
SafetyEW-6:1

Safety Guide

SafetyEW-6

SafetyEW-6:1

COPYRIGHT NOTICE
© 2012–2018 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, Embedded Trust, IAR Connect, C-SPY,
C-RUN, C-STAT, IAR Visual STATE, IAR KickStart Kit, I-jet, I-jet Trace, I-scope, IAR
Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Sixth edition: November 2018

Part number: SafetyEW-6

Internal reference: INIT

SafetyEW-6:1

 3

Contents
Using a build toolchain in functional safety projects 5

Introduction .. 5

The scope of tool usage and assumptions of use 7

System and environment considerations 7

Language standards compliance .. 7

IAR language extensions ... 9

MISRA C standards and the MISRA C checker 10

Hazard and operability analysis ... 11

Device-specific support files .. 14

Compatibility between different versions of the same toolchain 15

Compatibility with other toolchains ... 15

General guidelines on MCU self-check strategies 16

Installation, commissioning, operation, and maintenance ... 17

Setting up the build environment ... 18

Debug mode, release mode, and build configurations 18

Build options .. 19

Stack depth considerations ... 20

Linker configuration .. 21

Add-on analysis tools ... 23

Implementation and coding considerations 24

Optimization modes ... 24

Integral type selection .. 24

Floating-point arithmetic .. 25

Functions .. 25

Global symbols .. 26

Const and volatile ... 26

Pointers ... 27

The C/C++ standard libraries .. 27

The C standard library .. 27

SafetyEW-6:1

4
IAR Embedded Workbench®
Safety Guide

SafetyEW-6:1

 5

Using a build toolchain in
functional safety projects
This guide contains information that is relevant when you use IAR Embedded
Workbench® for creating high-integrity software that has functional safety
requirements. The guide is a complement to the IAR Embedded Workbench
user guides.

1 Introduction
The purpose of this guide is to highlight issues that you should consider when you use
the build toolchain in IAR Embedded Workbench® for projects with functional safety
requirements or more general high-integrity requirements. The focus of this guide will
be on different topics covered by the international standards IEC 61508 edition 2.0 and
ISO 26262. However, the guide applies to any development project where functional
safety or high integrity are part of the requirements.

For each topic, IAR Systems provides various notes of advice that are relevant for the
build toolchain—such advice is marked with Advice. This guide encourages you to
consider the relevance of each listed advice, and to discuss the implications related to
your application with project stakeholders, and when applicable, the appointed
functional safety assessor.

Note: Some notes of advice only apply to a specific microcontroller or to a specific
feature set that might not be available in the toolchain you are using. If so, this will be
mentioned.

Note: The demands of the mentioned standards are seldom absolute requirements—
almost any practice, decision, or deviation can be justified as long as there is valid and
sufficient rationale for it. Furthermore, the decisions and activities proposed by the
standards differ depending on the integrity level of the project.

The guide assumes a basic understanding of the requirements and proposed best
practices brought forward by a relevant safety standard with regards to implementation
languages, implementation and test practices, and build toolchains.

References to sections and paragraphs of IEC 61508 are given for further background
information.

SafetyEW-6:1

6

Introduction

IAR Embedded Workbench®
Safety Guide

The information in this guide is valid for the following IAR Embedded Workbench
products and associated instruction sets:

* The information in this guide might also be useful for other IAR Embedded Workbench
products.

Note: In this guide, if your product package includes the XLINK Linker, any reference
to the IAR C/C++ Development Guide refers to the IAR C/C++ Compiler Reference
Guide and the IAR Linker and Library Tools Reference Guide. If your product package
includes the ILINK Linker, any reference to the IAR C/C++ Development Guide refers
only to that guide.

IAR Embedded Workbench for * Version

Arm 6.40.1 and later

AVR 6.11 and later

AVR32 4.10 and later

S08 1.20 and later

HCS12 3.20 and later

CF 1.23 and later

CR16C 3.10 and later

RL78 1.20 and later

RX 2.40 and later

RH850 1.10 and later

M16C 3.50 and later

78K 4.71 and later

H8 2.20 and later

M32C 2.30 and later

R32C 1.31 and later

V850 3.81 and later

SH 2.20 and later

STM8 1.30 and later

430 4.50 and later

8051 8.10 and later

Table 1: IAR Embedded Workbench products

SafetyEW-6:1

Using a build toolchain in functional safety projects

7

1.1 THE SCOPE OF TOOL USAGE AND ASSUMPTIONS OF USE

The IAR Embedded Workbench is a toolchain for writing, translating, debugging, and
deploying applications written in C/C++ or assembler language where the target
architecture typically is a microcontroller.

The build chain consists of the following components with their respective use cases:

● The compiler: Translates C and C++ programs to object code. The compiler can
produce diagnostic messages and list files to help track programming errors. The
compiler can also check conformance to MISRA C:2004 or MISRA C:1998 rules,
and can for some target architectures produce meta information used by the linker to
compute worst-case stack usage.

● The assembler: Translates assembler language input to object code. The assembler
produces diagnostic messages and list files to help track programming errors.

● The linker: Accepts files in object format and resolves outstanding references to
function calls, variables, and assembler level jumps. As output, the linker can
produce a fully resolved binary image that can be downloaded to the target system,
a fully resolved binary image that contains debug information which can be used in
a debugger to debug the application, or library files that can be linked to other object
files to produce a fully resolved binary image.

● Depending on the IAR Embedded Workbench product you are using, you might be
able to enable the optional add-on tools C-STAT for static analysis and C-RUN for
runtime error checking. These add-on tools are not strictly part of the build chain,
although they can be used as an integral part of your quality assurance.

2 System and environment considerations
This section covers topics that you should consider early in your project setup.

2.1 LANGUAGE STANDARDS COMPLIANCE

The build toolchain that is part of IAR Embedded Workbench supports C and C++
programming languages, including some dialects. For information about the supported
languages and their dialects, see the IAR language overview in the IAR C/C++
Development Guide.

This guide will focus on advice applicable for the C language. The advice is generally
also applicable for C++, but if you have chosen C++ for your project it is especially
important you consider the advice given in the safety standards that govern your project
on how object-oriented features can be used safely. See for example, IEC 61508-7,
Annex G.

SafetyEW-6:1

8

System and environment considerations

IAR Embedded Workbench®
Safety Guide

Before you start a project with functional safety requirements, consider these issues:

● If you have decided to use C/C++, safety standards generally advise you to use plain
C with a suitable language subset, or C++ with a suitable language subset. The build
toolchain supports both C99 (Standard C) and C89. See IEC 61508-7, table C.1 and
IEC 61508-3, section 7.4.4 for advice on language selection.

Advice 2.1-1: Make an informed decision on what language, language dialect, and
language subset you will use.

Advice 2.1-2: Consider available tools that enforce the use of suitable language
subsets, for example, MISRA C rule checkers.

● If you have decided to use Standard C, safety standards generally advise you to use
Standard C without any extensions. However, it can be useful from an
implementation and code quality perspective to use various language extensions, for
example, hardware-specific keywords or intrinsic functions.

Advice 2.1-3: Consider isolating the use of language extensions to specific
modules to maximize the portability of the code base and simplify the use of
compiler-independent code analysis tools. Such isolation also facilitates proper
testing of the code that depends on the language extensions.

● The C standard library provided with IAR Embedded Workbench contains
functionality mandated by Standard C. The library is delivered by a third-party
vendor and adapted by IAR Systems to suit typical resource-constrained
microcontrollers. Different standards for software development with functional
safety requirements put different constraints on the use of such pre-existing code
and functionality. For certain functionality, such as I/O and threading, the library
depends on a low-level interface that you must implement yourself. For more
information about using DLIB in a functional safety project, see The C/C++
standard libraries, page 27. For more information about the DLIB runtime
environment, see the IAR C/C++ Development Guide.

Advice 2.1-4: Consider how pre-existing code should be treated and tested.

Advice 2.1-5: Consider how to implement and test the parts of the low-level
interface that your application needs.

● The supplied libraries also contain low-level code to handle system startup and exit,
as well as runtime routines needed by compiled code, for example, floating-point
arithmetic. The IAR Systems implementation adheres to a freestanding
implementation of Standard C/C++, which among other things means that you can
control the code for your application’s system startup and exit.

Advice 2.1-6: Consider not using the default code for system startup and exit, but
instead use your own versions to fully control the behavior of your application.

SafetyEW-6:1

Using a build toolchain in functional safety projects

9

Advice 2.1-7: If you decide to use your own versions of startup and exit code,
consider how this code should be handled and tested. For more information, read
about system startup and termination in the IAR C/C++ Development Guide.

Advice 2.1-8: Read about implementation-defined behavior for Standard C in the
IAR C/C++ Development Guide.

2.2 IAR LANGUAGE EXTENSIONS

The IAR compiler supports many different language extensions that can be divided into
two categories:

● Extensions for embedded system programming

● Relaxations of Standard C rules.

The first set of extensions covers additions to the language that make it easier to deal
with the specific hardware you are using. This category includes extensions like type
and object attributes for memory placement and memory area selection, alignment
control, interrupt routine definitions, relaxation of permitted types in enum and bit field
definitions, intrinsic functions to use special features of the target CPU, etc.

The second category consists of relaxations of some restrictive Standard C rules. This
relaxation of rules is similar to how many other C compilers behave by default.
Extensions include, for example, conversions between void pointers and other pointer
types in some situations, assignment and pointer difference between types that are
interchangeable but not identical, single value initializations of arrays, structs, etc.

Safety standards generally advise that you should not rely upon language extensions,
implementation-defined behavior, or undefined behavior. However, it might be difficult
to develop high-quality embedded systems without relying on tool-specific
functionality, for example, to access memory-mapped peripheral devices, and to create
interrupt handlers. Another example is accessing special features of the CPU that do not
map naturally to the C/C++ language without using special compiler-provided intrinsic
functions.

Advice 2.2-1: For development of software with functional safety requirements, there
can be a trade-off between using a well-tested language extension and implementing
the same functionality by other means. When you can choose between using a
language extension or implementing similar functionality in your own source code,
discuss with your assessor and other stakeholders on how to proceed. When
deciding, consider factors like maintainability, portability, usability, and readability.

Advice 2.2-2: For an overview of the different levels of available language extensions,
read about using C and C++ in the IAR C/C++ Development Guide.

Advice 2.2-3: In your coding standard, include advice about how to use language
extensions.

SafetyEW-6:1

10

System and environment considerations

IAR Embedded Workbench®
Safety Guide

Advice 2.2-4: Partition source files and header files to isolate the use of language
extensions as much as possible. This might include creating a formal hardware
abstraction layer.

Advice 2.2-5: The build chain does not by default enable generation of remarks—the
least severe type of diagnostic messages. Enabling remarks can give you additional
hints on language constructs that are non-standard, non-portable, or might produce
unintended results.

If you need to implement a piece of functionality directly in assembler language, see the
IAR Assembler Reference Guide for a description of the accepted assembler syntax for
your product.

Advice 2.2-6: Consider that assembler syntax is often vendor-specific, which means
that assembler code written for a specific toolchain is seldom directly portable to another
toolchain for the same target architecture.

Advice 2.2-7: Due to the lack of portability and the risk of introducing errors that are
hard to find in the interaction between the high-level C/C++ source code and the
assembler code, consider carefully if there are alternatives to using assembler language.
Read about mixing C and assembler language in the IAR C/C++ Development Guide.

2.3 MISRA C STANDARDS AND THE MISRA C CHECKER

Safety standards generally require you to adopt a coding standard to deal with hazardous
constructs in the programming language you select. For C, it is recommended that your
coding standard incorporates the MISRA C rules, or another set of rules with similar
intent.

Note: The current revision of the MISRA guidelines is MISRA C:2012, which is
currently not supported by the built-in MISRA C checker in the compiler. However, the
C-STAT static analysis add-on tool supports MISRA C:2012, as well as
MISRA C:2004 and MISRA C++:2008.

Advice 2.3-1: If you decide on any of the MISRA C standards, the MISRA C
guidelines recommend using at least one MISRA C checker to get the best possible
analysis quality.

Advice 2.3-2: If you are using the full version of IAR Embedded Workbench, consider
setting up the built-in MISRA C checker for the previous MISRA C:2004 or
MISRA C:1998 standards to be part of the build process. In this case, you should
also consider using another MISRA C checker—because the MISRA C checker in
IAR Embedded Workbench is based on the same technology as the IAR C/C++
Compiler and has the same view of the source code as the compiler, it is important
to rule out common modes of error by using more than one checker.

SafetyEW-6:1

Using a build toolchain in functional safety projects

11

Advice 2.3-3: Get a copy of the relevant MISRA C standard to review the rationale for
each rule. Aim to adhere to all MISRA C rules in your project and make deviations
a rare exception.

Advice 2.3-4: If you decide to ignore certain rules globally, consider configuring the
MISRA checker to ignore those rules to minimize irrelevant messages. For
example, both C-STAT and the built-in MISRA checkers can be configured to
ignore specific rules globally and for individual files.

2.4 HAZARD AND OPERABILITY ANALYSIS

Safety standards generally require you to perform a hazard and operability analysis
(HAZOP analysis) of potential tool failures. See IEC 61508-3, section 7.4.4.5 and
IEC 61508-7, section C.6.2.

In the context of the build toolchain, a HAZOP analysis can be interpreted as an analysis
of possible failure modes.

Advice 2.4-1a: Consider the following possible failures—the different types of
diagnostic messages—when setting up the tools environment, and when planning the
test and validation activities:

● Remarks

Using C/C++ in a non-standard-compliant way will generate a remark—minor
remarks are only produced when the --strict compiler option is used. Other
sources for remarks are source constructs that potentially might cause problems in
the application. To enable remarks, use the --remarks compiler option.

● Warning messages

Warning messages generally indicate that the toolchain has identified potentially
erroneous or ambiguous behavior in your source code, in the compile stage or link
process.

Advice 2.4-1: Strive for clean builds with no warning messages.

Advice 2.4-2: Consider having guidelines on when and how it is acceptable to
ignore tool warnings.

Advice 2.4-3: Consider enabling the proper build options to treat all warnings as
errors, at least for release builds and integration builds.

Advice 2.4-4: Document and sign off any particular warning that must be ignored
to accomplish the desired effect.

Note: The absence of warnings does not indicate that your code is free from potential
erroneous or ambiguous constructs. To avoid such constructs, IEC 61508 recommends
the use of a well-defined language subset, like the MISRA C:2012 or MISRA C:2004
rules.

SafetyEW-6:1

12

System and environment considerations

IAR Embedded Workbench®
Safety Guide

● Error messages

The toolchain will not produce code for modules that produce error messages.
Therefore, error messages are favorable from a functional safety perspective as they
cannot be ignored.

● Option settings not treated correctly

Advice 2.4-5: Consider verifying that no options set explicitly in the IAR
Embedded Workbench IDE are ignored by the build tool. To verify this, make
sure that each option you have set is listed as part of the active command line in
the build tool list files.

Advice 2.4-6: Examine any implicitly set options to make sure that their effects are
in line with the project goals. For example, when some optimization settings are
enabled, a set of dependent functionality will be assumed. That functionality can
be turned off by explicit options.

For example, for a High optimization level, a set of transformations will be
implicitly enabled and must be explicitly disabled by a specific option. The
--no_cse option is an example of such an option.

Advice 2.4-7: In the IAR Embedded Workbench IDE, the Options dialog box
verifies that incompatible options cannot be active at the same time. For options
that you specify directly on the command line, the toolchain will warn about
conflicting settings. For some options, however, it is impossible for the tool to
know whether dependent options are allowed or not. For example, if you select
the CPU core explicitly instead of specifying a specific device, there is a risk that
you enable core-specific features that are not available on the device you are
using. Review your option settings to make sure the correct functionality is
achieved.

● Internal errors

Internal errors are indications from the toolchain that it has detected an internal
inconsistency that prevents the tool from generating the correct output. An internal
error can be the result of unexpected erroneous input to the tool, or a malfunctioning
of the tool in response to correctly formed input.

Advice 2.4-8: If you receive an internal error from the build toolchain, you should
report it as a bug to your IAR Systems support contact or your reseller. Inspect
the input that caused the internal error to determine if the input is supposed to be
valid according to language standards and other constraining factors, or if the
input is erroneous.

● Silent errors

A silent error is a tool error that is not reported by any kind of diagnostic message,
and therefore has the potential to silently produce malfunctioning code. This type of

SafetyEW-6:1

Using a build toolchain in functional safety projects

13

error is of course the most problematic kind of tool error, and as such should be given
some extra consideration during test and validation planning.

Advice 2.4-9: Consider employing these strategies to prevent and catch this kind of
issue:

❍ Regularly access updated information from the tool vendor about newly found
and fixed issues in the toolchain. This information is available in release notes
for new versions. For demanding projects, consider approaching your tool
vendor for a special support agreement to get the most up-to-date information on
known issues.

❍ Create different build configurations that differ in, for example, compiler
optimization settings, linker configuration, and debugger setup. Each build
configuration is then subjected to the same set of tests the build configuration
used for release builds, and any discrepancies are analyzed. A side effect of this
kind of testing is that erroneous source code that happens to work with one set of
build options can be found. As an example, consider a piece of code that does not
use the volatile keyword correctly—this code might execute tests correctly
for low compiler optimization levels, but sometimes break on higher
optimization levels.

Advice 2.4-10: As a minimum, consider a matrix of configurations exercising
combinations of the following properties:

– Maximum and minimum optimization levels.

– For a CPU architecture that can accept different instruction sets, consider
adding at least one test configuration for the instruction set that will not be
used for release builds.

– If the C standard library is used, configure the runtime library in different
ways to validate that application behavior is correct for the chosen
configurations.

– If your application uses floating-point arithmetic and the chosen CPU
contains an FPU unit, consider disabling the FPU support in one test
configuration.

❍ Different test coverage metrics collected on unit tests and integration tests help
direct test efforts to achieve the confidence level needed for correct functionality.
Employ coverage-directed testing to validate correct behavior of the
implemented functionality, and also efficiently discover potential tool errors.

Note: Some safety standards require 100% code coverage for the selected
coverage metric. See for example, IEC 61508-3, table B.2 and IEC 61508-7,
section C.5.8.

❍ Strive for code that does not depend on any implementation-defined behavior, or
any undefined behavior as defined by the language standard. Furthermore, strive

SafetyEW-6:1

14

System and environment considerations

IAR Embedded Workbench®
Safety Guide

for code that is clean with respect to the MISRA C rule set or the selected coding
standard.

2.5 DEVICE-SPECIFIC SUPPORT FILES

The product package contains support files for various devices. Depending on the
product you are using, the number of supported devices can range from less than a
hundred up to several thousand.

Files needed to support a specific target device are usually made up of these types:

● I/O definition header file: Defines mnemonic names for peripheral units and
memory mapped peripheral device registers, so they can be accessed from the code
with names resembling the names in the user documentation.

● Device definition file for the C-SPY debugger: Defines, for example, device-specific
memory regions that give the debugger the possibility to check memory accesses
and other functionality.

● Linker configuration file: Instructs the linker on how to place code and data
segments for a specific device or device family.

● Flash loader support: Device-specific or device family-specific debugger plugin
that downloads code to flash.

● C-SPY macro file: A general macro file that is sometimes used for setting up
specific functionality of the debugger or device prior to execution of code.

All such support files are to be considered as convenience files. The toolchain can be
used without support files, and you can always supply the needed information or work
around the need for it. The build toolchain does not depend on the support files, and you
are encouraged to create, for example, your own linker configuration file.

Note: Often, the device manufacturer supplies these files with minimal file validation.
However, errors in support files are easily detected as they usually make the hardware
behave incorrectly, or make it not work at all.

Advice 2.5-1: Make sure you have a clear picture of the support file dependencies for
your project. Discuss with project stake holders and, if applicable, your assessor on
how to treat these files and whether special measures are needed to test their
functionality, besides integration testing.

Advice 2.5-2: If you are planning on using a new device that is not covered by any
support files in your product package, you can often retrieve the required support
files from a newer, certified, or non-certified version of IAR Embedded Workbench
for your target CPU, or in certain cases directly from your device manufacturer. For
reasons of reliability and accumulated confidence from use, however, consider
using a well-known device that is already on the market.

SafetyEW-6:1

Using a build toolchain in functional safety projects

15

2.6 COMPATIBILITY BETWEEN DIFFERENT VERSIONS OF
THE SAME TOOLCHAIN

A major product update, for example from version 5 to version 6, of an IAR toolchain
is not usually backward compatible. Therefore, you must recompile or reassemble all
source code of an application using the new version.

All IAR Systems tools display their version number as part of the sign-on message or,
for example, in list files when executed from the command line.

Advice 2.6-1: Before you update an IAR toolchain, make sure that any third-party
libraries used are available in a version that is compatible with the new IAR
toolchain version.

A minor update of an IAR toolchain, for example from version 6.1 to version 6.2, is
usually backward compatible. However, problems found and corrected in supported
public Application Binary Interfaces (ABI) can make the toolchain backward
incompatible.

Advice 2.6-2: Before updating to a new version, read the release notes for the IAR
toolchain to determine whether there are any backward incompatibilities.

Note: Any updates to a certified version of IAR Embedded Workbench are always
backward compatible.

2.7 COMPATIBILITY WITH OTHER TOOLCHAINS

As a rule, an IAR toolchain is not fully compatible with other vendors’ toolchains for
the same microcontroller. Depending on which object format and which application
binary interfaces your product uses, the IAR toolchain can be interoperable with
toolchains from other vendors. Normally, this means that source code written for the
IAR toolchain:

● Can use global variables and functions in the linked-in code from other toolchains

● Might fail to link, or link but fail at runtime, if the code from another toolchain uses
C library functionality, or if that code needs compiler-intrinsic support.

Advice 2.7-1: If you are using an IAR toolchain other than IAR Embedded
Workbench for Arm, read the IAR C/C++ Development Guide for information
about compatibility with toolchains from other vendors.

Note: The following ABI information only applies to product packages that include the
ILINK Linker.

Advice 2.7-2: If you are using a supported standardized ABI, for example, the Arm
AEABI or the RX C ABI, read about ABI compliance in the IAR C/C++
Development Guide for information about whether code produced by third-party

SafetyEW-6:1

16

System and environment considerations

IAR Embedded Workbench®
Safety Guide

tools can be linked. If so, you can also find information about how to link
third-party tools, and with what limitations.

Basically, an ABI defines:

● The C library interface

● The compiler intrinsic library—support functions needed for the compiler

● The C++ runtime interface—support for exceptions, RTTI, new/delete, etc, but not
for the C++ library interface itself.

The ABI makes it possible to use any third-party code—if compiled in ABI mode—in
an application, and it is treated as any other code in the application.

Advice 2.7-3: If you import third-party code, make sure that it is translated with the
correct ABI mode enabled, and that the complete application is translated with the
ABI mode enabled.

2.8 GENERAL GUIDELINES ON MCU SELF-CHECK
STRATEGIES

Safety standards advise or mandate the use of various self-checking strategies for
runtime integrity of the hardware. For example, consider the requirements of the
IEC 60730 standard for white goods appliances. For some classes of appliances, this
standard poses detailed requirements for stack pointer checking, the use of memory
checking strategies, and a watchdog timer for various purposes. These tests are focused
on detecting hardware errors. However, similar strategies can be used for testing various
aspects of the software integrity. Most CPU vendors that aim for this appliance area have
created libraries to assist their customers with this testing. This means that even if you
are not working under IEC 60730 requirements, you can use or modify selected tests,
and take advantage of existing libraries to enhance your software testability.

Advice 2.8-1: Familiarize yourself with the self-check requirements in the IEC 60730
or other application standard, even if you have no specific self-check requirements
for your project.

Advice 2.8-2: Review and use vendor libraries to implement the selected tests, making
sure that you have a clear understanding of what a selected library does and does not
test for. If applicable, discuss with your functional safety assessor how to best use
library functionality.

Advice 2.8-3: Follow the advice on stack depth checking in Stack depth
considerations, page 20.

Advice 2.8-4: Implement and run appropriate tests also for projects that do not
explicitly mandate their use.

SafetyEW-6:1

Using a build toolchain in functional safety projects

17

3 Installation, commissioning, operation, and maintenance
For information about how to install, invoke, use, and maintain IAR Embedded
Workbench and its build toolchain, see the Installation and Licensing Quick Reference
—available in the product box—and the Licensing Guide.

For a project with functional safety requirements, consider the following issues:

Advice 3-1: Never install a new toolchain, or an updated version of a toolchain, on top
of an existing toolchain, unless there are specific reasons for doing so.

Advice 3-2: Never install IAR Embedded Workbench where it shares the common
directory with another IAR Embedded Workbench, unless there are specific reasons
for doing so—the two different versions would share a common IDE and debugger
components. Installing IAR Embedded Workbench so that it shares the common
directory with another version means that the existing installation could potentially
be updated with newer (or older) common components from another product.

However, if two installations of IAR Embedded Workbench do share the common
directory, there are mechanisms to ensure module consistency. By means of runtime
model attributes, the linker ensures that modules that are linked into an application
are compatible.

Note: The IAR Embedded Workbench installation wizard suggests an installation path.
If the new installation is incompatible with a previous installation, the suggested path is
not the same as for the previous installation.

Note: If your project involves more than one CPU and the CPUs use different IAR
toolchains, it can be useful to let the toolchains share the common directory. In that case,
consider implementing a versioning policy to avoid accidental updates of common
components.

Advice 3-3: If you create automated builds that are not based on the IAR Embedded
Workbench workspace and project files, consider making all references to the build
tools absolute and not dependent on, for example, environment-provided path
variables or similar.

Advice 3-4: Consider archiving the entire build environment as a snapshot before you
update any tools in the toolchain. The archiving can be done in any way, as long as
you can recreate and use a previous build environment at a later stage.

Advice 3-5: The typical workflow and build process in IAR Embedded Workbench is
similar to corresponding processes in other integrated development environments.
However, it is likely that the setup, configuration, customization, and adoption of
the toolchain have different degrees of freedom compared to other toolchains. Read
and familiarize yourself with the build process described in the IAR C/C++
Development Guide.

SafetyEW-6:1

18

Setting up the build environment

IAR Embedded Workbench®
Safety Guide

You should keep up to date with any newly identified issues in the toolchain. If you have
a valid support and update agreement for functional safety, IAR Systems will
periodically and automatically send you information on issues that are relevant for
development under functional safety requirements. You should review and assess this
information for potential impact on your source code.

If you identify an error or problematic condition in the toolchain, report this to IAR
Systems, who will process the information and inform you whether the issue is a bug or
not. In the case of a confirmed bug, you will receive potential workarounds and a
tracking ID for the issue that maps to information in release notes and other
communication. If the issue has consequences for functional safety development, the
issue and ID will be included in periodic information from IAR Systems.

For information on how to submit bug reports, see Technical Support at www.iar.com.

4 Setting up the build environment
This section covers topics related to designing your build environment.

4.1 DEBUG MODE, RELEASE MODE, AND BUILD
CONFIGURATIONS

IAR Embedded Workbench supports the concept of build configurations where you can
easily specify different ways to build and debug an application. One build configuration
can differ from another build configuration by option settings, the set of defined
preprocessor symbols, or the set of files included in the build. When you create a project,
IAR Embedded Workbench automatically creates two build configurations—Debug and
Release. There are several practical reasons for creating different build configurations.
For more information about how to create and use build configurations, and the
differences between the two default configurations, see the IDE Project Management
and Building Guide.

Note: For IAR Systems compilers, adding debug information does not impact the
performance or size of the executable image. No actual instructions or data storage are
introduced when debug information is added to the link image. The only information
that is added is meta information used by the debugger to cross-reference instructions,
stacks, registers, and labels to the source code.

Advice 4.1-1: As a minimum, consider the following build configuration scenarios as
part of your test and validation cycle:

❍ Build configurations with different optimization goals

Using different optimization goals can help you track errors caused by source
code that depends on undefined behavior or implementation-defined behavior

SafetyEW-6:1

Using a build toolchain in functional safety projects

19

according to the language standard. This strategy can also help in identifying
performance issues with the code.

❍ Clean release build configuration

Early in your project cycle, you should define and create a build configuration for
release builds. This build configuration should be set up to be as close as possible
to the needs of the final production environment, including optimization levels
and, if applicable, production-ready output file formats. This build configuration
should be used as the basis for all testing throughout the project. Unless there are
specific reasons otherwise, this build configuration output file is what should be
delivered to external stakeholders outside the software development team.

The build configuration should never be changed unless production needs dictate
a change. If you need a build configuration based on the release configuration
with changes for debugging purposes, the changed configuration should be
cloned from the release configuration.

Note: If you enable debug support in the compiler, meta information will be
added to the object file. The debugger can use this meta information to display
high-level information when running the application. This information does not
impact how the application behaves at runtime. However, when you set options
for the runtime library and the C/C++ standard library, and then choose to enable
debug support for certain low-level I/O functionality that enables functionality
like file operations on the host computer, etc, such debug support will have an
impact on the performance and responsiveness of your application.

Advice 4.1-2: Dynamic runtime analysis tools like C-RUN can help pinpoint potential
error sources and direct test efforts. Add one or more build configurations to set up
the build environment for the analysis tool. For more information about C-RUN, see
Add-on analysis tools, page 23.

Note: Analysis tools that operate on a running application, typically instrument the
code being tested by adding code to detect interesting situations and keep track of
statistics, which impact the performance characteristics of the code. Therefore, if
tests are run on instrumented code, you should make sure that the non-instrumented
application passes all relevant tests.

4.2 BUILD OPTIONS

Advice 4.2-1: When you set up a new build project and workspace, make sure you
only include relevant settings for the particular build configuration. Consider
reviewing these examples:

❍ Preprocessor symbols used for directing conditional compilations should be
reviewed to verify, for example, that there are no irrelevant preprocessor defines
specified for the release build configuration.

SafetyEW-6:1

20

Setting up the build environment

IAR Embedded Workbench®
Safety Guide

❍ The setup of your CPU, data, code models, etc—if applicable in the toolchain
you are using. The settings should not be too permissive or restrictive.

❍ For certain devices, you can use different memory byte orders—little and
big-endian. Make sure you have selected the correct byte order options for your
target architecture, and that the selection also matches any third-party code you
use in your project.

❍ Linker and standard library settings should be reviewed to verify that C standard
library I/O is handled correctly.

❍ Library settings should be reviewed to verify, for example, that the library
supports the application’s needs, or that it does not contain superfluous features,
etc.

❍ Settings for the programming language should be reviewed to verify, for
example, the sign of the char type, the level of ANSI compliance, enabled
extensions like intrinsic functions, etc.

❍ If your project needs different build options for different source files, consider
collecting files with similar settings in a dedicated source code group in your
IAR Embedded Workbench project, to avoid accidentally changing or leaving
settings in place for files where the project-global settings are overridden.

❍ If you are using the add-on tool C-RUN to analyze the behavior of your code at
runtime, you must set certain compiler and linker options. These options are not
usually set for final production code. For more information, see Advice 4.1-2 and
Add-on analysis tools, page 23.

Advice 4.2-2: Read about compiler and linker options in the IAR C/C++ Development
Guide. Read about assembler options in the IAR Assembler Reference Guide.

4.3 STACK DEPTH CONSIDERATIONS

Advice 4.3-1: Consider these issues:

❍ Keep stack allocation to a minimum.

❍ Allocate resources statically in an early stage of your project. In that way, it is
possible to already know at link time exactly how much memory these resources
will claim. However, for small data items with small scope and transient lifetime,
referencing these static objects can potentially consume more registers and
increase stack depth. Examples of such objects are loop counters and similar
objects used for short-lived or temporary data.

❍ Pay attention to worst-case length of function call chains and recursion chains,
and remember that interrupts increase stack usage.

❍ Consider implementing your own procedure, possibly tool-assisted, to assess
stack depth for your application.

SafetyEW-6:1

Using a build toolchain in functional safety projects

21

Advice 4.3-2: Consider writing a magic number or pattern at startup to each RAM
memory location that is not used for stack, dynamic heap memory, or instructions.
This pattern can be checked periodically during runtime by a dedicated stack check
routine. Depending on the exact requirement specified by the safety standards, this
check can either be enabled only for testing purposes, or be part of the final release
build. When you manually view the memory section in a debugger memory
window, a careful selection of the fill pattern can also assist you in identifying stack
overflows and buffer overruns.

4.3.1 Stack usage analysis

Depending on which product you are using, IAR Embedded Workbench incorporates
stack usage analysis that can assist you in computing the worst case stack depth for your
application code. The advantages of using the stack usage analysis integrated with the
compiler and linker toolchain is that the stack analysis operates on the same information
for stack usage and layout as the compiler and linker. For more information about stack
usage analysis, see the IAR C/C++ Development Guide.

Advice 4.3.1-1: Consider using stack usage analysis if it is available in your product.

4.3.2 Tracking stack usage using the debugger

The Stack window in the C-SPY debugger can optionally track stack usage. For more
information, see the C-SPY® Debugging Guide.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xCD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can grow
incorrectly outside its bounds, and even modify memory outside the stack area, without
actually modifying any of the bytes near the stack range. Likewise, your application
might modify memory within the stack area by mistake.

Advice 4.3.2-1: Consider using the stack usage tracking functionality in C-SPY.

Advice 4.3.2-2: If you use a product that supports the C-RUN add-on tool for runtime
error checking, consider setting up one or more test configurations that use C-RUN
to detect various errors, including conversion errors and out-of-bounds issues.

4.4 LINKER CONFIGURATION

Safety standards generally advise that applications operating under functional safety
requirements should not use dynamically allocated objects on the heap or the stack. See
for example, IEC 61508-3, table B.1.

SafetyEW-6:1

22

Setting up the build environment

IAR Embedded Workbench®
Safety Guide

Note: The standard makes a distinction between objects and variables.

Advice 4.4-1: Familiarize yourself with the configuration possibilities of the linker.

Advice 4.4-2: If you must use dynamically allocated objects on the heap or the stack,
consider this:

❍ Familiarize yourself with heap setup for projects that do not use dynamic
memory allocation so that heap memory is not accidentally allocated—thus
impacting on available memory space.

❍ Avoid placing a large amount of data on the stack. Plan for this during the
architecture and implementation phases.

Advice 4.4-3: Make sure the linker generates map files, and that you review the map
file generated for your release build configuration regularly.

For information about how to set up the linker configuration file, including information
about how to set up and allocate memory for the runtime stack and for the dynamic
memory allocation on the heap, see the IAR C/C++ Development Guide.

4.4.1 Heap memory allocation

C/C++ constructs that use heap memory are:

● The C heap interface: malloc, calloc, realloc, and free.

● Variable length arrays (VLA)—the actual storage for such arrays is allocated on the
heap.

● Certain C library functionality, such as:

❍ File I/O

❍ Locale

❍ printf and scanf for wchar_t formatters

● The C++ heap interface: new and delete

● C++ exceptions

● The C++ standard template library (STL)

● Most of the C++ library.

If the heap is used dynamically, there is a risk that it will be increasingly fragmented.
This means that it will become increasingly difficult to allocate a large amount of heap
memory. Eventually, the application will run out of heap memory, even though the
amount of free bytes on the heap is sufficient.

Advice 4.4.1-1: To reduce the effects of this problem, consider these strategies:

❍ Use a tool that checks that any used heap memory is freed when it is no longer
needed.

SafetyEW-6:1

Using a build toolchain in functional safety projects

23

❍ Only use the heap locally, for example, by making a function allocate the heap
memory it needs and when finished, make the function free the same amount of
memory.

❍ Allocate the heap memory at the startup of the application and never free the
heap.

Advice 4.4.1-2: To make sure that the heap is not used from the application by
accident, change the setup in the linker configuration so that no RAM is allocated
for the heap. Any use of the heap will then return or throw an Out of memory error.

4.5 ADD-ON ANALYSIS TOOLS

Some IAR Embedded Workbench products have add-on tools for static and
dynamic/runtime error checking.

● C-STAT: a tool for static analysis of C/C++ source code, supports MISRA C:2012,
MISRA C:2004, and MISRA C++:2008, as well as numerous coding rules from
CWE and CERT.

● C-RUN: a tool for runtime error checking, can detect various runtime errors, like
conversion errors, shift errors, pointer out-of-bounds issues etc.

Note: C-RUN is currently only available for IAR Embedded Workbench for Arm
and RX.

For more information about C-STAT and C-RUN, see the C-STAT® Static Analysis
Guide, and the C-SPY® Debugging Guide for Arm, or C-SPY® Debugging Guide for
RX respectively.

Advice 4.5-1: If you decide to use one or both of these tools, consider the following:

❍ C-RUN and C-STAT are add-on tools and are not certified against any functional
safety standard. This does not imply that the tools cannot be used in projects
with safety requirements, on the contrary, they can help you find programming
errors and issues at an early stage. Discuss with your assessor how to incorporate
C-RUN and C-STAT into your development cycle.

❍ C-RUN and C-STAT are fully integrated into the IAR Embedded Workbench
IDE and can be used in the daily development workflow. This means that the
tools accept the same language dialects as the build chain, and therefore
configuration of language compliance, and configuration for adaptation to the
build environment, are not needed.

❍ Messages reported by the analysis tools should be reviewed to determine
whether they make sense. Note that errors reported by C-RUN are reported from
running code, which means that the code under test is likely to contain code
constructs that break one or more language rules.

SafetyEW-6:1

24

Implementation and coding considerations

IAR Embedded Workbench®
Safety Guide

5 Implementation and coding considerations
This section covers topics related to the implementation and coding of your application.

5.1 OPTIMIZATION MODES

5.1.1 Optimization modes overview

The compiler performs many transformations on your application to generate the best
possible code. Examples of such transformations are storing values in registers instead
of in memory, removing superfluous code, reordering computations in a more efficient
order, and replacing arithmetic operations with more efficient operations.

Note: The more optimization that is applied to the source code, the less the resulting
machine code’s structure will resemble the structure of the original source code. This
means that at high optimization levels, it is difficult to map the produced machine code
to the corresponding source code statements, and it is difficult to preserve the values of
variables during debugging.

Advice 5.1.1-1: Sometimes it is not possible to use any compiler optimizations at all,
either for code or for parts of the code, because of detailed requirements on the
traceability of functional safety requirements down to object code. Discuss the
feasibility of using optimizations with your functional safety assessor and other
project stake holders.

5.1.2 Facilitating compiler transformations

You should be aware that some source code constructs can inhibit compiler
optimizations. Such constructs can often also be overly complex, difficult to understand
and maintain, and seldom give any clear benefits in terms of code size or execution
speed.

Advice 5.1.2-1: Review the texts about compiler transformations in the IAR C/C++
Development Guide.

Advice 5.1.2-2: Group together functions that have timing constraints into separate
modules, and use speed optimizations. Use size optimizations on the rest of the
application.

5.2 INTEGRAL TYPE SELECTION

In some situations, the rules for integer types and their conversion can lead to confusing
behavior. Several operators in Standard C automatically convert operands from one type
to another. This includes the rules about integer promotion, implicit conversion, and
common arithmetic conversions. For more information, see chapter 6.3 Conversions in
the C99 standard.

SafetyEW-6:1

Using a build toolchain in functional safety projects

25

Advice 5.2-1: Look out for assignments or conditionals (test expressions) involving
types with different size, and logical operations, especially bit negation.

Advice 5.2-2: Use a well-defined language subset, like the MISRA C:2012 or
MISRA C:2004 rules, to avoid such constructs.

For information about integer types, arithmetic, and how to avoid common mistakes, see
the IAR C/C++ Development Guide.

5.3 FLOATING-POINT ARITHMETIC

The build toolchain complies with the IEEE 754 standard for representing floating-point
numbers. Support for subnormal numbers and exception flags varies with the CPU and
the availability of an FPU unit.

Finite representation of arbitrary decimal numbers will generally lead to rounding and
truncation errors.

Advice 5.3-1: If floating-point calculations have any relevance for the safety functions
of your application, consider analyzing the validity and precision of the
calculations.

Note: Some safety standards have additional rules and guidelines related to
floating-point arithmetic. See IEC 61508-7, section C.2.13.

For more information about floating-point representation, see the IAR C/C++
Development Guide.

5.4 FUNCTIONS

Standard C supports two different styles for function declarations—the Kernighan &
Ritchie style and the prototyped style.

Note: The K&R style is only supported for compatibility reasons.

Advice 5.4-1: Always use the prototyped style when declaring and defining functions.
The compiler does not check parameter types for correctness when a function
declared using K&R style is called.

Advice 5.4-2: Always declare public functions in a header file that is visible from all
source files that define or use the function. This ensures that the declaration is
always synchronized with the definition, and that all callers call the function with
type-correct parameters.

Advice 5.4-3: Use the Require prototypes compiler option
(--require_prototypes) to make the compiler check that no K&R style
function declarations/definitions are used, and that a prototype declaration is present
before the definition of each public function.

SafetyEW-6:1

26

Implementation and coding considerations

IAR Embedded Workbench®
Safety Guide

5.5 GLOBAL SYMBOLS

The safest way to use global symbols, such as functions and variables, is to make sure
that the symbol is known to the compiler before the symbol is used. You achieve this by
declaring the symbol in a header file, and including that header file in any source file
that uses that symbol.

Advice 5.5-1: Make sure there is only one declaration of a symbol in the source code,
and the declaration is placed in a header file. Any module that uses the symbol must
include that header file.

Advice 5.5-2: Make sure all symbols have distinct names.

5.6 CONST AND VOLATILE

The semantics of the volatile type qualifier—as specified in Standard C—prohibits
the compiler from removing accesses to a volatile object, and reordering accesses to
volatile objects. A volatile object is always placed in read-write memory, even if
the object is const declared.

Advice 5.6-1: Make sure you understand all the implications of the volatile
keyword:

❍ Read about volatile in the IAR C/C++ Development Guide for information
about how the specific IAR toolchain you are using treats volatile objects.

❍ Declaring an object volatile informs the compiler that it must not optimize
away accesses and order of accesses to the object.

❍ Declaring an object volatile is not a guarantee that the object will be
thread-safe.

❍ Declaring an object volatile is not a guarantee that accesses to the object will
be atomic. It can be true for certain operations of certain object types and sizes,
but if atomicity is a required property for object access, it must be ensured by
other means.

❍ Declaring an object volatile without guarding object accesses from different
execution contexts with some locking mechanism, might make your
timing-dependent source code work in one specific compiler version using
specific optimization settings. Changing the compiler version, the optimization
settings, or making minor changes to the source code, might lead to erroneous
behavior, unless simultaneous access to the object from different execution
contexts is properly guarded against.

For more information about using volatile, see the IAR C/C++ Development Guide.

The const type qualifier only means that write accesses to the object are forbidden.
Therefore, non-constant objects and constant objects will be placed in memory that is
addressed in exactly the same way.

SafetyEW-6:1

Using a build toolchain in functional safety projects

27

Advice 5.6-2: For information about how the specific IAR toolchain you are using
treats const objects, read about const in the IAR C/C++ Development Guide.

Note: In some IAR toolchains, const objects are placed in RAM. In this case, the
toolchain provides, for example, a specific memory attribute that can be used for placing
such objects in ROM.

5.7 POINTERS

Data pointers to objects with different type qualifiers—const and volatile—point to
the same memory and use the same access method. If the CPU supports different areas
of data memory, the IAR toolchain will probably support one data pointer type for each
different data memory. One of the data pointer types will be used by default.

Advice 5.7-1: If the compiler you are using supports several data pointer types, use the
data model that is most suitable for your application. Read about data models in the
IAR C/C++ Development Guide.

Generally, function pointers are not compatible with data pointers, and saving function
pointers in void * types might not work. If the CPU supports several areas of code
memory, the IAR toolchain will probably support one function pointer type for each
code memory area. One of the function pointer types will be used by default.

Advice 5.7-2: If the compiler you are using supports several function pointers, use the
code model that is most suitable for your application. Read about code models in
the IAR C/C++ Development Guide.

6 The C/C++ standard libraries
This section discusses the use of the C/C++ standard library in projects with functional
safety requirements. The C/C++ standard libraries contain functionality that is not part
of the core language, but which is still standardized. This includes, for example,
I/O functionality, string manipulation, and mathematical functions in the C standard
library, and the parameterized algorithmic functions in the C++ standard library. The
following discussion is restricted to the C standard library, but the same general
principles also apply for the C++ standard library. For a brief discussion of the
C standard library in a safety context, see Language standards compliance, page 7.

Advice 6.0-1: See the IAR C/C++ Development Guide for detailed information on the
C/C++ standard library in IAR Embedded Workbench. For information about the
standard library functions, see the online help system.

6.1 THE C STANDARD LIBRARY

In a functional safety context, the C standard library is most often considered as
pre-existing software, see for example, IEC 61508-3, section 7.4 and IEC 61508-7,

SafetyEW-6:1

28

The C/C++ standard libraries

IAR Embedded Workbench®
Safety Guide

section C.2.10. This means that you must take special measures when using
functionality provided by the library. Generally, you must evaluate all of the available
information on design, verification, testing, and usage of the pre-existing software
element. As a result of the evaluation, measures can be devised to handle specific issues.
In the following text, a number of issues are listed that can help you make informed
decisions about library usage.

6.1.1 Design

● The C standard library provided with IAR Embedded Workbench is licensed from
Dinkumware—the world-leading supplier of standard-conformant C/C++ standard
libraries. Their libraries are used by many tool vendors, including other compiler
and build chain vendors, and organizations that prefer to use a well-known library
implementation. Dinkumware actively participates in the standardization work for
the C/C++ standard libraries, and also actively works together with test suite
providers and parser companies to make sure that their interpretation of the standard
is correct and in harmony with the rest of the industry.

● The C standard library is designed to be fully compliant with the
ISO/IEC 9899:1999 standard, also known as C99 or Standard C. The library is then
customized by IAR Systems to be as efficient as possible on different target
hardware platforms. This also includes, for example, the possibility to select
downscaled support for I/O.

● The library is delivered as a set of pre-built object libraries, with each specific
library built to match, for example, a chosen support level for I/O, a specific calling
convention, a specific instruction subset, etc., and combinations of such features and
choices. For example, for Arm-based microcontrollers this might include the
possibility to call the library from both a 16-bit instruction set and a 32-bit
instruction set.

● For a majority of IAR Embedded Workbench product flavors, the full library source
code is included in the product package, which makes code review of the full library
or selected parts possible.

● The book The Standard C Library (Prentice Hall, 1992) by P. J. Plauger, the founder
of Dinkumware, describes the design of the library.

Advice 6.1.1-1: Assess the need for, and potential gain from, using library
functionality. Consider incorporating a restricted set of allowed functions into the
coding standard, and strictly forbidding the use of other functions.

Advice 6.1.1-2: Assess the available design information and identify possible gaps in
the information with respect to the information required in your project. Note that
implementation complexity varies greatly between different functions in the library.
Perform code reviews on the parts of the library that you would benefit from using
and cross-reference to the standard for the C standard library.

SafetyEW-6:1

Using a build toolchain in functional safety projects

29

Advice 6.1.1-3: Note that the library is C99-compliant, even in cases where the
compiler is instructed to be C89-compliant. This means that some functions will
have a slightly different or extended functionality compared to the C89 standard.

Advice 6.1.1-4: Some low-level library functions like memcpy might, under certain
circumstances, be treated as compiler intrinsic functions, therefore making them
part of the compiler. See IAR language extensions, page 9 for a discussion of
language extension usage. See the IAR C/C++ Development Guide for more
information on when and how that can happen.

6.1.2 Verification and test

Dinkumware thoroughly tests the library before delivery to their customers, using a
combination of in-house conformance tests and stress tests, as well as third-party test
suites from Perennial and Plum Hall. The test suites are cross-referenced to the standard
to make sure that all functionality is verified and validated. IAR Systems then replicates
the tests on the modified library, using internal Dinkumware tests and additional stress
and regression tests, and tests the library in real-world applications. See the Dinkumware
statement (from the product release notes) for a statement from Dinkumware on design,
test, and verification.

Advice 6.1.2-1: Assess and review publicly available information from Dinkumware,
Perennial, and Plum Hall on their test suites.

6.1.3 Usage

Advice 6.1.3-1: If your assessment of the library indicates that you can use certain
parts of the library, consider the following items:

● Defensive programming: In a library context this includes techniques for sanity and
invariant checking of data that passes the API boundary between the application and
the library.

● Unit tests: By implementing project-specific unit tests of selected library
functionality, project-specific confidence can be increased. If full library source
code is available, code reviews can be used to design in-depth tests that incorporate
knowledge of implementation choices.

● Overriding existing functionality: It might in certain circumstances be beneficial to
replace a certain part of the library with a targeted implementation, for example, to
restrict the input domain of some specific function or similar. Note that this requires
a thorough understanding of the inner workings of the library.

● Re-building the full library: It is possible to configure and rebuild the library to
better suit the intended usage. Note that this requires a thorough understanding of
the inner workings of the library, and is only recommended for handling special
requirements.

SafetyEW-6:1

30

The C/C++ standard libraries

IAR Embedded Workbench®
Safety Guide

Advice 6.1.3-2: Make sure that you understand the implications of library thread
safety, and library usage and configuration. For more information, read about
managing a multithreaded environment in the IAR C/C++ Development Guide.

	Contents
	Using a build toolchain in functional safety projects
	1 Introduction
	1.1 The scope of tool usage and assumptions of use

	2 System and environment considerations
	2.1 Language standards compliance
	2.2 IAR language extensions
	2.3 MISRA C standards and the MISRA C checker
	2.4 Hazard and operability analysis
	2.5 Device-specific support files
	2.6 Compatibility between different versions of the same toolchain
	2.7 Compatibility with other toolchains
	2.8 General guidelines on MCU self-check strategies

	3 Installation, commissioning, operation, and maintenance
	4 Setting up the build environment
	4.1 Debug mode, release mode, and build configurations
	4.2 Build options
	4.3 Stack depth considerations
	4.4 Linker configuration
	4.5 Add-on analysis tools

	5 Implementation and coding considerations
	5.1 Optimization modes
	5.2 Integral type selection
	5.3 Floating-point arithmetic
	5.4 Functions
	5.5 Global symbols
	5.6 Const and volatile
	5.7 Pointers

	6 The C/C++ standard libraries
	6.1 The C standard library

