINK option) . 53
module summary, XLINK . 32
MODULE (assembler directive) . 149
modules

adding to library. 161
changing to program type . 166
generation date, listing . 164
inserting in library . 162
library, loading in XLINK . 18–19
listing . 165

CRC value. 163
EXTERN symbols . 164
PUBLIC symbols . 164
segments . 166
symbols in. 162

loading as library . 55
loading as program. 54
logging included when linking. 44
logging included (--log) . 68
removing from library . 160
renaming . 167
replacing . 168
type, changing to library . 166

MOTOROLA (linker output format) 91, 93
MOTOROLA-S19 (linker output format) 91, 93
MOTOROLA-S28 (linker output format) 91, 93
XLINK-650

 177

178
MOTOROLA-S37 (linker output format) 91, 93
MPDS (linker output format) . 95
MPDS-CODE (linker output format) 92, 96
MPDS-I (linker output format) . 95
MPDS-M (linker output format) . 95
MPDS-SYMB (linker output format) 92, 96
MSD (linker output format) . 92
MSD-I (linker output format) . 95
MSD-M (linker output format) . 95
MSD-T (linker output format) . 95
MSP430_TXT (linker output format) 92

N
-N (XLINK option). 70
-n (XLINK option) . 71
NAME (assembler directive) . 149
naming conventions . 11
NEAR (segment type). 24
NEARC (segment type) . 24
NEARCODE (segment type) . 24
NEARCONST (segment type) . 24
NEC (linker output format). 95
NEC-SYMBOLIC (linker output format) 92
NEC2 (linker output format). 95
NEC2-SYMBOLIC (linker output format) 92
NEC78K (linker output format) . 95
NEC78K-SYMBOLIC (linker output format) 92
No global type checking (XLINK option). 59
Noalloc content, support for . 21
Noalloc content, support for in UBROF versions 94
notation, hexadecimal or decimal . 51
NPAGE (segment type) . 24
numbers, notation . 51

O
-O (XLINK option). 71
-o (XLINK option) . 72

-o (XAR option) . 152
object attributes, support for in UBROF versions 94
object code

listing in ASCII format . 165
suppressing in XLINK . 57

object files
displaying available . 160
format . 17
used by linker, logging. 43
used by linker, logging (--log) . 68

object names in C++, support for in UBROF versions 94
Old UBROF (linker output format). 93
ON-ERROR-EXIT (XLIB option) 167
option summary

XAR . 151
XLIB . 155
XLINK. 52

options (XLINK), setting from the command line 51
output file name (XLINK), specifying 72
output files, multiple . 71
output format

XLINK. 18, 91
specifying . 58
variant, specifying. 84

Output (XLINK option) 58, 71, 73, 78, 85
--output_checksum_summary (XLINK option) 72
output, generating in XLINK also on error 55
overlap errors . 25
overlay system map . 33
Override default program entry (XLINK option) 78

P
-P (XLINK option) . 22, 73
-p (XLINK option) . 75, 105
packed segments, defining . 73, 85
parameters

storing at static locations . 33
typographic convention . 11
XLINK-650

IAR Linker and Library Tools
Reference Guide

Index
part number, of this guide . 2
PENTICA-A (linker output format) 92, 96
PENTICA-AI (linker output format). 95
PENTICA-AM (linker output format) 95
PENTICA-B (linker output format) 92, 96
PENTICA-BI (linker output format). 95
PENTICA-BM (linker output format). 95
PENTICA-C (linker output format) 92, 96
PENTICA-CI (linker output format). 95
PENTICA-CM (linker output format). 95
PENTICA-D (linker output format) 92, 96
PENTICA-DI (linker output format). 95
PENTICA-DM (linker output format) 95
pew (file type). 108
Poly (Rocksoft CRC algorithm field) 36
prerequisites (programming experience). 9
printf, choosing formatter for . 20
prj (file type). 108
processor type

specifying in XLIB . 160
specifying in XLINK . 56

program modules
changing module type . 166
loading as. 54

programming experience, required . 9
PUBLIC symbols

listing . 164
renaming in XLIB . 169

publication date, of this guide . 2

Q
-Q (XLINK option). 75
QUIT (XLIB option). 167

R
-R (XLINK option) . 77
-r (XLINK option) . 78

Range checks (XLINK option) . 77
range check, disabling. 77
range errors. 25
ranges, filling . 60
Raw binary image (XLINK option) 62
RAW-BINARY (linker output format) 92–93
RCA (linker output format). 92
redirected symbols, logging (--log) 68
reference information, typographic convention. 11
RefIn (Rocksoft CRC algorithm field) 36
reflection. 43
RefOut (Rocksoft CRC algorithm field) 36
registered trademarks . 2
RELATIVE (segment type) . 23
REMARK (XLIB option) . 167
RENAME-ENTRY (XLIB option) 169
RENAME-EXTERNAL (XLIB option) 169
RENAME-GLOBAL (XLIB option) 169
RENAME-MODULE (XLIB option) 167
RENAME-SEGMENT (XLIB option) 168
REPLACE-MODULES (XLIB option) 168
Rocksoft™ Model CRC Algorithm 36

incompatibilities with XLINK . 38
using in XLINK . 37

root content, loading as if not root (-X). 83
root segment part, in linker log file 44
root, treating all content as (-N) . 70
runtime libraries, updating . 168

S
-S (XLINK option) . 78
-s (XLINK option) . 78
safety-critical systems, developing 16
scanf, choosing formatter for . 20
scatter loading, in XLINK. 75
Search paths (XLINK option) . 61
segment allocation . 22, 73, 85
segment control options (XLINK) 22
XLINK-650

 179

180
segment map
including in XLINK listing . 84
XLINK. 28–30

segment overlap errors . 25
reducing . 88

Segment overlap warnings (XLINK option) 89
segment overlaps, creating . 85
segment parts

logging included when linking. 44
logging included (--log) . 68

segment types
allocation . 23
BIT . 24
CODE . 24
COMMON. 23
CONST . 24
DATA . 24
FAR . 24
far memory . 87
FARC. 24
FARCODE . 24
FARCONST . 24
HUGE . 24
HUGEC . 24
HUGECODE . 24
HUGECONST . 24
IDATA. 24
IDATA0. 24
IDATA1. 24
memory . 24
NEAR . 24
NEARC . 24
NEARCODE . 24
NEARCONST . 24
NPAGE . 24
RELATIVE . 23
STACK . 23
UNTYPED . 24
XDATA . 24

ZPAGE . 24
segments . 21

banked, defining . 73
copy initialization . 75
listing in modules. 166
packed, defining. 73, 85
placing in far memory . 87
renaming . 168

--segment_mirror (XLINK option) 79
silent operation, in XLINK . 78
SIMPLE (linker output format). 92
SIMPLE-CODE (linker output format). 92
slow crc. 42
stack usage

logging. 48
logging (--log) . 68

stack usage analysis . 16
diagnostic messages . 108, 140
enabling . 58

stack usage control file, generating 79
STACK (segment type). 23
--stack_usage_control (XLINK option) 79
static memory, storing local data in 33
static overlay system map . 33
static overlay, disabling . 54
structs/unions (anonymous), support
for in UBROF versions . 94
suc (filename extension) . 79
sum (checksum algorithm) . 63
support, technical . 108
symbol listing, XLINK . 31
SYMBOLIC (linker output format) 92
symbols

defining at link time. 56
EXTERN, listing . 164
ignoring local at link time . 71
in modules, listing . 162
logging redirected (--log) . 68
logging redirection when linking 47
PUBLIC, listing . 164
XLINK-650

IAR Linker and Library Tools
Reference Guide

Index
renaming EXTERN . 169
renaming PUBLIC . 169

SYSROF (linker output format) . 92

T
target processor, specifying in XLINK 56
target ROM, comparing to debug file 40
technical support, reporting errors to 108
TEKTRONIX (linker output format) 92
template information (C++), support
for in UBROF versions . 94
terminal I/O, emulating. 78
terminology. 10
threaded library, specifying use of 80
--threaded_lib (XLINK option). 80
TI7000 (linker output format) . 92
TMS7000 (linker output format). 92
tools icon, in this guide . 11
trademarks . 2
translation, address . 23
type attributes, support for in UBROF versions 94
type checking, disabling global. 59
type definitions, support for in UBROF versions 94
TYPED (linker output format) . 92
typographic conventions . 11

U
-U (XLINK option). 81
UBROF

generating debug information in output file 78
object file format . 17
properties . 92
UBROF 7 or later. 21, 23
version . 93

specifying . 93
XLIB options dependent of 168

UBROF5 (linker output format) . 92

UBROF6 (linker output format) . 92
UBROF7 (linker output format) . 92
UBROF8 (linker output format) . 92
UBROF9 (linker output format) . 92
UBROF10 (linker output format) . 92
UBROF11 (linker output format) . 92
Universal Binary Relocatable Object Format 17
UNTYPED (segment type) . 24

V
-V (XAR option). 152
version

of this guide . 2
XLINK. 9

W
-w (XLINK option). 82
warning messages, XLINK. 129

controlling . 82
warnings icon, in this guide . 11
Width (Rocksoft CRC algorithm field) 36

X
-X (XLINK option). 83
-x (XLINK option) . 28–32, 83
XAR

basic syntax . 151
differences from XLIB. 147
error messages . 153
introduction to . 147
verbose mode. 152

XAR options
summary . 151
-o . 152
-V. 152

xcl (file type) . 51
XLINK-650

 181

182
XCOFF78K (linker output format) 92, 99
XDATA (segment type) . 24
XLIB

differences from XAR . 147
error messages . 171
introduction to . 147

XLIB help information, displaying 162
XLIB list file format . 157
XLIB options

COMPACT-FILE . 159
DEFINE-CPU . 160
DELETE-MODULES . 160
DIRECTORY . 160
displaying . 160
DISPLAY-OPTIONS . 160
ECHO-INPUT . 161
EXIT . 161
EXTENSION. 161
FETCH-MODULES . 161
HELP. 162
incompatible with modern compilers 168
INSERT-MODULES. 162
LIST-ALL-SYMBOLS . 162
LIST-CRC . 163
LIST-DATE-STAMPS . 164
LIST-ENTRIES . 164
LIST-EXTERNALS . 164
LIST-MODULES . 165
LIST-OBJECT-CODE. 165
LIST-SEGMENTS. 166
MAKE-LIBRARY. 166
MAKE-PROGRAM. 166
ON-ERROR-EXIT. 167
QUIT . 167
REMARK . 167
RENAME-ENTRY . 169
RENAME-EXTERNAL . 169
RENAME-GLOBAL . 169
RENAME-MODULE . 167

RENAME-SEGMENT . 168
REPLACE-MODULES . 168
summary . 155

XLINK options
Always generate output . 55, 107
Extra output . 72
Fill unused code memory. 60
Format variant . 96
Lines/page . 75
Linker configuration file . 59
List. 67, 84
No global type checking . 59
number format in . 51
Output . 58, 71, 73, 78, 85
Override default program entry 78
Range checks . 77
Raw binary image . 62
Search paths. 61
Segment overlap warnings . 89
Target processor. 56
-A. 54
-a . 54
-B. 55, 107
-b . 126
-C. 55
-c . 56, 104
-D. 56
-d . 57
-E . 57
-e . 58
-F . 58, 78, 105
-f . 59, 104
-G. 59
-g . 59
-H. 35, 60, 62
-h . 60
-I . 61
-J . 35, 62
-K. 22, 66
XLINK-650

IAR Linker and Library Tools
Reference Guide

Index
-L . 67
-l . 67
-M . 22, 69
-N. 70
-n . 71
-O. 71
-o . 72
-P . 22, 73
-p . 75, 105
-Q. 75
-R. 77
-r . 78
-S . 78
-s . 78
-U. 81
-w. 82
-X. 83
-x . 28–32, 83
-Y. 84, 96
-y . 85
-Z . 22, 85
-z . 88
--call_graph . 56
--image_input. 62
--log . 68
--log_file . 68
--output_checksum_summary . 72
--segment_mirror . 79
--threaded_lib. 80
#define . 57

XLINK_COLUMNS (environment variable) 103
XLINK_CPU (environment variable) 56, 104
XLINK_DFLTDIR (environment variable) 61, 104
XLINK_ENVPAR (environment variable) 51, 104
XLINK_FORMAT (environment variable) 58, 104
XLINK_PAGE (environment variable) 75, 105
XorOut (Rocksoft CRC algorithm field). 36

Y
-Y (XLINK option). 84, 96
-y (XLINK option) . 85

Z
-Z (XLINK option) . 22, 85
-z (XLINK option) . 88
ZAX (linker output format). 92
ZAX-I (linker output format) . 95
ZAX-M (linker output format) . 95
ZPAGE (segment type). 24

Symbols
__checksum (default label) . 64
__checksum__value (default checksum value symbol). . . . 41
-A (XLINK option). 54
-a (XLINK option) . 54
-B (XLINK option) . 55, 107
-b (XLINK option) . 126
-C (XLINK option) . 55
-c (XLINK option) . 56, 104
-D (XLINK option). 56
-d (XLINK option) . 57
-E (XLINK option) . 57
-e (XLINK option) . 58
-F (XLINK option) . 58, 78, 105
-f (XLINK option) . 59, 104
-G (XLINK option). 59
-g (XLINK option) . 59
-H (XLINK option). 35, 60, 62
-h (XLINK option) . 60
-I (XLINK option) . 61
-J (XLINK option) . 35, 62
-K (XLINK option). 22, 66
-L (XLINK option) . 67
-l (XLINK option). 67
XLINK-650

 183

184
-M (XLINK option) . 22, 69
-N (XLINK option). 70
-n (XLINK option) . 71
-o (XAR option) . 152
-O (XLINK option). 71
-o (XLINK option) . 72
-P (XLINK option) . 22, 73
-p (XLINK option) . 75, 105
-Q (XLINK option). 75
-R (XLINK option) . 77
-r (XLINK option) . 78
-S (XLINK option) . 78
-s (XLINK option) . 78
-U (XLINK option). 81
-V (XAR option). 152
-w (XLINK option). 82
-X (XLINK option). 83
-x (XLINK option) . 28–32, 83
-Y (XLINK option). 84, 96
-y (XLINK option) . 85
-Z (XLINK option) . 22, 85
-z (XLINK option) . 88
--call_graph (XLINK option) . 56
--enable_stack_usage (XLINK option) 58
--image_input (XLINK option). 62
--log (XLINK option) . 68
--log_file (XLINK option) . 68
--misrac (XLINK option) . 52
--misrac_verbose (XLINK option) 53
--misrac1998 (XLINK option) . 53
--misrac2004 (XLINK option) . 53
--output_checksum_summary (XLINK option) 72
--segment_mirror (XLINK option) 79
--stack_usage_control (XLINK option) 79
--threaded_lib (XLINK option). 80
#define (XLINK option) . 57
XLINK-650

IAR Linker and Library Tools
Reference Guide

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1: The IAR XLINK Linker
	Part 2: The IAR Library Tools

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1: The IAR XLINK Linker
	Introduction to the IAR XLINK Linker
	Key features
	Large Address Awareness
	Stack usage analysis
	MISRA C

	The linking process
	Object format
	XLINK functions
	Libraries
	Output format

	Input files and modules
	Libraries
	Creating libraries

	Formatters for printf and scanf
	Segments
	Noalloc content

	Segment control
	Address translation
	Allocation segment types
	Memory segment types
	Overlap errors
	Range errors
	Example
	Possible solutions

	Segment placement examples

	Listing format
	Header
	Cross-reference
	Module map (-xm)
	Segment map (-xs)
	Symbol listing (-xe)
	Module summary (-xn)
	Static overlay system map (-xo)

	Checksummed areas and memory usage
	Checksum summary (-xr)

	Checksum calculation
	Checksum calculation by the linker
	Example 1
	Example 2
	Example 3
	Calculating a Rocksoft™ Model CRC checksum

	Adding a checksum function to your source code
	A function for checksum calculation
	Calculating a checksum in your source code

	Things to remember
	Checksum value symbol

	Bytewise and mirrored initial checksum values
	Bitwise initial values
	Example

	Bytewise initial values
	Example

	Mirroring
	Example 1
	Example 2

	Logging
	Logging object files
	Example log output

	Logging modules
	Example log output

	Logging segment parts
	Segment log structure
	Example log output

	Logging automatic redirections
	Example log output

	Logging calls and stack usage
	Example log output

	XLINK options
	Setting XLINK options
	Specifying numbers on the command line

	Summary of options
	Descriptions of XLINK options
	-A
	Syntax
	Description

	-a
	Syntax
	Parameters
	Description

	-B
	Syntax
	Description

	-C
	Syntax
	Description

	-c
	Syntax
	Description

	--call_graph
	Syntax
	Description
	See also

	-D
	Syntax
	Parameters
	Description
	Example

	-d
	Syntax
	Description

	-E
	Syntax
	Description
	Example

	-e
	Syntax
	Description

	--enable_stack_usage
	Syntax
	Description
	See also

	-F
	Syntax
	Parameters
	Description

	-f
	Syntax
	Description

	-G
	Syntax
	Description

	-g
	Syntax
	Description

	-H
	Syntax
	Description
	Example

	-h
	Syntax
	Parameters
	Description
	Examples

	-I
	Syntax
	Description
	Example
	See also

	--image_input
	Syntax
	Parameters
	Description
	Example

	-J
	Syntax
	Description
	Parameters
	size
	algo
	flags
	sym
	seg
	align
	m
	#
	val
	ranges
	=
	==

	-K
	Syntax
	Parameters
	Description
	Example 1
	Example 2
	See also

	-L
	Syntax
	Description

	-l
	Syntax
	Description

	--log
	Syntax
	Parameters
	Description
	Example
	See also

	--log_file
	Syntax
	Description
	See also

	-M
	Syntax
	Parameters
	Description
	Example 1
	Example 1

	-N
	Syntax
	Description

	-n
	Syntax
	Description

	-O
	Syntax
	Parameters
	Description
	Example
	See also

	--output_checksum_summary
	Syntax
	Parameters
	Description

	-o
	Syntax
	Description

	-P
	Syntax
	Parameters
	Description
	Examples
	See also

	-p
	Syntax
	Description

	-Q
	Syntax
	Parameters
	Description
	Example 1
	Example 2

	-R
	Syntax
	Parameters
	Description

	-r
	Syntax
	Parameters
	Description

	-S
	Syntax
	Description

	-s
	Syntax
	Description

	--segment_mirror
	Syntax
	Parameters
	Description

	--stack_usage_control
	Syntax
	Description
	See also

	--threaded_lib
	Syntax
	Description

	-U
	Syntax
	Parameters
	Description
	Example 1
	Example 2

	-w
	Syntax
	Parameters
	Description
	Example 1
	Example 2
	Example 3

	-X
	Syntax
	Description

	-x
	Syntax
	Parameters
	Description
	See also

	-Y
	Syntax
	Description
	See also

	-y
	Syntax
	Description
	See also

	-Z
	Syntax
	Parameters
	Description
	Example 1
	Example 2
	Example 3

	-z
	Syntax
	Parameters
	Description

	XLINK output formats
	Single output file
	UBROF versions
	Debug information loss

	Two output files
	Output format variants
	IEEE695
	ELF
	XCOFF78K

	Restricting the output to a single address space

	XLINK environment variables
	Summary of XLINK environment variables
	XLINK_COLUMNS
	XLINK_CPU
	XLINK_DFLTDIR
	XLINK_ENVPAR
	XLINK_FORMAT
	XLINK_PAGE

	XLINK diagnostics
	Introduction
	XLINK warning messages
	XLINK error messages
	XLINK fatal error messages
	XLINK internal error messages
	XLINK stack usage analysis diagnostic messages

	Error messages
	Warning messages
	Stack usage analysis diagnostic messages

	Part 2: The IAR Library Tools
	Introduction to the IAR Systems library tools
	Libraries
	IAR XAR Library Builder and IAR XLIB Librarian
	Choosing which tool to use

	Using libraries with C/C++ programs
	Using libraries with assembler programs

	The IAR XAR Library Builder
	Using XAR
	Basic syntax
	Parameters

	Summary of XAR options
	Descriptions of XAR options
	-o
	-V

	XAR diagnostics
	XAR messages

	IAR XLIB Librarian options
	Using XLIB options
	Giving XLIB options from the command line
	XLIB batch files
	Parameters
	Module expressions
	List format
	Using environment variables

	Summary of XLIB options for all UBROF versions
	Descriptions of XLIB options for all UBROF versions
	COMPACT-FILE
	DEFINE-CPU
	DELETE-MODULES
	DIRECTORY
	DISPLAY-OPTIONS
	ECHO-INPUT
	EXIT
	EXTENSION
	FETCH-MODULES
	HELP
	INSERT-MODULES
	LIST-ALL-SYMBOLS
	LIST-CRC
	LIST-DATE-STAMPS
	LIST-ENTRIES
	LIST-EXTERNALS
	LIST-MODULES
	LIST-OBJECT-CODE
	LIST-SEGMENTS
	MAKE-LIBRARY
	MAKE-PROGRAM
	ON-ERROR-EXIT
	QUIT
	REMARK
	RENAME-MODULE
	RENAME-SEGMENT
	REPLACE-MODULES

	Summary of XLIB options for older UBROF versions
	Descriptions of XLIB options for older UBROF versions
	RENAME-ENTRY
	RENAME-EXTERNAL
	RENAME-GLOBAL

	XLIB diagnostics
	XLIB messages

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Symbols

