

IAR Visual State
User Guide
UVS-13

2

COPYRIGHT NOTICE
© 2002–2019 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, Embedded Trust, IAR Connect, C-SPY,
C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace, I-scope, IAR
Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Thirteenth edition: January 2019

Part number: UVS-13

This guide applies to version 10.1.x of IAR Visual State.

This guide replaces the obsolete guides IAR visualSTATE® User Guide (UVS-5 and
previous editions), as well as the IAR visualSTATE® API Guide, the IAR visualSTATE®
Version 5 Project Setup Guide, IAR visualSTATE® Reference Guide, IAR visualSTATE®
Quick Start Tutorial, C-SPY®Link User Guide, and Getting Started with visualSTATE®.

Internal reference: IJOA.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Brief contents
Tables ... 43

Preface .. 45

Part 1. IAR Visual State and its components 53

IAR Visual State and state machine design .. 55

Part 2. Project management
using the Navigator ... 69

Project management ... 71

The IAR Visual State Compare Tool ... 101

Custom commands ... 107

Part 3. Designing using the Designer 115

Designing ... 117

States ... 137

Transitions ... 167

Transition elements .. 177

Reusing designs using state machine templates 201

Using variants and features ... 217

Using requirements files ... 223

The Visual State Designer .. 227

Part 4. Simulating using the Validator 319

Simulation .. 321
AFE1_AFE2-1:1

 3

4

Graphical animation .. 335

Tracing ... 341

Analyzing ... 345

Recording and playing test/event sequences 349

The Visual State Validator ... 357

Part 5. Formal verification
using the Verificator ... 411

Formal verification ... 413

Checks performed by the Verificator ... 433

Verificator command line options ... 447

Part 6. Code generation using a Coder 455

Code generation ... 457

HCoder API code generation .. 465

HCoder API reference information ... 471

The Visual State Hierarchical Coder ... 493

Hierarchical Coder command line options 517

Adaptive API code generation ... 569

Uniform API code generation .. 585

Adaptive API reference information .. 589

Uniform API reference information ... 635

The Visual State Classic Coder ... 673

Classic Coder command line options .. 701
AFE1_AFE2-1:1

IAR Visual State
User Guide

Brief contents
Part 7. Testing your
state machine model on hardware 757

Debugging design models using C-SPYLink 759

Debugging design models using RealLink ... 785

Part 8. Documenting Visual State
projects using the Documenter .. 811

Documenting projects ... 813

Documenter command line options .. 837

Part 9. Additional features and utilities 881

Prototyping a graphical interface .. 883

Viewing design models via the Visual State Viewer 907

Using IAR Visual State remotely via the Control Center 909

Importing and exporting design models via XMI® files 927

The Visual State State Machine API for programmatic
manipulation of models ... 931

Handling Visual State files from previous versions 933

Glossary ... 935

Index ... 945
AFE1_AFE2-1:1

 5

6

AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents
Tables ... 43

Preface .. 45

Who should read this guide ... 45

Required knowledge .. 45

How to use this guide ... 45

What this guide contains ... 46

Part 1. IAR Visual State and its components 46

Part 2. Project management using the Navigator 46

Part 3. Designing using the Designer ... 46

Part 4. Simulating using the Validator ... 47

Part 5. Formal verification using the Verificator 48

Part 6. Code generation using a Coder ... 48

Part 7. Testing your state machine model on hardware 49

Part 8. Documenting Visual State projects using the Documenter 49

Part 9. Additional features and utilities .. 49

Other documentation ... 50

User and reference guides .. 50

The online help system .. 50

Web sites .. 50

Document conventions .. 51

Typographic conventions ... 51

Naming conventions .. 52

Part 1. IAR Visual State and its components 53

IAR Visual State and state machine design .. 55

Introduction to IAR Visual State and its components 55

Why use IAR Visual State and state machines 55

IAR Visual State overview .. 56

Important features and advantages ... 59
AFE1_AFE2-1:1

7

8

Application development using IAR Visual State 62

The application development cycle .. 63

Control logic, data manipulation, and device drivers 64

Code required for an application .. 65

Project examples .. 66

Sample source code .. 67

Part 2. Project management
using the Navigator ... 69

Project management ... 71

Introduction to project management using the Navigator . 71

Briefly about the Visual State Navigator ... 71

The Visual State project ... 72

The workspace ... 73

Variants and features .. 75

Setting up workspaces and projects ... 75

Starting IAR Visual State ... 76

Creating a standard workspace .. 76

Creating a new project in a workspace .. 77

Adding an existing project to a workspace .. 78

Setting a project or system as active .. 79

Setting Verificator, Coder, and Documenter options 79

Graphical environment for the Navigator 81

The Navigator main window .. 82

HTML Viewer window .. 85

Navigator Reload Files dialog box ... 86

Navigator Settings dialog box ... 87

New Project dialog box ... 89

New Workspace dialog box .. 90

Output window ... 91

Properties window .. 92

Workspace Browser window ... 92
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

Reference information on Navigator menus 93

File menu .. 94

Edit menu ... 95

View menu ... 96

Project menu .. 97

Tools menu .. 98

Window menu .. 99

Help menu .. 99

Navigator shortcut key summary ... 100

The IAR Visual State Compare Tool ... 101

Introduction to the IAR Visual State Compare Tool 101

Using the IAR Visual State Compare Tool 101

Reference information on
the IAR Visual State Compare Tool .. 102

IAR Visual State Compare Tool window .. 103

File menu .. 104

View menu ... 104

Commands menu .. 105

Help menu .. 105

Custom commands ... 107

Introduction to custom commands .. 107

Briefly about custom commands .. 107

Using custom commands .. 107

Creating a custom command .. 107

Executing a custom command ... 109

Editing or deleting a custom command .. 109

Renumbering custom command macros .. 110

Graphical environment for custom commands 110

Custom Commands dialog box .. 111
AFE1_AFE2-1:1

9

10

Part 3. Designing using the Designer 115

Designing ... 117

Introduction to designing
state machines using the Designer ... 117

Briefly about state machines and designing 117

Runtime behavior—macrosteps and microsteps 122

The Visual State system ... 123

Designing state machines .. 126

Identifying and creating events and action functions 127

Identifying and drawing simple states ... 128

Organizing your states logically .. 129

Creating transitions between your states .. 130

Synchronizing one part of the model with other parts of the model 136

States ... 137

Introduction to states ... 137

Briefly about states ... 137

Simple state .. 140

Composite state .. 140

Initial state .. 141

Shallow history pseudostate ... 143

Deep history pseudostate ... 147

Join and fork pseudostates ... 148

Junction pseudostate .. 149

Connector pseudostate ... 149

Choice state .. 150

State reactions .. 150

Working with states .. 153

Creating a state with a state reaction .. 153

Creating states with a uniform look using stereotypes 156

Drawing a connector state .. 157

Drawing initial, shallow history,

and deep history states (pseudostates) ... 157
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

Drawing fork and join states .. 158

Drawing a junction state .. 159

Drawing a choice state ... 159

Working with composite states and regions 159

Creating a composite state consisting of concurrent regions 159

Hiding the contents in off-page regions ... 161

Adding descriptions for off-page regions .. 163

Excluding states or regions from further processing 163

Transitions ... 167

Introduction to transitions ... 167

Briefly about transitions ... 167

The transition condition ... 168

The transition action ... 172

Completion transitions ... 173

Trigger-less transitions ... 173

Local transitions ... 173

Else transitions ... 174

Transition rule deduction—an example ... 174

Creating transitions ... 175

Transition elements .. 177

Introduction to transition elements ... 177

Briefly about transition elements ... 177

Events ... 179

Event group .. 180

Signal ... 181

Action function .. 182

Working with transition elements
and transition element files .. 183

Creating a transition element ... 184

Making local elements global .. 185

Declaring global elements locally .. 185

Specifying arguments for action function parameters 185

Adding assignments and guard expressions 187
AFE1_AFE2-1:1

11

12

Setting a constraint for a state reaction .. 189

Specifying the signal queue behavior and size 190

Declaring action functions in external C files 192

Setting up an external editor for action functions 192

Searching for a transition element ... 193

Creating and adding a new transition element file 193

Adding an existing transition element file 193

Editing the contents of a transition element file 193

Deleting, renaming, or saving a transition element file under a new

name ... 194

Visual State operators, reference information 194

Precedence of operators ... 194

Assignment operators ... 194

Binary arithmetic operators .. 195

Bit manipulation operators ... 195

Logical operators .. 195

Relational operators ... 195

Unary arithmetic operators ... 196

Unary bitwise operators ... 196

Unary logical operators .. 196

Visual State operands, reference information 196

Visual State data types ... 197

Internal variables .. 198

External variables ... 198

Visual State constants .. 198

Visual State enumerations .. 198

Syntax for guard expressions and action expressions 198

Reusing designs using state machine templates 201

Introduction to state machine templates 201

State machine templates and submachine states 201

Hints for designing state machine templates 203
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

Working with state machine templates and submachine
states .. 204

Creating state machine templates ... 204

Instantiating a state machine template ... 207

Drawing an entry (exit) point state .. 210

Binding state conditions .. 214

Using variants and features ... 217

Introduction to variants and features .. 217

Variants .. 217

Features .. 217

Include/exclude parts in a variant .. 218

Working with variants and features ... 218

Defining a new feature in your model ... 218

Defining a new variant in your model ... 219

Including a region in a variant or feature ... 220

Including a transition in a variant or feature 220

Including a state in a variant or feature .. 221

Including a transition element in a variant or feature 221

Using requirements files ... 223

Introduction to requirements files .. 223

Working with requirements .. 223

Importing requirements .. 223

Customizing the appearance of requirements in use 224

Tying a requirement to a state .. 224

Tying a requirement to a transition .. 224

Tying a requirement to an entry/exit/internal reaction 225

Tying a requirement to a transition element 225

The Visual State Designer .. 227

Introduction to the Visual State Designer 227

Briefly about the Visual State Designer ... 228
AFE1_AFE2-1:1

13

14

Using the Visual State Designer ... 228

Creating and saving a project

with systems and state machine diagrams .. 229

Creating systems and state machine diagrams in a blank project 230

Editing objects in the state machine diagram 231

Inserting notes .. 232

Navigating in the state machine diagram ... 233

Getting warnings for non-verifiable elements 233

Importing C header files into

the project or top-level state machine .. 234

Creating multiple system instances .. 235

Using Designer backup files .. 235

Customizing the Designer .. 235

Graphical environment for the Designer 236

The Designer main window ... 237

Customize Appearance dialog box .. 242

Define Action Function Arguments dialog box 243

Edit Action dialog box ... 244

Edit Constant dialog box .. 246

Edit Enumeration dialog box ... 247

Edit Event dialog box ... 248

Edit Event Group dialog box ... 250

Edit External Variable dialog box .. 252

Edit Features dialog box .. 253

Edit Internal Variable dialog box ... 255

Edit Note dialog box .. 256

Edit Project dialog box ... 257

Edit Region dialog box .. 259

Edit Signal dialog box .. 260

Edit State dialog box .. 261

Edit State dialog box : state reactions .. 263

Edit Submachine State dialog box ... 265

Edit Submachine State dialog box : state reactions 267

Edit Submachine State dialog box : bindings 269
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

Edit System dialog box .. 270

Edit Transition dialog box .. 272

Edit Variants dialog box .. 274

Find dialog box .. 276

Grid Setup dialog box .. 277

Output window ... 278

Project Browser window .. 278

Project View window ... 284

Property window .. 286

Requirements Browser window ... 286

Select Requirements window ... 288

Settings dialog box ... 289

State machine diagram window ... 292

System View window .. 294

Transition Elements window ... 295

Zoom View window ... 298

General Designer windows context menus 298

Reference information on Designer menus 302

File menu .. 303

Edit menu ... 305

View menu ... 306

Insert menu ... 308

Format menu .. 310

Tools menu ... 311

Window menu .. 312

Help menu .. 313

Designer shortcut key summary ... 313

Syntax of C header files ... 316

Syntax for import of function declarations 316

Syntax for import of constants ... 316

Syntax for importing triggers ... 317
AFE1_AFE2-1:1

15

16

Part 4. Simulating using the Validator 319

Simulation .. 321

Introduction to simulating
your model using the Validator .. 321

Briefly about simulating using the Validator 321

Debugging modes .. 322

Viewing elements during simulation ... 322

Conditional breakpoints ... 323

Simulating models using the Validator 324

Creating a new Validator workspace ... 324

Preparing for the simulation ... 325

Specifying event parameters .. 326

Sending events manually ... 327

Filtering events ... 328

Activating automatic signal queue handling 328

Using manual emptying of signal queues .. 328

Handling signal queues for a single system 329

Defining breakpoints .. 329

Using breakpoints .. 330

Changing values of variables ... 332

Setting action function return values ... 332

Forcing states ... 333

Specifying the order of the systems/instances 333

Toggling between Validator mode and Target mode for a window 334

Graphical animation .. 335

Introduction to graphical animation of debug sessions 335

Graphical animation of debug sessions .. 335

Animating debug sessions graphically ... 335

Animating your debug session graphically 335

Setting breakpoints for graphical animation 336

Customizing shapes and colors for graphical animation 336
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

Graphical environment for graphical animation 337

Designer windows in Graphical Animation mode 337

Customize Graphical Animation dialog box 338

Tracing ... 341

Introduction to tracing your state machine model 341

Tracing using the Validator .. 341

Tracing state machine models .. 341

Setting up a trace .. 341

Setting up the trace point ... 343

Analyzing ... 345

Introduction to analyzing using the Validator 345

Static and dynamic analysis ... 345

Analyzing using the Validator ... 346

Performing static analysis .. 346

Performing dynamic analysis ... 347

Recording and playing test/event sequences 349

Introduction to recording and playing test sequences 349

Briefly about recording test and event sequences 349

Briefly about playing recorded test sequences 350

Recording and playing your test sequences 350

Recording a test sequence to a sequence file 350

Viewing output from steps ... 351

Playing your recorded test sequence .. 352

Jumping to a specific step in a recorded test sequence 353

Comparing played test sequences with recorded output 353

Event sequence files description .. 355

Syntax ... 355

The Visual State Validator ... 357

Introduction to the Visual State Validator 357

Briefly about the Visual State Validator .. 358
AFE1_AFE2-1:1

17

18

Graphical environment for the Validator 359

The Validator main window .. 360

Actions window ... 364

Animation Speed dialog box .. 365

Breakpoint Reached dialog box ... 365

Breakpoints window .. 366

Breakpoints Setup dialog box .. 367

Breakpoints Setup dialog box : Actions ... 368

Breakpoints Setup dialog box : Current States 369

Breakpoints Setup dialog box : Events/Signals 370

Breakpoints Setup dialog box : General .. 371

Breakpoints Setup dialog box : Next States 372

Breakpoints Setup dialog box : Variables .. 373

Dynamic Analysis window .. 375

Events window ... 377

Find Trace dialog box .. 379

Guard Expressions window ... 380

Log Mismatch Detected dialog box ... 381

Output window ... 382

Sequence File window ... 383

Sequence File dialog box ... 386

Set Event Parameter Value dialog box .. 386

Signal Queues window ... 387

Static Analysis window .. 388

Systems window .. 389

System Setup window .. 391

Timer Tick Length dialog box ... 392

Timers window .. 392

Trace Point Setup dialog box ... 394

Variables window .. 395

Watch window ... 398

Reference information on Validator menus 399

File menu .. 400

Edit menu ... 401
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

View menu ... 403

Debug menu ... 404

Window menu .. 406

Help menu .. 407

Validator shortcut key summary .. 407

Part 5. Formal verification
using the Verificator ... 411

Formal verification ... 413

Introduction to formal verification using the Verificator ... 413

Briefly about verification using the Verificator 413

The checks that can be performed—an overview 413

Verification modes ... 416

Verification strategies .. 416

Optimizing for verification .. 420

Verifying state machine models ... 422

Starting the verification .. 422

Tracing your verified state machine model 425

Graphical environment for the Verificator 426

Verificator Options dialog box .. 426

Verificator Options : General ... 427

Verificator Options : Check options .. 429

Verificator window .. 430

Checks performed by the Verificator ... 433

Overview of checks, modes, and errors 433

Performing various checks ... 434

Check for unused elements .. 434

Check for activation of elements ... 436

Check for conflicting transitions .. 439

Check for state dead ends ... 440

Check for local dead ends .. 441

Check for system dead ends ... 442
AFE1_AFE2-1:1

19

20

Check for dynamic ambiguous assignments 442

Check for static ambiguous assignments ... 443

Check for signal queue size ... 444

Check for domain errors .. 445

Verificator command line options ... 447

Introduction to invoking the Verificator using command line
options ... 447

Briefly about invoking the Verificator ... 447

Invocation syntax for the Verificator ... 447

Summary of Verificator options .. 448

Descriptions of Verificator options ... 449

-B .. 449

-c ... 449

-ds ... 450

-f ... 450

-large .. 450

-p .. 450

-s ... 451

-S .. 451

-small .. 451

-t ... 452

-u .. 452

-v .. 452

-variant ... 453

-w ... 453

-x .. 453

-y .. 454
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

Part 6. Code generation using a Coder 455

Code generation ... 457

Introduction to code generation,
the Coders, and the APIs .. 457

The Hierarchical coder versus the Classic Coder 457

Code generation using the Visual State Coders 457

The Visual State APIs .. 459

Briefly about the generated code layers ... 461

Size of generated table-based code .. 461

Size of generated readable code ... 462

Generating code using a Coder and an API 462

Tailoring data types for a specific compiler 463

HCoder API code generation .. 465

Introduction to the HCoder API code generation 465

Briefly about HCoder API code generation 465

API table-based code with C++ ... 466

API code ... 467

Using the HCoder API for table-based code and C++ 467

Using the HCoder API ... 469

Setting up the file structure for the HCoder API 469

HCoder API reference information ... 471

HCoder API source files .. 471

HCoder-generated source files for the API 471

Summary of the HCoder API functions 473

Descriptions of the HCoder API functions 474

VSActiveState .. 474

VSDeduct ... 475

VSDelete .. 477

VSProjectEnterState .. 477

VSEventExpl .. 478

VSEventName .. 478

VSGetSystemObjectSize ... 479
AFE1_AFE2-1:1

21

22

VSInitAll .. 479

VSInquiry ... 480

VSProjectLeaveState ... 481

VSMachineExpl ... 481

VSMachineName ... 482

VSNew ... 482

VSNofEventParameters ... 483

VSNofEvents ... 484

VSNofInstances ... 484

VSNofMachines ... 484

VSNofStates ... 485

VSNofVariables ... 485

VSParentMachine .. 486

VSParentState .. 486

VSReinitialize .. 487

VSSetInstance .. 487

VSStateName ... 488

VSSymbolicVariableName .. 489

VSTopMachine .. 490

VSVariableValue ... 490

HCoder API return codes ... 491

VSRC_CannotAllocateMemory .. 491

VSRC_Conflict .. 491

VSRC_EventActive ... 491

VSRC_OK ... 492

VSRC_RangeError ... 492

VSRC_SignalQueueOverflow ... 492

The Visual State Hierarchical Coder ... 493

Introduction to the Visual State Hierarchical Coder 493

Briefly about the Visual State Hierarchical Coder 493

Graphical environment for the Hierarchical Coder 493

Hierarchical Coder Options dialog box ... 494

Hierarchical Coder Options dialog box : Configuration 495
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

Hierarchical Coder Options dialog box : File Output 496

Hierarchical Coder Options dialog box : Memory 498

Hierarchical Coder Options dialog box : Code 499

Hierarchical Coder Options dialog box : Optimization 504

Hierarchical Coder Options dialog box : Extended Keywords 508

Hierarchical Coder Options dialog box : API Functions 510

Hierarchical Coder Options dialog box : C-SPYLink 511

Hierarchical Coder Options dialog box : Names 513

Type identifiers .. 515

Transition rule data format ... 516

Hierarchical Coder command line options 517

Introduction to invoking the HCoder using command line
options ... 517

Briefly about invoking the Hierarchical Coder 517

Invocation syntax for the Hierarchical Coder 518

Summary of Hierarchical Coder options 519

Descriptions of Hierarchical Coder options 524

-af_activeState .. 524

-af_gsos .. 524

-af_gvv ... 525

-af_inquiry .. 525

-af_nofEventParameters ... 526

-af_nofEvents ... 526

-af_nofInstances ... 527

-af_nofMachines .. 527

-af_nofStates .. 528

-af_nofVariables ... 528

-af_parentMachine ... 529

-af_parentState ... 529

-af_topMachine .. 530

-armsemihostingbreakpoint .. 530

-autoentryfunction .. 531

-autoexitfunction .. 531
AFE1_AFE2-1:1

23

24

-constactionfpt .. 532

-constguardfpt .. 532

-constsc ... 533

-constvbfpt ... 533

-cpp ... 534

-cppsourcefileext .. 534

-cspylink ... 534

-D ... 535

-dlibbreakpoint ... 536

-dso ... 536

-epm ... 537

-exclude .. 537

-fullinstrumentation .. 538

-funcexph ... 538

-gds ... 539

-gip ... 539

-H ... 540

-ipev ... 540

-isev .. 541

-issn .. 541

-isvn .. 542

-itcfe ... 542

-ivsufp .. 543

-kw_actionexpr ... 543

-kw_clsame .. 543

-kw_dbexpr .. 544

-kw_guardexpr ... 544

-kw_prj_extvar ... 545

-kw_runtimeinfo ... 545

-kw_sys_extvar .. 546

-kw_systemClass .. 546

-kw_systemObject .. 546

-lssn .. 547

-macros ... 547
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

-namespace ... 547

-no_warnings .. 548

-opt_asse ... 548

-opt_d ... 549

-opt_eise ... 549

-opt_h ... 550

-opt_msc ... 550

-opt_rrs ... 551

-opt_scum ... 551

-opt_sobitarray ... 552

-opt_somos ... 552

-opt_tr ... 553

-opt_ubabiv .. 553

-opt_ubfbev .. 554

-opt_uso .. 554

-path ... 555

-projectheader ... 555

-projectnamespace .. 555

-projectsource ... 556

-pssf .. 556

-pssn ... 557

-R .. 557

-recordingbuffersize ... 557

-riins ... 558

-S .. 558

-samplingbuffersize .. 559

-siss ... 559

-spath .. 560

-ssewi ... 560

-suppress_cspylink_common_files .. 561

-targetbreakpoints ... 561

-txte .. 561

-txtm ... 562

-txts ... 563
AFE1_AFE2-1:1

25

26

-uselivesamplingbuffer ... 563

-usepop ... 564

-userecordingbuffer .. 564

-usesamplingbuffer ... 565

-V ... 565

-variant ... 566

-warnings_affect_exit_code ... 566

-warnings_are_errors ... 566

-width_babiv .. 567

Adaptive API code generation ... 569

Introduction to the Adaptive API code generation 569

Briefly about Adaptive API code generation 569

File structure for Adaptive API code ... 570

Adaptive API table-based code with C++ .. 571

Adaptive API readable code .. 571

Using the Adaptive API ... 572

Getting started generating code for the Adaptive API 572

Generating code for an API ... 572

Setting up the file structure for Adaptive API 574

Using the API ... 574

Using the Adaptive API for table-based code and C++ 582

Converting table-based C applications to C++ code 584

Uniform API code generation .. 585

Introduction to the Uniform API code generation 585

Briefly about Uniform API code generation 585

Uniform API code .. 586

Using the Uniform API .. 587

Getting started generating code for the Uniform API 588

Setting up the file structure for the Uniform API 588

Adaptive API reference information .. 589

Coder-generated source files for the Adaptive API 589

Coder-generated files for Adaptive API code 589
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

Summary of the Adaptive API functions 590

Descriptions of the Adaptive API functions 592

SEM_Expl .. 592

SEM_ExplAbs ... 593

SEM_ForceState .. 594

SEM_GetInput ... 595

SEM_GetInputAll .. 597

SEM_Init .. 600

SEM_InitAll ... 600

SEM_InitExternalVariables ... 601

SEM_InitInstances ... 601

SEM_InitInternalVariables .. 603

SEM_InitSignalQueue ... 603

SEM_Inquiry .. 604

SEM_Machine ... 605

SEM_Name .. 606

SEM_NameAbs ... 607

SEM_SetInstance ... 608

SEM_SignalQueueInfo .. 609

SEM_State ... 609

SEM_StateAll .. 611

VSDeduct ... 612

VSDeductInstance .. 614

VSElementExpl .. 616

VSElementName .. 617

VSForceState ... 618

VSForceStateInstance .. 619

SystemVSGetCurrentStateTree .. 620

SystemVSGetMaxCurrentStateTree ... 621

VSInitAll .. 621

VSInitExternalVariables .. 622

VSInitInternalVariables ... 622

VSInquiry ... 623

VSInquiryInstance ... 624
AFE1_AFE2-1:1

27

28

VSMachine ... 626

VSState ... 627

VSStateAll ... 628

VSStateAllInstance .. 629

VSStateInstance ... 631

Adaptive API return codes ... 632

SES_ACTIVE .. 632

SES_BUFFER_OVERFLOW ... 632

SES_CONTRADICTION .. 632

SES_EMPTY ... 633

SES_FOUND ... 633

SES_NOT_INITIALIZED ... 633

SES_OKAY ... 633

SES_RANGE_ERR ... 633

SES_SIGNAL_QUEUE_FULL ... 634

SES_TEXT_TOO_LONG ... 634

SES_TYPE_ERR ... 634

Uniform API reference information ... 635

Uniform API source files ... 635

Coder-generated source files for the Uniform API 635

Summary of the Uniform API functions 636

Descriptions of the Uniform API functions 638

SystemSEM_InitExternalVariables .. 638

SystemSEM_InitInternalVariables ... 638

ProjectSEM_InitPrjExternalVariables ... 639

SMP_Action ... 640

SMP_Connect .. 640

SMP_Expl .. 642

SMP_ExplAbs .. 643

SMP_ForceState ... 644

SMP_Free ... 645

SMP_GetInput ... 646

SMP_GetInputAll .. 648
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

SMP_GetOutput ... 650

SMP_Init .. 650

SystemSMP_InitAll .. 651

SMP_InitGuardCallBack ... 652

SMP_InitInstances ... 652

SMP_InitSignalQueue ... 654

SMP_Inquiry .. 655

SMP_Machine .. 656

SMP_Name .. 657

SMP_NameAbs .. 658

SMP_NextState .. 660

SMP_NextStateChg ... 660

SMP_SetInstance ... 660

SMP_State .. 660

SMP_StateAll ... 662

SystemVSDeduct .. 663

SystemVSElementExpl ... 665

SystemVSElementName ... 666

SystemVSGetCurrentStateTree .. 667

SystemVSGetMaxCurrentStateTree ... 667

VSGetSignature ... 668

SystemVSInitAll ... 668

Uniform API return codes .. 669

SES_ACTIVE .. 669

SES_BUFFER_OVERFLOW ... 669

SES_CONTRADICTION .. 669

SES_EMPTY ... 670

SES_FORMAT_ERR .. 670

SES_FOUND ... 670

SES_MEM_ERR ... 670

SES_NULL_PTR ... 671

SES_OKAY ... 671

SES_RANGE_ERR ... 671

SES_SIGNAL_QUEUE_FULL ... 671
AFE1_AFE2-1:1

29

30

SES_TEXT_TOO_LONG ... 672

SES_TYPE_ERR ... 672

The Visual State Classic Coder ... 673

Introduction to the Visual State Classic Coder 673

Briefly about the Visual State Classic Coder 673

Graphical environment for the Classic Coder 673

Classic Coder Options dialog box .. 674

Classic Coder Options dialog box : Configuration 675

Classic Coder Options dialog box : File Output 677

Classic Coder Options dialog box : Code .. 679

Classic Coder Options dialog box : Style .. 682

Classic Coder Options dialog box : Extended Keywords 684

Classic Coder Options dialog box : Names 686

Classic Coder Options dialog box : API Functions 689

Classic Coder Options dialog box : C++/C#/Java 690

Classic Coder Options dialog box : Readable Code 691

Classic Coder Options dialog box : C-SPYLink 692

Classic Coder Options dialog box : RealLink 694

Classic Coder Options dialog box : Types 696

Classic Coder Options dialog box : MISRA 697

SEM type identifiers ... 699

Transition rule data format ... 699

Classic Coder command line options .. 701

Introduction to invoking the Classic Coder using command
line options .. 701

Briefly about invoking the Classic Coder 701

Invocation syntax for the Classic Coder .. 702

Summary of Classic Coder options .. 703

Descriptions of Classic Coder options ... 708

-apiprefix .. 708

-api_type ... 709

-armsemihostingbreakpoint .. 709

-autoentryfunction .. 710
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

-autoexitfunction .. 710

-classname .. 711

-constactionfpt .. 711

-constcml .. 712

-constguardfpt .. 712

-cppcode ... 713

-cppsourcefileext .. 713

-cscode ... 714

-csourcefileext .. 714

-cspylink ... 714

-D ... 715

-dlibbreakpoint ... 716

-dw ... 716

-fullinstrumentation .. 717

-funcexph ... 717

-gds ... 718

-generatetimeandversion .. 718

-H ... 719

-iev ... 719

-iiv .. 720

-include_excluded .. 720

-jvcode .. 721

-keywordheaderfile .. 721

-kw_actionexpr ... 722

-kw_context .. 722

-kw_corelogic ... 722

-kw_dbdata ... 723

-kw_guardexpr ... 723

-kw_intvar .. 723

-kw_prj_extvar ... 724

-kw_rlcd ... 724

-kw_rld ... 725

-kw_rlec ... 725

-kw_rlpd ... 726
AFE1_AFE2-1:1

31

32

-kw_runtimeinfo ... 726

-kw_sys_extvar .. 726

-namespace ... 727

-no_warnings .. 727

-oa ... 728

-og .. 728

-omitcontradictiontests ... 729

-osm .. 729

-path ... 730

-projectheader ... 730

-projectnamespace .. 731

-projectpackage .. 731

-projectsource ... 731

-R .. 732

-rdfm ... 732

-readable ... 733

-reallink .. 734

-recordingbuffersize ... 734

-removevsnofmacros .. 735

-S .. 735

-samplingbuffersize .. 735

-semfunc ... 736

-sne ... 737

-snm .. 737

-sns ... 738

-spath .. 738

-splitreadable .. 739

-suppress_cspylink_common_files .. 739

-sysrdfm ... 740

-targetbreakpoints ... 741

-translatecomments .. 741

-tsemt .. 742

-tvsvt ... 742

-txta .. 743
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

-txte .. 744

-txts ... 744

-typeVStype .. 745

-typeheaderfile ... 746

-typestyle .. 746

-useapiprefix ... 747

-useautovariables .. 747

-useguardtypecast ... 748

-useheap ... 748

-uselivesamplingbuffer ... 748

-usepop ... 749

-userecordingbuffer .. 749

-userfileinclusion .. 750

-userlkw .. 750

-usesamplingbuffer ... 751

-V ... 751

-variant ... 752

-vsbooltype ... 752

-vsdeduct .. 752

-vselementexpl ... 753

-vselementname ... 753

-vsinitall ... 754

-warnings_affect_exit_code ... 754

-warnings_are_errors ... 755

-wrapperfunctionkeyword .. 755

Part 7. Testing your state machine model on
hardware .. 757

Debugging design models using C-SPYLink 759

Introduction to debugging using C-SPYLink 759

Briefly about C-SPYLink ... 759

Operating overview .. 760

C-SPYLink debugging resources ... 760
AFE1_AFE2-1:1

33

34

C-SPYLink execution modes ... 762

State machine breakpoints ... 766

Execution sequences .. 768

Debugging using C-SPYLink .. 769

Installing C-SPYLink ... 769

Before starting the debug session ... 770

Using state machine breakpoints .. 772

Using shared DLIB breakpoints ... 773

Recording an execution sequence .. 774

Troubleshooting—using C-SPYLink .. 775

Graphical environment for C-SPYLink 775

Visual State menu .. 776

Actions window ... 779

Breakpoints window .. 780

Sequences window ... 781

States window .. 782

Triggers window .. 783

Debugging design models using RealLink ... 785

Introduction to debugging using RealLink 785

Briefly about RealLink ... 785

Visual State elements supported by RealLink 787

Validator windows in target versus Validator mode 788

Recorded sequences of target tests ... 789

Target requirements ... 789

Debugging using RealLink ... 790

Setting up RealLink ... 791

Establishing the first RealLink connection 799

Changing between Validator mode and Target mode 799

Changing variable values on target .. 800

Sending events to target ... 800

Controlling application execution on target 801

Troubleshooting ... 801
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

RealLink memory consumption ... 802

State machine model dependent memory use 803

RealLink API dependent memory use ... 803

Graphical environment for RealLink .. 804

RealLink menu ... 804

RealLink Properties dialog box .. 806

RealLink TCP/IP Communication Setup dialog box 807

RealLink RS232 Communication Setup dialog box 808

RealLink Options dialog box ... 809

Part 8. Documenting Visual State projects using
the Documenter .. 811

Documenting projects ... 813

Introduction to documenting
projects using the Documenter .. 813

A project report .. 813

Creating project reports using the Documenter 814

Creating a project report .. 814

Graphical environment for the Documenter 815

Documenter Options dialog box .. 816

Documenter Options dialog box : Configuration 817

Documenter Options dialog box : File Input 819

Documenter Options dialog box : File Output 821

Documenter Options dialog box : Format .. 823

Documenter Options dialog box : Page Layout 824

Documenter Options dialog box : Fonts .. 826

Documenter Options dialog box : Front Page 827

Documenter Options dialog box : Header/Footer 829

Documenter Options dialog box : RTF Styles 831

Documenter Options dialog box : HTML Styles 834
AFE1_AFE2-1:1

35

36

Documenter command line options .. 837

Introduction to invoking the Documenter using command
line options .. 837

Briefly about invoking the Documenter .. 837

Invocation syntax for the Documenter ... 837

Summary of Documenter options .. 838

Descriptions of Documenter options ... 842

-bottom_margin .. 842

-bottomtext_justification .. 842

-bottomtext_str ... 843

-code_fname ... 843

-code_fsize ... 843

-code_fstyle .. 844

-design .. 844

-detail ... 844

-ei ... 845

-element_lists ... 845

-embeddiagrams ... 846

-fiAutoInclude .. 846

-fiCriteria .. 847

-fiLevel ... 847

-fiSearchSubDir ... 848

-footer_from_edge ... 848

-footer_separator .. 849

-footertextc ... 849

-footertextl .. 849

-footertextr ... 850

-fullstatenames ... 850

-hdr_fname ... 850

-hdr_fsize ... 851

-hdr_fstyle .. 851

-header_from_edge .. 851

-header_separator ... 852
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

-headertextc .. 852

-headertextl ... 852

-headertextr .. 853

-html_stl ... 853

-html_uhover .. 853

-ibat .. 854

-il .. 854

-interface .. 854

-introduction ... 855

-left_margin .. 855

-mf .. 856

-middletext_justification .. 856

-middletext_str ... 856

-of ... 857

-paper_height ... 857

-paper_orientation .. 857

-paper_type ... 858

-paper_width .. 860

-path ... 860

-pfe ... 860

-pseudo_code ... 861

-right_margin ... 861

-scn_htmlbody .. 861

-scn_htmlcode .. 862

-scn_htmlh1 .. 862

-scn_htmlh2 .. 862

-scn_htmlh3 .. 863

-scn_htmlh4 .. 863

-scn_htmlh5 .. 863

-scn_htmlh6 .. 864

-scn_htmlh7 .. 864

-scn_htmlh8 .. 864

-scn_htmlh9 .. 865

-scn_htmltoc ... 865
AFE1_AFE2-1:1

37

38

-sn_bt .. 865

-sn_fpf .. 866

-sn_fph ... 866

-sn_fpt .. 866

-sn_ftr ... 867

-sn_hdr ... 867

-sn_lb1 .. 867

-sn_lb2 .. 868

-sn_lb3 .. 868

-sn_lb4 .. 868

-sn_lb5 .. 869

-sn_lb6 .. 869

-sn_lb7 .. 869

-sn_lb8 .. 870

-sn_lb9 .. 870

-sn_rtfcode ... 870

-sn_rtfh1 ... 871

-sn_rtfh2 ... 871

-sn_rtfh3 ... 871

-sn_rtfh4 ... 872

-sn_rtfh5 ... 872

-sn_rtfh6 ... 872

-sn_rtfh7 ... 873

-sn_rtfh8 ... 873

-sn_rtfh9 ... 873

-sn_rtftoc .. 874

-split ... 874

-stylesheet ... 874

-template ... 875

-test ... 875

-text_fname .. 875

-text_fsize ... 876

-text_fstyle ... 876

-title .. 876
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

-top_margin .. 877

-toptext_justification .. 877

-toptext_str ... 877

-usertxtfiles ... 878

-variant ... 878

-vdafiles .. 878

-vlgfiles .. 879

-vrefiles .. 879

-vsafiles .. 879

Part 9. Additional features and utilities 881

Prototyping a graphical interface .. 883

Introduction to prototyping a graphical interface 883

Briefly about prototyping a graphical interface 883

Briefly about prototyping with Altia Design 884

Briefly about prototyping based on Coder-generated code 887

Prototyping with Altia Design .. 888

Connecting a state machine model to an Altia model 888

Connecting Visual State elements to Altia objects 890

Removing a connection between an Altia object and a Visual State ele-

ment .. 892

Simulating with Altia Design ... 892

Closing the Altia connection .. 892

Configuring the Altia connection ... 893

Example: Connecting Visual State elements to Altia objects for the CD-

player project .. 893

Prototyping based on Coder-generated code 899

Graphical environment for Altia Design 902

Altia menu .. 902

Connect Elements dialog box .. 903

Define Altia Properties dialog box ... 905

Open Altia Model dialog box ... 906
AFE1_AFE2-1:1

39

40

Viewing design models via the Visual State Viewer 907

Introduction to the Visual State Viewer 907

Briefly about the Visual State Viewer ... 907

Using IAR Visual State remotely via the Control Center 909

Introduction to the Visual State Control Center 909

Briefly about the Visual State Control Center 909

Using the Control Center ... 909

Starting the Control Center .. 910

Saving all files in connected applications .. 910

Exiting the Control Center ... 911

Starting the Designer .. 911

Saving in the Designer ... 912

Exiting the Designer ... 913

Creating a project with a new state machine 913

Adding a state machine to an existing design 915

Starting the Validator ... 916

Saving in the Validator .. 916

Exiting the Validator .. 917

Disabling look ahead of guard values in the Validator 918

Deducing an event in the Validator .. 918

Requesting an action function call return value from the Validator 920

Simulating a Validator project remotely .. 922

Starting external tools via the Control Center 924

Importing and exporting design models via XMI® files 927

Introduction to using the XMI file format 927

Briefly about the XMI file format .. 927

Restrictions and requirements for importing XMI files to IAR Visual

State .. 927

Restrictions and requirements for exporting XMI files from IAR Visual

State .. 928
AFE1_AFE2-1:1

IAR Visual State
User Guide

Contents

Using the XMI format for
import and export of design models .. 929

Importing an XMI file to IAR Visual State 929

Exporting an XMI file from IAR Visual State 929

The Visual State State Machine API for programmatic
manipulation of models ... 931

Introduction to the State Machine API and programmatic
manipulation ... 931

Briefly about the Visual State State Machine API 931

Installed files .. 932

Handling Visual State files from previous versions 933

Introduction to using old design models from previous
versions ... 933

Using files from version 5 and later ... 933

Converting old files by using the Navigator 933

Converting old files manually by using the project converter 933

Glossary ... 935

Index ... 945
AFE1_AFE2-1:1

41

42

AFE1_AFE2-1:1

IAR Visual State
User Guide

Tables
1: Typographic conventions used in this guide ... 51

2: Naming conventions used in this guide .. 52

3: IAR Visual State components overview ... 56

4: IAR Visual State interoperability features .. 57

5: IAR Visual State filename extensions ... 58

6: Navigator shortcut keys ... 100

7: Assignment operators .. 194

8: Binary arithmetic operators ... 195

9: Bit manipulation operators .. 195

10: Logical operators ... 195

11: Relational operators .. 195

12: Unary arithmetic operators .. 196

13: Unary bitwise operators .. 196

14: Unary logical operators ... 196

15: Visual State data types .. 197

16: General Designer shortcut keys .. 313

17: Designer view shortcut keys ... 314

18: Editing shortcut keys ... 314

19: Editing transition elements shortcut keys ... 315

20: General Validator shortcut keys .. 407

21: Validator windows shortcut keys .. 407

22: Validator simulation shortcut keys .. 408

23: Verificator checks, modes, and errors ... 433

24: Verificator command line options ... 448

25: Overview of the Visual State APIs ... 460

26: Summary of the HCoder API functions .. 473

27: Type identifiers — HCoder ... 515

28: Hierarchical Coder command line options .. 519

29: Summary of the Adaptive API functions .. 590

30: Summary of the Uniform API functions ... 636

31: SEM type identifiers ... 699
AFE1_AFE2-1:1

43

44

32: Transition rule data format .. 700

33: Classic Coder command line options .. 703

34: Setting up for execution mode, alternative 1 .. 763

35: Setting up for execution mode, alternative 2 .. 763

36: Setting up for execution mode, alternative 3 .. 764

37: Setting up for execution mode, alternative 4 .. 764

38: Setting up for execution mode, alternative 5 .. 765

39: Documenter command line options .. 838

40: Mapping from Visual State types to UML types .. 928
AFE1_AFE2-1:1

IAR Visual State
User Guide

Preface
Welcome to the IAR Visual State User Guide. This guide describes how to use
IAR Visual State to develop and test embedded applications based on state
machines.

For information about installation, see the Installation and Licensing Quick
Reference booklet—available in the product box—and the Licensing Guide.

Who should read this guide
Read this guide if you plan to develop an application based on state machines using IAR
Visual State.

REQUIRED KNOWLEDGE

To use the tools in IAR Visual State, you should have working knowledge of:

● The architecture and instruction set of the microprocessor core that you are using
(refer to the chip manufacturer's documentation)

● The programming language of the generated source code. Visual State can generate
C, C++, C#, and Java source code.

● Application development for embedded systems

● Basic principles of state/event modeling

● The operating system of your host computer.

How to use this guide
Each part in this guide covers a specific topic. In each part, the information is typically
divided into chapters based on information types:

● Concepts, which describes the topic and gives overviews of features related to the
topic. Any requirements or restrictions are also listed. Read this information to learn
about the topic.

● Tasks, which lists useful tasks related to the topic. For many of the tasks, you can
also find step-by-step descriptions. Read this for information about required tasks as
well as for information about how to perform certain tasks.
AFE1_AFE2-1:1

 45

46

What this guide contains

● Reference information, which gives reference information related to the topic. Read
this section for information about certain GUI components. You can easily access
this type of information for a certain component in the GUI by pressing F1.

The tutorials in the IAR Information Center will help you get started using IAR Visual
State.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR Systems user documentation.

What this guide contains
Below is a brief outline and summary of this guide.

PART 1. IAR VISUAL STATE AND ITS COMPONENTS

● IAR Visual State and state machine design gives an introduction to IAR Visual State
and its components, and why you should use state machines to design your
embedded application.

PART 2. PROJECT MANAGEMENT USING THE NAVIGATOR

● Project management gives an introduction to project management using the Visual
State Navigator, as well as information about related tasks, including step-by-step
descriptions. The chapter also contains reference information for the related
graphical environment.

● The IAR Visual State Compare Tool describes how to visualize differences between
two versions of a state machine model or complete project.

● Custom commands gives an introduction to using custom commands, as well as
information about related tasks, including step-by-step descriptions. The chapter
also contains reference information for the related graphical environment.

PART 3. DESIGNING USING THE DESIGNER

● Designing gives an introduction to designing state machines using the Visual State
Designer, as well as information about related tasks, including step-by-step
descriptions.

● States gives an introduction to states, as well as information about related tasks,
including step-by-step descriptions.

● Transitions gives an introduction to transitions, conditions, and actions, as well as
information about related tasks and to some of them also step-by-step descriptions.

● Transition elements gives an introduction to transition elements, such as events,
event groups, signals, and action functions, as well as information about related
AFE1_AFE2-1:1

IAR Visual State
User Guide

Preface

tasks, including step-by-step descriptions. The chapter also contains reference
information about Visual State operators and operands.

● Reusing designs using state machine templates gives an introduction to how to reuse
designs using state machine templates and submachine states, as well as
information about related tasks, including step-by-step descriptions.

● Using variants and features gives an introduction to how to design your product as
multiple similar variants, for example as a Premium version and a Basic version or
as versions for different sales regions, to avoid having to maintain two or more
separate software development tracks.

● Using requirements files explains how to import formal design requirements in a
standardized format called ReqIF (Requirements Interchange Format) and how to
tie objects in your Visual State designs to corresponding requirements, to keep track
of how your design fulfills all or some of the requirements.

● The Visual State Designer gives an introduction to the Visual State Designer, as well
as information about related tasks, including step-by-step descriptions. The chapter
also contains reference information about the related graphical environment, as well
as for the syntax for C header files.

PART 4. SIMULATING USING THE VALIDATOR

● Simulation gives an introduction to simulating state machine models using the
Visual State Validator, as well as information about related tasks, including
step-by-step descriptions.

● Graphical animation gives an introduction to graphically animated debug sessions,
as well as information about related tasks, including step-by-step descriptions. The
chapter also gives reference information for the related graphical environment.

● Tracing gives an introduction to tracing in state machines, as well as information
about related tasks, including step-by-step descriptions.

● Analyzing gives an introduction to analyzing your design model by performing
either static or dynamic analysis, as well as information about related tasks,
including step-by-step descriptions.

● Recording and playing test/event sequences gives an introduction to recording and
playing your test sequences, as well as information about related tasks and to some
of them also step-by-step descriptions. The chapter also gives a syntax description
of the event sequence file.

● The Visual State Validator gives an introduction to the Visual State Validator. The
chapter also contains reference information about the related graphical
environment.
AFE1_AFE2-1:1

 47

48

What this guide contains

PART 5. FORMAL VERIFICATION USING THE VERIFICATOR

● Formal verification gives an introduction to formal verification using the Visual
State Verificator, as well as information about related tasks, including step-by-step
descriptions. The chapter also contains reference information about the related
graphical environment.

● Checks performed by the Verificator gives an overview of available checks, modes,
and errors, as well detailed information about the checks and how to perform them.

● Verificator command line options describes how to invoke the Verificator using
command line options. The chapter also contains reference information about the
Verificator command line options.

PART 6. CODE GENERATION USING A CODER

● Code generation gives an introduction to code generation and the Visual State APIs,
as well as information about related tasks, including step-by-step descriptions.

● HCoder API code generation gives an introduction to the HCoder API code
generation, as well as information about related tasks, including step-by-step
descriptions.

● HCoder API reference information gives an overview of the coder-generated source
files for the HCoder API, as well as reference information about the HCoder API
functions and return codes.

● The Visual State Hierarchical Coder gives an introduction to the Visual State
Hierarchical Coder. The chapter also contains reference information about the
related graphical environment, the type identifiers, and the transition rule data
format.

● Hierarchical Coder command line options describes how to invoke the Hierarchical
Coder using command line options. The chapter also contains reference information
about the Hierarchical Coder command line options.

● Adaptive API code generation gives an introduction to the Adaptive API code
generation, as well as information about related tasks, including step-by-step
descriptions.

● Uniform API code generation gives an introduction to the Uniform API code
generation, as well as information about related tasks, including step-by-step
descriptions.

● Adaptive API reference information gives an overview of the coder-generated
source files for the Adaptive API, as well as reference information about the
Adaptive API functions and return codes.

● Uniform API reference information gives an overview of the coder-generated source
files for the Uniform API, as well as reference information about the Uniform API
functions and return codes.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Preface

● The Visual State Classic Coder gives an introduction to the Visual State Classic
Coder. The chapter also contains reference information about the related graphical
environment, the SEM type identifiers, and the transition rule data format.

● Classic Coder command line options describes how to invoke the Classic Coder
using command line options. The chapter also contains reference information about
the Classic Coder command line options.

PART 7. TESTING YOUR STATE MACHINE MODEL ON
HARDWARE

● Debugging design models using C-SPYLink gives an introduction to C-SPYLink, as
well as information about related tasks, including step-by-step descriptions. The
chapter also contains reference information for the related graphical environment.

● Debugging design models using RealLink gives an introduction to RealLink, as well
as information about related tasks, including step-by-step descriptions. The chapter
also contains reference information for the related graphical environment.

PART 8. DOCUMENTING VISUAL STATE PROJECTS USING
THE DOCUMENTER

● Documenting projects gives an introduction to documenting projects using the
Documenter, as well as information about related tasks, including step-by-step
descriptions. The chapter also contains reference information for the related
graphical environment.

● Documenter command line options describes how to invoke the Documenter using
command line options. The chapter also contains reference information about the
Documenter command line options.

PART 9. ADDITIONAL FEATURES AND UTILITIES

● Prototyping a graphical interface gives an introduction to prototyping a graphical
interface, either by using the built-in support in the Validator for connecting to Altia
Design, or by integrating Visual State Coder-generated code with code developed in
a third-party development tools to create a graphical model.

● Viewing design models via the Visual State Viewer gives an introduction to the
Visual State Viewer and how to use it for viewing state machine models.

● Using IAR Visual State remotely via the Control Center gives an introduction to
using visual state remotely via the Control Center, as well as information about
related tasks, including step-by-step descriptions.

● Importing and exporting design models via XMI® files gives an introduction to the
XMI file format and how to use it for importing and exporting state machine models
between IAR Visual State and tools from other vendors. The chapter also provides
information about related tasks, including step-by-step descriptions.
AFE1_AFE2-1:1

 49

50

Other documentation

● The Visual State State Machine API for programmatic manipulation of models gives
an introduction to programmatically manipulating models using the Visual State
State Machine API.

● Handling Visual State files from previous versions describes tasks related to
converting Visual State files from previous versions.

● Glossary lists terms relevant to embedded systems programming in general, and to
IAR Visual State and state machine design in particular.

Other documentation
User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in IAR Visual State. The online help system is also
available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

● System requirements and information about how to install and register the IAR
Systems products, is available in the Installation and Licensing Quick Reference
booklet—available in the product box—and the Licensing Guide.

● Using IAR Visual State for developing and testing embedded applications based on
state machines, is available in the IAR Visual State User Guide (this guide).

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

● Information about concepts related to using IAR Visual State and its components

● Information about how to perform certain tasks

● Reference information about the graphical environment, such as menus, windows,
and dialog boxes

● Reference information about the API functions and command line options

WEB SITES

Recommended web sites:

● The chip manufacturer’s web site that contains information and news about the
microcontroller core you are using.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Preface

● The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

● The Object Management Group® consortium web site for the UML standard,
www.uml.org.

Document conventions
When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example \doc, the full
path to the location is assumed, for example c:\Program Files\IAR
Systems\Visual State 8.n\doc.

TYPOGRAPHIC CONVENTIONS

The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a command.

[a|b|c] An optional part of a command with alternatives.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that appear on
the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the Visual State Navigator interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Table 1: Typographic conventions used in this guide
AFE1_AFE2-1:1

 51

52

Document conventions

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

Identifies warnings.

Short form Refers to

Navigator Visual State Navigator

Designer Visual State Designer

Validator Visual State Validator

Verificator Visual State Verificator

Coder Visual State Coder

Documenter Visual State Documenter

Adaptive API Visual State Adaptive API

Uniform API Visual State Uniform API

project Visual State project

system Visual State system

Table 2: Naming conventions used in this guide

Style Used for

Table 1: Typographic conventions used in this guide (Continued)
AFE1_AFE2-1:1

IAR Visual State
User Guide

Part 1. IAR Visual State
and its components
This part of the IAR Visual State User Guide includes these chapters:

● IAR Visual State and state machine design
53

54

IAR Visual State and state
machine design
● Introduction to IAR Visual State and its components

● Application development using IAR Visual State

Introduction to IAR Visual State and its components
Learn more about:

● Why use IAR Visual State and state machines, page 55

● IAR Visual State overview, page 56

● Important features and advantages, page 59

WHY USE IAR VISUAL STATE AND STATE MACHINES

State machines are commonly used for describing discrete systems, where the current
behavior is a result of previously occurring events.

A state machine consists of a hierarchy of states and transitions between the states,
which you create by drawing state machine diagrams. Because a diagram is a graphical
representation which is easy to create, understand, communicate, and change, there are
several important design advantages to organizing the logic of your application this way.

State machines allow you to develop the specification and application in a natural,
iterative way where states in the machine corresponds to states in your application. You
get a high-level view that helps you handle the complexity of the application. You can
outline your application and then add functionality at a more detailed level, step by step.

One very important feature of a state machine is its ability to handle concurrency. You
can model concurrent behavior without necessarily having to involve more than one task
(or process if an operating system is used). It might even eliminate the need for an
operating system in some situations.

Once the state machine diagram has been created, its logic can be tested and verified to
make sure the state machine behaves as intended.

State machines are very useful for controlling logic-oriented applications where
reliability, size, and deterministic execution are the main requirements.
AFE1_AFE2-1:1

 55

56

Introduction to IAR Visual State and its components

As an example of a state machine, consider a vending machine and all the cases that
must be considered:

● What happens if a cup is removed before it is full?

● What happens if a new order is started before the previous order has been
completed?

● Will the money be correctly returned to the customer if one of the electromechanical
parts causes the machine to stop in the middle of processing an order?

For more information about state machines and state machine diagrams, see
Introduction to designing state machines using the Designer, page 117.

IAR VISUAL STATE OVERVIEW

IAR Visual State is a set of fully integrated development tools for designing, testing, and
implementing embedded applications based on state machine models. It includes a
graphical design environment, verification and validation tools for testing, a code
generator, and a documenter for documenting your design:

Component Description

Navigator The Visual State Navigator is a graphical project management tool for
your Visual State projects. From the Navigator you access and activate
the other components in IAR Visual State, and set options for the
Verificator, Coder and Documenter. See Part 2. Project management
using the Navigator, page 69.

Designer The Visual State Designer is a graphical tool for designing state
machines by drawing state machine diagrams using the UML notation.
See Part 3. Designing using the Designer, page 115.

Validator The Visual State Validator is a graphical tool for simulating, analyzing,
and debugging models created with the Designer. Use the Validator to
test the functionality of your design. See Part 4. Simulating using the
Validator, page 319.

Verificator The Visual State Verificator is a tool for dynamic formal verification of
models created with the Designer. See Part 5. Formal verification using the
Verificator, page 411.

Coders The Visual State Coders automatically generate code for the models
created with the Designer, which is to be combined with your manually
written code. See Part 6. Code generation using a Coder, page 455.

Table 3: IAR Visual State components overview
AFE1_AFE2-1:1

IAR Visual State
User Guide

IAR Visual State and state machine design

IAR Visual State also comes with:

Documenter The Visual State Documenter creates up-to-date documentation
reports for your Visual State project, including design, tests, and code
generation. See Part 8. Documenting Visual State projects using the
Documenter, page 811.

Viewer The Visual State Viewer is a stand-alone application for viewing Visual
State state machine models, without having access to the Visual State
product. See Viewing design models via the Visual State Viewer, page 907.

Features for

interoperability
Description

C-SPYLink C-SPYLink allows you to perform high-level state machine debugging in
the IAR Embedded Workbench C-SPY Debugger, which means that you
can test on target hardware. See Debugging design models using
C-SPYLink, page 759.

RealLink Visual State RealLink is used with the Designer and allows you to test
your state machine model on target hardware. See Debugging design
models using RealLink, page 785.

Control Center The Visual State Control Center provides third-party products with an
interface to IAR Visual State. Among other things, the Control Center
can be used for remote simulation of your state machine model. See
Using IAR Visual State remotely via the Control Center, page 909.

Altia Design Using Altia Design you can create a graphical interface prototype of
your state machine model. Via the Validator you can connect your
design model to Altia Design and simulate it. See Briefly about prototyping
with Altia Design, page 884.

XMI file format The XMI file format makes it possible to move design models between
IAR Visual State and design tools from other vendors. See Importing and
exporting design models via XMI® files, page 927.

State machine API This open API with C-based access makes it possible to access your
model from various programming languages. See The Visual State State
Machine API for programmatic manipulation of models, page 931.

Table 4: IAR Visual State interoperability features

Component Description

Table 3: IAR Visual State components overview
AFE1_AFE2-1:1

 57

58

Introduction to IAR Visual State and its components

IAR Visual State filename extensions

These are the file types specific to IAR Visual State:

Filename extension Description

bk<x> Visual State Designer backup files.

cre Visual State Coder report files.

stereotypes Visual State Designer files for holding defined stereotypes.

vda Visual State Validator dynamic analysis files.

vdg Visual State Designer project diagram information (graphical animation).

vdi Visual State Designer project diagram information.

vlg Visual State Validator log files and animation files in the legacy format
for sequence files.

vnw Visual State Navigator workspace file.

vre Visual State Verificator report files.

vsa Visual State Validator static analysis files.

vsp Visual State project files, which contain information about:
* Visual State systems that make up the Visual State project
* Visual State files that make up the Visual State systems
* global element declarations.

vsr Visual State state machine diagram files, which contain local element
declarations and logic.

vsreqif Visual State Coder requirements files.

vssm Visual State state machine files.

vst Visual State Designer interval backup files.

vste Visual State transition element files.

vtg Visual State project options files for the Coders, the Verificator, and the
Documenter.

vws Visual State Validator workspace files.

vxlg Visual State sequence file

vws.bak Visual State Validator workspace backup files.

Table 5: IAR Visual State filename extensions
AFE1_AFE2-1:1

IAR Visual State
User Guide

IAR Visual State and state machine design

IMPORTANT FEATURES AND ADVANTAGES

IAR Visual State provides many advantages and features.

Automatic code generation from a state machine model

Automatic generation of code for state machine models has a number of important
advantages over manual code generation—first and foremost, state machine
concurrency is taken care of automatically. Programming state machine concurrency
tends to be complicated and error-prone.

The generated code makes no assumptions about any compiler-specific features except
Standard C conformance, see Standard C conformance, page 460.

You can configure the Visual State Coders to use compiler-specific keywords to place
state machine code and data in the memory areas of your choice. Size-of-data entities
can be forced to 16 or 32 bits to match your target architecture for speed purposes, even
if the model only requires 8-bit representation. You can configure the Coders in many
different ways to balance the needs of the target MCU, the compiler, and coding
standards.

The code generated by IAR Visual State focuses on the control logic of a state machine
system. For several reasons, this part of the code should not be modified by hand, the
most important reason being that the design is always the only explicit representation of
the control logic. In that way, the model and the executing code always stay
synchronized. Modifying state machine code by hand always carries the risk of
introducing hard-to-find errors in the internal bookkeeping of states and conditions.

Product variant support in the model

Many products are available for the end user in multiple similar variants. There might
be a Premium version and a Basic version of a product. For instance, much of the
functionality of the product might be the same—but the Premium variant contains more
features for the end user.

IAR Visual State supports defining product variants for situations where most of the
feature set is identical but some features are different or only available for certain
product variants. Using a shared base design avoids having to maintain two or more
separate development tracks of the embedded software. See Using variants and features,
page 217.

Simulation/validation of a state machine model

With design level simulation, you can start testing your model as soon as you have saved
the first version of it. In this way you can find possible errors and omissions early in the
development project, even before you have any hardware available.
AFE1_AFE2-1:1

 59

60

Introduction to IAR Visual State and its components

Formal model checking of a state machine model

Formal verification helps you to identify possible problems in your code that are very
hard to test for. A state might, for example, be impossible to exit after entering and
exiting it a specific number of times, because of some blocking transition condition. If
this was unintentional, it can be very difficult to find the problem using traditional
testing methods.

Model debugging on target hardware

Debugging state machine code on C level is often difficult, because too many
implementation details can obscure the design. With IAR Visual State you can debug on
target hardware with feedback directly in the state machine diagram—to see exactly
which state configuration is active and which transition was taken to enter that state
configuration. You have these alternatives:

● C-SPYLink. If you use IAR Embedded Workbench® you can use the C-SPYLink
plugin to pass high-level state machine model feedback directly to the IAR C-SPY®
Debugger. C-SPYLink includes graphical animation in the state machine diagram
when it executes, the possibility to set breakpoints at state machine level instead of
C level, and trace and log functionality.

● RealLink. If you cannot use a hardware debug solution with the IAR C-SPY
Debugger, you can use RealLink to communicate state machine data over a separate
communication channel, for example, an RS232 port. RealLink can be used for any
target that has a serial communication port where you can decide the
communication speed, or if the target can use TCP/IP communication for debug
purposes. RealLink is available if you make the Classic Coder generate C output
with a table-based API.

See Part 7. Testing your state machine model on hardware, page 757 for more
information about C-SPYLink and RealLink.

Support for high-integrity systems

IAR Visual State is suited for many design tasks that involve functional safety. For
example, the IEC-61508 standard on functional safety explicitly recommends state
machines as a design method to meet higher safety integrity levels.

You can use IAR Visual State’s formal verification to find issues in your design that are
almost impossible to fully cover with test suites. For example, you can find dead-end
situations, unreachable parts of the design, never consumed input, etc. See Part 5.
Formal verification using the Verificator, page 411.
AFE1_AFE2-1:1

IAR Visual State
User Guide

IAR Visual State and state machine design

UML (Unified Modeling Language)

IAR Visual State uses the UML notation for state machines. This notation is based on
hierarchical state machines, and concurrency can be used at any level in the hierarchy.
Variables are introduced and can be used as conditions, or be modified within the design.
Actions can be used on transitions, and as entry and exit reactions.

IAR Visual State has been developed in accordance with the UML notation, but can also
be used for designing state/event systems compliant with the Mealy notation.

For more information about the UML concepts, see the OMG Unified Modeling
Language Specification, version 2.4.1, August 2011, available from www.omg.org.

Natural interrupt handling

The Visual State runtime execution engine deals with events—abstractions of
occurrences in the environment. This makes it natural to map an interrupt to a Visual
State event, provided that the interrupt affects the state machine.

If there is an event to process, a typical Visual State application runs the state machine
engine as part of the main loop.

Exactly how the interrupt routine communicates with the state machine engine depends
on your design. Implementation methods range from letting the interrupt routine set a
flag that the main loop can detect, using a simple event queue with appropriate
synchronization mechanism, to using a fully featured RTOS queue or semaphore.

The structure of your application is the same as usual. If an interrupt service routine
generates input to the system of state machines, the routine simply puts the appropriate
event into the state machine event queue and returns.

Asynchronous event handling

Asynchronous events are handled if they are forwarded to the Visual State engine. This
is usually done by putting them into the event queue. As long as an event is in the event
queue, it will eventually be processed by the Visual State control logic.

Easy integration with an RTOS

Use IAR Visual State to design the control logic of a task, or part of a task. Integrate
your tasks with their respective priorities into the system with the RTOS just as if you
were coding the application by hand.

To split Visual State code to run in different tasks, divide the state machines into
different systems. A Visual State system is a collection of state machines that are
designed as a unit, to run as a unit—possibly rather tightly coupled to each other. An
RTOS application can contain any number of systems, and systems can communicate
on task level using the available RTOS primitives.
AFE1_AFE2-1:1

 61

62

Application development using IAR Visual State

Systems can be assigned arbitrarily to RTOS tasks, so that a task can actually contain
more than one system at a time.

Prototyping a graphical interface for your model before having the
hardware

You can easily integrate code generated by IAR Visual State with an application
developed using a RAD tool like Altia Design, Microsoft® Visual C++®, or any other
GUI toolchain of your choice.

For information about how to integrate with Altia Design, see Briefly about prototyping
with Altia Design, page 884.

See also Briefly about prototyping based on Coder-generated code, page 887

Application development using IAR Visual State
Learn more about:

● The application development cycle

● Control logic, data manipulation, and device drivers

● Code required for an application

● Project examples

● Sample source code
AFE1_AFE2-1:1

IAR Visual State
User Guide

IAR Visual State and state machine design

THE APPLICATION DEVELOPMENT CYCLE

This illustrates a typical development cycle using IAR Visual State:

Before you start using IAR Visual State, you should prepare your hardware setup. For
example, it can be good to have a working hardware device, a debug probe solution,
system startup code, and possibly also a flash loader for downloading your final
application. However, none of this is mandatory before you start designing using IAR
Visual State.

At some point during your development cycle, you must also write the source code for
the device driver for the peripheral units.

This is the typical development cycle more in detail:

● Start the Navigator. This is where you set up your Visual State project in a
workspace, including setting options for verification, code generation, and
documentation. See Part 2. Project management using the Navigator, page 69

● Use the Designer to design your state machine models. See Part 3. Designing using
the Designer, page 115.

● Use the Validator to simulate, validate, and debug the model. See Part 4. Simulating
using the Validator, page 319. Typically, you iterate designing and simulation a
couple of times.

● Use the Verificator to verify the logic of the model. See Part 5. Formal verification
using the Verificator, page 411. Typically, this leads to redesigning some parts of
your model.
AFE1_AFE2-1:1

 63

64

Application development using IAR Visual State

● Coding involves several tasks:

In the IDE of the compiler you are using (for example, the IAR Embedded
Workbench IDE), create a project that includes all the necessary source code files.

When you have tested your model in the Validator and corrected it in the Designer,
you can generate the code for it. On target, the code will behave exactly as the model
you designed. See Part 6. Code generation using a Coder, page 455.

Integrate the generated code of your state machine model, using the Visual State API.
See Introduction to code generation, the Coders, and the APIs, page 457.

Implement the action functions for the peripheral units as required by your state
machine model.

● Observe and control the runtime behavior of your models when they execute on
hardware. For this you can use C-SPYLink or RealLink. See Part 7. Testing your
state machine model on hardware, page 757.

● Use the Documenter to document your project, by creating a report. Typically, the
report is useful for communicating the design with others. Of course, you can also
do this very early during the initial design phase. See Part 8. Documenting Visual
State projects using the Documenter, page 811.

CONTROL LOGIC, DATA MANIPULATION, AND DEVICE
DRIVERS

A typical embedded application is a combination of code for control logic, data
manipulation, and device drivers.

Device drivers for a specific target processor are usually written only once. You can
make them part of a library, which remains more or less constant from project to project.
Of course, the control logic part that implements the features and specification of a given
product might change dramatically from project to project.

Using IAR Visual State, you develop the control logic for event-driven systems based
on state machines, where events coming from external devices are processed by the
control logic. Processing the events ultimately leads to actions on the environment.
These actions will often interact with the device drivers for the hardware.

This is what happens:

1 The externally generated input is processed by the device driver, by way of
interrupts or polling.

2 The driver informs the Visual State runtime execution engine, which acts according
to the state machine model (changes states, executes actions, etc).

3 As a result of the state machine processing, actions (dedicated action functions) that
use device drivers for output can be called.
AFE1_AFE2-1:1

IAR Visual State
User Guide

IAR Visual State and state machine design

This figure summarizes the parts that IAR Visual State handles in an embedded
application:

CODE REQUIRED FOR AN APPLICATION

Creating an application using IAR Visual State as your main control logic engine is
easy—you still have full control over the structure of your application code.

To create a final embedded application using Visual State-generated code, you must:

● Manually write code for event preprocessing (device drivers), event queues (if
needed), and action functions (device drivers)

● Integrate the state machine in your application by calling its step function at the
appropriate time. There are also optional facilities for inspection of the state
machine.

● Integrate your code with the Coder-generated code, using a Visual State API.

Action function invocations are automatically generated by IAR Visual State. However,
you must write the code for each of the action functions.

Coder-generated code and the APIs

Coder-generated code is generated by the Visual State Coder from the state machine
diagrams created in the Designer. The generated code must be integrated with your own
user-written source code by means of a Visual State API.

Generating code in your Visual State project results in a number of source files. If you
are using the IAR Embedded Workbench IDE, the generated source code files and
dependency files are handled automatically if you include the project connection file
(generated by IAR Visual State) in the IDE project. For information about how to
include files in the IAR Embedded Workbench IDE project, see the IDE Project
Management and Building Guide.
AFE1_AFE2-1:1

 65

66

Application development using IAR Visual State

This figure shows an application development project using IAR Visual State and IAR
Embedded Workbench:

This figure shows an application development project using IAR Visual State and an
IDE from another vendor:

There are two types of Coder-generated code:

● Table-based code, which can be very compact

● Readable C code (requires the Visual State Classic Coder).

Which representation you choose depends on your specific application requirements
regarding speed and size, and how important it is that you can examine the generated
code manually.

For more information, see Introduction to code generation, the Coders, and the APIs,
page 457.

PROJECT EXAMPLES

Your Visual State installation includes examples of application designs created with
IAR Visual State. The examples can be useful for your own design as well as provide a
reference for design techniques.

The examples can be opened from the Information Center in the Navigator.
AFE1_AFE2-1:1

IAR Visual State
User Guide

IAR Visual State and state machine design

SAMPLE SOURCE CODE

Your IAR Visual State installation includes sample source code that you can use as a
source of reference in your development projects. The sample code files can be opened
from the Information Center in the Navigator or via the Examples directory in the
Visual State product installation.
AFE1_AFE2-1:1

 67

68

Application development using IAR Visual State

AFE1_AFE2-1:1

IAR Visual State
User Guide

Part 2. Project
management using the
Navigator
This part of the IAR Visual State User Guide includes these chapters:

● Project management

● The IAR Visual State Compare Tool

● Custom commands
69

70

Project management
● Introduction to project management using the Navigator

● Setting up workspaces and projects

● Graphical environment for the Navigator

● Reference information on Navigator menus.

Introduction to project management using the Navigator
Learn more about:

● Briefly about the Visual State Navigator, page 71

● The Visual State project, page 72

● The workspace, page 73

● Variants and features, page 75

BRIEFLY ABOUT THE VISUAL STATE NAVIGATOR

The Visual State Navigator is a graphical project management tool for Visual State
projects, from model design over test and simulation, to code generation and
AFE1_AFE2-1:1

 71

72

Introduction to project management using the Navigator

documentation. From the Navigator you access and activate the other components in
IAR Visual State, and set options for the Verificator, Coder, and Documenter.

THE VISUAL STATE PROJECT

A Visual State project is a collection of Visual State systems. The systems group the
individual top-level state machines together—in one file for each top-level state
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

machine. Thus, each project can contain several systems, and each system can contain
one or several top-level state machines:

In addition to binding systems and state machines together, a project contains elements
that are shared across several systems. These elements are termed transition elements,
see Introduction to transition elements, page 177. The project data is stored in a project
file which has the filename extension vsp.

See also Briefly about organizing your system, page 124.

For more information about Visual State systems and state machines, see Introduction
to designing state machines using the Designer, page 117.

THE WORKSPACE

In the Navigator you set up your Visual State project in a workspace. The workspace
organizes and handles one or several Visual State projects, systems, and state machine
diagrams that are grouped together logically. The workspace contains links to Visual
State projects, systems, and various types of files. The workspace is stored in a file with
the filename extension vnw. A workspace file contains only one workspace.

In the workspace you can set options for verification, code generation, and project
reports. The workspace can also be used for setting up your own commands.

You develop your Visual State project using the other Visual State components,
available from the Navigator Project menu.

For more information, see Setting up workspaces and projects, page 75, Setting
Verificator, Coder, and Documenter options, page 79, Custom commands, page 107.
AFE1_AFE2-1:1

 73

74

Introduction to project management using the Navigator

This example shows a workspace and the structure of a project, viewed with the tree
browser of the Navigator:

The project in this example is named Car. The project contains two systems named
AirCondition and Wiper, respectively.

The generated file types are:

● The workspace file (vnw): can contain any number of projects

● The project file (vsp): can contain any number of systems

● The state machine file (vsr): can contain one top-level state machine

No file is generated for the system, which can contain any number of top-level state
machines.

For more information, see The Visual State system, page 123.

Note: The Navigator workspace is not the same as the Validator workspace, a
workspace used for testing. See Part 4. Simulating using the Validator, page 319.

Digital signatures for tracking inconsistencies

Each project has an associated digital signature, to track consistency between the files
generated by the various components, and to track changes from version to version of a
project.

The digital signature is a string value calculated from a project file and its associated
state machine diagram files. Only the logical parts of the project are used in the
calculation, not, for example, explanations to various elements. Every time a change is
made to a project part that is used for calculating the signature, for example when an
event is renamed, the digital signature also changes.

The digital signature is used in:

● Visual State code-generated files

● generated files included in the Documenter report
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

● the runtime application. The signature can be retrieved at runtime for diagnostic and
other uses.

All files generated by the Validator, the Coders, and the Verificator that can be included
in a report generated by the Documenter, will have a digital signature. By default, the
Documenter will only include files with a valid digital signature. This behavior can be
changed using the File inclusion criteria option, see Documenter Options dialog box :
File Input, page 819.

See also Digital signatures for tracking inconsistencies, page 74.

VARIANTS AND FEATURES

If your product will be available for the end user in multiple similar variants, for
example as a Premium version and a Basic version or as versions for different sales
regions, IAR Visual State supports variants on a shared base design, to avoid having to
maintain two or more separate software development tracks.

You specially mark up the parts of the model that should be excluded from the resulting
code, and from testing. The result will contain the states, transitions, and transition
elements in it that matches the setup for the variant in the Designer.

When you generate code, you choose one of the designed variants, or the complete
model.

To enhance working with variants, the Designer also supports features, a subset of the
design that can optionally be part of the model, or that is simply used to group features
together. Each feature has a type that determines how you can include/exclude it in a
variant meant for code generation.

You can use variants without using features. The features functionality is only needed if
you have parts of the model that should be included in more than one of your runtime
variants. However, combining features with variants gives you a very high flexibility to
mark up areas in your design as functionality blocks to include/exclude for a variant.

For more information about variants and features, see Using variants and features, page
217.

Note: The use of features and variants is optional. All existing models will work as
previously designed.

Setting up workspaces and projects
What do you want to do?

● Starting IAR Visual State, page 76

● Creating a standard workspace, page 76
AFE1_AFE2-1:1

 75

76

Setting up workspaces and projects

● Creating a new project in a workspace, page 77

● Adding an existing project to a workspace, page 78

● Setting a project or system as active, page 79

● Setting Verificator, Coder, and Documenter options, page 79

STARTING IAR VISUAL STATE

To start IAR Visual State, choose Start menu>Programs>IAR Systems>Visual State.

When you have created a workspace in the Navigator, you can start the other Visual
State components and IAR Embedded Workbench using the buttons on the standard
toolbar in the Navigator, commands from context menus, or from the Navigator Project
menu:

CREATING A STANDARD WORKSPACE

1 In the Navigator, choose File>New to open a New dialog box:
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

2 On the Workspace page, select Standard Workspace. For reference information, see
New Workspace dialog box, page 90.

In the File name and Location text fields, specify the filename and directory of your
workspace file. Click OK.

A standard workspace is created, with a project that contains one system and one
top-level state machine.

3 Now you can add a project to your workspace, see:

● Creating a new project in a workspace, page 77

● Adding an existing project to a workspace, page 78.

CREATING A NEW PROJECT IN A WORKSPACE

1 In the Navigator, choose File>Open Workspace to open your workspace.

2 Choose File>New.

3 In the New dialog box, click the Project tab:

4 Choose one of these alternatives:

● Standard Project, to create a standard project with one system that contains one
top-level state machine.
AFE1_AFE2-1:1

 77

78

Setting up workspaces and projects

● Blank Project, to create an empty project where you can create your systems and
top-level state machines.

● Project Wizard, to guide you through the process of creating a customized project,
where you can specify the number of systems, top-level state machines, etc.

5 Specify a project name, a project filename (vsp), and the location of the project file.

6 Select Add to current workspace and click OK. The Designer is started.

7 Return to the Navigator. Click Reload to update the project if a message informs you
that files have been modified outside of the application. The new project is inserted in
the workspace:

Note: Selecting Add to current workspace will generate a workspace file with the
same name as the project, and the filename extension vnw. The workspace file will be
located in the same directory as the vsp file. The project will be inserted in the newly
created workspace and the Designer will be started with the project loaded.

8 Now you can set options, see Setting Verificator, Coder, and Documenter options, page
79.

ADDING AN EXISTING PROJECT TO A WORKSPACE

Projects created earlier or with the Designer can be added to a workspace.

1 In the Navigator, open your workspace.

2 Choose File>Insert Project to open the Insert Visual State Project dialog box.

3 Use the dialog box to locate the project and add it.

4 Now you can set options, see Setting Verificator, Coder, and Documenter options, page
79.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

SETTING A PROJECT OR SYSTEM AS ACTIVE

You can set a project or system as active. This means that all operations you perform via
the main menu will apply to that project or system. For example, Project>Verify
System will verify the active system in the active project.

To set a project or system as active:

1 In the Navigator, open your workspace.

2 Select the system or project you want to set as active, right-click and choose Set as
Active Project/System.

The project or system you set as active will appear in bold in the Workspace Browser
window.

If you want to apply operations to a project or system that has not been set as active,
select it in the Workspace view of the Workspace Browser window and use the
commands on the context menu.

SETTING VERIFICATOR, CODER, AND DOCUMENTER
OPTIONS

1 In the Navigator, open your workspace.

2 Choose one of these alternatives depending on which tool you want to set options for:

● To set Verificator options, choose Project>Options>Verification.

See Verificator Options dialog box, page 426 for reference information.

● To set Coder options, choose Project>Options>Code generation.

See Classic Coder Options dialog box, page 674 for reference information.

● To set Documenter options, choose Project>Options>Documentation.

See Documenter Options dialog box, page 816 for reference information.
AFE1_AFE2-1:1

 79

80

Setting up workspaces and projects

3 An options dialog box is displayed:

In this example, the Coder Options dialog box is used as an example. The dialog boxes
Verificator Options and Documenter Options are used in the same way.

4 In the pane to the left, select the project or system you want to set options for.

5 Click the tab for the category of options you want to view. To view all available
options, click the All tab.

Not all combinations of options are possible, so some options might be dimmed. Setting
one option might disable another option. A different set of options might also be
available on system level compared to project level.

Right-click an option or select the option and press Shift+F1 for detailed information on
why it is unavailable. Alternatively, click F1 to get reference information about the
dialog box an its options.

6 Make your settings, which will appear as command line options in the pane below.

7 To restore the options to their default settings, click the Default button.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

Graphical environment for the Navigator
Reference information about:

● The Navigator main window, page 82

● HTML Viewer window, page 85

● Navigator Reload Files dialog box, page 86

● Navigator Settings dialog box, page 87

● New Project dialog box, page 89

● New Workspace dialog box, page 90

● Output window, page 91

● Properties window, page 92

● Workspace Browser window, page 92
AFE1_AFE2-1:1

 81

82

Graphical environment for the Navigator

The Navigator main window
The main window of the Navigator is displayed when you start IAR Visual State.

The screenshot shows the window and its default layout.

The main window of the Navigator is a container for displaying the Workspace
Browser window, an integrated HTML Viewer where the IAR Information Center
appears by default, and the Output window. By default, all three windows are open.

Menu bar

The menu bar contains:

File

Commands for creating, opening, and saving workspaces and projects, printing,
and exiting the Navigator. See File menu, page 94.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

Edit

Standard Windows commands for working with text. See Edit menu, page 95.

View

Commands for opening windows and controlling which toolbars to display. See
View menu, page 96.

Project

Commands for starting other Visual State components, for generating code,
verifying, and documenting your project, and for setting options for the Visual
State components. See Project menu, page 97.

Tools

Commands for starting IAR Embedded Workbench, for making Navigator
settings, and for configuring custom commands. See Tools menu, page 98.

Window

Commands for changing how the Navigator windows are arranged on the
screen. See Window menu, page 99.

Help

Commands that provide help about IAR Visual State. See Help menu, page 99.

Standard toolbar

The standard toolbar—available from the View menu—provides buttons for the most
useful commands on the Navigator menus.

For a description of a button, point to it with the mouse pointer. The name of the button
is displayed as a tooltip and a description is displayed in the status bar at the bottom of
the main window. When a command is not available, the corresponding toolbar button
is dimmed, and you will not be able to click it.

This figure shows the menu commands that correspond to each of the toolbar buttons:
AFE1_AFE2-1:1

 83

84

Graphical environment for the Navigator

Internet browser toolbar

The Internet browser toolbar—available from the View menu—provides buttons for
basic web browser commands.

For a description of a button, point to it with the mouse pointer. The name of the button
is displayed as a tooltip and a description is displayed in the status bar at the bottom of
the main window. When a command is not available, the corresponding toolbar button
is dimmed, and you will not be able to click it.

This figure shows the menu commands that correspond to each of the toolbar buttons:

Variant toolbar

The Variant toolbar—available from the View menu—controls the use of product
variants in the model.

This figure shows the toolbar:

Variant selector

Choose which product variant that the Coder, Documenter, Verificator, and
Validator operate on when they are called. If you choose
<<Complete model>>, the Visual State components will operate on the entire
model. The feature sets of the variants are edited inside the Designer.

The active variant is saved as part of the Navigator workspace. For more
information about variants, see Using variants and features, page 217.

Consistency checker

Performs a quick consistency check of the model before you open the model in
the other Visual State components, restricting the model to the selected active
variant. Errors are listed in the Output window. Use the Designer to correct any
errors.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

Status bar

The status bar at the bottom of the window can be enabled from the View menu.

The status bar displays:

● The URL of links in the HTML Viewer window that you point to

● Descriptions of menu commands when you open a menu and hover over commands

● Descriptions of toolbar buttons that you point to

● The status of processes in the Navigator.

HTML Viewer window
The HTML Viewer window is available from the View menu.

This window is an integrated web browser, using your installed copy of Internet
Explorer.

You can use the Internet browser toolbar to browse for other HTML pages.

When you start IAR Visual State, the Navigator HTML Viewer window shows the IAR
Information Center.
AFE1_AFE2-1:1

 85

86

Graphical environment for the Navigator

Context menu

The standard Internet Explorer context menu is available in the HTML Viewer window.
For information about the commands, see the documentation from Microsoft
Corporation.

Navigator Reload Files dialog box
The Navigator Reload Files dialog box is displayed when project files or state machine
diagram files (vsp and vsr files) in the current workspace have been modified outside
the Navigator.

The following file(s) have been modified outside the application

Lists the files that have been modified outside the Navigator.

Reload

Updates the information for all modified projects and systems in the Workspace
Browser window.

Ignore

Closes the dialog box without updating the information for modified projects and
systems in the Workspace Browser window.

Do not show this message again

This option disables the reloading message dialog box and either disables reloading or
makes reloading automatic. Choose between:

Never reload files

Projects, systems, and state machine diagrams are only reloaded when the
workspace is opened. This setting is not recommended.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

Reload files silently

All relevant projects, systems, and state machine diagrams are reloaded
automatically when they have been changed outside the Navigator.

To re-enable the reloading message, use the option Automatic file reload, see
Navigator Settings dialog box, page 87.

Navigator Settings dialog box
The Navigator Settings dialog box is available from the Tools menu.

Use this dialog box to make settings for the Navigator.

Location of IAR Embedded Workbench

Specify in which directory the IAR Embedded Workbench program is located. If this
field is empty, IAR Embedded Workbench cannot be started from the Tools menu or the
Navigator toolbar.

Web page shown at startup

Specify an HTML or plain text file to display when the Navigator starts and when you
click the Home button on the Internet browser toolbar.

Open most recent workspace at startup

Determines whether the most recently used workspace is opened automatically when
the Navigator starts.
AFE1_AFE2-1:1

 87

88

Graphical environment for the Navigator

Automatic file reload

Controls whether projects, systems, and state machine diagrams are reloaded when they
have changed outside the Navigator. This updates the graphical information in the
Workspace Browser window, and information is written to the General page of the
Output window. Choose between:

Never

Projects, systems, and state machine diagrams are only reloaded when the
workspace is opened. This setting is not recommended.

Ask

A dialog box asks whether you want to reload the files when a project, system,
or state machine diagrams has changed outside the Navigator.

Always

All relevant projects, systems, and state machine diagrams are reloaded
automatically when they have been changed outside the Navigator.

Automatically open the code generation report in a separate window

Determines whether the report is opened automatically every time you have generated
code with the Coder.

Automatically open the generated model documentation in a separate window

Determines whether the model documentation is opened automatically every time you
have generated documentation with the Documenter.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

New Project dialog box
The New Project dialog box is available from the File menu.

Use this dialog box to create a new project.

See also Creating a new project in a workspace, page 77.

Display area

Select the type of project you want to create:

Standard Project

Creates a standard project with one system, that contains one top-level state
machine.

Blank Project

Creates an empty project without systems.

Project Wizard

Opens the Project wizard, to guide you through the process of creating a
customized project.

Project name

Type a name for the project you are creating.
AFE1_AFE2-1:1

 89

90

Graphical environment for the Navigator

Filename

Type a name for the project file in which the project will be stored.

Location

Browse to the directory where you want to create the new project file.

Information

Describes what the result of your actions in this dialog box will be when you click OK.

New Workspace dialog box
The New Workspace dialog box is available from the File menu.

Use this dialog box to create a new workspace.

See also Creating a standard workspace, page 76.

Display area

Select the type of workspace you want to create:

Standard Workspace

Creates a standard workspace with one project, containing one top-level state
machine.

Blank Workspace

Creates an blank workspace without projects or systems.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

Workspace Wizard

Opens the Workspace wizard, to guide you through the process of creating a
workspace.

Filename

Type a name for the workspace file you are creating.

Location

Browse to the directory where you want to create the new workspace file.

Information

Describes what the result of your actions in this dialog box will be when you click OK.

Output window
The Output window is available from the View menu.

This window displays information about the loaded workspace. The tabbed pages
contain general information from the Verificator, Coder, and Documenter when these
components are running.

Context menu

This context menu is available:

These commands are available:

Copy

Copies the selected text in the window.

Clear

Deletes all text for the active view in the window.
AFE1_AFE2-1:1

 91

92

Graphical environment for the Navigator

Docking View

Toggles between docking the window in the Navigator main window and
making it float.

Close

Closes the window.

Properties

Opens the Properties window for the active view in the window. See Properties
window, page 92.

Properties window
The Properties window is available from the View menu and from the context menu of
the various Navigator windows.

This window shows information about the currently selected or active window or object.

To make the window remain on the screen, click the pin icon .

Workspace Browser window
The Workspace Browser window is available from the View menu.

This window contains a browser where you can see the structure of the loaded
workspace.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

The window has two different views:

● A file view which shows the file structure of the workspace file, with project files,
state machine diagram files, and system folders.

● A workspace view which shows the model structure of the projects in the
workspace. This view also shows project-related items such as Validator
workspaces and custom commands.

For more information about the workspace, see The workspace, page 73.

Context menu

This context menu is available:

These commands are available:

Docking View

Toggles between docking the window in the Navigator main window and
making it float.

Close

Closes the window.

Properties

Opens the Properties window for the selected item in the browser. See
Properties window, page 92.

Reference information on Navigator menus
Reference information about:

● File menu, page 94

● Edit menu, page 95

● View menu, page 96

● Project menu, page 97

● Tools menu, page 98

● Window menu, page 99

● Help menu, page 99

● Navigator shortcut key summary, page 100.
AFE1_AFE2-1:1

 93

94

Reference information on Navigator menus

File menu
The File menu provides commands for creating or opening workspaces, projects and
web files, saving and printing, and exiting IAR Visual State.

The menu also includes a numbered list of the most recently opened workspaces. To
open one of them, choose it from the menu.

Menu commands

These commands are available on the menu:

New (Ctrl+N)

Displays a dialog box where you can create a new workspace or project. See
New Workspace dialog box, page 90 and New Project dialog box, page 89.

Open (Ctrl+O)

Displays a standard dialog box where you can open a workspace or web
document.

Close (Ctrl+F4)

Closes the active document in the HTML browser window.

Open Workspace

Displays a standard dialog box where you can open a workspace.

Save Workspace (Ctrl+S)

Saves the current workspace file.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

Save Workspace As

Displays a standard dialog box where you can save the current workspace file
with a new name.

Close Workspace

Closes the current workspace. You will be given the opportunity to save any files
that have been modified before closing.

Insert Project

Displays a standard dialog box where you can locate a project to add to the
workspace.

Print (Ctrl+P)

Displays a dialog box where you can print the active document in the HTML
browser window.

Print Setup

Displays a dialog box where you can set printer options.

filename.vnw

A numbered list of the most recently opened workspace files, in reverse order of
when they were last opened. Choose the one you want to open.

Exit

Exits the Navigator. You will be asked whether to save any changes to files
before they are closed.

Edit menu
The Edit menu provides commands for editing.

Menu commands

These commands are available on the menu:

Cut (Shift+Del)

The standard Windows command for copying text. This command is not
available on the Edit menu in the Navigator, only as a shortcut key and from
context menus.

Copy (Ctrl+C)

The standard Windows command for copying text.
AFE1_AFE2-1:1

 95

96

Reference information on Navigator menus

Paste (Ctrl+V)

The standard Windows command for pasting text. This command is not
available on the Edit menu in the Navigator, only as a shortcut key and from
context menus.

Delete

The standard Windows command for deleting text.This command is not
available on the Edit menu in the Navigator, only as a shortcut key and from
context menus.

View menu
The View menu provides commands for opening windows and displaying toolbars.

Menu commands

These commands are available on the menu:

Toolbars

Opens a submenu, where the commands Standard Bar, Internet Browser Bar,
and Variant Bar show/hide the three toolbars.

Status Bar

Shows/hides the status bar.

Workspace Browser (Alt+0)

Opens the current Workspace Browser window, see Workspace Browser
window, page 92.

Output (Alt+2)

Opens the Output window, which contains information about the workspace
and information from the Verificator, Coder, and Documenter. See Output
window, page 91.

Go to>Back (Alt+Left Arrow)

The standard Internet Explorer command for going to the previous page in the
browsing history in the current HTML browser window.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

Go to>Forward (Alt+Right Arrow)

The standard Internet Explorer command for going to the next page in the
browsing history in the current HTML browser window.

Go to>Home Page (Alt+Home)

The standard Internet Explorer command for going to the HTML browser home
page.

Go to>URL

Sets the Specify URL field of the Internet Browser toolbar in focus.

Stop (Esc)

Stops the loading of the current HTML browser window.

Refresh (F5)

Reloads the contents of the current HTML browser window.

Properties (Alt+Enter)

Displays information about the current HTML browser window.

Project menu
The Project menu provides commands for starting the various Visual State components.

Menu commands

These commands are available on the menu:

Designer (F7)

Starts the Designer with the current project loaded. See Part 3. Designing using
the Designer, page 115.

Validator (F8)

Starts the Validator with the current project loaded. See Part 4. Simulating using
the Validator, page 319.
AFE1_AFE2-1:1

 97

98

Reference information on Navigator menus

Code Generate (F9)

Starts code generation for the selected project. See Part 6. Code generation
using a Coder, page 455.

Verify Multiple Systems (F10)

Verifies one or more systems in the selected project. See Part 5. Formal
verification using the Verificator, page 411.

Verify System (Ctrl+F10)

Verifies the selected system. See Part 5. Formal verification using the
Verificator, page 411.

Document (F11)

Creates a documentation report for the selected project. See Part 8.
Documenting Visual State projects using the Documenter, page 811

Options (Alt+F9, Alt+F10, Alt+F11)

Opens a submenu where you can open the options dialog box for setting Coder,
Verificator, and Documenter options. See Classic Coder Options dialog box,
page 674, Verificator Options dialog box, page 426, and Documenter Options
dialog box, page 816, respectively.

Tools menu
The Tools menu provides commands for starting IAR Embedded Workbench and for
making Navigator settings.

Menu commands

These commands are available on the menu:

Embedded Workbench (F12)

Starts IAR Embedded Workbench, if it is installed and you have specified its
location using the Location of IAR Embedded Workbench option in the
Navigator Settings dialog box. See Navigator Settings dialog box, page 87. If
there are more than one IAR Embedded Workbench product installed, the one
specified in the dialog box will be started.

Compare Model Files

Launches the IAR Visual State Compare Tool, see The IAR Visual State
Compare Tool, page 101.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Project management

Settings

Displays the Navigator Settings dialog box, see Navigator Settings dialog box,
page 87.

Custom Commands

Displays the Custom Commands dialog box, see Custom Commands dialog
box, page 111. See also Custom commands, page 107.

Window menu
The Window menu provides commands for arranging the Navigator windows.

Menu commands

These commands are available on the menu:

Cascade

Arranges the open HTML browser windows partially on top of each other but
fanned out so that the window titles are visible.

Tile

Changes the size of the open HTML browser windows and arranges them side
by side so that they are all visible.

Arrange Icons

Arranges iconized windows.

Window name

A numbered list of the open HTML browser windows, in order of when they
were opened. Choose the one you want to shift focus to.

Help menu
The Help menu provides help for IAR Visual State and displays the version number of
the Navigator.

You can also access the Information Center from the Help menu. The Information
Center is an integrated navigation system that gives easy access to the information
resources you need to get started and during your project development: tutorials,
example projects, user guides, support information, and release notes. It also provides
shortcuts to useful sections on the IAR Systems web site.
AFE1_AFE2-1:1

 99

100

Reference information on Navigator menus

Navigator shortcut key summary
These are the shortcut keys:

Description Shortcut key

Create a new workspace, project, system, or state machine file Ctrl+N

Open an existing file Ctrl+O

Save the active window Ctrl+S

Close the active window Ctrl+F4

Print the active window Ctrl+P

Make the Workspace Browser window the active window Alt+0

Make the Output window the active window Alt+2

Go to the previous page in the browsing history in the active HTML
browser window

Alt+Left Arrow

Go to the next page in the browsing history in the active HTML
browser window

Alt+Right Arrow

Go to the HTML browser home page. Alt+Home

Stop loading the current HTML browser window Esc

Reload the active window F5

Show information about the current HTML browser window Alt+Enter

Open the help system (context-sensitive) F1

Close the active window Alt+F4

Start the Designer with the current project loaded F7

Start the Validator with the current project loaded F8

Start code generation for the selected project F9

Verify one or more systems in the selected project F10

Verify the selected system Ctrl+F10

Create a documentation report for the selected project F11

Start IAR Embedded Workbench F12

Display the Coder Options dialog box Alt+F9

Display the Verificator Options dialog box Alt+F10

Display the Documenter Options dialog box Alt+F11

Table 6: Navigator shortcut keys
AFE1_AFE2-1:1

IAR Visual State
User Guide

The IAR Visual State
Compare Tool
● Introduction to the IAR Visual State Compare Tool

● Using the IAR Visual State Compare Tool

● Reference information on the IAR Visual State Compare Tool

Introduction to the IAR Visual State Compare Tool
The IAR Visual State Compare Tool can be used for visualizing differences between two
state machine models or two complete projects. Using this tool is a complement to using
a traditional text file comparison tool directly on the XML files.

These file types can be compared:

● .vsp (Visual State project files)

● .vsr (Visual State state machine diagram files)

● .vssm (Visual State state machine files)

● .vste (Visual State transition element files)

Using the IAR Visual State Compare Tool
To compare two Visual State files:

1 In the Navigator, choose Tools>Compare Model Files to open the IAR Visual State
Compare Tool.

2 Click the browse button for File A (base) and navigate to the older version of the file
and load it.

3 Click the browse button for File B and navigate to the newer version of the file and
load it.

4 View the differences between the two versions, under the heading Differences. The
information will normally load automatically. (If you change the name of a file, or if
you make changes to the contents of a model, you might have to refresh the
information by choosing Commands>Compare Files.)
AFE1_AFE2-1:1

101

102

Reference information on the IAR Visual State Compare Tool

5 To inspect a change, double-click the description in the list or right-click on it and
choose Show in Designer from the context menu. This will open two Designer
windows, one for each version of the state machine model/project, with the changed
element selected. If the difference is not a diagram element, a standard Find operation
is launched in the Designer window, see Searching for a transition element, page 193.

Note: If you loaded the files in the wrong order, or if you want to view the changes from
a reverse perspective (additions as deletions, etc), choose Commands>Switch A and B.

Reference information on the IAR Visual State Compare Tool
Reference information about:

● IAR Visual State Compare Tool window, page 103

● File menu, page 104

● View menu, page 104

● Commands menu, page 105

● Help menu, page 105
AFE1_AFE2-1:1

IAR Visual State
User Guide

The IAR Visual State Compare Tool

IAR Visual State Compare Tool window
The IAR Visual State Compare Tool window is available from the Tools menu in the
Navigator.

This window displays detailed descriptions of all changes to a state machine model or
project.

Files

Use the browse buttons to load the two versions of the file that you want to compare:

File A (base)

This field contains the path to the older version of the file that you want to
compare.

File B

This field contains the path to the newer version of the file that you want to
compare.
AFE1_AFE2-1:1

103

104

Reference information on the IAR Visual State Compare Tool

Differences

This area displays a detailed list of all differences between the two versions of your state
machine file or project. If the differences are too fundamental, the IAR Visual State
Compare Tool will conclude that they are not versions of the same file, and no
comparison will be made.

To inspect a change, double-click the description in the list or right-click on it and
choose Show in Designer from the context menu.

Output

The log in the output area displays a detailed list of all commands you send to the IAR
Visual State Compare Tool. To clear the log, right-click in this area and choose Clear
from the context menu.

File menu
The File menu provides commands for exiting the IAR Visual State Compare Tool.

Menu commands

These commands are available on the menu:

Exit

Exits the IAR Visual State Compare Tool.

View menu
The View menu provides commands for displaying contents.

Menu commands

These commands are available on the menu:

Status Bar

Displays or hides the status bar at the bottom of the window.

Output Window

Displays or hides the output area with the log.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The IAR Visual State Compare Tool

Compact Difference

Toggles the description of the changes in the Differences area between a
detailed hierarchical view and a compact flat list.

Commands menu
The Commands menu provides commands for comparing state machine diagram files
or projects.

Menu commands

These commands are available on the menu:

Compare Files

Refreshes the contents of the Differences area. The information will normally
load automatically, but if you change the name of a file, or if you make changes
to the contents of a model, you might have to refresh the comparison.

Switch A and B

Reverses the comparison to go the other way and refreshes the contents of the
Differences area.

Help menu
The Help menu provides commands for displaying information about the IAR Visual
State Compare Tool.
AFE1_AFE2-1:1

105

106

Reference information on the IAR Visual State Compare Tool

AFE1_AFE2-1:1

IAR Visual State
User Guide

Custom commands
● Introduction to custom commands

● Using custom commands

● Graphical environment for custom commands

Introduction to custom commands
Learn more about:

● Briefly about custom commands, page 107

BRIEFLY ABOUT CUSTOM COMMANDS

You can defined a custom command to perform a specific task, for example compiling
an entire Visual State project.

You can set up one or several custom commands for each project in a Navigator
workspace, and for the workspace itself.

Note: Custom commands are workspace-specific, that is, they apply only to the
workspace where they were created and to its projects.

Using custom commands
What do you want to do?

● Creating a custom command

● Executing a custom command

● Editing or deleting a custom command

● Renumbering custom command macros

CREATING A CUSTOM COMMAND

1 Start the Navigator and open your workspace file.
AFE1_AFE2-1:1

 107

108

Using custom commands

2 Choose Tools>Custom Commands to display the Custom Commands dialog box:

3 In the Project(s) pane, select the workspace or a project, depending on whether you
want to create a workspace-specific command or a project-specific command.
Workspace-specific commands can operate on all projects in the entire workspace.
Project-specific custom commands only have access to the project for which they are
defined.

4 On the Command(s) toolbar, click the New button . Click the name and specify a
more descriptive name.

5 In the Command field, specify the path to the program you want to be executed. There
is a browse button available for your convenience.

6 In the Arguments field, type the arguments to be used by the custom command or
click the button to display a menu of arguments to choose from:
AFE1_AFE2-1:1

IAR Visual State
User Guide

Custom commands

Choosing Select Project or Select System File displays a dialog box for selecting the
item you want to use as an argument:

For example, selecting Project File inserts the macro $(P0_FILE). When the custom
command is activated,$(P0_FILE) is expanded to the name of the first project file in
the workspace.

7 In the Initial directory field, type the directory to change to during execution of the
custom command or click the button to display a menu of locations to choose from:

Choosing User-specified displays a dialog box for browsing to the initial directory you
want to use.

8 Click OK to add the new custom command to the Project Custom Commands folder
in the Workspace Browser window. Save the workspace.

For information about the options Silent mode, Prompt for arguments, and Use
output window, see Custom Commands dialog box, page 111.

EXECUTING A CUSTOM COMMAND

1 Start the Navigator and open your workspace file.

2 In the Workspace Browser window, double-click the custom command you want to
execute.

EDITING OR DELETING A CUSTOM COMMAND

1 Start the Navigator and open your workspace file.

2 Choose Tools>Custom Commands to display the Custom Commands dialog box.

3 In the Command(s) list, select the custom command you want to edit or delete.
AFE1_AFE2-1:1

 109

110

Graphical environment for custom commands

4 Choose what you want to do:

● To edit the command, change the settings below the Command(s) list and click
OK.

● To rename the command, click the Rename button on the toolbar and edit the
name in the list.

● To delete the command, click the Delete button on the toolbar.

RENUMBERING CUSTOM COMMAND MACROS

The macros for your custom commands refer to projects and systems by number. To
ensure that they will refer to the correct system if you have removed or added any
systems, you must update the numbering.

To renumber your custom command macros:

1 Start the Navigator and open your workspace file.

2 Choose Tools>Settings to open the Navigator Settings dialog box.

3 Change the setting for the option Renumbering of custom command macros, see
Navigator Settings dialog box, page 87.

Graphical environment for custom commands
Reference information about:

● Custom Commands dialog box, page 111
AFE1_AFE2-1:1

IAR Visual State
User Guide

Custom commands

Custom Commands dialog box
The Custom Commands dialog box is available from the Tools menu.

Use this dialog box to create or edit custom commands.

See also Creating a custom command, page 107.

Project(s)

Displays the projects of the loaded Visual State workspace.

Command(s)

A list of custom commands that have been created for the workspace or project that is
selected in the Project(s) pane.

Toolbar

The toolbar provides buttons for editing and manipulating the custom commands.

This figure shows the operations that correspond to each of the toolbar buttons:

New

Creates a new custom command.

Delete

Deletes the selected custom command.
AFE1_AFE2-1:1

 111

112

Graphical environment for custom commands

Rename

Makes the name of the selected custom command editable.

Move Up

Moves the selected custom command upward in the list.

Move Down

Moves the selected custom command downward in the list.

Command

Specify the path to the program you want to be executed. There is a browse button
available for your convenience.

Arguments

Type the arguments to be used by the custom command or click the button to display
a menu of arguments to choose from. Choose between:

Workspace Name

Inserts the macro $(WS_NAME). When the custom command is executed, this
macro expands to the name of the workspace.

Workspace File

Inserts the macro $(WS_FILE). When the custom command is executed, this
macro expands to the name of the workspace file.

Workspace Path

Inserts the macro $(WS_PATH). When the custom command is executed, this
macro expands to the path of the workspace file.

Select Project

Displays a dialog box for selecting the project name, project filename, or project
path that you want to use as an argument. This will insert one of the macros
$(PO_NAME), $(PO_FILE), or $(PO_PATH).

Select System File

Displays a dialog box for selecting the system name that you want to use as an
argument. This will insert the macro $(PO_SO_NAME).
AFE1_AFE2-1:1

IAR Visual State
User Guide

Custom commands

Initial directory

Type the directory to change to during execution of the custom command or click the
 button to display a menu of locations to choose from. Choose between:

Project Path

Inserts the macro $(PO_PATH). When the custom command is activated, this
macro expands to the path of the project file.

User-specified

Displays a dialog box for browsing to the initial directory you want to use.

Silent mode

Makes the execution of the custom command be performed without displaying any
windows or dialog boxes.

Note: This disables also any dialog boxes that request user interaction.

Prompt for arguments

Prompts you for arguments, if needed, during the execution of the custom command.

Use output window

Prints any output from the execution of the custom command to the Custom Command
page of the Navigator Output window.
AFE1_AFE2-1:1

 113

114

Graphical environment for custom commands

AFE1_AFE2-1:1

IAR Visual State
User Guide

Part 3. Designing using
the Designer
This part of the IAR Visual State User Guide includes these chapters:

● Designing

● States

● Transitions

● Transition elements

● Reusing designs using state machine templates

● Using variants and features

● Using requirements files

● The Visual State Designer
115

116

Designing
● Introduction to designing state machines using the Designer

● Designing state machines

Introduction to designing state machines using the Designer
Learn more about:

● Briefly about state machines and designing, page 117

● Runtime behavior—macrosteps and microsteps, page 122

● The Visual State system, page 123

BRIEFLY ABOUT STATE MACHINES AND DESIGNING

State machines are commonly used for describing discrete systems, where the current
behavior is a result of previously occurring events. A state machine transforms incoming
events to deduced out-going actions, the machine is just a reactive engine or core, not to
be confused with an operating system.

A state machine consists of a finite set of states in a hierarchy and a collection of
transitions. The states represent the possible situations in the system, and the transitions
represent a change from one state to another. The system can change states depending
on input from the environment (events). As a state change occurs, actions can be
performed on the environment:

Your state machine design model decides how to react on the input from the
environment of your embedded application.
AFE1_AFE2-1:1

 117

118

Introduction to designing state machines using the Designer

Typically, an embedded system has special-purpose devices such as sensors, actuators,
buttons, and displays. The input from the environment can, for example, come via
switches and buttons for turning the power on or off, or changing the playback volume.
There are sensors for detecting activities, and there is some sort of output, for example
to activate, control, and give feedback to the environment. Input from sensors is called
events, and output is called actions. See also the chapters States and Transitions.

State machine diagrams—the graphical representation

You design your state machine model by drawing a state machine diagram—the
graphical representation of your model— and naming the objects it contains. The
diagrams help you visualize the behavior of your embedded system and provide you
with the overview needed for understanding and handling model complexity. Once the
diagram has been drawn, you can simulate and verify the state machine to see if it
behaves as intended. See also the chapters Simulation and Formal verification.

This example represents a simple air conditioning unit for a car and illustrates different
state types and other components:
AFE1_AFE2-1:1

IAR Visual State
User Guide

Designing

State machine hierarchy and concurrency

IAR Visual State can be used for modeling hierarchical state machines as described in
the UML standard. Thus, a state machine can contain other state machines. A state that
in itself contains one or more state machines is called a superstate, and states inside an
enclosing superstate is called a substate:

A state machine can only be in one state at a given time—the states are mutually
exclusive. However, if your system must be in more than one state at a time to handle
concurrency, you must organize the states in separate regions:

In this case, your system can be in more than one state at a given time, for example in
State1 and State21.
AFE1_AFE2-1:1

 119

120

Introduction to designing state machines using the Designer

Regions collect states that belong to a specific state machine, and regions help you
modularize your design. They appear in these ways:

● As concurrent regions in the topstate, in other words, as the top-level state machines
in a state machine diagram.

● As one or more regions in composite states. See also Composite state, page 140.

Organizing complexity using off-page regions

Off-page regions can be used for modularizing complex models. They make it possible
to move the advanced control logic of a composite state to another state machine
diagram instead of representing it directly in a composite state.

The runtime behavior of a composite state with an off-page region is the same as the
runtime behavior of a composite state that contains a state machine directly. The
difference between the two constructs is only their graphical representation in the state
machine diagram.

This example shows a device that can be in two different states: Off and On:

The state On contains other states (a state machine), which are drawn as an off-page
region. The graphical representation of an off-page region in the parent state is a small
symbol that indicates that the contained state machine is represented in its own diagram.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Designing

This example shows the state machine that is contained in the off-page region in the
previous image:

The two images also illustrate that you can create a transition that crosses the diagram
boundary from the containing state to the states in the off-page region. This is
accomplished by using connector states. The transition triggered by the event E_SETUP
is an example of this. See also Connector pseudostate, page 149.

Reuse

IAR Visual State offers several ways of reusing your work, instead of having to design
identical or similar elements over and over again. These mechanisms are intended to
make reuse easier:

● System instances

To control multiple identical hardware or software units by means of the same state
machine model, you can create multiple system instances. Instead of manually
copying the code for each individual unit, you create instances of the data for the unit.
See Reuse of design using system instances, page 126.

● Stereotypes

Defining stereotypes is a simple way to create states with a uniform look. A
stereotype is a named template that captures the size, color, font, entry, and exit
reactions of a state. See Stereotypes for creating states with a uniform look, page 140
and Creating states with a uniform look using stereotypes, page 156.
AFE1_AFE2-1:1

 121

122

Introduction to designing state machines using the Designer

● Transition element files

Transition elements can be stored in small, reusable files that contain only transition
elements, not states or transitions. You can reuse those transition elements by simply
adding the transition element file to a project. See Transition element files, page 179.

● State machine templates

Instead of cutting and pasting to reuse state machines, you can create a state machine
template of it, and instantiate this template one or more times by creating submachine
states. See Reusing designs using state machine templates, page 201.

● Copying and pasting state reactions

Instead of creating identical reactions for states, you can right-click on a state in a
Designer diagram and copy the reactions from the state. You can then paste them into
another state in the same or a different diagram. See General Designer windows
context menus, page 298.

RUNTIME BEHAVIOR—MACROSTEPS AND MICROSTEPS

When an event is processed by IAR Visual State at runtime, the following happens in
this order:

1 The event is processed and all enabled transitions are executed. In other words,
transitions that start in a currently active state, have no guard condition or have
guard conditions that evaluate to true, and trigger on the processed event. As a direct
consequence, the following happens:

● Action functions and assignments, as well as entry and exit actions, that are part
of the executed transitions are performed.

● States change to the goal states of the executed transitions.

● Signals emitted as part of the transition execution are queued up in the signal
queue in the order of processing.

2 At this point, there might be trigger-less transitions that start in a currently active
state and have no guard conditions or whose guard conditions evaluate to true.
These transitions are executed in the same way as in step 1. Step 2 can lead to more
signals being added to the signal queue.

Step 2 is repeated until no trigger-less transitions are enabled anymore. Note that this
might lead to a livelock—an unlimited sequence of steps to process trigger-less
transitions. The tool does not prevent livelocks, just as a compiler does not prevent
infinite loops from being written.

3 If the signal queue is not empty, and if there are enabled transitions that trigger on
the first signal in the queue, then this signal is retrieved from the queue and
processed in the same way as an external event.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Designing

Steps 2 and 3 are repeated until no trigger-less or signal-triggered transitions can be
executed anymore. At this point, any signals still in the queue are discarded.

A complete sequence of step 1–3 comprise a macrostep; each individual step is called a
microstep. (Note that it is possible to create models where step 2 and 3 repeat for ever—
another source of livelock.)

This diagram exemplifies the runtime behavior:

After sending the SE_RESET and E1 to the system, the model will:

● call these action functions in sequence: entryS2, exitS2, entryS3, exitS3,
entryS4, exitS4, and entryS3

● discard signal2

● be in state S3 when finished.

See also Triggers, page 169 and Signal, page 181.

THE VISUAL STATE SYSTEM

A Visual State system is a collection of one or more state machine models. Your Visual
State project can contain one or more systems.

On target, the logical unit of a state machine model is the Visual State system. Thus,
when an event occurs, it is interpreted on a per system basis. So, although a system
might contain more than one hierarchical state machine, the event occurs for all state
machines in this particular system.

If the project consists of more than one system and the systems share an event, (or, in
other words, they must react to the same event), the event handling mechanism on target
AFE1_AFE2-1:1

 123

124

Introduction to designing state machines using the Designer

must ensure that the event occurs once for each system. This principle is shown in this
figure:

The figure shows the interaction between IAR Visual State and the external
environment. The event happens physically in the external environment, and is added to
the event queues of the individual system. From there, the event is sent into the Visual
State API on a per system basis. You must implement these event queues. You can find
source code examples for event queue handling provided with your product installation.

System notation

All design elements in IAR Visual State conform to the Unified Modeling Language
specification for state machine diagrams. This means that every model you create with
IAR Visual State will conform to that specification.

However, when you use Safe Mode, a warning will be given during the design process
if a non-verifiable element is used. Safe Mode should be used when you want to be sure
that the design is verifiable with the Visual State Verificator. See also Non-verifiable
elements, page 417.

Briefly about organizing your system

IAR Visual State provides many mechanisms for organizing your state machine model.
A well organized model not only considers the logic of your application, but also aspects
such as concurrent programming, team development, and reuse of designs.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Designing

Your Visual State project collects your Visual State systems. For each system you create,
you must create a top-level state machine for which a file is automatically created
(filename extension vsr).

If state machine models are grouped in the same Visual State system, they can be
synchronized with each other via state conditions, see State conditions, page 170 and
Synchronizing one part of the model with other parts of the model, page 136. Thus, the
behavior of one state machine can affect the behavior of the other state machine
model(s) within the same system.

For example, if you want to create a state machine for a car light that should react to the
behavior of a state machine for the car locking mechanism, it is a good idea to include
the two state machines in the same Visual State system. Furthermore, if another state
machine—for example a state machine for the air conditioning—is to operate
independently of the first two state machines, a separate Visual State system should be
used for that state machine model:

In the Designer, you can create a system, for example LightAndLocking that contains
two top-level state machines, for example Light and Locking. Also, create a top-level
state machine for the air conditioning and insert it in another system, for example
AirCondition.

In the Project Browser window the project contains two systems, LightAndLocking
and AirCondition, respectively. The LightAndLocking system contains the two
AFE1_AFE2-1:1

 125

126

Designing state machines

state machines called Light and Locking. This image shows the state tree structure of
the project as it appears in the Designer:

Because the system is split into more than one top-level state machines—thus, saved in
separate files—several developers can work in parallel on the same project.

Reuse of design using system instances

If you want to control multiple identical hardware or software units by means of the
same state machine model, you can create multiple system instances. Instead of
manually copying the code for each individual unit, you create instances of the data for
the unit.

At runtime, IAR Visual State is capable of handling more than one instance of each
system. Each instance has its own state configuration and its own copy of the internal
variables so that the instances are completely independent of each other. Only one
instance can be active at a time. The API is used for activating an instance.

Note also that IAR Visual State supports multiple similar variants of your product. For
more information, see Using variants and features, page 217.

Designing state machines
Before you can start designing your state machine models, you must first create a project
with a system and a state machine file, see Setting up workspaces and projects, page 75.

This is an example procedure that you can follow when you design state machines:

1 Identifying and creating events and action functions, page 127

2 Identifying and drawing simple states, page 128

3 Organizing your states logically, page 129

4 Creating transitions between your states, page 130
AFE1_AFE2-1:1

IAR Visual State
User Guide

Designing

5 Synchronizing one part of the model with other parts of the model, page 136

Note that the exact order is not mandatory, but when you design it helps to start by
looking at the problem, to identify possible actions and states. Most certainly, you will
iterate these steps one or more times.

IDENTIFYING AND CREATING EVENTS AND ACTION
FUNCTIONS

The requirements of an embedded application determine what your state machine model
must react to and how it should react. What input will your system need and what output
will it produce? The input is your events and the output is the actions, which you
implement as action functions. When the events and actions are identified, you have
defined the interface of your system and specified the boundaries for what your
application should do. See also Events, page 179 and Action function, page 182.

To create events:

1 In the Designer, open your project.

2 Choose View>Transition Elements to open the Transition Elements window.

3 In the Project pane, select your project if you want to create a global element. To
create a local element, select the top-level state machine in the tree.

4 In the Commands pane, click the Event tab.

5 On the Commands toolbar, click the New button ().

A new event with a default name is created in the list:
AFE1_AFE2-1:1

 127

128

Designing state machines

6 Specify an event name and possibly a description for the event in the Name and
Comment fields, respectively.

Note:

● If you use a descriptive name, you do not need to specify a comment as well.

● At this stage of the design phase you do not have to specify whether it is a definition
or a declaration, or specify the parameters. You can specify that later on.

Previously created elements can be dragged from the Commands pane to the project or
top-level state machine in the Project pane. Thus, local elements can become global
elements by dragging them to the project in the tree structure. If you press Ctrl while
dragging the elements to a another file, the declarations will be added to the destination
file, but not the transition element.

You can delete elements by clicking the Delete button ().

7 Repeat this procedure for the events you need.

To create action functions:

1 Follow the same procedure as for creating events, but click the Action Function tab
instead, and specify the details for your action function. Note that at this stage of the
design phase you do not have to specify the parameters, you can specify them later on.

2 Repeat the procedure for all action functions you need.

IDENTIFYING AND DRAWING SIMPLE STATES

When you have identified your events and actions, it is time to identify the states. Which
states will your embedded application have? Identify the states you need and draw a
simple state for each one in the state machine diagram. Initially, you do not have to
consider how the states logically relate to each other.

To draw simple states:

1 To open the State machine diagram window, double-click the region you want to edit
in the Project Browser window.

2 On the Diagram toolbar, click the Simple State button () and click in the State
machine diagram window. A simple state will be created in the diagram.

To create a state with another size, click in the diagram and hold the left mouse button
while you drag a rectangle. Release the mouse button.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Designing

3 Deactivate the Simple State tool by right-clicking the mouse. The state you have drawn
can be resized and moved as necessary by dragging it.

4 By default a state is given a name State#. To change the name, click the default state
name, and type a new name that reflects the state of your embedded application.

5 Fill the diagram with the states you need.

ORGANIZING YOUR STATES LOGICALLY

When you have identified and drawn your states, you must organize them logically;
which are related to each other and which are not, and how are they related? You can
group your states both by hierarchy and by concurrency, and you will probably do both.
Some states will probably be mutually exclusive to other states.

To group your states by hierarchy:

1 Resize the state (for example State1) that you consider being a super state to other
states (for example State2), and simply move State2 inside State1. A region is
automatically created in State1.
AFE1_AFE2-1:1

 129

130

Designing state machines

2 Move all states that are related to State1 by hierarchy to it.

To group your states by concurrency:

1 Assume that State4 and State5 are concurrent to State2 and State3. In that case,
resize State1, right-click Region1 and choose Insert Region>Right from the
context menu. Region2 is created to the right of Region1.

2 Move State4 and State5 to Region2.

CREATING TRANSITIONS BETWEEN YOUR STATES

The transitions specify the dynamic behavior of your embedded application. When an
event occurs in the state machine environment, the state machine changes its state by
AFE1_AFE2-1:1

IAR Visual State
User Guide

Designing

performing a transition; optionally, an action can be performed. You draw the transition
line from the source state to the destination state and associate a condition and action
with the transition.

To control the route of the transition, you might want to add route points to your
transitions, either manually or by letting the Designer automatically determine the route
of the transition. The route point is a handle which changes the route of the transition
when you drag it, which can be useful for complex diagrams.

See also Introduction to transitions, page 167.

To draw the transition:

1 On the Diagram toolbar, click the Transition button ().

2 In the state machine diagram, click the source state. The frame of the source state is
highlighted and a hook point is displayed.

3 To start drawing the transition, move the cursor to the frame of the destination state; the
frame is highlighted. Click the destination frame. The transition line is drawn between
the states.

4 Deactivate the transition tool by right-clicking in the diagram.
AFE1_AFE2-1:1

 131

132

Designing state machines

To specify the condition and action:

1 In the state machine diagram, select the transition for which you want to specify the
condition and action, right-click and choose Edit Transition from the context menu
(or double-click the transition in the diagram).

Here you can specify the condition and the action, add comments, and specify an alias
for your transition.

2 Select an item in the Condition/Action pane:

● Use the first four items to specify the condition: Trigger, Guard Expression,
Positive State Conditions, and Negative State Conditions.

● Use the last two items to specify the action: Action Expression and Signal Action.

When you have selected an item in the Condition/Action pane, the valid transition
elements for that item will appear in the Element pane.

For example, if you select Trigger, the elements Special trigger, Event, Event Group,
and Signal appear in the Element pane.

For information about available transition elements per item, see Introduction to
transitions, page 167. See also Transition elements, page 177.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Designing

3 In the Element pane, select what you want to apply to your condition or action. For
example, an Event.

If you have created events previously, they will be listed automatically in the Elements
pane. Otherwise, you should create the event (or any other transition element) now.

4 To create new transition elements, click the New button () on the Element toolbar.
An edit dialog box is displayed. The dialog box looks slightly different for the various
transition elements, but the procedure is the same.

5 To create a new event, click the New button () on the Command toolbar. For
events, the dialog box looks like this:

Specify your event details and click OK.

Note that you can also use the Transition Elements window to create and edit your
transition elements. See Transition Elements window, page 295

6 In the Edit Transition dialog box, your newly created transition element—the event
Event1 with the parameter My_param—now appears in the Elements pane.
AFE1_AFE2-1:1

 133

134

Designing state machines

7 Select your transition element and click the black left arrow (or double-click the
element) to associate your transition element with your condition or action.

Your element appears in the Condition/Action pane.

8 For each item in the Condition/Action pane that you want to be part of your condition
or action, repeat steps 1–7.

You can add as many transition elements to your conditions and actions as you want, and
change their order by clicking the Up and Down Arrow buttons on the toolbar. To delete
an item from the condition or action, select the item and click the Delete button ().
AFE1_AFE2-1:1

IAR Visual State
User Guide

Designing

9 When you have finished creating your condition or action, click OK. The element
appears next to your transition arrow in the state machine diagram.

To edit the condition and action, you can right-click the transition and choose Edit
Transition from the context menu.

To edit the transition elements, choose View>Transition Elements. See Creating a
transition element, page 184.

To insert route points manually:

1 To insert a route point manually while you draw a transition, click in the diagram
outside the target state. This will insert a route point for the transition and let you
continue to draw the transition.

To remove the most recently inserted route point, right-click in the diagram.

2 After completing a transition, you can clone a route point by pressing Ctrl while you
click and drag the route point.

To delete a route point, drag it and drop it on another one.

To let the Designer automatically determine the route of the transition:

1 Choose Tools>Settings>Transition and make sure Auto format orthogonal
transitions is selected.

2 On the Diagram toolbar, click the Orthogonal Transition button ().

3 In your diagram, click the source state and then the destination state; the transition will
be drawn automatically in such a way that any states in between will be avoided.

4 To help the Designer draw the desired route of the transition automatically, click at
specific points in the diagram to guide the Designer.
AFE1_AFE2-1:1

 135

136

Designing state machines

SYNCHRONIZING ONE PART OF THE MODEL WITH OTHER
PARTS OF THE MODEL

Typically you want to synchronize state machines that depend on each other, for
example a car light that depends on the car locking mechanism.

There are various mechanisms that you can use for synchronizing your state machines:

● Signals

A signal triggers a transition. For example, when a car locking state machine decides
that the car is locked, a signal action can be sent as a synchronization with the car
light state machine. See Signal, page 181.

● State conditions

State conditions ensure that another state machine within the same Visual State
system satisfies when another state machine is in a specific state, not in that state, or
in a combination of states. This means that you can synchronize one state machine
with another state machine; for example, the car light will not change state until the
car lock state machine is in the state locked. See also State conditions, page 170.

● Trigger-less transitions

Trigger-less transitions are special transitions that do not have an explicit trigger, but
that usually have a guard condition that can depend on other state machines. See also
Trigger-less transitions, page 173.

To create a signal, state condition, or trigger-less transition, see Creating a transition
element, page 184.
AFE1_AFE2-1:1

IAR Visual State
User Guide

States
● Introduction to states

● Working with states

● Working with composite states and regions

Introduction to states
Learn more about:

● Briefly about states, page 137

● Simple state, page 140

● Composite state, page 140

● Initial state, page 141

● Shallow history pseudostate, page 143

● Deep history pseudostate, page 147

● Join and fork pseudostates, page 148

● Junction pseudostate, page 149

● Connector pseudostate, page 149

● Choice state, page 150

● State reactions, page 150

BRIEFLY ABOUT STATES

A state represents the current situation in the system. A state in a state machine is an
abstract mapping of one or more states. For example, a printer can be Off, in Standby,
or On.
AFE1_AFE2-1:1

137

138

Introduction to states

In the state machine diagram, states are drawn with a different symbols for different state
types

A state machine does not have to map all the possible physical states of the underlying
hardware, only the states that are important to the model.

A state machine moves from one state to another state if a specific event occurs—for
example, pressing a button—by performing a transition. See also Transitions, page 167.

In some situations you might want something to happen but without changing states. In
this case you can create internal reactions. Internal reactions behave like transitions but
they do not change states. For more information, see State reactions, page 150.

Note: In the UML standard, states are referred to as vertexes.

Overview of available states

There are different types of states, with their own graphical representations and logical
meanings:

● Simple state—a state that does not contain any other states or regions. See Simple
state, page 140.

● Composite state—a state that consists of one or more regions, which contain other
states. A composite state is used for representing the top-level state machine. See
Composite state, page 140.

● Initial state—represents a default state that is the source for a single transition to the
default state of a composite state. See Initial state, page 141.

● Shallow history state—a shorthand notation that represents the most recent active
substate of its containing state (but not the substates of that substate). See Shallow
history pseudostate, page 143.

● Deep history state—a shorthand notation that represents the most recent active
configuration of the composite state that directly contains this pseudostate; that is,
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

the state configuration that was active when the composite state was last exited. See
Deep history pseudostate, page 147.

● Join and fork states—join states serve to merge several transitions coming from
source states in different concurrent regions, whereas fork states serve to split an
incoming transition into two or more transitions terminating on destination states in
different concurrent regions. See Join and fork pseudostates, page 148.

● Junction states—states that are used to chain together multiple transitions. See
Junction pseudostate, page 149.

● Connector states—states used for constructing compound transitions that cross an
off-page boundary. See Connector pseudostate, page 149.

● Choice states—states used for setting up dynamic choice between a number of
transition paths, where the path to take depends on what the actual values are before
continuing from the choice state. See Choice state, page 150.

State compartments

Graphically, a state can consist of up to three different compartments, which specify
(from top to bottom):

● The name of the state.

● A list of the state reactions of the state, see State reactions, page 150.

● The area where you draw any substates.
AFE1_AFE2-1:1

139

140

Introduction to states

The two latter compartments are optional. Whether they are present or not depends on
how the state was created.

Stereotypes for creating states with a uniform look

Defining stereotypes is a simple way to create states with a uniform look. A stereotype
is a named template that captures the size, color, font, entry, and exit reactions of a state.
Hierarchical information is not captured. A project can use as many stereotypes as
necessary.

The typical use for stereotypes is when you want states to have some behavior or
property in common.

See also Creating states with a uniform look using stereotypes, page 156.

SIMPLE STATE

A simple state is a state at the lowest level in the state hierarchy, and it does not contain
any other states or regions. Graphically, a simple state is represented like this:

A simple state can have state reactions, see State reactions, page 150.

COMPOSITE STATE

A composite state is a state that has at least one region. A composite state can consist of:

● One or more concurrent regions

● Mutually exclusive states.

This figure illustrates a state with concurrent regions, where the states inside each
concurrent region are mutually exclusive:
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

Each of the concurrent regions represents a state machine, and the individual concurrent
region is active as long as the containing composite state is active. The concurrent
regions are separated by dashed lines. For more information, see State machine
hierarchy and concurrency, page 119.

When a composite state becomes active, one (and only one) of the states in each region
in it, becomes active. A composite state can be entered either implicitly or explicitly
depending on the transition that causes the state to become active.

One example of a composite state is the state that represents the top-level state machine.
Such states will always be active. Consequently, the only allowed state reactions in such
a state are entry reactions, which will be fired upon reset, and internal reactions. Exit
reactions are not allowed, because they will never be executed. The top-level state
machine is saved in its own file and can thus serve as a building block for developer
teams. See also Briefly about organizing your system, page 124.

A transition can cause a region in a composite state to be entered in one of four ways:

1 Default entry: If a transition does not end directly in a region but on the composite
state of the region, the region enters the default state, indicated by the transition
leaving the initial state in that region.

2 Explicit entry: If a transition ends directly on a simple state (or a composite state) in
a region, the region enters that state, and in the case of a composite state, these four
ways are applied recursively.

3 Shallow history entry: If the transition terminates on a shallow history state, the
active substate becomes the most recently active substate prior to this entry, unless
the most recently active substate is the final state or if this is the first entry into this
state. In the latter two cases, the default history state is entered. This is the substate
that is destination of the transition originating from the history pseudostate. See
Shallow history pseudostate, page 143.

4 Deep history entry: The same rule as for shallow history entry except that the rule is
applied recursively to all levels in the active state configuration below this one. See
Deep history pseudostate, page 147.

INITIAL STATE

An initial state represents a default state that is the source for a single transition to the
default state of a composite state. There must be exactly one such initial state in every
region of a composite state.

The transition that leaves the initial state in a region is fired, and the default state—the
state the transition from the initial state points to—is entered when:

● The owning state machine becomes active, and
AFE1_AFE2-1:1

141

142

Introduction to states

● The transition that causes the composite state that owns the region does not have an
explicit destination state in this region or to one of its descendants.

For example, if the parent state machine is a composite state, and the transition causing
the machine to become active has this composite state as its destination state, the default
state in every region becomes active.

This is an example of an initial state and a default state;

In this figure, state A is the default state, which is indicated by the transition from the
initial state into state A. This means that upon reset, state A is entered.

When event E1 occurs, the state machine will go from state A to composite state B.
Because the state machine contained in composite state B is activated, it will in Region1
enter C by taking the transition from the initial state in Region1, and in Region2 it will
enter its default state C. State C represents a state machine which will enter state E.
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

SHALLOW HISTORY PSEUDOSTATE

A shallow history pseudostate is a shorthand notation for the most recent active substate
of its containing region (but not the substates of that substate). A composite state can
have any number of shallow history states.

A transition coming into one of the shallow history states in each region is equivalent to
a transition coming into the most recent active substate of a state. By having more
transitions going into different shallow history states, you can let different conditions
decide which default state you enter for each shallow history state. Exactly one
transition must originate from each shallow history state to the default shallow history
state. This transition is taken in case the composite state has never been active before for
this region or the history has been cleared when this shallow history state is entered.

Shallow history states for this region behave as described in the UML specification. For
a shallow history state to have any effect, the transition must go to the history state.

To use a shallow history state, place one at the level where you want it and make a
transition point to it. There should be exactly one outgoing transition from the shallow
history state to another state. The first time the transition to the shallow history state is
taken, the state pointed to by the outgoing transition from the shallow history state is
entered. The next and every following time the transition is taken the state machine
remembers its previous state in this region, until a final state in this region inside the
state machine is entered and the history is cleared for this region.

This example shows the same example as the one shown in Initial state, page 141. The
difference between the two figures is that in this figure, state B contains a shallow history
state and not an initial state. The first time state B is entered, the result is the same as for
the previous figure.

When event E1 occurs, the state machine goes from state A to composite state B. Because
the state machine contained in composite state B is activated, in Region1 it enters C by
AFE1_AFE2-1:1

143

144

Introduction to states

taking the transition from the shallow history state in Region1, and in Region2 it enters
its default state C. State C represents a state machine which will enter state E.

The series of screen captures below shows the results of sending the following sequence
of events upon reset: E1(), E2(), E3(), E1(), E1();

1 Reset of state machine => The state machine will be in the default state A.

2 Event E1 is sent => The state machine enters state B and its default state C. State C
represents a state machine which will enter state E.
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

3 Event E2 is sent => The state machine enters state G which is the default state of the
state machine that is represented by state machine D.

4 Event E3 is sent => The state machine enters state H.
AFE1_AFE2-1:1

145

146

Introduction to states

5 Event E1 is sent => The state machine enters state A.

6 Event E1 is sent => The state machine enters state B. Because state B contains a
shallow history state, it will enter state D.

The difference between using an initial state and a shallow history state can be seen from
the fact that when the state machine reenters state B, state D is entered and not state C.
Thus, state B has a history of the state it was in when it was left.

You can have both a shallow history state and an initial state in a state. All transitions
that go to the border of the state enter the initial state, and all transitions that go to the
shallow history state will go to the history state, but will lose any substates.
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

DEEP HISTORY PSEUDOSTATE

A deep history pseudostate is a shorthand notation for the most recent active
configuration of the composite state that directly contains this pseudostate; that is, the
state configuration that was active when the composite state was last exited.

Deep history states behave as described in the UML specification. For a deep history
state to have any effect, the transition must go to the history state.

To use a deep history state, place one at the level where you want it and make a transition
point to it. There should be exactly one outgoing transition from the deep history state
to another state. The first time the transition to the deep history state is taken, the state
pointed to by the outgoing transition from the deep history state is entered. The next and
every following time the transition is taken, the state machine remembers its previous
state in that region, until a final state in that region inside the state machine is entered
and the history is cleared for that region.

The behavior obtained by using the deep history state with a state machine is the same
as the behavior obtained by using the shallow history state with the same state machine
and all state machines below in the hierarchy.

This is an example of using the deep history state:

The example is the same as the one in Shallow history pseudostate, page 143, except for
that state B has been changed to contain a deep history state.

Assume that the following sequence of events is sent: E1(), E2(), E3(), E1(), E1().
The effect will be that upon re-entering state B, the state machine “remembers” the last
state it was in at all lower levels in the hierarchy before it was left. In contrast to the
shallow history example, your model now “remembers” that the state machine
represented by state D was in state H.
AFE1_AFE2-1:1

147

148

Introduction to states

Note: If a deep history state is used, an initial state must still be applied to each state
machine in the hierarchy below the deep history state.

JOIN AND FORK PSEUDOSTATES

Join pseudostates merge several transitions coming from source states in different
concurrent regions. The transitions entering a join state cannot have conditions and
actions.

Fork pseudostates split an incoming transition into two or more transitions terminating
on destination states in different concurrent regions. The transitions that go out from a
fork state cannot have conditions or actions.

Join and fork states have the same behavior as described in the UML specification.

See also Drawing fork and join states, page 158.
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

JUNCTION PSEUDOSTATE

Junction states combine incoming and outgoing transitions, and construct compound
transition paths between states. For example, a junction can converge multiple incoming
transitions into a single outgoing transition representing a shared transition path (this is
known as a merge). Conversely, they can split an incoming transition into multiple
outgoing transition segments with different guard conditions. This realizes a static
conditional branch, which means that the evaluation of the guard conditions do not
depend on any action expressions located on transition segments before the junction.

Junction states behaves as described in the UML specification.

Note: One of the outgoing transitions on a junction state can be an else transition. This
means that for each of the incoming transitions, this outgoing transition will be taken
when the combined condition sides of the other outgoing transitions are not fulfilled.
See Else transitions, page 174. Se also Drawing a junction state, page 159.

CONNECTOR PSEUDOSTATE

Connector states are similar to junction states. Connector states exist in (connected)
pairs with identical names. Connector states create compound transitions that cross an
off-page boundary. See also Drawing a connector state, page 157.
AFE1_AFE2-1:1

149

150

Introduction to states

CHOICE STATE

Choice states are useful when you want to have a dynamic choice between a number of
transition paths, where the path to take depends on what the actual values are before
continuing from the choice state.

For example, if you have assigned the value of the temperature to an internal variable on
the ingoing transition to a choice state, you can have guards on the outgoing transitions
that say, for example [temp < 10], [temp >= 10 && temp < 20] [else], which
means that the path out depends on the temperature you stored when entering the choice
state. Reaching the choice state results in a dynamic evaluation of the guards on the
outgoing transitions. Which outgoing transition to take from a choice state depends on
the result from taking the ingoing transition to the choice state.

Exactly one of the outgoing transitions must evaluate to true, otherwise there is a
contradiction. You should make one of the outgoing transitions on a choice state as an
else transition. This means that this outgoing transition will be taken when none of the
other outgoing transitions are fulfilled. See Else transitions, page 174.

It is good to mark the transitions going out from a choice state as trigger-less. The
outgoing transition cannot have a trigger, so by marking it as trigger-less you make it
clear in the design that you have considered that. See Trigger-less transitions, page 173.

See also Drawing a choice state, page 159.

STATE REACTIONS

State reaction is a common term used for internal reaction (transition), entry reaction,
and exit reaction. State reactions have in common that they are not drawn as lines in the
diagram, but appear as conditions and actions inside the state, divided by a / (slash)
character.

State reactions are fired or can be fired in the following cases:

● When the state machine is entered.

● While the state machine is in a state.

● When the state machine is exited.

Like a transition, a state reaction consists of a condition and an action, but in contrast to
transitions, there are certain transition elements that are not allowed in state reactions.

You create state reactions by using the Edit State dialog box. See Creating a state with
a state reaction, page 153.
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

Internal reaction

An internal reaction is a transition that fires without leaving the state and therefore (in
contrast to a transition) does not cause any exit or entry reactions itself. Thus, it has no
source or destination state.

Note: Drawing a transition from a state and back to the same state (a self-transition)
does not have the same logical implication as an internal reaction. An internal reaction
never leaves the state and will thus not cause any exit and entry reactions to be executed.
In contrast, a self-transition will actually leave and re-enter the state.

This example illustrates how two internal reactions adjust the value of a variable:

Entry reaction

An entry reaction is an action that will be executed each time a state is entered.

Entry reactions offer these advantages:

● It is easier to place the actions in the state instead of having to place them on each
individual transition that enters the state. This also reduces the risk of errors.

● It gives a much simpler graphical model because the actions are represented only
once.

● When a model is modified, the action is automatically associated with a new
entering transition.

Graphically, an entry reaction is marked with the keyword Entry. No conditions are
allowed on entry reactions. Entry reactions are used instead of placing the actions on
each transition that enters the state. Thus, initialization should be designed as entry
reactions.
AFE1_AFE2-1:1

151

152

Introduction to states

The following two state machine diagrams implement exactly the same behavior.
However, in the first diagram, entry and exit reactions are placed in the state Auto:

In the following diagram, the entry and exit reactions are placed on the individual
transitions, giving a more complex graphical model:

Exit reaction

An exit reaction is an action that executes each time a state is exited.

Exit reactions offer these advantages:

● It is easier to place the actions in the state instead of having to place them on each
single transition that exits the state. This also reduces the risk of errors.

● It gives a much simpler graphical model because the actions are represented only
once.

● When a model is modified, the action is automatically associated with a new exiting
transition.
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

Graphically, an exit reaction is marked with the keyword Exit. No conditions are
allowed on exit reactions. Exit reactions are used instead of placing the actions on each
transition that exits the state.

Working with states
What do you want to do?

● Creating a state with a state reaction, page 153

● Creating states with a uniform look using stereotypes, page 156

● Drawing a connector state, page 157

● Drawing initial, shallow history, and deep history states (pseudostates), page 157

● Drawing fork and join states, page 158

● Drawing a junction state, page 159

● Drawing a choice state, page 159

See also:

● Identifying and drawing simple states, page 128

● Working with composite states and regions, page 159

● Drawing an entry (exit) point state, page 210

CREATING A STATE WITH A STATE REACTION

When you have drawn a state, you can specify its behavior as a state reaction—internal
reactions, or actions at entry and exit.

1 In the Designer, open your project.
AFE1_AFE2-1:1

153

154

Working with states

2 In the state machine diagram, double-click the state for which you want to specify a
state reaction. The Edit State dialog box is displayed. Alternatively, right-click the
state and choose Edit State from the context menu.

Here you can change state name, specify an alias name, and specify entry, exit, and
internal reactions. You can also create the transition elements that you need for your
state reaction.

3 To create the reaction, click the appropriate tab in the Reaction pane, for example
Internal.

4 To create a reaction, click the New button () on the toolbar. A list of possible
reaction elements appears in the Reaction pane.

5 In the Reaction pane, click the type of state reaction you want to use. For example,
click Trigger in the list, which means that the Trigger element type appears in the
Element pane.
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

However, before you can select a specific trigger, you must populate the list by defining
your triggers. You can do this in two ways:

● Click the New button in the Element pane header and specify the properties in the
dialog box that appears. When you click OK, the defined element appears in the list
of elements.

● Use the Transition Elements window, see Creating a transition element, page 184.
Use this window also if you want to edit your elements.

6 When you have populated the list with your triggers, double-click the trigger you want
to use. The element will be moved to the Reaction pane and applied to the state
reaction.

You can add as many elements as you want to, change the order in the reaction list by
clicking the Up and Down arrows, and delete elements by clicking the Delete button on
the toolbar.
AFE1_AFE2-1:1

155

156

Working with states

See also Specifying arguments for action function parameters, page 185.

CREATING STATES WITH A UNIFORM LOOK USING
STEREOTYPES

Defined stereotypes can be found on the Stereotype toolbar, see Stereotypes for creating
states with a uniform look, page 140.

To add a new stereotype:

1 Right-click on an existing state whose properties and behavior your want to base other
states on and choose New Stereotype from the context menu.

2 Type a name for the new stereotype in the dialog box that is displayed and click OK.

3 The new stereotype is now the active stereotype in the Stereotype toolbar.

When the stereotype toolbar has an active stereotype, any new state that you create will
inherit properties and behavior from the active stereotype.

4 To activate another stereotype, choose it from the Stereotype toolbar dropdown menu.
To revert to creating new states that are not based on a stereotype, activate the
<<none>> stereotype.

Stereotypes are saved in a separate file in the same folder as the project, and with the
same file name as the project file, but with the filename extension stereotypes. If a
stereotype file is found when a project is loaded, the stereotypes and the active
stereotype are loaded from this stereotype file.

To modify a stereotype:

1 Right-click on an existing state whose properties and behavior you want to use instead,
and choose New Stereotype from the context menu.

2 In the dialog box that is displayed, type the name of the stereotype you want to replace
and click OK.

Note: A state that is created from a stereotype copies the information from the
stereotype and loses the connection to the stereotype. If the stereotype is modified, states
already created using the stereotype do not change.

To delete an existing stereotype, you must manually edit the *.stereotypes file.
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

DRAWING A CONNECTOR STATE

Connector states are pairs of graphical symbols for splitting a transition into multiple
transition fragments. The transition can originate from and enter a connector state.
Connector states are useful when you must draw a transition between points that are far
from each other in the same diagram, or when you must draw a transition to/from the
contents of an off-page region. See also Connector pseudostate, page 149.

1 In the Designer, open your project.

2 On the Diagram toolbar, click the Connector State Pair button (), and click in
your state machine diagram where you want to insert the connector states. Insert two
connector states.

3 Draw a transition from the connector states to ordinary states:

4 The states in a connector pair must have the same name to be connected. To connect
the selected state with another state, right-click and choose Select Buddy from the
context menu.

To rename a connector state, click the state and type a new name. Press Enter to finish.
When you rename one connector state, the buddy is renamed too, if it has a buddy.

To find the other connector state in a pair, click the connector state and choose Go to
Buddy from the context menu.

DRAWING INITIAL, SHALLOW HISTORY, AND DEEP HISTORY
STATES (PSEUDOSTATES)

1 In the Designer, open your project.

2 On the Diagram toolbar, click the Initial State (), Shallow History (), or Deep
History State button (). In the diagram, click where you want to insert the
pseudostate.

3 Draw a transition from the inserted pseudostate to the state that is to be the default
state, in the same way that you draw transitions between states.
AFE1_AFE2-1:1

157

158

Working with states

For information about how to draw a transition, see Creating transitions between your
states, page 130.

DRAWING FORK AND JOIN STATES

Fork and join states are used for going to and from multiple state machines, to and from
single state machines, Fork and join states can be used across several state levels. See
Join and fork pseudostates, page 148.

1 In the Designer, open your project.

2 On the Diagram toolbar, click the Fork State button (). In the diagram, click
where you want to insert the fork state.

3 On the Diagram toolbar, click the Join State button (). In the diagram, click where
you want to insert the join state.

4 Draw transitions from states to the fork state to a state, and from a state to the join state
to states:
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

DRAWING A JUNCTION STATE

Junction states chain together and split transitions. See Junction pseudostate, page 149.

1 In the Designer, open your project.

2 On the Diagram toolbar, click the Junction State button (). In the diagram, click
where you want to insert the junction state.

3 Draw transitions to and from the junction state, to and from other states in the diagram.

DRAWING A CHOICE STATE

1 In the Designer, open your project.

2 On the Diagram toolbar, click the Choice State button (). In the diagram, click
where you want to insert the choice state.

3 Draw transitions to and from the choice state, to and from other states in the diagram.

For more information, see Choice state, page 150.

Working with composite states and regions
What do you want to do?

● Creating a composite state consisting of concurrent regions, page 159

● Hiding the contents in off-page regions, page 161

● Adding descriptions for off-page regions, page 163

● Excluding states or regions from further processing, page 163

CREATING A COMPOSITE STATE CONSISTING OF
CONCURRENT REGIONS

Composite states consist of one or more concurrent regions, where each region contains
mutually exclusive states.

You can define regions in states, as well as in the states that represents top-level state
machines to define concurrent subsystems and represent hierarchical state machines.
See also State machine hierarchy and concurrency, page 119.

To create a composite state that consists of concurrent regions:

1 In the Designer, open your project.

2 On the Diagram toolbar, click the Composite State button ().

3 In the Diagram View window, click to create a state with one region.
AFE1_AFE2-1:1

159

160

Working with composite states and regions

4 To deactivate the Composite State tool, right-click.

5 To add a region to the state, right-click anywhere in the region to open the context
menu. Select Insert Region, and choose where to insert the region.

The composite state can be resized and moved as necessary. You can change the sizes of
the individual regions by dragging the dashed separator line between the regions.

6 To edit the state, right-click in its title area (not in one of the regions) and choose Edit
State from the context menu. See Creating a state with a state reaction, page 153.

To convert an existing simple state to a composite state:

1 Right-click the simple sate to convert and choose Insert Region from the context
menu.

2 The simple state now appears as a composite state.
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

To insert already created states in a concurrent region:

1 In the state machine diagram, select the state you want to add to a region:

2 Drag the state to the region and drop it.

Fill your regions with the required states.

HIDING THE CONTENTS IN OFF-PAGE REGIONS

You can choose whether you want to view the contents of a region in the same diagram
as the composite state or in a separate diagram. Hiding the contents of a region can give
AFE1_AFE2-1:1

161

162

Working with composite states and regions

you a better overview of the overall structure of your model if the content of the region
is very complex.

1 Assume this region:

2 Right-click the region you want to hide and choose Off-Page from the context menu.

The region now appears with a small symbol in the right-bottom corner:

3 To go to the off-page region, click the off-page region symbol or double-click in the
region. To return from the off-page region, press the Backspace key.
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

ADDING DESCRIPTIONS FOR OFF-PAGE REGIONS

For off-page regions you an enter a description.

1 Click inside the region in the parent state for the off-page region. An editable field
appears:

2 Type a description and press Enter. Your description will appear:

EXCLUDING STATES OR REGIONS FROM FURTHER
PROCESSING

Any number of states or regions, on any hierarchical level, can be marked for exclusion
from further processing.

At the time of code generation, validation, or verification, you can choose to include
states and regions, despite the exclusion marks. This is useful for:

● Configuring your application

For example, you can include or exclude parts of your design to enable or disable a
certain feature in your application.

● Adding debug regions to your design to keep track of or detect, for example, error
conditions.

To override exclusion marks, add a separate region where you put your debug state
machines and then decide if you want the functionality included in the simulation, in
the generated code, or for verification. Verification in particular can greatly benefit
from this, letting you, for example, create regions that will enter a dead-end state on
certain conditions.

1 Right-click the state or region that you want to exclude and choose Exclude from the
context menu.
AFE1_AFE2-1:1

163

164

Working with composite states and regions

2 Excluded items appear with the tag (excluded) after their name in the state machine
diagram and in the Project Browser window:

Excluded items also appear with a different background to indicate either that the item
is directly excluded itself, or that some parent item higher up the hierarchy has been
marked as excluded.

Exclusion is inherited; all states or regions that are contained inside an excluded state or
region are also excluded. Note that an explicitly excluded state below a state/region that
AFE1_AFE2-1:1

IAR Visual State
User Guide

States

is marked for exclusion will still be excluded even if the state above is once again
included.

Note that a transition is excluded if it has:

● A source state or region that is excluded

● A target state or region that is excluded

● A positive state condition that depends on an excluded state

● Both a main target and a main source that is below the top-level exclusion.

Transitions that have a negative state condition that depends on an excluded state will
simply have that negative state condition removed. All other transitions are handled as
if the state or region is not part of the model.
AFE1_AFE2-1:1

165

166

Working with composite states and regions

AFE1_AFE2-1:1

IAR Visual State
User Guide

Transitions
● Introduction to transitions

● Creating transitions

Introduction to transitions
Learn more about:

● Briefly about transitions, page 167

● The transition condition, page 168

● The transition action, page 172

● Completion transitions, page 173

● Trigger-less transitions, page 173

● Local transitions, page 173

● Else transitions, page 174

● Transition rule deduction—an example, page 174

BRIEFLY ABOUT TRANSITIONS

When an event occurs in the state machine environment, the state machine changes its
state by performing a transition. Optionally, one or more actions can be performed.

For example, when the power is turned on (the event), the state machine changes from
the state Stand_by to the state Stopped and performs the action Light:

A transition is defined as a relationship between two states, indicating that a state
machine in a specific source state enters a specific destination state when a specified
event occurs, provided that specified conditions are satisfied. Any specified actions will
then be performed. Formally, this is referred to as a transition rule.

Graphically, an ordinary transition is drawn as a solid line that starts from the source
state and ends with an arrowhead pointing at the destination state. Beside the line a label
is placed, which denotes the condition(s) and optionally an action associated with the
transition. The condition is separated from the action by a slash (/). A ? on the condition
AFE1_AFE2-1:1

 167

168

Introduction to transitions

side illustrates that the transition does not have a trigger, yet. When all conditions are
fulfilled, the transition will be triggered and all defined actions will be performed.

To create a transition, first draw the arrow in your state machine diagram and then add
your conditions and actions in the Edit Transition dialog box. See Creating transitions,
page 175.

Note: The IAR Visual State concept of transitions is similar to that of UML. In the UML
specification, destination state is referred to as target state.

In addition to these ordinary transitions, there are special cases of transitions:

● Internal transitions, see Internal reaction, page 151

● Completion transitions, see Completion transitions, page 173

● Trigger-less transitions, see Trigger-less transitions, page 173

● Local transitions, see Local transitions, page 173

● Else transitions, see Else transitions, page 174.

THE TRANSITION CONDITION

A transition can have one or more conditions associated with it. The conditions must be
satisfied for the transition to fire and for the actions to be executed. The condition can
consist of a number of parts, for example:
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transitions

The conditions can consist of these parts:

● Trigger. First the trigger must occur; a trigger is what causes the condition to be
evaluated. In this example, the expression E1(). The trigger can be, for example, an
event. See Triggers, page 169.

● Guard condition. When the trigger has occurred, the guard condition must be
satisfied for the transition to fire. The guard condition can consist of:

● Guard expressions are expressions that can be evaluated to true or false and
which you can create using internal and external variables, action functions, as
well as constants and enumerators. In this example, the guard condition consist
of this expression: [(x==0)] A!B. See Guard expressions, page 169.

● State conditions can be either positive or negative, see State conditions, page
170.

To create triggers, guard expressions and state conditions, use the Transition Elements
dialog box. See Creating a transition element, page 184.

Triggers

In Visual State a trigger is what causes the condition of a transition to be evaluated. If
the condition is evaluated to be true when a trigger occurs, the transition will fire. Each
transition has exactly one trigger.

There are two types of triggers:

● Explicit triggers, which can be one of the following:

● An event, including event parameters. See Events, page 179.

● An event group, which is a collection of events. See Event group, page 180.

● A signal, see Signal, page 181.

● Implicit triggers, which can be one of the following:

● Entry (can only be used as a state reaction), see Entry reaction, page 151

● Exit (can only be used as a state reaction), see Exit reaction, page 152

● Completion (can be used in completion transitions), see Completion transitions,
page 173.

Guard expressions

Guard expressions occur in the transition’s condition. For a transition to fire, all guard
expressions must evaluate to true.

A guard expression is typically a logical expression or a relational expression. A logical
expression is one or more relational expressions separated by logical operators.
AFE1_AFE2-1:1

 169

170

Introduction to transitions

A relational expression is composed of a left side, a relational operator, and a right side.
The left side is either an external variable, an internal variable, an event parameter, an
action function, or a constant or enumerator. The right side can be a complex expression,
involving operators and operands of different types.

A guard expression must be legal and must not cause any side effect, or the model might
behave incorrectly at runtime if the same guard expression is called more than once.

The guard expression in this example is a logical expression that consists of two
relational expressions with the variable x as the left side in both relational expressions:

(x >= 0) && (x < 10 + Action(7, 3))

See also:

● Visual State operands, reference information, page 196 for information about
variables, constants, and enumerators

● Visual State operators, reference information, page 194

● Syntax for guard expressions and action expressions, page 198.

State conditions

State conditions ensure that another state machine within the same Visual State system
satisfies whether another state machine is in a specific state, not in that state, or in a
combination of states. State conditions can be used for creating dependencies between
one part of the model with another part of the model, that is, to synchronize the parts.

State conditions are part of the transition condition. For a transition to fire, all
conditions, including state conditions, must be satisfied.

There are two types of state conditions:

● Positive state conditions

A positive state condition is when another state machine must be in a specific state
for the state condition to be satisfied. Only if the state condition is satisfied, will the
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transitions

transition fire. This figure illustrates an example of a positive state condition in a
security system:

Here, the purpose of the state condition is to ensure that the security system will only
be armed if all doors are closed. This is achieved by the positive state condition in the
state machine Alarm. The state condition is specified by the expression Closed on
the transition from the state Idle to the state Armed. This transition will only go to
the state Armed if the state machine Door is in the state Closed.

● Negative state conditions

A negative state condition is the opposite of a positive state condition. The state
condition is satisfied only if the state machine is NOT in a specific state. This
example illustrates the same security system as in the previous example:

In this case, the state condition is negative in that the door must not be in the state
Open. This is specified by the expression !Open on the transition from the state Idle
to the state Armed. This transition will only go to the state Armed if the state machine
Door is not in the state Open.
AFE1_AFE2-1:1

 171

172

Introduction to transitions

THE TRANSITION ACTION

A transition can have actions that will be executed if the conditions are satisfied (note
that a transition action is not mandatory). Like the condition, an action can contain a
number of elements, for example:

The action side consists of:

● Action expressions—can either be assignments of a new value to a variable or
stand-alone action function calls. In this example, the action expressions are
covered by the expression:

[x=A1()]A2()

See Assignments in transition actions, page 172 and Action function calls, page 173.

● Signal actions—signals will be added to the internal signal queue and will
eventually become triggers. See Signal actions, page 173.

Assignments in transition actions

Assignments can be used by the action, which means that a variable can be assigned a
new value. An assignment contains an assignment operator, in the form of =. On the left
side of the assignment operator is the variable that is to be assigned a new value. On the
right side of the assignment operator an entire expression can be written, using all
allowed unary and binary arithmetic operators, logical operators or bit-manipulation
operators, and all allowed operands or values.

This is an example of an allowed assignment:

x = A1() + 10

See also:

● Visual State operands, reference information, page 196 for information about
variables, constants, and enumerators

● Visual State operators, reference information, page 194

● Syntax for guard expressions and action expressions, page 198.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transitions

Action function calls

An ordinary function call, which consists of the name of the action function and any
argument.

Signal actions

The signal actions are meant to be handled by the internal signal queue and will
eventually be treated as triggers. For more information about signals, see Signal, page
181. See also Synchronizing one part of the model with other parts of the model, page
136 and Runtime behavior—macrosteps and microsteps, page 122.

COMPLETION TRANSITIONS

A completion transition is a special transition that is used for changing states if a certain
state enters a final state.

A transition is said to be a completion transition if it has been marked to use the special
trigger completion in the Edit Transition dialog box.

TRIGGER-LESS TRANSITIONS

Trigger-less transitions are special transitions that do not have an explicit trigger. Such
transitions are especially useful in combination with choice states, but they can be used
on any transition. See Choice state, page 150.

Transitions that are marked as trigger-less are considered to be part of macrosteps, see
Runtime behavior—macrosteps and microsteps, page 122.

LOCAL TRANSITIONS

Local transitions are special transitions that do not trigger the exit/entry reactions of the
source state when they enter a destination substate. This means that there are some
constraints:

● A local transition must go from a superstate to a substate.

● If a local transition goes to a pseudostate, any outgoing transition from that
pseudostate must also be a local transition.

● A local transition cannot be a self-transition.

To specify a transition as local, select the option Local transition in the Edit Transition
dialog box.

A local transition is drawn with a dashed line in the state diagram.
AFE1_AFE2-1:1

 173

174

Introduction to transitions

ELSE TRANSITIONS

An else transition means that the transition will only be taken if no other transition
leaving the junction or choice state is enabled. This functionality is only available for
transitions going out from a junction or a choice state. See Junction pseudostate, page
149 and Choice state, page 150.

TRANSITION RULE DEDUCTION—AN EXAMPLE

This is an example of a transition condition and action which changes from State1 to
State2:

Before the action side can be executed, all conditions on the condition side must be
satisfied. Thus, the transition in the figure covers the following:

If

the system is in state State1 AND

the event E1() occurs AND

the variable x equals 0 AND

the system is in state A AND

the system is in not in state B AND

the system exits state B and its children. The exit is performed
bottom-up.

AND

then

assign the return value from the action function A1() to the variable x AND

execute the action function A2() AND

add the signal S1 to the signal queue AND

enter state State2 and its children. The entry is performed top-down.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transitions

Creating transitions
What do you want to do?

● Creating transitions between your states, page 130

See also:

● Creating a transition element, page 184.
AFE1_AFE2-1:1

 175

176

Creating transitions

AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements
● Introduction to transition elements

● Working with transition elements and transition element files

● Visual State operators, reference information

● Visual State operands, reference information

● Syntax for guard expressions and action expressions

Introduction to transition elements
Learn more about:

● Briefly about transition elements, page 177

● Events, page 179

● Event group, page 180

● Signal, page 181

● Action function, page 182

BRIEFLY ABOUT TRANSITION ELEMENTS

The transition elements are building blocks for specifying:

● Transition conditions and actions

● Specific reactions for states.

In other words, transition elements control what should happen and when it should
happen for both transitions and states.

To create, define, edit, and delete a transition element, use the Transition Elements
window. This window also gives a complete overview of the elements created for the
project. When you have created a collection of transition elements, you can use them to
create your conditions, actions, and state reactions by using the Edit Transitions
window and the Edit States window, respectively.

Transition elements can be stored in transition element files—files that contain only
transition elements, not states or transitions. These files can be used for organizing the
elements in smaller reusable files. For more information, see Transition element files,
page 179.
AFE1_AFE2-1:1

 177

178

Introduction to transition elements

These types of transition elements are available:

● Events and event groups—send messages to the state machine, see Events, page 179
and Event group, page 180.

● Action functions—an activity to be performed by the state machine at a given point
in time, see Action function, page 182.

● Timer action functions—start timers that cause events, see Timer action function,
page 183.

● Signal—triggers a transition, like an event, see Signal, page 181.

● Primitives—such as internal variables, external variables, constants, and
enumerators—express guard conditions and action expressions on transitions, see
Visual State operands, reference information, page 196.

See also Creating a transition element, page 184.

Element declarations and definitions

Every transition element must be designated as either a declaration or a definition. As
in the C language, the general rule is that an element can be declared any number of
times, but must be defined exactly one time. The only exception to this rule is that action
functions and timer action functions can only be declared, but not defined (they are
defined externally in user-written code).

Note that although multiple definitions are made, they all define the same single
element.

Global and local elements

Transition elements can be either global or local:

● Global transition elements—events, event groups, action functions, timer action
functions, external variables, constants, and enumerators—are defined at project
level, and have the scope of the project, including all Visual State systems contained
in it. The name of a global transition element must be unique within the project.

● Local transition elements—events, event groups, action functions, timer action
functions, signals, internal variables, external variables, constants, and
enumerators—are defined on top-level state machine level, and have the scope of
that state machine itself. External variables are a special case, because they always
have scope of the entire project, also when defined on top-level state machine level.

If two local transition elements are defined with the same name in multiple top-level
state machines, they are interpreted as a single element definition having the scope
of the parent Visual State system. In such cases, the element definitions must be
retyped in exactly the same way in the parallel top-level state machines.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements

To refer to an element defined at project level or in another top-level state machine,
a declaration of the element is required in the top-level state machine that refers the
element. For a description of how to add an element defined at project level as a local
declaration, see Declaring global elements locally, page 185.

Transition elements with overlapping scope cannot have identical names. In addition,
names of transition elements of the types external variable and action function must have
unique names throughout the entire projects. See Action function, page 182 and External
variables, page 198.

Transition element files

Transition elements can be stored in small, reusable files that contain only transition
elements, not states or transitions. You can organize a transition element such as an event
or an action function for some specific hardware in its own file, and then reuse that
transition element by simply adding the transition element file to another project.

Transition element files work similarly to include files in the C language. You can have
as many files as you like, and you can add the same file multiple times.

In the Designer, elements from included transition element files are displayed together
when you edit transitions, so you can choose elements from any included transition
element file.

Note: There can be only one definition of a transition element, but you can have
multiple declared transition elements in multiple files. The transition elements work the
same way regardless of whether they are organized in transition element files, or in state
machine files.

EVENTS

An event is something that happens in the external environment of a Visual State system.
In Visual State, events are always processed sequentially. An event causes something to
happen, see also Triggers, page 169.
AFE1_AFE2-1:1

 179

180

Introduction to transition elements

The event might cause the transition that it triggers to fire, provided that the conditions
on the condition side are satisfied. The transitions that fire will result in one or several
actions:

Because an event is considered to be momentary input (such as a button that is pushed),
it must be captured and stored before it can be interpreted by IAR Visual State.

Note: You must ensure that the software in the target application is capable of capturing
the events required for the Visual State system. Furthermore, you must specify a queue
structure if required for the target application.

Event parameters

In IAR Visual State, events can have parameters. An example of a parameter is the
activation of a key on a numeric keyboard where the event describes that a key is being
passed, and the event parameters describe which key is being pressed.

An event parameter can be declared as any of the allowed Visual State data types, and
there is no limitation to the number of parameters with which an event can be declared.
See also Visual State data types, page 197.

EVENT GROUP

An event group is a collection of disjunct events, and is used as an explicit trigger for a
transition. Event groups can be used when several transitions have the same conditions
and actions, and only the event varies. Using event groups provides these advantages:

● The state machine model is easier to understand

● Code size is reduced.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements

If several events can cause a state machine change states, this could be modeled as
multiple parallel transitions:

However, if the events that trigger the transitions are included in an event group, you
only have to draw one transition. In the following illustration, the event group EG1
includes the event Event1 and Event2 from the previous illustration:

When an event belonging to the event group occurs, it triggers a specific transition,
provided that the transition conditions are satisfied. An event group in itself never
occurs; only one of its events can occur. An event can be a member of more than one
event group.

SIGNAL

Signals trigger transitions, just like events. However, in contrast to an event, which
occurs in the external Visual State environment, a signal is sent internally in IAR Visual
State. Thus, it functions as an internal trigger for IAR Visual State. That is why signals
are allowed in both conditions and the actions of transitions.

A transition can send any number of signals, and because an event can trigger more than
one transition, there must be a mechanism for queuing up the signals that have been sent.
This queuing is handled entirely by IAR Visual State.

For information about processing an event that triggers transitions with signals, see
Runtime behavior—macrosteps and microsteps, page 122.

Signal queue

Each Visual State system has a signal queue whose size you must determine. Consider
the following issues carefully when you design a Visual State system that includes
signals:

● Signal queue size

Signal queues are drop-if-full FIFO, which means that the queue size is static. You
must pre-calculate the required size of the queue and set it so that no overflow will
occur. If the system reaches the end of the queue, additional signals will not be added
AFE1_AFE2-1:1

 181

182

Introduction to transition elements

to the queue. However, you can specify that an error code is returned if the signal
queue fills up at runtime. Note that the selected signal queue size is checked by the
Verificator.

● Priority

Signals have priority over events and can only be sent internally. It is not possible to
send signals from the external environment into the Visual State system.

● Live lock

Because signals can trigger transitions, which again will send signals, the system can
be brought into a live lock. No mechanism is built in to handle this during runtime so
you should carefully examine the design to avoid this situation.

This illustrates the processing of an event that triggers transitions with signals; an
example of a live lock:

The entry reaction of State1 sends the signal S1. This triggers the self-transition,
which upon re-entry into State1 will send signal S1, which again will trigger the
self-transition, etc. Thus, a live lock has been constructed.

See also Specifying the signal queue behavior and size, page 190.

ACTION FUNCTION

An action function is an action that is performed when a transition fires. An action
function can be used on a transition in these ways:

● As a function that must be executed when a transition fires. A typical example of
this use is calling a device driver.

● As an operand in guard expressions and assignments. In this case, the action
function has to return a value.

The activation of action functions is completely handled by IAR Visual State which
ensures fully deterministic action function sequencing of the system. However, you
must implement the action functions yourself in C source code.

As with ordinary C functions, an action function in IAR Visual State can have
parameters and may return a value. For the allowed types of action parameters and
action function return values, see Visual State operands, reference information, page
196.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements

See also Declaring action functions in external C files, page 192.

Timer action function

Timer action functions start timers that cause an event to occur on timeout. In IAR
Visual State, a timer action function has a fixed prototype that contains two arguments,
a tick count and an event to be inserted back to IAR Visual State when the timer expires.
The return type of timer action functions is VS_VOID.

Timer action functions accept two parameters:

● The first parameter is the event to send when the timer times out.

● The second parameter is the number of ticks before a timeout occurs.

Timers are handled outside IAR Visual State and there is no support code provided. If
you need a timer, you must include the following in your target application:

● A timer action function for starting a timer, for example from a timer pool, with the
specified number of ticks before timeout.

● The event to be sent must be saved.

● On timeout, the timer response function should send the event into the Visual State
API to have it processed or to the event queue for later processing.

When a new timer action function is added to a model in the Designer, a new action
function with the same name and the suffix _stop is automatically added as well. The
new timer stop function receives the same name as the new timer, and if the timer action
function is renamed, the name of the timer stop function changes as well.

If you want the same functionality for existing timer action functions, add timer stop
functions manually. If the Validator encounters an action function ending in _stop, it
checks whether there is a corresponding timer without the _stop suffix. For such pairs,
the Validator stops the timer when the timer stop function is called as part of the
simulation.

To control whether timer stop functions should be created automatically, choose
Tools>Settings>Timer Action and change the setting.

Working with transition elements and transition element files
What do you want to do?

● Creating a transition element, page 184

● Making local elements global, page 185

● Declaring global elements locally, page 185

● Specifying arguments for action function parameters, page 185
AFE1_AFE2-1:1

 183

184

Working with transition elements and transition element files

● Adding assignments and guard expressions, page 187

● Setting a constraint for a state reaction, page 189

● Specifying the signal queue behavior and size, page 190

● Declaring action functions in external C files, page 192

● Setting up an external editor for action functions, page 192

● Searching for a transition element, page 193

● Creating and adding a new transition element file, page 193

● Adding an existing transition element file, page 193

● Editing the contents of a transition element file, page 193

● Deleting, renaming, or saving a transition element file under a new name, page 194

CREATING A TRANSITION ELEMENT

1 In the Designer, open your project.

2 Choose View>Transition Elements to open the Transition Elements window.

3 In the Project pane, select your project in the tree if you want to create a global
element. To create a local element, select the state that represents the top-level state
machine in the tree.

4 In the Commands pane, click the tab that corresponds to the element type for which
you want to create an element. For example, click Event.

5 On the Commands toolbar, click the New button ().

A new event with a default name is created in the list:
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements

6 In the right-hand pane, specify an event name and a description for the event, and
specify whether it is a definition or a declaration.

You can delete elements by clicking the Delete button ().

7 For events and action functions, you can specify parameters. Click the New button
() in the Parameters area. Select the parameter and choose a parameter type from
the drop-down list. See also Visual State data types, page 197.

To delete parameters for events and action functions, click the Delete button.

MAKING LOCAL ELEMENTS GLOBAL

To make a previously created local element global, follow these steps:

1 In the Project pane of the Transition Elements window, select the state that represents
the top-level state machine in the tree where the element you want to make global was
created previously.

2 In the Commands pane, click the tab that corresponds to the correct element type. For
example, click Event.

3 Select the element in the Commands area and drag it from there to the project in the
Project pane.

DECLARING GLOBAL ELEMENTS LOCALLY

A global transition element that is defined in the project must be added as a declaration
in the files where you want to use it. Follow these steps:

1 In the Project pane of the Transition Elements window, select your project in the tree.

2 In the Commands pane, click the tab that corresponds to the correct element type. For
example, click Event.

3 Select the element in the Commands area and Ctrl+drag it from there to the file in the
Project pane where you want to add a local declaration of it.

SPECIFYING ARGUMENTS FOR ACTION FUNCTION
PARAMETERS

If you have defined an action function that takes parameters, you can specify the
arguments in the individual transitions and state reactions where the action function is
used, as follows.

1 In the state machine diagram, double-click the state or the transition label (condition
and action).
AFE1_AFE2-1:1

 185

186

Working with transition elements and transition element files

The Edit State or Edit Transition dialog box, respectively, is displayed. In this
example, the latter will be used, but the same procedure applies to the Edit State dialog
box.

2 In the Condition/Action area, select Action Expression to display the valid transition
elements in the Element area.

3 In the Element pane, select the transition element to add, for example the action
function, and double-click it (or click the Left Arrow button). The element will be
added to the Condition/Action area.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements

4 If the action function you just added can take arguments, double-click it. The Define
Action Function Arguments dialog box is displayed.

5 Double-click a transition element in the Elements area to expand the tree. Select the
item that you want to use as argument and double-click it.

6 Specify the name of the argument and its type, see Visual State data types, page 197.

ADDING ASSIGNMENTS AND GUARD EXPRESSIONS

You can add assignments and guard expressions to your transition condition and action
using the Edit State and Edit Transition dialog boxes, respectively. This example
shows how to add guard expressions and assignments to a state reaction, but the same
procedure applies to transitions.

1 In the state machine diagram, double-click the state for which you want to add an
assignment or guard expression to open the Edit State dialog box.

2 Click the appropriate tab and select Guard Expression or Action Expression,
respectively. Any defined elements are listed. Otherwise, if you need a new action
expression or guard expression, click the New button ().
AFE1_AFE2-1:1

 187

188

Working with transition elements and transition element files

3 In the Element area, select the item you want to apply, for example Constant, and
click the New button (). The Edit Constant dialog box is displayed.

Specify the details of the constant and click OK.

4 Repeat the previous step to create a second element, for example an internal variable.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements

5 To create a guard expression, double-click your newly created constant and variable in
the Element area. They will appear in the text field under the Reaction area. Edit the
expression according to the syntax. See Syntax for guard expressions and action
expressions, page 198.

6 Press the Enter key, or click another item to accept the value.

SETTING A CONSTRAINT FOR A STATE REACTION

When you have a state reaction—an internal reaction, entry reaction, or exit reaction—
you can set a constraint on it.

1 In the Designer, open your project.

2 In the state machine diagram, double-click the state that contains the reaction that you
want to modify. The Edit State dialog box is displayed. Alternatively, right-click the
state and choose Edit State from the context menu.
AFE1_AFE2-1:1

 189

190

Working with transition elements and transition element files

3 Select the reaction you want to modify on the Entry, Internal, or Exit tab, and select a
Constraint in the list at the bottom. The constraint will be applied to the reaction.

4 For every internal, entry, or exit reaction, you can choose one constraint, or select
<<Complete model>> if the reaction should have no constraint.

For more information, see Include/exclude parts in a variant, page 218.

SPECIFYING THE SIGNAL QUEUE BEHAVIOR AND SIZE

Because the type of signal queue influences verification and code generation, it is
possible to specify the signal queue behavior and its size.

1 In the Designer, open your project.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements

2 In the Project Browser window, right-click the project and choose Edit. The Edit
Project dialog box is displayed:

Specify the signal queue behavior, either Drop if full or Error if full.

3 In the Project Browser window, right-click the appropriate system and choose Edit.
The Edit System dialog box is displayed:

Specify the behavior—the length and number of instances. See Signal queue, page 181.
AFE1_AFE2-1:1

 191

192

Working with transition elements and transition element files

DECLARING ACTION FUNCTIONS IN EXTERNAL C FILES

Action functions can be declared and implemented in an external C file.

1 Choose View>Transition Elements to open the Transition Elements window. Click
the Action Function tab and select the action function for which you want to use a C
declaration file.

2 In the File area, use the Browse button to locate a C file to use. The filename is
displayed:

3 Click the Edit button to open the C file for editing. The editor that you have specified
on the Tools>Settings>External Editor page will be started. Edit and save the file.
Return to the Designer when you are finished editing.

See also Setting up an external editor for action functions, page 192.

SETTING UP AN EXTERNAL EDITOR FOR ACTION
FUNCTIONS

You can use another editor than the default editor.

1 Choose Tools>Settings to open the Settings dialog box.

2 On the External Editor page, specify an editor of your choice.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements

SEARCHING FOR A TRANSITION ELEMENT

You can search for a specific transition element to find out in which transitions and state
reactions of the model it is used.

1 In the Designer, open your project.

2 Click the Find button on the Standard toolbar, or choose Edit>Find.

3 In the Find dialog box, specify your search criteria and click Find to start the search

The result of the search is displayed in the output window (Find tab). An icon shows
where the element was found, and a description is given. To jump to the found element,
either double-click the result or press F4 to browse find locations.

See also Find dialog box, page 276.

CREATING AND ADDING A NEW TRANSITION ELEMENT FILE

1 In the Designer, open your project.

2 Choose View>Project Browser to open the Project Browser window. Select the File
View tab.

3 Right-click on the file that you want to add an element file to, and choose Add New
Element File from the context menu.

4 Double-click the new element file (.vste) to open the Transition Elements window.
You might have to expand the view to see the newly created file.

5 Define the elements that you want the new file to include, following the instructions in
Creating a transition element, page 184, and related tasks.

ADDING AN EXISTING TRANSITION ELEMENT FILE

1 In the Designer, open your project.

2 Choose View>Project Browser to open the Project Browser window. Select the File
View tab.

3 Right-click on the file that you want to add an element file to, and choose Add
Existing Element File from the context menu.

4 Navigate to the element file (.vste) to add it. You might have to expand the view to
see the newly added file.

EDITING THE CONTENTS OF A TRANSITION ELEMENT FILE

1 In the Designer, open your project.

2 Choose View>Transition Elements to open the Transition Elements window.
AFE1_AFE2-1:1

 193

194

Visual State operators, reference information

3 In the Project pane, select the transition element file that you want to edit.

4 Edit the elements, following the instructions elsewhere in this documentation.

DELETING, RENAMING, OR SAVING A TRANSITION ELEMENT
FILE UNDER A NEW NAME

1 In the Designer, open your project.

2 Choose View>Project Browser to open the Project Browser window. Select the File
View tab.

3 Right-click on the file that you want to change. Use the commands on the context menu
to delete, rename, or save the file under a new name.

Visual State operators, reference information
Reference information about:

● Precedence of operators, page 194

● Assignment operators, page 194

● Binary arithmetic operators, page 195

● Bit manipulation operators, page 195

● Logical operators, page 195

● Relational operators, page 195

● Unary arithmetic operators, page 196

● Unary bitwise operators, page 196

● Unary logical operators, page 196

PRECEDENCE OF OPERATORS

The precedence of operators is according to Standard C.

ASSIGNMENT OPERATORS

This is the assignment operator:

Operator Symbol Format Operation

Assignment = x = y Assign value of y to x.

Table 7: Assignment operators
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements

BINARY ARITHMETIC OPERATORS

These are the binary arithmetic operators:

BIT MANIPULATION OPERATORS

These are the bit manipulation operators:

LOGICAL OPERATORS

These are the logical operators:

RELATIONAL OPERATORS

These are the relational operators:

Operator Symbol Format Operation

Multiplication * x * y x times y.

Division / x / y x divided by y.

Modulus % x % y Remainder of x divided by y.

Addition + x + y x plus y.

Subtraction - x - y x minus y.

Table 8: Binary arithmetic operators

Operator Symbol Format Operation

Right shift >> x >> y x shifted right y bits.

Left shift << x << y x shifted left y bits.

Bitwise AND & x & y x bitwise ANDed with y.

Bitwise inclusive OR | x | y x bitwise ORed with y.

Bitwise exclusive OR
(XOR)

^ x ^ y x bitwise exclusive ORed with y.

Table 9: Bit manipulation operators

Operator Symbol Format Operation

Logical AND && x && y 1 if x and y are nonzero, else 0.

Logical OR || x || y 1 if x or y are nonzero, else 0.

Table 10: Logical operators

Operator Symbol Format Operation

Greater than > x > y 1 if x is greater than y, else 0.

Less than < x < y 1 if x is less than y, else 0.

Table 11: Relational operators
AFE1_AFE2-1:1

 195

196

Visual State operands, reference information

UNARY ARITHMETIC OPERATORS

These are the unary arithmetic operators:

UNARY BITWISE OPERATORS

This is the unary bitwise operators:

UNARY LOGICAL OPERATORS

This is the unary logical operators:

Visual State operands, reference information
Reference information about:

● Visual State data types, page 197

● Internal variables, page 198

● External variables, page 198

● Visual State constants, page 198

● Visual State enumerations, page 198

Greater than or equal to >= x >= y 1 if x is greater than or equal to y,
else 0.

Less than or equal to <= x <= y 1 if x is less than or equal to y, else 0.

Equal to == x == y 1 if x is equal to y, else 0.

Not equal to != x != y 1 if x is not equal to y, else 0.

Operator Symbol Format Operation

Unary minus - -x Negated value of x.

Unary plus + +x Value of operand.

Table 12: Unary arithmetic operators

Operator Symbol Format Operation

Bitwise complement ~ ~x Bitwise complement of x.

Table 13: Unary bitwise operators

Operator Symbol Format Operation

Logical negation ! !x 1 if x is zero, else 0.

Table 14: Unary logical operators

Operator Symbol Format Operation

Table 11: Relational operators
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements

VISUAL STATE DATA TYPES

These are the Visual State data types and their representations:

*) The code size on target depends on the compiler. The figures specified in the table are
those used by the Validator.

**) Will be code-generated as the smallest ordinal (integer) type capable of representing
the number of events in the model.

If you are using a target where the integer size is 16 bits, make sure to use values that do
not exceed that size. Otherwise, you might get different behavior when running your
application in the Validator compared to running it on the target.

†)Not allowed for internal variables, external variables, or action function return
variables.

‡) The listed representation reflects C89. To specify another representation, for example
C99, choose Project>Options>Code generate in the Navigator. In the left pane, select
the project and click the Types tab. Change the Types style option.

Visual State data type Range (min/max) Code size (bits) Representation ‡)

VS_VOID †) — — void

VS_VOIDPTR †) — 32*) void *

VS_BOOL 0 / 255 8 *) unsigned char

VS_UCHAR 0 / 255 8 *) unsigned char

VS_SCHAR -128 / 127 8 *) signed char

VS_INT -2147483648 / 2147483647 32 *) int

VS_INT8 -128 / 127 >=8 **)

VS_INT16 -32768 / 32768 >=16 **)

VS_INT32 -2147483648 / 2147483647 >=32 **)

VS_UINT 0 / 4294967295 32*) unsigned int

VS_UINT8 0 / 255 >=8 **)

VS_UINT16 0 / 65535 >=16 **)

VS_UINT32 0 / 4294967295 >=32 **)

VS_FLOAT ±3.402823466e+38 32*) float

VS_DOUBLE ±1.7976931348623158e+308 64*) double

VS_EVENT_TYPE n/a >=8 **)

Table 15: Visual State data types
AFE1_AFE2-1:1

 197

198

Syntax for guard expressions and action expressions

INTERNAL VARIABLES

The scope of the internal variables is the system. Internal variables cannot be referenced
outside the system. An internal variable can be declared as any of the allowed Visual
State data types, except the type VS_VOID and VS_VOIDPTR, see Visual State data types,
page 197. IAR Visual State supports arrays of internal variables.

If there are multiple instances of the system, every instance will get its copies of the
internal variables.

EXTERNAL VARIABLES

External variables are variables that can be used both inside the state machine model and
in the user-written code.

An external variable can be declared as any of the allowed Visual State data types,
except the types VS_VOID and VS_VOIDPTR, see Visual State data types, page 197.

IAR Visual State supports arrays of external variables.

VISUAL STATE CONSTANTS

Visual State constants are similar to Standard C macros. In IAR Visual State, constants
must have an explicit type.

Examples of Coder-generated constants:

 #define MAX_SPEED ((VS_INT)100)
 #define PI_AS_FLOAT ((VS_FLOAT)3.1415f)
 #define PI_AS_DOUBLE ((VS_DOUBLE)3.1415)

VISUAL STATE ENUMERATIONS

Visual State enumerations are similar to Standard C enumerations. The enumerators of
an IAR Visual State enumeration will always have the implicit type int (VS_INT). The
ordinal numbers are not assignable but will have values from 0 to N-1, where N is the
number of enumerators in the enumeration. Enumerations are used in a similar way (and
in some cases exactly the same way) to constants in most parts of Visual State.
Enumerations can only be defined and located in an Element file. To hold values from
an enumeration, variables should preferably be of type int (the user-defined
enumeration type is not available inside Visual State).

Syntax for guard expressions and action expressions
A Visual State expression can be any valid C expression of the C operators, identifiers,
floating-point and integer constants, but with some limitations.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Transition elements

These operators are not supported:

● . (member)

● -> (member by pointer)

● * (indirection (dereference))

● (type) (cast)

● sizeof

● ?: (ternary)

● , (comma)

These elements of the C language are not supported either:

● long double floating-point constants

● suffixes for integer constants

● octal integer constants

● hexadecimal integer constants

● multiple assignments or increments/decrements in the same expression.

These limitations also apply:

● An assignment and increment/decrement operator must be placed in the front of the
expression, not in the middle. In other words, a(b = c) is not supported.

● Event arguments of void* type can only be passed to action function arguments.

● If you want to verify your state machine model using the Verificator, some
additional limitations apply. See Non-verifiable elements, page 417.
AFE1_AFE2-1:1

 199

200

Syntax for guard expressions and action expressions

AFE1_AFE2-1:1

IAR Visual State
User Guide

Reusing designs using state
machine templates
● Introduction to state machine templates

● Working with state machine templates and submachine states

Introduction to state machine templates
Learn more about:

● State machine templates and submachine states, page 201

● Hints for designing state machine templates, page 203

STATE MACHINE TEMPLATES AND SUBMACHINE STATES

A state machine template represents a design that you can reuse, in projects, systems,
within the same top-level state machine, or even in another state machine template. To
instantiate the template, you create a submachine state that you associate with the
template.

This is more flexible than using the functionality provided by top-level state machines.
Because the design in a state machine template can be flexible so that you do not have
to configure the actual behavior for it until you associate it with a submachine state. If
you want, you can also design your state machine template so it will behave identically
in all cases.

For the template, you specify required transition elements, and later, when you want to
instantiate the template, you bind the abstract transition elements of the template with
the actual transition elements of the submachine state.

You can also customize the template by specifying an entry and exit point state. In
addition to the default state, entry states define the possible states where the template
can be entered. The exit states define the designed ways for leaving the template. When
you instantiate the template, corresponding entry and exit point references are
automatically created on the submachine state; drawn like small circles on the state
frame. Likewise, deleting an exit/entry point state from the template, will automatically
delete the corresponding entry/exit point references (and any transitions).

If any transitions in your state machine template has state conditions (state
synchronizations), you must bind these with other states—either states internally in the
template or externally outside the template.
AFE1_AFE2-1:1

201

202

Introduction to state machine templates

Thus, to instantiate your template, you must:

● Create a submachine state and associate it with the template

● Bind the abstract transition elements of the template with the actual transition
elements of the model where your submachine state has been added.

This is an example state machine model for which there has been created a template:
AFE1_AFE2-1:1

IAR Visual State
User Guide

Reusing designs using state machine templates

This example shows a state machine model where two submachine states are instances
of the template, The example also shows the entry and exit states reference points:

A state machine template is saved in its own file (vssm), which means that you can keep
track of the file in your version control system.

HINTS FOR DESIGNING STATE MACHINE TEMPLATES

When designing a state machine model that you want to create a template for, you can
tailor the template so that the template itself does not know about the runtime event,
action, constant, enumerator, signal, variable, or state that is part of a transition. In the
state machine template, you can choose to add transition elements by using the
Transition Element window, and set the type to either Definition or Declaration. Any
transition element that you add as a definition will be the same in all instances of the
state machine template, whereas transition elements that are declarations can be bound
to an actual element for each instance of the state machine template.
AFE1_AFE2-1:1

203

204

Working with state machine templates and submachine states

This example has a transition that uses a trigger declaredEvent1, and one positive
synchronization state ExternalState1.

The trigger declaredEvent1 is an event added as an declaration for the state machine
template. This lets you bind the event and the synchronization state to use for an instance
of the state machine template, for each use of the state machine template from a
submachine state.

The synchronization state, ExternalState1, was added using the Edit Transition
window. See also Binding state conditions, page 214 and Edit State dialog box, page
261.

Working with state machine templates and submachine states
What do you want to do?

● Creating state machine templates, page 204

● Instantiating a state machine template, page 207

● Drawing an entry (exit) point state, page 210

● Binding state conditions, page 214

CREATING STATE MACHINE TEMPLATES

There are three ways to create a state machine template in your project:

● Creating a new state machine template

● Adding an existing state machine template from another project

● Converting an existing state to a submachine state that is associated with a state
machine template

Typically, this method is useful when you have designed a composite state and
realize that you want to reuse it.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Reusing designs using state machine templates

To create a new empty state machine template:

1 Right-click the project or an existing state machine in the Project Browser window
and choose Add New State Machine Template from the context menu.

2 This adds a new empty state machine template that is not yet associated with any
submachine state.

To use an existing state machine template:

1 Right-click the project in the Project Browser window and choose Add Existing
State Machine Templates from the context menu.

2 Use the dialog box to locate the state machine template file for the template you want
to add to your project.

To convert a state to a submachine state that is associated with a state
machine template:

1 Design a normal hierarchic state with the behavior you need, as part of another state
hierarchy.

This is an example state machine before changing a state to a submachine state:

2 Right-click the name of the state that you want to convert to a submachine state (in this
example, B) and choose Convert to submachine state from the context menu.

3 The state has now been converted to a submachine state and the contents of the original
state is now a new free-standing state machine template as part of the project reusable
in other places, and visible in the Project Browser window.
AFE1_AFE2-1:1

205

206

Working with state machine templates and submachine states

This figure shows the automatically created state machine template based on the original
state B:

In this example, the outgoing transition from state M to state C (which crosses the state
boundary) has been converted to transition going to an exit connection point inside the
state machine template.

The names of the transition elements in the template will be inherited from the original
state machine model. Because you might want to instantiate the template several times
in your state machine model, you should consider renaming the transition elements in
the template, to give them more abstract names.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Reusing designs using state machine templates

This figure shows state B after it has been converted to a submachine state; the
submachine state has been automatically associated with the state machine template:

A exit reference point has been created on the submachine state frame for the outgoing
transition to state C. Any transition element (event, action, etc) that was used in the
converted state was added as a declared transition element in the created state machine
template, with appropriate bindings being set in the submachine state. The behavior of
the system before and after converting a state to a submachine state is the same.

INSTANTIATING A STATE MACHINE TEMPLATE

1 In the Designer, open your project.

2 On the Diagram toolbar, click the Submachine State button (). In the state
machine diagram below a state machine, click where you want to insert the
submachine state (or in other words, click where you want to instantiate a template).
AFE1_AFE2-1:1

207

208

Working with state machine templates and submachine states

For example:

3 To associate the submachine state with the state machine template, right-click the
newly created submachine state and choose Edit Submachine State from the context
menu.

The Edit Submachine State dialog bow is displayed and it works like the Edit State
dialog box, but has the extra text field Associate with template and the extra tab
Bindings. For reference information, see Edit Submachine State dialog box, page 265.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Reusing designs using state machine templates

4 Use the Associate with template drop-down list to specify the template that you want
the submachine state to be associated with, for example StateMachine1.

5 Click the Bindings tab.

The Bindings area lists the elements available in the template. You should now bind the
transition elements in template with the counterparts in the model where the submachine
state has been added.

6 To bind, for example your triggers, click Triggers in the Reaction area.
AFE1_AFE2-1:1

209

210

Working with state machine templates and submachine states

The triggers available in the model represented by the submachine state appears in the
Elements area. Select the trigger in the Reaction area, for example E2, and double-click
the actual trigger in the Element pane, E2. The dialog box now looks like this:

Now the state machine template is instantiated in two places—two different instances.
They do not work the same, because they have different bindings. So even though the
model uses the same template in two places, the two instances work differently.

As a next step, you must set up the entry and exit point states, see Drawing an entry
(exit) point state, page 210.

DRAWING AN ENTRY (EXIT) POINT STATE

A state machine template will generally have entry and exit point states. A submachine
state that is instantiated from a state machine template inherits all entry and exit point
states from the template.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Reusing designs using state machine templates

For this example, you need at least one transition that enters the submachine state, and
potentially also at least one transition leaving the state via the exit point reference, which
means it might look like this:

1 In the Designer, open your project.
AFE1_AFE2-1:1

211

212

Working with state machine templates and submachine states

2 On the Diagram toolbar, click the Entry (Exit) Point State button (). In your
template state machine, click where you want to insert the entry (exit) point state.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Reusing designs using state machine templates

3 Draw a transition from the entry point state to some other state in the diagram.
AFE1_AFE2-1:1

213

214

Working with state machine templates and submachine states

When you add an entry (exit) point state to a state machine template, a corresponding
entry (exit) state reference point will be automatically added to the frame of the
corresponding submachine states.

In this example, the entry point reference state is used as entry point in one of the
template instances, but not in the other.

BINDING STATE CONDITIONS

If you want your state machine template to contain a transition that has state
conditions—in other words, the transition should be synchronized with another part of
the model—you must first create that state condition in the template and then bind the
condition with a real state condition in your model. See also State conditions, page 170.

1 In your state machine template, right-click the transition that you want to have a state
condition and choose Edit Transition from the context menu.

2 Select Positive State Condition (or Negative State Condition in the left pane,
depending on whether the condition should be positive or negative).
AFE1_AFE2-1:1

IAR Visual State
User Guide

Reusing designs using state machine templates

If the state condition you want to bind with is in the template, select Internal States. If
the state condition is outside the template, select the External States symbol in the right
pane (as in this example):

3 Add a new bindable external state to your state condition by clicking the New icon in
the toolbar above the right pane.
AFE1_AFE2-1:1

215

216

Working with state machine templates and submachine states

Double-click the external state that you just created to add it as a state condition on your
transition.

Consider renaming the new external states to give them more suitable names. If you
have already added other external states in the state machine template, they will be
displayed here.

Inside a state machine template you cannot refer to states outside the template itself,
unless you use the external states as described here and bind the actual state to refer to,
when you set up bindings in the submachine state.

4 Now it is time to bind the state condition in your template with a state condition in your
state machine model.

In your state machine diagram, select the submachine state (in this example B). In the
Associate with template field, specify the relevant template.

Click the Bindings tab and select the state for the state condition in the template
(ExternalState), then click the state in the model (D) that you want to bind with the
state condition in the template.

The D state condition is now bound with the state condition in the template.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using variants and features
● Introduction to variants and features

● Working with variants and features

Introduction to variants and features
Learn more about:

● Variants, page 217

● Features, page 217

● Include/exclude parts in a variant, page 218

VARIANTS

If your product will be available for the end user in multiple similar variants, you can
define variants in the Designer, and mark up parts of your model as belonging to one of
these variants, so that they are included in the resulting code, and in testing. This way
you can avoid having to maintain two or more separate software development tracks.

The resulting model will contain the states, transitions, and transition elements that
match the setup for the variant in the Designer. When you generate code, you choose
one of the designed variants, or the complete model.

Note: Using variants is optional. All existing models will work as previously designed.

FEATURES

The Designer also supports defining product functionality (subsets of the design) that
can optionally be part of the model as features. Each feature has a type that determines
how you can include/exclude it in a variant meant for code generation. For information
about feature types, see Edit Features dialog box, page 253.

You can use the variants tool without using features. The features functionality is only
needed if you have parts of the model that should be included in more than one of your
runtime variants.

Features are arranged in a feature tree that shows the type of the features in the model
and their relationship with other features.
AFE1_AFE2-1:1

217

218

Working with variants and features

INCLUDE/EXCLUDE PARTS IN A VARIANT

The mechanic to set up which parts of the model to include in a variant or in a feature is
called constraints. A constraint restricts a part of the model to either one of the variants,
or to one of the features in the model. When the runtime model is generated, all items
that do not have constraints or are constrained to the variant are included, together with
all items that are constrained to a feature that is part of the variant.

Constraint is inherited; all states or regions inside a constrained state or region are also
constrained. Note that an explicitly constrained state below a state/region that is
constrained will still be constrained even if the state/region above is changed to have no
constraint.

Note that a transition is excluded from the runtime model if it has:

● A source state or region that is excluded

● A destination state or region that is excluded

● A positive state condition that depends on an excluded state

● Both a main destination state and a main source state that are below the top-level
exclusion

Transitions with a negative state condition that depends on an excluded state will simply
have that negative state condition removed. All other transitions are handled as if the
state or region is not part of the model.

Working with variants and features
What do you want to do?

● Defining a new feature in your model, page 218

● Defining a new variant in your model, page 219

● Including a region in a variant or feature, page 220

● Including a transition in a variant or feature, page 220

● Including a state in a variant or feature, page 221

● Including a transition element in a variant or feature, page 221

DEFINING A NEW FEATURE IN YOUR MODEL

These steps describe how you create a new root feature for your model. By repeating
these steps using the New Sibling and New Child buttons, you can populate the feature
tree with more features.

1 In the Designer, open your project.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using variants and features

2 Choose Edit>Edit Features. In the Edit Features dialog box that is displayed, click
the New Child Feature button () on the Action toolbar, to create a new root feature.

3 Type a name for the feature in the Name text box, that describes the part of the model
that you will constrain to this feature, like Dimmer or Subwoofer.

4 Choose which type you want the feature to have, using the Type dropdown menu:

● A Mandatory feature must be used in all variants if its parent is included.

● An Optional feature may be used in a variant if its parent is included.

● If an Alternative feature has one or more siblings, you must use exactly one of the
siblings in a variant if their parent is included.

● If an Or feature has one or more siblings, you must use one or more of the siblings
of the Or type in a variant if their parent is included.

DEFINING A NEW VARIANT IN YOUR MODEL

1 In the Designer, open your project.

2 Choose Edit>Edit Variants. In the Edit Variants dialog box that is displayed, click
the New button () on the Action toolbar, to create a new variant.

3 Type a name for the variant in the Name text box, that describes the product flavor that
this variant will be used for, like Premium or Europe.

4 Specify the features that should be included in the new variant by selecting them in the
feature tree on the right-hand side of the dialog box:
AFE1_AFE2-1:1

219

220

Working with variants and features

INCLUDING A REGION IN A VARIANT OR FEATURE

If you have regions with states that you want to include in some product variants but
exclude from other variants, you can specify constraints for them. The constraints will
be inherited by everything below the region in the hierarchic model.

1 In the Designer, open your project.

2 In the state machine diagram, right-click on the region for which you want to specify a
constraint, and choose Edit Region from the context menu. The Edit Region dialog
box is displayed.

3 Choose a constraint from the Constraint dropdown menu. The menu contains all
defined variants and features in your model. See Include/exclude parts in a variant,
page 218, for a description of the effects of the constraint on the inclusion/exclusion of
the region from the runtime variants of your model.

A region that has been constrained to something else than the complete model, is
displayed in the state machine diagram with the name of the constraint below the name
of the region:

INCLUDING A TRANSITION IN A VARIANT OR FEATURE

If you have transitions that you want to include in some product variants but exclude
from other variants, you can specify constraints for them.

1 In the Designer, open your project.

2 In the state machine diagram, right-click on the transition for which you want to
specify a constraint, and choose Edit Transition from the context menu. The Edit
Transition dialog box is displayed.

3 Choose a constraint from the Constraint dropdown menu. The menu contains all
defined variants and features in your model. See Include/exclude parts in a variant,
page 218, for a description of the effects of the constraint on the inclusion/exclusion of
the transition from the runtime variants of your model.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using variants and features

A transition that has been constrained to something else than the complete model, is
displayed in the state machine diagram with the name of the constraint above the name
of the transition:

INCLUDING A STATE IN A VARIANT OR FEATURE

If you have states that you want to include in some product variants but exclude from
other variants, you can specify constraints for them.

1 In the Designer, open your project.

2 In the state machine diagram, right-click on the state for which you want to specify a
constraint, and choose Edit State from the context menu. The Edit State dialog box is
displayed.

3 Choose a constraint from the Constraint dropdown menu. The menu contains all
defined variants and features in your model. See Include/exclude parts in a variant,
page 218, for a description of the effects of the constraint on the inclusion/exclusion of
the state from the runtime variants of your model.

A state that has been constrained to something else than the complete model, is
displayed in the state machine diagram with the name of the constraint below the name
of the state:

INCLUDING A TRANSITION ELEMENT IN A VARIANT OR
FEATURE

If you have transition elements that you want to include in some product variants but
exclude from other variants, you can specify constraints for them.

1 In the Designer, open your project.
AFE1_AFE2-1:1

221

222

Working with variants and features

2 Choose View>Transition Elements to open the Transition Elements window.

3 Select the transition element for which you want to specify a constraint from the list of
elements in the Commands pane.

4 Choose a constraint from the Constraint dropdown menu in the right-hand pane. The
menu contains all defined variants and features in your model. See Include/exclude
parts in a variant, page 218, for a description of the effects of the constraint on the
inclusion/exclusion of the transition element from the runtime variants of your model.

A transition element that has been constrained to something else than the complete
model, is displayed in the list of elements with the name of the constraint after the name
of the element:
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using requirements files
● Introduction to requirements files

● Working with requirements

Introduction to requirements files
Often, designing state machines is guided by requirements. Formal requirements can be
organized using a requirements authoring tool, and can normally be exported in a
standardized format called ReqIF (Requirements Interchange Format), an XML file
format that can be used to exchange requirements, along with its associated metadata,
between software tools from different vendors. Visual State supports integrating ReqIF,
currently up to and including version 1.2.

The Visual State Designer can import ReqIF files, and tie objects in your Visual State
designs to corresponding requirements, to keep track of how your design fulfills all or
some of the requirements.

Working with requirements
What do you want to do?

● Importing requirements, page 223

● Customizing the appearance of requirements in use, page 224

● Tying a requirement to a state, page 224

● Tying a requirement to a transition, page 224

● Tying a requirement to an entry/exit/internal reaction, page 225

● Tying a requirement to a transition element, page 225

IMPORTING REQUIREMENTS

These steps describe how you import requirements from an existing .reqif file into the
Designer.

1 In the Designer, open the project that you want to make the requirements available in.

2 Choose File>Import Requirements and browse to the .reqif file that contains the
requirement definitions you need.
AFE1_AFE2-1:1

223

224

Working with requirements

3 In the Import Requirements dialog box, select which attribute definitions that you
want to include. Sample values might be displayed to guide you. You can also include
them all, and hide some of them in the Designer later. Click OK to confirm your
selections.

4 The Requirements Browser window is displayed to show the available requirements
in the Designer.

CUSTOMIZING THE APPEARANCE OF REQUIREMENTS IN
USE

To customize how requirements in use are displayed in the Designer:

1 In the Designer, choose Tools>Customize Appearance.

2 In the Customize Appearance dialog box, select Requirements in the General
category.

3 Select the option Background color for requirements in use, and adjust the color
using the RGB sliders.

TYING A REQUIREMENT TO A STATE

To tie one or more requirements to a state, follow these steps:

1 In the Designer, open a project that you have imported requirements into.

2 In the state machine diagram, right-click on a state that you want to tie a requirement
to, and choose Edit State from the context menu. The Edit State dialog box is
displayed.

3 Click the browse button below the label Requirements.

4 In the dialog box Select Requirements, use the checkboxes to select the requirements
that apply to this state. Then click OK to close this dialog box, and OK to close the
Edit State dialog box.

TYING A REQUIREMENT TO A TRANSITION

To tie one or more requirements to a transition, follow these steps:

1 In the Designer, open a project that you have imported requirements into.

2 In the state machine diagram, right-click on a transition that you want to tie a
requirement to, and choose Edit Transition from the context menu. The Edit
Transition dialog box is displayed.

3 Click the browse button below the label Requirements.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using requirements files

4 In the dialog box Select Requirements, use the checkboxes to select the requirements
that apply to this state. Then click OK to close this dialog box, and OK to close the
Edit Transition dialog box.

TYING A REQUIREMENT TO AN ENTRY/EXIT/INTERNAL
REACTION

To tie one or more requirements to an entry/exit/internal reaction, follow these steps:

1 In the Designer, open a project that you have imported requirements into.

2 In the state machine diagram, right-click on a state that contains the reaction that you
want to tie a requirement to, and choose Edit State from the context menu. The Edit
State dialog box is displayed.

3 Click on the relevant tab (Entry, Exit, or Internal), and select the reaction in the list of
reactions.

4 Click the browse button below the label Requirements.

5 In the dialog box Select Requirements, use the checkboxes to select the requirements
that apply to this reaction. Then click OK to close this dialog box, and OK to close the
Edit State dialog box.

TYING A REQUIREMENT TO A TRANSITION ELEMENT

To tie one or more requirements to a transition element, follow these steps:

1 In the Designer, open a project that you have imported requirements into.

2 Choose View>Transition Elements to open the Transition Elements window.

3 Click on the tab for the relevant transition element type, and then select the element
from the list of elements on the Commands pane.

4 Click the browse button below the label Requirements on the pane to the right.

5 In the dialog box Select Requirements, use the checkboxes to select the requirements
that apply to this element. Then click OK to close this dialog box, and OK to close the
Transition Elements window.
AFE1_AFE2-1:1

225

226

Working with requirements

AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer
● Introduction to the Visual State Designer

● Using the Visual State Designer

● Graphical environment for the Designer

● Reference information on Designer menus

● Syntax of C header files

Introduction to the Visual State Designer
Learn more about:

● Briefly about the Visual State Designer, page 228
AFE1_AFE2-1:1

 227

228

Using the Visual State Designer

BRIEFLY ABOUT THE VISUAL STATE DESIGNER

The Visual State Designer is a graphical tool for designing state machines by drawing
state machine diagrams using the UML notation.

The project created in the Designer can later be imported into a Navigator workspace.

Using the Visual State Designer
What do you want to do?

● Creating and saving a project with systems and state machine diagrams, page 229

● Creating systems and state machine diagrams in a blank project, page 230

● Editing objects in the state machine diagram, page 231
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

● Inserting notes, page 232

● Navigating in the state machine diagram, page 233

● Getting warnings for non-verifiable elements, page 233

● Importing C header files into the project or top-level state machine, page 234

● Creating multiple system instances, page 235

● Using Designer backup files, page 235

● Customizing the Designer, page 235

CREATING AND SAVING A PROJECT WITH SYSTEMS AND
STATE MACHINE DIAGRAMS

1 In the Designer, choose File>New, or click the New button () on the standard
toolbar.

2 Choose one of the following alternatives:

● Standard Project, to create a standard project with one system that contains one
top-level state machine. See Creating a standard workspace, page 76

● Blank Project, to create an empty project where you can create your systems and
top-level state machines. See Creating systems and state machine diagrams in a
blank project, page 230.

● Project Wizard, to guide you trough the process of creating a customized project
where you can specify the number of systems, top-level state machines, etc.
AFE1_AFE2-1:1

 229

230

Using the Visual State Designer

3 Click OK.

4 When you have created the project, choose File>Save Project.

CREATING SYSTEMS AND STATE MACHINE DIAGRAMS IN A
BLANK PROJECT

If you already have created a blank project, you must also create a system and a top-level
state machine before you can start designing your state machine model.

1 To create a system, click the Systems button () on the Diagram toolbar.

2 Click in the Project View window. A square will be inserted which represents the new
system, and the Project Browser window will be updated with the new system.

Right-click to deactivate the system tool.

3 Double-click in the new system (but not on the system name). The System View
window is displayed.

4 On the Diagram toolbar, click the Composite State button ().
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

5 Click in the System View window. A top-level state machine will be inserted and
represents a new state machine diagram file which will contain your state machine
model. The Project Browser window will be updated.

Right-click to deactivate the tool.

6 Double-click in the new top-level state machine (but not on its name). The State
machine diagram window is displayed:

7 You can now start designing your state machine model with states and transitions, see
Designing state machines, page 126.

8 On the Designer menu, choose File>Save Project.

EDITING OBJECTS IN THE STATE MACHINE DIAGRAM

In the Designer, you can rename and change descriptions for, for example projects,
systems, top-level state machines, regions, states, composite states.

1 In the state machine diagram, click the objects to edit.

2 To rename an object, type a new name and press Enter, or select the item in the Project
Browser window and choose Rename from the context menu.

3 To enter or change alias names and description notes, select an object in the state
machine diagram and choose Edit from the context menu. An edit dialog box is
displayed where you can enter and edit aliases and descriptions.
AFE1_AFE2-1:1

 231

232

Using the Visual State Designer

For renaming of transition elements, see Working with transition elements and
transition element files, page 183.

INSERTING NOTES

1 On the Diagram toolbar, click the Note button ().

2 In the state machine diagram, click where you want to place the note. A rectangle is
inserted.

3 Right-click to deactivate the Note tool.

4 To write text in the note, click the frame—it will be marked with blank squares—and
start typing. To insert a line break, press Ctrl+Enter.

5 Press Enter to finish typing.

6 Optional: To select an image to show in the note, right-click in the note and choose
Edit Note from the context menu. Then use the Browse button in the dialog box to
navigate to an image to add.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

NAVIGATING IN THE STATE MACHINE DIAGRAM

1 Choose View>Zoom View. In the Zoom View window, the gray area represents the
entire state machine diagram and the white square represents the current view in the
Diagram View window.

2 To view a different part of the state machine, drag the white square to a different
location. If you use the scroll bars of the Diagram View window, the movement is
reflected also in the Zoom View window.

To get detailed information about an object, just point at it with the mouse pointer in the
Diagram View window.

GETTING WARNINGS FOR NON-VERIFIABLE ELEMENTS

If during design you want to receive a warning when you create or use a non-verifiable
element, you can use safe mode.

1 To set safe-mode, click the Safe Mode button () on the Standard toolbar or choose
Tools>Safe Mode.

2 A warning will be given during the design process if a non-verifiable element is used.

For information about non-verifiable elements, see Non-verifiable elements, page 417.
AFE1_AFE2-1:1

 233

234

Using the Visual State Designer

IMPORTING C HEADER FILES INTO THE PROJECT OR
TOP-LEVEL STATE MACHINE

You can reuse an existing C header file that contains function declarations and constants
for your Visual State project.

The function declarations and constants must have a special syntax for the Designer to
recognize them.

The function declarations in the imported header file map to action functions in IAR
Visual State, whereas constants in the header file map to constants in IAR Visual State.

1 In the Designer, open your project.

2 In the Project Browser window, click the File View tab. Select the project or top-level
state machine to import to, right-click and choose Import from the context menu.

3 In the Import dialog box, specify the file to import and click OK.

4 The header files will be loaded and analyzed for function declarations and constants.
The Import Transition Elements dialog box is displayed.

5 Select the items to import and click OK. The selected items will be imported and
displayed in the Transition Element window.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Note: If the external C header file contains constants and action functions have the same
names as those already defined for the project or top-level state machine, the items in
question will not be imported from the external file.

See also Syntax of C header files, page 316.

CREATING MULTIPLE SYSTEM INSTANCES

You can create multiple instances of a system. Typically, this is useful if you want to
control multiple identical hardware or software units by means of the same state
machine design.

1 In the Designer, open your project.

2 In the Project Browser window, select the system for which you want to specify
multiple instances and choose Edit from the context menu.

3 In the Edit System dialog box, specify the number of instances you want to create.

See also The Visual State system, page 123.

USING DESIGNER BACKUP FILES

1 Open a Windows Explorer window.

2 Locate the vssm, vsp, and vsr backup files you want to use, for example
Name1.vssm.bk1, Name2.vsp.bk1, and Name3.vsr.bk1.

Note: The files must have the same bk extension number, for example vsp.bk1 and
vsr.bk1.

3 In the file browser, remove the bk# extensions.

4 In the Designer, open the vsp file you have renamed.

Your project will be loaded with the backed up vssm, vsp, and vsr files.

To change the backup settings, see Settings dialog box, page 289.

CUSTOMIZING THE DESIGNER

The Designer can be customized with regard to handling of files, states, transitions,
message display, etc.

1 In the Designer, choose Tools>Settings to open the Settings dialog box.

To customize the graphical appearance, choose Tools>Customize Appearance.

2 Click the appropriate tab and make your settings. See Settings dialog box, page 289
and Customize Appearance dialog box, page 242, respectively.

The settings are stored in the registry (colors and fonts are stored in the project).
AFE1_AFE2-1:1

 235

236

Graphical environment for the Designer

Graphical environment for the Designer
Reference information about:

● The Designer main window, page 237

● Customize Appearance dialog box, page 242

● Define Action Function Arguments dialog box, page 243

● Edit Action dialog box, page 244

● Edit Constant dialog box, page 246

● Edit Enumeration dialog box, page 247

● Edit Event dialog box, page 248

● Edit Event Group dialog box, page 250

● Edit External Variable dialog box, page 252

● Edit Features dialog box, page 253

● Edit Internal Variable dialog box, page 255

● Edit Note dialog box, page 256

● Edit Project dialog box, page 257

● Edit Region dialog box, page 259

● Edit Signal dialog box, page 260

● Edit State dialog box, page 261

● Edit Submachine State dialog box, page 265

● Edit System dialog box, page 270

● Edit Transition dialog box, page 272

● Edit Variants dialog box, page 274

● Find dialog box, page 276

● Grid Setup dialog box, page 277

● Output window, page 278

● Project Browser window, page 278

● Project View window, page 284

● Property window, page 286

● Requirements Browser window, page 286

● Select Requirements window, page 288

● Settings dialog box, page 289

● State machine diagram window, page 292

● System View window, page 294
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

● Transition Elements window, page 295

● Zoom View window, page 298

● General Designer windows context menus, page 298

The Designer main window
The main window is displayed when you start the Designer.

The main window of the Designer is a container for displaying the Project Browser
window, the diagram windows, and the Output window.
AFE1_AFE2-1:1

 237

238

Graphical environment for the Designer

Menu bar

The menu bar contains:

File

Commands for creating, opening, and saving projects, importing functions,
declarations, and requirements, printing, and exiting the Designer.

Edit

Standard Windows commands for working with text.

View

Commands for opening windows, toggling grid assistance, zooming, and
controlling which toolbars to display.

Insert

Commands for inserting systems, states, and transitions, and notes.

Format

Commands for adjusting the size, alignment, and position of objects.

Tools

Commands for using the selection and the zoom tools, making settings for grid
assistance, toggling safe mode, customizing the appearance of the objects, and
making general Designer settings.

Window

Commands for changing how the Designer windows are arranged on the screen.

Help

Commands that provide help about the Designer.

See also Reference information on Designer menus, page 302.

Standard toolbar

The Standard toolbar—available from the View menu—provides buttons for the most
useful commands on the Designer menus.

For a description of a button, point to it with the mouse pointer. The name of the button
is displayed as a tooltip and a description is displayed in the status bar at the bottom of
the main window. When a command is not available, the corresponding toolbar button
is dimmed, and you will not be able to click it.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

This figure shows the menu commands that correspond to each of the toolbar buttons:

See also File menu, page 303 and Edit menu, page 305.

Diagram toolbar

The Diagram toolbar—available from the View menu—provides buttons for drawing.

For a description of a button, point to it with the mouse pointer. The name of the button
is displayed as a tooltip and a description is displayed in the status bar at the bottom of
the main window. When a command is not available, the corresponding toolbar button
is dimmed, and you will not be able to click it.

This figure shows the menu commands that correspond to each of the toolbar buttons:

See also Insert menu, page 308.

Size toolbar

The Size toolbar—available from the View menu—provides buttons for positioning and
modifying selected objects in the Project View, System View, and View windows.

For a description of a button, point to it with the mouse pointer. The name of the button
is displayed as a tooltip and a description is displayed in the status bar at the bottom of
AFE1_AFE2-1:1

 239

240

Graphical environment for the Designer

the main window. When a command is not available, the corresponding toolbar button
is dimmed, and you will not be able to click it.

This figure shows the menu commands that correspond to each of the toolbar buttons:

See also Format menu, page 310.

Stereotype toolbar

The Stereotype toolbar—available from the View menu—provides a means of creating
states with a uniform look.

When the Stereotype toolbar has an active stereotype, any new state that you create will
inherit properties and behavior from the active stereotype.

To activate another stereotype, choose it from the Stereotype toolbar drop-down menu.
To revert to creating new states that are not based on a stereotype, activate the <<none>>
stereotype.

This figure shows the Stereotype toolbar:

See also Stereotypes for creating states with a uniform look, page 140.

Zoom toolbar

The Zoom toolbar—available from the View menu—provides buttons for zooming in
the Project View, System View, and Digram View windows.

For a description of a button, point to it with the mouse pointer. The name of the button
is displayed as a tooltip and a description is displayed in the status bar at the bottom of
the main window. When a command is not available, the corresponding toolbar button
is dimmed, and you will not be able to click it.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

This figure shows the menu commands that correspond to each of the toolbar buttons:

See also Tools menu, page 311.

Variant toolbar

The Variant toolbar—available from the View menu—provides buttons for working
with product variants in the model.

This figure shows the toolbar:

Variant selector

Choose which product variant to be active in the Designer. If you choose
<<Complete model>>, the entire model will be active.

Hide excluded items

Hides all transition elements in the model that are not used by the selected
variant.

Consistency checker

Performs a quick consistency check of the model before you open the model in
the other Visual State components, restricting the model to the selected active
variant. Errors are listed in the Output window.

New variant

Displays the Edit Variants dialog box, where you can define a new variant; see
Edit Variants dialog box, page 274.

Status bar

The status bar at the bottom of the window can be enabled from the View menu.
AFE1_AFE2-1:1

 241

242

Graphical environment for the Designer

The status bar displays:

● Descriptions of menu commands when you open a menu and hover over commands

● Descriptions of toolbar buttons that you point to

● Mouse positions and zoom scale.

Customize Appearance dialog box
The Customize Appearance dialog box is available from the Tools menu.

Use this dialog box to specify the appearance of graphical elements, for example fonts,
colors, etc.

Demo view

Displays a preview of your settings.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Define Action Function Arguments dialog box
The Define Action Function Arguments dialog box is available from the Edit State
dialog box and the Edit Transition dialog box:

Use this dialog box to define arguments for action functions.

See Specifying arguments for action function parameters, page 185.

Arguments

Displays the arguments for the function.

Elements

Displays the transition elements that you can use as arguments. Double-click to choose
one.
AFE1_AFE2-1:1

 243

244

Graphical environment for the Designer

Edit Action dialog box
The Edit Action dialog box is available from the Edit State and Edit Transition dialog
boxes.

Use this dialog box to create an action function.

See Declaring action functions in external C files, page 192.

Name

Specify a name for the action function.

Constraint

Choose which parts of the model that the action function will be available in.

Comments

Type a description for the action function.

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Timer action function

Changes the action function to a timer action function that takes two parameters. Any
related changes will be done too. For example, changing the number of arguments to
function calls for the action function.

Type

Select the return type of the action function.

Parameters

To create or edit the action function parameters, there are four buttons available:

New

Creates a new parameter.

Delete

Deletes the selected parameter in the list.

Move Up

Moves the selected parameter upward in the list.

Move Down

Moves the selected parameter downward in the list.

File

If there are action functions declared and implemented in an external C file, click
Browse to locate and load it. To edit the file, click Edit. The external editor that you
have specified on the Tools>Settings>External editor page will be opened. Edit the file
and save when you are finished.
AFE1_AFE2-1:1

 245

246

Graphical environment for the Designer

Edit Constant dialog box
The Edit Constant dialog box is available from the Edit State and Edit Transition
dialog boxes.

Use this dialog box to create a constant.

Name

Specify a name for the constant.

Constraint

Choose which parts of the model that the constant will be available in.

Create

Select whether the constant is a declaration or a definition.

Comments

Type a description for the constant.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Type

Select the data type of the constant.

Value

Specify the value of the constant.

Edit Enumeration dialog box
The Edit Enumeration dialog box is available from the Edit State and Edit Transition
dialog boxes.

Use this dialog box to create an enumeration.

Name

Specify a name for the enumeration.
AFE1_AFE2-1:1

 247

248

Graphical environment for the Designer

Constraint

Choose which parts of the model that the enumeration will be available in.

Comments

Type a description for the enumeration.

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Enumerators

Add enumerators to the enumeration. The names can be edited in the list, but not the
values.

Edit Event dialog box
The Edit Event dialog box is available from the Edit State and Edit Transition dialog
boxes.

Use this dialog box to create an event.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

See Creating a transition element, page 184.

Name

Specify a name for the event.

Constraint

Choose which parts of the model that the event will be available in.

Create

Select whether the event is a declaration or a definition.

Comments

Type a description for the event.

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Parameters

To create or edit the event parameters, there are four buttons available:

New

Creates a new parameter.

Delete

Deletes the selected parameter in the list.

Move Up

Moves the selected parameter upward in the list.

Move Down

Moves the selected parameter downward in the list.
AFE1_AFE2-1:1

 249

250

Graphical environment for the Designer

Edit Event Group dialog box
The Edit Event Group dialog box is available from the Edit State and Edit Transition
dialog boxes.

Use this dialog box to create an event group.

Name

Specify a name for the event group.

Constraint

Choose which parts of the model that the event group will be available in.

Create

Select whether the event group is a declaration or a definition.

Comments

Type a description for the event group.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Event

Populate the event group with events—that you have previously created—from the list
to the right:

Add Event

Adds the selected event to the event group. Double-clicking it will have the same
effect.

Remove

Removes the selected event from the event group.

Move Up

Moves the selected item upward in the list.

Move Down

Moves the selected item downward in the list.
AFE1_AFE2-1:1

 251

252

Graphical environment for the Designer

Edit External Variable dialog box
The Edit External Variable dialog box is available from the Edit State and Edit
Transition dialog boxes.

Use this dialog box to create an external variable.

See Creating a transition element, page 184.

Name

Specify a name for the external variable.

Constraint

Choose which parts of the model that the external variable will be available in.

Create

Select whether the external variable is a declaration or a definition.

Comments

Type a description for the external variable.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Type

Select the data type of the external variable.

Array

If the variable is an array, specify its Size and (if you are defining it), the initial values
of the elements in it. To edit the values of all array elements, click the Set All button
to open the context menu.

Edit Features dialog box
The Edit Features dialog box is available from the Edit menu.

Use this dialog box to define or edit a feature and to edit the feature tree.

See Defining a new feature in your model, page 218.

Action

Displays a list with the features that have been defined.

Select an item in the list and use one of these buttons:

New Sibling

Creates a new sibling to the selected feature.
AFE1_AFE2-1:1

 253

254

Graphical environment for the Designer

New Child

Creates a new child to the selected feature.

Delete

Deletes the selected feature in the list, together with any children.

Move Up

Moves the selected feature upward in the list.

Move Down

Moves the selected feature downward in the list.

The feature tree can also be modified by dragging features to new places in the tree.

Name

Specify a name for the feature.

Type

Choose a type for the feature. Choose between:

Mandatory

A Mandatory feature must be used in all variants if its parent is included.

Optional

An Optional feature may be used in a variant if its parent is included.

Alternative

If an Alternative feature has one or more siblings, you must use exactly one of
the siblings in a variant if their parent is included.

Or

If an Or feature has one or more siblings, you must use one or more of the
siblings of the Or type in a variant if their parent is included.

Comments

Type a description for the feature.

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Edit Internal Variable dialog box
The Edit Internal Variable dialog box is available from the Edit State and Edit
Transition dialog boxes.

Use this dialog box to create an internal variable.

Name

Specify a name for the internal variable.

Constraint

Choose which parts of the model that the internal variable will be available in.

Create

Select whether the internal variable is a declaration or a definition.

Comments

Type a description for the internal variable.
AFE1_AFE2-1:1

 255

256

Graphical environment for the Designer

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Array

If the variable is an array, specify its Size and (if you are defining it), the initial values
of the elements in it. To edit the values of all array elements, click the Set All button
to open the context menu.

Type

Select the data type of the internal variable.

Domain

If the value of the variable should be within a given range, specify the Lower and the
Higher end of the range. The domain can be checked by the Verificator.

Edit Note dialog box
The Edit Note dialog box is available by right-clicking on a note in a Designer view
window.

Use this dialog box to edit the text and the properties of a note.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

See Inserting notes, page 232.

Show border

Displays a frame around the note in the diagram.

Display

Choose which parts of the note to display. Choose between:

Text only

Displays just the text part of the note.

Image only

Displays just the image part of the note. If no image has been specified to display
in the note, the note will be empty.

Text and image

Displays both the text and the image part of the note.

Image file

Use the Browse button to select an image to display in the note.

Edit Project dialog box
The Edit Project dialog box is available by right-clicking on a project in the Project
Browser window.

Use this dialog box to specify the properties of a project.
AFE1_AFE2-1:1

 257

258

Graphical environment for the Designer

See Creating a new project in a workspace, page 77.

Name

Specify a name for the project.

Comments

Type any comments that describe the project. They will be included in the
documentation report.

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Signal queue behavior

Specify what should happen if the signal queue fills up. Choose between:

Drop if Full

Drops the signal completely in the runtime code if the queue is full when a signal
is meant to be inserted.

Error if Full

Returns an error from the deduct function in the runtime code if the queue is full
when a signal is meant to be inserted.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Edit Region dialog box
The Edit Region dialog box is available by right-clicking on a region in the State
machine diagram window.

Use this dialog box to set a constraint for a region.

See Including a region in a variant or feature, page 220.

Name

Specify a name for the region.

Constraint

Choose which parts of the model that the region will be included in.

Comments

Type a description for the region.

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.
AFE1_AFE2-1:1

 259

260

Graphical environment for the Designer

Edit Signal dialog box
The Edit Signal dialog box is available from the Edit State and Edit Transition dialog
boxes.

Use this dialog box to create a signal.

See Specifying the signal queue behavior and size, page 190.

Name

Specify a name for the signal.

Constraint

Choose which parts of the model that the signal will be available in.

Create

Select whether the signal is a declaration or a definition.

Comments

Type a description for the signal.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Edit State dialog box
The Edit State dialog box is available by right-clicking on a state in the State machine
diagram window.

Use this dialog box to specify the properties of a state, see Identifying and drawing
simple states, page 128. The Entry, Internal, and Exit pages contain options for editing
the entry, internal, and exit reactions for the state, see Edit State dialog box : state
reactions, page 263.

Name

Specify a name for the state.

Constraint

Choose which parts of the model that the state will be included in.
AFE1_AFE2-1:1

 261

262

Graphical environment for the Designer

Alias

Specify an alias (optional name) for the state. The alias is only used for display and is
not used when you generate code.

Comments

Type any comments that describe the state. They will be included in the documentation
report.

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

External URL

Enter a URL, for instance http://www.iar.com, to create a link in the top right corner
of the state’s name compartment. Clicking the link when the state is selected opens the
URL in your web browser.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Edit State dialog box : state reactions
The Edit State dialog box—see Edit State dialog box, page 261—has three tabbed
pages for editing state reactions.

Use this the options on this tab page to edit the entry, internal, and exit reactions for the
state. See also State reactions, page 150.

Reaction

To manage the state reactions, there are five buttons available. Select an item in the list
and use one of these buttons:

New

Inserts a new state reaction or transition element based on the selected type.

Delete

Deletes the selected item in the list.

Define

Opens the Define Action Function Parameters dialog box, see Define Action
Function Arguments dialog box, page 243.
AFE1_AFE2-1:1

 263

264

Graphical environment for the Designer

Move Up

Moves the selected item upward in the list.

Move Down

Moves the selected item downward in the list.

Text field just under the Reactions area

Use this text field for editing guard expressions and action expressions. See Adding
assignments and guard expressions, page 187.

Find

Specify text to search for in the transition elements and click the button.

Element

Displays a list with the transition elements that have been defined.

Select an item in the list and use one of these buttons:

Apply Element

Applies the selected transition element to the state reaction. Double-clicking it
will have the same effect.

New

Opens a dialog box where you can create a new transition element.

New Folder

Creates a new folder where you can collect your transition elements.

Delete

Deletes the selected item in the list.

Define

Opens a dialog box where you can edit the selected item.

Comments

Type any comments that describe the reaction. They will be included in the
documentation report.

Alias

Specify an alias (optional name) for the reaction. The alias is only used for display and
is not used when you generate code.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Constraint

Choose which parts of the model that the reaction will be included in.

Edit Submachine State dialog box
The Edit Submachine State dialog box is available by right-clicking on a submachine
state in the State machine diagram window.

Use this dialog box to specify the properties of a submachine state, thus instantiating a
state machine template, see Reusing designs using state machine templates, page 201
and Instantiating a state machine template, page 207.

The Entry, Internal, and Exit pages contain options for editing the entry, internal, and
exit reactions for the submachine state, see Edit State dialog box : state reactions, page
263, and the page Bindings contains options for binding transition elements in
AFE1_AFE2-1:1

 265

266

Graphical environment for the Designer

submachine state with transition elements in the state machine template, see Edit
Submachine State dialog box : bindings, page 269.

Name

Specify a name for the submachine state.

Associate with template

Chooses which state machine template the submachine state should be associated with.

Constraint

Choose which parts of the model that the submachine state will be included in.

Alias

Specify an alias (optional name) for the submachine state. The alias is only used for
display and is not used when you generate code.

Comments

Type any comments that describe the submachine state. They will be included in the
documentation report.

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

External URL

Enter a URL, for instance http://www.iar.com, to create a link in the top right corner
of the submachine state’s name compartment. Clicking the link when the submachine
state is selected opens the URL in your web browser.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Edit Submachine State dialog box : state reactions
The Edit Submachine State dialog box—see Edit Submachine State dialog box, page
265—has three tabbed pages for editing state reactions.

Use this the options on this tab page to edit the entry, internal, and exit reactions for the
submachine state. See also State reactions, page 150.

Reaction

To manage the state reactions, there are five buttons available. Select an item in the list
and use one of these buttons:

New

Inserts a new state reaction or transition element based on the selected type.

Delete

Deletes the selected item in the list.

Define

Opens the Define Action Function Parameters dialog box, see Define Action
Function Arguments dialog box, page 243.
AFE1_AFE2-1:1

 267

268

Graphical environment for the Designer

Move Up

Moves the selected item upward in the list.

Move Down

Moves the selected item downward in the list.

Text field just under the Reactions area

Use this text field for editing guard expressions and action expressions. See Adding
assignments and guard expressions, page 187.

Find

Specify text to search for in the transition elements and click the button.

Element

Displays a list with the transition elements that have been defined.

Select an item in the list and use one of these buttons:

Apply Element

Applies the selected transition element to the state reaction. Double-clicking it
will have the same effect.

New

Opens a dialog box where you can create a new transition element.

New Folder

Creates a new folder where you can collect your transition elements.

Delete

Deletes the selected item in the list.

Define

Opens a dialog box where you can edit the selected item.

Comments

Type any comments that describe the reaction. They will be included in the
documentation report.

Alias

Specify an alias (optional name) for the reaction. The alias is only used for display and
is not used when you generate code.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Constraint

Choose which parts of the model that the reaction will be included in.

Edit Submachine State dialog box : bindings
The Edit Submachine State dialog box—see Edit Submachine State dialog box, page
265—a tabbed page for editing bindings.

Use this the options on this tab page to bind transition elements in the submachine state
with abstract transition elements in the state machine template.
AFE1_AFE2-1:1

 269

270

Graphical environment for the Designer

Bindings

Select a reaction in the list to display the transition elements that have been defined in
the state machine model. Choose an element from the list to the right to bind it with a
transition element in the state machine template.

Note that when you bind state actions, you must specify whether the state action is
internal in the template or external outside the template.

Apply

Applies the selected transition element to the state reaction. Double-clicking it will have
the same effect.

Find

Specify text to search for in the list of transition elements and click the button.

Edit System dialog box
The Edit System dialog box is available by right-clicking on a system in a Designer
view window.

Use this dialog box to specify the properties of a system.

See The Visual State system, page 123

Name

Specify a name for the system.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Alias

Specify an alias (optional name) for the system. The alias is only used for display and is
not used when you generate code.

Comments

Type any comments that describe the system. They will be included in the
documentation report.

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Signal queue length

Specify the length of the signal queue.

Number of instances

Specify the number of instances of the system.
AFE1_AFE2-1:1

 271

272

Graphical environment for the Designer

Edit Transition dialog box
The Edit Transition dialog box is available by right-clicking on a transition in the State
machine diagram window.

Use this dialog box to create a transition condition and action.

See also Creating transitions, page 175.

Local transition

Specify whether the transition should be local, see Local transitions, page 173.

Constraint

Choose which parts of the model that the transition will be included in, see
Include/exclude parts in a variant, page 218.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Find

Specify text to search for in the transition elements and click the button.

Condition/Action

Displays the transition elements that you have defined for your condition and action.

To create or edit the transition conditions and actions, there are five buttons available.
Select an item in the list and use one of these buttons:

New

Inserts a new rule based on the selected type.

Delete

Deletes the selected item in the list.

Define

Displays the Define Action Function Parameters dialog box, see Define
Action Function Arguments dialog box, page 243.

Move Up

Moves the selected item upward in the list.

Move Down

Moves the selected item downward in the list.

Text field just under the Condition/Action area

Use this text field for editing guard expressions and action expressions. See Adding
assignments and guard expressions, page 187.

Element

Displays a list with the elements that have been defined for the selected transition. For
information about transition elements, see Introduction to transition elements, page 177.

Select an item in the list and use one of these buttons:

Apply Element

Applies the selected element to the transition. Double-clicking it will have the
same effect.

New

Opens a dialog box where you can create a new transition element.

New Folder

Creates a new folder where you can collect your transition elements.
AFE1_AFE2-1:1

 273

274

Graphical environment for the Designer

Delete

Deletes the selected item in the list.

Define

Opens a dialog box where you can edit the selected item.

Alias

Specify an alias (optional name) for the transition. The alias is only used for display and
is not used when you generate code.

Comments

Type any comments that describe the transition. They will be included in the
documentation report.

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Edit Variants dialog box
The Edit Variants dialog box is available from the Edit menu.

Use this dialog box to define or edit a variant.

See Defining a new variant in your model, page 219.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Name

Specify a name for the variant.

Comments

Type a description for the variant.

Requirements

Shows which formal requirements that are tied to this item. Click the browse button to
open the Select Requirements window where you can edit which formal requirements
to tie to this item; see Select Requirements window, page 288.

Action

Displays the variants that you have defined for your product.

To create or edit the variants, there are four buttons available. Select an item in the list
and use one of these buttons:

New

Creates a new variant.

Delete

Deletes the selected variant in the list.

Move Up

Moves the selected variant upward in the list.

Move Down

Moves the selected variant downward in the list.

Features

Displays the tree of features that have been defined for the model.

Include/exclude features in the selected variant by selecting/deselecting the checkboxes.
Which features that can be included/excluded is determined by the type of the feature,
see Edit Features dialog box, page 253.
AFE1_AFE2-1:1

 275

276

Graphical environment for the Designer

Find dialog box
The Find dialog box is available from the Edit menu.

Use this dialog box to find text and transition elements in projects, systems, and
top-level state machines.

See Searching for a transition element, page 193.

Match whole word only

Searches for the specified text only if it occurs as a separate word. Otherwise, specifying
int will also find print, sprintf etc.

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int.

Match excluded items only

Searches for the specified text only in objects that have been excluded from your project.

Include elements

Searches for the specified text in transition elements.

Include explanations

Searches for the specified text in comments.

Include notes

Searches for the specified text in notes.

Include alias

Searches for the specified text in aliases.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Grid Setup dialog box
The Grid Setup dialog box is available from the Tools menu.

Use this dialog box to set up the graphical support grid.

Slider

Sets the density of the grid lines to a value from 10 to 200 pixels.

Show grid

Displays the grid.

Use snap

Makes graphical objects in diagrams snap to the grid when you move them (including
when the grid is invisible).

On top

Displays the grid on top of all objects in the diagrams.
AFE1_AFE2-1:1

 277

278

Graphical environment for the Designer

Output window
The Output window is available from the View menu.

This window displays information about the loaded project, results of reaction element
searches, and undo actions.

Project Browser window
The Project Browser window is available from the View menu.

This window is a browser where you can see the structure of the loaded Visual State
project.

See Creating and saving a project with systems and state machine diagrams, page 229
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

The window has two different views:

● File View—which shows the file structure of the project, with systems and state
machine templates.

● System View—which shows the model structure of the Visual State project in
detail. This view shows systems and individual states, and state machine templates.

To go to a system, state, or state machine template in a Designer view window,
double-click it in the Project Browser window.

General context menu

This context menu is available by right-clicking on the background in the Project
Browser window:

These commands are available:

Add New State Machine Template

Adds a new state machine template. See also Reusing designs using state
machine templates, page 201.

Add Existing State Machine Templates

Displays a dialog box where you can locate existing state machine templates.

Close

Closes the window.
AFE1_AFE2-1:1

 279

280

Graphical environment for the Designer

Project context menu

This context menu is available by right-clicking on a project file in the Project Browser
window:

These commands are available:

Edit

Displays the Edit Project dialog box, see Edit Project dialog box, page 257.

Rename

Selects the name of the file so you can edit it.

Open

Opens a Project View window for the system, see Project View window, page
284.

Import

Opens the Import Transition Elements dialog box, see Importing C header
files into the project or top-level state machine, page 234.

Import Requirements

Opens the Import Requirements dialog box, see Importing requirements, page
223.

Save As

Displays a standard dialog box where you can save the selected file under a new
name.

Add New Element File

Creates and adds a new transition element file to the project, see Creating and
adding a new transition element file, page 193.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Add Existing Element File

Adds an existing transition element file to the project, see Adding an existing
transition element file, page 193.

Add New State Machine Template

Adds a new state machine template. See also Reusing designs using state
machine templates, page 201.

Add Existing State Machine Templates

Displays a dialog box where you can locate existing state machine templates.

Close

Closes the window.

Top-level state machine context menu

This context menu is available by right-clicking on a top-level state machine file in the
Project Browser window:

These commands are available:

Edit

Displays the Edit State dialog box, see Edit State dialog box, page 261.

Rename

Selects the name of the file so you can edit it.

Open

Opens a diagram window containing the top-level state machine.

Delete

Deletes the selected file.
AFE1_AFE2-1:1

 281

282

Graphical environment for the Designer

Import

Opens the Import Transition Elements dialog box, see Importing C header
files into the project or top-level state machine, page 234.

Add Files

Displays a standard dialog box where you can locate existing files to add to the
system.

Save As

Displays a standard dialog box where you can save the selected file under a new
name.

Add New Element File

Creates and adds a new transition element file to the project, see Creating and
adding a new transition element file, page 193.

Add Existing Element File

Adds an existing transition element file to the project, see Adding an existing
transition element file, page 193.

Close

Closes the window.

State machine template context menu

This context menu is available by right-clicking on a state machine template file in the
Project Browser window:

These commands are available:

Add New State Machine Template

Adds a new state machine template. See also Reusing designs using state
machine templates, page 201.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Add Existing State Machine Templates

Displays a dialog box where you can locate existing state machine templates.

Rename

Selects the name of the file so you can edit it.

Open

Opens a diagram window containing the state machine template.

Delete

Deletes the selected file.

Save As

Displays a standard dialog box where you can save the selected file under a new
name.

Add New Element File

Creates and adds a new transition element file to the project, see Creating and
adding a new transition element file, page 193.

Add Existing Element File

Adds an existing transition element file to the project, see Adding an existing
transition element file, page 193.

Close

Closes the window.

Transition element context menu

This context menu is available by right-clicking on a transition element file in the
Project Browser window:

These commands are available:

Rename

Selects the name of the file so you can edit it.

Open

Opens the Transition Elements window, see Transition Elements window, page
295.
AFE1_AFE2-1:1

 283

284

Graphical environment for the Designer

Delete

Deletes the selected file.

Import

Opens the Import Transition Elements dialog box, see Importing C header
files into the project or top-level state machine, page 234.

Save As

Displays a standard dialog box where you can save the selected file under a new
name.

Close

Closes the window.

Project View window
The Project View window is displayed when a project is double-clicked in the Project
Browser window.

Use this window to manage your model on the project level, using the commands on the
Visual State Designer menus and toolbars. Typically, you can add and delete projects
here.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

System context menu

This context menu is available by right-clicking on a system in a Project View window:

These commands are available:

Cut, Copy, Delete

Standard Windows editing commands.

Rename

Selects the name of the object so you can edit it.

Open

Opens a System View window for the system, see System View window, page
294.

Locate in Project Browser

Highlights the object in the Project Browser window.

Edit System

Displays the Edit System dialog box, see Edit System dialog box, page 270.
AFE1_AFE2-1:1

 285

286

Graphical environment for the Designer

Property window
The Property window is available from the View menu.

Use this window to specify the properties of objects in the Designer view windows, for
example font types for state names, colors of transitions, etc. The contents of the
window depends on which objects that are selected in the Designer view windows.

See Customizing the Designer, page 235.

Requirements Browser window
The Requirements Browser window is available from the View menu.

Use this window to inspect the available requirements for your project. The
requirements are organized by the attribute definitions used in the imported .reqif file.
They can only be changed in the file, using an editor or a requirements authoring tool,
not in the Designer. Sort the columns by clicking on the column header, or rearrange
columns by dragging them.

See Importing requirements, page 223.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Requirements context menu

This context menu is available by right-clicking in a column in the Requirements
Browser window:

These commands are available:

Hide column

Hides the column that you clicked on.

Unhide all columns

Shows all hidden columns again.

Ignore and hide requirement

Makes the requirement that you clicked on unavailable for use and hides it in the
window.

Unhide all ignored requirements

Shows all hidden and ignored requirements again, making them available for
use.

Find uses of requirement

Searches for where the requirement you clicked on is being used, and displays
the results on the Find tab in the Output window.

Note: The information about hidden columns and ignored requirements is stored in the
.vdi file for the user working with the Designer. Other users can still see all
requirements and attributes, and might have their own customized view.
AFE1_AFE2-1:1

 287

288

Graphical environment for the Designer

Select Requirements window
The Select Requirements window is available from several editing dialog boxes in the
Designer.

Use this window to tie one or more requirements to an item in your model. The
requirements are organized by the attribute definitions used in the imported .reqif file.
They can only be changed in the file, using an editor or a requirements authoring tool,
not in the Designer. Sort the columns by clicking on the column header, or rearrange
columns by dragging them.

See Using requirements files, page 223.

Requirements context menu

This context menu is available by right-clicking in a column in the Select Requirements
window:

These commands are available:

Hide column

Hides the column that you clicked on.

Unhide all columns

Shows all hidden columns again.

Ignore and hide requirement

Makes the requirement that you clicked on unavailable for use and hides it in the
window.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Unhide all ignored requirements

Shows all hidden and ignored requirements again, making them available for
use.

Find uses of requirement

Searches for where the requirement you clicked on is being used, and displays
the results on the Find tab in the Output window.

Note: The information about hidden columns and ignored requirements is stored in the
.vdi file for the user working with the Designer. Other users can still see all
requirements and attributes, and might have their own customized view.

Settings dialog box
The Settings dialog box is available from the Tools menu.

Use this dialog box to make settings for the Designer. The settings are stored in the
registry.

Backup

Use these options to control how the Designer creates backup copies:

Interval in minutes

Use this option to control how often the Designer should back up your model.
The backup files created at the given intervals will have the extension bkt.
There will only be one copy for each file of the interval backup files.

Number of copies

Use this option to set the number of backup copies the Designer should create
when a project is saved.
AFE1_AFE2-1:1

 289

290

Graphical environment for the Designer

By default, the Designer creates backup files of the vssm, vsp, and vsr files on
every save of the project.

When a new backup file is created, it is given the extension bk1. The previous
bk1 backup file is automatically renamed to bk2, the bk2 file is renamed to bk3,
etc. Thus, the latest backup file created always has the extension bk1.

These backup files are created in the same directory where the project is located
and you can have up to nine backup files. See Using Designer backup files, page
235.

External Editor

Use these options to specify which editor to use:

External source code editor

Specify the editor to use and its path. A browse button is available for your
convenience.

Additional command line parameters

Optional: Specify additional command line parameters to send to the editor.

Entry/Exit Reaction

Use these options to make settings for entry/exit reactions:

Use alias names (if defined)

Displays the alias names (if there are any) for entry and exit reactions.

Internal Reaction

Use these options to make settings for internal reactions:

Use alias names (if defined)

Displays the alias names (if there are any) for internal reactions.

Show short state names

Displays abbreviated versions of state names in internal reactions.

Message

Use these options to make settings for messages:

Show messages when deleting/moving elements

Displays a warning message when you delete or move a transition element.

Show delete messages when deleting objects

Displays a confirmation message when you delete a graphical object in a
diagram.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Safe Mode

Use these options to enable Visual State safe mode:

Enable safe mode

Enables safe mode, which means you will receive a warning when you create or
use a non-verifiable design element.

Show message when

Displays a warning message if you create or use a non-verifiable transition
element. Choose between: Creating unsafe elements, Using unsafe elements,
Creating and using unsafe elements.

State

Use these options to make settings for states:

Use alias names (if defined)

Displays the alias names (if there are any) for states.

Timer Action

Use these options to make settings for timer actions:

Create timer stop function

Creates a timer stop function automatically (an action function with the name
TimerName_stop) every time you create a timer action.

Transition

Use these options to make settings for transitions:

Show short state names

Displays abbreviated versions of state names in transitions.

Use alias names (if defined)

Displays the alias names (if there are any) for internal reactions.

Show route points

Displays the route points used for manipulating transitions in a diagram also
when a transition is not selected.

Auto format orthogonal transitions

Orthogonal transitions () will be automatically drawn after you have clicked
the source and destination state for the transition. See also Creating transitions
between your states, page 130.
AFE1_AFE2-1:1

 291

292

Graphical environment for the Designer

State machine diagram window
The State machine diagram window is displayed when a region is double-clicked in
the Project Browser window or in the System View window.

Use this window to design your model, using the commands on the Visual State
Designer menus and toolbars. See also Designing state machines, page 126.

Transition context menu

This context menu is available by right-clicking on a transition in the State machine
diagram window:

These commands are available:

Delete

Deletes the selected object.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Edit Trigger

Makes the name of the transition’s trigger, if it has one, editable. If you change
the name to the name of an existing event, event group, or signal, you change
the trigger to that element.

Change Direction

Inverts the direction of the transition.

Fit Size to Contents

Changes the size of the description box to fit the text.

Line type

Opens a submenu where you can choose which type of line to represent the
transition by.

Find

Opens a submenu that contains the items used in this transition, so you can
search for other uses of these items.

Edit Transition

Displays the Edit Transition dialog box, see Edit Transition dialog box, page
272.

Connector state context menu

This context menu is available by right-clicking on a connector state in the State
machine diagram window:

These commands are available:

Cut, Copy, Delete

Standard Windows editing commands.

Rename

Selects the name of the object so you can edit it.

Select Buddy

Displays a dialog box where you can connect the selected connector state with
another connector state.
AFE1_AFE2-1:1

 293

294

Graphical environment for the Designer

Go to Buddy

Selects the connected connector state.

Note context menu

See General Designer windows context menus, page 298

Standard Designer context menu

See General Designer windows context menus, page 298

State context menu

See General Designer windows context menus, page 298

System context menu

See System View window, page 294

System View window
The System View window is displayed when a system is double-clicked in the Project
Browser window.

Use this window to manage your model on the system level, using the commands on the
Visual State Designer menus and toolbars. Typically, you can add and delete top-level
state machines here.

Region context menu

See General Designer windows context menus, page 298

Note context menu

See General Designer windows context menus, page 298
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Standard Designer context menu

See General Designer windows context menus, page 298

State context menu

See General Designer windows context menus, page 298

Transition Elements window
The Transition Elements window is available from the View menu.

Use this window to create, define, edit, rename, and delete transition elements that can
be used for creating conditions and actions for states and transitions, and to get a
complete overview of all transition elements created for the project.

See Creating a transition element, page 184 and Introduction to transition elements,
page 177.

Project

Displays the project including top-level state machines and state machine templates. To
see all global elements, select the project in the tree. To see all local elements for a
top-level state machine, select the state that denotes the top-level state machine.
AFE1_AFE2-1:1

 295

296

Graphical environment for the Designer

Commands

Displays the individual transition elements. There are nine types of transition elements.
Signals and internal variables can only be local, all other element types can be either
local or global (except enumerations, which can only be added to transition element
files). The available types of transition elements are:

● Event

● Event group

● Action function

● Timer action function

● Signal

● Internal variable

● External variable

● Constant

● Enumeration

Click a category tab to see the available transition elements of that type, for the project
or the selected top-level state machine. When you select an element in the list, you can
edit it in the editing pane to the right.

Previously created elements are displayed in the Commands area and can be dragged
from there to the project or top-level state machines in the tree in the Project pane. Thus,
local elements can become global elements by dragging them to the project in the tree.

There are three buttons available:

New

Creates a new transition element.

New folder

Creates a folder, which means that you can group the transition elements. Click
the name to specify a name of your choice.

Delete

Deletes the selected transition element in the list.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Commands context menu

This context menu is available in the Commands area:

These commands are available:

Find

Searches for the selected transition element. The search result is displayed in the
Output window.

New folder

Creates a folder, which means that you can group the transition elements. Click
the name to specify a name of your choice.

Delete

Deletes the selected item(s).

Rename

Renames the selected item(s).

Editing pane

This part of the window differs depending on the selected transition element, see:

● Edit Event dialog box, page 248

● Edit Event Group dialog box, page 250

● Edit Action dialog box, page 244

● Edit Signal dialog box, page 260

● Edit Internal Variable dialog box, page 255

● Edit External Variable dialog box, page 252

● Edit Constant dialog box, page 246

● Edit Enumeration dialog box, page 247
AFE1_AFE2-1:1

 297

298

Graphical environment for the Designer

Zoom View window
The Zoom View window is available from the View menu.

Use this window to see your entire project and the position of your current view in the
Designer view windows. See also Navigating in the state machine diagram, page 233.

General Designer windows context menus
These context menus are available in several Designer view windows.

Standard Designer context menu

This context menu is available by right-clicking on the background in a Designer view
window:

These commands are available:

Undo

Undoes the last edit made in the Designer.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Redo

Redoes the last edit that was undone in the Designer.

Cut, Copy, Paste, Delete

Standard Windows editing commands.

Insert

Shortcuts to all commands on the Insert menu, see Insert menu, page 308.

Add New State Machine Template

Adds a new state machine template, see Reusing designs using state machine
templates, page 201.

Add Existing State Machine Templates

Displays a dialog box where you can locate existing state machine templates,
see Reusing designs using state machine templates, page 201.

Alignment

Shortcuts to all commands on the Format>Alignment submenu, see Format
menu, page 310.

Size

Shortcuts to all commands on the Format>Size submenu, see Format menu,
page 310.

Space

Shortcuts to all commands on the Format>Space submenu, see Format menu,
page 310.

Zoom

Shortcuts to all zoom commands on the View menu, see View menu, page 306.

Customize Appearance

Displays the Customize Appearance dialog box, see Customize Appearance
dialog box, page 242.
AFE1_AFE2-1:1

 299

300

Graphical environment for the Designer

State context menu

This context menu is available by right-clicking on a state in a Designer view window:

Depending on which type of state you are double-clicking on, some or all of these
commands are available:

Cut, Copy

Standard Windows editing commands.

Copy reactions

Copies all reactions from the selected state and stores them on the clipboard.

Paste entry reactions

Pastes all entry reactions from the clipboard to the selected state.

Paste internal reactions

Pastes all internal reactions from the clipboard to the selected state.

Paste exit reactions

Pastes all exit reactions from the clipboard to the selected state.

Delete

Deletes the object you selected.

Rename

Selects the name of the object so you can edit it.

Insert Region

Creates a new region.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Wrap Text

Wraps the text lines to fit within the frame.

Exclude

Excludes the state from further processing. All states or regions that are
contained inside the state are also excluded.

Convert to Submachine State

Converts the state to a submachine state, see Reusing designs using state
machine templates, page 201.

New Stereotype

Creates a new stereotype based on the state you opened the context menu from.

Locate in Project Browser

Highlights the object in the Project Browser window.

Edit State

Displays the Edit State dialog box, see Edit State dialog box, page 261.

Note context menu

This context menu is available by right-clicking on a note in a Designer view window:

These commands are available:

Cut, Copy, Delete

Standard Windows editing commands.

Rename

Selects the note text so you can edit it.

Show Frame

Shows/hides a visible frame around the note.

Edit Note

Displays the Edit Note dialog box, see Edit Note dialog box, page 256.
AFE1_AFE2-1:1

 301

302

Reference information on Designer menus

Region context menu

This context menu is available by right-clicking on a region in a Designer view window:

These commands are available:

Delete

Deletes the selected object.

Open

Opens a View window for the region.

Off-Page

Hides the contents of the region in a separate diagram to make it easier to get an
overview of the overall structure of your model.

Exclude

Excludes the region from further processing. All states or regions that are
contained inside the region are also excluded.

Insert Region

Creates a new region.

Reference information on Designer menus
This section gives reference information on the menus specific to the Designer. More
specifically, this means:

● File menu, page 303

● Edit menu, page 305

● View menu, page 306

● Insert menu, page 308

● Format menu, page 310

● Tools menu, page 311

● Window menu, page 312

● Help menu, page 313

● Designer shortcut key summary, page 313
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

See also:

● General Designer windows context menus, page 298

File menu
The File menu provides commands for creating or opening projects and state machine
diagrams, importing functions, declarations, and requirements, saving and printing, and
exiting the Designer:

Menu commands

These commands are available on the menu:

New (Ctrl+N)

Displays a standard dialog box where you can create a new project.

Open (Ctrl+O)

Displays a standard dialog box where you can open a project or top-level state
machine file.

Save Project (Ctrl+S)

Saves the current project.

Close Project

Closes the current project.
AFE1_AFE2-1:1

 303

304

Reference information on Designer menus

Save As

Displays a standard dialog box where you can save the current project or state
machine diagram file with a new name.

Add Files

Displays a standard dialog box where you can locate existing files to add to the
system.

Import

Imports function declarations and constants contained in a C header file.

Import Requirements

Imports requirements from an existing .reqif file into the Designer.

Page Setup

Displays a dialog box where you can set printing options.

Print Preview

Displays a preview of how the printed state machine diagram will look before
you print it.

Print (Ctrl+P)

Prints the active state machine diagram.

Print All (Ctrl+Shift+P)

Displays a dialog box where you can choose which parts of the project you want
to print.

filename.vsp

A numbered list of the most recently opened project files. Choose the one you
want to open.

Exit

Exits the Designer. You will be asked whether to save any changes to files before
they are closed.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Edit menu
The Edit menu provides commands for editing.

Menu commands

These commands are available on the menu:

Undo (Alt+Backspace)

Undoes your most recent action. See the status bar for information about what
to be undone.

Redo (Ctrl+Y)

Redoes the last edit that was undone in the Designer. See the status bar for
information about what to be redone.

Cut (Shift+Del), Copy (Ctrl+C), Paste (Ctrl+V)

The standard Windows commands.

Delete (Delete)

Deletes the selected objects.

Find (Ctrl+F)

Displays a dialog box where you can search for text in projects, systems, and
top-level state machines, see Find dialog box, page 276.

Edit Features

Displays a dialog box where you can define and edit features; see Edit Features
dialog box, page 253.

Edit Variants

Displays a dialog box where you can define and edit variants; see Edit Variants
dialog box, page 274.
AFE1_AFE2-1:1

 305

306

Reference information on Designer menus

View menu
The View menu provides commands for opening windows, displaying toolbars, and
zooming in windows.

Menu commands

These commands are available on the menu:

Project Browser (Alt+0)

Opens the Project Browser window, see Project Browser window, page 278.

Transition Elements (Alt+1)

Opens the Transition Elements window, see Transition Elements window, page
295.

Output (Alt+2)

Opens the Output window, see Output window, page 278.

Property (Alt+3)

Opens the Property window, see Property window, page 286.

Zoom View (Alt+4)

Opens the Zoom View window, see Zoom View window, page 298.

Requirements Browser (Alt+5)

Opens the Requirements Browser window, see Requirements Browser
window, page 286.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Toolbars

The commands on this submenu show/hide the Designer toolbars.

Status Bar

Shows/hides the status bar at the bottom of the Designer.

Show Grid (Alt+G)

Shows/hides a grid, that supports you when you draw in the diagrams.

Grid on Top (Shift+Alt+G)

Displays the support grid on top of all objects in the diagrams.

Page Border Lines

Shows/hides the border lines, that define the editable area of the State machine
diagram window.

Actual Size

Sets the zoom level to 100%

Zoom In (+)

Zooms in on the active diagram to show details better.

Zoom Out (–)

Zooms out in the active diagram to show more objects.

Zoom All (Alt+Numerical +)

Sets the zoom level so that all objects in the current diagram fit exactly in the
view.

Zoom Selection (Alt+Numerical –)

Sets the zoom level so that the selected objects in the current diagram fit exactly
in the view.
AFE1_AFE2-1:1

 307

308

Reference information on Designer menus

Insert menu
The Insert menu provides commands for inserting graphical objects in the state
machine diagrams.

Menu commands

These commands are available on the menu:

System

Inserts a system in the System View window. See also The Visual State system,
page 123.

Simple State

Inserts a simple state in the diagram. See also Simple state, page 140.

Composite State

Inserts a submachine state in the diagram. See also Composite state, page 140.

Submachine State

Inserts a submachine state in the diagram. See also State machine templates and
submachine states, page 201.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Transition

Inserts a transition in the diagram. See also Introduction to transitions, page
167.

Curved Transition

Inserts a curved transition in the diagram. See also Introduction to transitions,
page 167.

Orthogonal Transition

Inserts an orthogonal transition in the diagram. Note that if you have selected
Tools>Settings>Transitions>Auto format orthogonal transitions, the
transition will be drawn automatically if you just click the source and then the
destination state. See also Introduction to transitions, page 167.

Self Transition

Inserts a self transition in the diagram. See also Introduction to transitions, page
167.

Initial State

Inserts an initial state in the diagram. See also Initial state, page 141.

History State

Inserts a history pseudostate in the diagram. See also Shallow history
pseudostate, page 143.

Deep History State

Inserts a deep history pseudostate in the diagram. See also Deep history
pseudostate, page 147.

Final State

Inserts a final state in the diagram.

Join State

Inserts a join pseudostate in the diagram. See also Join and fork pseudostates,
page 148.

Fork State

Inserts a fork pseudostate in the diagram. See also Join and fork pseudostates,
page 148.

Junction State

Inserts a junction pseudostate in the diagram. See also Junction pseudostate,
page 149.
AFE1_AFE2-1:1

 309

310

Reference information on Designer menus

Connector State

Inserts a connector pseudostate in the diagram. See also Connector pseudostate,
page 149.

Entry Point

Inserts an entry point in the diagram. See also State machine templates and
submachine states, page 201.

Exit Point

Inserts an exit point in the diagram. See also State machine templates and
submachine states, page 201.

Choice

Inserts a choice state in the diagram. See also Choice state, page 150.

Note

Inserts a note in the diagram. See also Inserting notes, page 232,

Format menu
The Format menu provides commands for adjusting the graphical objects in the
diagrams.

Menu commands

These commands are available on the menu:

Alignment

Opens a submenu for aligning the selected objects in the active diagram in
relation to each other.

Size

Opens a submenu for changing the sizes of the selected objects in the active
diagram in relation to each other.

Space

If at least three graphical objects are selected, this command opens a submenu
for changing the space between the selected objects in the active diagram.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Reposition Lost Objects

Moves objects located outside the diagram onto the diagram.

Go to Parent Diagram (Backspace)

Changes the active Designer view window to a window one level up in the
hierarchy, for example from a State Machine Diagram View window to the
corresponding System View window.

Tools menu
The Tools menu provides commands for making settings for working with state machine
diagrams.

Menu commands

These commands are available on the menu:

Selection (Ctrl+0)

Toggles the selection tool on/off. If you choose this command when you are
using another tool on the Diagram toolbar, that tool is deactivated.

Zoom (Ctrl+Shift+0)

Toggles the zoom tool on/off. If you choose this command when you are using
another tool on the Diagram toolbar, that tool is deactivated.

Use Snap (Alt+S)

Makes graphical objects in diagrams snap to the supporting grid when you move
them (including when the grid is invisible).

Grid Setup

Displays the Grid Setup dialog box, see Grid Setup dialog box, page 277.

Safe Mode>Enable

Enables Safe Mode, which means that you will get a warning when you create
and/or use a non-verifiable design element. See Getting warnings for
non-verifiable elements, page 233.
AFE1_AFE2-1:1

 311

312

Reference information on Designer menus

Safe Mode>Message on Create

Creates a warning when you create a non-verifiable design element.

Safe Mode>Message on Use

Creates a warning when you use a non-verifiable design element.

Safe Mode>Message on Create and Use

Creates a warning both when you create and when you use a non-verifiable
design element.

Customize Appearance

Displays the Customize Appearance dialog box, see Customize Appearance
dialog box, page 242.

Settings

Displays the Settings dialog box, see Settings dialog box, page 289.

Window menu
The Window menu provides commands for arranging the Designer windows.

Menu commands

These commands are available on the menu:

Close All

Closes all Designer view windows.

Cascade

Arranges the open Designer view windows partially on top of each other but
fanned out so that the window titles are visible.

Tile Horizontally

Changes the size of the open Designer view windows and arranges them from
top to bottom so that they are all visible.

Tile Vertically

Changes the size of the open Designer view windows and arranges them from
left to right so that they are all visible.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Arrange Icons

Arranges any icons for minimized windows.

Refresh (F5)

Reloads the contents in the active Designer view window.

Help menu
The Help menu provides help for IAR Visual State and displays the version number of
the Designer.

Designer shortcut key summary

General

These are the general shortcut keys:

Description Shortcut key

Create a new project Ctrl+N

Open a project Ctrl+O

Save a project Ctrl+S

Print the active diagram Ctrl+P

Print all Ctrl+Shift+P

Make the Project Browser window the active window Alt+0

Make the Transition Elements window the active window Alt+1

Make the Output window the active window Alt+2

Open the Property window Alt+3

Open the Zoom View window Alt+4

Make the Requirements Browser window the active window Alt+5

Refresh the active window F5

Open the online help system F1

Close the active window Alt+F4

Table 16: General Designer shortcut keys
AFE1_AFE2-1:1

 313

314

Reference information on Designer menus

Working with Designer view windows

These are the shortcut keys for working with Designer view windows:

Editing in diagrams

These are the shortcut keys for editing in diagrams:

Description Shortcut key

Scroll up Ctrl+Up Arrow

Scroll down Ctrl+Down Arrow

Scroll left Ctrl+Left Arrow

Scroll right Ctrl+Right Arrow

Scroll up one page Page Up

Scroll down one page Page Down

Scroll left one page Ctrl+Shift+Left Arrow

Scroll right one page Ctrl+Shift+Right Arrow

Go to the top of the window Home

Go to the bottom of the window Ctrl+Home

Go to the left side of the window Ctrl+End

Go to the right side of the window Ctrl+Tab

Zoom in +

Zoom out –

Make all objects fit exactly in the view Zoom + Plus or Alt + Num Plus

Make selected objects fit exactly in the view Zoom + Minus or Alt + Num Minus

Zoom to 100% Ctrl+right-click when the Zoom
tool is active

Show the grid Alt+G

Display the grid on top of all objects Alt+Shift+G

Make objects snap to the grid when you move them Alt+S

Table 17: Designer view shortcut keys

Description Shortcut key

Go to the next graphical object Tab

Go to the previous graphical object Shift+Tab

Edit a selected graphical object Enter

Move a selected graphical object one grid unit Left/Up/Down/Right Arrow

Table 18: Editing shortcut keys
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

Editing transition elements shortcut keys

These are the shortcut keys for editing transition elements:

Move a selected graphical object one pixel Shift+Left/Up/Down/Right Arrow

Search for a transition element Ctrl+F

Activate the selection tool Ctrl+0

Deactivate an active diagram tool Right-click

Activate the note tool Ctrl+9

Activate the zooming tool Ctrl+Shift+0

Shift focus to a parent diagram Backspace

Activate the insert standard transition tool Ctrl+3

Activate the insert curved transition tool Ctrl+Alt+3

Activate the insert orthogonal transition tool Ctrl+Shift+3

Clone an existing graphical object Ctrl+drag the object

Activate the insert simple state tool Ctrl+2

Activate the insert composite state tool Ctrl+Shift+2

Define the number of regions in a composite state Ctrl+draw a composite state

Change places for two regions with a state Shift+drag a region

Activate the insert initial state tool Ctrl+5

Activate the insert shallow history state tool Ctrl+Alt+5

Activate the insert deep history state tool Ctrl+Shift+5

Activate the insert final state tool Ctrl+6

Activate the insert join state tool Ctrl+7

Activate the insert fork state tool Ctrl+Alt+7

Activate the insert junction state tool Ctrl+Shift+7

Activate the insert connector state tool Ctrl+8

Description Shortcut key

Table 18: Editing shortcut keys

Description Shortcut key

Create a new element Ctrl+N

Select the next element type Ctrl+Page Down

Select the next element type Ctrl+Page Up

Table 19: Editing transition elements shortcut keys
AFE1_AFE2-1:1

 315

316

Syntax of C header files

Syntax of C header files
The import functionality recognizes most C and C++ constructs from header files, so
many header files that are used as part of your ordinary projects can be imported to the
Designer.

In addition to the regular syntax for function declarations and constant definitions from
source files, some extra special syntax is supported for importing other items.

SYNTAX FOR IMPORT OF FUNCTION DECLARATIONS

Import of function declarations (map to action functions in Visual State) can be done
either by a single import statement or multiple import statements.

Single import statement

#pragma VS_ACTION function_declaration

where function_declaration is a standard Standard C function declaration.

Multiple import statement

#pragma VS_ACTION_BEGIN
 function_declaration_1
 ...
 function_declaration_N
#pragma VS_END

where function_declaration_1 ... N is a standard Standard C function
declaration.

SYNTAX FOR IMPORT OF CONSTANTS

Import of constants (map to constants in IAR Visual State) is done by multiple import
statements as follows:

#pragma VS_CONSTANT_BEGIN
 macro_statement 1
 ...
 macro_statement N
#pragma VS_END

where macro_statement 1 ... N is a standard Standard C macro statement.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Designer

In addition to the standard syntax, you can specify which Visual State type the constant
should have by inserting a typecast to the desired type, for example like this:

#define BOOLValue1 (VS_BOOL)1
#define BOOLValue2 ((VS_BOOL)1)
#define DoubleValue1 ((double)-7)
#define DoubleValue2 (VS_DOUBLE)1.0

This is an example of the import syntax:

// functions to import
#pragma VS_ACTION void OnClearDisplay(void);
#pragma VS_ACTION_BEGIN

int OnGetDisplayValue(void);
void OnSetDisplayValue(int nValue);
int OnStepTrackUpdateDisplay(int nStep, int nValue);

#pragma VS_END

// constants to import
#pragma VS_CONSTANT_BEGIN

#define DISPLAY_FULL 0x01
#define DISPLAY_STEPPED 0x02

#pragma VS_END

SYNTAX FOR IMPORTING TRIGGERS

Import triggers (events and signals in IAR Visual State) by a multiple import of
statements like this:

#pragma signal lowBattery
#pragma signal lowFuel BAEA6E65-7AFC-45EE-86FC-78E86A48CC87
#pragma event horn
#pragma event wiper(int intensity)
 A11A0B3B-F590-48D3-9D83-572C5D3665AF

In this example, the individual lines will import:

● A new signal with the name lowBattery

● A new signal with the name lowFluel and the given GUID

● A new event with the name horn

● A new signal with the name wiper, taking one argument of type VS_INT named
intensity, and with the given GUID.

Be careful when you specify GUIDs for imported items. A GUID must be unique within
the model.
AFE1_AFE2-1:1

 317

318

Syntax of C header files

AFE1_AFE2-1:1

IAR Visual State
User Guide

Part 4. Simulating using
the Validator
This part of the IAR Visual State User Guide includes these chapters:

● Simulation

● Graphical animation

● Tracing

● Analyzing

● Recording and playing test/event sequences

● The Visual State Validator
319

320

Simulation
● Introduction to simulating your model using the Validator

● Simulating models using the Validator

Introduction to simulating your model using the Validator
Learn more about:

● Briefly about simulating using the Validator, page 321

● Debugging modes, page 322

● Viewing elements during simulation, page 322

● Conditional breakpoints, page 323

BRIEFLY ABOUT SIMULATING USING THE VALIDATOR

Using the Visual State Validator you can simulate your state machine model, which
means that you can perform functional testing—check that your application is in
accordance with your requirement specification—and validate your state machine
model to get insight in the behavior at specific points of execution.

The Validator supports:

● Interactive simulation, including use of conditional breakpoints—you manually
send events to one or more systems and view the system’s reaction to this, including
variables assigned a new value, generated signals, actions, and state changes in the
simulated system.

You can view your interactive animation graphically in the Designer, see Graphical
animation, page 335.

● Automatic simulation—you test your model automatically by applying a test
sequence of events and assignments that you have recorded to a sequence file. See
Recording and playing your test sequences, page 350.

● Tracing—that is, to obtain a sequence of events that will get the system into a
desired configuration. See Tracing state machine models, page 341.

● Listing the Visual State elements used, and test coverage. See Analyzing using the
Validator, page 346.

In addition to using the Validator for simulation, you can also use it for testing your state
machine model in a target application by means of RealLink, see Debugging design
models using RealLink, page 785.
AFE1_AFE2-1:1

 321

322

Introduction to simulating your model using the Validator

Note: If you are using IAR Visual State together with IAR Embedded Workbench, use
C-SPYLink instead of RealLink, see Debugging design models using C-SPYLink, page
759.

DEBUGGING MODES

The Validator has two debugging modes:

See Toggling between Validator mode and Target mode for a window, page 334.

VIEWING ELEMENTS DURING SIMULATION

When an event has been sent, a number of elements will be affected. Via the Validator
windows, you can track changes in the following elements:

● States

The states that became active upon sending an event, and the states that were current
before the event was sent, can be viewed in the Systems window. Current states are
shown with a red arrow. See also Systems window, page 389.

● Actions

Actions, or output, produced by the sent event are listed in the Action window, which
also lists the arguments with which the actions were called. See Actions window,
page 364.

The order in which output is listed is runtime-specific, which means that the top-most
output was the first output given. This applies to systems, too, if your project contains
more than one system. Every time a deduction (microstep) is started for a specific
system/instance, the Action window is cleared for output coming from that
system/instance, and every time output is given during deduction (microstep), the
output is added to the end of the list. For information about microsteps, see Runtime
behavior—macrosteps and microsteps, page 122.

● Assignments

Assignments resulting from the sent event are displayed in the Action window. See
Actions window, page 364.

Validator mode In this mode, you simulate your design model and monitor how
it behaves.

Target mode When the Validator is connected to a target by means of
RealLink, you can see the values as they are on target. Use the
command Show target values (available from context menus
in the Validator windows) to switch between showing values as
they would be on target and as they would appear during
simulation.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Simulation

● Signals

Every time a signal is sent during a deduction, the signal is added to the end of the
appropriate signal queue. Thus, the first signal listed in the queue is the one to be
retrieved next and the last signal listed is the last added signal (FIFO, first in, first
out). If your system is using signals, the Signal Queue window displays the signal
queue. Note that if the signal queue for a specific system/instance is not empty, it is
not possible to send an event to that system/instance. See also Signal Queues window,
page 387.

Handling of the signal queue can be automatic or manual:

● Automatic signal queue handling—the queue of a specific system is emptied just
after the deduction of a sent event has been performed, and before the event is
sent to any other enabled systems. See Activating automatic signal queue
handling, page 328.

● Manual signal queue handling—the queue is not emptied until event deduction
has been completed for all enabled systems. See Using manual emptying of
signal queues, page 328.

Note that if the project contains more than one system and when simulating in
Validator mode, there is a significant difference between the two approaches to
emptying the queue. Also, if assignments are used, the different approaches might
give different results.

● Guard expressions

At runtime, a guard expression is evaluated during deduction. Consequently, the
expression can only have the value TRUE or FALSE. However, the Guard
Expressions window provides a view of expression values between deductions. This
means that a guard expression can also have the value N/A (not available). The
expression will have this value if any unresolved variables, action functions, or event
parameters are included in the guard expression. If any unresolved guard expression
is met during a deduction, a dialog box will be displayed where you can specify the
value of the unresolved guard. See Guard Expressions window, page 380.

● Defined elements

To view all variables, all action functions, and all constants in all systems, use the
Variables window. Via the context menu you can show or hide a specific group of
elements, show or hide all variables, and filter the information. For arrays, you can
choose to display the array indexes. See Variables window, page 395.

CONDITIONAL BREAKPOINTS

During simulation, you can set breakpoint conditions on systems for one or more of the
following:

● The sent event or signal
AFE1_AFE2-1:1

 323

324

Simulating models using the Validator

● An expression—can be evaluated either before or after a deduction

● The current state, before the deduction

● The next state, after the deduction

● The actions executed during a deduction.

Note: Breakpoints are not available in target mode.

If more than one condition is defined for a breakpoint, they must all be fulfilled before
the break is triggered.

Simulating models using the Validator
What do you want to do?

● Creating a new Validator workspace, page 324

● Preparing for the simulation, page 325

● Specifying event parameters, page 326

● Sending events manually, page 327

● Filtering events, page 328

● Activating automatic signal queue handling, page 328

● Using manual emptying of signal queues, page 328

● Handling signal queues for a single system, page 329

● Defining breakpoints, page 329

● Using breakpoints, page 330

● Changing values of variables, page 332

● Setting action function return values, page 332

● Forcing states, page 333

● Specifying the order of the systems/instances, page 333

● Toggling between Validator mode and Target mode for a window, page 334

CREATING A NEW VALIDATOR WORKSPACE

1 In the Validator, choose File>New Workspace.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Simulation

2 Click Yes.

3 In the Open Project dialog box that is displayed, specify the project to load.

The selected project will be opened in the workspace.

4 Choose File>Save Workspace to save your workspace.

Note: Do not change the vws extension of the workspace file.

PREPARING FOR THE SIMULATION

Before you can start the simulation and send events to the system, you must:

● Initialize the loaded systems

● Send the reset event

● Specify event parameters.

1 In the Navigator, open your workspace and then start the Validator. For example the CD
Player example project, which you can find in the Information Center. The Validator
starts with the workspace that contains the project that you want to simulate.

2 Choose Window>Classic Simulation.

3 On the Debug toolbar, click the Initialize System(s) button () to initialize the
system.

If your project contains more than one system or system instance, a dialog box is
displayed where you can select the systems to initialize:
AFE1_AFE2-1:1

 325

326

Simulating models using the Validator

4 In the Events window, double-click SE_RESET to send the Visual State reset event to
the systems. Note that the reset event is always SE_RESET and cannot be changed.

Active events will be marked by a red > mark.

Before you can send your events, specify event parameters.

SPECIFYING EVENT PARAMETERS

If the event has parameters, they must all be assigned a value before it is possible to send
the event. The reason is that the event parameters might be used in a guard expression
AFE1_AFE2-1:1

IAR Visual State
User Guide

Simulation

or an assignment, and it is not possible to resolve these without having the value of the
event parameters.

1 In the Event window, right-click and choose Set Parameter Values from the context
menu. The Set Event Parameter Value dialog box is displayed.

2 Specify the event parameter values, either in the Value text field or by editing the
parameter directly.

Note: When you use the Validator in target mode, the event parameters for a target event
can only be modified using the Watch window.

You are now ready to start the simulation by sending events to the loaded systems.

SENDING EVENTS MANUALLY

When you have completed the steps described in Preparing for the simulation, page
325, you can start the simulation by sending events to the loaded systems.

1 In the Events window, double-click the event to send. You can send active events,
marked with a red > mark (unless the project contains more than one system and a
global event is active in more than one system, in which case it is marked with a red >>
mark).

Global events will be sent to all enabled systems. Local events will be sent to the system
in which they are defined.

2 When you have sent the event, new events might become active. As a consequence of
sending the event, the various Validator windows reflect what happens to actions,
states, events, variables, etc.

3 To have guard expressions resolved during the inquiry on active events, right-click in
the Events window and choose Include Guard Expressions from the context menu.

When guard expressions are included, only guard expressions evaluated as FALSE will
make an event inactive. Guard expressions evaluated as TRUE, and expressions that
AFE1_AFE2-1:1

 327

328

Simulating models using the Validator

cannot be evaluated (marked N/A in the Guard Expression window) will not make an
event inactive.

Note: The Include Guard Expressions option is only available in Validator mode (not
target mode) because the inquiry on active events by the Visual State API can only check
state conditions. See also Guard expressions, page 169.

4 You can also use the Watch window for sending and viewing events. In the Events
window, right-click the event and choose Add to Watch from the context menu. In the
Watch window, select the event and press Enter.

FILTERING EVENTS

There are various ways to filter events:

● To hide an event from the Events window, right-click the event and chose Hide
from the context menu.

● To display all hidden events, right-click in the Events window and choose Show All
from the context menu.

● To view only the active events, right-click in the Events window and choose Only
Active Events from the context menu.

ACTIVATING AUTOMATIC SIGNAL QUEUE HANDLING

1 In the Validator, choose Window>New Window>Signal Queues to open the Signal
Queues window.

2 Choose Debug>Auto Empty Signal Queues.

After a deduction, the Validator will send the first signal in the queue. As long as there
are signals in the queue for the particular system, deduction will continue and new
signals might be added to the signal queue.

When automatic signal queue handling is used, microsteps are not available in Target
mode.

Note: The system might be in a live lock, meaning that the signal queue will never be
emptied. If a live lock occurs, press Escape to stop sending signals. In Target mode, a
live lock cannot be stopped.

USING MANUAL EMPTYING OF SIGNAL QUEUES

There are two ways to manually empty the signal queue:

● Continuing to send the top signal in the queues until the queue is empty. To do this,
double-click the signal in the Signal Queues window.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Simulation

● Single-stepping the queue. To do this, right-click in the Signal Queues window and
choose Send Signal from the context menu. This will send the top signal in the first
queue that contains signals. The order in which the queues are emptied is defined in
the System setup window, see System Setup window, page 391.

HANDLING SIGNAL QUEUES FOR A SINGLE SYSTEM

1 In the Validator, choose Window>New Window>Signal Queues to open the Signal
Queues window.

2 To handle the signal queue:

● To empty the signal queue for a specific system, right-click the system and choose
Empty System Signal Queue from the context menu.

● To step the signal queue for a specific system, right-click the system and choose
Send System Signal from the context menu.

DEFINING BREAKPOINTS

1 In the Validator, choose Edit>Breakpoints to open the Breakpoints Setup dialog box:

2 On the General page, select the system and instance on which the break should be
triggered. Optionally, specify a description for the breakpoint. Click New to create the
breakpoint.
AFE1_AFE2-1:1

 329

330

Simulating models using the Validator

3 At the bottom of the dialog box you get an overview of all defined breakpoints,
including your newly created breakpoint. To enable and disable a breakpoint, select or
deselect it.

Note: You can also enable and disable breakpoints in the Breakpoints window; choose
View>Breakpoints to open the window.

4 To set up a breakpoint condition, click the tab for the appropriate condition type
(event/signals, variables, etc), and make the appropriate settings on that page.

For information about the options, see Breakpoints Setup dialog box : General, page
371.

5 To remove a breakpoint, select it and click Remove. Alternatively, click Remove All.

USING BREAKPOINTS

The breakpoint pre-deduct conditions are evaluated just before deduction starts. If all
conditions are fulfilled, and the breakpoint does not contain any post-deduct conditions,
the Breakpoint Reached dialog box is displayed.

1 Click either Step over to step over the breakpoint and thereby perform the deduction.
Or click Stop.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Simulation

2 After deduction, all post-deduct conditions are evaluated. If all post-deduct conditions
in a breakpoint are fulfilled (including all post-deductions), a break is performed. The
Breakpoint Reached dialog box is displayed:

Click OK.

For example, this means that the deduction on the first system will remain if these
conditions are fulfilled:

● the project contains two systems

● a deduction has been performed on the first system

● a pre-deduct breakpoint is reached on the second system

● you stop.

Note: If the project contains more than one system/instance, and you stop on a
breakpoint, all further processing is disabled.
AFE1_AFE2-1:1

 331

332

Simulating models using the Validator

CHANGING VALUES OF VARIABLES

1 In the Validator, choose Window>New Window>Variables to open the Variables
window.

2 Right-click the variable for which to change the value and choose Set Value from the
context menu.

Note: At load time, the variables are assigned their initialization values.

Note: Arrays must be expanded before you can set the value of the various indexes.

SETTING ACTION FUNCTION RETURN VALUES

An action function can have a return value. To simulate the system, an action function
return value might be necessary if the value is used in a guard expression or an
assignment expression.

1 In the Validator, choose Window>New Window>Variables to open the Variables
window.

2 In the Value column, select the action function return value, and type the value.

Each time an action function is used you can be prompted to specify a return value. To
specify the value, choose Debug>Action Function Return Value Prompt. By default,
the value is undefined.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Simulation

Note: In target mode, you cannot view the action function return values.

FORCING STATES

You can force the system to a specific state. All states can be forced. Typically, this can
be useful if you want to start from a specific state instead of starting from the beginning;
specifically for long execution sequences.

1 In the Validator, choose Window>New Window>Systems to open the Systems
window.

2 Right-click the state to force and choose Force State from the context menu.

The state is now active in the system.

SPECIFYING THE ORDER OF THE SYSTEMS/INSTANCES

Changing the order of the systems changes the order of how events are sent to the
various systems. Thus, it is possible to match how the target application as closely as
possible. Furthermore, changing the system order affects how signal queues are
handled. If manual signal queue handling is used, the system setup determines which
queue that is emptied first. See also Using manual emptying of signal queues, page 328.
AFE1_AFE2-1:1

 333

334

Simulating models using the Validator

Note: The system order only applies to interactive simulation (thus, not using test
sequence files). When a recorded test sequence is played, all input to the systems is
performed on a system/instance basis, and it makes no sense to empty a signal queue
manually. See Recording and playing test/event sequences, page 349.

1 In the Validator, choose View>System Setup to open the System Setup window.

2 On the Validator page, change the system order by clicking the Up Arrow or Down
Arrow buttons on the toolbar.

3 To enable or disable a system, click the check boxes to the left of the system name.
Disabled systems will not receive events.

4 To activate an instance (only possible in Validator mode), right-click the system and
choose Activate Instance from the context menu.

Note: It is not possible to change instances in target from the Validator.

TOGGLING BETWEEN VALIDATOR MODE AND TARGET
MODE FOR A WINDOW

When the Validator is connected to a target by means of RealLink (Target mode), you
can change the mode of the windows to view your model in Validator mode or in Target
mode. This is possible for all windows, except for the Guard Expressions window. See
also Debugging design models using RealLink, page 785.

1 In the Validator, open your workspace.

2 Open a window, for example the Events window.

3 Right-click in the window and choose Show target values from the context menu (or
press Alt+F8).

The window is now in Target mode.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Graphical animation
● Introduction to graphical animation of debug sessions

● Animating debug sessions graphically

● Graphical environment for graphical animation

Introduction to graphical animation of debug sessions
Learn more about:

● Graphical animation of debug sessions, page 335

GRAPHICAL ANIMATION OF DEBUG SESSIONS

Using IAR Visual State you can animate your debug session graphically—while
simulating using the Validator, while debugging in Target mode using RealLink, or
while debugging on hardware using C-SPYLink.

Regardless of which debugging solution you are using, you can view your animation
graphically in the Designer.

Animating debug sessions graphically
What do you want to do?

● Animating your debug session graphically, page 335

● Setting breakpoints for graphical animation, page 336

● Customizing shapes and colors for graphical animation, page 336

ANIMATING YOUR DEBUG SESSION GRAPHICALLY

You can view the simulation graphically in the Designer. When you use the Designer for
graphical animation, the title bar indicates this (Simulation), and you cannot change the
design in this Designer instance.

1 Starting graphical animation:

● In the Validator, choose Debug>Graphical Animation, or click the Graphical
Animation button on the toolbar. The Designer starts a graphical animation session.
AFE1_AFE2-1:1

 335

336

Animating debug sessions graphically

● In C-SPYLink, choose Visual State>View>Graphical animation. The available
systems are listed on the submenu; choose the system for which you want to start
graphical animation. You can start animation for several systems in parallel.

2 In the Designer, click the system in the System View to open the State machine
diagram window.

When you send an event in the Validator that fires a transition, the affected states and
transitions can be viewed in the Designer. All open diagrams are updated each time a
microstep is completed. For information about macrosteps, see Runtime behavior—
macrosteps and microsteps, page 122.

SETTING BREAKPOINTS FOR GRAPHICAL ANIMATION

1 In the Validator, start the Designer for graphical animation. See Animating your debug
session graphically, page 335.

2 In the Designer, right-click the state for which you want to set a breakpoint and choose
Insert/remove current state breakpoint or Insert/remove next state breakpoint
from the context menu.

To delete all breakpoints, choose Remove all breakpoints.

CUSTOMIZING SHAPES AND COLORS FOR GRAPHICAL
ANIMATION

1 In the Validator, open your workspace.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Graphical animation

2 Choose Debug>Graphical Animation to start the Designer in simulation mode.

3 In the Designer, choose Tools>Configure to open the Customize Appearance dialog
box.

4 In the dialog box that is displayed, set the shape and color of frame borders and specify
whether previous states should be displayed in the simulation diagram.

Graphical environment for graphical animation
Reference information about:

● Designer windows in Graphical Animation mode, page 337

● Customize Graphical Animation dialog box, page 338

Designer windows in Graphical Animation mode
The Designer windows show graphical animation when you choose Visual
State>View>Graphical animation and choose a system in the IAR Embedded
Workbench IDE, or when you choose Debug>Graphical Animation in the Validator.

These example windows display an animation of the execution of the state machine
directly in the original diagram, as it looks in the Visual State Designer. This feature can
be active for the specific system or systems you choose.

Red states indicate newly entered states. Blue states indicate states that were left as the
result of the last event processing.
AFE1_AFE2-1:1

 337

338

Graphical environment for graphical animation

See also Animating your debug session graphically, page 335.

Context menu

This context menu is available by right-clicking on a state in the Designer when the
Designer is running graphical animation:

These commands are available:

Insert/remove current state breakpoint

Inserts or removes a current state breakpoint from the selected state.

Insert/remove next state breakpoint

Inserts or removes a next state breakpoint from the selected state.

Remove all breakpoints

Removes all breakpoints in the state machine diagram.

Customize Graphical Animation dialog box
The Customize Graphical Animation dialog box is available from the Tools menu in
the Designer when the Designer is running graphical animation.

Use this dialog box to customize the appearance of states and transitions during the
graphical animation. Select the graphical object you want to customize and set these
options:

Frame width

Select the width of the state frame.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Graphical animation

Frame color

Select the color of the state frame.

Show previous current state

Indicates the previous current state with an extra border around the frame.

Flash fired transitions

Indicates fired transitions by making them flash.

Demo view

Displays a small window with a preview of the current customizations.
AFE1_AFE2-1:1

 339

340

Graphical environment for graphical animation

AFE1_AFE2-1:1

IAR Visual State
User Guide

Tracing
● Introduction to tracing your state machine model

● Tracing state machine models

Introduction to tracing your state machine model
Learn more about:

● Tracing using the Validator, page 341

TRACING USING THE VALIDATOR

A trace sequence is a sequence of steps that leads to a desired state configuration.
Tracing can be used for answering the question How do I get from the initial state to a
user-defined state configuration?.

The Validator can be used for setting up the configuration you want to reach, and you
can see the resulting trace by using the Validator’s capability for handling sequence files.
For information about how to use the resulting test sequence, see Playing your recorded
test sequence, page 352.

The Verificator is used for finding the actual trace. In a trace, the Verificator will find a
suitable sequence of events and external variables values that makes it possible to reach
the desired configuration.

Tracing state machine models
What do you want to do?

● Setting up a trace, page 341

● Setting up the trace point, page 343

SETTING UP A TRACE

1 In the Validator, open your Validator workspace.
AFE1_AFE2-1:1

 341

342

Tracing state machine models

2 Choose Debug>Find trace to open the Find Trace dialog box:

From the Trace to drop-down list, choose between:

3 Specify a destination file for the output in the Trace output text field or use the
Browse button.

4 Click Find to start tracing to the specified state configuration (trace point). If a trace
sequence is found, the resulting sequence is saved to the file you specified.

Initial Traces to the initial state in the system. Completes step 2 in this
procedure.

Current Traces to the current state in the system. Completes step 2 in this
procedure.

Specify file Traces to the point specified in a file. Choose this option if you
want to specify a customized setup. This means that you must set
up the desired configuration of states. Click Setup, see Find
Trace dialog box, page 379.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Tracing

SETTING UP THE TRACE POINT

A trace point represents the state configuration you want to reach. You can set up your
trace point, open an existing configuration, and edit it.

1 When you have selected Specify file in the Trace Setup file and clicked Setup (as
described in Creating a new Validator workspace, page 324), the Trace Point Setup
dialog box is displayed.

2 Select your desired trace point by selecting a state or click one of the buttons:

Use the Clear button to clear the state configuration.

3 If your project contains more than one system, choose a system from the Select
System drop-down list.

4 Use the standard Load, Save, and Save As for loading, saving and renaming your trace
point file.

5 When you are finished, click OK.

The saved trace point file will be saved with information about the system as well, so
you can use this information when you want to retry a trace later on. If you change the
system you will not be able to reuse the trace point because the signature of the system
will be checked. Likewise, you will not be able to use a trace point file made for another
system for the current system in the Validator.

Initial Sets the state configuration to the initial state(s) in the system.

Current Sets the state configuration to the current state(s) in the system.
AFE1_AFE2-1:1

 343

344

Tracing state machine models

AFE1_AFE2-1:1

IAR Visual State
User Guide

Analyzing
● Introduction to analyzing using the Validator

● Analyzing using the Validator

Introduction to analyzing using the Validator
Learn more about:

● Static and dynamic analysis, page 345

STATIC AND DYNAMIC ANALYSIS

You can use the Validator to analyze your model with regard to element use and test
coverage—static analysis and dynamic analysis, respectively.

Static analysis

Static analysis gives an overview of the elements used in the transitions of a specific
state machine model. For example, an answer to the question Which transitions will fire
the action a? or Which transitions involve the variable v?.

The static analysis information can be obtained without executing or simulating the state
machine model.

The elements for which transitions can be statically analyzed are:

● Events

● Actions

● Signals

● Internal variables

● External variables.

See Performing static analysis, page 346.

Dynamic analysis

Dynamic analysis calculates the test coverage of a specific system and includes events,
actions, signals, conditional states, next states, and transitions. The test coverage
analysis gives detailed information on the dynamic aspects of the model when specific
scenarios or parts of the model are simulated.
AFE1_AFE2-1:1

 345

346

Analyzing using the Validator

For example, dynamic analysis will describe which parts of the model that have the
highest activity level, and which parts that are never entered. This information is useful
when analyzing how the dynamics of the application will perform at runtime.

See Performing dynamic analysis, page 347.

Analyzing using the Validator
What do you want to do?

● Performing static analysis, page 346

● Performing dynamic analysis, page 347

PERFORMING STATIC ANALYSIS

1 In the Validator, open your Validator workspace.

2 Choose File>Analysis>New Static to open the Static Analysis window.

3 On the Analysis toolbar in the Validator main window, select the system on which to
perform the analysis, in this example CD:

4 In the left pane of the window, select the elements that you want to analyze transitions
for:

5 Choose Debug>Analyze or click the Analyze button on the Analyze toolbar.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Analyzing

Analysis will be performed and the results is displayed in the right pane of the window:

6 To save the analysis results, choose File>Analysis>Save. Save your file (filename
extension vsa).

To open an existing static analysis file, choose File>Analysis>Open.

PERFORMING DYNAMIC ANALYSIS

1 In the Validator, open your Validator workspace. Initialize the system and send events
to the system by double-clicking them. See Sending events manually, page 327.

2 Choose File>Analysis>New Dynamic to open the Dynamic Analysis window.

3 On the Analysis toolbar, select the system on which to perform the analysis.

4 On the Analysis toolbar, select the sequence for which to perform the analysis. This
can be a test sequence in a sequence file, or it can be performed on the data collected
since the last time the dynamic analysis data was reset. This set of data is named
Current Test Session. Using collected data allows an on-the-fly calculation of the
test coverage.

5 On the Analysis toolbar, click the Analyze button.
AFE1_AFE2-1:1

 347

348

Analyzing using the Validator

Analysis will be performed and the result is displayed in the Dynamic Analysis
window.

The dynamic analysis consist of a summary section and a details section. The summary
section shows the calculated coverage percentage and the most frequently activated
elements of those covered by the analysis. In the details section you can see how many
times a specific element has been activated. Furthermore, the dynamic analysis
calculates frequency as a percentage of the entire activation of this group of identifiers.

The result of the analysis can be in either text format or comma-separated values format
(CSV). You can select which format to use from the context menu.

Note: The dynamic analysis data is reset each time an analysis is performed, and each
time Edit>Undo is applied to a Send Event or a Send Signal command.

6 To save the dynamic analysis file, choose File>Analysis>Save. Save your file
(filename extension vda).

7 To open an existing dynamic analysis file, choose File>Analysis>Open and specify
the file to open.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Recording and playing
test/event sequences
● Introduction to recording and playing test sequences

● Recording and playing your test sequences

● Event sequence files description

Introduction to recording and playing test sequences
Learn more about:

● Briefly about recording test and event sequences, page 349

● Briefly about playing recorded test sequences, page 350

BRIEFLY ABOUT RECORDING TEST AND EVENT SEQUENCES

Using the Validator, you can record one or more test sequences to a sequence file. The
sequence file can be used as a source of reference in future simulation sessions, for
example after changes in the model design.

A test sequence consists of a number of steps. Each step describes the command given,
to where it is given (if applicable), and the output produced by the command.

In addition to test sequences you can play event sequences—a subset of test
sequences—plain text files that specify a sequence of events and assignments. However,
events can not be recorded in the same way as a test sequence. See Event sequence files
description, page 355.

Output types

These types of output can be generated:

States The entire state configuration for the system to which the
command was given.

Action functions The action function executed during a Send Signal or a Send
Event command.

Signals The entire queue after a Send Signal or a Send Event command.
AFE1_AFE2-1:1

 349

350

Recording and playing your test sequences

Note: Not all commands produce all four output types.

See also Comparing played test sequences with recorded output, page 353.

BRIEFLY ABOUT PLAYING RECORDED TEST SEQUENCES

You can play recorded test sequences from the sequence file. This allows you to check
if two different simulations give the same result, for example after changing the design
model. Once an appropriate set of test sequences has been created, they can be used
repeatedly to check that design changes result in expected behavior of the model. The
test can also be repeated when debugging the model using RealLink.

Recording and playing your test sequences
What do you want to do?

● Recording a test sequence to a sequence file, page 350

● Viewing output from steps, page 351

● Playing your recorded test sequence, page 352

● Jumping to a specific step in a recorded test sequence, page 353

● Comparing played test sequences with recorded output, page 353

RECORDING A TEST SEQUENCE TO A SEQUENCE FILE

1 In the Validator, open your Validator workspace.

2 Choose File>Sequence File>New to open the Sequence File window.

Variables The variables that have been assigned a new value during a Send
Signal or a Send Event command (not necessarily another value,
but an assignment that has been performed to the variable).
AFE1_AFE2-1:1

IAR Visual State
User Guide

Recording and playing test/event sequences

3 Click the Start recording button () on the Debug toolbar or choose
Debug>Record.

4 Initialize the loaded system and send the Visual State reset event SE_RESET. This will
ensure that the starting point is always the same when test sequences are played. If you
do not start by initializing the system, an error is issued.

5 Apply commands to the system. These are the commands that can be given and
recorded in a test sequence file:

The commands applied to the state machine model will be recorded and appended to the
selected sequence.

If manual (interactive) simulation is performed on multiple systems, global events are
sent to all systems and will be recorded once for each system that receives the event.
This way of recording ensures that it is possible to repeat the test sequence by playing it.

Note: If you are recording a test sequence, all commands will be recorded, both
manually applied commands and commands from a recorded test sequence file.

6 To stop recording, click the Stop / Reset button (). The test sequence is saved
automatically.

To find various commands for recording, right-click in the window to open the context
menu. See also Sequence File window, page 383.

VIEWING OUTPUT FROM STEPS

The output from steps (commands) recorded to a sequence file during simulation can be
viewed by selecting the appropriate command (step) in the Sequence File window.

1 In the Validator, choose File>Sequence File>Open to open the Sequence File
window.

Initialize a system Click the Initialize System button () on the Debug
toolbar (not available in target mode).

Send an event Double-click an event in the Event window.

Set the values of internal
and external variables, and
action return values

Choose Set Value from the context menu in the Variable
window (values of action return values are not available
in target mode). See also Changing values of variables,
page 332.

Force the system into a
specific state

Choose Force State from the context menu in the
Systems window (not available in target mode).

Send a signal to the system In the Signal Queues window, double-click a signal.
AFE1_AFE2-1:1

 351

352

Recording and playing your test sequences

2 Right-click in the window and choose Step Results to display the output pane in the
window.

PLAYING YOUR RECORDED TEST SEQUENCE

1 In the Validator, open your workspace.

2 Choose File>Sequence File>Open and specify the file to use. The Sequence File
window is displayed.

If the output pane is not already displayed, right-click in the window and choose Step
results from the context menu.

3 Right-click in the window, and choose Sequence>Select Sequence from the context
menu. The Sequence File dialog box is displayed:

Choose the test sequence to use and click OK.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Recording and playing test/event sequences

4 To execute the steps in the test sequence one by one, click the Step forward button
() on the Debug toolbar.

5 To play the recorded test sequence automatically, click the Play button () on the
Debug toolbar.

The default speed is Free Run, which is the highest possible speed of the host computer.
To change the speed, choose Edit>Speed and select the appropriate speed.

6 If you know exactly on which step to break execution, either select the step and choose
Play to cursor from the context menu. Or, set a stop point on the specific step by
double-clicking the step.

7 To search for some specific conditions to be fulfilled, use breakpoints which also work
for commands sent from a recorded test sequence. See Using breakpoints, page 330.

8 To pause the execution, click the Pause button () on the Debug toolbar.

9 To stop the execution and return the cursor to the first step in the sequence, click the
Stop/Reset button on the Debug toolbar.

JUMPING TO A SPECIFIC STEP IN A RECORDED TEST
SEQUENCE

Jumping around in the recorded sequence is particularly useful if the signal queue in a
recorded test sequence does not correspond to the one generated at runtime.

1 To jump around in the recorded test sequence, right-click in the Sequence File window
and choose Set as Next Step from the context menu.

Execution of the recorded test sequence will stop if the sequence tries to send a signal
that is different from the first signal in the queue. To continue execution in such a
situation, continue with step 2.

2 Open the sequence file and choose the sequence.

3 As the next command to be executed, select the first command that is not a signal in the
Sequence File window.

4 To manually empty the existing queue, click the Empty Signal Queues button on the
Debug toolbar (or use the same command from the context menu).

You can now continue to play the test sequence.

COMPARING PLAYED TEST SEQUENCES WITH RECORDED
OUTPUT

1 In the Validator, open your workspace.
AFE1_AFE2-1:1

 353

354

Recording and playing your test sequences

2 Choose File>Sequence File>Open and specify the file to use. Right-click in the
window and choose Check>All from the context menu.

If the output pane is not already displayed, right-click in the window and choose Step
results from the context menu. Then right-click in the Output pane, choose Check and
select the items you want to compare.

3 Play the sequence, see Playing your recorded test sequence, page 352.

If a design change has been made that results in a mismatch, execution will stop when
you play the recorded test sequence. The Validator will report the mismatches caused by
the change:
AFE1_AFE2-1:1

IAR Visual State
User Guide

Recording and playing test/event sequences

Event sequence files description
Event sequence files have the filename extension vesq.

SYNTAX

Event sequence files must conform to the following syntax, where terminals are set in
single quotes ('):

entSequenceFile ::= 'SYSTEM' <identifier> <index> ('INITRESET' |
 'NOINIT') [FunctionReturns] Steps
FunctionReturns ::= FunctionReturn [FunctionReturns]
FunctionReturn ::= 'FUNCRET' <identifier> Values
Values ::= Value [',' Values]
Value ::= Constant
Steps ::= Step [Steps]
Step ::= Event | Assignment
Event ::= <identifier> '(' [Parameters] ')'
Parameters ::= Parameter [',' Parameters]
Parameter ::= Constant
Assignment ::= InternalAssignment | ExternalAssignment
InternalAssignment ::= 'INTERNAL' <identifier>
 ['[' <index> ']'] '=' Constant
ExternalAssignment ::= <identifier> '=' Constant
Constant ::= <int constant> | <float constant> | <hex constant> |
 <char constant>

The header consists of a system identifier and an index, and designates the system
instance that the event sequence shall apply to. If there is only one instance of the
system, the index must be 0.

The keyword alternative consisting of INITRESET and NOINIT designates two different
variants of event sequence files:

● INITRESET starts the event sequence at the initial state of the model loaded into the
Validator, in other words with initializing the model followed by a reset event.

● NOINIT starts the event sequence at whatever state the model loaded into the
Validator currently is in.

Event sequence files accept C-style comments.
AFE1_AFE2-1:1

 355

356

Event sequence files description

Example of an event sequence file

/*
 Example Event Sequence File
*/

SYSTEM System1 0

INITRESET

FUNCRET Action1 1,2,3,4
FUNCRET Action2 1.0

Event1()
External1 = 1
Event2(1)
INTERNAL Internal1 = 0xF
Event3(1.0)
INTERNAL Internal2[2] = 'c'
Event4(0x1)
Event5('a')
Event6(1, 1.0, 0x1, 'a')

/* End of Example Event Sequence File */
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator
● Introduction to the Visual State Validator

● Graphical environment for the Validator

● Reference information on Validator menus

Introduction to the Visual State Validator
Learn more about:

● Briefly about the Visual State Validator, page 358
AFE1_AFE2-1:1

 357

358

Introduction to the Visual State Validator

BRIEFLY ABOUT THE VISUAL STATE VALIDATOR

The Validator has a number of windows that provide information during validation. All
windows have context menus where you can activate various commands. The Validator
windows are opened via the Windows menu and the View menu.

The Validator workspace contains information on your validation session (filename
extension vws). The file contains information about which project is loaded, the setup
of the current test session, including breakpoints, and window setup. You are
recommended always to save the setup of your test session in a workspace.

You can have more than one Validator workspace, each loading the same project, and
each having its own particular setup. This is useful when testing different aspects of your
state machine model. Note that it is only possible to have one project in a workspace.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

When you start the Validator from the Navigator you will automatically get an
appropriate workspace for the project in the Validator.

Graphical environment for the Validator
Reference information about:

● The Validator main window, page 360

● Actions window, page 364

● Animation Speed dialog box, page 365

● Breakpoint Reached dialog box, page 365

● Breakpoints window, page 366

● Breakpoints Setup dialog box, page 367

● Customize Graphical Animation dialog box, page 338

● Dynamic Analysis window, page 375

● Events window, page 377

● Find Trace dialog box, page 379

● Guard Expressions window, page 380

● Log Mismatch Detected dialog box, page 381

● Output window, page 382

● Sequence File window, page 383

● Sequence File dialog box, page 386

● Set Event Parameter Value dialog box, page 386

● Signal Queues window, page 387

● Static Analysis window, page 388

● Systems window, page 389

● System Setup window, page 391

● Timer Tick Length dialog box, page 392

● Timers window, page 392

● Trace Point Setup dialog box, page 394

● Variables window, page 395

● Watch window, page 398

See also:

● Open Altia Model dialog box, page 906

● Connect Elements dialog box, page 903
AFE1_AFE2-1:1

 359

360

Graphical environment for the Validator

● Define Altia Properties dialog box, page 905

● RealLink Options dialog box, page 809

● RealLink Properties dialog box, page 806

● RealLink RS232 Communication Setup dialog box, page 808

● RealLink TCP/IP Communication Setup dialog box, page 807.

The Validator main window
The main window of the Validator is displayed when you start the Validator.

The screenshot shows the window and its default layout.

The main window is a container for the various Validator windows.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Menu bar

The menu bar contains:

File

Commands for creating, opening, and saving workspaces, sequence files, and
analyses, loading projects, printing, and exiting the Validator. See File menu,
page 400.

Edit

Commands for undoing recent actions, making settings, and setting up
breakpoints. See Edit menu, page 401.

View

Commands for opening windows and controlling which toolbars to display. See
View menu, page 403.

Debug

Commands for simulating your model. See Debug menu, page 404.

RealLink

Commands for debugging your model in a target application using RealLink.
See RealLink menu, page 804.

Altia

Commands for prototyping and simulating a graphical interface of your model,
using Altia Design. See Prototyping a graphical interface, page 883.

Window

Commands for changing how the Validator windows are arranged on the screen.
See Window menu, page 406.

Help

Commands that provide information about the Validator. See Help menu, page
407.

For more information about each menu, see Reference information on Validator menus,
page 399.

Standard toolbar

The standard toolbar—available from the View menu—provides buttons for the most
frequently used commands on the Validator menus.

For a description of a button, point to it with the mouse pointer. The name of the button
is displayed as a tooltip and a description is displayed in the status bar at the bottom of
the main window. When a command is not available, the corresponding toolbar button
is dimmed, and you will not be able to click it.
AFE1_AFE2-1:1

 361

362

Graphical environment for the Validator

This figure shows the menu commands that correspond to each of the toolbar buttons:

See File menu, page 400.

Debug toolbar

The Debug toolbar—available from the View menu—provides buttons for simulating
the execution of your model using the Validator.

For a description of a button, point to it with the mouse pointer. The name of the button
is displayed as a tooltip and a description is displayed in the status bar at the bottom of
the main window. When a command is not available, the corresponding toolbar button
is dimmed, and you will not be able to click it.

This figure shows the menu commands that correspond to each of the toolbar buttons:

See Debug menu, page 404.

RealLink toolbar

The RealLink toolbar—available from the View menu—provides buttons for debugging
the execution of your model using RealLink.

For a description of a button, point to it with the mouse pointer. The name of the button
is displayed as a tooltip and a description is displayed in the status bar at the bottom of
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

the main window. When a command is not available, the corresponding toolbar button
is dimmed, and you will not be able to click it.

This figure shows the menu commands that correspond to each of the toolbar buttons:

See RealLink menu, page 804.

Analyze toolbar

The Analyze toolbar—available from the View menu—provides buttons for analyzing
your model.

For a description of a button, point to it with the mouse pointer. The name of the button
is displayed as a tooltip and a description is displayed in the status bar at the bottom of
the main window. When a command is not available, the corresponding toolbar button
is dimmed, and you will not be able to click it.

This figure shows the menu commands that correspond to each of the toolbar buttons:

See Analyzing, page 345.

Variant toolbar

The Variant toolbar—available from the View menu—controls the use of product
variants in the model.

This figure shows the toolbar:
AFE1_AFE2-1:1

 363

364

Graphical environment for the Validator

Variant selector

Choose which product variant that the Validator operates on. If you choose
<<Complete model>>, the Validator will operate on the entire model. The
feature sets of the variants are edited inside the Designer.

If you change the variant, the Validator will reload the model.

Status bar

The status bar at the bottom of the window can be enabled from the View menu.

The status bar displays:

● Descriptions of menu commands when you open a menu and hover over commands

● Descriptions of toolbar buttons that you hover over with the mouse pointer

● The status of processes in the Validator.

Actions window
The Actions window is available from the Window>New Window submenu.

This window contains information about the most recent deduction. The display area
shows values assigned to the variables, executed actions, and the arguments with which
the actions were called.

Context menu

This context menu is available:

This command is available:

Show target values

Toggles the display mode between showing a representation of the state
machine model as it appears in Validator mode and in Target mode. Requires
that the Validator is connected to a target system via RealLink.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Animation Speed dialog box
The Animation Speed dialog box is available from the Edit>Speed submenu.

Use this dialog box to set a specific execution speed for test sequence files.

Speed

Specify the number of milliseconds to pass between each step in the animation.

Breakpoint Reached dialog box
The Breakpoint Reached dialog box is displayed when a breakpoint is reached.

This dialog box displays the breakpoint that has been reached and lets you decide how
to proceed. See Using breakpoints, page 330.

Breakpoints

Displays the breakpoint that was reached, in the same format as in the Breakpoints
window.

Breakpoint Explanation

Displays the description you gave the breakpoint when you defined it.
AFE1_AFE2-1:1

 365

366

Graphical environment for the Validator

Stop

Stops the simulation.

Step Over

Steps over the breakpoint and performs the deduction.

Breakpoints window
The Breakpoints window is available from the View menu.

This window displays all defined breakpoints. Use the checkbox to enable or disable
them. See Defining breakpoints, page 329.

Context menu

This context menu is available:

This command is available:

Expand

Shows the detailed breakpoint conditions.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Breakpoints Setup dialog box
The Breakpoints Setup dialog box is available from the Edit menu.

Use this dialog box to set breakpoint options for the Validator.

You can set options on these tabbed pages:

● Breakpoints Setup dialog box : Actions, page 368

● Breakpoints Setup dialog box : Current States, page 369

● Breakpoints Setup dialog box : Events/Signals, page 370

● Breakpoints Setup dialog box : General, page 371

● Breakpoints Setup dialog box : Next States, page 372

● Breakpoints Setup dialog box : Variables, page 373
AFE1_AFE2-1:1

 367

368

Graphical environment for the Validator

Breakpoints Setup dialog box : Actions
The Breakpoints Setup dialog box is available from the Edit menu.

Use the Actions page to connect an action function to a breakpoint. See Defining
breakpoints, page 329.

Available action functions

Displays the available action functions that can be connected to the selected breakpoint
in the display area. Double-click an action function to connect it to the breakpoint, or
select it and click the Right Arrow button .

Selected action functions

Displays the action functions that have been connected to the selected breakpoint in the
display area. Double-click an action function to remove it from the breakpoint, or select
it and click the Left Arrow button .

Display area and buttons

See Breakpoints Setup dialog box : General, page 371.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Breakpoints Setup dialog box : Current States
The Breakpoints Setup dialog box is available from the Edit menu.

Use the Current States page to specify a specific state as a breakpoint condition. The
condition will be evaluated before a deduction is performed. See Defining breakpoints,
page 329.

Available states

Displays the available states that can be used as a condition for the selected breakpoint
in the display area. Double-click a state to connect it to the breakpoint, or select it and
click the Right Arrow button .

Selected states

Displays the states that are used as conditions for the selected breakpoint in the display
area. Double-click a state to remove it from the breakpoint, or select it and click the Left
Arrow button .

Display area and buttons

See Breakpoints Setup dialog box : General, page 371.
AFE1_AFE2-1:1

 369

370

Graphical environment for the Validator

Breakpoints Setup dialog box : Events/Signals
The Breakpoints Setup dialog box is available from the Edit menu.

Use the Events/Signals page to specify a specific event or signal as a breakpoint
condition. See Defining breakpoints, page 329.

Events/signals

Displays the available events and signals that can be used as a condition for the selected
breakpoint in the display area. Double-click an event or a signal to connect it to the
breakpoint, or select it and click the Right Arrow button .

View options

Choose what to show in the Events/Signals list: Events, Signals, or Both.

Display area and buttons

See Breakpoints Setup dialog box : General, page 371.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Breakpoints Setup dialog box : General
The Breakpoints Setup dialog box is available from the Edit menu.

Use the General page to create a breakpoint and make basic settings for it. See Defining
breakpoints, page 329.

System

Choose the system that the breakpoint should be applied to.

Instance

If there are more than one instance of the selected system, choose which one to apply
the breakpoint to. See Reuse of design using system instances, page 126.

Breakpoint explanation

Type a description of the breakpoint.

Display area

Displays all defined breakpoints. Select a breakpoint to enable it.

New

Creates a new breakpoint for the selected system.

Remove

Removes the selected breakpoint.
AFE1_AFE2-1:1

 371

372

Graphical environment for the Validator

Remove All

Removes all breakpoints.

Context menu

This context menu is available in the display area:

This command is available:

Expand

Shows the detailed breakpoint conditions.

Breakpoints Setup dialog box : Next States
The Breakpoints Setup dialog box is available from the Edit menu.

Use the Next States page to specify a specific state as a breakpoint condition. The
condition will be evaluated after a deduction is performed. See Defining breakpoints,
page 329.

Available states

Displays the available states that can be used as a condition for the selected breakpoint
in the display area. Double-click a state to connect it to the breakpoint, or select it and
click the Right Arrow button .
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Selected states

Displays the states that are used as conditions for the selected breakpoint in the display
area. Double-click a state to remove it from the breakpoint, or select it and click the Left
Arrow button .

Display area and buttons

See Breakpoints Setup dialog box : General, page 371.

Breakpoints Setup dialog box : Variables
The Breakpoints Setup dialog box is available from the Edit menu.

Use the Variables page to specify an expression as a breakpoint condition. See Defining
breakpoints, page 329.

Variables

Lists the available variables for use in a guard expression used as a breakpoint condition.
Double-click a variable to use it in an expression, or select it and click the Right Arrow
button .
AFE1_AFE2-1:1

 373

374

Graphical environment for the Validator

Operators

Lists the available operators for use in a guard expression used as a breakpoint
condition. Double-click an operator to use it in an expression, or select it and click the
Right Arrow button .

View options

Choose what to show in the Variables list: External variables, Internal variables, or
Both.

Expand arrays

Displays arrays expanded with all members visible.

Edit

Choose whether to evaluate the guard expression before or after the deduction.

Enter expression

Compose the guard expression to be used as a breakpoint condition by typing and by
using the Variables and the Operators lists. Click the Apply button to apply the
expression or the Clear button to clear the field without applying the expression.

Display area and buttons

See Breakpoints Setup dialog box : General, page 371.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Dynamic Analysis window
The Dynamic Analysis window is available from the File>Analysis submenu.

This window contains the results of a dynamic analysis of your model when you click
the Analyze button on the Analysis toolbar or choose Debug>Analyze.

The text consists of two sections:

● The summary section shows the calculated coverage percentage and the most
frequently activated elements of those covered by the analysis.

● The details section shows how many times a specific element has been activated,
and frequency calculated as a percentage of the entire activation of this group of
identifiers.

See also Analyzing, page 345.
AFE1_AFE2-1:1

 375

376

Graphical environment for the Validator

Context menu

This context menu is available:

These commands are available:

Analyze

Analyzes the system selected in the Analysis toolbar, using the selected test
sequence.

Reset Analysis Results

Resets the analysis results.

Use CSV Format

Formats the contents of the window in the CSV (comma-separated value)
format, using one of the delimiters below.

Tab

Uses tabs as CSV delimiters.

Semicolon

Uses semicolons as CSV delimiters.

Comma

Uses commas as CSV delimiters.

Spaces

Uses space characters as CSV delimiters.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Events window
The Events window is available from the Window>New Window submenu.

This window provides a view of all events defined in the loaded project, and is used for
sending events into the system(s).

See also:

● Events, page 179

● Sending events manually, page 327.

Name

The name of an event. Active events (events that will trigger transitions if sent) have a
red > mark to the left.

Explanation

The description you have given the event (if any).

Location

The location of the event definition.
AFE1_AFE2-1:1

 377

378

Graphical environment for the Validator

Context menu

This context menu is available:

These commands are available:

Set Parameter Values

Displays the Set Event Parameter Value dialog box, see Set Event Parameter
Value dialog box, page 386.

Only Active Events

Shows/hides events that are not active.

Include Guard Expressions

Enables/disables guard expressions as a factor when determining whether an
event is active.

Add to Watch

Adds the selected event to the Watch window, see Watch window, page 398.

Show target values

Toggles the display mode between showing a representation of the state
machine model in Validator mode and in the target mode. Requires that the
Validator is connected to a target system via RealLink.

Hide Event

Hides the selected event. To show the event again, choose Show All from the
context menu.

Show All

Shows events that have been hidden using the Hide Event command.

Global

Shows/hides globally defined events.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

System

Shows/hides events defined locally in the named system.

Systems

If there is more than one system, chooses one of the system.

Find Trace dialog box
The Find Trace dialog box is available from the Debug menu.

Use this dialog box to set up a trace, a sequence of steps that leads to a desired
configuration of states.

See also Tracing using the Validator, page 341.

Trace to

Specify the configuration to reach. Choose between:

<Initial>

Performs a trace to the initial state in the system.

<Current>

Performs a trace to the current state in the system.

<Specify file>

Makes the Setup button available. This button opens the Trace Point Setup
dialog box.

Trace output

Specify the name of the file to save the resulting test sequence file to, or browse to an
existing output file using the browse button.

Setup

Displays the Trace Point Setup dialog box, see Trace Point Setup dialog box, page 394.
AFE1_AFE2-1:1

 379

380

Graphical environment for the Validator

Find

Starts the trace. The Validator will by means of the Verificator try to find a trace to the
specified state configuration. The resulting sequence file will be saved, if a trace can be
found.

Guard Expressions window
The Guard Expressions window is available from the Window>New Window
submenu.

This window displays all guard expressions defined in all systems.

Guard

The name of the expression. The characters to the left indicate:

Green check mark

The expression has been evaluated to true.

Red cross

The expression has been evaluated to false.

Question mark

The expression cannot be evaluated.

Value

A boolean value that reflects whether the expression currently evaluates to true or false,
if that is known.

System

The name of the system where the expression is defined.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Log Mismatch Detected dialog box
The Log Mismatch Detected dialog box is displayed when a recorded test sequence is
played and mismatches in output are detected.

This dialog box contains reports of mismatches detected when a recorded test sequence
is played, caused by design changes.

See Recording and playing test/event sequences, page 349.

Command

The command given in the current step, see Sequence File window, page 383.

System

The name of the system that the command was applied to.

Mismatch found in

Shows in which type of output the mismatch was found.

Stop

Stops playing the test sequence.

Continue

Continues to play the test sequence.

Actual

Displays the output from the current playing if the test sequence.
AFE1_AFE2-1:1

 381

382

Graphical environment for the Validator

Log

Displays the logged output from the previously recorded test sequence.

Show

Choose the type of output you want to see mismatches for.

Output window
The Output window is available from the View menu.

This window displays information about the loaded workspace. The tabbed pages
contain general information from the Validator, RealLink, and Altia when these tools are
running, as well as trace information.

Context menu

This context menu is available:

This command is available:

Clear

Deletes all text for the active view in the window.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Sequence File window
The Sequence File window is available from the File>Sequence File submenu.

Use this window to record a test sequence to a sequence file. A test sequence consists of
a number of steps that each describes a command and the output produced by it.

See also Recording and playing test/event sequences, page 349.

Command

Displays the commands that have been added to the sequence.

System

Displays the system that each command was applied to.

Output area

Displays the results of the selected command in the Commands column, for each of the
four types of output: states, action functions, signals, and variables. Click the tab for the
type of output you want to see.

If this area is not visible, right-click in the window and choose Step Results from the
context menu.
AFE1_AFE2-1:1

 383

384

Graphical environment for the Validator

Context menu

This context menu is available:

These commands are available:

Play

Plays the test sequence.

Step

Plays the test sequence one step forward.

Play to Cursor

Plays the test sequence up to the selected command.

Set as Next Step

Sets the selected command as the next step to be processed.

Record

Starts recording a test sequence.

Stop

Stops playing or recording the test sequence and resets it.

Pause

Pauses the test sequence.

Stop Point

Stops playing the test sequence at the selected command (stop point).

Speed

Opens a submenu where you can set the time to pass between each step in the
animation.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Speed>Free Run

Plays the animation as fast as possible.

Speed>Define

Opens the Animation Speed dialog box, see Animation Speed dialog box, page
365.

Check

Opens a submenu where you choose which types of output to validate during the
animation.

Show target values

Toggles the display mode between showing a representation of the state
machine model in Validator mode or in Target mode. Requires that the Validator
is connected to a target system via RealLink.

Step Results

Shows/hides the output area of the window.

Sequence>Select Sequence

Opens the Sequence File dialog box, see Sequence File dialog box, page 386.

Sequence>Next Sequence

Makes the next sequence recorded in the file active.

Sequence>Previous Sequence

Makes the previous sequence recorded in the file active.

Sequence>New Sequence

Creates a new sequence in the file.

Sequence>Reset Sequence

Resets the current sequence by removing all commands.

Sequence>Delete Sequence

Deletes the current sequence entirely.
AFE1_AFE2-1:1

 385

386

Graphical environment for the Validator

Sequence File dialog box
The Sequence File dialog box is available from the context menu in the Sequence File
window.

Use this dialog box to give a sequence a name and a description, and to save it.

See also Recording and playing test/event sequences, page 349.

Select Sequence

Type a name for the sequence.

Explanation

Type a description for the sequence.

Set Event Parameter Value dialog box
The Set Event Parameter Value dialog box is available from the Events window
context menu.

Use this dialog box to assign values to event parameters.

See also Specifying event parameters, page 326.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Events

Displays all events defined in the loaded project. Select the event you want to set
parameters for.

Parameters

Displays all parameters of the selected event. Select the parameter you want to assign a
value.

Value

Type a value for the selected parameter.

Signal Queues window
The Signal Queues window is available from the Window>New Window submenu,
and from the Visual State menu in the IAR Embedded Workbench IDE.

This window provides a view of the signal queues in all systems and instances. Use it
for signal handling.

See also Handling signal queues for a single system, page 329.

Context menu

This context menu is available:

These commands are available:

Auto Empty Signal Queues

Enables/disables automatic emptying of signal queues. When the command is
enabled, the signal queue is automatically emptied when an event is sent
manually to a system. During execution, the signal queue is not emptied
automatically.
AFE1_AFE2-1:1

 387

388

Graphical environment for the Validator

Empty Signal Queues

Sends all signals in all queues one signal at a time, beginning with the first
queue, until all queues are empty.

Send Signal

Sends the first signal in the first queue that contains signals. Arrange the order
of the queues in the System Setup window, see System Setup window, page 391.

Empty System Signal Queue

Empties the signal queue for the selected system.

Send System Signal

Sends the first signal in the selected system.

Add to Watch

Adds the signal to the Watch window, see Watch window, page 398.

Show target values

Toggles the display mode between showing a representation of the state
machine model in Validator mode or in Target mode. Requires that the Validator
is connected to a target system via RealLink.

Static Analysis window
The Static Analysis window is available from the File>Analysis submenu.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

This window contains the results of a static analysis of the system selected in the
Analysis toolbar. To perform an analysis, select one or more elements to analyze
transitions for and click the Analyze button on the Analysis toolbar or choose
Debug>Analyze.

The report gives an overview of the elements used in the transitions.

See also Performing static analysis, page 346.

Context menu

This context menu is available:

This command is available:

Analyze

Analyzes the selected events.

Systems window
The Systems window is available from the Window>New Window submenu.

This window displays a hierarchical view of the systems in the project. The default view
shows each system and each of their instances in a separate branch in the tree.

See also Specifying the order of the systems/instances, page 333.
AFE1_AFE2-1:1

 389

390

Graphical environment for the Validator

Context menu

This context menu is available:

These commands are available:

New Branch

Adds the selected state as a new branch in the window.

Hide Branch

Hides the selected branch.

Add>System

Adds the system as a new branch in the window.

Add>New System Window

Opens a new instance of the System window with the same contents (initially)
as the current one.

Only Current

Displays only the states that became current upon sending the most recent event.

Show Previous

Shows a visual indicator by the states that were current before the most recent
event was sent.

Force State

Forces the system into the selected state. All states can be forced.

Add to Watch

Adds the selected state to the Watch window, see Watch window, page 398.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Show target value

Toggles the display mode between showing a representation of the state
machine model in Validator mode or in the target mode. Requires that the
Validator is connected to a target system via RealLink.

Expand All

Expands all branches in the window.

Collapse All

Collapses all branches in the window.

Expand Branch

Expands the selected branch.

Collapse Branch

Collapses the selected branch.

System Setup window
The System Setup window is available from the View menu.

Use this window to set up the order in which the systems should be simulated. There is
one tabbed page for the state machine model in Validator mode and one for the target
mode, when the Validator is connected to a target system via RealLink.

Rearranging the order of the systems changes the order of how events are sent to them.

Note: The order of systems only applies to interactive simulation (simulation that does
not use test sequence files).

See Specifying the order of the systems/instances, page 333.

Display area

Displays the systems in the project. Use the checkboxes to enable or disable systems.
Disabled Systems will not receive events.
AFE1_AFE2-1:1

 391

392

Graphical environment for the Validator

To rearrange the order of the project, use these buttons:

Move Up

Moves the selected item upward in the list.

Move Down

Moves the selected item downward in the list.

Context menu

This context menu is available:

This command is available:

Activate Instance

Activates the selected instance.

Timer Tick Length dialog box
The Timer Tick Length dialog box is available from the Edit>Timer Tick Length
submenu.

Use this dialog box to set the tick length of timer ticks used in the Validator.

Tick length

The timer tick length in milliseconds.

Timers window
The Timers window is available from the View menu.

This window displays the values of all running timers.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Name

The name of the timer.

Value

The current value of the timer.

Event

The event which the timer will send to the model when the timer times out.

System

The system where the timer is defined.

Context menu

This context menu is available:

These commands are available:

Stop Timer

Stops the selected timer.

Stop All Timers

Stops all running timers.
AFE1_AFE2-1:1

 393

394

Graphical environment for the Validator

Trace Point Setup dialog box
The Trace Point Setup dialog box is available from the Trace Setup dialog box.

This dialog box displays the states and regions of the system. Use it to create a trace
point (the state configuration you want the trace to reach) by selecting the desired states,
and save to a file.

See also Setting up the trace point, page 343.

States

Displays the states and regions of the system.

Initial

Selects the initial state(s) in the system as the trace point.

Current

Selects the current state(s) in the system as the trace point.

Clear

Clears the trace point.

Load

Displays a standard dialog box for navigating to an existing trace point setup file to load.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Save

Displays a standard dialog box for saving the state configuration to a trace point setup
file.

Save As

Displays a standard dialog box for saving the trace point setup file under another name.

Variables window
The Variables window is available from the Window>New Window submenu.

This window lists all variables, action functions, and constants declared in all systems.

See also Changing values of variables, page 332.

See also Visual State operands, reference information, page 196 and Creating a
transition element, page 184.

Name

The name of the variable, action function, or constant.

Explanation

The description you have given the variable (if any).

To display this column, chose View>Field Chooser. Make sure the Variable window
is the active window. Select Explanation in the Field Chooser window.

Value

The current value of the variable, action function, or constant. Click to edit it.

Type

The type of the internal variable, if any.
AFE1_AFE2-1:1

 395

396

Graphical environment for the Validator

To display this column, chose View>Field Chooser. Make sure the Variable window
is the active window. Select Type in the Field Chooser window.

Domain

The domain for an internal variable, if any.

To display this column, chose View>Field Chooser. Make sure the Variable window
is the active window. Select Domain in the Field Chooser window.

Location

The system the variable is located in, or if the variable is global.

To display this column, chose View>Field Chooser. Make sure the Variable window
is the active window. Select Location in the Field Chooser window.

Value

The current value of the variable, action function, or constant. Click to edit it.

Context menu

This context menu is available:

These commands are available:

Expand

Expands the item to show all values.

Collapse

Collapses the item to hide values.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Set Value

Makes the value field editable for the selected item.

Add to Watch

Adds the selected item to the Watch window, see Watch window, page 398.

Show target values

Toggles the display mode between showing a representation of the state
machine model in Validator mode or in Target mode. Requires that the Validator
is connected to a target system via RealLink.

Hide Variable

Hides the selected item. To show it again, choose Show All from the context
menu.

Show All

Shows variables, action functions, and constants that have been hidden using the
Hide Variable command.

Internal Variables

Shows/hides internal variables.

External Variables

Shows/hides external variables.

Actions

Shows/hides actions.

Constants

Shows/hides constants.

Global

Shows/hides all globally declared variables, action functions, and constants.

System

Shows/hides variables, action functions, and constants declared locally in the
named system.

Systems

If there is more than one system, chooses one of the systems.
AFE1_AFE2-1:1

 397

398

Graphical environment for the Validator

Watch window
The Watch window is available from the View menu.

This window contains a collection of elements that you might want to monitor, added
from the Systems, Events, Variables, and Signal Queues windows.

Element

The name of the element that you are watching.

Location

The location of the element.

Validator

The status of the element in the design model.

Target

The status of the element as displayed in Target mode. Requires that the Validator is
connected to a target system via RealLink.

Context menu

This context menu is available:

These commands are available:

Expand All

Expands all branches in the window.

Collapse All

Collapses all branches in the window.

Expand Branch

Expands the selected branch.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Collapse Branch

Collapses the selected branch.

Reference information on Validator menus
Reference information about:

● File menu, page 400

● Edit menu, page 401

● View menu, page 403

● Debug menu, page 404

● Window menu, page 406

● Help menu, page 407

● Validator shortcut key summary, page 407

See also:

● Visual State menu, page 776

● RealLink menu, page 804

● Altia menu, page 902
AFE1_AFE2-1:1

 399

400

Reference information on Validator menus

File menu
The File menu provides commands for creating or opening workspaces, loading
projects, saving and printing, working with sequence files and analysis (static and
dynamic), and exiting the Validator.

The menu also includes a numbered list of the most recently opened workspaces. To
load one of them, choose it from the menu.

Menu commands

These commands are available on the menu:

New Workspace (Ctrl+N)

Creates a new workspace.

Open Workspace (Ctrl+O)

Displays a standard dialog box where you can open a workspace file.

Close Workspace

Closes the workspace. You will be asked whether to save any changes to files
before they are closed.

Save Workspace

Saves the current workspace.

Save Workspace As

Displays a dialog box where you can save the current workspace with a new
name.

Load Project

Displays a standard dialog box where you can open a new project.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Close Project

Closes the project.

Sequence File>New

Opens a new instance of the Sequence File window, see Sequence File window,
page 383.

Sequence File>Open, Close, Save, Save As

Standard Windows command for opening, closing, and saving Sequence File
windows.

Analysis>New Dynamic

Opens a new instance of the Dynamic Analysis window, see Dynamic Analysis
window, page 375.

Analysis>New Static

Opens a new instance of the Static Analysis window, see Static Analysis
window, page 388.

Analysis>Open, Close, Save, Save As

Standard Windows command for opening, closing, and saving the Dynamic
Analysis and Static Analysis windows.

Print (Ctrl+P)

Prints the active document. Documents that can be printed are sequence files
and static and dynamic analysis files.

workspace.vws (Ctrl+R)

A numbered list of the most recently used workspaces, in reverse order of when
they were last opened. Choose the one you want to open.

Exit (Alt+F4)

Exits the Validator. You will be asked whether to save any changes before the
files are closed.

Edit menu
The Edit menu provides commands for editing.
AFE1_AFE2-1:1

 401

402

Reference information on Validator menus

Menu commands

These commands are available on the menu:

Undo (Ctrl+Z)

Undoes your most recent action.

Designer Path

Displays a dialog box where you can specify to the Validator where the Designer
is installed. If you have not installed IAR Visual State in the default location, this
information is required for the graphical animation.

Speed

Opens a submenu where you can set the time to pass between each step in the
graphical animation.

Speed>Free Run

Plays the graphical animation as fast as possible.

Speed>Define

Displays the Animation Speed dialog box, see Animation Speed dialog box,
page 365.

Timer Tick Length

Opens a submenu where you can set the tick length of timer ticks used in the
Validator.

Timer Tick Length>Define

Displays the Timer Tick Length dialog box, see Timer Tick Length dialog box,
page 392.

Breakpoints (Alt+F9)

Displays the Breakpoint Setup dialog box see Breakpoints Setup dialog box :
General, page 371.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

View menu
The View menu provides commands for opening windows, displaying toolbars, and
zooming in windows.

Menu commands

These commands are available on the menu:

System Setup (Alt+1)

Opens the System Setup window, see System Setup window, page 391.

Output (Alt+2)

Opens the Output window, see Output window, page 382.

Watch (Alt+3)

Opens the Watch window, see Watch window, page 398.

Timers (Alt+4)

Opens the Timers window, see Timers window, page 392.

Breakpoints (Alt+9)

Opens the Breakpoints window see Breakpoints window, page 366.

Standard

Shows/hides the Standard toolbar.

Debug

Shows/hides the Debug toolbar.

RealLink

Shows/hides the RealLink toolbar.

Analyze

Shows/hides the Analyze toolbar.
AFE1_AFE2-1:1

 403

404

Reference information on Validator menus

Variant

Shows/hides the Variant toolbar.

Status Bar

Shows/hides the status bar at the bottom of the Validator.

Debug menu
The Debug menu provides commands for simulating your state machine model.

Menu commands

Initialize System (Alt+I)

Initializes the system(s) to the startup state. This includes:

● Initializing the state configuration to State-Undefined

● Initializing all internal and external variables to their initial values

● Resetting the signal queue.

Play (F9)

Plays a recorded test sequence.

Step (F10)

Plays a recorded test sequence one step forward.

Play to Cursor (Ctrl+F10)

Plays a test sequence up to the selected command in a test sequence.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Set as Next Step (Alt+F10)

Sets the selected command in a test sequence as the next step to be processed.

Stop (Shift+F5)

Stops playing a recorded test sequence and resets it.

Pause (Ctrl+F5)

Pauses playing a recorded test sequence.

Stop Point (Ctrl+F9)

Stops playing a recorded test sequence at the selected command.

Record (Alt+R)

Starts recording a log sequence.

Auto Empty Signal Queues (Shift+F11)

Enables/disables automatic emptying of signal queues. When the command is
enabled, the signal queue is automatically emptied when an event is sent
manually to a system. During execution, the signal queue is not emptied
automatically.

Empty Signal Queues (Ctrl+F11)

Sends all signals in all queues one signal at a time, beginning with the first
queue, until all queues are empty.

Send Signal (F11)

Sends the first signal in the first queue that contains signals. Arrange the order
of the queues in the System Setup window, see System Setup window, page 391.

Timer Message

Toggles whether or not a warning message is displayed when an event from a
timer is about to be sent.

Action Function Return Value Prompt

Toggles whether or not you are prompted for action function return values.

Analyze (Ctrl+F8)

Starts an analysis, dynamic or static depending on the active analysis window.

Find Trace

Displays the Trace Setup dialog box, see Find Trace dialog box, page 379.

Graphical Animation

Opens the Designer in Simulation Mode.
AFE1_AFE2-1:1

 405

406

Reference information on Validator menus

Window menu
The Window menu provides commands for arranging the Designer windows.

Menu commands

These commands are available on the menu:

New window>Systems (Ctrl+1)

Opens a new instance of the Systems window, see Systems window, page 389.

New window>Events (Ctrl+2)

Opens a new instance of the Events window, see Events window, page 377.

New window>Actions (Ctrl+3)

Opens a new instance of the Actions window, see Actions window, page 364.

New window>Variables (Ctrl+4)

Opens a new instance of the Variables window, see Variables window, page
395.

New window>Guard Expressions (Ctrl+5)

Opens a new instance of the Guard Expressions window, see Guard
Expressions window, page 380.

New window>Signal Queues (Ctrl+6)

Opens a new instance of the Signal Queues window, see Signal Queues window,
page 387.

Close

Closes the active window.

Close All

Closes all open windows.

Cascade

Arranges the open windows partially on top of each other but fanned out so that
the window titles are visible.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Tile Horizontally

Changes the size of the open windows and arranges them from top to bottom so
that they are all visible.

Tile Vertically

Changes the size of the open windows and arranges them from left to right so
that they are all visible.

Classic Simulation

Arranges the windows of the Validator according to a default layout suitable for
simulation.

Arrange Icons

Arranges minimized windows.

Help menu
The Help menu displays information about the Validator.

Validator shortcut key summary

General

These are the general shortcut keys:

Windows

These are the shortcut keys for opening windows:

Description Shortcut key

Create a new workspace Ctrl+N

Open a workspace Ctrl+O

Save an open file Ctrl+S

Stop a running timer Delete

Open the online help system F1

Exit the Validator Alt+F4

Undo the latest action Ctrl+Z

Table 20: General Validator shortcut keys

Description Shortcut key

Open a new instance of the Systems window Ctrl+1

Open a new instance of the Events window Ctrl+2

Table 21: Validator windows shortcut keys
AFE1_AFE2-1:1

 407

408

Reference information on Validator menus

Simulation

These are the shortcut keys for simulation:

Open a new instance of the Actions window Ctrl+3

Open a new instance of the Variables window Ctrl+4

Open a new instance of the Guard Expressions window Ctrl+5

Open a new instance of the Signal Queues window Ctrl+6

Show the runtime model (only when in target mode) Alt+F8

Open the Field Chooser window Alt+0

Open the System Setup window Alt+1

Open the Output window Alt+2

Open the Watch window Alt+3

Open the Timers window Alt+4

Open the Breakpoints window Alt+9

Description Shortcut key

Table 21: Validator windows shortcut keys

Description Shortcut key

Display the Breakpoint Setup dialog box Alt+F9

Initialize all systems Alt+I

Play a recorded test sequence F9

Play a recorded test sequence one step forward F10

Play a test sequence up to the selected command in a test
sequence

Ctrl+F10

Set the selected command in a test sequence as the next step to be
processed

Alt+F10

Stop playing a recorded test sequence and reset it Shift+F5

Pause playing a recorded test sequence Ctrl+F5

Stop playing a recorded test sequence at the selected command Ctrl+F9

Starts recording a log sequence Alt+R

Enable/disable automatic emptying of signal queues Shift+F11

Send all signals in all queues one signal at a time, beginning with the
first queue, until all queues are empty

Ctrl+F11

Sends the first signal in the first queue that contains signals F11

Table 22: Validator simulation shortcut keys
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Validator

Start an analysis, dynamic or static depending on the active analysis
window

Ctrl+F8

Add an element to Watch window Shift+F9

Go to the next test sequence Ctrl+Down Arrow

Go to the previous test sequence Ctrl+Up Arrow

Description Shortcut key

Table 22: Validator simulation shortcut keys
AFE1_AFE2-1:1

 409

410

Reference information on Validator menus

AFE1_AFE2-1:1

IAR Visual State
User Guide

Part 5. Formal verification
using the Verificator
This part of the IAR Visual State User Guide includes these chapters:

● Formal verification

● Checks performed by the Verificator

● Verificator command line options
411

412

Formal verification
● Introduction to formal verification using the Verificator

● Verifying state machine models

● Graphical environment for the Verificator

Introduction to formal verification using the Verificator
Learn more about:

● Briefly about verification using the Verificator, page 413

● The checks that can be performed—an overview, page 413

● Verification modes, page 416

● Verification strategies, page 416

● Optimizing for verification, page 420

BRIEFLY ABOUT VERIFICATION USING THE VERIFICATOR

The Verificator uses formal verification to analyze Visual State systems. The Verificator
creates a formal description of a system and establishes its properties using formal
semantics. Verification results generated by the Verificator are, thus, 100% certain, just
like mathematical theorems. The formal semantics of a system is described in terms of
its runtime configurations, the so-called state space.

Verification with the Verificator is characterized by this:

● Formal verification: the logical consistency of a Visual State project is checked. The
Verificator does not test functionality, in contrast to the Validator.

● Checks of complex properties such as state dead ends.

● Complete examinations of models with large state spaces.

● Computing traces that show how a model might reach a state in which a warning or
error condition holds true.

THE CHECKS THAT CAN BE PERFORMED—AN OVERVIEW

The Verificator analyzes of the behavior of your system to check its logical consistency.
During the analysis, your state machine model is placed in an environment where any
sequence of events is possible. If the model is consistent in this most extreme
AFE1_AFE2-1:1

 413

414

Introduction to formal verification using the Verificator

environment, the model is consistent in all possible real-world environments. Checking
for logical consistency means checking these aspects:

● Are all elements used?

● Are all elements activated?

● Are there any ambiguities, such as conflicting transitions or dynamic ambiguous
assignments?

● Does the system contain any dead ends?

● Is the signal queue neither too short nor too long?

● Is there any possibility of underflow, overflow, or similar arithmetic errors
occurring?

If a critical error is detected during verification, your system contains logical errors. You
are recommended not to code-generate a system that contains critical errors.

For information about all available checks, see Checks performed by the Verificator,
page 433.

An example verification

Consider the state machines in this system:

If you run the Verificator on this system, it will report a number of results, including the
following:

● Never activated elements

The following elements will never be activated:

The state G
The transition
B:

E1() E /
-> C

A

B

C

 /

E1 !F /

E2 /

E2 /

E1 E /

D

E

F

G

 /

E2 /

E1 /

E3 !A /
AFE1_AFE2-1:1

IAR Visual State
User Guide

Formal verification

● Conflicting transitions

Two transitions with a common trigger and source state, but different destination
states are said to be conflicting if they both can be triggered at the same time. The
system in this example has the following conflicting transitions for event E2:

B:
E2() /

-> C

B:
E2() /

-> A

● State dead ends

State dead ends are states in a state machine that once entered cannot be left. The
system in this example has the following state dead end:

C

● Local dead ends

Local dead ends are sets of states from different state machines that prevent a state
machine from changing states. The system in this example has the following local
dead ends:

Local dead end for the machine: R0
{topState.A, topState.C} x {topState.F}
{topState.C} x {topState.D, topState.E}

Local dead end for the machine: R1
{topState.A} x {topState.F}

● System dead ends

System dead ends are state configurations that prevent all the state machines in the
system from changing states. The system in this example has the following system
dead end:

{A, F}

Warnings and errors

Warnings about never activated elements and dead ends might indicate errors in the
model. This transition in the example is never triggered:

B:
 E1()E/
->C

Thus, the transition can be removed without changing the behavior of the model.
AFE1_AFE2-1:1

 415

416

Introduction to formal verification using the Verificator

Never activated elements and dead ends might or might not indicate errors in the system,
when they are reported as warnings. In contrast to that, conflicting transitions are always
an error and are reported as such.

For a list of the warnings and error messages given by the Verificator, see Overview of
checks, modes, and errors, page 433.

VERIFICATION MODES

The Verificator can run in two modes, Full Forward (used by default) and Full
Compositional mode.

These two modes apply to exactly the same models and they check the exactly same
properties (except that the compositional mode cannot detect state and system dead
ends).

However, the two modes differ in their performance characteristics. The Forward mode
is faster than the Compositional mode on some models, but slower on other models. You
will have to find out by experimenting which mode is the faster one on a specific model.

The Full Forward mode

The Forward mode takes a global view of the model, starting out from the global initial
state and then iterating over the entire state space.

The Full Compositional mode

The Compositional mode performs not one but many state space iterations, one for every
property to be checked. These iterations proceed backwards from the states that satisfy
this property and ignore the parts of the model that are irrelevant for the property. As a
consequence, the Compositional mode tends to work best on models that are “loosely
coupled”—with few signals and other dependencies between the model components.

Note: Because this mode iterates over the state space in backward direction,
compositional mode is sometimes called compositional backwards mode.

VERIFICATION STRATEGIES

The Verificator uses the following strategies.

Formal verification on large systems

The verification results are found by the Verificator after examining the complete state
space of a Visual State System.

The Verificator represents systems symbolically. Instead of working on single system
configurations, the Verificator works on sets of state configurations.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Formal verification

Treating state configurations symbolically can make verification of systems with large
state spaces possible:

The system in this example consists of ten state machines of ten states each, which
means that there are about 10^10 configurations of the entire system. Any of the state
configurations can be reached in no more than about 10 steps. Symbolic state space
exploration can explore the entire state space in the same number of steps. In contrast,
using a simulation tool for checking this system is clearly not possible because the state
space is too large—stepping through each configuration individually would require
extremely long time.

The Verificator starts out at the initial state configuration, proceeding step-by-step to
explore all possible forward transitions. Thus, symbolic state space exploration can
cover the entire state space in a number of steps equal to the maximum step distance of
any state configuration to the initial configuration.

Non-verifiable elements

State machine models are not verifiable if they contain elements of the type VS_FLOAT
or VS_DOUBLE. In the Designer you can set a safe mode option to be given a warning
when you create or use non-verifiable elements during model design, see Getting
warnings for non-verifiable elements, page 233.

Systems with ambiguous behavior

The UML standard does not specify the sequence in which transitions are triggered, and
the Verificator does not assume any specific sequence in which assignments on
transitions are executed. This means that some Visual State systems are ambiguous, and
in such cases the Verificator will give an error message.

Note: Assignments that belong to the same execution step never lead to any ambiguity
as long as every variable written to is written to only once.

A1B1

C1

D1

E1 F1 G1 H1

I1

J1

K1

 /

E1 /
E2 /
E3 /
E4 / E5 / E6 / E7 /

E8 /
E9 /

E10 / A2B2

C2

D2

E2 F2 G2 H2

I2

J2

K2

 /

E11 /
E12 /
E13 /
E14 / E15 /E16 / E17 /

E18 /
E19 /
E20 / A10B10

C10

D10

E10 F10 G10 H10

I10

J10

K10

 /

E91 /
E92 /
E93 /
E94 /E95 / E96 / E97 /

E98 /
E99 /

E100 /
AFE1_AFE2-1:1

 417

418

Introduction to formal verification using the Verificator

Example 1

The system in this example consists of two state machines. The assignments to i are
ambiguous, which will be detected by the Verificator:

The system is ambiguous because the sequence in which the transitions will be triggered
is not specified. Which system configuration should be entered after the event E1?: (B,
D, i = 1), (B, D, i = 2), or maybe (B, D, i = 3)?

Ambiguity makes the model ill-defined, which means that the Verificator must be re-run
once the ambiguity has been solved.

Example 2

In this example, the assignment to j is ambiguous because it might read either the old
or the new value of i, which is assigned to in the same microstep:

A

B

E1 / i = 1

 /

C

D

E1 / i = 2

 /

A

B

E1 / i = 1

 /

C

D

E1 / j = i

 /
AFE1_AFE2-1:1

IAR Visual State
User Guide

Formal verification

Example 3

In this example, the state machines in system a and b have ambiguous behavior:

a:

b:

c:

Multiple assignments to the same variable result in an ambiguity. An example of that is
system a because i is assigned to twice on the same transition. The systems b and c are
unambiguous because the buffered value of i is read in the assignments j = i or i =
i + 1, respectively.

Variables, domains, and arithmetics

Non-floating-point domains in expressions and assignments can be freely mixed. Mixed
domains are handled using promotion and automatic conversion the same way as in
C/C++ as long as no wrap-around occurs. Wrap-arounds as treated by the Verificator
might be different from wrap-arounds on target because C/C++ evaluates expressions
using int or long int arithmetic, whereas the Verificator evaluates expressions using

A

B

E1 / i = 1 i = 2

 /

A

B

E1 / i = 1 j = i

 /

A

B

E1 / i = i + 1

 /
AFE1_AFE2-1:1

 419

420

Introduction to formal verification using the Verificator

the stated domains of their operands. The Verificator reports wrap-arounds as under- or
overflow warnings. If wrap-arounds might lead to discrepancies between verification
results and model behavior on target, you should make sure to modify the model to do
away with under- or overflow warnings. Any cases left open as undefined or
implementation-defined by the C/C++ standard are handled in the same way as by an
IAR Systems compiler.

To keep the arithmetics semantics of a 16-bit target system, the size of VS_(U)INT can
be specified as 16 bits instead of the 32-bit default.

See also Non-verifiable elements, page 417.

OPTIMIZING FOR VERIFICATION

Verification can be very time-consuming and require extensive memory resources. Here
follow some guidelines for efficient use of time/memory managing options and some
recommendations on modeling. The constructs that should preferably be avoided to
verify your system are also listed.

Using time/memory options to help verification

Different combinations of verification options might be used if verification takes too
much time or requires too much memory. However, note that verification times of over
one hour are not unusual. Here are some guidelines:

● Verification mode—Full Forward or Full Compositional. Full Compositional
verification can often handle very large systems, but is most suitable for systems
that consist of many independent state machines (in other words, state machines that
do not use signals and only use state conditions sparingly). See also Verification
modes, page 416. Experiment to determine which mode that suits your design
model best.

● Alternative verification heuristics—use this option to change the used heuristics,
which might affect the verification time. Experiment to determine which setting that
works best for your state machine model.

● Control variable ranges in assignments—use this option to make the Verificator try
to exploit out-of-range conditions in variable assignments, which might affect the
verification time. Experiment to determine which setting that works best for your
state machine model. If you use this option, make sure to match Visual State data
types and value ranges as closely as possible to the actual runtime values.

● Node space size—use this option to change the size of the node space, which is the
memory area used for the data structures built during a verification. It is impossible
beforehand to find the necessary size of the node space, so the right size must be
found by experimenting. If the node space is too large, the Verificator is tying up
valuable resources. If the node space is too small, the node space is automatically
expanded in a way that can lead to unnecessary memory swapping. Normally, the
AFE1_AFE2-1:1

IAR Visual State
User Guide

Formal verification

Verificator can handle the node space requirement itself, but for large systems it can
be beneficial to set the initial size of the node space manually. The option in the
Navigator is Size of node space. The size of the node space is measured in bytes.
Each node occupies 20 bytes.

● Skipping parts of verification—whenever a complete run is impossible, you can
skip parts of the verification and verify only as much as possible:

● In Full Compositional mode you can skip a verification check by specifying a
timeout that applies to all checks, or by clicking Skip during verification.

● In Full Forward mode you can stop state space exploration by clicking Skip
during verification. Model properties are then computed based on the partially
computed state space.

Note: Not all combinations of options are possible, because the setting for one option
might limit the choices for other options. Hover over the option in the options dialog box
with the mouse pointer to get information about any limitations.

Keeping down the complexity of verifying systems

It is possible to design Visual State systems that are so complex that they cannot be
verified in a reasonable amount of time or memory. Therefore, you are recommended to
consider the following guidelines to keep down the complexity of verifying your
systems, and thereby reduce time consumption:

● Signals and signal queues

In all verification modes, the use of signals and the size of the signal queue influence
the complexity of verification. The signal queue should be kept as small as possible,
but it should not overflow. See Check for signal queue size, page 444.

● Operators

● Do not use these operators with variables larger than 8 bits: *, /, %, <<, >>.

● The bit size of variables that are actually used should be as small as possible. For
example, avoid representing a number of binary flag values in a 32-bit
variable—use separate VS_BOOL variables instead.

● Use simple expressions with few arithmetics operators.

● If the native integer size of your target MCU is 16 bits, indicate the integer size
to the Verificator by specifying the 16-bit int option.

● Specifying that all variables should be encoded using some small number of bits
might make it possible to verify an otherwise too complex system. Use this
method with care, because it often changes the semantic meaning of the model
radically.

See also Variables, domains, and arithmetics, page 419.
AFE1_AFE2-1:1

 421

422

Verifying state machine models

Verifying state machine models
What do you want to do:

● Starting the verification, page 422

● Tracing your verified state machine model, page 425

For information about starting the Verificator from the command line, see Invocation
syntax for the Verificator, page 447.

STARTING THE VERIFICATION

1 In the Navigator, open your workspace file.

2 Choose Project>Options>Verification to open the Verificator Options dialog box.

For reference information, see Verificator Options dialog box, page 426. For a general
description of how to set options, see Setting Verificator, Coder, and Documenter
options, page 79.

3 In the tree browser to the left, select the system for which to set options.

4 On the General page, set general Verificator options. On the Check page, select the
checks to be performed.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Formal verification

Some option combinations might lead to very extensive verification, which might take
extremely long time to perform. If that happens, try a different combination of options.
For guidelines, see Optimizing for verification, page 420.

Note: Not all combinations of options are possible, because the setting for one option
might limit the choices for other options. Hover over the option with the mouse pointer
to get information about any limitations.

Click OK when your are finished setting options.

5 On the Project menu, choose Verify System or Verify Multiple Systems, whichever
is relevant for you.

If there is more than one system in the project, and you choose Verify Multiple
Systems, a dialog box is displayed where you can select the system(s) to verify.

Select the appropriate system(s) and click Verify.
AFE1_AFE2-1:1

 423

424

Verifying state machine models

6 A verification progress window is displayed. Information is listed by groups of checks:

The window provides an immediate view of the results of the verification. Performed
checks are highlighted in bold (in the upper part of the window). Checks that have
resulted in errors or warnings are marked.

To see the cause of a warning or an error, select the check; information is displayed on
the Results page.

To view the result for an entire system, select the system in the upper part of the window.

7 To change the Verificator options, select the system in the tree browser in the
Verificator window, and click the Options button. Make your changes and click the
Verify button.

If you selected Yes for Write Verification report in the Options dialog box, you can
view a summary of the completed verification on the Report page.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Formal verification

TRACING YOUR VERIFIED STATE MACHINE MODEL

A trace is a sequence of steps that will take the system to a specific state configuration.
The trace is saved in a sequence file.

1 Before you can perform a trace in the Navigator, your must first run a verification, see
Starting the verification, page 422.

2 In the Verificator window, select the state flagged with an error or warning that you
want to trace to. If the error or warning can be traced, the Find Trace button is enabled.

3 Click the Find Trace button.

4 In the dialog box that is displayed, specify the name and the location for the trace
output file. Click Save.

5 The Verificator performs the trace to the error or warning you specified. This trace is
stored in a test sequence file. After the test sequence file has been saved, the Validator
will be opened with the file loaded. See Recording and playing test/event sequences,
page 349.
AFE1_AFE2-1:1

 425

426

Graphical environment for the Verificator

Graphical environment for the Verificator
Reference information about:

● Verificator Options dialog box, page 426

● Verificator window, page 430

Verificator Options dialog box
The Verificator Options dialog box is available from the Project menu in the
Navigator.

Use this dialog box to set options for the Verificator.

You can set options on these tabbed pages:

● Verificator Options : General, page 427

● Verificator Options : Check options, page 429
AFE1_AFE2-1:1

IAR Visual State
User Guide

Formal verification

Verificator Options : General
The General options page contains general options.

Use this page to make general settings for the Verificator. The display area under the
options shows the resulting command line for the verification.

Verification mode

The Verificator can run in two modes. The two modes differ in their performance
characteristics. You must experiment to find out which mode is the faster one on a
specific model. For more information, see Verification modes, page 416.

Choose between:

Full Forward

The Full Forward verification mode will be used.

Full Compositional

The Full Compositional verification mode will be used. In this mode, the
Verificator cannot detect state or system dead ends.

Specify length of timeout

Specify the length of the timeouts used in the Full Compositional mode. When a timeout
occurs, the verification will skip the goal and continue with the next goal.

Use alternative verification heuristics

Determines whether alternative heuristics are used for the verification. Experiment to
determine which setting works best for a given model.
AFE1_AFE2-1:1

 427

428

Graphical environment for the Verificator

Set 16 as the size in bits of types VS_(U)INT

Controls the size of the VS_INT and VS_UINT types. Choose between:

Yes

The size of the VS_INT and VS_UINT types is 16 bits.

No

The size of the VS_INT and VS_UINT types is 32 bits

Control variable ranges in assignments

Determines whether the Verificator will try to exploit out-of-range conditions in
variables.

Length of signal queue

Specify the length of the signal queue to use. The length influences the complexity of
verification.

Verify states and regions without excluding any

Determines whether states and regions marked for exclusion in the Designer are
included or excluded from verification. Choose between:

Yes

Verifies all states and regions, including those marked for exclusion in the
Designer.

No

Excludes states and regions marked for exclusion in the Designer from
verification.

Write Verificator report

Determines whether the verification report is written to a text file or not.

Name of Verificator report file

Specify the name of the verification report file if the report is saved to a text file.

Size of node space

Specify the default initial size of node space in bytes. Larger node space usually yields
quicker verification.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Formal verification

Verificator Options : Check options
The Check page contains options for including/excluding certain checks.

Use this page to control which checks that the Verificator should perform. The display
area beneath the options shows the resulting command line for the verification.

Use of elements

Includes/excludes the use of elements from being checked by the verification.

Activation of elements

Includes/excludes the activations of elements from being checked by the verification.

Conflicting transitions

Includes/excludes transition conflicts from being checked by the verification.

State dead ends

Includes/excludes state dead ends from being checked by the verification. Note that the
Verificator cannot detect state dead ends in Full Compositional mode.

Local dead ends

Includes/excludes local dead ends from being checked by the verification.

System dead ends

Includes/excludes system dead ends from being checked by the verification. Note that
the Verificator cannot detect system dead ends in Full Compositional mode.

Domain errors

Includes/excludes domain errors from being checked by the verification.
AFE1_AFE2-1:1

 429

430

Graphical environment for the Verificator

Default

Restores the options to their default settings.

Verificator window
The Verificator window is available from the Project menu in the Navigator.

This window contains the graphical interface to the Verificator.

Log area

Displays the results of the verification. Items selected for verification are shown in bold.
To see the cause of a warning or an error, select the item and read the error or warning
text in the Output pane. If an error or warning can be traced, the Find Trace button is
enabled.

Verify

Performs a new verification.

Find Trace

Displays a standard Windows dialog box where you navigate to or create a trace output
file. When you have done that, the Navigator starts the Verificator to try to find a trace
to the error or warning and saves the result. The output file will be opened in the
Validator, see Recording and playing your test sequences, page 350.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Formal verification

Stop

Stops the verification.

Options

Displays the Verificator Options dialog box, see Verificator Options dialog box, page
426.

Progress display

Displays the progress of the ongoing verification.

Skip

Skips the verification step that is currently being executed. Whenever a complete run is
impossible, you can skip parts of the verification and verify as much as possible.

Output pane

This pane has two tabbed pages:

Results

Displays a description of the selected verification step in the Log area.

Report

Displays the detailed verification report, if you have set the Write Verificator
report option in the Verificator Options dialog box to Yes.
AFE1_AFE2-1:1

 431

432

Graphical environment for the Verificator

AFE1_AFE2-1:1

IAR Visual State
User Guide

Checks performed by the
Verificator
● Overview of checks, modes, and errors

● Performing various checks

Overview of checks, modes, and errors
This table lists the Verificator checks performed in the two modes, and whether the
errors given in the check report should be considered critical errors:

†) Unless a drop-if-full signal queue is specified in the design.

Check for
In Full

mode

In

Compositional

mode

Considered

critical

Unused elements

 States Yes Yes No

 Variables, event parameters, constants, enumerators Yes Yes No

 Action functions Yes Yes No

 Events, event groups, and signals Yes Yes No

 Transitions Yes Yes No

Conflicting transitions Yes Yes Yes

State dead ends Yes No No

Local dead ends Yes Yes No

System dead ends Yes No No

Dynamic ambiguous assignments Yes No Yes

Static ambiguous assignments Yes Yes Yes

Signal queue size Yes Yes Yes †

Domain errors Yes Yes No

Table 23: Verificator checks, modes, and errors
AFE1_AFE2-1:1

 433

434

Performing various checks

Performing various checks
These checks are available:

● Check for unused elements, page 434

● Check for activation of elements, page 436

● Check for conflicting transitions, page 439

● Check for state dead ends, page 440

● Check for local dead ends, page 441

● Check for system dead ends, page 442

● Check for dynamic ambiguous assignments, page 442

● Check for static ambiguous assignments, page 443

● Check for signal queue size, page 444

● Check for domain errors, page 445

Check for unused elements

Why perform this check

To identify elements that will never be used.

Description

The Verificator performs a static analysis of a system to check whether all declared
elements are used. These elements are checked:

● States

● Variables, event parameters, constants, and enumerators

● Action functions

● Events, event groups, and signals.

States

A state is reported as unused if it is neither the source or destination state of any
transition, nor an initial state, nor the default state of a history state.

Variables, event parameters, constants, and enumerators

Variables are said to be read if they are used in guard expressions, or the right-hand side
of an assignment, or as parameters to action functions. They are said to be written if used
on the left-hand side of an assignment.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Checks performed by the Verificator

External variables are reported as unused if they are neither read nor written on any
transitions or state reactions.

Internal variables are reported as statically unread if they are not read on any transitions
or state reactions.

Internal variables are reported as statically unwritten if they are not written on any
assignments or state reactions.

Event parameters, constants, and enumerators are reported as unused if they are not read
on any transitions or state reactions.

Action functions

Action functions that are not used on any transitions or state reactions are reported as
unused.

Events, event groups, and signals

Events and event groups that are not used as triggers for any transitions or state reactions
are reported as unused.

Signals on transitions or state reactions that are never sent are reported as never sent.

Signals that are not used as triggers for any transitions or state reactions are reported as
never used as triggers.

Example

This state machine in this system has these elements defined:

Events: E1(VS_INT ar0), E2

Internal variable: i

External variable: x

Signal: S1
AFE1_AFE2-1:1

 435

436

Performing various checks

Performing a Verificator check on the system gives the following result for unused
elements:

Never read internal variables (static check): (Warning)
i

Unused external variables: (Warning)
x

Unused event parameters: (Warning)
E1.par0

Unused events: (Warning)
E2

Unused states: (Warning)
Topstate1.Region1.C

Signals which are never triggers (static check): (Warning)
S1

Unactivated states: (Warning)
Topstate1.Region1.C

Unactivated events: (Warning)
E2

Never read internal variables (dynamic check): (Warning)
i

Unactivated external variables: (Warning)
x

Unactivated event parameters: (Warning)
par0

Signals which are never triggers (dynamic check): (Warning)
S1

Never sent signals (dynamic check): (Warning)
S1

Check for activation of elements

Why perform this check

To identify elements that will never be activated.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Checks performed by the Verificator

Description

The check for activation of elements is similar to the check for unused elements, but it
is based on the dynamic behavior of the system. The static verification check is similar
to the syntax check of a compiler, whereas the dynamic check analyzes the behavior of
the running system. A transition is said to be reachable if a sequence of events can lead
to the transition being triggered.

These elements are checked for activation:

● States

● Variables, event parameters, constants, and enumerators

● Action functions

● Events, event groups, and signals

● Transitions.

States

A state is reported as never activated if is not part of a reachable state configuration.

Variables, event parameters, constants, and enumerators

A transition’s guard expressions are considered activated if the source state of the
transition is reachable.

A transition’s assignments and action functions are considered activated if the source
state of the transition can be reached and the transition can be triggered.

External variables are reported as never activated if they are neither read nor written in
any activated guard expression or assignment, or used as a parameter for any activated
action function.

Internal variables are reported as dynamically unread if they are not read in any activated
guard expression or assignment, or used as a parameter for any activated action function.

Internal variables are reported as dynamically unwritten if they are not written in any
activated assignment.

Event parameters, constants, and enumerators are reported as never activated if they are
not read in any activated guard expression or assignment, or used as a parameter for any
activated action function.

Action functions

When action functions returning values (non-void functions) are used in guard
expressions and assignments, they are treated as event parameters and constants.
AFE1_AFE2-1:1

 437

438

Performing various checks

When action functions are used outside guard expressions or assignments, they are
considered activated if the transitions on which they are used are reachable.

Events, event groups, and signals

Events and event groups that are not used as triggers for any reachable transition are
reported as never activated.

Signals that are not used on the transition action side of any reachable transition are
reported as never sent.

Signals that are not used as triggers for any reachable transition are reported as never
used as triggers.

Transitions

Transitions that can never be triggered are reported as never activated.

Example

This system has these elements defined:

Performing a Verificator check on the system gives the following result for never
activated elements:

Unused external variables: (Warning)
x

Events: E1(VS_INT par0), E2, E3

Internal variable: i

External variable: x

Signal: S1
AFE1_AFE2-1:1

IAR Visual State
User Guide

Checks performed by the Verificator

Signals which are never triggers (static check): (Warning)
S1

Never sent signals (static check): (Warning)
S1

Unactivated transitions: (Warning)
A: E3() [i != i] / -> C
C: E1(par0) / [i = par0] -> D

Unactivated states: (Warning)
Topstate1.Region1.C
Topstate1.Region1.D

Unactivated events: (Warning)
E1
E3

Unactivated external variables: (Warning)
x

Unactivated event parameters: (Warning)
par0

Signals which are never triggers (dynamic check): (Warning)
S1

Never sent signals (dynamic check): (Warning)
S1

Check for conflicting transitions

Why perform this check

To identify conflicting transitions.

Description

Two transitions with a common trigger and source state, but different destination states
are said to be conflicting if they both can be triggered at the same time. It is an error if
a system has conflicting transitions.
AFE1_AFE2-1:1

 439

440

Performing various checks

Example

Performing a Verificator check on the system reports the following result for conflicting
transitions:

The following transitions conflict:
A:
 E1() /
—> B
A:
 E1()
—> C

Check for state dead ends

Why perform this check

To identify state dead ends.

Description

A state dead end is a state in a state machine that once entered cannot be left.

Note: This check is only performed in Full Forward mode.

Example

The system consists of two state machines. State B in the left-hand state machine is not
a state dead end, although it cannot be left after it has been entered for the second time.
State D in the right-hand state machine is a state dead end because the state machine
cannot change state after state D has been entered for the first time.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Checks performed by the Verificator

Performing a Verificator check on the system reports the following result for state dead
ends:

State dead ends
D

Here, no sequence of events can make the second state machine leave state D after it has
been entered for the first time.

Check for local dead ends

Why perform this check

To identify local dead ends.

Description

A local dead end in a state machine M is a set of states that makes M unable to change
state.

Example

The system contains three state machines, R0, R1, and R2 from left to right:

The first machine deadlocks when the system enters the state configurations (B, F) and
(B, E).

Performing a Verificator check on the system reports the following result for local dead
ends:

Local dead ends for the machine: R0
{B} x {E, F} x {*}

The local dead end can be reached by the event sequence E1, E2.
AFE1_AFE2-1:1

 441

442

Performing various checks

Check for system dead ends

Why perform this check

To identify system dead ends.

Description

A system dead end is a state configuration that renders all state machines in the system
deadlocked.

Note: This check is only performed in Full Forward mode.

Example

The system consists of three state machines. The system can reach the state
configuration (A, E, I) which is a system dead end.

Performing a Verificator check on the system reports the following result for system
dead ends:

System dead ends
{A} x {E} x {I}

The system dead end can be reached by the event sequence E2, E3, E1, E2, E3.

Check for dynamic ambiguous assignments

Why perform this check

To identify dynamic ambiguous assignments.

Description

Systems should not execute multiple simultaneous assignments or simultaneously
assign and read the same variable. The reason is that multiple triggered transitions
should be considered as either being triggered at the same time, or being triggered in an
unspecified sequence.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Checks performed by the Verificator

Note: This check is only performed in Full Forward mode.

Example

The system consists of two state machines. The event E1 will trigger the two transitions
which both assign i making the value of i ambiguous. The event E2 will trigger two
transitions, one reading m (A -> C) and one assigning m (F -> H) making the value
of k ambiguous.

Performing a Verificator check on the system reports the following ambiguity result:

Ambiguous assignments (dynamic check): (Error)
The variable i is assigned several times on the transitions
A: E1() / [i = 1] -> B

 and

D: E1() / [i = 2] -> E

Check for static ambiguous assignments

Why perform this check

To identify static ambiguous assignments.

Description

When there are multiple assignments on a single transition, they are executed in some
fixed sequence in the code generated by the Visual State Coder. However, such
assignments cannot be handled in a Full Forward mode verification if they involve the
same variable in more than one assignment expression. Likewise, multiple ambiguous
assignments on a single transition should be avoided if you want to verify your system
in Full Forward mode.

Note: This check is only performed in full forward mode.
AFE1_AFE2-1:1

 443

444

Performing various checks

Example

The transition A -> B assigns i twice. The transition A -> C both reads and writes m.

Performing a Verificator check on the system reports the following static ambiguity
results:

The variable i is assigned several times on the transition
A:
 E1() / [i = 1] [i = 2]
—> B

Check for signal queue size

Why perform this check

To identify the optimal signal queue size.

Description

When signals are used, a signal queue size must be specified. Do not specify a larger
signal queue than necessary, because the complexity of verifying the model greatly
increases with increased signal queue size. If the queue is too large, a minimum required
size is reported. If the queue is too small, the Verificator will report queue overflow,
unless the drop-if-full signal queue option is selected in the Designer, see Specifying the
signal queue behavior and size, page 190. Signal queue overflow is an error which
means that the remaining part of the verification will be based on false assumptions.

Note: Systems that need an unbounded signal queue cannot be fully verified, which the
following example system illustrates.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Checks performed by the Verificator

The system will continue to add signals to the signal queue until the queue overflows,
resulting in incorrect verification.

See also Signal, page 181 and Signal queue, page 181.

Example

The system consists of two state machines.

Performing a Verificator check on the system reports the following information about
the signal queue size:

● If a signal queue of length 0 is specified:

The signal queue is too small.

● If a signal queue of length 1 is specified:

The signal queue has the right size.

● If a signal queue of length 2 is specified:

The signal queue is too large. Only 1 element is needed in the

queue

Check for domain errors

Why perform this check

To identify arithmetic error conditions.
AFE1_AFE2-1:1

 445

446

Performing various checks

Description

Your system should not exhibit any arithmetic error conditions. The Verificator can
check for these problems:

● Range errors—assigning an out-of-range value to variables

● Arithmetic over- or underflows—performing a calculation whose result lies outside
the range of admissible values

● Array subscription errors

● Divisions by zero

● Shifting errors—shifting by more than the operand’s length.

Example

This system exhibits an arithmetic underflow, given that the variable Internal1 has
been declared as being of type UInt32.

Performing a Verificator check on the system reports these domain errors:

Range error, overflow, underflow, subscription error, division by
zero, or shifting error: (Warning)
M_Topstate1_Region1:
In component: Internal1 = Internal1 - 1 + 2
Of rule: State1: Event1() / [Internal1 = Internal1 - 1 + 2] ->
Final1
When evaluated in control flow state(s):
{Topstate1.Region1.State1}
AFE1_AFE2-1:1

IAR Visual State
User Guide

Verificator command line
options
● Introduction to invoking the Verificator using command line options

● Summary of Verificator options

● Descriptions of Verificator options

Introduction to invoking the Verificator using command line options
Learn more about:

● Briefly about invoking the Verificator, page 447

● Invocation syntax for the Verificator, page 447

BRIEFLY ABOUT INVOKING THE VERIFICATOR

You can set Verificator options either in the Navigator—using the Verificator Options
dialog box—or via the command line. For each option available in the Verificator
Options dialog box, there is an equivalent option for the command line.

INVOCATION SYNTAX FOR THE VERIFICATOR

This is the invocation syntax for starting the Verificator from the command line:

Verificator.exe project_file system_name [option]...

Example 1

Verificator.exe Example.vsp VS_System -v

Description: Verifies the system VS_System in the project file
Example.vsp and writes the result to the screen.
AFE1_AFE2-1:1

 447

448

Summary of Verificator options

Example 2

Verificator.exe Example.vsp VS_System -xlocal_dead_ends
-vReport.txt -c -s4

Example 3

Verificator.exe Example.vsp VS_System -tOut.vlg
-dsTopstate.StateA

Summary of Verificator options
This table summarizes the Verificator command line options:

Description: Verifies the system VS_System in the project file
Example.vsp in Compositional mode using a signal queue of
length 4. Excludes checking for local dead ends. Writes the
result to the file Report.txt.

Description: Performs a trace for the state Topstate.StateA. The
Verificator will find a trace to that state if possible and save the
resulting trace in the file Out.vlg.

Command line option Description

-B Makes all variables be treated as signed integers.

-c Verifies in Compositional mode.

-ds Specifies the destination state of a trace.

-f Verifies all states and regions, including regions and states marked as
excluded.

-large|-Large Minimizes the memory consumption at the expense of a longer
verification time.

-p Uses the Verificator options specified in the Navigator.

-s Overrides the length of the signal queue.

-S Specifies the initial size of the node space.

-small|-Small Minimizes the verification time at the expense of a larger memory
consumption.

-t Specifies which file that the trace should be saved in.

-u Controls variable ranges in assignments to exploit out-of-range
conditions.

Table 24: Verificator command line options
AFE1_AFE2-1:1

IAR Visual State
User Guide

Verificator command line options

Descriptions of Verificator options
The following pages give detailed reference information about each Verificator
command line option.

-B

Syntax -Bsize

Parameters

Description Makes all variables be treated as signed integers encoded in size bits.

This option is not available in the graphical interface.

-c

Syntax -c

Description Verifies in Compositional mode.

See also Verification modes, page 416.

This option is used by default in the graphical interface.

-v Writes the verification report to a text file.

-variant Specifies which variant to verify.

-w Specifies the size of the VS_INT and VS_UINT types as 16 bits.

-x Excludes a check from the verification.

-y Makes the Verificator use alternative verification heuristics.

Command line option Description

Table 24: Verificator command line options

size The size in bits.
AFE1_AFE2-1:1

 449

450

Descriptions of Verificator options

-ds

Syntax -dsstate

Parameters

Description Specifies the destination state of a trace. This option can be repeated to add more states.

See also Tracing, page 341.

This option is not available in the graphical interface.

-f

Syntax -f

Description Verifies all states and regions, including regions and states marked as excluded.

Project>Options>Verification>General>Verify states and regions without
excluding any

-large

Syntax -large|-Large

Description Minimizes the memory consumption at the expense of a longer verification time. This
option is suitable for large systems.

See also Using time/memory options to help verification, page 420.

This option is not available in the graphical interface.

-p

Syntax -p

Description Uses the Verificator options specified in the Navigator.

See also Verificator Options dialog box, page 426.

state The name of the destination state of the trace.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Verificator command line options

This option is used by default in the graphical interface.

-s

Syntax -ssize

Parameters

Description Verifies using a signal queue of size size. If this option is not used, the size of the signal
queue is set to the value specified in the project file.

See also Keeping down the complexity of verifying systems, page 421.

Project>Options>Verification>General>Length of signal queue

-S

Syntax -Ssize

Parameters

Description Specifies the initial size of the node space. A larger node space usually leads to quicker
verification.

See also Using time/memory options to help verification, page 420.

Project>Options>Verification>General>Size of node space

-small

Syntax -small|-Small

Description Minimizes the verification time at the expense of a larger memory consumption. This
option is suitable for small systems.

See also Using time/memory options to help verification, page 420.

size The size of the signal queue.

size The initial size of the node space.
AFE1_AFE2-1:1

 451

452

Descriptions of Verificator options

This option is not available in the graphical interface.

-t

Syntax -tfile

Parameters

Description Specifies which file and path that the trace should be saved in (typically with a vxlg
filename extension).

See also Tracing, page 341.

This option is not available in the graphical interface.

-u

Syntax -u

Description Controls variable ranges in assignments to exploit out-of-range conditions, if possible,
and speed up the verification. If a range error is detected in an assignment, a fixed
constant value is assigned to the variable on the left-hand side.

See also Using time/memory options to help verification, page 420.

Project>Options>Verification>General>Control variable ranges in assignments

-v

Syntax -vfile

Parameters

Description Writes the verification report to a text file.

file The name and path of the output file.

file The name of the output file.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Verificator command line options

Project>Options>Verification>General>Name of Verificator report file

-variant

Syntax -variantname

Parameters

Description Specifies which variant to verify. By default, the Verificator verifies the complete model.

See also Using variants and features, page 217.

Use the Variant toolbar.

-w

Syntax -w

Description Specifies the size of the VS_INT and VS_UINT types as 16 bits. By default, these types
are 32 bits.

Project>Options>Verification>General>Set 16 as the size in bits of types
VS_(U)INT

-x

Syntax -xcheck

Parameters The parameter check can be one of the following:

name The name of the variant.

activation Excludes activations of elements from being checked.

conflicts Excludes conflicting transitions from being checked.

domain_errors Excludes domain errors from being checked.

local_dead_ends Excludes local dead ends from being checked.
AFE1_AFE2-1:1

 453

454

Descriptions of Verificator options

Description Excludes the specified check from the verification. This option can be repeated to
exclude more checks.

To set these options, choose:

Project>Options>Verification>Check

-y

Syntax -y

Description Makes the Verificator use alternative verification heuristics. This makes verification
faster for some models.

See also Using time/memory options to help verification, page 420.

Project>Options>Verification>General>Use alternative verification heuristics

state_dead_ends Excludes state dead ends from being checked. This
parameter has no effect in Full Compositional mode.

system_dead_ends Excludes system dead ends from being checked. This
parameter has no effect in Full Compositional mode.

use Excludes the use of elements from being checked.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Part 6. Code generation
using a Coder
This part of the IAR Visual State User Guide includes these chapters:

● Code generation

● HCoder API code generation

● HCoder API reference information

● The Visual State Hierarchical Coder

● Hierarchical Coder command line options

● Adaptive API code generation

● Uniform API code generation

● Adaptive API reference information

● Uniform API reference information

● The Visual State Classic Coder

● Classic Coder command line options
455

456

Code generation
● Introduction to code generation, the Coders, and the APIs

● Generating code using a Coder and an API

Introduction to code generation, the Coders, and the APIs
Learn more about:

● The Hierarchical coder versus the Classic Coder, page 457

● Code generation using the Visual State Coders, page 457

● The Visual State APIs, page 459

● Briefly about the generated code layers, page 461

● Size of generated table-based code, page 461

● Size of generated readable code, page 462

THE HIERARCHICAL CODER VERSUS THE CLASSIC CODER

IAR Visual State offers a choice of two code generators, the Visual State Classic Coder
(called just “the Coder” in previous versions of IAR Visual State) and the Visual State
Hierarchical Coder (also called the HCoder). By default, the Classic Coder is used for
existing Visual State projects created with earlier versions of IAR Visual State, and the
Hierarchical Coder is used for new projects. This setting is stored in the workspace file
(*.vnw).

The Hierarchical Coder uses a more hierarchical approach for storing the data for the
model. This means that it normally uses less constant data for models with many entry
reactions, exit reactions, and history transitions. For small models, the resulting code
might become slightly slower.

It is recommended that new models use the Hierarchical Coder. If you need to use
RealLink or readable code, you must use the Classic Coder.

To select which code generator to use, open the Navigator, choose
Project>Options>Code Generation and click the button Switch Coder.

CODE GENERATION USING THE VISUAL STATE CODERS

Based on the state machine models designed with the Visual State Designer, you can use
one of the Visual State Coders to generate code automatically. The Coders generate code
for a Visual State API (application programming interface). The generated code can be
AFE1_AFE2-1:1

 457

458

Introduction to code generation, the Coders, and the APIs

executed on any platform for which a standard compiler is available for the generated
language, including small-scale microprocessor systems.

The Coder will generate code for one Visual State project at a time, including all systems
and state machine models part of the project. All elements of a system are supported by
the Coders. The generated code can also be used together with a real-time operating
system. You start the code generation from the Navigator or from the command line.

This figure illustrates the workflow for generating code for your state machine model
and integrating the generated code with your own source code using an API; typically
the workflow is iterated many times, but note that the light-colored tasks are only
performed in the first iteration:

A final application will consist of:

● The actual application using the state machine model(s)

This includes all startup code and generic runtime library code as used by the
particular target hardware and compiler.

● The API files for the execution engine

● A set of Coder-generated files, which consists of:

● The state machine tables (for table-based code only)

● Variables and expressions defined in the model

● Declarations of action functions

● Definitions of action expression functions

● Action functions implemented by you and called by the state machine model.

The Coders can generate a report file during code generation which contains this
information for the project and the system:

● Coder options

● Model characteristics

● Generated statistics
AFE1_AFE2-1:1

IAR Visual State
User Guide

Code generation

● Information about the overall content of the generated code

● Number of errors and warnings detected during code generation.

THE VISUAL STATE APIS

The APIs are sets of files supplied with IAR Visual State and provide an interface
between the Coder-generated code (highlighted in yellow) and your own code.

IAR Visual State includes three standard APIs as interfaces between Coder-generated
code and your own code:

Adaptive API This API can only be used with the Classic Coder. It is
optimized for the data size of each system and has a copy of
the API functions for each system. This makes it possible to
generate smaller data (RAM use) per system at the expense of
a tailored API runtime code (more ROM use). For projects
with only one system, the Adaptive API is recommended.

Uniform API This API can only be used with the Classic Coder. It uses one
shared API for all systems and uses the same data sizes for all
systems. Typically, this means that the data size might be
larger and use extra RAM, but use less code because only one
API is being used.

HCoder API This is the only available API if you use the Hierarchical
Coder. It uses one shared API for all systems and uses the
same data sizes for all systems. Typically, this means that the
data size might be larger and use extra RAM, but use less code
because only one API is being used.
AFE1_AFE2-1:1

 459

460

Introduction to code generation, the Coders, and the APIs

If you generate code using the Classic Coder, you should carefully consider which API
to use:

*) For the Uniform API, all systems must be run in the same task for RealLink to be
supported.

The data used by the API functions is formed in arrays and structures. The project is
mapped in such a way that the computation of array component addresses is as simple
and efficient as possible. This type of data representation ensures very low memory
consumption, and compact and fast code.

Standard C conformance

The data structures and functions of all three APIs and the generated code conform to
the ISO 9899:1990 standard (including all technical corrigenda and addenda), also
known as C94, C90, C89, and ANSI C. In this guide, this standard is referred to as
Standard C. For C++, the Adaptive and HCoder APIs conform to the ISO/IEC
14882:1998.

Visual State API
Number of

systems
Type of code Language RealLink C-SPYLink

Adaptive 1 Table-based C Yes Yes

2 or more Table-based C — Yes

1 Readable C — Yes

2 or more Readable C — Yes

1 Readable C# — —

2 or more Readable C# — —

1 Readable Java — —

2 or more Readable Java — —

1 Table-based C++ — —

2 or more Table-based C++ — —

Uniform 1 Table-based C Yes —

2 or more Table-based C Yes* —

HCoder 1 Table-based C — Yes

2 or more Table-based C — Yes

1 Table-based C++ — —

2 or more Table-based C++ — —

Table 25: Overview of the Visual State APIs
AFE1_AFE2-1:1

IAR Visual State
User Guide

Code generation

BRIEFLY ABOUT THE GENERATED CODE LAYERS

Visual State code is organized in different layers:

The Coder will generate the complete code for the API layer, the global layer, and the
local layer.

The Visual State API layer

The API layer is the functions used for accessing the state machine engine and model
during runtime. The API files are generated at the same time as the code is generated for
the global and local layers.

The Visual State global layer

The global layer contains what you could call external logic. It is external in the sense
that your code that uses the API can access the data in some way, for example by calling
an API function. The global layer includes events, constants, enumerations, external
variables, action expressions, and element explanations.

The Visual State local layer

The local layer contains the logic that is used internally in the model. Thus, it cannot be
seen by your code that interfaces to the model. The local layer includes transitions,
guard expressions, internal variables, and signals.

SIZE OF GENERATED TABLE-BASED CODE

A Visual State implemented application consists of the actual application using the state
machine model, the API files, the generated code, and the action functions. All these
parts are combined and give the footprint of the complete application. IAR Visual State
only determines the size of the API and the generated code; you have full control of the
other parts, which are more or less independent of the implementation of the state
machine model. A typical Visual State application uses a limited set of the API functions
to insert stimuli into the state machine and process input.

For the table-based API variants, the tables are generated in a way that is extremely
compact, but which requires a runtime execution engine. This is common to all
table-driven solutions and not limited to state machines.
AFE1_AFE2-1:1

 461

462

Generating code using a Coder and an API

The execution engine represents a fixed overhead in terms of code size. However, this
overhead is small when used with a modern compiler. Because the code generated from
the model is so tight, the advantage over hand-coding the model is apparent even for
small state machines.

By default, the Coders will optimize for size. See also Tailoring data types for a specific
compiler, page 463.

Tests for code size overhead

To measure the minimum size of the API code, you can create a minimal state machine
and compile it. Typically, the state machine model should consist of an initial state, a
simple state, and a default transition which contains an assignment to an externally
defined variable. The API functions used for this model are the ones typically used by a
Visual State application. (Most other functions available in the API are for advanced use
and enable very fine-grained control of the state machine for debugging purposes.)

SIZE OF GENERATED READABLE CODE

The size of readable code is harder to calculate in advance than the size of table-based
code.

The number of transitions affects the code size, because each guard expression,
assignment, and action function call on a transition is generated inline in the generated
state machine logic. (In table-based code generation, calls of actions and guards are
handled by fixed API code.)

The code size is also affected by the contradiction test (or ambiguity conflict test) that
is generated for each transition. However, for readable code, this test code is not
generated for transitions where it is trivial for the Coder to detect that there can be no
transition contradictions. To turn off the generation of contradiction test code, see
-omitcontradictiontests, page 729.

Moreover, readable code is much more dependent on the target compiler than
table-based code. In table-based code generation, the data needed to represent the model
is fixed and cannot be influenced by the compiler, except for minor alignment issues and
similar things.

Note: Only the Classic Coder can generate readable code.

Generating code using a Coder and an API
What do you want to do:

● Tailoring data types for a specific compiler, page 463
AFE1_AFE2-1:1

IAR Visual State
User Guide

Code generation

See also:

● Getting started generating code for the Adaptive API, page 572

● Getting started generating code for the Uniform API, page 588

TAILORING DATA TYPES FOR A SPECIFIC COMPILER

The Coders will optimize for size. For the most efficient code size, consider these
guidelines:

● The Coders will optimize the size of the API type definition, which can be 8 bits, 16
bits, or 32 bits. Use the Coder option -D to specify the width for all API type
definitions, which are defined in System.h for the Adaptive API and in
ProjectName.h for the HCoder and Uniform APIs.

● The transition rule data format is used for storing transition rules in the local code
layer. Each transition consists of one rule data header word and one rule data
element for each element of the transition rule. For the Classic Coder, the command
line option -rdfm determines the rule data format to be used. For a list of transition
rule data formats, see Transition rule data format, page 699.
AFE1_AFE2-1:1

 463

464

Generating code using a Coder and an API

AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API code
generation
● Introduction to the HCoder API code generation

● Using the HCoder API

Before you read about HCoder API code generation, you should be familiar
with code generation in general. See Code generation, page 457.

Introduction to the HCoder API code generation
Learn more about:

● Briefly about HCoder API code generation, page 465

● API table-based code with C++, page 466

● API code, page 467

● Using the HCoder API for table-based code and C++, page 467

BRIEFLY ABOUT HCODER API CODE GENERATION

The HCoder API will be generated in two files: project.c and project.h, where
project reflects the name of your project file. Code for the HCoder API can only be
generated by the Hierarchical Coder.

Most of the functions in the HCoder API have VS as prefix, and they take a pointer to a
system context as a parameter to determine the system to operate on (if there are more
than one system). This means that the API can operate on projects that contain multiple
systems.

For information about the functions, see Descriptions of the HCoder API functions, page
474.

Projects with multiple systems and reentrancy

Because all functions are reentrant and are passed with a system context as a parameter,
multiple operating system tasks may operate on different systems at the same time.
Because of the principle of reentrancy, simultaneous calls made to the same API
function will not cause problems as long as none of the simultaneous calls use the same
system contexts as parameters to the function in question. Likewise, simultaneous calls
AFE1_AFE2-1:1

 465

466

Introduction to the HCoder API code generation

to different API functions are supported. In general, simultaneous calls to API functions
with different system contexts are supported. For example, event deductions may be in
progress in different operating system tasks at the same time, executing the VSDeduct
function.

This is an example of how system contexts are used; a system object pointer variable is
defined for each system:

VSSystemObject* pSystemObject;

The system object pointer is assigned by calling the initialization function:

 VSInitAll(&vssc_System, &pSystemObject);

The system object pointer used in an event deduction (macrostep):

 VSTriggerType eventNo;
 VC_RC cc;

 . . .
 cc = VSDeduct(pSystemObject, EventNo);
 if (cc != VSRC_OK)
 exit (cc);

Reentrancy of API functions depends on the compiler you use. Thus, the compiler used
for compilation of API source files must also support reentrancy, because some of the
API functions use local stack variables. If the compiler does not support reentrancy,
local stack variables might be stored in fixed memory locations, and different operating
system tasks controlling different systems might access the same variable space
simultaneously which will result in unpredictable behavior.

API TABLE-BASED CODE WITH C++

The Hierarchical Coder can generate C++ code for the HCoder API. The generated C++
files conform to the Embedded C++ standard.

C++ code generated for the HCoder API uses C++ to expose its external interface, but
uses C internally to keep the generated code compact and efficient. Do not call the C
code directly when C++ has been generated, because this can cause undefined behavior
and crashes.

Generating C++ code has the following advantages:

● User-written code that interfaces to the generated code can interact with a class that
uses C++ language features such as the keyword private to protect its members
from accidental and/or prohibited access.

● To many developers, exposing a C++ interface is more elegant than exposing a C
interface.
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API code generation

● In your user-written code you can create any number of instances of the Visual State
system, and the instances can be allocated statically or dynamically at the same
time. This feature is not available in the API when generating C code. In addition,
instances do not share any internal data memory (do not include external variables)
and therefore it is easier to enable thread safety in your application.

The performance of C++ code generated for the API is about similar to the performance
of C code generated for the API.

File structure

The file structure to be used in your compiler project—for example, in the IAR
Embedded Workbench IDE—is the same for code with and without C++ support.

Using the default Hierarchical Coder options, the generated C source files have the
filename extension c, and the generated C++ source files have the filename extension
cpp. You can change these extensions in the Hierarchical Coder Options dialog box.

API CODE

During the code generation phase, these sets of files are generated:

● Project-specific API files, typically project.c and project.h, where project
reflects the name of your project file

● System-specific files: System1.c, System1.h, System2.c, System2.h, etc,
where SystemN reflect the names of the Visual State systems.

USING THE HCODER API FOR TABLE-BASED CODE AND C++

The Hierarchical Coder does not instantiate objects of the generated system class.
Therefore, you must instantiate objects of the system class in your own files
(user-written code).

In contrast to a C API application, any number of objects of the system class can be
instantiated, just as is the case for ordinary classes.

When generating C++ code, you must interface to member functions of the generated
system class instead of global functions. For every API function that you must call for
a C application, you must call a corresponding member function (having the same name)
of the generated class. The action functions must be implemented in a user-written class,
inheriting from the system class (or project class, if shared action functions are used).
AFE1_AFE2-1:1

 467

468

Introduction to the HCoder API code generation

Instances in C++ API code

Each Visual State system consists of one or more instances with exactly one instance
being active at any point in time, see Reuse of design using system instances, page 126.
Such instances are called internal instances and they have these characteristics:

● The number of internal instances is fixed for the system at the time of code
generation. You can specify the number of internal instances in the Designer in the
Edit Systems dialog box. See Creating multiple system instances, page 235.

● Only one internal instance may be active at a time because internal instances share
internal data memory.

Internal instances should not be mistaken for instances (objects) of the generated class,
which are called external instances and can be instantiated any number of times, either
statically, on the stack, or in the heap.

Both types of instances may be referred to as just instances when the type of instance
clearly appears from the context.

Internal variables in C++ API code

Internal variables are part of the generated class as private member variables.
Consequently they can only be initialized by an initialization function.

External variables in C++ API code

External variables are not part of the generated class, but are generated as statically
allocated variables, in the same way as for a C application. Therefore, all external
instances of the generated class share the same set of external variables.

If two external instances manipulate an external variable from two different threads, you
must synchronize the access to that variable.

Constants in C++ API code

Constants are not part of the generated class, but are part of the namespace given for the
system or project (depending on the scope).

Enumerations in C++ API code

Enumerations are not part of the generated class, but are part of the namespace given for
the system or project (depending on the scope). They are always generated in a separate
header file for each enumeration.
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API code generation

Signals in C++ API code

Signals are handled internally, in the same way as for a C application. Note that every
external instance has its own signal queue (assuming dynamic allocation), while internal
instances share a single signal queue.

Event parameters in C++ API code

Event parameters are handled in the same way as for a C application. The Hierarchical
Coder will always generate a member function VSDeduct for the generated class,
independently of the existence of event parameters. Note that variable argument
parameters are not supported in C++.

Using the HCoder API
What do you want to do:

● Setting up the file structure for the HCoder API, page 469

See also:

● Introduction to code generation, the Coders, and the APIs, page 457

● Introduction to the HCoder API code generation, page 465

● HCoder API reference information, page 471

● Hierarchical Coder command line options, page 517, for information about how to
start code generation from the command line

SETTING UP THE FILE STRUCTURE FOR THE HCODER API

1 Include these header files in all your source files:

● The HCoder API header file project.h.

● The Hierarchical Coder-generated header file for the specific system, in other words
system.h.

2 Write code that interfaces to the API:

● Call VSInitAll, once for each system.

● Call VSDeduct to process events.

3 Include the following source files in a make file:

● The HCoder API source file project.c.

● All Coder-generated system source files.

● Your source files.
AFE1_AFE2-1:1

 469

470

Using the HCoder API

4 Add your compiler and linker commands to the make file.
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API reference
information
● HCoder API source files

● Summary of the HCoder API functions

● Descriptions of the HCoder API functions

● HCoder API return codes

HCoder API source files
The HCoder API will be generated in two files: project.c and project.h, where
project reflects the name of your project. Most of the functions in the API have VS as
a prefix and they take a pointer to a system object as a parameter to determine the system
to operate on (this parameter is not used if there is only one system). This means that the
API can operate on projects that contain multiple systems.

Unless otherwise stated, portability of the HCoder API is Standard C compliant.

What do you want to do:

● HCoder-generated source files for the API, page 471

HCODER-GENERATED SOURCE FILES FOR THE API

During the code generation phase, these sets of files are generated:

● Project-specific files

● System-specific files

These are the project-specific files:

project.h Contains the declarations of the API functions, macros and
types; project reflects the name of your project (or project
class, for C++).

project.c Contains internal types and the implementation of the API
functions; project reflects the name of your project (or
project class, for C++).
AFE1_AFE2-1:1

471

472

HCoder API source files

These are the system-specific files (for each system):

system.c Contains the declarations of system-specific variables,
macros and functions; system reflects the name of your
system (or system class, for C++).

system.h Contains definitions of internal variables and functions;
system reflects the name of your system (or system class, for
C++).
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API reference information

Summary of the HCoder API functions
This table summarizes the HCoder API functions:

* The function is only generated if the appropriate Hierarchical Coder option has been

HCoder API function Description

VSActiveState* Get the active state in a machine.

VSDeduct* Deduces an event.

VSDelete* Deallocates a system object.

VSEnterState† A user-defined function is called when a state is entered.

VSEventExpl* Gets an event explanation.

VSEventName* Gets an event name.

VSGetSystemObjectSize* Gets the system object size.

VSInitAll* Initializes a system object and all its internal variables.

VSInquiry* Inquires an event.

VSLeaveState† A user-defined function is called when a state exits.

VSMachineExpl* Gets a machine explanation.

VSMachineName* Gets a machine name.

VSNew* Allocates and initializes a system object.

VSNofEventParameters* Gets the number of event parameters.

VSNofEvents* Gets the number of events in the scope of the system.

VSNofInstances* Gets the number of internal instances.

VSNofMachines* Gets the number of state machines.

VSNofStates* Gets the number of states.

VSNofVariables* Gets the number of variables.

VSParentMachine* Gets the parent machine of a state.

VSParentState* Gets the parent state of a machine.

VSReinitialize* Reinitializes the active internal instance.

VSSetInstance* Sets the internal instance within the system object.

VSStateName* Gets a state name.

VSSymbolicStateName* Behaves identically to VSStateName.

VSSymbolicVariableName* Gets a symbolic variable name.

VSTopMachine* Gets a top machine.

VSVariableValue* Gets a variable value as a string.

Table 26: Summary of the HCoder API functions
AFE1_AFE2-1:1

473

474

Descriptions of the HCoder API functions

enabled. For more information, see the individual function.

† The function is only enabled and called if specific options have been enabled. For more
information, see the individual function.

Descriptions of the HCoder API functions
The following pages give detailed reference information about each HCoder API
function. The C++ API functions and the C API functions are identical, except that
system object and system class parameters are never needed in the C++ API. The C++
API functions are declared in the system.h file and are always called by calling a
system object member function.

VSActiveState

Syntax VSRC VSActiveState(VSMachineType const machineNo, VSStateType *
 const pStateNo);
VSRC VSActiveState(VSSystemObject * const pSystemObject,
 VSMachineType const machineNo, VSStateType *
 const pStateNo);

Declared in project.h

Description Gets the active state of a machine. This function is enabled on demand. The function
returns the active state of the specified machine in the parameter pStateNo.

Parameters

Return value VSRC_OK, page 492

VSRC_RangeError, page 492

pSystemObject A pointer to a system object.

machineNo The number of the machine for which to determine the
active state.

pStateNo A pointer to a state number. When the function returns, the
value of the variable will be the number of the active state.
If the machine is not active, pStateNo will be set to
VSStateUndefined.
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API reference information

VSDeduct

Syntax VSRC VSDeduct(VSTriggerType eventNoArg, ...);
VSRC VSDeduct(VSSystemObject * const pSystemObject,
 VSTriggerType eventNoArg);

Declared in project.h

Description Deduces an event. This function is always enabled and performs a macrostep for the
supplied event for the specified system object.

Parameters

Return value VSRC_OK, page 492

VSRC_RangeError, page 492

VSRC_Conflict, page 491

VSRC_SignalQueueOverflow, page 492

pSystemObject A pointer to a system object.

eventNoArg The event number to be deduced (declared in system.h or
project.h).
AFE1_AFE2-1:1

475

476

Descriptions of the HCoder API functions

Example /* Event E_Event1 without parameters */
if (VSDeduct(E_Event1) != VSRC_OK)
 ErrorHandling ();
/*
* Event E_Event2 with two parameters:
* Argument 1: unsigned int Par1
* Argument 2: unsigned short Par2
*/
if (VSDeduct(E_Event2, Par1, Par2) != VSRC_OK)
 ErrorHandling ();
void Task(void)
{
 VCRC cc;
 VSTriggerType eventNo = VSStartEvent;
 /* Initialize the VS System. */
 cc = VSInitAll();
 if (cc != VCRC_OK)
 handleError(cc);
 /* do forever */
 while (1)
 {
 cc = VSDeduct(eventNo);
 if (cc != VCRC_OK)
 handleError(cc);
 }
}
/* Multiple systems variant. */
void Task(void)
{
 VSSystemObject* pSystemObject;
 VSTriggerType eventNo = VSStartEvent;
 VCRC cc;
 /* vssc_System1 is in the generated System1.h file. */
 cc = VSInitAll(&vssc_System1, &pSystemObject);
 if (cc != VCRC_OK)
 handleError(cc);

 while (1)
 {
 cc = VSDeduct(pSystemObject, eventNo);
 if (cc != VCRC_OK)
 handleError(cc);
 }
}

AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API reference information

VSDelete

Syntax C: void VSDelete(VSSystemObject * const pSystemObject);

C++: Not applicable. Called when a destructor of a system object is executed.

Declared in project.h

Description Deallocates a system object. This function is enabled when the project contains multiple
systems that will be dynamically allocated. The function deallocates a system object
allocated by VSNew. The function is analogous to the delete operator in C++ in that it
deallocates memory for a previously allocated system object. The function should be
called for all system objects allocated with VSNew.

Parameter

Return value None.

Example VSDelete(pObject);

VSProjectEnterState

Syntax void VSProjectEnterState(VSStateType const stateNo);
void VSProjectEnterState(VSSystemObject * const pSystemObject,
 VSStateType const stateNo);

Declared in project.h

Description A user-defined function that is called when a state is entered. Project in
VSProjectEnterState is the name of the active project.

Parameters

Return value None.

pSystemObject A pointer to a system object.

pSystemObject A pointer to a system object.

StateNo The name of the state that was entered.
AFE1_AFE2-1:1

477

478

Descriptions of the HCoder API functions

VSEventExpl

Syntax void VSEventExpl(VSTriggerType eventNo, VS_CHAR const * *
 ppExpl);
void VSEventExpl(VSSystemClass const * const pSystemClass,
 VSTriggerType eventNo, VS_CHAR const * *
 ppExpl);

Declared in project.h

Description Gets an event explanation. This function is enabled on demand. The function retrieves
the explanation of the specified event. If the event is defined at project level, the function
will also return the explanation for it.

Parameters

Return value None.

Example VSEventExpl(&vssc_System1, eventNo, &pExpl);

VSEventName

Syntax VSRC VSEventName(VSTriggerType eventNo, VS_CHAR const * *
 ppName);
VSRC VSEventName(VSSystemClass const * const pSystemClass,
 VSTriggerType eventNo, VS_CHAR const * *
 ppName);

Declared in project.h

Description Gets an event name. This function is enabled on demand. The function retrieves the
name of the specified event. If events are defined at project level, the function will also
return names for such events.

pSystemClass A pointer to a system class.

eventNo The number of the event for which to return the
explanation. The maximum allowable value for this
parameter is the value returned by the API function
VSNofEvents minus 1.

ppExpl A pointer to an explanation. When the function returns, the
variable will point to the explanation for the specified
event.
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API reference information

Parameters

Return value VSRC_OK, page 492

VSRC_RangeError, page 492

Example VSRC rc = VSEventName(&vssc_System1, &pName);

VSGetSystemObjectSize

Syntax VS_UINT VSGetSystemObjectSize();
VS_UINT VSGetSystemObjectSize(VSSystemClass const * const
 pSystemClass);

Declared in project.h

Description Gets a system object size. This function is enabled on demand. The function returns the
size in bytes of system objects of the specified system class.

Parameters

Return value The size of the system object.

VSInitAll

Syntax VSRC VSInitAll(void);
VSRC VSInitAll(VSSystemClass const * const pSystemClass,
 VSSystemObject * * const pSystemObject);

Declared in project.h

Description Initializes a system object. This function is enabled when system objects are statically
allocated. If the project contains a single system, the function initializes the single
statically allocated system object. If the project contains multiple systems, the function

pSystemClass A pointer to a system class.

eventNo The number of the event for which to return the name. The
maximum allowable value for this parameter is the value
returned by the API function VSNofEvents minus 1.

ppName A pointer to a name. When the function returns, the variable
will point to the name for the specified event.

pSystemClass A pointer to a system class.
AFE1_AFE2-1:1

479

480

Descriptions of the HCoder API functions

initializes the statically allocated system object for the specified system class and returns
a pointer to that system object. The function should only be called once for each system
class; multiple calls to this function with the same system class cause undefined
behavior.

Parameters

Return value VSRC_OK, page 492

VSRC_Conflict, page 491

VSRC_SignalQueueOverflow, page 492

Example See VSDeduct, page 475.

VSInquiry

Syntax VSRC VSInquiry(VSTriggerType eventNo, ...);
VSRC VSInquiry(VSSystemObject * const pSystemObject,
 VSTriggerType eventNo, ...);

Declared in project.h

Description Inquires an event. This function is enabled on demand. The function performs an inquiry
for a specified event and returns EventActive if the event will trigger a trans reaction.
The function has the same interface as the VSDeduct function.

Parameters

Return value VSRC_OK, page 492

VSRC_EventActive, page 491

Example See VSDeduct, page 475.

pSystemClass A pointer to a system class.

pSystemObject A pointer to a pointer to a system object. When the function
returns, the variable will contain a pointer pointing to an
initialized system object.

pSystemObject A pointer to a system object.

eventNo The event number to be inquired.
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API reference information

VSProjectLeaveState

Syntax void VSProjectLeaveState(VSStateType const stateNo);
void VSProjectLeaveState(VSSystemObject * const pSystemObject,
 VSStateType const stateNo);

Declared in project.h

Description A user-defined function that is called when a state is exited. Project in
VSProjectLeaveState is the name of the active project.

Parameters

Return value None.

VSMachineExpl

Syntax void VSMachineExpl(VSMachineType machineNo, VS_CHAR const * *
 ppExpl);
void VSMachineExpl(VSSystemClass const * const pSystemClass,
 VSMachineType machineNo, VS_CHAR const * *
 ppExpl);

Declared in project.h

Description This function is enabled on demand. The function retrieves the explanation of the
specified machine.

Parameters

Return value None.

pSystemObject A pointer to a system object.

StateNo The name of the state that was exited.

pSystemClass A pointer to a system class.

machineNo The number of the machine for which to return the
explanation. The maximum allowable value for this
parameter is the value returned by the API function
VSNofMachines minus 1.

ppExpl A pointer to an explanation. When the function returns, the
variable will point to the explanation for the specified
machine.
AFE1_AFE2-1:1

481

482

Descriptions of the HCoder API functions

VSMachineName

Syntax VSRC VSMachineName(VSMachineType machineNo, VS_CHAR const * *
 ppName);
VSRC VSMachineName(VSSystemClass const * const pSystemClass,
 VSMachineType machineNo, VS_CHAR const * *
 ppName);

Declared in project.h

Description Gets a machine name. This function is enabled on demand. The function retrieves the
name of the specified machine.

Parameters

Return value VSRC_OK, page 492

VSRC_RangeError, page 492

Example VSRC rc = VSMachineName(machineNo, &pName);

VSNew

Syntax C: VSRC VSNew(VSSystemObject * * const pSystemObject);

C++: Not applicable. Called internally when VSInitAll is called.

Declared in project.h

Description Allocates and initializes a system object. This function is enabled when system objects
are dynamically allocated. The function returns a pointer to an initialized system object
for the system associated with the specified system class parameter. The behavior of the
function is analogous to the new operator in C++ in that it allocates memory for a new
system object and initializes it. When the system object is no longer needed, call

pSystemClass A pointer to a system class.

machineNo The number of the machine for which to return the name.
The maximum allowable value for this parameter is the
value returned by the API function VSNofMachines minus
1.

ppName A pointer to a name. When the function returns, the variable
will point to the name of the specified event.
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API reference information

VSDelete to deallocate it. The function should be called whenever a new system object
is needed.

Parameter

Return value VSRC_OK, page 492

VSRC_CannotAllocateMemory, page 491

Example VSSystemObject* pObject;
VSRC cc = VSNew(&pObject);
if (cc != VSRC_OK)
 handleError(cc);

VSNofEventParameters

Syntax VSRC VSNofEventParameters(VSTriggerType const eventNo,
 VSEventParameterType * const pNofEventParameters);

Declared in project.h

Description Gets the number of event parameters. This function is enabled on demand.

Parameters

Return value VSRC_OK, page 492

VSRC_RangeError, page 492

Example VSEventParameterType noOfEventParams;
VSNofEventParameters(Event1, &noOfEventParams);

pSystemObject A pointer to a pointer to a system object. When the function
returns, the variable will contain a pointer pointing to an
initialized system object.

eventNo The event for which the number of event parameters is
requested.

pNofEventParameters A pointer to the number of event parameters. When the
function returns, the value of the variable will be the
number of event parameters for the specified event.
AFE1_AFE2-1:1

483

484

Descriptions of the HCoder API functions

VSNofEvents

Syntax VSTriggerType VSNofEvents();

Declared in project.h

Description Gets the number of events in the scope for the system. This function is enabled on
demand. If events are defined at project level, the returned value will include such
events.

Return value The number of events.

Example VSTriggerType noOfEvents = VSNofEvents();

VSNofInstances

Syntax VSInstanceType VSNofInstances();
VSInstanceType VSNofInstances(VSSystemClass const * const
 pSystemClass);

Declared in project.h

Description Gets the number of internal instances. This function is enabled on demand.

Parameters

Return value The number of instances.

Example VSInstanceType noOfInstances = VSNofInstances();

VSNofMachines

Syntax VSMachineType VSNofMachines();
VSMachineType VSNofMachines(VSSystemClass const * const
 pSystemClass);

Declared in project.h

Description Gets the number of state machines. This function is enabled on demand.

pSystemClass A pointer to a system class.
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API reference information

Parameters

Return value The number of machines.

Example VSMachineType nofMAchines = VSNofMachines();

VSNofStates

Syntax VSStateType VSNofStates();
VSStateType VSNofStates(VSSystemClass const * const
 pSystemClass);

Declared in project.h

Description Gets the number of states. This function is enabled on demand.

Parameters

Return value The number of states.

Example VSStateType nofStates = VSNofStates();

VSNofVariables

Syntax VSVariableType VSNofVariables();
VSVariableType VSNofVariables(VSSystemClass const * const
 pSystemClass);

Declared in project.h

Description Gets the number of variables. This function is enabled on demand.

Parameters

Return value The number of variables.

Example VSVariableType nofVariables = VSNofVariables();

pSystemClass A pointer to a system class.

pSystemClass A pointer to a system class.

pSystemClass A pointer to a system class.
AFE1_AFE2-1:1

485

486

Descriptions of the HCoder API functions

VSParentMachine

Syntax VSRC VSParentMachine(VSStateType const stateNo, VSMachineType *
 const pMachineNo);
VSRC VSParentMachine(VSSystemClass const * const pSystemClass,
 VSStateType const stateNo, VSMachineType *
 const pMachineNo);

Declared in project.h

Description Gets the parent machine of a state. This function is enabled on demand. The function
returns the parent machine of the specified state (a state always has a parent machine).

Parameters

Return value VSRC_OK, page 492

VSRC_RangeError, page 492

VSParentState

Syntax VSRC VSParentState(VSMachineType const machineNo, VSStateType *
 const pStateNo);
VSRC VSParentState(VSSystemClass const * const pSystemClass,
 VSMachineType const machineNo, VSStateType *
 const pStateNo);

Declared in project.h

Description Gets the parent state of a machine. This function is enabled on demand. The function
returns the parent state of the specified machine in the parameter pStateNo.

Parameters

pSystemClass A pointer to a system class.

stateNo The number of the state for which to determine the parent
machine.

pMachineNo A pointer to a machine number. When the function returns,
the value of the variable will be the number of the parent
machine.

pSystemClass A pointer to a system class.

machineNo The number of the machine for which to determine the
parent state.
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API reference information

Return value VSRC_OK, page 492

VSRC_RangeError, page 492

VSReinitialize

Syntax VSRC VSReinitialize(VSSystemObject * const pSystemObject);

Declared in project.h

Description Reinitializes the active internal instance. This function is enabled on demand. The
function reinitializes the active internal instance within the specified system object. The
state of the internal instance is the same as after a call to VSInitAll or VSNew. The
system object must be initialized; otherwise the behavior of the function is undefined.
The function is useful for reuse of an internal instance in several cases, for example
when an internal instance has failed with a detected conflict or signal queue overflow.
or when a set of internal instances within a system object is used as a pool available for
reuse in user-written code.

Parameter

Return value VSRC_OK, page 492

VSRC_CannotAllocateMemory, page 491

VSSetInstance

Syntax VSRC VSSetInstance(VSInstanceType instanceNo);
VSRC VSSetInstance(VSSystemObject * const pSystemObject,
 VSInstanceType instanceNo);

Declared in project.h

Description Sets the internal instance within the system object. This function is enabled when at least
one system object contains multiple internal instances. The function makes a specific

pStateNo A pointer to a state number. When the function returns, the
value of the variable will be the number of the parent state.
If the specified machine is the top machine, pStateNo will
be set to VSStateUndefined.

pSystemObject The address of the system object pointer that is initialized.
AFE1_AFE2-1:1

487

488

Descriptions of the HCoder API functions

internal instance active. Subsequent calls to functions that operate on an internal
instance will operate on this internal instance.

Parameters

Return value VSRC_OK, page 492

VSRC_RangeError, page 492

Example /* Multiple instances. */
void Task(VSInstanceType inst)
{
 VSSystemObject* pSystemObject;
 VSTriggerType eventNo = VSStartEvent;
 VCRC cc;
 /* vssc_System1 is in the generated System1.h file. */
 cc = VSInitAll(&vssc_System1, &pSystemObject);
 if (cc != VCRC_OK)
 handleError(cc);

 cc = VSSetInstance(pSystemObject, inst);
 if (cc != VCRC_OK)
 handleError(cc);

 while (1)
 {
 cc = VSDeduct(pSystemObject, eventNo);
 if (cc != VCRC_OK)
 handleError(cc);
 }
}

VSStateName

Syntax VSRC VSStateName (VSStateType stateNo, VS_CHAR const * *
 ppName);
VSRC VSStateName (VSSystemClass const * const pSystemClass,
 VSStateType stateNo, VS_CHARconst * * ppName);

Declared in project.h

Description Gets a state name. This function is enabled on demand.

pSystemObject A pointer to a system object.

instanceNo The internal instance number to make active.
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API reference information

Parameters

Return value VSRC_OK, page 492

VSRC_RangeError, page 492

VSSymbolicVariableName

Syntax VSRC VSSymbolicVariableName(VSVariableType variableNo, VS_CHAR
 const * * ppName);
VSRC VSSymbolicVariableName(VSSystemClass const * const
 pSystemClass, VSVariableType
 variableNo, VS_CHAR const * *
 ppName);

Declared in project.h

Description Gets a symbolic variable name. This function is enabled on demand. The function
returns the symbolic variable name for the specified variable number as a string. The
variable for which to return the name is specified as a variable number (the range of
allowed values for this number can be obtained via another API function). Instead of
using plain numbers, it is recommended to use symbolic variable names that map to
variable numbers (symbolic variable names are enabled by setting the appropriate
option).

Parameters

pSystemClass A pointer to a system class.

stateNo The number of the state for which to return the state name.
The maximum allowable value for this parameter is the
value returned by the API function VSNofStates minus 1.

ppName A pointer to a state name. When the function returns, the
variable will point to the state name of the specified state.

pSystemClass A pointer to a system class.

variableNo The number of the variable for which to return the symbolic
variable name. The maximum allowable value for this
parameter is the value returned by the API function
VSNofVariables minus 1.

ppName A pointer to a symbolic variable name. When the function
returns, the variable will point to the symbolic variable
name of the specified variable.
AFE1_AFE2-1:1

489

490

Descriptions of the HCoder API functions

Return value VSRC_OK, page 492

VSRC_RangeError, page 492

VSTopMachine

Syntax VSMachineType VSTopMachine();
VSMachineType VSTopMachine(VSSystemClass const * const
 pSystemClass);

Declared in project.h

Description Gets the top machine. This function is enabled on demand. The function returns the top
machine of the hierarchy for the system.

Parameters

Return value The number of the top machine.

VSVariableValue

Syntax VSRC VSVariableValue(VSVariableType const variableNo, VS_CHAR *
 const pValue);
VSRC VSVariableValue(VSSystemObject * const pSystemObject,
 VSVariableType const variableNo, VS_CHAR *
 const pValue);

Declared in project.h

Description Gets a variable value as a string. This function is enabled on demand. The function
returns the value of a specified external or internal variable as a string. For arrays the
function will return the value for a single element in the variable array. The function will
return values for variables that are in the scope of the specified system object, in other
words external and internal variables defined at top state level and external variables
defined at project level. The variable for which to return a value is specified as a variable
number (the range of allowed values for this number can be obtained via another API
function). Instead of using plain numbers, you should use symbolic variable names that
map to variable numbers (symbolic variable names are enabled by setting the
appropriate option). Symbolic variable names can also be obtained as strings by
enabling the appropriate option.

pSystemClass A pointer to a system class.
AFE1_AFE2-1:1

IAR Visual State
User Guide

HCoder API reference information

Parameters

Return value VSRC_OK, page 492

VSRC_RangeError, page 492

HCoder API return codes
The following pages give detailed reference information about each HCoder API return
code.

VSRC_CannotAllocateMemory

Return code VSRC_CannotAllocateMemory

Description The function failed to dynamically allocate a system object.

Solution ● Free some memory on the host computer

● Use a large data memory model.

VSRC_Conflict

Return code VSRC_Conflict

Description A conflict or contradiction has been detected between two states in a state machine.

Solution Check the system with the Validator or the Verificator and change the design as needed.

VSRC_EventActive

Return code VSRC_EventActive

Description Sending the event to a Deduct function will trigger a trans reaction.

pSystemObject A pointer to a system object.

variableNo The number of the variable (use the symbolic name) for
which to determine the value.

pValue A pointer value as a string. When the function returns, the
value of the variable will be represented as a string. The
character buffer must be large enough to hold the value.
AFE1_AFE2-1:1

491

492

HCoder API return codes

Solution Not applicable.

VSRC_OK

Return code VSRC_OK

Description The function performed successfully, unless it was an Inquiry function. Inquiry
functions are expected to return VSRC_EventActive (VSRC_OK means that the event is
not active).

Solution Not applicable.

VSRC_RangeError

Return code VSRC_RangeError

Description An in parameter was sent in that was too large.

Solution Check the code that calls the method returning the error code. The supplied argument is
out of range.

VSRC_SignalQueueOverflow

Return code VSRC_SignalQueueOverflow

Description The signal queue is full.

Solution Increase the maximum signal queue size in your system or change the design.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State
Hierarchical Coder
● Introduction to the Visual State Hierarchical Coder

● Graphical environment for the Hierarchical Coder

● Type identifiers

● Transition rule data format

Introduction to the Visual State Hierarchical Coder
Learn more about:

● Briefly about the Visual State Hierarchical Coder, page 493

BRIEFLY ABOUT THE VISUAL STATE HIERARCHICAL CODER

There are two Visual State Coders to use for generating code from your state machine
models for a specific API. For more information about code generation and the APIs,
see Code generation, page 457.

Before you start the code generation, specify Coder options in the Hierarchical Coder
Options dialog box. Start the code generation by choosing Project>Code generate in
the Navigator.

For a description of the Visual State Classic Coder, see The Visual State Classic Coder,
page 673.

Graphical environment for the Hierarchical Coder
Reference information about:

● Hierarchical Coder Options dialog box, page 494
AFE1_AFE2-1:1

 493

494

Graphical environment for the Hierarchical Coder

Hierarchical Coder Options dialog box
The Hierarchical Coder Options dialog box is available from the Project menu in the
Navigator.

Use this dialog box to set options for code generation. Which options you can set
depends on whether you are setting options on project level or on system level. Select
either the project or a system in the pane to the left.

Use the Switch Coder button to switch from the Hierarchical Coder to the Classic
Coder and back again.

For a description of an option, right-click it or select it and press Shift+F1.

You can set options on these tabbed pages:

● Hierarchical Coder Options dialog box : Configuration, page 495

● Hierarchical Coder Options dialog box : File Output, page 496

● Hierarchical Coder Options dialog box : Memory, page 498

● Hierarchical Coder Options dialog box : Code, page 499

● Hierarchical Coder Options dialog box : Optimization, page 504

● Hierarchical Coder Options dialog box : Extended Keywords, page 508

● Hierarchical Coder Options dialog box : API Functions, page 510

● Hierarchical Coder Options dialog box : C-SPYLink, page 511

● Hierarchical Coder Options dialog box : Names, page 513
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Hierarchical Coder

Hierarchical Coder Options dialog box : Configuration
The Configuration options page contains options for general configuration.

Use this page to make configuration settings for the Hierarchical Coder. The display
area under the options shows the resulting command line for the code generation.

This options page can be accessed on both project level and system level. Exactly which
options you can set depends on the level you are setting options on.

Generate for C-SPYLink

Choose whether to generate code to be debugged using C-SPYLink.

Treat warnings as error

Makes the Hierarchical Coder treat all warnings as errors. If the Coder encounters an
error, no code is generated. This option can only be set on project level.

Warnings affect exit code

By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.
This option can only be set on project level.

Ignore warnings

By default, the Hierarchical Coder issues warnings. Select this option to disable all
warnings. This option can only be set on project level.

Exclude system from build

Determines whether the selected system will be part of the generated code or not. This
option can only be set on system level.
AFE1_AFE2-1:1

 495

496

Graphical environment for the Hierarchical Coder

Default

Restores the options to their default settings.

Hierarchical Coder Options dialog box : File Output
The File Output options page contains options for file output from code generation.

Use this page to make file output settings for the Hierarchical Coder. The display area
under the options shows the resulting command line for the code generation.

This options page can be accessed on both project level and system level. Exactly which
options you can set depends on the level you are setting options on.

Use project output path

Makes the Hierarchical Coder use the same output path for system files as the path
specified for all project files. This option can only be set on system level.

Output path

Specify the output path for all generated project or system files, respectively. If the path
does not exist, it is created. The path can be relative. This option can be set on both
project level and system level.

System header file

Specify the name of the header file that contains system-level model declarations. The
name used by default is System.h. This option can only be set on system level.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Hierarchical Coder

System source file

Specify the name of the source file that contains system-level model definitions. The
name used by default is System.c. This option can only be set on system level.

Project source file

Specify the name of the source file that contains project-level model definitions. The
name used by default is Project.c. This option can only be set on project level.

Project header file

Specify the name of the header file that contains project-level model declarations. The
name used by default is Project.h. This option can only be set on project level.

Report file

Specify a name for a report file to contain information about the project, option settings,
model characteristics, statistics, and a summary of the code generation. The name used
by default is VSCoder .h. This option can only be set on project level.

Single source file

Merges all project and system source files into the main project source file. The header
files remain separate. This option can only be set on project level.

C++ source file extension

Type the filename extension that IAR Visual State shall use for generated C++ language
source files. This option can only be set on project level.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

 497

498

Graphical environment for the Hierarchical Coder

Hierarchical Coder Options dialog box : Memory
The Memory options page contains options for memory configuration.

Use this page to make memory settings for the Hierarchical Coder. The display area
under the options shows the resulting command line for the code generation.

This options page can only be accessed on project level.

Dynamic system objects

Makes the Hierarchical Coder allocate systems objects dynamically instead of statically.

Reinitializable internal instances

Specify whether the internal instances can be reinitialized or not. If this option is
deselected, a reset is required to reach the initial state.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Hierarchical Coder

Hierarchical Coder Options dialog box : Code
The Code options page contains options for the actual code generation.

Use this page to make code settings for the Hierarchical Coder. The display area under
the options shows the resulting command line for the code generation.

This options page can be accessed on both project level and system level. Exactly which
options you can set depends on the level you are setting options on.

Data width

Specify the width of internal data members. If you set the width to a smaller value than
needed, the smallest possible value will be used. This option can only be set on project
level.

Choose between:

Optimized

The smallest possible value will be used.

8-bit

Internal data members are 8-bit.
AFE1_AFE2-1:1

 499

500

Graphical environment for the Hierarchical Coder

16-bit

Internal data members are 16-bit.

32-bit

Internal data members are 32-bit.

Project external variable initialization

Specify how to initialize project-external variables. This option can only be set on
project level.

Choose between:

Never

Project-external variables are not initialized by the Hierarchical Coder. You
must include initialization routines in your user-written application code.

By definition

Initializes project-external variables along with their definition.

With system objects

Initializes project-external variables when the system objects are initialized.

With internal instances

Initializes project-external variables when the internal instances are initialized.

System external variable initialization

Specify how to initialize system-external variables. This option can only be set on
project level.

Choose between:

Never

System-external variables are not initialized by the Hierarchical Coder. You
must include initialization routines in your user-written application code.

By definition

Initializes system-external variables along with their definition.

With system objects

Initializes system-external variables when the system objects are initialized.

With internal instances

Initializes system-external variables when the internal instances are initialized.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Hierarchical Coder

Explicitly initialize static storage with zero values

Initializes static storage with zero. If this option is deselected, static storage is left
undefined unless initial values have been specified. This option can only be set on
project level.

Send start event when initializing

Sends the start event automatically after VSInitAll has been executed. If this option is
deselected, you must pass the start event into VSDeduct manually. This option can only
be set on project level.

Functional expression handling

Specify how to handle functional expressions (guard expressions and action
expressions). This option can only be set on project level.

Choose between:

Function pointer tables

Uses a function pointer table for functional expressions. The table ensures
constant time access to functional expressions by defining separate functions for
functional expressions and including pointers to those functions in an array.

Binary if-else construct

Uses a binary if-else construct for functional expressions. A single function is
generated with a binary if-else construct to determine the functional expression
to execute. This method should only be used if the compiler does not handle the
alternative settings efficiently.

Switch-case construct

Uses a switch-case construct for functional expressions. A single function is
generated with a switch-case construct to determine the functional expression to
execute. If the compiler can recognize the switch-case construct and convert it
into a jump table, this might be the most efficient setting.

Const system class

Defines system class variables as const variables. This option should only be
deselected in exceptional cases, for example, when the target controller has sufficient
and fast RAM, and speed is of the highest importance. This option can only be set on
project level.

Const variable buffer expression FPT

Defines the variable buffer expression function pointer table as a const variable. This
option should only be deselected in exceptional cases, for example, when the target
AFE1_AFE2-1:1

 501

502

Graphical environment for the Hierarchical Coder

controller has sufficient and fast RAM, and speed is of the highest importance. This
option can only be set on project level.

Const guard expression FPT

Defines the guard expression function pointer table as a const variable. This option
should only be deselected in exceptional cases, for example, when the target controller
has sufficient and fast RAM, and speed is of the highest importance. This option can
only be set on project level.

Const action expression FPT

Defines the action expression function pointer table as a const variable. This option
should only be deselected in exceptional cases, for example, when the target controller
has sufficient and fast RAM, and speed is of the highest importance. This option can
only be set on project level.

Generate digital signature

Includes a digital signature in the generated code. This option should normally be
deselected, because it produces different files even if the model is unchanged. This
option can only be set on project level.

Event parameter mechanism

Select the signature of VSDeduct. This option can only be set on project level.

Choose between:

Variable argument list

Uses the default ... syntax.

Project-related union

Creates a union on project level to hold the event parameters.

System-related union

Creates a union on system level to hold the event parameters.

Insert type casts in functional expressions

Adds a type cast at the right-hand side of expressions, to reduce warnings in the
generated code. This option can only be set on project level.

Insert void statements for unused formal parameters

Adds a type cast in action calls, to reduce warnings in the generated code. This option
can only be set on project level.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Hierarchical Coder

Generated identifier prefix

Adds a prefix to the types (etc) of generated identifiers. This option can only be set on
project level.

Generate C++ code

By default, the Hierarchical Coder generates C API code. Selecting this option makes
the Coder instead generate C++ API code. This option can only be set on project level.

Project namespace

Specify the name of the namespace used for common project types, etc, when
generating C++ code. This option can only be set on project level.

System namespace

Specify the name of the namespace used for the system class. This option can only be
set on system level.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

 503

504

Graphical environment for the Hierarchical Coder

Hierarchical Coder Options dialog box : Optimization
The Optimization options page contains options for optimization.

Use this page to optimize the code generated by the Hierarchical Coder. The display area
under the options shows the resulting command line for the code generation.

This options page can only be accessed on project level.

System object members to be stack allocated

Select which members of system objects to allocate on the stack.

Choose between:

None

No members of system objects are allocated on the stack.

Uninitialized candidates

Uninitialized members of system objects are allocated on the stack.

All candidates

All members of system objects that can be allocated on the stack are allocated
on the stack.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Hierarchical Coder

Eliminate identical sub-expressions

Eliminates identical subexpressions in generated code guard and action expressions.

Remove redundant states

Eliminates all states that can be removed without changing the behavior of the model.

Use system object arrays

Makes the Hierarchical Coder use bit arrays for system objects. This makes the code size
smaller, but has a negative effect on speed.

Use bit arrays for boolean internal variables

Makes the Hierarchical Coder use bit arrays for internal Boolean variables. This makes
the code size smaller, but has a negative effect on speed.

Width of type for boolean internal variables bit arrays

Specify the width of the bit array type.

Choose between:

8-bit

The bit array type is 8-bit.

16-bit

The bit array type is 16-bit.

32-bit

The bit array type is 32-bit.

64-bit

The bit array type is 64-bit.

Use bitfields for boolean external variables

Makes the Hierarchical Coder use bitfields for external Boolean variables. This makes
the code size smaller, but has a negative effect on speed.

Use state offsets

Makes the Hierarchical Coder use state offsets instead of fixed numbers. This makes the
code size smaller, but has a negative effect on speed. This option can only be selected if
the option Use bitfields for boolean external variables has been selected.
AFE1_AFE2-1:1

 505

506

Graphical environment for the Hierarchical Coder

Merge state configurations

Makes the Hierarchical Coder merge state configurations. This makes the code size
smaller, but has a negative effect on speed.

State configuration update method

Select which state configuration update method to use.

Choose between:

All

Always updates the entire state configuration. This makes your application
smaller.

Partly Dynamic

Dynamically calculates and updates some parts of the state configuration
depending on fired trans reactions. This might make your application faster but
larger.

Dynamic

Dynamically calculates and updates the state configuration depending on fired
trans reactions. This makes your application faster but larger.

Action side statement execution

Determine how the Hierarchical Coder executes action side statements.

Choose between:

Function call

Action side statements are implemented as functions. This makes your
application smaller.

Inline

Action side statements are inlined. This makes your application faster but larger.

Header word optimization

Select the method for optimizing header word extraction.

Choose between:

Optimize for size

Optimizes header word extraction in a way that makes your application smaller.

Optimize for speed

Optimizes header word extraction in a way that makes your application faster.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Hierarchical Coder

Default optimization

The default method optimizes header word extraction in a way that makes your
application mostly smaller but a little slower.

Data optimization

Select the method for optimizing data header extraction.

Choose between:

Default optimization

The default method optimizes data header extraction in a way that makes your
application smaller.

Optimize for speed

Optimizes data header extraction in a way that makes your application faster.

Completion transition optimization

Select the method for optimizing completion transition handling.

Choose between:

Optimize for size

Optimizes completion transition handling in a way that makes your application
smaller.

Optimize for speed

Optimizes completion transition handling in a way that makes your application
faster.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

 507

508

Graphical environment for the Hierarchical Coder

Hierarchical Coder Options dialog box : Extended Keywords
The Extended Keywords options page contains options for extended keywords.

Use this page to make extended keywords settings for the Hierarchical Coder. The
display area under the options shows the resulting command line for the code
generation.

This options page can be accessed on both project level and system level. Exactly which
options you can set depends on the level you are setting options on.

Extended keyword for system object

Specify an extended keyword string for the system object variables (variable data). This
option can only be set on project level.

Extended keyword for external variables

Specify an extended keyword string for external variables (variable data). This option
can be set on both project level and system level.

Extended keyword for system class

Specify an extended keyword string for the system class variables (variable data). This
option can only be set on project level.

Extended keyword for entire system class model

Makes the Hierarchical Coder use same extended keyword for double buffer, guard and
action expression collections. If this option is selected, these do not need to be set
individually. This option can only be set on project level.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Hierarchical Coder

Extended keyword for double buffer variable

Specify an extended keyword for variable buffering data (constant data). This option can
only be set on project level.

Extended keyword for guard expression collection

Specify an extended keyword guard expression data (constant data). This option can
only be set on project level.

Extended keyword for action expression collection

Specify an extended keyword for the action expression collection variables (constant
data). This option can only be set on project level.

Extended keyword for runtime information

Specify an extended keyword string for the runtime information struct variable (constant
data). By default, the runtime information struct only contains the digital signature for
the project. This option can only be set on project level.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

 509

510

Graphical environment for the Hierarchical Coder

Hierarchical Coder Options dialog box : API Functions
The API Functions options page contains options for API functions.

Use this page to make API function settings for the Hierarchical Coder and to enable
specific API functions. The display area under the options shows the resulting command
line for the code generation.

This options page can only be accessed on project level.

Automatic entry function

Adds a function call to a predefined function whenever a state is entered. This can help
you debug the state machine.

Automatic exit function

Adds a function call to a predefined function whenever a state is exited. This can help
you debug the state machine.

Generate API macros

Makes the Hierarchical Coder generate a set of API macros that might be useful for
conditional compilation.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Hierarchical Coder

Enable API function function

Enables a specific HCoder API function. See Descriptions of the HCoder API functions,
page 474.

Default

Restores the options to their default settings.

Hierarchical Coder Options dialog box : C-SPYLink
The C-SPYLink options page contains options for debugging using C-SPYLink.

Use this page to make C-SPYLink settings for the Hierarchical Coder. The display area
under the options shows the resulting command line for the code generation.

This options page can be accessed on both project level and system level. Depending on
which level you set options on, different sets of options are available.

See also Debugging design models using C-SPYLink, page 759.

Enable using shared DLIB breakpoint

Makes the generated code use the shared breakpoint available in the DLIB runtime
environment. If the number of breakpoints is limited, this helps to preserve the number
of allocated breakpoints. Do not use this option with the legacy CLIB runtime
environment. This option can only be set on project level.

Enable using ARM EABI shared semi-hosting breakpoint

Makes the generated code use the shared semi-hosting breakpoint available in the Arm
EABI-specific runtime environment. If the number of breakpoints is limited, this helps
AFE1_AFE2-1:1

 511

512

Graphical environment for the Hierarchical Coder

to preserve the number of allocated breakpoints. This option requires IAR Embedded
Workbench® for Arm 5.10 or later. This option can only be set on project level.

Suppress C-SPYLink common files

Prevents multiple C-SPYLink files from being generated when you are using two or
more projects in the same linked image together with C-SPYLink. This option can only
be set on project level.

Enable full instrumentation

Extracts a maximum amount of debug information from your model. This option causes
a small increase in code size and a significant reduction in execution speed. This option
can only be set on system level.

Enable sampling buffer

Enables on-target sampling buffers for a single macrostep. C-SPYLink will be able to
extract large amounts of debug information from your model. This option causes an
increase in code size and a small reduction in execution speed. If sequence recording is
used, the speed reduction will be larger. Use the option Sampling buffer size to set the
size of the buffer.

This option can only be set on system level.

Enable sampling buffer readout

Reads data from the sampling buffer while the target application is executing. The target
controller must support live read. This option can only be set on system level.

Sampling buffer size

Set the number of elements in the sampling buffer for C-SPYLink. If the value is too
low, you can only see the event that triggered the most recent transition and the states
after that microstep. If the value is too high, the target application might run out of
memory. This option does not change the behavior of the model.

This option can only be set on system level.

Number of state machine breakpoints

Set the number of available breakpoints for C-SPYLink on the target controller. Using
this option consumes memory. This option does not change the behavior of the model.

This option can only be set on system level.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Hierarchical Coder

Enable recording buffer

Makes it possible to make recordings (execution logs) at almost full speed. This option
also makes it possible to display sampled data back. Use the option Recording buffer
size to set the size of the buffer.

This option can only be set on system level.

Recording buffer size

Set the number of elements in the recording buffer for C-SPYLink. This option can only
be set on system level.

Default

Restores the options to their default settings.

Hierarchical Coder Options dialog box : Names
The Names options page contains options for including text associated with states,
events, and actions in the generated code.

Use this page to make name settings for the Hierarchical Coder. The display area under
the options shows the resulting command line for the code generation.

This options page can be accessed on both project level and system level. Exactly which
options you can set depends on the level you are setting options on.

Event name inclusion

Specify the amount of text associated with events to include in the generated code. This
option can only be set on system level.
AFE1_AFE2-1:1

 513

514

Graphical environment for the Hierarchical Coder

Choose between:

No text

Includes no text associated with events in the generated code.

Names included

Includes the names of the events in the generated code.

Explanations included

Includes the descriptions of the events in the generated code.

Names and explanations

Includes both the names and the descriptions of the events in the generated code.

State name inclusion

Specify the amount of text associated with states to include in the generated code. This
option can only be set on system level.

Choose between:

No text

Includes no text associated with states in the generated code.

Names included

Includes the names of the states in the generated code.

Explanations included

Includes the descriptions of the states in the generated code.

Names and explanations

Includes both the names and the descriptions of the states in the generated code.

Print symbolic state names

Makes the Hierarchical Coder generate symbolic state names. This option can only be
set on system level.

Include symbolic state name in system class struct

Makes the Hierarchical Coder include the symbolic state names in the system class
struct. This option can only be set on system level.

Long symbolic state names

Makes the Hierarchical Coder generate long names for states. Deselect this option if you
want the Coder to generate short names. This option can only be set on system level.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Hierarchical Coder

Include symbolic variable name in system class struct

Makes the Hierarchical Coder include the symbolic variable names in the system class
struct. This option can only be set on system level.

State machine name inclusion

Specify the amount of text associated with state machines to include in the generated
code. This option can only be set on system level.

Choose between:

No text

Includes no text associated with state machines in the generated code.

Names included

Includes the names of the state machines in the generated code.

Explanations included

Includes the descriptions of the state machines in the generated code.

Names and explanations

Includes both the names and the descriptions of the state machines in the
generated code.

Default

Restores the options to their default settings.

Type identifiers
The type identifiers are defined in the Hierarchical Coder-generated file project.h.

These are the available type identifiers:

Type identifiers Description

VSTriggerType Event data type

VSDBExptrType Variable buffering expression type

VSGuardExprType Guard expression data type

VSStateType State data type

VSDestinationStateType State data type.

VSActionExprType Action expression data type.

VSSignalQueueType Signal queue data type.

Table 27: Type identifiers — HCoder
AFE1_AFE2-1:1

 515

516

Transition rule data format

Transition rule data format
The transition rule data format is used for storing transitions in the local code layer. Each
transition rule consists of one rule data header word and one rule data element for each
element of the transition rule. For more information about the transition rule data
format, see Transition rule data format, page 699.

VSInstanceType Instance data type.

VSVariableType Variable data type.

VSEventParameterType Event parameter data type.

VSMachineType State machine data type.

Type identifiers Description

Table 27: Type identifiers — HCoder (Continued)
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder
command line options
● Introduction to invoking the HCoder using command line options

● Summary of Hierarchical Coder options

● Descriptions of Hierarchical Coder options.

Introduction to invoking the HCoder using command line options
Learn more about:

● Briefly about invoking the Hierarchical Coder, page 517

● Invocation syntax for the Hierarchical Coder, page 518

BRIEFLY ABOUT INVOKING THE HIERARCHICAL CODER

You can set Hierarchical Coder options either in the Navigator—using the Hierarchical
Coder Options dialog box—or via the command line using command line options.

A Coder option is either a project option or a system option. In general, project options
affect the project and all systems part of it. System options only affect the systems for
which they are specified.

Both project options and system options can be specified anywhere on the command
line. System options that are specified before any system has been specified apply to all
systems.

Coder options are categorized based on these types:

If no options and no vsp file are specified on the command line, a list of the options will
be displayed.

Enumeration options [E] Require an argument.

Integral options [I] Require an argument.

Text options [T] Supplying an argument is optional.

Boolean options [B] Supplying an argument is optional. If no argument is
supplied, the option will be set to its default value.
AFE1_AFE2-1:1

517

518

Introduction to invoking the HCoder using command line options

The command line is case-sensitive.

For a complete list of available Hierarchical Coder options, run the HCoder.exe from
the command prompt.

INVOCATION SYNTAX FOR THE HIERARCHICAL CODER

This is the invocation syntax for starting the Hierarchical Coder from the command line:

HCoder.exe vsp_file [--l] [--@option-file] -option[argument]*

Where:

--l loads options from the vtg file associated with the specified vsp file.

--@option-file loads additional options from the specified file. Each line in the file
must contain exactly one option. A line is treated as a comment if the line starts with the
character sequence //.

Example 1

HCoder.exe Mobile.vsp

Example 2

HCoder.exe Mobile.vsp -Vmobile1 -txte3 -txts3 -Vmobile2

Example 3

HCoder.exe Mobile.vsp --@MobileSetup.txt -Vmobile -txte3 -txts3

Description: Generates code for the project and stores it in the file
Mobile.vsp.

Description: Generates code for the project, which contains the systems
Mobile1 and Mobile2.

In addition, the system Mobile1 will be generated with names
and descriptions for events, states, and action functions.

Description: Generates code for the project, which contains the system
Mobile.

In addition, the system Mobile will be generated with names
and descriptions for events, states, and action functions.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

Summary of Hierarchical Coder options
This table summarizes the Hierarchical Coder command line options:

Command line option Description

-af_activeState Enables the HCoder API function VSActiveState.
[Project option]

-af_gsos Enables the HCoder API function
VSGetSystemObjectSize. [Project option]

-af_gvv Enables the HCoder API function VSGetVariableValue.
[Project option]

-af_inquiry Enables the HCoder API function VSInquiry. [Project
option]

-af_nofEventParameters Enables the HCoder API function
VSNofEventParameters. [Project option]

-af_nofEvents Enables the HCoder API function VSNofEvents. [Project
option]

-af_nofInstances Enables the HCoder API function VSNofInstances.
[Project option]

-af_nofMachines Enables the HCoder API function VSNofMachines.
[Project option]

-af_nofStates Enables the HCoder API function VSNofStates. [Project
option]

-af_nofVariables Enables the HCoder API function VSNofVariables.
[Project option]

-af_parentMachine Enables the HCoder API function VSParentMachine.
[Project option]

-af_parentState Enables the HCoder API function VSParentState.
[Project option]

-af_topMachine Enables the HCoder API function VSTopMachine. [Project
option]

-armsemihostingbreakpo

int

Determines whether the generated code uses the shared
Arm EABI semi-hosting breakpoint. [Project option]

-autoentryfunction Adds a call to a predefined function whenever a state is
entered. [Project option]

-autoexitfunction Adds a call to a predefined function whenever a state is
exited. [Project option]

Table 28: Hierarchical Coder command line options
AFE1_AFE2-1:1

519

520

Summary of Hierarchical Coder options

-constactionfpt Determines whether the action expression function pointer
table is defined as a const variable. [Project option]

-constguardfpt Determines whether the guard expression function pointer
table is defined as a const variable. [Project option]

-constsc Determines whether system class variables are defined as
const variables. [Project option]

-constvbfpt Determines whether the variable buffer expression function
pointer table is defined as a const variable. [Project option]

-cspylink Determines whether the generated code can be debugged
using C-SPYLink. [Project option]

-D Specifies the data width for data types for the entire project.
[Project option]

-dlibbreakpoint Determines whether the generated code uses the shared
DLIB breakpoint. [Project option]

-dso Allocates systems objects dynamically instead of statically.
[Project option]

-epm Selects the signature of VSDeduct. [Project option]

-exclude Excludes a system from build.

-fullinstrumentation Controls the amount of debug information that C-SPYLink
can extract from your model. [System option]

-funcexph Specifies how the Hierarchical Coder should handle
functional expressions. [Project option]

-gds Determines whether the Hierarchical Coder includes a digital
signature in the generated code. [Project option]

-gip Adds a prefix to the types (etc) of generated identifiers.
[Project option]

-H Specifies the name of the header file that contains
system-level model declarations. [System option]

-ipev Specifies how to initialize external variables. [Project option]

-isev Specifies how to initialize system-external variables. [Project
option]

-issn Includes the symbolic state names in the system class struct.
[System option]

-isvn Includes the symbolic variable names in the system class
struct. [System option]

Command line option Description

Table 28: Hierarchical Coder command line options (Continued)
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-itcfe Adds a type cast at the right-hand side of functional
expressions. [Project option]

-ivsufp Inserts void statements for unused formal parameters.
[Project option]

-kw_actionexpr Specifies an extended keyword string for the action
expression collection variables. [Project option]

-kw_clsame Uses the same extended keyword for the entire system class
model. [Project option]

-kw_dbexpr Specifies an extended keyword for variable buffering data.
[Project option]

-kw_guardexpr Specifies an extended keyword string for the guard
expression collection variables. [Project option]

-kw_prj_extvar Specifies an extended keyword string for external variables in
the entire project. [Project option]

-kw_runtimeinfo Specifies an extended keyword string for the runtime
information struct variable. [Project option]

-kw_sys_extvar Specifies an extended keyword string for external variables.
[System option]

-kw_systemClass Specifies an extended keyword string for the system class
variables. [Project option]

-kw_systemObject Specifies an extended keyword string for the system object
variables. [Project option]

-lssn Generate long symbolic names for states. [System option]

-macros Generates HCoder API macros. [Project option]

-no_warnings Determines whether warnings should be disabled. [Project
option]

-opt_asse Determines how to execute action side statements. [Project
option]

-opt_d Determines how to optimize data header extraction. [Project
option]

-opt_eise Eliminates identical sub-expressions. [Project option]

-opt_h Determines how to optimize header word optimization.
[Project option]

-opt_msc Merges state configurations. [Project option]

-opt_rrs Removes redundant states. [Project option]

Command line option Description

Table 28: Hierarchical Coder command line options (Continued)
AFE1_AFE2-1:1

521

522

Summary of Hierarchical Coder options

-opt_scum Determines how to update state configurations. [Project
option]

-opt_sobitarray Uses bit arrays for system objects. [Project option]

-opt_somos Allocates system object members on the stack. [Project
option]

-opt_tr Determines how to optimize completion transitions. [Project
option]

-opt_ubabiv Use bit arrays for Boolean internal variables. [Project option]

-opt_ubfbev Use bitfields for Boolean external variables. [Project option]

-opt_uso Uses state offsets instead of fixed numbers. [Project option]

-path Specifies the output path for all generated project files.
[Project option]

-projectheader Specifies the name of the header file that contains
project-level model declarations. [Project option]

-projectsource Specifies the name of the source file that contains
project-level model definitions. [Project option]

-pssf Merges all project and system source files into the main
project source file. [Project option]

-pssn Generates symbolic state names. [System option]

-R Specifies a name for a report file to contain information about
the project. [Project option]

-recordingbuffersize Specifies the number of elements in the recording buffer for
C-SPYLink. [System option]

-riins Determines whether the internal instances can be
reinitialized or not. [Project option]

-S Specifies the name of the source file that contains
system-level model definitions. [System option]

-samplingbuffersize Specifies the number of elements in the sampling buffer for
C-SPYLink. [System option]

-ssewi Sends the start event automatically after VSInitAll has
been executed. [Project option]

-siss Initializes static storage with zeros. [Project option]

-spath Specifies the output path for all generated system files.
[System option]

Command line option Description

Table 28: Hierarchical Coder command line options (Continued)
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-suppress_cspylink_com

mon_files

Controls how multiple C-SPYLink files are generated when
you are using two or more projects in the same linked image.
[Project option]

-targetbreakpoints Specifies the number of available breakpoints for C-SPYLink
on the target controller. [System option]

-txte Controls the amount of text associated with events to
include in the generated code. [System option]

-txtm Controls the amount of text associated with state machines
to include in the generated code. [System option]

-txts Controls the amount of text associated with states to include
in the generated code. [System option]

-uselivesamplingbuffer Determines whether C-SPYLink can read data from the
sampling buffer while the target application is executing.
[System option]

-usepop Determines whether the Hierarchical Coder uses the same
output path for system files as the path specified for all
project files. [System option]

-userecordingbuffer Determines whether to use a recording buffer. [System
option]

-usesamplingbuffer Controls on-target sampling buffers for a single macrostep.
[System option]

-V Specifies the system that the following system options apply
to. [System option]

-variant Specifies which variant to generate code for. [Project option]

-warnings_affect_exit_

code

Determines whether warnings generate a non-zero exit code.
[Project option]

-warnings_are_errors Determines whether all warnings are reclassified as errors.
[Project option]

-width_babiv Sets the width of the bit array type. [Project option]

Command line option Description

Table 28: Hierarchical Coder command line options (Continued)
AFE1_AFE2-1:1

523

524

Descriptions of Hierarchical Coder options

Descriptions of Hierarchical Coder options
The following pages give detailed reference information about each Hierarchical Coder
command line option.

-af_activeState

Syntax -af_activeState{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSActiveState. The function returns the
active state of a specific machine. If the machine is not active, VS_StateUndefined is
returned.

See also VSActiveState, page 474.

Project>Options>Code Generation>project>API Functions>Enable API function
VSActiveState

-af_gsos

Syntax -af_gsos{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSGetSystemObjectSize. The function
returns the size in bytes of system objects of specified system class.

See also VSGetSystemObjectSize, page 479.

Project>Options>Code Generation>project>API Functions>Enable API function
VSGetSystemObjectSize

0 (default) The API function is not enabled.

1 The API function is enabled.

0 (default) The API function is not enabled.

1 The API function is enabled.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-af_gvv

Syntax -af_gvv{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSVariableValue. The function prints
the value of a specified variable to a string.

See also VSVariableValue, page 490.

Project>Options>Code Generation>project>API Functions>Enable API function
VSVariableValue

-af_inquiry

Syntax -af_inquiry{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSInquiry. The function tests whether an
event is active with regards to state conditions.

See also VSInquiry, page 480.

Project>Options>Code Generation>project>API Functions>Enable API function
VSInquiry

0 (default) The API function is not enabled.

1 The API function is enabled.

0 (default) The API function is not enabled.

1 The API function is enabled.
AFE1_AFE2-1:1

525

526

Descriptions of Hierarchical Coder options

-af_nofEventParameters

Syntax -af_nofEventParameters{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSNofEventParameters. The function
returns the number of event parameters for a specified event within a system.

See also VSNofEventParameters, page 483.

Project>Options>Code Generation>project>API Functions>Enable API function
VSNofEventParameters

-af_nofEvents

Syntax -af_nofEvents{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSNofEvents. The function returns the
number of defined events for a system.

See also VSNofEvents, page 484.

Project>Options>Code Generation>project>API Functions>Enable API function
VSNofEvents

0 (default) The API function is not enabled.

1 The API function is enabled.

0 (default) The API function is not enabled.

1 The API function is enabled.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-af_nofInstances

Syntax -af_nofInstances{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSNofInstances. The function returns
the number of internal instances in a system.

See also VSNofInstances, page 484.

Project>Options>Code Generation>project>API Functions>Enable API function
VSNofInstances

-af_nofMachines

Syntax -af_nofMachines{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSNofMachines. The function returns the
number of defined machines for a system.

See also VSNofMachines, page 484.

Project>Options>Code Generation>project>API Functions>Enable API function
VSNofMachines

0 (default) The API function is not enabled.

1 The API function is enabled.

0 (default) The API function is not enabled.

1 The API function is enabled.
AFE1_AFE2-1:1

527

528

Descriptions of Hierarchical Coder options

-af_nofStates

Syntax -af_nofStates{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSNofStates. The function returns the
number of defined states for a system.

See also VSNofStates, page 485.

Project>Options>Code Generation>project>API Functions>Enable API function
VSNofStates

-af_nofVariables

Syntax -af_nofVariables{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSNofVariables. The function returns
the number of defined variables in scope for a system.

See also VSNofVariables, page 485.

Project>Options>Code Generation>project>API Functions>Enable API function
VSNofVariables

0 (default) The API function is not enabled.

1 The API function is enabled.

0 (default) The API function is not enabled.

1 The API function is enabled.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-af_parentMachine

Syntax -af_parentMachine{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSParentMachine. The function returns
the parent machine of the specified state.

See also VSParentMachine, page 486.

Project>Options>Code Generation>project>API Functions>Enable API function
VSParentMachine

-af_parentState

Syntax -af_parentState{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSParentState. The function returns the
parent state of the specified machine. For the top machine, VS_StateUndefined is
returned.

See also VSParentState, page 486.

Project>Options>Code Generation>project>API Functions>Enable API function
VSParentState

0 (default) The API function is not enabled.

1 The API function is enabled.

0 (default) The API function is not enabled.

1 The API function is enabled.
AFE1_AFE2-1:1

529

530

Descriptions of Hierarchical Coder options

-af_topMachine

Syntax -af_topMachine{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable the API function VSTopMachine. The function returns the
top machine.

See also VSTopMachine, page 490.

Project>Options>Code Generation>project>API Functions>Enable API function
VSTopMachine

-armsemihostingbreakpoint

Syntax -armsemihostingbreakpoint{0|1}

Parameters

Scope Project level.

Description Determines whether the generated code uses the shared semi-hosting breakpoint
available in the Arm EABI-specific runtime environment. If the number of breakpoints
is limited, using this breakpoint helps to preserve the number of allocated breakpoints.
This option requires IAR Embedded Workbench® for Arm 5.10 or later.

See also -dlibbreakpoint, page 716.

Project>Options>Code Generation>project>C-SPYLink>Enable using ARM
EABI shared semi-hosting breakpoint

0 (default) The API function is not enabled.

1 The API function is enabled.

0 (default) The generated code does not use the shared semi-hosting breakpoint
available in the Arm EABI-specific runtime environment.

1 The generated code uses the shared semi-hosting breakpoint available in
the Arm EABI-specific runtime environment.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-autoentryfunction

Syntax -autoentryfunction{0|1}

Parameters

Scope Project level.

Description Specifies whether to add a function call to a predefined function whenever a state is
entered.

See also VSProjectEnterState, page 477.

Project>Options>Code Generation>project>API Functions>Automatic entry
function

-autoexitfunction

Syntax -autoexitfunction{0|1}

Parameters

Scope Project level.

Description Specifies whether to add a function call to a predefined function whenever a state is
exited.

See also VSProjectLeaveState, page 481.

Project>Options>Code Generation>project>API Functions>Automatic exit
function

0 (default) A function call to a predefined function is not added whenever
a state is entered.

1 A function call to a predefined function is added whenever a
state is entered.

0 (default) A function call to a predefined function is not added whenever
a state is exited.

1 A function call to a predefined function is added whenever a
state is exited.
AFE1_AFE2-1:1

531

532

Descriptions of Hierarchical Coder options

-constactionfpt

Syntax -constactionfpt{0|1}

Parameters

Scope Project level.

Description Determines whether the action expression function pointer table is defined as a const
variable. This option should only be set to 0 in exceptional cases, for example, when the
target controller has sufficient and fast RAM, and speed is of the highest importance.

See also -constguardfpt, page 532.

Project>Options>Code Generation>project>Code>Const action expression FPT

-constguardfpt

Syntax -constguardfpt{0|1}

Parameters

Scope Project level.

Description Determines whether the guard expression function pointer table is defined as a const
variable. This option should only be set to 0 in exceptional cases, for example, when the
target controller has sufficient and fast RAM, and speed is of the highest importance.

See also -constactionfpt, page 532.

Project>Options>Code Generation>project>Code>Const guard expression FPT

0 The action expression function pointer table is not defined as a const
variable.

1 (default) Defines the action expression function pointer table as a const variable.

0 The guard expression function pointer table is not defined as a const
variable.

1 (default) Defines the guard expression function pointer table as a const variable.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-constsc

Syntax -constsc{0|1}

Parameters

Scope Project level.

Description Determines whether the system class is defined as a const variable. This option should
only be set to 0 in exceptional cases, for example, when the target controller has
sufficient and fast RAM, and speed is of the highest importance.

See also -constactionfpt, page 532.

Project>Options>Code Generation>project>Code>Const system class

-constvbfpt

Syntax -constvbfpt{0|1}

Parameters

Scope Project level.

Description Determines whether the variable buffer expression function pointer table is defined as a
const variable. This option should only be set to 0 in exceptional cases, for example,
when the target controller has sufficient and fast RAM, and speed is of the highest
importance.

See also -constactionfpt, page 532.

Project>Options>Code Generation>project>Code>Const guard variable buffer
expression FPT

0 The system class is not defined as a const variable.

1 (default) Defines the system class as a const variable.

0 The variable buffer expression function pointer table is not defined as a
const variable.

1 (default) Defines the variable buffer expression function pointer table as a const
variable.
AFE1_AFE2-1:1

533

534

Descriptions of Hierarchical Coder options

-cpp

Syntax -cpp{0|1}

Parameters

Scope Project level.

Description Determines whether to generate C or C++ code and API code. If you specify -cpp1, you
should also specify the namespace for all C++ code related to the system and the project
namespace to use for C++ output.

See also -namespace, page 547 and -projectnamespace, page 555.

Project>Options>Code Generation>project>Code>Generate C++ code

-cppsourcefileext

Syntax -cppsourcefileextextension

Parameters

Scope Project level.

Description Determines the filename extension that IAR Visual State uses for generated C++
language source files. By default, the filename extension is cpp.

Project>Options>Code Generation>project>File Output> C++ File extension

-cspylink

Syntax -cspylink{0|1}

Parameters

0 (default) Generates C code and API code.

1 Generates C++ code and API code.

extension The filename extension that IAR Visual State uses for
generated C++ language source files.

0 (default) Does not generate code to be debugged using C-SPYLink.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

Scope Project level.

Description Determines whether the generated code can be debugged using C-SPYLink.

See also Debugging design models using C-SPYLink, page 759 and -fullinstrumentation, page
717.

Project>Options>Code Generation>project>Configuration>Generate for
C-SPYLink

-D

Syntax -D{O|0|1|2}

Parameters

Scope Project level.

Description Specifies the data width for internal data members. The default setting uses the smallest
possible width. If you set the width to a smaller value than needed, the smallest possible
value will be used.

See also Type identifiers, page 515.

Project>Options>Code Generation>project>Code>Data width

1 Generates code to be debugged using C-SPYLink.

O (default) Uses the most optimal data widths for HCoder type definitions. The width
is the smallest possible to reduce the use of variable and constant data.

0 Sets the data width of all HCoder types to 8 bits. If the target
microcontroller handles 8-bit accesses well, this setting probably
increases the execution speed.

1 Sets the data width of all HCoder types to 16 bits. If the target
microcontroller handles 16-bit accesses well, this setting probably
increases the execution speed.

2 Sets the data width of all HCoder types to 32 bits. If the target
microcontroller handles 32-bit accesses well, this setting probably
increases the execution speed.
AFE1_AFE2-1:1

535

536

Descriptions of Hierarchical Coder options

-dlibbreakpoint

Syntax -dlibbreakpoint{0|1}

Parameters

Scope Project level.

Description Determines whether the generated code uses the shared breakpoint available in the
DLIB runtime environment. If the number of breakpoints is limited, using this
breakpoint helps to preserve the number of allocated breakpoints. Do not use this option
with the legacy CLIB runtime environment.

See also -armsemihostingbreakpoint, page 709.

Project>Options>Code Generation>project>C-SPYLink>Enable using shared
DLIB breakpoints

-dso

Syntax -dso{0|1}

Parameters

Scope Project level.

Description Specifies whether to enable dynamic allocation of system objects.

Project>Options>Code Generation>project>Memory>Dynamic system objects

0 (default) The generated code does not use the shared breakpoint available in the
DLIB runtime environment.

1 The generated code uses the shared breakpoint available in the DLIB
runtime environment.

0 (default) Allocates system objects statically.

1 Allocates system objects dynamically.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-epm

Syntax -epm{0|1|2}

Parameters

Scope Project level.

Description Specifies how event parameters are transferred to the API.

Project>Options>Code Generation>project>Code>Event parameter mechanism

-exclude

Syntax -exclude{0|1}

Parameters

Scope System level.

Description Specifies whether to exclude the system from a build.

0 (default) Parameters are transferred to the API as a variable argument
list. The API will copy the parameters to an internal buffer,
using the macros va_start, va_arg, and va_end, defined in
stdarg.h. Cannot be used in C++.

1 Parameters are transferred to the API as a pointer to a union.
The API will copy the pointer to internal storage for later
access. The contents of the union must remain valid throughout
the entire macrostep. The type of the union is shared between
all systems, which might cause the union to be larger than
needed for the particular system.

2 Parameters are transferred to the API as a pointer to a union.
The API will copy the pointer to internal storage for later
access. The contents of the union must remain valid throughout
the entire macrostep. A union type is generated for each system
in order to minimize the size of the union. Default in C++.

0 (default) Includes the system in code generation.

1 Excludes the system from code generation.
AFE1_AFE2-1:1

537

538

Descriptions of Hierarchical Coder options

Project>Options>Code Generation>system>Configuration>Exclude System from
build

-fullinstrumentation

Syntax -fullinstrumentation{0|1}

Parameters

Scope System level.

Description Controls the amount of debug information that C-SPYLink can extract from your model.
Specifying -fullinstrumentation1 causes a small increase in code size and a
significant reduction in execution speed.

Project>Options>Code Generation>system>C-SPYLink>Enable full
instrumentation

-funcexph

Syntax -funcexph{0|1|2}

Parameters

0 (default) Disables full instrumentation.

1 Enables full instrumentation, to extract a maximum amount of debug
information.

0 (default) Uses a function pointer table for functional expressions. The table
ensures constant time access to functional expressions by defining
separate functions for functional expressions and including pointers to
those functions in an array.

1 Uses a binary if-else construct for functional expressions. A single
function is generated with a binary if-else construct to determine the
functional expression to execute. This method should only be used if the
compiler does not handle the alternative settings efficiently.

2 Uses a switch-case construct for functional expressions. A single
function is generated with a switch-case construct to determine the
functional expression to execute. If the compiler can convert the
switch-case construct into a jump table, this might be the most efficient
setting.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

Scope Project level.

Description Specifies how the Hierarchical Coder should handle functional expressions (guard
expressions and action expressions).

Project>Options>Code Generation>project>Code>Functional expression
handling

-gds

Syntax -gds{0|1}

Parameters

Scope Project level.

Description Determines whether the Hierarchical Coder includes a digital signature in the generated
code.

See also Digital signatures for tracking inconsistencies, page 74.

Project>Options>Code Generation>project>Code>Generate digital signature

-gip

Syntax -gipprefix

Parameters

Scope Project level.

Description Specifies a prefix to use for generated identifiers, except for identifiers for explicitly
named elements such as external variables, constants, etc. This prefix will be used in
both a lower-case and an upper-case version. Specifying different prefixes for different
Visual State projects avoids name clashes when a compiler project contains code from
several Visual State projects.

0 (default) Does not include a digital signature in the generated code.

1 Includes a digital signature in the generated code.

prefix A text string that will be used as a prefix.
AFE1_AFE2-1:1

539

540

Descriptions of Hierarchical Coder options

Project>Options>Code Generation>project>Code>Generated identifier prefix

-H

Syntax -Hfile

Parameters

Scope System level.

Description Specifies the name of the header file that contains system-level model declarations. The
name used by default is System.h.

Project>Options>Code Generation>system>File Output>System header file

-ipev

Syntax -ipev{0|1|2|3}

Parameters

Scope Project level.

Description Specifies how to initialize project-external variables.

Project>Options>Code Generation>project>Code>Project external variable
initialization

file The name of the header file.

0 External variables are never initialized.

1 (default) Initializes external variables along with their definition.

2 Initializes external variables when system objects are initialized.

3 Initializes external variables when internal instances within system
objects are initialized.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-isev

Syntax -isev{0|1|2|3}

Parameters

Scope Project level.

Description Specifies how to initialize system-external variables.

Project>Options>Code Generation>project>Code>System external variable
initialization

-issn

Syntax -issn{0|1}

Parameters

Scope System level.

Description Specifies whether to include symbolic state names in the system class struct.

Project>Options>Code Generation>system>Names>Include symbolic state name
in system class struct

0 External variables are never initialized.

1 (default) Initializes external variables along with their definition.

2 Initializes external variables when system objects are initialized.

3 Initializes external variables when internal instances within system
objects are initialized.

0 (default) Does not include symbolic state names in the system class
struct.

1 Includes symbolic state names in the system class struct.
AFE1_AFE2-1:1

541

542

Descriptions of Hierarchical Coder options

-isvn

Syntax -isvn{0|1}

Parameters

Scope System level.

Description Specifies whether to include symbolic variable names in the system class struct.

Project>Options>Code Generation>system>Names>Include symbolic variable
name in system class struct

-itcfe

Syntax -itcfe{0|1}

Parameters

Scope System level.

Description Specifies whether to insert typecasts in functional expressions. If -itcfe1 is specified,
a typecast is inserted on the right side of each assignment, and each actual parameter in
an action function call is converted to the type of the corresponding formal parameter.

Specify -itcfe1 to avoid warnings for typecasts in functional expressions when you
compile generated code. However, be aware that this might hide logical errors in the
design.

Project>Options>Code Generation>project>Code>Insert type casts in functional
expressions

0 (default) Does not include symbolic variable names in the system class
struct.

1 Includes symbolic variable names in the system class struct.

0 (default) Does not insert typecasts in functional expressions.

1 Inserts typecasts in functional expressions.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-ivsufp

Syntax -ivsufp{0|1}

Parameters

Scope Project level.

Description Specifies whether to insert void statements for unused formal parameters. Because of
the overall design of the generated code, some functions might include formal
parameters that are not used in the function body. To avoid compiler warnings, specify
-ivsufp1 to prepend the body with void statements of the form (void) x;, where x
is the unused formal parameter.

Project>Options>Code Generation>project>Code>Insert void statements for
unused formal parameters

-kw_actionexpr

Syntax -kw_actionexprkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for the action expression collection variables
(constant data).

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for action expression collection

-kw_clsame

Syntax -kw_clsame{0|1}

Parameters

0 (default) Does not insert void statements for unused formal parameters.

1 Inserts void statements for unused formal parameters.

keyword A string that will be used as a keyword.

0 Uses different extended keywords for all system class model
members.
AFE1_AFE2-1:1

543

544

Descriptions of Hierarchical Coder options

Scope Project level.

Description Specifies whether to use the same extended keyword for all system class model
members. If you specify -kw_clsame1, double buffer expression, guard expression,
and action expression collections will use the same keyword as for the system class
struct.

Project>Options>Code Generation>project>Ext. Keywords>Use same extended
keyword for entire system class model

-kw_dbexpr

Syntax -kw_dbexprkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for the double buffer expression collection
variables (constant data).

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for double buffer expression collection

-kw_guardexpr

Syntax -kw_guardexprkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for the guard expression collection variables
(constant data).

1 (default) Uses the same extended keyword for all system class model
members.

keyword A string that will be used as a keyword.

keyword A string that will be used as a keyword.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for guard expression collection

-kw_prj_extvar

Syntax -kw_prj_extvarkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for external variables (variable data) in the entire
project.

See also -kw_sys_extvar, page 546.

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for external variables

-kw_runtimeinfo

Syntax -kw_runtimeinfokeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for the runtime information struct variable
(constant data). By default, the runtime information struct only contains the digital
signature for the project.

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for runtime info

keyword A string that will be used as a keyword.

keyword A string that will be used as a keyword.
AFE1_AFE2-1:1

545

546

Descriptions of Hierarchical Coder options

-kw_sys_extvar

Syntax -kw_sys_extvarkeyword

Parameters

Scope System level.

Description Specifies an extended keyword string for external variables (variable data) in a system.

See also -kw_prj_extvar, page 545.

Project>Options>Code Generation>system>Ext. Keywords>Extended keyword
for external variables

-kw_systemClass

Syntax -kw_systemClasskeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for the system class variables (constant data).

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for system class

-kw_systemObject

Syntax -kw_systemObjectkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for the system object variables (variable data).

keyword A string that will be used as a keyword.

keyword A string that will be used as a keyword.

keyword A string that will be used as a keyword.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for system object

-lssn

Syntax -lssn{0|1}

Parameters

Scope System level.

Description Specifies whether to generate long symbolic names for states.

Project>Options>Code Generation>project>Names>Long symbolic state names

-macros

Syntax -macros{0|1}

Parameters

Scope Project level.

Description Specifies whether to generate a set of API macros.

Project>Options>Code Generation>project>API Functions >Generate API
macros

-namespace

Syntax -namespacename

Parameters

0 Generates short names for states.

1 (default) Generates long names for states.

0 (default) API macros are not generated.

1 API macros are generated.

name The name of the system namespace used by generated C++
code.
AFE1_AFE2-1:1

547

548

Descriptions of Hierarchical Coder options

Scope System level.

Description Specifies the C++ namespace for all code related to the system. By default, the
namespace is “”.

Project>Options>Code Generation>system>Code Generation>System namespace

-no_warnings

Syntax -no_warnings{0|1}

Parameters

Scope Project level.

Description Determines whether warnings should be disabled.

See also -warnings_are_errors, page 566

Project>Options>Code Generation>project>Configuration>Ignore warnings

-opt_asse

Syntax -opt_asse{0|1}

Parameters

Scope Project level.

Description Specifies how statements that belong to the action side of a transition/reaction are
handled.

0 (default) Warnings are issued.

1 Warnings are disabled and cannot affect the exit code.

0 (default) Action side statements are implemented as functions. This
minimizes the application size.

1 Action side statements are inlined. This maximizes the
application’s execution speed.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

Project>Options>Code Generation>project>Optimization>Action side statement
execution

-opt_d

Syntax -opt_d{0|1}

Parameters

Scope Project level.

Description Specifies how to optimize data header extraction.

Project>Options>Code Generation>project>Optimization>Data optimization

-opt_eise

Syntax -opt_eise{0|1}

Parameters

Scope Project level.

Description Specifies whether to eliminate identical subexpressions in compound guard and action
expressions.

Project>Options>Code Generation>project>Optimization>Eliminate identical
sub-expressions

0 (default) Optimizes data header extraction to make the application
smaller.

1 Optimizes data header extraction to make the application faster.

0 Identical subexpressions are not eliminated.

1 (default) Eliminates identical subexpressions. This might make the
application smaller but slightly slower.
AFE1_AFE2-1:1

549

550

Descriptions of Hierarchical Coder options

-opt_h

Syntax -opt_h{0|1|2}

Parameters

Scope Project level.

Description Specifies how to optimize header word extraction.

Project>Options>Code Generation>project>Optimization>Header word
optimization

-opt_msc

Syntax -opt_msc{0|1}

Parameters

Scope Project level.

Description Specifies whether to merge state configurations. If you specify -opt_msc1, no machine
can have more than 14 child states, otherwise code generation stops. If the project
contains shallow history states or deep history states, the limit is 13, and if the project
contains both kinds of history states, the limit is 12.

Project>Options>Code Generation>project>Optimization>Merge state
configurations

0 Optimizes header word extraction to make the application
smaller.

1 (default) Optimizes header word extraction to make the application
mostly smaller but a little slower.

2 Optimizes header word extraction to make the application
faster.

0 (default) State configurations are not merged.

1 Merges states from different internal configurations into one
configuration. This minimizes RAM usage.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-opt_rrs

Syntax -opt_rrs{0|1}

Parameters

Scope Project level.

Description Specifies whether to remove redundant states. A redundant state is a state that:

● has no sibling states or pseudo-states (except for an optional initial state with an
empty default reaction)

● has no entry

● has no internal or exit reactions

● is not used as direct source, main source or destination in any transition

If redundant states are removed, all synchronizations to the state are changed to
synchronizations to the parent state.

Project>Options>Code Generation>project>Optimization>Remove redundant
states

-opt_scum

Syntax -opt_scum{0|1|2}

Parameters

Scope Project level.

0 Redundant states are not removed.

1 (default) Removes redundant states.

0 Always updates the entire state configuration, to make the
application smaller.

1 Dynamically excludes some part of the state configuration from
updating that was not affected by firing of transitions or
reactions. This might make the application faster but slightly
larger.

2 (default) Dynamically calculates and updates the part of the state
configuration that was actually affected by firing of transitions
or reactions. This might increase speed but also increase the size
of code and variable data.
AFE1_AFE2-1:1

551

552

Descriptions of Hierarchical Coder options

Description Determines how to update state configurations.

Project>Options>Code Generation>project>Optimization>State configuration
update method

-opt_sobitarray

Syntax -opt_sobitarray{0|1}

Parameters

Scope Project level.

Description Specifies whether to use bit arrays for system object members that are arrays and only
contain the values 0 and 1.

Project>Options>Code Generation>project>Optimization>Use system object
arrays

-opt_somos

Syntax -opt_somos{0|1}

Parameters

Scope Project level.

0 Bit arrays are not used. This increases application speed.

1 (default) Uses bit arrays. This minimizes the size of variable data.

0 (default) No system object members are allocated on the stack. This
ensures minimal stack usage, but increases the size of the
possibly statically allocated) system object.

1 Uninitialized candidates are allocated on the stack. This
includes members that do not need initialization at allocation
time. Stack usage is increased, but the size of the (possibly
statically allocated) system object is reduced.

2 All candidates are allocated on the stack. Stack usage is
increased, but the size of the (possibly statically allocated)
system object is reduced.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

Description Determines which system object members to allocate on the stack. Possible candidates
include the signal queue, various counters, etc. In a project with multiple systems, the
member must be the same size in all systems to be a candidate.

Project>Options>Code Generation>project>Optimization>System object
members to be stack allocated

-opt_tr

Syntax -opt_tr{0|1}

Parameters

Scope Project level.

Description Specifies how to optimize completion transition handling.

Project>Options>Code Generation>project>Optimization>Completion transition
optimization

-opt_ubabiv

Syntax -opt_ubabiv{0|1}

Parameters

0 (default) Optimizes completion transition handling to reduce size. An
array of Boolean variables is used to indicate which completion
events that are raised. In addition, a counter is used for
determining the number of raised completion events, so that the
Boolean array is only examined when at least one completion
event is raised.

1 Optimizes completion transition handling to increase speed.
The handling is the same as -opt_tr0 but in addition, a queue
is used. Instead of examining the array of Boolean variables for
raised completion events, the queue is searched. The array of
Boolean variables is used to ensure that a completion event is
not added to the queue multiple times. Overflow will not occur
in the queue.

0 Bit arrays are not used. This increases application speed.

1 (default) Uses bit arrays. This minimizes the size of variable data.
AFE1_AFE2-1:1

553

554

Descriptions of Hierarchical Coder options

Scope Project level.

Description Determines whether bit arrays are used for Boolean internal variables.

Project>Options>Code Generation>project>Optimization>Use bit arrays for
boolean internal variables

-opt_ubfbev

Syntax -opt_ubfbev{0|1}

Parameters

Scope Project level.

Description Determines whether bitfields are used for Boolean external variables.

Project>Options>Code Generation>project>Optimization>Use bit fields for
boolean external variables

-opt_uso

Syntax -opt_uso{0|1}

Parameters

Scope Project level.

Description Determines whether state offsets are used instead of fixed state numbers.

Project>Options>Code Generation>project>Optimization>Use state offsets

0 Bitfields are not used. This increases application speed.

1 (default) Uses bitfields. This minimizes the size of variable data.

0 (default) State offsets are not used instead of fixed state numbers.

1 Uses state offsets instead of fixed state numbers. This
minimizes RAM usage.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-path

Syntax -pathdirectory

Parameters

Scope Project level.

Description Specifies the output path for all generated project files. If the path does not exist, it is
created. The path can be relative. By default, generated project files are created in the
coder directory.

See also -spath, page 560.

Project>Options>Code Generation>project>File Output>Output path

-projectheader

Syntax -projectheaderfile

Parameters

Scope Project level.

Description Specifies the name of the header file that contains macros, types, and function
prototypes meant for the project. The name used by default is Project.h.

Project>Options>Code Generation>project>File Output>Project header file

-projectnamespace

Syntax -projectnamespacename

Parameters

Scope Project level.

directory The output path for all generated project files.

file The name of the project header file.

name The name of the project namespace used by generated C++
code.
AFE1_AFE2-1:1

555

556

Descriptions of Hierarchical Coder options

Description Specifies the C++ namespace for all output for project-related types and functions. By
default, the namespace is “”.

Project>Options>Code Generation>project>Code Generation>Project namespace

-projectsource

Syntax -projectsourcefile

Parameters

Scope Project level.

Description Specifies the name of the source code file that contains code meant for the project. The
name used by default is Project.c.

Project>Options>Code Generation>project>File Output>Project source file

-pssf

Syntax -pssf{0|1}

Parameters

Scope Project level.

Description Determines whether a single source file is created for all generated code. The header
files remain separate. Note: A single source file cannot be used for C++ code.

Project>Options>Code Generation>project>File Output>Single source file

file The name of the project source file.

0 (default) Separate source files are created for generated code.

1 A single source file is created for all generated code.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-pssn

Syntax -pssn{0|1}

Parameters

Scope System level.

Description Determines whether the Hierarchical Coder generates symbolic state names.

Project>Options>Code Generation>system>Names>Print symbolic state names

-R

Syntax -R[file]

Parameters

Scope Project level.

Description Specifies a name for a report file to contain information about the project, option
settings, model characteristics, statistics, and a summary of the code generation. If -R is
specified without an argument, no report file will be created. If this option is not
specified at all on the command line, a report with the name VSCoder.cre is created.

Project>Options>Code Generation>project>File Output>Report file

-recordingbuffersize

Syntax -recordingbuffersizesize

Parameters

Scope System level.

0 No symbolic names are generated for states.

1 (default) Generates symbolic names for states.

file The name of the report file.

size The number of elements in the recording buffer.
AFE1_AFE2-1:1

557

558

Descriptions of Hierarchical Coder options

Description Specifies the number of elements in the recording buffer for C-SPYLink.

See also -userecordingbuffer, page 749.

Project>Options>Code Generation>system>C-SPYLink>Recording buffer size

-riins

Syntax -riins{0|1}

Parameters

Scope Project level.

Description Determines whether the internal instances can be reinitialized or not. If they cannot be
reinitialized, a reset is required to reach the initial state.

Project>Options>Code Generation>project>Memory>Reinitializable internal
instance

-S

Syntax -Sfile

Parameters

Scope System level.

Description Specifies the name of the source file that contains system-level model definitions. The
name used by default is System.c.

Project>Options>Code Generation>system>File Output>System source file

0 Internal instances cannot be reinitialized.

1 (default) Internal instances can be reinitialized.

file The name of the system source file.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-samplingbuffersize

Syntax -samplingbuffersizesize

Parameters

Scope System level.

Description Specifies the number of elements in the sampling buffer for C-SPYLink. If the value is
too low, you can only see the event that triggered the most recent transition and the states
after that microstep. If the value is too high, the target application might run out of
memory. This option does not change the behavior of the model.

See also -usesamplingbuffer, page 751.

Project>Options>Code Generation>system>C-SPYLink>Sampling buffer size

-siss

Syntax -siss{0|1}

Parameters

Scope Project level.

Description Determines whether to initialize static storage with zero values (external and internal
variables) explicitly. If these initial values are zero, there is no need for an explicit
initializer. The option should only be used for compilers that do not perform this
initialization as required.

Project>Options>Code Generation>project>Code>Explicitly initialize static
storage with zero values

size The number of elements in the sampling buffer.

0 (default) No explicit initialization of static storage.

1 Static storage is explicitly initialized with zero values.
AFE1_AFE2-1:1

559

560

Descriptions of Hierarchical Coder options

-spath

Syntax -spathdirectory

Parameters

Scope System level.

Description Specifies the output path for all generated system files. If the path does not exist, it is
created. The path can be relative. By default, generated system files are created in the
coder directory.

See also -path, page 555.

Project>Options>Code Generation>system>File Output>Output path

-ssewi

Syntax -ssewi{0|1}

Parameters

Scope Project level.

Description Determines whether the start event is sent automatically after VSInitAll has been
executed. If -ssewi0 is specified, you must pass the start event into VSDeduct
manually.

Project>Options>Code Generation>project>Code>Send start event when
initializing

directory The output path for all generated system files.

0 The start event is not sent automatically.

1 (default) The start event is sent automatically.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

-suppress_cspylink_common_files

Syntax -suppress_cspylink_common_files{0|1}

Parameters

Scope Project level.

Description Controls how multiple C-SPYLink files are generated when you are using two or more
projects in the same linked image together with C-SPYLink.

Project>Options>Code Generation>project>C-SPYLink>Suppress C-SPYLink
common files

-targetbreakpoints

Syntax -targetbreakpointsnumber

Parameters

Scope System level.

Description Specifies the number of available breakpoints for C-SPYLink on the target controller.
Target breakpoints speed up execution but consume memory. This option does not
change the behavior of the model.

Project>Options>Code Generation>system>C-SPYLink>Number of state
machine breakpoints

-txte

Syntax -txte{0|1|2|3}

Parameters

0 (default) Disables generation of multiple C-SPYLink files when you are using two
or more projects in the same linked image together with C-SPYLink.

1 Generates multiple C-SPYLink files when you are using two or more
projects in the same linked image together with C-SPYLink.

number The number of available breakpoints.

0 (default) Includes no text associated with events in the generated code.
AFE1_AFE2-1:1

561

562

Descriptions of Hierarchical Coder options

Scope System level.

Description Controls the amount of text associated with events to include in the generated code.

Project>Options>Code Generation>system>Names>Event name inclusion

-txtm

Syntax -txtm{0|1|2|3}

Parameters

Scope System level.

1 Includes the names of the events in the generated code. This makes it
possible to extract the names from the application when it executes on the
target. See the documentation for the API functions with suffixes _Name
and _NameAbs.

2 Includes the descriptions of the events in the generated code. This makes
it possible to extract the descriptions from the application when it
executes on the target. See the documentation for the API functions with
suffixes _Expl and _ExplAbs.

3 Includes both the names and the descriptions of the events in the
generated code.

0 (default) Includes no text associated with transition elements in the generated
code.

1 Includes the names of the transition elements in the generated code. This
makes it possible to extract the names from the application when it
executes on the target. See the documentation for the API functions with
suffixes _Name and _NameAbs.

2 Includes the descriptions of the transition elements in the generated code.
This makes it possible to extract the descriptions from the application
when it executes on the target. See the documentation for the API
functions with suffixes _Expl and _ExplAbs.

3 Includes both the names and the descriptions of the transition elements
in the generated code.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

Description Controls the amount of text associated with transition elements to include in the
generated code.

Project>Options>Code Generation>system>Names>State machine name inclusion

-txts

Syntax -txts{0|1|2|3}

Parameters

Scope System level.

Description Controls the amount of text associated with states to include in the generated code.

Project>Options>Code Generation>system>Names>State name inclusion

-uselivesamplingbuffer

Syntax -uselivesamplingbuffer{0|1}

Parameters

0 (default) Includes no text associated with states in the generated code.

1 Includes the names of the states in the generated code. This makes it
possible to extract the names from the application when it executes on the
target. See the documentation for the API functions with suffixes _Name
and _NameAbs.

2 Includes the descriptions of the states in the generated code. This makes
it possible to extract the descriptions from the application when it
executes on the target. See the documentation for the API functions with
suffixes _Expl and _ExplAbs.

3 Includes both the names and the descriptions of the states in the
generated code.

0 Prevents C-SPYLink from reading data from the sampling buffer while
the target application is executing.

1 (default) Enables C-SPYLink to read data from the sampling buffer while the
target application is executing.
AFE1_AFE2-1:1

563

564

Descriptions of Hierarchical Coder options

Scope System level.

Description Determines whether C-SPYLink can read data from the sampling buffer while the target
application is executing. The target controller must support live read.

Project>Options>Code Generation>system>C-SPYLink>Enable sampling buffer
readout

-usepop

Syntax -usepop{0|1}

Parameters

Scope System level.

Description Determines whether the Hierarchical Coder uses the same output path for system files
as the path specified for all project files.

Project>Options>Code Generation>system>File Output>Use Project output path

-userecordingbuffer

Syntax -userecordingbuffer{0|1}

Parameters

Scope System level.

Description Determines whether to use a recording buffer to make it possible to make recordings
(execution logs) at almost full speed. Enabling the buffer also makes it possible to
display sampling backups. Use the option -recordingbuffersize to set the size of
the buffer.

0 The Hierarchical Coder uses the output path specified by the
-spath option for system files.

1 (default) The Hierarchical Coder uses the same output path for system files
as the path specified for all project files.

0 Disables the recording buffer.

1 (default) Enables the recording buffer.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

See also -recordingbuffersize, page 734.

Project>Options>Code Generation>system>C-SPYLink>Enable recording buffer

-usesamplingbuffer

Syntax -usesamplingbuffer{0|1}

Parameters

Scope System level.

Description Controls on-target sampling buffers for a single macro step. If you specify
-usesamplingbuffer1, C-SPYLink can extract large amounts of debug information
from your model. This causes an increase in code size and a small reduction in execution
speed. If sequence recording is used, the speed reduction will be larger. Use the option
-samplingbuffersize to set the size of the buffer.

See also -samplingbuffersize, page 735.

Project>Options>Code Generation>system>C-SPYLink>Enable sampling buffer

-V

Syntax -Vsystem

Parameters

Scope System level.

Description Specifies the system that the subsequent system options on the command line apply to.
System options that are specified before a -V option apply to all systems.

This option is not needed in the graphical interface.

0 (default) Disables on-target sampling buffers for a single macrostep.

1 Enables on-target sampling buffers for a single macrostep.

system The name of a system.
AFE1_AFE2-1:1

565

566

Descriptions of Hierarchical Coder options

-variant

Syntax -variantname

Parameters

Scope Project level.

Description Specifies which variant to generate code for. By default, the Coder generates code for
the complete model.

See also Using variants and features, page 217.

Use the Variant toolbar.

-warnings_affect_exit_code

Syntax -warnings_affect_exit_code{0|1}

Parameters

Scope Project level.

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. This option determines whether warnings also generate a non-zero
exit code.

Project>Options>Code Generation>project>Configuration>Warnings affect exit
code

-warnings_are_errors

Syntax -warnings_are_errors{0|1}

Parameters

name The name of the variant.

0 (default) Warnings generate a zero exit code.

1 Warnings generate a non-zero exit code.

0 (default) Warnings are treated like warnings.

1 All warnings are reclassified as errors.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Hierarchical Coder command line options

Scope Project level.

Description Determines whether all warnings are reclassified as errors. If the Hierarchical Coder
encounters an error, no code is generated.

Project>Options>Code Generation>project>Configuration>Treat warnings as
errors

-width_babiv

Syntax -width_babiv{0|1|2|3}

Parameters

Scope Project level.

Description Specifies the data width for Boolean internal variables encoded as bit arrays.

Project>Options>Code Generation>project>Optimization>Width of type for
boolean internal variables bit arrays

0 (default) Informs the HCoder that Boolean internal variables encoded as bit arrays
are 8 bits.

1 Informs the HCoder that Boolean internal variables encoded as bit arrays
are 16 bits.

2 Informs the HCoder that Boolean internal variables encoded as bit arrays
are 32 bits.

3 Informs the HCoder that Boolean internal variables encoded as bit arrays
are 64 bits.
AFE1_AFE2-1:1

567

568

Descriptions of Hierarchical Coder options

AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API code
generation
● Introduction to the Adaptive API code generation

● Using the Adaptive API

Before you read about Adaptive API code generation, you should be familiar
with code generation in general. See Code generation, page 457.

Introduction to the Adaptive API code generation
Learn more about:

● Briefly about Adaptive API code generation, page 569

● File structure for Adaptive API code, page 570

● Adaptive API table-based code with C++, page 571

● Adaptive API readable code, page 571

BRIEFLY ABOUT ADAPTIVE API CODE GENERATION

Code for the Adaptive API can only be generated by the Classic Coder.

Choose between two fundamentally different variants of source code output:

● Table-based code (C or C++) for maximum compactness. The state machine logic is
encoded in compact tables.

● Readable code (C, C#, or Java), a plain representation of the state machine logic,
based on switch and if statements.

The readable code variant is useful if, for example, you are required to show
traceability between high-level functional requirements and generated code.
Moreover, if speed is a more critical factor than code size, readable code is generally
preferable.

Both the readable code representation and the table-based representation of the state
machine logic have their strengths and weaknesses. In particular:

● Readable code can be inspected and reviewed, with an easily understood mapping
from state machine model to code.
AFE1_AFE2-1:1

 569

570

Introduction to the Adaptive API code generation

● The readable representation is a straightforward translation into plain C, C#, or Java
code. In contrast, the table-based code consists of tables that represent the state
machine logic plus code to interpret the tables. This means that readable code will
generally be faster.

● Table-based code is more compact. The size added by calling action functions and
guard expressions/assignments is also very low.

● The readable code calls actions and guards/assignments in place, which makes the
total code size much more dependent on the state machine model. For example,
adding a call to an action function on a transition will add an explicit function call in
the generated code. In this respect, the readable code is much closer to what
user-written code would look like.

FILE STRUCTURE FOR ADAPTIVE API CODE

During the code generation phase, these sets of files are generated:

● Project-specific files

● System-specific files

For C# and Java, only source files are generated, because these languages do not have
the header file concept. Enumerations (both predefined and user-defined) are generated
in separate source files.

This figure shows the Coder-generated files and Adaptive API files to be used in your
compiler project—for example, in the IAR Embedded Workbench IDE:
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API code generation

In the figure, the dark gray area represents the source and header files that are part of the
API. The arrows in the figure indicate how the header files are included in other files.
System stands for the system name. The generated API files are the same for C and C++
code (with the appropriate filename extension) and for table-based and readable code.

For a list of generated files, see Coder-generated files for Adaptive API code, page 589.

ADAPTIVE API TABLE-BASED CODE WITH C++

The Coder can generate C++ code for the Adaptive API. The generated C++ files
conform to the Embedded C++ standard.

C++ code generated for the Adaptive API uses C++ to expose its external interface, but
uses C internally to keep the generated code compact and efficient.

Generating C++ code has the following advantages:

● User-written code that interfaces to the generated code can interact with a class that
uses C++ language features such as the keyword private to protect its members
from accidental and/or prohibited access.

● To many developers, exposing a C++ interface is more elegant than exposing a C
interface.

● In your user-written code you can create any number of instances of the Visual State
system, and the instances can be allocated statically or dynamically at the same
time. This feature is not available in the Adaptive and Uniform APIs when
generating C code. In addition, instances do not share any internal data memory (do
not include external variables) and therefore it is easier to enable thread safety in
your application.

The performance of C++ code generated for the Adaptive API is about similar to the
performance of C code generated for the Uniform API.

File structure for Adaptive API table-based C++ code

The file structure to be used in your compiler project—for example, in the IAR
Embedded Workbench IDE—is the same for all Adaptive API code, see File structure
for Adaptive API code, page 570.

Using the default Coder options, the generated C source files have the filename
extension c, and the generated C++ source files have the filename extension cpp. You
can change these extensions in the Classic Coder Options dialog box.

ADAPTIVE API READABLE CODE

With the readable code, both the API for calling the generated code and the set of
generated files is simplified compared to table-based code. The readable code API
supports C, C#, and Java but not C++, and the resulting application cannot be debugged
AFE1_AFE2-1:1

 571

572

Using the Adaptive API

using RealLink. However, readable C code can be debugged with the C-SPY Simulator
or a hardware debugging system in the IAR Embedded Workbench IDE, using
C-SPYLink.

File structure for Adaptive API readable code

The file structure to be used in your compiler project—for example, in the IAR
Embedded Workbench IDE—is the same for all Adaptive API code, see File structure
for Adaptive API code, page 570.

Using the Adaptive API
What do you want to do?

● Getting started generating code for the Adaptive API, page 572

● Generating code for an API, page 572

● Setting up the file structure for Adaptive API, page 574

● Using the API, page 574

● Using the Adaptive API for table-based code and C++, page 582

● Converting table-based C applications to C++ code, page 584

See also:

● Introduction to code generation, the Coders, and the APIs, page 457

● Adaptive API code generation, page 569

● Descriptions of the Adaptive API functions, page 592

● Classic Coder command line options, page 701, for information about how to start
code generation from the command line

GETTING STARTED GENERATING CODE FOR THE ADAPTIVE
API

1 Generating code for an API, page 572.

2 Setting up the file structure for Adaptive API, page 574.

3 Using the API, page 574.

If you want C++ support, see also Using the Adaptive API for table-based code and
C++, page 582.

GENERATING CODE FOR AN API

1 In the Navigator, open your workspace file.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API code generation

2 Choose Project>Options>Code generation to open the Classic Coder Options
dialog box.

3 In the left pane, select the project and make the required settings on the Configuration
page:

Make your settings:

● API type: choose Adaptive or Uniform

● Readable code generation: generates readable code instead of table-based code
(requires the Adaptive API)

● C++ code generation: generates C++ code (requires the Adaptive API).

● C# code generation: generates C# code instead of C or C++ (requires the Adaptive
API).

● Java code generation: generates Java code instead of C or C++ (requires the
Adaptive API).

If any of the options are not enabled, right-click the option for information about how to
enable it.

For reference information about the dialog box, see Classic Coder Options dialog box,
page 674.
AFE1_AFE2-1:1

 573

574

Using the Adaptive API

4 Click OK when finished.

5 Choose Project>Code generate to generate code for the project.

Code generation starts, and progress is displayed in the Output window.

By default, Coder-generated files are located in the Coder directory in your project
directory (where the project file is located). You can specify another file output directory
on the File Output page in the Classic Coder Options dialog box.

SETTING UP THE FILE STRUCTURE FOR ADAPTIVE API

1 Include the Adaptive API header file System.h in your source code (System reflects
the name of the Visual State system.)

2 Write code to act as an interface to the Adaptive API:

● Call all the required initialization functions, see Calling initialization functions,
page 575.

● Call the Adaptive API functions in sequences as described in Calling event
deduction functions, page 576, Performing an event inquiry, page 576, Retrieving
names and descriptions, page 577, and Retrieving and setting states, page 578.

3 Implement the action functions that are needed by your application.

4 Include the following source files in a make file:

● The Adaptive API source file System.c.

● The project source file Project.c. (Project stands for the name of your project.)

● Your source file.

5 Add your compiler and linker commands to the make file.

USING THE API

You use functions in the Adaptive API (table-based or readable) and the Uniform API
in the same way, except for a few differences. In case of a difference, this is clearly
stated.

The API functions are divided in groups of related functionality and typically this is
what you must consider doing:

● Connecting and disconnecting functions (Uniform API only), page 575

● Calling initialization functions, page 575

● Calling event deduction functions, page 576

● Performing an event inquiry, page 576

● Retrieving names and descriptions, page 577
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API code generation

● Retrieving and setting states, page 578

● Managing instances, page 579

● Managing internal variables, page 580

● Managing external variables, page 580

● Managing constants, page 581

● Managing enumerations, page 581

● Managing signals, page 581

● Managing event arguments, page 582

For information about the various API functions, see:

● Adaptive API reference information, page 589

● Uniform API reference information, page 635.

Note: For readable C# and Java code, the API functions are not prefixed with the system
name or project name, as the system name is used as the class name in these cases.

Connecting and disconnecting functions (Uniform API only)

When using the Uniform API, it is necessary to acquire a system context (a handle)
before calling any other API functions. Such a context is acquired by calling the
connecting function SMP_Connect. Use the acquired system context for all the
subsequent calls to API functions that must operate on this particular system.

To release the system context:

1 Call the API function SMP_Free with a system context. After a call to SMP_Free, the
system context can no longer be used.

2 When a call has been made to SMP_Connect, a system is said to be loaded. When a
call has been made to SMP_Free, a system is said to be unloaded.

Calling initialization functions

Calling the initialization functions is required to ensure proper initialization of your
project.

To ensure proper initialization:

1 From the user-written code, call the API function for initialization, which means:

● For Adaptive API readable code or if you enabled the Coder option -vsintiall:
call the API function SystemnameVSInitAll.

● For Adaptive API table-based code: call the API function
SystemnameSEM_InitAll.
AFE1_AFE2-1:1

 575

576

Using the Adaptive API

● For Uniform API table-based code: call the API function
SystemnameSMP_InitAll.

If you use this function for the Uniform API, the function will also connect the
system which means that you do not also need to call SMP_Connect.

Calling the *InitAll function takes care of most of the initialization you need.

2 If you have any project-external variables, you must call an initialization function
somewhere from your code for those if you have set External variable initialization
to Both in the Classic Coder Options dialog box, which means:

● For Adaptive API table-based code: call the generated function
ProjectSEM_InitPrjExternalVariables.

● For Adaptive API readable code: call the generated function
ProjectVSInitPrjExternalVariables.

● For Uniform API table-based code: call the generated function
ProjectSEM_InitPrjExternalVariables.

If you use this function for the Uniform API, the function will also connect the
system so you do not also need to call SMP_Connect.

Calling event deduction functions

Event deduction is also referred to as macrosteps in Visual State. See Runtime
behavior—macrosteps and microsteps, page 122.

To perform event deduction in the application:

1 Your code must somehow obtain an event from the environment. This event must be
mapped to a Visual State event (symbolic event names are generated in the System.h
file if the Coder option -sne has been set). The first event used in a macrostep
following the initialization procedure must be the Visual State reset event SE_RESET.

2 Call SystemVSDeduct, the API function with the Visual State event.

If the event has parameters, supply these as additional parameters to the function.

Performing an event inquiry

The API provides functions that can determine active events, in other words, which
events will cause the state configuration to change. By default, these functions are not
enabled, but must be enabled by setting the appropriate Coder options.

To perform an event inquiry:

1 For table-based code, call the API function SXX_Inquiry (where SXX is SEM for the
Adaptive API, but SMP for the Uniform API). For readable code, call the API function
VSInquiry.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API code generation

The next step is only applicable to table-based code.

2 Call the API function SXX_GetInput repeatedly until all active events have been
retrieved.

As an alternative to calling SXX_GetInput multiple times, call the API function
SXX_GetInputAll once, which returns all active events in a buffer.

Retrieving names and descriptions

The API provides text functions by which it is possible to get the name and description
of a specified event, state, or action function. By default, these functions are not enabled,
so you must enable them by setting the appropriate Coder options.

To retrieve the name of an element:

1 For readable code, or if you have enabled the Coder option -vselementname, perform
this step (otherwise skip this step and go directly to step 2):

● Call the API function VSElementName. This returns a pointer to the internal
representation of the name.

● Now you can use the name after receiving the pointer.

Do not perform the next step.

2 Call the API function SXX_Name or SXX_NameAbs (where SXX is SEM for the Adaptive
API, but SMP for the Uniform API). The former copies the name to a specified buffer,
while the latter returns a pointer to the internal representation of the name.

Now you can use the name after receiving it in the buffer (using SXX_NAME) or the
pointer (using SXX_NameAbs).

To retrieve the description of an element:

1 For readable code, or if you have enabled the Coder option -vselementexpl, perform
this step (otherwise skip this step and go directly to step 2):

● Call the API function VSElementExpl. This returns a pointer to the internal
representation of the description.

● Now you can use the explanation after receiving the pointer.

Do not perform the next step.

2 Call the API function SXX_Expl or SXX_ExplAbs (where SXX is SEM for the Adaptive
API, but SMP for the Uniform API). The former copies the description to a specified
buffer, while the latter returns a pointer to the internal representation of the description.

Now you can use the explanation after receiving it in the buffer (using SXX_Expl) or the
pointer (using SXX_ExplAbs).
AFE1_AFE2-1:1

 577

578

Using the Adaptive API

Retrieving and setting states

The API provides functions by which it is possible to retrieve information on the internal
state configuration, and to force the states in the internal state configuration into a
specific state. By default, these functions are not enabled, but must be enabled by setting
the appropriate Coder options.

Note: Each state is owned by one specific parent state machine. This means that states
cannot have the same state index number across state machines (state index numbers are
unique).

To retrieve information on the internal state configuration:

1 Call the API function with a state index number to determine the parent state machine,
which means:

● For Adaptive API table-based code: use the function SEM_Machine

● For Adaptive API readable code: use the function VSMachine

● For Uniform API table-based code: use the function SMP_Machine.

2 Call the API function with a state machine index number to determine the current state
of the state machine, which means:

● For Adaptive API table-based code: use the function SEM_State

● For Adaptive API readable code: use the function VSState

● For Uniform API table-based code: use the function SMP_State.

To force a state in the internal state configuration into a specific state:

1 Find the state you want to force some state machine into. This state might be one you
have stored just before running out of power.

2 Call the API function with a state index number to force the parent state machine into
this new state, which means:

● For Adaptive API table-based code: use the function SEM_ForceState

● For Adaptive API readable code: use the function VSForceState

● For Uniform API table-based code: use the function SMP_ForceState.

This function should primarily be used for restoring a previous state configuration
obtained by calls to SEM_State|VSState|SMP_State.

Forcing a single state machine into a specified state might result in an illegal state
configuration, that is a configuration which would not otherwise be reachable. Thus, it
will not be covered by a verification with the Verificator. In general, use this function
cautiously.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API code generation

Managing instances

The API is capable of handling multiple instances of the same Visual State system, see
Reuse of design using system instances, page 126. The system exists only in one location
in memory. The only information multiplied is variables for storing the current state
configuration and the internal variables.

To use multiple instances:

1 Specify the number of instances in the Designer, see Creating multiple system
instances, page 235.

2 Call the API function, which means:

● For Adaptive API readable code or if you enable the -vsinitall Coder option:
use the function SystemVSInitAll

● For Adaptive API table-based code: use the function SEM_InitAll

● For Uniform API table-based code: use the function SMP_InitAll.

If needed, the function will in its turn initialize instances.

3 Each time an event deduction is performed, set the correct instance, which means:

● For table-based code: use the function SXX_SetInstance

● For readable code: the correct instance simply need to be specified when you call,
for example VSDeductInstance.

If these guidelines are followed, the API can handle multiple instances in a
pseudo-parallel manner without any reduction in performance.

For some example code on how to use SEM_SetInstance, see SEM_SetInstance, page
608.

For table-based code: It is illegal to change instances when states might be changing,
in other words, in the middle of a call to VSDeduct. Likewise,
when SXX_ForceState is used (where SXX is SEM for the
Adaptive API, but SMP for the Uniform API), ensure that the
correct instance is updated.

For readable code: If your system has more than one instance specified in the
Designer, some functions will automatically be prepared for
using instances. This applies to: VSDeductInstance,
VSForceStateInstance, VSInquiryInstance,
VSStateInstance. These functions work in the same way as
the ordinary functions, (without the Instance postfix), and
they all take an extra argument that indicates which instance to
work with.
AFE1_AFE2-1:1

 579

580

Using the Adaptive API

Managing internal variables

Managing external variables

External variables are defined at project level or system level in the Designer and you
specify whether the variables should be initialized by definition or by an initialization
function. If you have any project-external variables, and you have set the Coder option
-iev so that you get a function for initializing external variables, you must call that
generated function:

For table-based code: Internal variables are defined at system level in the Designer
and you specify whether the variables should be initialized by
definition or by an initialization function. Internal variables
will be placed in the System.c file.

If the -iiv1 Coder option is set, the Coder will generate the
variable initialization function
SXX_InitInternalVariables (where SXX is SEM for the
Adaptive API, but SMP for the Uniform API). The function is
placed in the System.c file.

For readable code: Internal variables are defined at system level in the Designer
and you specify whether the variables should be initialized by
definition or by an initialization function. Internal variables
will be placed in the System.c file.

If the -iiv1 Coder option is set, the Coder will generate the
variable initialization function VSInitInternalVariables.
The function is placed in the System.c.

For table-based code: *InitPrjExternalVariables

External variables are by default declared in the System.h file
and will be placed in the System.c file. But in the Classic
Coder Options dialog box you can choose other destination
files. If the Coder option -iev1 is set, the Coder will generate
the external variable initialization function
SXX_InitExternalVariables (where SXX is SEM for the
Adaptive API, but SMP for the Uniform API) for initializing
system-external variables. The function is placed in the same
file as the variables.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API code generation

Managing constants

Constants can be defined at project level or system level in the Designer.

● Constants defined at project level will be defined in the Project.h file.

● Constants defined at system level will be defined in the System.h file.

All constants will be defined as C constants.

Managing enumerations

Enumerations can only be defined in transition element files at System level in the
Designer.

Enumerations will always be generated in a header file with the same name as the
enumeration. For C and C++, the C enumeration format is used.

Managing signals

Signals are handled internally. An API function sends signals to the signal queue and
empties the signal queue, which means that you should use the function VSDeduct.

If signals are used, you must enable the signal queue by specifying a signal queue size.
The signal queue size must be large enough to contain the largest number of signals that
can be caused by an event.

For table-based code, the SEM_InitSignalQueue function (SMP_InitSignalQueue
for the Uniform API) initializes the signal queue and will be enabled by the Coder if the
signal queue size is larger than zero.

For readable code: *VSInitPrjExternalVariables

External variables are by default declared in the System.h file
and will be placed in the System.c file. But in the Classic
Coder Options dialog box you can choose other destination
files. If the Coder option -iev1 is set, the Coder will generate
the external variable initialization function
VSInitExternalVariables for initializing system-external
variables. The function is placed in the same file as the
variables.

For the Adaptive API (readable), or if you
enabled the -vsinitall Coder option:

SystemVSInitAll will automatically
call the appropriate function to initialize
the signal queue.
AFE1_AFE2-1:1

 581

582

Using the Adaptive API

Managing event arguments

When an event takes arguments, the arguments must be given together with the event as
arguments to the SystemVSDeduct function.

For more information, see VSDeduct, page 612.

USING THE ADAPTIVE API FOR TABLE-BASED CODE AND
C++

The Coder does not instantiate objects of the generated system class (named
VS_SYSTEM). Therefore, you must instantiate objects of the system class in your own
files (user-written code).

In contrast to a standard Adaptive API application, any number of objects of the system
class can be instantiated, just as is the case for ordinary classes. Because the objects do
not share any internal data memory (they do not include external variables), two
different objects of the system class can be accessed simultaneously from two different
threads, provided that all functions are reentrant, and external variables are not
modified.

When generating C++ code, you must interface to member functions of the generated
system class instead of global functions. For every API function that you must call for
a C application, you must call a corresponding member function (having the same name)
of the generated class.

Instances in C++ API code

Each Visual State system consists of one or more instances with exactly one instance
being active at any point in time, see Reuse of design using system instances, page 126.
Such instances are called internal instances and they have these characteristics:

● The number of internal instances is fixed for the system at the time of code
generation. You can specify the number of internal instances in the Designer in the
Edit Systems dialog box. See Creating multiple system instances, page 235.

● Only one internal instance may be active at a time because internal instances share
internal data memory.

For the Adaptive API (table-based): SEM_InitAll will automatically call
SEM_InitSignalQueue if necessary.

For the Uniform API: SystemSMP_InitAll will also call
SystemSMP_InitSignalQueue as part
of initializing the system.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API code generation

Internal instances should not be mistaken for instances (objects) of the generated class,
which are called external instances and they have these characteristics:

● External instances can be instantiated any number of times, either statically, on the
stack, or in the heap.

● Multiple external instances may be manipulated at the same time because external
instances do not share internal data memory (do not include external variables).

Both types of instances may be referred to as just instances when the type of instance
clearly appears from the context.

Internal variables in C++ API code

Internal variables are part of the generated class as private member variables.
Consequently they can only be initialized by an initialization function.

External variables in C++ API code

External variables are not part of the generated class, but are generated as statically
allocated variables, in the same way as for a C application. Therefore, all external
instances of the generated class share the same set of external variables.

If two external instances manipulate an external variable from two different threads, you
must synchronize the access to that variable.

Constants in C++ API code

Constants are not part of the generated class, but are generated in the same way as for a
C application.

Enumerations in C++ API code

Enumerations are not part of the generated class, but are generated in the same way as
for a C application.

Signals in C++ API code

Signals are handled internally, in the same way as for a C application. Note that every
external instance has its own signal queue, while internal instances share a single signal
queue.

Event parameters in C++ API code

Event parameters are handled in the same way as for a C application. The Coder will
always generate a member function SEM_Deduct for the generated class, independently
of the existence of event parameters.
AFE1_AFE2-1:1

 583

584

Using the Adaptive API

CONVERTING TABLE-BASED C APPLICATIONS TO C++ CODE

If you have an existing C application, you can easily modify your files for C++ code
generation.

For each call to an API function, prefix the function name with the name of the object
that you instantiate, followed by a period (this is the syntax for calling a member
function of a class).

For example, a call to SEM_InitAll that has the form SEM_InitAll() should be
replaced by System.SEM_InitAll() (in this example, it is assumed that the object is
named System).
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API code
generation
● Introduction to the Uniform API code generation

● Using the Uniform API

Before you read about Uniform API code generation, you should be familiar
with code generation in general. See Code generation, page 457.

Introduction to the Uniform API code generation
Learn more about:

● Briefly about Uniform API code generation, page 585

● Uniform API code, page 586

BRIEFLY ABOUT UNIFORM API CODE GENERATION

Code for the Expert API can only be generated by the Classic Coder.

The Uniform API will be generated in two files: project.c and project.h, where
project reflects the name of your project file.

Most of the functions in the Uniform API have SMP as prefix, and they take a pointer
to a system context as a parameter to determine the system to operate on. This means
that the API can operate on projects that contain multiple systems.

For information about the functions, see Descriptions of the Uniform API functions,
page 638.

Projects with multiple systems and reentrancy

Because all SMP functions are reentrant and are passed with a system context as a
parameter, multiple operating system tasks may operate on different systems at the same
time. Because of the principle of reentrancy, simultaneous calls made to the same API
function will not cause problems as long as none of the simultaneous calls use the same
system contexts as parameters to the function in question. Likewise, simultaneous calls
to different API functions are supported. In general, simultaneous calls to API functions
with different system contexts are supported. For example, event deductions may be in
AFE1_AFE2-1:1

 585

586

Introduction to the Uniform API code generation

progress in different operating system tasks at the same time, all retrieving action
expressions from the SMP_GetOutput function.

This is an example of how system contexts are used; a system context pointer variable
is defined for each system:

SEM_CONTEXT *pSystemContext;

The system context pointer is assigned by calling the initialization function:

 SystemSMP_InitAll(&pSystemContext, &VSSystem);
 if (CC != SES_OKAY)
 exit (CC);

The system context pointer used in an event deduction (macrostep):

 SEM_EVENT_TYPE EventNo;
 SEM_ACTION_EXPRESSION_TYPE ActionExp;

 . . .
 CC = SystemVSDeduct (pSystemContext, EventNo);
 if (CC != SES_OKAY && CC != SES_FOUND)
 exit (CC);

Reentrancy of SMP functions depends on the compiler used. Thus, the compiler used
for compilation of API source files must also support reentrancy, because some of the
API functions use local stack variables. If the compiler does not support reentrancy,
local stack variables may be stored in fixed memory locations, and different operating
system tasks controlling different systems might access the same variable space
simultaneously which will result in unpredictable behavior.

UNIFORM API CODE

During the code generation phase, these sets of files are generated:

● Project-specific files

● Project-specific API files

● System-specific files
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API code generation

File structure for Uniform API table-based code

This figure shows the Coder-generated files and Uniform API files to be used in your
compiler project—for example, in the IAR Embedded Workbench IDE—for
table-based code:

In the figure, the rectangle in yellow represents the header files that are part of the API.
The arrows in the figure indicate how the header files are included in the source files.
There must be a user-written source file for each system. As can be seen in the figure,
each such file must include all project header files and all system header files for a
specific system.

For a list of generated files, see Coder-generated source files for the Uniform API, page
635.

Using the Uniform API
What do you want to do?

● Getting started generating code for the Uniform API, page 588

● Setting up the file structure for the Uniform API, page 588

See also:

● Introduction to code generation, the Coders, and the APIs, page 457

● Introduction to the Uniform API code generation, page 585
AFE1_AFE2-1:1

 587

588

Using the Uniform API

● Adaptive API reference information, page 589

● Classic Coder command line options, page 701, for information about how to start
code generation from the command line

GETTING STARTED GENERATING CODE FOR THE UNIFORM
API

1 Generating code for an API, page 572.

Note: This task is described in the chapter Adaptive API code generation.

2 Setting up the file structure for the Uniform API, page 588.

3 Using the API, page 574.

Note: This task is described in the chapter Adaptive API code generation.

SETTING UP THE FILE STRUCTURE FOR THE UNIFORM API

1 Include these header files in all your source files:

● The Uniform API header file project.h.

● The Coder-generated header files for the specific system, source.h.

2 Write code that interfaces to the Uniform API:

● Call one of the connecting functions, see Connecting and disconnecting functions
(Uniform API only), page 575.

● Call all the required initialization functions, see Calling initialization functions,
page 575.

● Call the Uniform API functions in sequences as described in Calling event
deduction functions, page 576, Performing an event inquiry, page 576, Retrieving
names and descriptions, page 577, and Retrieving and setting states, page 578.

● Call the disconnecting function SMP_Free, see Connecting and disconnecting
functions (Uniform API only), page 575.

3 Include the following source files in a make file:

● The Uniform API source file project.c.

● The Coder-generated system source files, source.c.

● Your source files.

4 Add your compiler and linker commands to the make file.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference
information
● Coder-generated source files for the Adaptive API

● Summary of the Adaptive API functions

● Descriptions of the Adaptive API functions

● Adaptive API return codes

Coder-generated source files for the Adaptive API
Declarations for all Adaptive API functions are located in the API header file
System.h.

Unless otherwise stated, the portability of the Adaptive API functions is Standard C
compliant (Embedded C++ in the case of C++ code generation).

Learn more about:

● Coder-generated files for Adaptive API code

CODER-GENERATED FILES FOR ADAPTIVE API CODE

During the code generation phase, these sets of files are generated:

● Project-specific files

● System-specific files

These are the project-specific files:

Project stands for the project name.

Project.h Contains the declarations of all project-related types, and
external variables that are defined at project level and shared
for all systems.

Project.c Contains the definitions of all external variables that are
defined at project level and shared for all systems.
AFE1_AFE2-1:1

589

590

Summary of the Adaptive API functions

These are the system-specific files:

System stands for the prefix used by the code generator, to distinguish files from
different systems. The default prefix is the system name, but you can change it in the
Classic Coder Options dialog box.

A group of files from one system can be compiled to be used by themselves in an
application binary file or together with files from another system.

For readable C# and Java code, no header files are generated. The filename extensions
for the source files are .cs and .java, respectively, and cannot be changed. To handle
action functions, the interface source files ISystemnameActionHandler and
IProjectnameActionHandler are generated. Any enumerations are generated in
separate files, named after the enumeration. The predefined enumerations
IdentifierType and VSResult are always generated in their own separate files.

Summary of the Adaptive API functions
This table summarizes the Adaptive API functions:

System.c Contains the core model logic of the system (primarily
transitions).

System.h Header files for System.c. Contains all relevant types and
macros for the system.

Adaptive API function Description

SEM_Expl Gets the ASCII description of a specified identifier.

SEM_ExplAbs Gets the absolute address of an ASCII description of a specified
identifier.

SEM_ForceState Forces the internal state configuration into a specified state.

SEM_GetInput Finds events that can trigger transitions or derive action
expressions from the current state.

SEM_GetInputAll Finds all events that can trigger transitions or derive action
expressions from the current state.

SEM_Init Initializes the system and must be called before any other
functions are called.

SEM_InitAll Wraps all initialization functions and calls them in order. This is
the recommended way to initialize a system.

Table 29: Summary of the Adaptive API functions
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

SEM_InitExternalVar

iables

Initializes the external variables in the system.

SEM_InitInstances Initializes a number of instances of a system.

SEM_InitInternalVar

iables

Initializes the internal variables in the system.

SEM_InitSignalQueue Initializes the signal queue in a system.

SEM_Inquiry Prepares for finding events that can trigger changes in the
current state.

SEM_Machine Returns the state machine index of a specified state.

SEM_Name Gets the ASCII name of a specified identifier.

SEM_NameAbs Gets a pointer to the ASCII name of a specified identifier.

SEM_SetInstance Sets the currently active instance of the system.

SEM_SignalQueueInfo Returns information about the signal queue.

SEM_State Returns the current state of a specified state machine.

SEM_StateAll Returns the active state of all state machines.

VSDeduct Deduces all the relevant action expressions on the basis of the
given event, the internal current state vector, and the transitions
in the Visual State system.

VSDeductInstance Deduces all the relevant action expressions on the basis of the
given event, the internal current state vector, and the transitions
in the Visual State system for the given instance.

VSElementExpl Gets the pointer to the explanation for the specified identifier.

VSElementName Gets the pointer to the ASCII name of the specified identifier.

VSForceState Forces the internal state configuration to the specified state.

VSForceStateInstanc

e

Forces the internal state configuration to the specified state for
the given instance of a system.

SystemVSGetCurrentS

tateTree

Copies the strings representing the current state tree into the
buffer.

SystemVSGetMaxCurrentStat
eTree

Returns the needed size for VSGetCurrentStateTree buffer.

VSInitAll Wraps all initialization functions.

VSInitExternalVaria

bles

Initializes the external variables in the system and must be called
together with the VSInitAll function.

Adaptive API function Description

Table 29: Summary of the Adaptive API functions (Continued)
AFE1_AFE2-1:1

591

592

Descriptions of the Adaptive API functions

Descriptions of the Adaptive API functions
The following pages give detailed reference information about each Adaptive API
function. The syntax descriptions and examples apply to C/C++, for C# and Java they
are slightly different. For the exact syntax for C# and Java API functions, inspect the
generated code.

SEM_Expl

Syntax unsigned char SEM_Expl (unsigned char IdentType,
 SEM_EXPLANATION_TYPE IdentNo,
 char *Text,
 unsigned short MaxSize)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This deprecated function is provided for backward compatibility and should not be used.
Instead use the function VSElementExpl, see VSElementExpl, page 616.

This function gets the ASCII description of the specified identifier.

VSInitInternalVaria

bles

Initializes the internal variables in the system and must be called
together with the VSInitAll function.

VSInquiry Finds events that can trigger transitions or derive action
expressions from the current state.

VSInquiryInstance Finds events that can trigger transitions or derive action
expressions from the current state configuration for the given
instance.

VSMachine Returns the state machine index of the specified state.

VSState Returns the current state of the specified state machine.

VSStateAll Returns the active state of all state machines.

VSStateAllInstance Returns the active state of all state machines for the given
instance of the system.

VSStateInstance Returns the current state of the specified state machine for the
specified instance.

Adaptive API function Description

Table 29: Summary of the Adaptive API functions (Continued)
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

The function must be enabled by the Coder command line option -semexpl1 or the
corresponding GUI option.

Parameters

Return value See:

Example See SEM_GetInput, page 595.

SEM_ExplAbs

Syntax unsigned char SEM_ExplAbs (unsigned char IdentType,
 SEM_EXPLANATION_TYPE IdentNo,
 char **Text)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This deprecated function is provided for backward compatibility and should not be used.
Instead use the function VSElementExpl, see VSElementExpl, page 616.

IdentType Must contain the type of the identifier, EVENT_TYPE or
STATE_TYPE.

Note that ACTION_TYPE is deprecated because there is no
advantage to using it here.

IdentNo Must contain the index number of the identifier.

Text Must contain a pointer to a text string buffer. If the function
terminates successfully, the text string contains the name of
the specified identifier.

MaxSize Specifies the maximum length of the text including the
NULL termination character.

SES_RANGE_ERR, page 633

SES_TEXT_TOO_LONG, page 634

SES_TYPE_ERR, page 634

SES_OKAY, page 633
AFE1_AFE2-1:1

593

594

Descriptions of the Adaptive API functions

This function gets the absolute address of an ASCII description of the specified
identifier.

The function must be enabled by the Coder command line option -semexplabs1 or the
corresponding GUI option.

Parameters

Return value See:

Example See SEM_GetInputAll, page 597.

SEM_ForceState

Syntax unsigned char SEM_ForceState (SEM_STATE_TYPE StateNo)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This function is used for forcing the internal state configuration into the specified state.
This is useful if you want to reestablish the internal state configuration after a power
failure of the target system. Before calling this function the first time after a power
failure, the SEM_InitAll function should be called to initialize the other internal
variables of the system.

IdentType Must contain the type of the identifier, EVENT_TYPE or
STATE_TYPE.

Note that ACTION_TYPE is deprecated because there is no
advantage to using it here.

IdentNo Must contain the index number of the identifier.

Text Must be a pointer to a char *. If the function terminates
successfully, the pointer contains the absolute address of
the name of the specified identifier.

SES_RANGE_ERR, page 633

SES_TYPE_ERR, page 634

SES_OKAY, page 633
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

The state configuration established by calling SEM_ForceState must have been stored
in EEPROM before the power failure.

Note: This function should be used with caution. The internal state configuration could
be forced to a configuration that is not reachable by executing the model itself.

The function must be enabled by the Coder command line option -semforcestate1
or the corresponding GUI option.

Parameters

Return value See:

Example /*
 * This function should only be called after a power failure
 * to reestablish the internal state variables.
 */
void PowerUp (void)
{
 SEM_STATE_TYPE StateNo;
 SEM_STATE_MACHINE_TYPE i;

 /* Initialize the VS System. */
 SEM_InitAll ();

 for (i = 0; i < VS_NOF_STATE_MACHINES; i++)
 {
 /* Get state configuration from EEPROM. */
 EEPROMState (i, &StateNo);
 if (SEM_ForceState (StateNo) != SES_OKAY)
 ErrorHandling ();
 }
}

See also -snm, page 737.

SEM_GetInput

Syntax unsigned char SEM_GetInput (
 SEM_EVENT_TYPE *EventNo, SEM_EVENT_TYPE *EventList)

StateNo Contains the state index number.

SES_RANGE_ERR, page 633

SES_OKAY, page 633
AFE1_AFE2-1:1

595

596

Descriptions of the Adaptive API functions

Defined in SystemSEMLibB.c

For use with Table-based code

Description The function is used to find events that can trigger transitions or derive action
expressions from the current state. All events are found by continuous calls to this
function. Because the function will inquire events on the basis of the internal current
state configuration, an event deduction should not be running.

The function must be enabled by the Coder command line option -seminquiry1 or the
corresponding GUI option.

Parameters

Return value See:

EventNo A pointer to store the inquired event number.

EventList A pointer to an array that holds the event numbers to be
inquired. EventList must be terminated with the
definition EVENT_TERMINATION_ID, which indicates the
end of the array.

If the pointer is NULL, all events are inquired.

SES_FOUND, page 633

SES_RANGE_ERR, page 633

SES_OKAY, page 633
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Example #define STRLEN 80

/* Used event definitions are found in System.h file. */
const SEM_EVENT_TYPE KeyTable[] =
{
 E_KEY_F1,
 E_KEY_F2,
 E_KEY_F3,
 E_KEY_F4,
 E_KEY_F5,
 E_KEY_F6,
 E_KEY_F7,
 E_KEY_F8,
 E_KEY_F9,
 E_KEY_F10,
 E_KEY_F11,
 E_KEY_F12,
 EVENT_TERMINATION_ID
};

/* Print active keys. */
unsigned char PrintActiveKeys (void)
{
 char Str[STRLEN];
 unsigned char CC = SES_OKAY;
 SEM_EVENT_TYPE EventNo = EVENT_UNDEFINED;

 if ((CC = SEM_Inquiry ()) == SES_OKAY)
 {
 printf ("\nActive event number:");
 while ((CC = SEM_GetInput (&EventNo, KeyTable)) == SES_FOUND)
 {
 /* To print the name of the event, use SEM_Name instead */
 if (SEM_Expl (EVENT_TYPE, EventNo, Str, STRLEN) ==
 SES_OKAY)
 printf ("\n%s = %d", Str, EventNo);
 }
 }
}

SEM_GetInputAll

Syntax unsigned char SEM_GetInputAll
 (SEM_EVENT_TYPE *EventVector,
 SEM_EVENT_TYPE *EventList, SEM_EVENT_TYPE MaxSize)
AFE1_AFE2-1:1

597

598

Descriptions of the Adaptive API functions

Defined in SystemSEMLibB.c

For use with Table-based code

Description This function is used for finding all events that can trigger transitions. All events are
found by one call to this function. Because the function will inquire events on the basis
of the internal current state configuration, an event deduction should not be running.

The function must be enabled by the Coder command line option -semgetinputall1
or the corresponding GUI option.

Parameters

Return value See:

EventVector A pointer to an array in which to store the inquired events.
The array is terminated with the definition
EVENT_TERMINATION_ID on success.

EventList A pointer to an array that holds the event numbers to be
inquired. EventList must be terminated with the
definition EVENT_TERMINATION_ID, which indicates the
end of the array.

If the pointer is NULL, all events are inquired.

MaxSize The maximum length of the event vector including the
definition EVENT_TERMINATION_ID.

SES_BUFFER_OVERFLOW, page 632

SES_RANGE_ERR, page 633

SES_OKAY, page 633
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Example #define STRLEN 80

/* Used event definitions are found in the System.h file. */
const SEM_EVENT_TYPE KeyTable[] =
{
 E_KEY_F1,
 E_KEY_F2,
 E_KEY_F3,
 E_KEY_F4,
 E_KEY_F5,
 E_KEY_F6,
 E_KEY_F7,
 E_KEY_F8,
 E_KEY_F9,
 E_KEY_F10,
 E_KEY_F11,
 E_KEY_F12,
 EVENT_TERMINATION_ID
};

/* Print active keys. */
unsigned char PrintActiveKeys (void)
{
 char Str[STRLEN];
 unsigned char CC = SES_OKAY;
 SEM_EVENT_TYPE EventList[13];
 int i;

 if ((CC = SEM_Inquiry ()) == SES_OKAY)
 {
 printf ("\nActive event number:");
 while ((CC = SEM_GetInput (&EventNo, KeyTable, 13)) ==
 SES_FOUND)
 {
 i = 0;
 while (EventList[i] != EVENT_TERMINATION_ID)
 {
 /* To print the name, call SEM_NameABS instead */
 if (SEM_ExplAbs (EVENT_TYPE, EventList[i], &Str) ==
 SES_OKAY)
 printf ("\n%s = %d", Str, EventList[i++]);
 }
 }
 }
}

AFE1_AFE2-1:1

599

600

Descriptions of the Adaptive API functions

SEM_Init

Syntax void SEM_Init (void)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This function initializes the Visual State system and must be called before any other
functions are called.

SEM_Init is called automatically by SEM_InitAll, which means that you should
normally not need to call SEM_Init.

Parameters None.

Return value None.

Example None.

SEM_InitAll

Syntax #include "semlibb.h"
void SEM_InitAll (void)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This function wraps all initialization functions. The function calls the following
functions in the listed order, provided that they exist:

SEM_Init
SEM_InitExternalVariables
SEM_InitInternalVariables
SEM_InitSignalQueue
SEM_InitInstances

The function must be enabled by the Coder command line option -seminitall1 or the
corresponding GUI option.

Parameters None.

Return value None.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Example None.

SEM_InitExternalVariables

Syntax void SEM_InitExternalVariables (void)

Defined in SystemData.c

For use with Table-based code

Description This function initializes the external variables in the system and must be called together
with the SEM_Init function.

The function is auto-generated by the Coder during the code generation of a system if
any external variables are present, and the Coder option -iew has been set.

SEM_InitExternalVariables is called automatically by SEM_InitAll.

Parameters None.

Return value None.

Example None.

SEM_InitInstances

Syntax unsigned char SEM_InitInstances (void)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This function initializes a number of instances of a system. The instance is handled in
pseudo-parallel using the SEM_SetInstance function. The actual number of instances
is determined by the information in the system.

SEM_InitInstances is called automatically by SEM_InitAll.

Parameters None.
AFE1_AFE2-1:1

601

602

Descriptions of the Adaptive API functions

Return value See:

Example unsigned char Instance (SEM_EVENT_TYPE EventNo,
 SEM_INSTANCE_TYPE InstanceNo)
{
 /* Declare action expression variable. */
 SEM_ACTION_EXPRESSION_TYPE ActionExpress;

 /* Set active instance. */
 if (SEM_SetInstance (InstanceNo) != SES_OKAY)
 return (FALSE);

 if (VSDeduct (EventNo) != SES_OKAY)
 return (FALSE);

 return (TRUE)
}

void Task (void)
{
 SEM_INSTANCE_TYPE InstanceNo = 0;

 /*
 * Declare and initialize. In this case the
 * reset event is SE_RESET.
 */
 SEM_EVENT_TYPE EventNo = SE_RESET;

 /* Initialize the System and related data. */
 SEM_InitAll ();
 for (InstanceNo = 0; InstanceNo < VS_NOF_INSTANCES;
 InstanceNo++)
 {
 Instance (EventNo, InstanceNo);
 }

SES_OKAY, page 633
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

 /* Do forever. */
 while (1)
 {
 /*
 * Get new event and map it to VS System events and
 * instance.
 */
 MapEvent (&EventNo, &InstanceNo);
 /* Process the event. */
 if (Instance (EventNo, InstanceNo) != TRUE)
 ErrorHandling ();
 }
}

See also The Visual State system, page 123.

SEM_InitInternalVariables

Syntax void SEM_InitInternalVariables (void)

Defined in SystemData.c

For use with Table-based code

Description This function initializes the internal variables in the system and must be called together
with the SEM_Init function.

The function is auto-generated by the Coder during the code generation of a system if
any internal variables are present, and the Coder option -iev has been set to 1.

SEM_InitInternalVariables is called automatically by SEM_InitAll.

Parameters None.

Return value None.

Example None.

SEM_InitSignalQueue

Syntax void SEM_InitSignalQueue (void)

Defined in SystemSEMLibB.c
AFE1_AFE2-1:1

603

604

Descriptions of the Adaptive API functions

For use with Table-based code

Description This function initializes the signal queue in a Visual State system and must be called
together with the SEM_Init function. The function will only be available if the signal
queue is enabled and the system contains signals.

SEM_InitSignalQueue is called automatically by SEM_InitAll.

Parameters None.

Return value None.

Example None.

SEM_Inquiry

Syntax unsigned char SEM_Inquiry (void)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This function prepares for finding events that can trigger changes in the current state.
All events are found by continuous calls to the function SEM_GetInput or one call to
SEM_GetInputAll.

As the function will inquire events on the basis of the internal current state
configuration, SEM_Inquiry can only be used if the previously called function is
SEM_Init.

The function must be enabled by the Coder command line option -seminquiry1 or the
corresponding GUI option.

Parameters None.

Return value See:

SES_ACTIVE, page 632

SES_OKAY, page 633
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Example #define STRLEN 80

/* Print active events */
unsigned char PrintActiveEvents (void)
{
 char Str[STRLEN];
 unsigned char CC = SES_OKAY;
 SEM_EVENT_TYPE EventNo = EVENT_UNDEFINED;

 if ((CC = SEM_Inquiry ()) == SES_OKAY)
 {
 printf ("\nActive event numbers:");
 while ((CC = SEM_GetInput (&EventNo, NULL)) == SES_FOUND)
 {
 if (SEM_Name (EVENT_TYPE, EventNo, Str, STRLEN)
 == SES_OKAY)
 printf ("\n%s = %d", Str, EventNo);
 }
 }
 return (CC);
}

SEM_Machine

Syntax unsigned char SEM_Machine (SEM_STATE_TYPE StateNo,
 SEM_STATE_MACHINE_TYPE *StateMachineNo)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This function returns the state machine index of the specified state.

The function must be enabled by the Coder command line option -semmachine1 or the
corresponding GUI option.

Parameters

Return value See:

StateNo Contains the state index number.

StateMachineNo Contains a pointer for storing the state machine index
number found of the specified state.
AFE1_AFE2-1:1

605

606

Descriptions of the Adaptive API functions

Example #include "SystemSEMLibB.h"
/*
 * The function is used for turning on/off a standby LED
 */
unsigned char CheckStandby (void)
{
 unsigned char CC;
 SEM_STATE_TYPE StateNo;
 SEM_STATE_MACHINE_TYPE StateMachine;

 /* State STATE_STANDBY defined in System.h file. */
 if ((CC = SEM_Machine (STATE_STANDBY, &StateMachine)) ==
 SES_FOUND)
 {
 if ((CC = SEM_State (StateMachine, &StateNo)) == SES_FOUND)
 {
 if (StateNo == STATE_STANDBY)
 StandbyLED = TRUE;
 else
 StandbyLED = FALSE;
 }
 }
 return (CC);
}

See also -snm, page 737.

SEM_Name

Syntax unsigned char SEM_Name (unsigned char IdentType,
 SEM_EXPLANATION_TYPE IdentNo,
 char *Text,
 unsigned short MaxSize)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This deprecated function is provided for backward compatibility and should not be used.
Instead use the function VSElementName, see VSElementName, page 617.

SES_RANGE_ERR, page 633

SES_FOUND, page 633
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

This function gets the ASCII name of the specified identifier and can only be used (and
compiled) when at least one type of name is included in the system.

The function must be enabled in combination with enabling generation of the names you
want to get. For example, set -semname1 and -txte1. This will enable the function,
and enable generating names for events. These Coder options can also be enabled by
setting the corresponding GUI options.

Parameters

Return value See:

Example See SEM_Inquiry, page 604.

SEM_NameAbs

Syntax unsigned char SEM_NameAbs (unsigned char IdentType,
 SEM_EXPLANATION_TYPE IdentNo,
 char **Text)

Defined in SystemSEMLibB.c

For use with Table-based code

IdentType Must contain the type of the identifier, EVENT_TYPE or
STATE_TYPE.

Note that ACTION_TYPE is deprecated because there is no
advantage to using it here.

IdentNo Must contain the index number of an identifier.

Text Must contain a pointer to a text string. If the function
terminates successfully, the text string contains the name of
the specified identifier.

MaxSize Specifies the maximum length of the text, including the
NULL termination character.

SES_RANGE_ERR, page 633

SES_TEXT_TOO_LONG, page 634

SES_TYPE_ERR, page 634

SES_OKAY, page 633
AFE1_AFE2-1:1

607

608

Descriptions of the Adaptive API functions

Description This function gets a pointer to the ASCII name of the specified identifier.

The function must be enabled in combination with enabling generation of the names you
want to get. For example, set -semnameabs1 and -txte1. This will enable the
function, and enable generating names for events. These Coder options can also be
enabled by setting the corresponding GUI options.

Parameters

Return value See:

Example See SEM_GetInputAll, page 597.

SEM_SetInstance

Syntax unsigned char SEM_SetInstance (SEM_INSTANCE_TYPE Instance)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This function is used for setting the currently active instance of the system. The instance
remains active until the next call to this function. The function must only be called
between completed macrosteps, not in the middle of a macrostep. For example, do not
call the function directly after a call to VSDeduct.

IdentType Must contain the type of the identifier which can be
EVENT_TYPE or STATE_TYPE.

Note that ACTION_TYPE is deprecated because there is no
advantage using it here.

IdentNo Must contain the index number of an identifier.

Text Must contain an address of a pointer to a text string. If the
function terminates successfully, the text pointer contains
the address of the name of the specified identifier.

SES_OKAY, page 633

SES_RANGE_ERR, page 633

SES_TYPE_ERR, page 634
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Parameters

Return value See:

Example See SEM_InitInstances, page 601.

SEM_SignalQueueInfo

Syntax void SEM_SignalQueueInfo (SEM_SIGNAL_QUEUE_TYPE *NofSignals)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This function returns information about the signal queue. The function will only be
available if the signal queue is enabled and the Visual State system contains signals.

The function must be enabled by the Coder command line option
-semsignalqueueinfo1 or the corresponding GUI option.

Parameters

Return value None.

Example None.

SEM_State

Syntax unsigned char SEM_State (SEM_STATE_MACHINE_TYPE StateMachineNo,
 SEM_STATE_TYPE *StateNo)

Defined in SystemSEMLibB.c

For use with Table-based code

Instance The instance to be handled.

SES_ACTIVE, page 632

SES_RANGE_ERR, page 633

SES_OKAY, page 633

NofSignals Number of signals in the signal queue.
AFE1_AFE2-1:1

609

610

Descriptions of the Adaptive API functions

Description This function returns the current state of the specified state machine.

The function must be enabled by the Coder command line option -semstate1 or the
corresponding GUI option.

Parameters

Return value See:

Example void Task (void)
{
 SEM_STATE_TYPE StateNo = STATE_UNDEFINED;
 SEM_STATE_MACHINE_TYPE i;
 SEM_ACTION_EXPRESSION_TYPE actionExpressNo;
 unsigned char cc;

 /*
 * Declare and initialize event variable.
 * In this case the reset event is SE_RESET.
 */
 SEM_EVENT_TYPE EventNo = SE_RESET;

 /* Initialize the VS System. */
 SEM_InitAll ();

 /* Do forever. */
 while (1)
 {
 if ((cc = VSDeduct(EventNo)) != SES_OKAY)
 ErrorHandling ();

StateMachineNo Contains the state machine number.

StateNo Contains a pointer for storing the current state of the
specified state machine.

SES_FOUND, page 633

SES_RANGE_ERR, page 633
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

 for (i = 0; i < VS_NOF_STATE_MACHINES; i++)
 {
 if (SEM_State (i, &StateNo) != SES_FOUND)
 printf ("\nState machine %d is in undefined state", i);
 else
 /* Print state machine number and state number. */
 printf ("\nState machine %d: state %d", i, StateNo);
 }

 /* Get new event and map it to VS System events. */
 MapEvent (&EventNo);
 }
}

See also -snm, page 737.

SEM_StateAll

Syntax unsigned char SEM_StateAll
 (SEM_STATE_TYPE *StateVector,
 SEM_STATE_MACHINE_TYPE MaxSize)

Defined in SystemSEMLibB.c

For use with Table-based code

Description This function returns the active state of all state machines.

The function must be enabled by the Coder command line option -semstateall1 or
the corresponding GUI option.

Parameters

Return value See:

StateVector A pointer to an array in which to store the current state
configuration.

MaxSize Specifies the length of the destination array. Must be equal
to or longer than the number of state machines.

SES_BUFFER_OVERFLOW, page 632

SES_FOUND, page 633
AFE1_AFE2-1:1

611

612

Descriptions of the Adaptive API functions

Example void Task (void)
{
 SEM_STATE_TYPE StateList[VS_NOF_STATE_MACHINES];
 SEM_STATE_MACHINE_TYPE i;
 SEM_ACTION_EXPRESSION_TYPE actionExpressNo;
 unsigned char cc;

 /*
 * Declare and initialize. In this case the
 * reset event is SE_RESET.
 */
 SEM_EVENT_TYPE EventNo = SE_RESET;

 /* Initialize the VS System. */
 SEM_InitAll ();
 /* Do forever. */
 while (1)
 {
 if ((cc = VSDeduct(EventNo)) != SES_OKAY)
 ErrorHandling ();

 if (SEM_StateAll (StateList, VS_NOF_STATE_MACHINES) !=
 SES_FOUND)
 printf ("\nCannot access states.");
 else
 {
 /* Print state machine number and state number. */
 for (i = 0; i < VS_NOF_STATE_MACHINES; i++)
 printf ("\nState machine %d: state %d", i,
 StateList[i]);
 }

 /* Get new event and map it to VS System events. */
 MapEvent (&EventNo);
 }
}

VSDeduct

Syntax VS_UINT8 VSDeduct(SEM_EVENT_TYPE EventNo, ...);

Defined in SystemSEMLibB.c

For use with Readable code, or if you enabled the -vsdeduct Coder option.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Description This function deduces all the relevant action expressions on the basis of the given event,
the internal current state configuration and the transitions in the Visual State system. All
the relevant action expressions are then called and all the next states are changed.

Parameters

Return value See:

Example /*
 * Event E_Event1 without parameters
 */
if (VSDeduct (E_Event1) != SES_OKAY)
 ErrorHandling ();

/*
 * Event E_Event2 with two parameters:
 * Argument 1: unsigned int Par1
 * Argument 2: unsigned short Par2
 */
if (VSDeduct (E_Event2, Par1, Par2) != SES_OKAY)
 ErrorHandling ();

void Task (void)
{
 unsigned char cc;
 SEM_EVENT_TYPE eventNo = SE_RESET;

 /* Initialize the VS System. */
 VSInitAll();

EventNo The event number to be processed. If at least one event has
parameters, the function call must include one argument for
each parameter declared in the parameter list for each
event.

SES_CONTRADICTION, page 632

SES_FOUND, page 633

SES_OKAY, page 633

SES_RANGE_ERR, page 633

SES_SIGNAL_QUEUE_FULL, page 634
AFE1_AFE2-1:1

613

614

Descriptions of the Adaptive API functions

 /* do forever */
 while (1)
 {
 cc = VSDeduct(eventNo);
 /*
 * If you enabled the semnextstatechg Coder option
 * if (cc == SES_FOUND)
 * {
 * /* react to a change in some state */
 * }
 */
 if (cc != SES_OKAY && cc != SES_FOUND)
 handleError(cc);
 /* Get new event and map it to VS system events */
 MapEvent (&eventNo);
 }
}

VSDeductInstance

Syntax VS_UINT8 VSDeductInstance(VS_UINT16 instance,
 SEM_EVENT_TYPE EventNo, ...);

Parameters

Return value See:

Defined in SystemSEMLibB.c

instance The instance to work on in the Visual State system.

EventNo The event number to be processed. If at least one event has
parameters, the function call must include one argument for
each parameter declared in the parameter list for each
event.

SES_CONTRADICTION, page 632

SES_FOUND, page 633

SES_OKAY, page 633

SES_RANGE_ERR, page 633

SES_SIGNAL_QUEUE_FULL, page 634
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

For use with Readable code

Description This function deduces all the relevant action expressions on the basis of the given event,
the internal current state configuration, and the transitions in the Visual State system for
the given instance. All the relevant action expressions are then called and all the
following states are changed.

Example /*
 * Event E_Event1 without parameters
 */
if (VSDeduct (instance, E_Event1) != SES_OKAY)
 ErrorHandling ();

/*
 * Event E_Event2 with two parameters:
 * Argument 1: unsigned int Par1
 * Argument 2: unsigned short Par2
 */
if (VSDeduct (instance, E_Event2, Par1, Par2) != SES_OKAY)
 ErrorHandling ();

void Task (void)
{
 unsigned char cc;
 /*
 * You need to keep track of which instance you work with.
 * Here it is just set to 0 as an example.
 */
 VS_UINT16 instance = 0;
 SEM_EVENT_TYPE eventNo = SE_RESET;

 /* Initialize the VS System. */
 VSInitAll();

 /* do forever */
 while (1)
 {
 cc = VSDeductInstance(instance, eventNo);
 /*
 * If you enabled the -semnextstatechg Coder option
 * if (cc == SES_FOUND)
 * {
 * /* react to a change in some state */
 * }
 */
 if (cc != SES_OKAY && cc != SES_FOUND)
 handleError(cc);
AFE1_AFE2-1:1

615

616

Descriptions of the Adaptive API functions

 /* Get new event and instance and map it to system events */
 MapEvent (&eventNo, &instance);
 }
}

VSElementExpl

Syntax VSResult VSElementExpl(VS_UINT8 IdentType,
 SEM_EXPLANATION_TYPE IdentNo,
 char const **Text);

Parameters

Return value See:

Defined in SystemSEMLibB.c

For use with Readable code, or all types of generated code if the Coder options -maximummisra1
and -vselementexpl1 have been set.

Description This function gets a pointer to the explanation of the specified identifier.

You must also enable generation of the explanations you want to get. For example, set
the Coder options -vselementexpl1 and -txte2. This will enable the function, and
enable generating explanations for events.

IdentType Must contain one of the identifier types, EVENT_TYPE or
STATE_TYPE.

IdentNo Must contain the index number of an identifier.

Text Must contain an address of a pointer to a text string. If the
function terminates successfully, the text pointer contains
the address of the explanation of the specified identifier.

SES_OKAY, page 633

SES_RANGE_ERR, page 633

SES_TYPE_ERR, page 634
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Example void dumpEvent (SEM_EXPLANATION_TYPE eventNo)
{
 char const *expl;
 unsigned char cc;
 if ((cc = VSElementExpl((unsigned char)EVENT_TYPE,
 eventNo,
 &name)) != SES_OKAY)
 {
 /*
 * Handle the error by reporting it to the environment.
 * You probably need to enable the texts in the
 * Coder options.
 */
 return;
 }
 printf("Event '%s' sent to the system.", expl);
}

VSElementName

Syntax VS_UINT8 VSElementName(VS_UINT8 IdentType,
 SEM_EXPLANATION_TYPE IdentNo,
 char const **Text);

Parameters

Return value See:

Defined in SystemSEMLibB.c

For use with All types of readable code if you enabled the -vselementname Coder option.

IdentType Must contain the type of the identifier which can be
EVENT_TYPE or STATE_TYPE.

IdentNo Must contain the index number of an identifier.

Text Must contain an address of a pointer to a text string. If the
function terminates successfully, the text pointer contains
the address of the name of the specified identifier.

SES_OKAY, page 633

SES_RANGE_ERR, page 633

SES_TYPE_ERR, page 634
AFE1_AFE2-1:1

617

618

Descriptions of the Adaptive API functions

Description This function gets a pointer to the ASCII name of the specified identifier.

You must also enable generation of the names you want to get. For example, set the
Coder options -semnameabs1 and -txte1. This will enable the function, and enable
generating names for events.

Example See SEM_Inquiry, page 604.

VSForceState

Syntax VS_UINT8 VSForceState(SEM_STATE_TYPE StateNo);

Parameters

Return value See:

Defined in SystemSEMLibB.c

For use with Readable code

Description This function is used for forcing the internal state configuration into the specified state.
This is useful if you want to reestablish the internal state configuration after a power
failure of the target system. Before calling this function the first time after a power
failure, the VSInitAll function should be called to initialize the other internal variables
of the system.

The state configuration established by calling VSForceState must have been stored in
EEPROM before the power failure.

Note: This function should be used with caution. The internal state configuration could
be forced to a configuration that is not reachable by executing the model itself.

The function must be enabled by the Coder option -semforcestate1.

StateNo Contains the state index number.

SES_OKAY, page 633

SES_RANGE_ERR, page 633
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Example /*
 * This function should only be called after a power failure
 * to reestablish the internal state variables.
 */
void PowerUp (void)
{
 SEM_STATE_TYPE StateNo;
 SEM_STATE_MACHINE_TYPE i;
 /* Initialize the Visual State system. */
 VSInitAll ();
 for (i = 0; i < VS_NOF_STATE_MACHINES; i++)
 {
 /* Get state configuration from EEPROM. */
 EEPROMState (i, &StateNo);
 if (VSForceState (StateNo) != SES_OKAY)
 ErrorHandling ();
 }
}

VSForceStateInstance

Syntax VS_UINT8 VSForceStateInstance(VS_UINT16 instance,
 SEM_STATE_TYPE StateNo);

Parameters

Return value See:

Defined in SystemSEMLibB.c

For use with Readable code

Description This function is used for forcing the internal state configuration into the specified state
for the given instance of a system. This is useful if you want to reestablish the internal
state configuration after a power failure of the target system. Before calling this function
the first time after a power failure, the VSInitAll function should be called to initialize
the other internal variables of the system.

instance The instance of the system to change.

StateNo Contains the state index number.

SES_OKAY, page 633

SES_RANGE_ERR, page 633
AFE1_AFE2-1:1

619

620

Descriptions of the Adaptive API functions

The state configuration established by calling VSForceState must have been stored in
EEPROM before the power failure.

Note: This function should be used with caution. The internal state configuration could
be forced to a configuration that is not reachable by executing the model itself.

The function must be enabled by the Coder option -semforcestate1.

Example /*
 * This function should only be called after a power failure
 * to reestablish the internal state variables.
 */
void PowerUp (void)
{
 SEM_STATE_TYPE StateNo;
 SEM_STATE_MACHINE_TYPE i;
 VS_UINT16 instance;
 /* Initialize the Visual State system. */
 VSInitAll ();
 for (instance = 0; instance < VS_NOF_INSTANCES; instance++)
 {
 for (i = 0; i < VS_NOF_STATE_MACHINES; i++)
 {
 /* Get state configuration from EEPROM. */
 EEPROMState (i, instance, &StateNo);
 if (VSForceStateInstance (instance, StateNo) != SES_OKAY)
 ErrorHandling ();
 }
 }
}

SystemVSGetCurrentStateTree

Syntax VSResult SystemVSGetCurrentStateTree (char * buf, size_t const
 bufSize)

Defined in System.c

Description This function copies the strings that represent the current state tree into the buffer. Each
entry ends with a semicolon.

Argument
buf A pointer to a buffer.

bufSize The size of the buffer buf.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Return value See:

Example None.

SystemVSGetMaxCurrentStateTree

Syntax size_t SystemVSGetMaxCurrentStateTree (void)

Defined in System.c

Description This function returns the required size of the VSGetCurrentStateTree buffer.

Argument None.

Return value The required size of the VSGetCurrentStateTree buffer.

Example None.

VSInitAll

Syntax void VSInitAll(void)

Parameters None.

Return value None.

Defined in SystemSEMLibB.c

For use with Readable code, or if you enabled the -vsinitall Coder option.

Description This function wraps all initialization functions. The function calls the following
functions in the listed order, provided that they exist:

● VSInit

● VSInitExternalVariables

● VSInitInternalVariables

● VSInitSignalQueue

SES_OKAY, page 633

SES_TEXT_TOO_LONG, page 634
AFE1_AFE2-1:1

621

622

Descriptions of the Adaptive API functions

● VSInitInstances

The function must be enabled by the Coder option -seminitall1 or -vsinitall1.

Example See VSDeduct, page 612.

VSInitExternalVariables

Syntax void VSInitExternalVariables(void)

Parameters None.

Return value None.

Defined in SystemSEMLibB.c

For use with Readable code

Description This function initializes the external variables in the system and must be called together
with the VSInitAll function.

The function is automatically generated by the Coder during the code generation of a
system if any external variables are present, and the Coder option -iev has been set.

VSInitExternalVariables is called automatically by VSInitAll.

Example None.

VSInitInternalVariables

Syntax void VSInitInternalVariables(void)

Parameters None.

Return value None.

Defined in SystemSEMLibB.c

For use with Readable code

Description This function initializes the internal variables in the system and must be called together
with the VSInitAll function.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

The function is automatically generated by the Coder during the code generation of a
system if any internal variables are present, and the Coder option -iiv has been set.

VSInitInternalVariables is called automatically by VSInitAll.

Example None.

VSInquiry

Syntax VS_UINT8 VSInquiry(SEM_EVENT_TYPE* FoundEvents,
 VS_UINT Size,
 SEM_EVENT_TYPE* EventList);

Parameters

Return value See:

Defined in SystemSEMLibB.c

For use with Readable code

Description The function is used for finding events that can trigger transitions or derive action
expressions from the current state. All events are found by a call to this function.
Because the function will inquire events on the basis of the internal current state
configuration, an event deduction should not be running.

The function must be enabled by the Coder option -seminquiry1.

FoundEvents Array to fill with found events. The array will be terminated
with EVENT_UNDEFINED.

Size The size of the array to fill with active events.

EventList Pointer to an array that holds the event numbers that can be
inquired. EventList must be terminated with
EVENT_UNDEFINED. If the pointer is NULL, then all events
can be inquired.

SES_BUFFER_OVERFLOW, page 632

SES_OKAY, page 633

SES_RANGE_ERR, page 633
AFE1_AFE2-1:1

623

624

Descriptions of the Adaptive API functions

Example /* #include SystemSEMLibB.h before this. */

unsigned char PrintActiveKeys (void)
{
 /* declare big enough to hold all - so we can use it below */
 enum {size = VS_NOF_EVENTS + 1};
 SEM_EVENT_TYPE events[size] =
 {
 E1,
 E2,
 E3,
 EVENT_UNDEFINED
 };
 unsigned char cc;
 unsigned count = 0;

 /* to inquire the 3 events specified in the list
 above (E1, E2, E3) */
 if ((cc = VSInquiry(events, size, events)) != SES_OKAY)
 handleError("VSInquiry", cc);
 /*
 * if you want to inquire all active events use this line:
 * if ((cc = VSInquiry(events, size, NULL)) != SES_OKAY)
 */
 while (events[count] != EVENT_UNDEFINED)
 {
 char const *pName;
 if ((cc = VSElementName(EVENT_TYPE,
 events[count], &pName)) != SES_OKAY)
 handleError("VSElementName", cc);
 /* to print the explanation call VSElementExpl to get the
 explanation instead of the name */
 printf("Found active event: %s", pName);
 ++count;
 }
}

VSInquiryInstance

Syntax VS_UINT8 VSInquiryInstance(VS_UINT16 instance,
 SEM_EVENT_TYPE* FoundEvents,
 VS_UINT Size,
 SEM_EVENT_TYPE* EventList);

Parameters
instance The instance of the system to inquire the active events for.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Return value See:

Defined in SystemSEMLibB.c

For use with Readable code

Description This function is used to find events that can trigger transitions or derive action
expressions from the current state for the given instance. All events are found by a call
to this function. Because the function will inquire events on the basis of the internal
current state configuration, an event deduction should not be running.

The function must be enabled by the Coder option -seminquiry1.

Example /* #include SystemSEMLibB.h before this. */

unsigned char PrintActiveKeys (VS_UINT16 instance)
{
 /* declare big enough to hold all - so we can use it below */
 enum {size = VS_NOF_EVENTS + 1};
 SEM_EVENT_TYPE events[size] =
 {
 E1,
 E2,
 E3,
 EVENT_UNDEFINED
 };
 unsigned char cc;
 unsigned count = 0;

FoundEvents Array to fill with found events. The array will be terminated
with EVENT_UNDEFINED.

Size The size of the array to fill with active events.

EventList Pointer to an array that holds the event numbers that can be
inquired. EventList must be terminated with
EVENT_UNDEFINED. If the pointer is NULL, then all events
can be inquired.

SES_BUFFER_OVERFLOW, page 632

SES_OKAY, page 633

SES_RANGE_ERR, page 633
AFE1_AFE2-1:1

625

626

Descriptions of the Adaptive API functions

 /* to query the 3 events specified in the list
 above (E1, E2, E3) */
 if ((cc = VSInquiryInstance(instance, events, size, events))
 != SES_OKAY)
 handleError("VSInquiry", cc);
 /*
 * if you want to query all active events use this line:
 * if ((cc = VSInquiryInstance(instance, events, size, NULL))
 * != SES_OKAY)
 */
 while (events[count] != EVENT_UNDEFINED)
 {
 char const *pName;
 if ((cc = VSElementName(EVENT_TYPE,
 events[count], &pName)) != SES_OKAY)
 handleError("VSElementName", cc);
 /* to print the explanation call VSElementExpl to get the
 explanation instead of the name */
 printf("Found active event: %s", pName);
 ++count;
 }
}

VSMachine

Syntax VS_UINT8 VSMachine(SEM_STATE_TYPE StateNo,
 SEM_STATE_MACHINE_TYPE *StateMachineNo);

Parameters

Return value See:

Defined in SystemSEMLibB.c

For use with Readable code

StateNo Contains the state index number.

StateMachineNo Contains a pointer for storing the state machine index
number of the specified state.

SES_FOUND, page 633

SES_RANGE_ERR, page 633
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Description This function returns the state machine index of the specified state.

The function must be enabled by the Coder option -semmachine1.

Example #include "SystemSEMLibB.h"
/*
 * The function is used for turning on/off a standby LED. It must
 * be called, just after VSDeduct has been called.
 */
unsigned char CheckStandby (void)
/* or: unsigned char CheckStandby (VS_UINT16 instance)
{
 unsigned char CC;
 SEM_STATE_TYPE state;
 SEM_STATE_MACHINE_TYPE mach;
 if ((CC = VSMachine (STATE_STANDBY, &mach)) == SES_FOUND)
 {
 if ((CC = VSState (mach, &state)) == SES_FOUND)
 /* or: if ((CC = VSStateInstance (instance, mach, &state))
 == SES_FOUND) */
 {
 if (state == STATE_STANDBY)
 StandbyLED = TRUE;
 else
 StandbyLED = FALSE;
 }
 }
 return CC;
}

VSState

Syntax VS_UINT8 VSState(SEM_STATE_MACHINE_TYPE StateMachineNo,
 SEM_STATE_TYPE *StateNo);

Parameters

Return value See:

StateMachineNo Contains the state machine number.

StateNo Contains a pointer for storing the current state of the
specified state machine.

SES_FOUND, page 633
AFE1_AFE2-1:1

627

628

Descriptions of the Adaptive API functions

Defined in SystemSEMLibB.c

For use with Readable code

Description This function returns the current state of the specified state machine.

The function must be enabled by the Coder option -semstate1.

Example See VSMachine, page 626.

VSStateAll

Syntax VS_UINT8 VSStateAll(SEM_STATE_TYPE *StateVector,
 SEM_STATE_MACHINE_TYPE MaxSize);

Parameters

Return value See:

Defined in SystemSEMLibB.c

For use with Readable code

Description This function returns the active state of all state machines.

The function must be enabled by the Coder option -semstateall1.

SES_RANGE_ERR, page 633

StateVector A pointer to an array in which to store the current state
configuration.

MaxSize Specifies the length of the destination array. Must be equal
to or longer than the number of state machines.

SES_BUFFER_OVERFLOW, page 632

SES_FOUND, page 633
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

Example void Task (void)
{
 SEM_STATE_TYPE StateList[VS_NOF_STATE_MACHINES];
 SEM_STATE_MACHINE_TYPE i;
 unsigned char cc;
 SEM_EVENT_TYPE EventNo = SE_RESET;

 VSInitAll ();
 /* Do forever. */
 while (1)
 {
 if ((cc = VSDeduct(EventNo)) != SES_OKAY)
 ErrorHandling (cc);
 if (VSStateAll (StateList, VS_NOF_STATE_MACHINES)
 != SES_FOUND)
 printf ("\nCannot access states.");
 else
 {
 /* Print state machine number and state number. */
 for (i = 0; i < VS_NOF_STATE_MACHINES; i++)
 printf ("\nState machine %d: state %d", i, StateList[i]);
 }
 /* Get new event and map it to VS System events. */
 MapEvent (&EventNo);
 }
}

VSStateAllInstance

Syntax VS_UINT8 VSStateAllInstance(VS_UINT16 instance,
 SEM_STATE_TYPE *StateVector,
 SEM_STATE_MACHINE_TYPE MaxSize);

Parameters

Return value See:

instance The instance number to work with.

StateVector A pointer to an array in which to store the current state
configuration.

MaxSize Specifies the length of the destination array. Must be equal
to or longer than the number of state machines.

SES_BUFFER_OVERFLOW, page 632
AFE1_AFE2-1:1

629

630

Descriptions of the Adaptive API functions

Defined in SystemSEMLibB.c

For use with Readable code

Description This function returns the active state of all state machines for the given instance of the
system.

The function must be enabled by the Coder option -semstateall1.

Example void Task (void)
{
 SEM_STATE_TYPE StateList[VS_NOF_STATE_MACHINES];
 SEM_STATE_MACHINE_TYPE i;
 unsigned char cc;
 SEM_EVENT_TYPE EventNo = SE_RESET;

 VSInitAll ();
 /* start by sending the reset event to all instances */
 for (instance = 0; instance < VS_NOF_INSTANCES; instance++)
 {
 if ((cc = VSDeductInstance(instance, EventNo)) != SES_OKAY)
 ErrorHandling (cc);
 }
 /* Get new event and instance and map it to system events. */
 MapEvent (&EventNo, &instance);

 /* Do forever. */
 while (1)
 {
 if ((cc = VSDeductInstance(instance, EventNo)) != SES_OKAY)
 ErrorHandling (cc);
 if (VSStateAllInstance (instance, StateList,
 VS_NOF_STATE_MACHINES) != SES_FOUND)
 printf ("\nCannot access states for the instance %d.",
 instance);

SES_FOUND, page 633
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

 else
 {
 /* Print state machine number and state number. */
 for (i = 0; i < VS_NOF_STATE_MACHINES; i++)
 printf ("\nInstance %d, State machine %d: state %d",
 instance, i, StateList[i]);
 }
 /* Get new event and map it to VS System events. */
 MapEvent (&EventNo, &instance);
 }
}

VSStateInstance

Syntax VS_UINT8 VSStateInstance(VS_UINT16 instance,
 SEM_STATE_MACHINE_TYPE StateMachineNo,
 SEM_STATE_TYPE *StateNo);

Parameters

Return value See:

Defined in SystemSEMLibB.c

For use with Readable code

Description This function returns the current state of the specified state machine for the specified
instance.

The function must be enabled by the Coder option -semstate1.

Example See VSMachine, page 626.

instance The instance number to work on.

StateMachineNo Contains the state machine number.

StateNo Contains a pointer for storing the current state of the
specified state machine.

SES_FOUND, page 633

SES_RANGE_ERR, page 633
AFE1_AFE2-1:1

631

632

Adaptive API return codes

Adaptive API return codes
The following pages give detailed reference information about each Adaptive API return
code.

SES_ACTIVE

Return code SES_ACTIVE

Description The return code covers one of the following:

● An event deduction is started while an event inquiry is active. All inquired events
have not been returned by the function SEM_GetInput.

● An event inquiry is started while an event deduction is active. All deduced action
expressions have not been returned by the function SEM_GetOutput.

Solution The return code is a warning and maybe the application must be rewritten. An event
inquiry and an event deduction should not be active at the same time.

SES_BUFFER_OVERFLOW

Return code SES_BUFFER_OVERFLOW

Description A destination buffer cannot hold the number of items found.

Solution Call the function with an extended buffer as the destination.

SES_CONTRADICTION

Return code SES_CONTRADICTION

Description A contradiction has been detected between two states in a state machine.

Solution Check the system with the Validator or the Verificator. You might need to change your
model to avoid the conflict. The system should not contain any contradictions at runtime
because that will cause the model to behave incorrectly and non-deterministically.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Adaptive API reference information

SES_EMPTY

Return code SES_EMPTY

Description No events have been given to the VSDeduct function before calling this function.

Solution Call the VSDeduct function with an event number.

SES_FOUND

Return code SES_FOUND

Description The called function has returned an identifier index number.

Solution If the function SEM_GetInput was called, the function can be called again to find more
events or action expressions.

SES_NOT_INITIALIZED

Return code SES_NOT_INITIALIZED

Description The system has not been initialized.

Solution Call the initialization function for the system.

SES_OKAY

Return code SES_OKAY

Description Function performed successfully.

Solution Not applicable.

SES_RANGE_ERR

Return code SES_RANGE_ERR

Description A reference is being made to an identifier that does not exist. Note that the first index
number is 0. If the system has 4 identifiers of the same type, and a function is called with
AFE1_AFE2-1:1

633

634

Adaptive API return codes

a parameter value equal to 4, the function will return an SES_RANGE_ERR error. In this
case the highest permitted variable value is 3.

Solution Call with an index that is within the permitted range.

SES_SIGNAL_QUEUE_FULL

Return code SES_SIGNAL_QUEUE_FULL

Description The signal queue is full.

Solution Increase the maximum signal queue size in your system.

SES_TEXT_TOO_LONG

Return code SES_TEXT_TOO_LONG

Description The requested text is longer than the specified maximum length.

Solution Increase the maximum length.

SES_TYPE_ERR

Return code SES_TYPE_ERR

Description A text function has been called with the wrong identifier type, or the specified text is not
included in the Visual State system.

Solution Use the identifier type symbols (EVENT_TYPE, STATE_TYPE, or ACTION_TYPE) defined
in the SEMLibB.h file. Set the Coder options so that the text is included in the generated
code for the system.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference
information
● Uniform API source files

● Summary of the Uniform API functions

● Descriptions of the Uniform API functions

● Uniform API return codes

Uniform API source files
The Uniform API will be generated in two files: project.c and project.h, where
project reflects the name of your project. Most of the functions in the Uniform API
have SMP as prefix and they take a pointer to a system context as a parameter to
determine the system to operate on. This means that the API can operate on projects that
contain multiple systems.

Unless otherwise stated, portability of the Uniform API is Standard C compliant.

Read more about:

● Coder-generated source files for the Uniform API, page 635

CODER-GENERATED SOURCE FILES FOR THE UNIFORM API

During the code generation phase, these sets of files are generated:

● Project-specific files

● System-specific files

These are the project-specific files:

project.h Contains the declarations of the SMP functions; project
reflects the name of your project.

project.c Contains the implementations of the SMP functions; project
reflects the name of your project.
AFE1_AFE2-1:1

635

636

Summary of the Uniform API functions

These are the system-specific files (for each system):

Summary of the Uniform API functions
This table summarizes the Uniform API functions:

source.c Contains the core model logic of the system (primarily
transitions).

source.h Header files for source.c.

Uniform API function Description

SystemSEM_InitExternal
Variables

Initializes the external variables in the system.

SystemSEM_InitInternal
Variables

Initializes the internal variables in the system.

ProjectSEM_InitPrjExte
rnalVariables

Initializes the external variables in the project.

SMP_Action A macro that uses the VSAction function pointer table to
call an action expression function.

SMP_Connect Connects to a system that already resides in memory.

SMP_Expl Gets the ASCII description of a specified identifier.

SMP_ExplAbs Gets the absolute address of an ASCII description of a
specified identifier.

SMP_ForceState Forces the internal state configuration into a different state.

SMP_Free Frees the memory allocated by a previous call to
SMP_Connect.

SMP_GetInput Finds events that can trigger transitions from the current
state.

SMP_GetInputAll Finds all events that can trigger transitions from the current
state.

SMP_GetOutput For internal API use only.

SMP_Init Initializes the system.

SystemSMP_InitAll Wraps one connecting function and all initialization functions
except for the function that initializes global external
variables.

SMP_InitGuardCallBack Initializes the guard expression call-back function.

Table 30: Summary of the Uniform API functions
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

* The function is only generated if the appropriate Coder option has been enabled. For
more information, see the individual function.

SMP_InitInstances Initializes a number of instances of a system.

SMP_InitSignalQueue Initializes the signal queue in a system.

SMP_Inquiry Prepares for finding events that can trigger changes in the
current state.

SMP_Machine Returns the state machine index of a specified state.

SMP_Name Gets the ASCII name of a specified identifier.

SMP_NameAbs Gets the pointer to the ASCII name of a specified identifier.

SMP_NextState For internal API use only.

SMP_NextStateChg For internal API use only.

SMP_SetInstance Sets the currently active instance of the system.

SMP_State Returns the current state of a specified state machine.

SMP_StateAll Returns the active state of all state machines.

SystemVSDeduct* Deduces all the relevant action expressions on the basis of
the given event, the internal current state vector, and the
transitions in the Visual State system.

SystemVSElementExpl* Gets the pointer to the ASCII explanation of the specified
identifier.

SystemVSElementName* Gets the pointer to the ASCII name of the specified identifier.

SystemVSGetCurrentStat
eTree

Copies the strings representing the current state tree into
the buffer.

SystemVSGetMaxCurrentS
tateTree

Returns the needed size for VSGetCurrentStateTree buffer.

VSGetSignature* Returns the signature for the project.

SystemVSInitAll* Wraps all initialization functions for the system.

Uniform API function Description

Table 30: Summary of the Uniform API functions
AFE1_AFE2-1:1

637

638

Descriptions of the Uniform API functions

Descriptions of the Uniform API functions
The following pages give detailed reference information about each Uniform API
function.

SystemSEM_InitExternalVariables

Syntax #include "sdata.h"

/* Optionally */
#include "cext.h"

void systemSEM_InitExternalVariables (void)

Defined in SystemData.c

Description This function initializes the external variables in the system and must be called together
with the SMP_Init function.

The function is auto-generated by the Coder during the code generation of a system if
any external variables are present, and the -iev1 Coder option has been set.

The function will be placed in the system data source file and declared external in the
system data header file. Optionally, the function will be placed in the system external
variable source file and declared external in the system external variable header file.

The name of the function will be prefixed with the name of the system source file.

This function is normally called by SMP_InitAll and VSInitAll functions, so
normally you do not need to call this function.

Argument None.

Return value None.

Example None.

SystemSEM_InitInternalVariables

Syntax #include "sdata.h"
void systemSEM_InitInternalVariables (void)

Defined in SystemData.c

(optionally in cext.c)
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Description This function initializes the internal variables in the system and must be called together
with the SMP_Init function.

The function is auto-generated by the Coder during the code generation of a system if
any internal variables are present, and the -iev1 Coder option has been set.

The function will be placed in the system data source file and declared external in the
system data header file.

The name of the function will be prefixed with the name of system source file.

This function is automatically called by SMP_InitAll and VSInit functions, so
normally you do not need to call this function.

Argument None.

Return value None.

Example None.

ProjectSEM_InitPrjExternalVariables

Syntax #include "gext.h"
void projectSEM_InitPrjExternalVariables (void)

Defined in gext.c

Description This function initializes the external variables in the project and must be called together
with the SMP_Init function.

The function is auto-generated by the Coder during the code generation of a system if
any external project variables are present, and the -iev1 Coder option has been set.

The function will be placed in the project external variable file and declared external in
the project external variable header file.

The name of the function will be prefixed with the name of the gext.c file.

Argument None.

Return value None.

Example See SMP_Connect, page 640.
AFE1_AFE2-1:1

639

640

Descriptions of the Uniform API functions

SMP_Action

Syntax #include "project.h"
#define SMP_Action(Context, ActionNo)
 (*VSAction[ActionNo])(Context)

Defined in project.h

Description This deprecated macro is provided for backward compatibility and should not be used.
Instead use the -vsdeduct1 Coder option, see -vsdeduct, page 752.

This is not a function, but a macro that is used in the same way as a function. The macro
uses the VSAction function pointer table to call an action expression function.

Argument

Return value None.

Example See SMP_InitInstances, page 652.

SMP_Connect

Syntax #include "project.h"
unsigned char SMP_Connect(SEM_CONTEXT **Context, void *VSDdata)

Defined in project.c

Description This deprecated function is provided for backward compatibility and should not be used.
Instead use the -vsinitall1 Coder option, see -vsinitall, page 754.

This function connects to a binary system that already resides in memory.

Argument

ActionNo The action expression index number.

Context A pointer to a system context.

Context A pointer to a system context.

VSDdata A pointer to the memory area where the system resides. The
area must be an image of the binary system file including
texts.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Return value See:

Example /* Header file for the generated VS System My_System. */
#include "My_System.h"

void Task (void)
{
 SEM_ACTION_EXPRESSION_TYPE ActionExpress;
 SEM_CONTEXT *Context;
 unsigned char cc;

 /*
 * Declare and initialize. The
 * reset event is SE_RESET.
 */
 SEM_EVENT_TYPE EventNo = SE_RESET;

 /* Initialize Visual State system My_System */
 if ((cc = My_SystemSMP_InitAll(&Context)) != SES_OKAY)
 ErrorHandling(cc);

 /*
 * If your project has external variables,
 * and you have chosen to initialize by function:
 * My_ProjectSEM_InitPrjExternalVariables();, where My_Project
 * is the name of the project.
 */
 While (1)
 {
 /* Start event deduction. */
 cc = My_SystemVSDeduct(Context, EventNo);
 If ((cc != SES_OKAY) && (cc != SES_FOUND))
 ErrorHandling(cc);

SES_MEM_ERR, page 670

SES_NULL_PTR, page 671

SES_OKAY, page 671

SES_TYPE_ERR, page 672
AFE1_AFE2-1:1

641

642

Descriptions of the Uniform API functions

 /*
 * If you enabled SEM_NextStateChg:
 * if (cc==SES_FOUND)
 * {
 * use the information, that a state has
 * changed, for something...
 * }
 */
 /* Get new event and map it to VS System event. */
 MapEvent(&EventNo);
 }
}

SMP_Expl

Syntax #include "project.h"
unsigned char SMP_Expl (SEM_CONTEXT *Context,
 unsigned char IdentType, SEM_EXPLANATION_TYPE IdentNo,
 char *Text, unsigned short MaxSize)

Defined in project.c

Description This deprecated function is provided for backward compatibility and should not be used.
Instead use the function VSElementExpl, see VSElementExpl, page 616.

This function gets the UTF–8 description of the specified identifier.

Argument
Context A pointer to a system context.

IdentNo The index number of an identifier.

IdentType The type of the identifier number, EVENT_TYPE or
STATE_TYPE.

Note that ACTION_TYPE is deprecated because there is no
advantage to using it here.

MaxSize The maximum length of the text including the NULL
termination character.

Text A pointer to a char pointer. If the function terminates
successfully, the pointer points to the text that contains the
name of the specified identifier.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Return value See:

Example See SMP_GetInput, page 646.

SMP_ExplAbs

Syntax #include "project.h"
unsigned char SMP_ExplAbs (SEM_CONTEXT *Context,
 unsigned char IdentType,
 SEM_EXPLANATION_TYPE IdentNo,
 char **Text)

Defined in project.c

Description This deprecated function is provided for backward compatibility and should not be used.
Instead use the function VSElementExpl, see VSElementExpl, page 616.

This function gets the absolute address of an ASCII description of the specified
identifier.

Argument

SES_FORMAT_ERR, page 670

SES_NULL_PTR, page 671

SES_OKAY, page 671

SES_RANGE_ERR, page 671

SES_TEXT_TOO_LONG, page 672

SES_TYPE_ERR, page 672

Context A pointer to a system context.

IdentNo The index number of an identifier.

IdentType The type of the identifier number, EVENT_TYPE or
STATE_TYPE.

Note that ACTION_TYPE is deprecated because there is no
advantage to using it here.

Text A pointer to a char pointer. If the function terminates
successfully, the pointer contains the absolute address of
the name of the specified identifier.
AFE1_AFE2-1:1

643

644

Descriptions of the Uniform API functions

Return value See:

Example See SMP_GetInputAll, page 648.

SMP_ForceState

Syntax #include "project.h"
unsigned char SMP_ForceState (SEM_Context *Context,
 SEM_STATE_TYPE StateNo)

Defined in project.c

Description This function forces the internal state configuration into the specified state. This is
useful if you want to reestablish the internal state configuration after a power failure of
the target system. Before calling this function the first time after a power failure, the
SMP_InitAll function should be called to initialize.

The state configuration established by calling SMP_ForceState must have been stored
in EEPROM before the power failure.

Note: This function should be used with caution. The internal state configuration could
be forced to a configuration that has not been verified.

Argument

Return value See:

SES_NULL_PTR, page 671

SES_OKAY, page 671

SES_RANGE_ERR, page 671

SES_TYPE_ERR, page 672

Context A pointer to a system context.

StateNo Contains the state index number.

SES_NULL_PTR, page 671

SES_OKAY, page 671

SES_RANGE_ERR, page 671
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Example /*
 * This function should only be called after a power failure
 * to reestablish the internal state variables.
 */
void PowerUp (void)
{
 SEM_STATE_TYPE StateNo;
 SEM_STATE_MACHINE_TYPE i;

 SEM_CONTEXT *Context;

 if (SystemSMPInitAll(Context) != SES_OKAY)
 ErrorHandling ();

 for (i = 0; i < VS_NOF_STATE_MACHINES; i++)
 {
 /* Get state configuration from EEPROM. */
 EEPROMState (i, &StateNo);
 if (SMP_ForceState (Context, StateNo) != SES_OKAY)
 ErrorHandling ();
 }
}

SMP_Free

Syntax #include "project.h"
void SMP_Free (SEM_CONTEXT *Context)

Defined in project.c

Description This function frees the memory allocated by a previous call to SMP_Connect.

If Context is not equal to NULL, the memory allocated by the system and the context
will be freed. If Context is NULL, nothing happens.

Argument

Return value None.

Context A pointer to a system context.
AFE1_AFE2-1:1

645

646

Descriptions of the Uniform API functions

Example void Change (void)
{
 SEM_CONTEXT *Context;

 /* Initialize System 1 */
 if (System1SMP_InitAll(&Context) != SES_OKAY)
 ErrorHandling();

 /* Use System 1 */
 PerformSystem1Deduction (Context);

 /* Free System 1 */
 SMP_Free (Context);

 /* Initialize System 2 */
 if (System2SMP_InitAll(&Context) != SES_OKAY)
 ErrorHandling();

 /* Use System 2 */
 PerformSystem2Deduction (Context);

 /* Free System 2 */
 SMP_Free (Context);
}

SMP_GetInput

Syntax #include "project.h"
unsigned char SMP_GetInput (SEM_CONTEXT *Context,
 SEM_EVENT_TYPE *EventNo, SEM_EVENT_TYPE *EventList)

Defined in project.c

Description The function finds events that can trigger transitions or derive action expressions from
the current state. All events are found by continuous calls to this function. Because the
function will inquire events on the basis of the internal current state configuration, an
event deduction should not be running.

Argument
Context A pointer to a system context.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Return value See:

Example #define STRLEN 80

/* Used event definitions are found in System.h. */
const SEM_EVENT_TYPE KeyTable[] =
{
 E_KEY_F1,
 E_KEY_F2,
 E_KEY_F3,
 E_KEY_F4,
 E_KEY_F5,
 E_KEY_F6,
 E_KEY_F7,
 E_KEY_F8,
 E_KEY_F9,
 E_KEY_F10,
 E_KEY_F11,
 E_KEY_F12,
 EVENT_TERMINATION_ID
};

/* Print active keys. */
unsigned char PrintActiveKeys (SEM_CONTEXT *Context)
{
 char Str[STRLEN];
 unsigned char CC = SES_OKAY;
 SEM_EVENT_TYPE EventNo = EVENT_UNDEFINED;

EventList A pointer to an array that holds the event numbers to be
inquired. EventList must be terminated with the symbol
EVENT_TERMINATION_ID.

If the pointer is NULL, all events are inquired.

EventNo A pointer to the array in which to store the inquired event
number.

SES_FOUND, page 670

SES_NULL_PTR, page 671

SES_OKAY, page 671

SES_RANGE_ERR, page 671
AFE1_AFE2-1:1

647

648

Descriptions of the Uniform API functions

 if ((CC = SMP_Inquiry (Context)) == SES_OKAY)
 {
 printf ("\nActive event number:");
 while ((CC = SMP_GetInput (Context, &EventNo, KeyTable))
 == SES_FOUND)
 {
 if (SMP_Expl (Context, EVENT_TYPE, EventNo, Str, STRLEN)
 == SES_OKAY)
 printf ("\n%s = %d", Str, EventNo);
 /*
 * Alternatively, call SMP_Name to get the name
 */
 }
 }
}

SMP_GetInputAll

Syntax #include "project.h"
unsigned char SMP_GetInputAll (SEM_CONTEXT *Context,
 SEM_EVENT_TYPE *EventVector, SEM_EVENT_TYPE *EventList,
 SEM_EVENT_TYPE MaxSize)

Defined in project.c

Description This function finds all events that can trigger transitions or derive action expressions
from the current state. All events are found by one call to this function. Because the
function will inquire events on the basis of the internal current state configuration, an
event deduction should not be running.

Argument
Context A pointer to a system context.

EventList A pointer to an array that holds the event numbers to be
inquired. EventList must be terminated with the symbol
EVENT_TERMINATION_ID.

If the pointer is NULL, all events are inquired.

EventVector A pointer to an array in which to store the inquired events.

MaxSize The maximum length of the event vector including the
symbol EVENT_TERMINATION_ID
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Return value See:

Example #define STRLEN 80

/* Used event definitions are found in System.h. */
const SEM_EVENT_TYPE KeyTable[] =
{
 E_KEY_F1,
 E_KEY_F2,
 E_KEY_F3,
 E_KEY_F4,
 E_KEY_F5,
 E_KEY_F6,
 E_KEY_F7,
 E_KEY_F8,
 E_KEY_F9,
 E_KEY_F10,
 E_KEY_F11,
 E_KEY_F12,
 EVENT_TERMINATION_ID
};

/* Print active keys. */
unsigned char PrintActiveKeys (SEM_CONTEXT *Context)
{
 char Str[STRLEN];
 unsigned char CC = SES_OKAY;
 SEM_EVENT_TYPE EventList[13];
 int i;

SES_BUFFER_OVERFLOW, page 669

SES_NULL_PTR, page 671

SES_OKAY, page 671

SES_RANGE_ERR, page 671
AFE1_AFE2-1:1

649

650

Descriptions of the Uniform API functions

 if ((CC = SMP_Inquiry (Context)) == SES_OKAY)
 {
 printf ("\nActive event number:");
 if ((CC = SMP_GetInputAll (Context, &EventNo, KeyTable, 13))
 == SES_FOUND)
 {
 i = 0;
 while (EventList[i] != EVENT_TERMINATION_ID)
 {
 /* Alternatively, call SMP_NameAbs to get the name. */
 if (SMP_ExplAbs (Context, EVENT_TYPE, EventList[i], &Str)
 == SES_OKAY)
 printf ("\n%s = %d", Str, EventList[i++]);
 }
 }
 }
}

See also SMP_Inquiry, page 655.

SMP_GetOutput

Description This function is for internal use only.

SMP_Init

Syntax #include "project.h"
unsigned char SMP_Init (SEM_CONTEXT *Context)

Defined in project.c

Description This deprecated function is provided for backward compatibility and should not be used.
Instead use the -vsinitall1 Coder option, see -vsinitall, page 754.

This function initializes the system.

SMP_Init is called automatically by SEM_InitAll, which means that you should
normally not need to call SMP_Init.

Note: The recommended way to connect and initialize is to call the SystemVSInitAll
function.

Argument
Context A pointer to a system context.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Return value See:

Example None.

SystemSMP_InitAll

Syntax #include "sdata.h"
void systemSMP_InitAll (SEM_CONTEXT** Context)

Defined in SystemData.c

Description This function wraps one connecting function and all initialization functions except for
the function that initializes global external variables (see
ProjectSEM_InitPrjExternalVariables, page 639). The function calls the following
functions in the listed order, provided that they exist:

SMP_Connect
SMP_Init
SystemSMP_InitExternalVariables
SystemSMP_InitInternalVariables
SMP_InitSignalQueue
SMP_InitInstances
SMP_InitGuardCallBack
SMP_InitSignalDBCallBack

The function must be enabled by the Coder command line option -seminitall1 or the
corresponding GUI option.

Argument

Return value All possible return values returned by the wrapped functions.

Example See SMP_GetOutput, page 650.

SES_NULL_PTR, page 671

SES_OKAY, page 671

Context A pointer to a pointer to a system context. On returning
from the function, the pointer will point to a system context.
AFE1_AFE2-1:1

651

652

Descriptions of the Uniform API functions

SMP_InitGuardCallBack

Syntax #include "project.h"
void SMP_InitGuardCallBack (SEM_CONTEXT *Context,
 unsigned char (*Guard[])(SEM_CONTEXT *Context))

Defined in project.c

Description This deprecated function is provided for backward compatibility and should not be used.
Instead use the -vsinitall1 Coder option, see -vsinitall, page 754.

This function initializes the guard expression call-back function. Call this function after
the SMP_Connect function if the system contains guard expressions.

SMP_InitGuardCallBack is called automatically by SystemSEM_InitAll, which
means that you should normally not need to call SMP_InitGuardCallBack.

Argument

Return value None.

Example None.

SMP_InitInstances

Syntax #include "project.h"
unsigned char SMP_InitInstances (SEM_CONTEXT *Context)

Defined in project.c

Description This function initializes a number of instances of a system. The instance is handled in
pseudo-parallel using the SMP_SetInstance function. The actual number of instances
is determined by the information in the system.

If the function has already been called, any previous instances are deallocated and a new
set is allocated.

SMP_InitInstances is called automatically by SystemSEM_InitAll, which means
that you should normally not need to call SMP_InitInstances.

Context A pointer to a system context.

Guard A pointer to the system guard expression function pointer
table.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Argument

Return value See:

Example unsigned char Instance (SEM_CONTEXT *Context,
 SEM_EVENT_TYPE EventNo, SEM_INSTANCE_TYPE InstanceNo)
{
 /* Declare action expression variable. */
 SEM_ACTION_EXPRESSION_TYPE ActionExpress;

 /* Declare completion code */
 unsigned char cc;

 /* Set active instance. */
 if (SMP_SetInstance (Context, InstanceNo) != SES_OKAY)
 return (FALSE);
 cc = SystemVSDeduct (Context, EventNo);
 if ((cc != SES_OKAY) && cc != SES_FOUND)
 return (FALSE);
 return (TRUE)
}

void Task (void)
{
 SEM_CONTEXT Context;
 SEM_INSTANCE_TYPE InstanceNo = 0;

 /*
 * Declare and initialize. In this case the
 * reset event is SE_RESET.
 */
 SEM_EVENT_TYPE EventNo = SE_RESET;

Context A pointer to a system context.

SES_MEM_ERR, page 670

SES_NULL_PTR, page 671

SES_OKAY, page 671
AFE1_AFE2-1:1

653

654

Descriptions of the Uniform API functions

 if (SystemSMPInitAll(&Context) != SES_OKAY)
 ErrorHandling ();

 for (InstanceNo = 0; InstanceNo < VS_NOF_INSTANCES;
 InstanceNo++)
 {
 Instance (Context, EventNo, InstanceNo);
 }

 /* Do forever. */
 while (1)
 {
 /*
 * Get new event and map it to VS System events and
 * instance.
 */
 MapEvent (&EventNo, &InstanceNo);
 /* Process the event. */
 if (Instance (Context, EventNo, InstanceNo) != TRUE)
 ErrorHandling ();
 }
}

See also The Visual State system, page 123.

SMP_InitSignalQueue

Syntax #include "project.h"
void SMP_InitSignalQueue (SEM_CONTEXT *Context)

Defined in project.c

Description This function initializes the signal queue in a system and must be called together with
the SMP_Init function. The function will only be available if the signal queue is
enabled and the system contains signals.

SMP_InitSignalQueue is called automatically by SMP_Connect, so unless the
system needs to be reinitialized, this function does not need to be called.

SMP_InitSignalQueue is called automatically by SystemSEM_InitAll, which
means that you should normally not need to call SMP_InitSignalQueue.

Argument
Context A pointer to a system context.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Return value None.

Example None.

SMP_Inquiry

Syntax #include "project.h"
unsigned char SMP_Inquiry (SEM_CONTEXT *Context)

Defined in project.c

Description This function prepares for finding events that can trigger changes in the current state.
All events are found by continuous calls to the function SMP_GetInput or one call to
SMP_GetInputAll.

As the function will inquire events on the basis of the internal current state
configuration, SMP_Inquiry can only be used if the previously called function is one
of these:

● SMP_Connect

● SMP_Init

● SMP_NextState

● SMP_NextStateChg

Argument

Return value See:

Context A pointer to a system context.

SES_ACTIVE, page 669

SES_NULL_PTR, page 671

SES_OKAY, page 671
AFE1_AFE2-1:1

655

656

Descriptions of the Uniform API functions

Example #define STRLEN 80

/* Print active events */
unsigned char PrintActiveEvents(SEM_Context *Context)
{
 char Str[STRLEN];
 unsigned char CC = SES_OKAY;
 SEM_EVENT_TYPE EventNo = EVENT_UNDEFINED;

 if ((CC = SMP_Inquiry(Context)) == SES_OKAY)
 {
 printf("\nActive event numbers:");
 while ((CC = SMP_GetInput(Context, &EventNo, NULL))
 == SES_FOUND)
 {
 if (SMP_Name(Context, EVENT_TYPE, EventNo, Str, STRLEN)
 == SES_OKAY)
 printf("\n%s = %d", Str, EventNo);
 /*
 * Alternatively to using SMP_Name:
 * {
 * const char *pName;
 * if((cc = SMP_NameAbs(Context, EVENT_TYPE, EventNo,
 &pName)) == SES_OKAY)
 * printf("\n%s = %d", pName, EventNo);
 * }
 */
 }
 }
 return (CC);
}

See also SMP_GetInput, page 646.

SMP_Machine

Syntax #include "project.h"
unsigned char SMP_Machine (SEM_Context *Context,
 SEM_STATE_TYPE StateNo,
 SEM_STATE_MACHINE_TYPE *StateMachineNo)

Defined in project.c

Description This function returns the state machine index of the specified state.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Argument

Return value See:

Example /*
 * The function is used for turning on/off a standby LED
 * The function must be called, just after SMP_NextState is
 * called.
 */
unsigned char CheckStandby (SEM_Context *Context)
{
 unsigned char CC;
 SEM_STATE_TYPE StateNo;
 SEM_STATE_MACHINE_TYPE StateMachine;

 /* State STATE_STANDBY defined in SystemData.h file. */
 if ((CC = SMP_Machine (Context, STATE_STANDBY, &StateMachine))
 == SES_FOUND)
 {
 if (StateNo == STATE_STANDBY)
 StandbyLED = TRUE;
 else
 StandbyLED = FALSE;
 }
 return (CC);
}

SMP_Name

Syntax #include "project.h"
unsigned char SMP_Name (SEM_CONTEXT *Context,
 unsigned char IdentType,
 SEM_EXPLANATION_TYPE IdentNo,

Context A pointer to a system context.

StateMachineNo A pointer for storing the state machine index number found
for the specified state.

StateNo The state machine index number.

SES_FOUND, page 670

SES_NULL_PTR, page 671

SES_RANGE_ERR, page 671
AFE1_AFE2-1:1

657

658

Descriptions of the Uniform API functions

 char *Text, unsigned short MaxSize)

Defined in project.c

Description This deprecated function is provided for backward compatibility and should not be used.
Instead use the function SystemVSElementName, see SystemVSElementName, page
666.

This function gets the ASCII name of the specified identifier and can only be used (and
compiled) when at least one type of name is included in the system.

Argument

Return value See:

Example See SMP_Inquiry, page 655.

SMP_NameAbs

Syntax #include "project.h"
unsigned char SMP_NameAbs (SEM_CONTEXT *Context,

Context A pointer to a system context.

IdentNo The index number of an identifier.

IdentType The type of the identifier, which can be one of:
EVENT_TYPE, STATE_TYPE, or ACTION_TYPE.

MaxSize The maximum length of the text, including the NULL
termination character.

Text A pointer to a text string. If the function terminates
successfully, the text string contains the name of the
specified identifier.

SES_FORMAT_ERR, page 670

SES_NULL_PTR, page 671

SES_OKAY, page 671

SES_RANGE_ERR, page 671

SES_TEXT_TOO_LONG, page 672

SES_TYPE_ERR, page 672
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

 unsigned char IdentType,
 SEM_EXPLANATION_TYPE IdentNo,
 char **Text)

Defined in project.c

Description This deprecated function is provided for backward compatibility and should not be used.
Instead use the function SystemVSElementName, see SystemVSElementName, page
666.

This function gets the pointer to the ASCII name of the specified identifier.

Argument

Return value See:

Example SEM_EVENT_TYPE eventNo;
/* Get next event from the queue */
if (DEQ_RetrieveEvent(&eventNo) != UCC_QUEUE_EMPTY)
{
 const char *pName;
 unsigned char cc;
 if ((cc = SMP_NameAbs(pSEMContext, EVENT_TYPE, eventNo,
 &pName)) != SES_OKAY)
 handleError(cc);
 printf("Event '%s' sent to the system.", pName);
}

Context A pointer to a system context.

IdentNo Must contain the index number of an identifier.

IdentType Must contain the type of the identifier which can be
EVENT_TYPE, STATE_TYPE, or ACTION_TYPE.

Text Must be a pointer to a char pointer. If the function
terminates successfully, the pointer points to the text that
contains the name of the specified identifier.

SES_NULL_PTR, page 671

SES_OKAY, page 671

SES_RANGE_ERR, page 671

SES_TYPE_ERR, page 672
AFE1_AFE2-1:1

659

660

Descriptions of the Uniform API functions

SMP_NextState

Description This function is for internal use only.

SMP_NextStateChg

Description This function is for internal use only.

SMP_SetInstance

Syntax #include "project.h"
unsigned char SMP_SetInstance (SEM_CONTEXT *Context,
 SEM_INSTANCE_TYPE Instance)

Defined in project.c

Description This function sets the currently active instance of the system. The instance remains
active until the next call to this function. The function may only be called between
completed macrosteps, not in the middle of a macrostep.

Argument

Return value See:

Example See SMP_InitInstances, page 652.

SMP_State

Syntax #include "project.h"
unsigned char SMP_State (SEM_CONTEXT *Context,
 SEM_STATE_MACHINE_TYPE StateMachineNo,

Context A pointer to a system context.

Instance The instance to be handled.

SES_ACTIVE, page 669

SES_NULL_PTR, page 671

SES_OKAY, page 671

SES_RANGE_ERR, page 671
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

 SEM_STATE_TYPE *StateNo)

Defined in project.c

Description This function returns the current state of the specified state machine.

Argument

Return value See:

Example void Task (void)
{
 SEM_STATE_TYPE StateNo = STATE_UNDEFINED;
 SEM_STATE_MACHINE_TYPE i;

 SEM_CONTEXT *Context;

 /*
 * Declare and initialize event variable.
 * In this case the reset event is SE_RESET.
 */
 SEM_EVENT_TYPE EventNo = SE_RESET;

 if (SystemSMP_InitAll(&Context) != SES_OKAY)
 ErrorHandling();

 /* Do forever. */
 while (1)
 {
 unsigned char cc = SystemVSDeduct(Context, EventNo);
 if (cc != SES_OKAY && cc != SES_FOUND)
 ErrorHandling ();

Context A pointer to a system context.

StateMachineNo The state machine number.

StateNo A pointer to the location in which to store the current state
of the specified state machine.

SES_FOUND, page 670

SES_NULL_PTR, page 671

SES_RANGE_ERR, page 671
AFE1_AFE2-1:1

661

662

Descriptions of the Uniform API functions

 for (i = 0; i < VS_NOF_STATE_MACHINES; i++)
 {
 if (SMP_State (Context, i, &StateNo) != SES_FOUND)
 printf ("\nState machine %d is in undefined state", i);
 else
 /* Print state machine number and state number. */
 printf ("\nState machine %d: state %d", i, StateNo);
 }

 /* Get new event and map it to System events. */
 MapEvent (&EventNo);
 }
}

SMP_StateAll

Syntax #include "project.h"
unsigned char SMP_StateAll (SEM_Context *Context,
 SEM_STATE_TYPE *StateVector,
 SEM_STATE_MACHINE_TYPE MaxSize)

Defined in project.c

Description This function returns the active state of all state machines.

Argument

Return value See:

Context A pointer to a system context.

MaxSize The maximum size of the destination array. Normally the
size will be equal to the number of state machines. The
array is not terminated.

StateVector A pointer to an array in which to store the current state
configuration.

SES_BUFFER_OVERFLOW, page 669

SES_FOUND, page 670

SES_NULL_PTR, page 671
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Example void Task (void)
{
 SEM_STATE_TYPE StateList[VS_NOF_STATE_MACHINES];
 SEM_STATE_MACHINE_TYPE i;

 SEM_Context *Context;

 /*
 * Declare and initialize. In this case the
 * reset event is SE_RESET.
 */
 SEM_EVENT_TYPE EventNo = SE_RESET;

 if (SMP_Connect(&Context, &System) != SES_OKAY)
 ErrorHandling ();

 /* Do forever. */
 while (1)
 {
 unsigned char cc = SystemVSDeduct(Context, EventNo);
 if (cc != SES_OKAY && cc != SES_FOUND)
 ErrorHandling ();

 if (SMP_StateAll (Context, StateList, VS_NOF_STATE_MACHINES)
 != SES_FOUND)
 printf ("\nCannot access states.");
 else
 {
 /* Print state machine number and state number. */
 for (i = 0; i < VS_NOF_STATE_MACHINES; i++)
 printf ("\nState machine %d: state %d", i,
 StateList[i]);
 }

 /* Get new event and map it to System events. */
 MapEvent (&EventNo);
 }
}

SystemVSDeduct

Syntax VS_UINT8 SystemVSDeduct(SEM_CONTEXT * Context, SEM_EVENT_TYPE
EventNo, ...);

Defined in SystemData.c
AFE1_AFE2-1:1

663

664

Descriptions of the Uniform API functions

Description This function deduces all the relevant action expressions on the basis of the given event,
the internal current state configuration, and the transitions in the Visual State system. All
the relevant action expressions are then called and all the next states are changed.

Note: This function is only available if you have enabled the -vsdeduct1 Coder
option.

Argument

Return value See:

Example /* do forever */
while (1)
{
 cc = systemnameVSDeduct(Context, eventNo);
 /*
 * If you enabled the semnextstatechg Coder option
 * if (cc == SES_FOUND)
 * {
 * react to a change in some state
 * }
 */
 if (cc != SES_OKAY && cc != SES_FOUND)
 handleError(cc);
 /* Get new event and map it to VS system events */
 MapEvent (&eventNo);
}

Context A pointer to a system context.

EventNo The event number to be processed. If at least one event has
parameters, the function call must include one argument for
each parameter declared in the parameter list for each
event.

SES_CONTRADICTION, page 669

SES_FOUND, page 670

SES_OKAY, page 671

SES_RANGE_ERR, page 671

SES_SIGNAL_QUEUE_FULL, page 671
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

SystemVSElementExpl

Syntax unsigned char SystemVSElementExpl (SEM_CONTEXT * Context,
unsigned char IdentType, SEM_EXPLANATION_TYPE IdentNo, char const
** Text)

Defined in SystemData.c

Description This function gets a pointer to the explanation of the specified identifier. You must also
enable generation of the explanations you want to get. For example, set the Coder
options -vselementexpl1 and -txte2. This will enable the function, and enable
generating explanations for events.

Argument

Return value See:

Example SEM_EVENT_TYPE eventNo;
/* Get next event from the queue */
if (DEQ_RetrieveEvent(&eventNo) != UCC_QUEUE_EMPTY)
{
 char const *pExpl;
 unsigned char cc;
 if ((cc = SystemVSElementExpl(pSEMContext,
 EVENT_TYPE,
 eventNo, &pExpl)) != SES_OKAY)
 handleError(cc);
 printf("Event with the explanation '%s' sent to the system.",
pExpl);
}

Context A pointer to a system context.

IdentType Contains the type of the identifier, EVENT_TYPE or
STATE_TYPE.

IdentNo Contains the index number of an identifier.

Text Contains the address of a pointer to a text string. If the
function terminates successfully, the text pointer contains
the address of the explanation of the specified identifier.

SES_OKAY, page 671

SES_RANGE_ERR, page 671

SES_TYPE_ERR, page 672
AFE1_AFE2-1:1

665

666

Descriptions of the Uniform API functions

SystemVSElementName

Syntax unsigned char systemnameVSElementName (SEM_CONTEXT * Context,
unsigned char IdentType, SEM_EXPLANATION_TYPE IdentNo, char const
** Text)

Defined in SystemData.c

Description This function gets a pointer to the name of the specified identifier. You must also
enable generation of the names you want to get. For example, set the Coder options
-vselementname1 and -txte1. This will enable the function, and enable generating
names for events.

Argument

Return value See:

Example SEM_EVENT_TYPE eventNo;
/* Get next event from the queue */
if (DEQ_RetrieveEvent(&eventNo) != UCC_QUEUE_EMPTY)
{
 char const *pName;
 unsigned char cc;
 if ((cc = SystemVSElementName(pSEMContext,
 EVENT_TYPE,
 eventNo,
 &pName)) != SES_OKAY)
 handleError(cc);
 printf("Event '%s' sent to the system.", pName);
}

Context A pointer to a system context.

IdentType Contains the type of the identifier, EVENT_TYPE or
STATE_TYPE.

IdentNo Contains the index number of an identifier.

Text Contains the address of a pointer to a text string. If the
function terminates successfully, the text pointer contains
the address of the name of the specified identifier.

SES_OKAY, page 671

SES_RANGE_ERR, page 671

SES_TYPE_ERR, page 672
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

SystemVSGetCurrentStateTree

Syntax VSResult SystemVSGetCurrentStateTree (SEM_CONTEXT * Context, char
 * buf, size_t const bufSize)

Defined in System.c

Description This function copies the strings that represent the current state tree into the buffer. Each
entry ends with a semicolon.

Argument

Return value See:

Example None.

SystemVSGetMaxCurrentStateTree

Syntax size_t SystemVSGetMaxCurrentStateTree (SEM_CONTEXT * Context)

Defined in System.c

Description This function returns the required size of the VSGetCurrentStateTree buffer.

Argument

Return value The required size of the VSGetCurrentStateTree buffer.

Example None.

Context A pointer to a system context.

buf A pointer to a buffer.

bufSize The size of the buffer buf.

SES_OKAY, page 671

SES_TEXT_TOO_LONG, page 672

Context A pointer to a system context.
AFE1_AFE2-1:1

667

668

Descriptions of the Uniform API functions

VSGetSignature

Syntax char const *VSGetSignature(void)

Defined in SystemData.c

Description This function returns the signature for the project.

Argument None.

Return value A pointer to the signature.

Example None.

SystemVSInitAll

Syntax void SystemVSInitAll(SEM_CONTEXT * Context)

Defined in System.c

Description This function wraps all initialization functions for the system and calls them.

This function must be enabled by the Coder option -vsinitall1.

Argument

Return value None.

Example None.

Context A pointer to a system context.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

Uniform API return codes
The following pages give detailed reference information about each UniformAPI return
code.

SES_ACTIVE

Return code SES_ACTIVE

Description The completion code covers one of the following:

● An event deduction is started while an event inquiry is active. All inquired events
have not been returned by the function SMP_GetInput.

● An event inquiry is started while an event deduction is active. All deduced action
expressions have not been returned by the function SMP_GetOutput and the
SMP_NextState has not been called to finish the event deduction.

Solution The completion code is a warning and the application might have to be rewritten. An
event inquiry and an event deduction should not be active at the same time.

SES_BUFFER_OVERFLOW

Return code SES_BUFFER_OVERFLOW

Description A destination buffer cannot hold the number of items found.

Solution Call the function with an extended buffer as destination.

SES_CONTRADICTION

Return code SES_CONTRADICTION

Description A contradiction has been detected between two states in a state machine.

Solution Check the system with the Validator or the Verificator.
AFE1_AFE2-1:1

669

670

Uniform API return codes

SES_EMPTY

Return code SES_EMPTY

Description No events have been given to the SystemVSDeduct function before calling this
function.

Solution Call the SystemVSDeduct function with an event number.

SES_FORMAT_ERR

Return code SES_FORMAT_ERR

Description The data in the Visual State system has an incorrect format.

Solution Check that the correct version of the Coder has been used when generating the files.

SES_FOUND

Return code SES_FOUND

Description The called function has returned an identifier index number.

Solution Process the returned identifier index number. If the function SMP_GetInput or
SMP_GetOutput was called, the function can be called again to find more events or
action expressions.

SES_MEM_ERR

Return code SES_MEM_ERR

Description There has been an error while allocating memory for the system.

Solution ● Free some memory on the host computer

● Use a large data memory model.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Uniform API reference information

SES_NULL_PTR

Return code SES_NULL_PTR

Description A null pointer has been given to the function instead of a valid SEM_CONTEXT pointer.

Solution Call the function with a valid SEM_CONTEXT pointer.

SES_OKAY

Return code SES_OKAY

Description Function performed successfully.

Solution Not applicable.

SES_RANGE_ERR

Return code SES_RANGE_ERR

Description A reference is being made to an identifier that does not exist. Note that the first index
number is 0. If the Visual State system has 4 identifiers of the same type, and a function
is called with a parameter value equal to 4, the function will return an SES_RANGE_ERR
error. In this case the highest permitted variable value is 3.

Solution Your application can check the index parameters with one of the following variables in
the SEM_Context structure (in the SEMLibE.h file):

nNofEvents
nNofStates
nNofActionFunctions
nNofStateMachines

SES_SIGNAL_QUEUE_FULL

Return code SES_SIGNAL_QUEUE_FULL

Description The signal queue is full.

Solution Increase the maximum signal queue size in your system.
AFE1_AFE2-1:1

671

672

Uniform API return codes

SES_TEXT_TOO_LONG

Return code SES_TEXT_TOO_LONG

Description The requested text is longer than the specified maximum length.

Solution Increase the maximum length.

SES_TYPE_ERR

Return code SES_TYPE_ERR

Description A text function has been called with the wrong identifier type, or the specified text is not
included in the system.

Solution Use the identifier type symbols (EVENT_TYPE, STATE_TYPE or ACTION_TYPE) defined
in the SEMLibE.h file. Include wanted text in your system.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic
Coder
● Introduction to the Visual State Classic Coder

● Graphical environment for the Classic Coder

● SEM type identifiers

● Transition rule data format

Introduction to the Visual State Classic Coder
Learn more about:

● Briefly about the Visual State Classic Coder, page 673

BRIEFLY ABOUT THE VISUAL STATE CLASSIC CODER

There are two Visual State Coders to use for generating code from your state machine
models for a specific API. For more information about code generation and the APIs,
see Code generation, page 457.

Before you start the code generation, specify Coder options in the Classic Coder
Options dialog box. Start the code generation by choosing Project>Code generate in
the Navigator.

For a description of the Visual State Hierarchical Coder, see The Visual State
Hierarchical Coder, page 493.

Graphical environment for the Classic Coder
Reference information about:

● Classic Coder Options dialog box, page 674
AFE1_AFE2-1:1

 673

674

Graphical environment for the Classic Coder

Classic Coder Options dialog box
The Classic Coder Options dialog box is available from the Project menu in the
Navigator.

Use this dialog box to set options for code generation. Which options you can set
depends on whether you are setting options on project level or on system level. Select
either the project or a system in the pane to the left.

Use the Switch Coder button to switch from the Classic Coder to the Hierarchical
Coder and back again.

For a description of an option, right-click it or select it and press Shift+F1.

You can set options on these tabbed pages:

● Classic Coder Options dialog box : Configuration, page 675

● Classic Coder Options dialog box : File Output, page 677

● Classic Coder Options dialog box : Code, page 679

● Classic Coder Options dialog box : Style, page 682

● Classic Coder Options dialog box : Extended Keywords, page 684

● Classic Coder Options dialog box : Names, page 686

● Classic Coder Options dialog box : API Functions, page 689

● Classic Coder Options dialog box : C++/C#/Java, page 690

● Classic Coder Options dialog box : Readable Code, page 691
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

● Classic Coder Options dialog box : C-SPYLink, page 692

● Classic Coder Options dialog box : RealLink, page 694

● Classic Coder Options dialog box : Types, page 696

● Classic Coder Options dialog box : MISRA, page 697

Classic Coder Options dialog box : Configuration
The Configuration options page contains options for general configuration.

Use this page to make configuration settings for the Classic Coder. The display area
under the options shows the resulting command line for the code generation.

This options page can only be accessed on project level.

API type

Specify the runtime API to use for code generation. For more information, see The
Visual State APIs, page 459.

Choose between:

Adaptive

The Adaptive API is optimized for the data size of each system and has a copy
of the API functions for each system.
AFE1_AFE2-1:1

 675

676

Graphical environment for the Classic Coder

Uniform

The Uniform API uses one shared API for all systems and uses the same data
sizes for all systems.

Readable code generation

Generates readable code.

C++ code generation

Generates C++ code.

C# code generation

Generates C# code.

Java code generation

Generates Java code.

Generate for C-SPYLink

Generates code that can be debugged using C-SPYLink.

Generate for RealLink

Generates code that can be debugged using RealLink.

Source file extension to use for C source files

Type the filename extension that IAR Visual State shall use for generated C language
source files.

Source file extension to use for C++ source files

Type the filename extension that IAR Visual State shall use for generated C++ language
source files.

Treat warnings as error

Makes the Classic Coder treat all warnings as errors. If the Coder encounters an error,
no code is generated.

Warnings affect exit code

By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

Ignore warnings

By default, the Classic Coder issues warnings. Select this option to disable all warnings.

Include excluded items

Makes the Classic Coder generate code also for graphical objects marked as excluded in
the Designer.

Default

Restores the options to their default settings.

Classic Coder Options dialog box : File Output
The File Output options page contains options for file output from code generation.

Use this page to make file output settings for the Classic Coder. The display area under
the options shows the resulting command line for the code generation. For C# and Java
code generation, the output file names cannot be customized. They will be constructed
from the name of the project or system, and have the filename extension .cs or .java.

This options page can be accessed on both project level and system level. Exactly which
options you can set depends on the level you are setting options on.

Use project output path

Makes the Classic Coder use the same output path for system files as the path specified
for all project files. This option can only be set on system level.
AFE1_AFE2-1:1

 677

678

Graphical environment for the Classic Coder

Output path

Specify the output path for all generated project or system files, respectively. If the path
does not exist, it is created. The path can be relative. This option can be set on both
project level and system level. For Java output, it might be a good idea to make sure that
the output path is aligned with the package name.

System header file

Specify the name of the header file that contains system-level model declarations. The
name used by default is System.h. This option can only be set on system level.

System source file

Specify the name of the source file that contains system-level model definitions. The
name used by default is based on the name of the system, with a filename extension of
either c, cpp, cs, or java. For C or C++ code, you might have to modify the filename
extension manually. This option can only be set on system level.

Report file

Specify a name for a report file to contain information about the project, option settings,
model characteristics, statistics, and a summary of the code generation. By default, no
report file is generated. This option can only be set on project level.

Project source file

Specify the name of the source file that contains project-level model definitions. The
name used by default is based on the name of the project, with a filename extension of
either c, cpp, cs, or java. For C or C++ code, you might have to modify the filename
extension manually. This option can only be set on project level.

Project header file

Specify the name of the header file that contains project-level model declarations. The
name used by default is Project.h. This option can only be set on project level.

File that will be included verbatim in each generated source file

Specify the name for a file to include in every generated source file. This option can only
be set on project level.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

Classic Coder Options dialog box : Code
The Code options page contains options for the actual code generation.

Use this page to make code settings for the Classic Coder. The display area under the
options shows the resulting command line for the code generation.

This options page can be accessed on both project level and system level. Exactly which
options you can set depends on the level you are setting options on.

External variable initialization

Specify how to initialize external variables. This option can only be set on project level.

Choose between:

By definition

Initializes variables along with their definition.

Both

Initializes variables in a function and by definition.

Internal variable initialization

Specify how to initialize internal variables. This option can only be set on project level.

Choose between:

By definition

Initializes variables along with their definition.

Both

Initializes variables in a function and by definition.
AFE1_AFE2-1:1

 679

680

Graphical environment for the Classic Coder

Functional expression handling

Specify how to handle functional expressions (guard expressions and action
expressions). This option can only be set on project level.

Choose between:

Function pointer tables

Uses a function pointer table for functional expressions. The table ensures
constant time access to functional expressions by defining separate functions for
functional expressions and including pointers to those functions in an array.

Binary if-else construct

Uses a binary if-else construct for functional expressions. A single function is
generated with a binary if-else construct to determine the functional expression
to execute. This method should only be used if the compiler does not handle the
alternative settings efficiently.

Switch-case construct

Uses a switch-case construct for functional expressions. A single function is
generated with a switch-case construct to determine the functional expression to
execute. If the compiler can recognize the switch-case construct and convert it
into a jump table, this might be the most efficient setting.

Optimize states and state machines

Optimizes states and state machines. Any state machine with a single state is optimized
away to reduce the number of states, state machines, and the size of the core model logic.
This option can only be set on project level.

Generate digital signature

Includes a digital signature in the generated code. This option can only be set on project
level.

Generate time and version

Prevents accidentally mixing files generated by multiple code generations. This option
can only be set on project level.

Use heap memory

Makes the Coder-generated code use heap memory. If heap memory is not used, all
variable data except for stack data are allocated statically, and the standard functions
malloc and free are not used. This option can only be set on project level.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

Automatic entry function call

Specify the name of a predefined function to call whenever a state is entered. This can
help you debug the state machine. This option can only be set on project level.

Automatic exit function call

Specify the name of a predefined function to call whenever a state is exited. This can
help you debug the state machine. This option can only be set on project level.

Const core model logic

Defines the core model logic as a const variable. This option should only be deselected
in exceptional cases, for example, when the target controller has sufficient and fast
RAM, and speed is of the highest importance. This option can only be set on system
level.

Const guard expression FPT

Defines the guard expression function pointer table as a const variable. This option
should only be deselected in exceptional cases, for example, when the target controller
has sufficient and fast RAM, and speed is of the highest importance. This option can
only be set on system level.

Const action expression FPT

Defines the action expression function pointer table as a const variable. This option
should only be deselected in exceptional cases, for example, when the target controller
has sufficient and fast RAM, and speed is of the highest importance. This option can
only be set on system level.

Merge guard expressions

Merges guard expressions. This might increase execution speed because multiple guard
expressions associated with a single transition are generated as a compound statement
in the code. The drawback is that one and the same guard expression might be generated
multiple times if constructs such as entry reactions, exit reactions, or history states are
used. Deselecting this option might generate smaller code.

This option can only be set on system level.

Merge action expressions

Merges action expressions. This might increase execution speed because multiple action
expressions associated with a single transition are generated as a compound statement
in the code. The drawback is that one and the same action expression might be generated
multiple times if constructs such as entry reactions, exit reactions, or history states are
used. Deselecting this option might generate smaller code.
AFE1_AFE2-1:1

 681

682

Graphical environment for the Classic Coder

This option can only be set on system level.

Use guard type cast

Uses guard type casts. This option can only be set on system level.

Use auto variables

Allows auto variables in the generated API code. This might make the API code faster
but it can also lead to increased stack usage. This option can only be set on system level.

Omit contradiction tests

Disables the generation of contradiction test code for each transition. This option should
only be selected if you know that your system is free from transition conflicts or if you
have particular testing requirements, for example, various branch coverage metrics.
Note that if the system is verified in some way to be conflict-free, no test sequence that
will exercise the error part of the conflict test can be constructed unless you modify the
generated code by inserting test code to manipulate variable values. This option can be
used for both readable code and table-based code. See also Size of generated readable
code, page 462.

This option can only be set on system level.

Default

Restores the options to their default settings.

Classic Coder Options dialog box : Style
The Style options page contains options for style.

Use this page to make style settings for the Classic Coder. The display area under the
options shows the resulting command line for the code generation.

This options page can only be accessed on project level.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

SEM type definitions

Specify how to make SEM type definitions.

Choose between:

As typedefs

Uses the typedef keyword for type definitions. This is the preferred setting
because it helps the compiler to do type checking.

As macros

Uses the #define keyword for type definitions. Use this setting if the compiler
cannot determine that two type definitions actually are the same.

VS type definitions

Specify how to make Visual State type definitions.

Choose between:

As typedefs

Uses the typedef keyword for type definitions. This is the preferred setting
because it helps the compiler to do type checking.

As macros

Uses the #define keyword for type definitions. Use this setting if the compiler
cannot determine that two type definitions actually are the same.

VS_BOOL type

Specify the runtime type to use for the VS_BOOL type. By default, the setting is int.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

 683

684

Graphical environment for the Classic Coder

Classic Coder Options dialog box : Extended Keywords
The Extended Keywords options page contains options for extended keywords.

Use this page to make extended keywords settings for the Classic Coder. The display
area under the options shows the resulting command line for the code generation.

This options page can be accessed on both project level and system level. Exactly which
options you can set depends on the level you are setting options on.

Extended keyword for system context

Specify an extended keyword string for the system context variables (variable data).
This option can only be set on project level.

Extended keyword for external variables

Specify an extended keyword string for external variables (variable data). This option
can be set on both project level and system level.

Extended keyword for core model logic

Specify an extended keyword string for the core model logic struct variables (constant
data). This option can only be set on project level.

Extended keyword for guard expression collection

Specify an extended keyword string for the guard expression collection variables
(constant data). This option can only be set on project level.

Extended keyword for action expression collection

Specify an extended keyword string for the action expression collection variables
(constant data). This option can only be set on project level.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

Extended keyword for runtime info

Specify an extended keyword string for the runtime information struct variable
(constant data). By default, the runtime information struct only contains the digital
signature for the project. This option can only be set on project level.

C header file with action function keywords

Specify a C header file that contains keywords for action functions. There is a browse
button for your convenience. If an extended keyword is associated with the function
prototype either as a keyword or as #pragma type_attribute, it will be used during
code generation. For a description of the syntax of this file, see Syntax of C header files,
page 316.

This option can only be set on system level.

An example:

#pragma VS_ACTION_BEGIN

#pragma type_attribute=__arm
VS_VOID Action2(VS_INT param1, VS_EVENT_TYPE param2);

__thumb VS_VOID Timer1(VS_UINT event, VS_UINT ticks);

#pragma VS_END

Extended keyword to use on generated wrapper functions

Specify an extended keyword to be used for all generated wrapper functions for guards
and action calls. This option can only be set on system level.

Extended keyword for internal variables

Specify an extended keyword string for internal variables (variable data). This option
can only be set on system level.

Extended keyword for double buffer variable

Specify an extended keyword string for the double buffer variable (variable data). This
option can only be set on system level.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

 685

686

Graphical environment for the Classic Coder

Classic Coder Options dialog box : Names
The Names options page contains options for including text associated with states,
events, and actions in the generated code.

Use this page to make name settings for the Classic Coder. The display area under the
options shows the resulting command line for the code generation.

This options page can only be accessed on system level.

Event name inclusion

Specify the amount of text associated with events to include in the generated code.

Choose between:

No text

Includes no text associated with events in the generated code.

Names included

Includes the names of the events in the generated code. This makes it possible
to extract the names from the application when it executes on the target. See the
documentation for the API functions with suffixes _Name and _NameAbs.

Explanations included

Includes the descriptions of the events in the generated code. This makes it
possible to extract the descriptions from the application when it executes on the
target. See the documentation for the API functions with suffixes _Expl and
_ExplAbs.

Names and explanations

Includes both the names and the descriptions of the events in the generated code.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

Printing symbolic event names

Specify how to generate symbolic event names.

Choose between:

Do not print

No symbolic event names are generated.

Do not convert

Generates symbolic event names as defined in the model.

Convert to uppercase

Generates symbolic event names as defined in the model, but converted to upper
case.

State name inclusion

Specify the amount of text associated with states to include in the generated code.

Choose between:

No text

Includes no text associated with states in the generated code.

Names included

Includes the names of the states in the generated code. This makes it possible to
extract the names from the application when it executes on the target. See the
documentation for the API functions with suffixes _Name and _NameAbs.

Explanations included

Includes the descriptions of the states in the generated code. This makes it
possible to extract the descriptions from the application when it executes on the
target. See the documentation for the API functions with suffixes _Expl and
_ExplAbs.

Names and explanations

Includes both the names and the descriptions of the states in the generated code.

Printing symbolic state names

Specify how to generate symbolic state names. Typically, this is useful when you use the
functions SEM_State, SEM_Machine, and SEM_ForceState.

Choose between:

Do not print

No symbolic state names are generated.
AFE1_AFE2-1:1

 687

688

Graphical environment for the Classic Coder

Do not convert

Generates symbolic state names as defined in the model.

Convert to uppercase

Generates symbolic state names as defined in the model, but converted to upper
case.

Action function name inclusion

Specify the amount of text associated with action functions to include in the generated
code.

Choose between:

No text

Includes no text associated with action functions in the generated code.

Names included

Includes the names of the action functions in the generated code. This makes it
possible to extract the names from the application when it executes on the target.
See the documentation for the API functions with suffixes _Name and
_NameAbs.

Explanations included

Includes the descriptions of the action functions in the generated code. This
makes it possible to extract the descriptions from the application when it
executes on the target. See the documentation for the API functions with
suffixes _Expl and _ExplAbs.

Names and explanations

Includes both the names and the descriptions of the action functions in the
generated code.

Printing symbolic state machine names

Specify how to generate symbolic state machine names.

Choose between:

Do not print

No symbolic state machine names are generated.

Do not convert

Generates symbolic state machine names as defined in the model.

Convert to uppercase

Generates symbolic state machine names as defined in the model, but converted
to upper case.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

Default

Restores the options to their default settings.

Classic Coder Options dialog box : API Functions
The API Functions options page contains options for API functions.

Use this page to make API function settings for the Classic Coder and to enable specific
API functions. The display area under the options shows the resulting command line for
the code generation.

Note that different sets of options are available if you set the options on system level or
on project level. The screenshot reflects the options available on system level.

Use prefix for API

Uses the prefix specified with the Prefix to use for API option in front of all identifiers,
functions, etc, in the system. This option is only be available on system level.
AFE1_AFE2-1:1

 689

690

Graphical environment for the Classic Coder

Prefix to use for API

Specify a prefix to put in front of all identifiers, functions, etc, in the system. This option
is only available on system level.

Enable function

Enables a specific Adaptive API function. See also Descriptions of the Adaptive API
functions, page 592.

Available functions to enable depends on whether you set the options on system or
project level.

Default

Restores the options to their default settings.

Classic Coder Options dialog box : C++/C#/Java
The C++/C#/Java options page contains options for C++, C#, and Java code generation.

Use this page to make C++, C#, or Java settings for the Classic Coder. The display area
under the options shows the resulting command line for the code generation.

This options page can be accessed on both project level and system level. The screenshot
reflects the options available on system level.

See also Adaptive API table-based code with C++, page 571.

Class name to use when generating C++/C#/Java

Specify the class name to use for the generated system. It must be a legal identifier. By
default, the class name is the name of the system. This option is only available on system
level.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

Remove VS_NOF* macros

Replaces the VS_NOF* macros with methods on the system class. This option is only
available on system level.

Name space to use for the project code when generating C++/C#/Java

Specify the C++, C#, or Java namespace for all code related to this project. This option
is only available on project level.

Name space to use for the system code when generating C++/C#/Java

Specify the C++, C#, or Java namespace for all code related to this system. This option
is only available on system level.

Package name to use for the project code when generating Java

Specify the package name used when generating Java code. It might be a good idea to
make sure that the package name is aligned with the output path. This option is available
on project level when Java is the selected code output.

Default

Restores the options to their default settings.

Classic Coder Options dialog box : Readable Code
The Readable Code options page contains options for generating readable code.

Use this page to make readable code settings for the Classic Coder. The display area
under the options shows the resulting command line for the code generation.

This options page can only be accessed on system level.

See also Adaptive API readable code, page 571.
AFE1_AFE2-1:1

 691

692

Graphical environment for the Classic Coder

Split readable code

Rewrites all SystemVSDeduct functions to use helper functions for event processing.
This can be beneficial for very large SystemVSDeduct functions, because it reduces the
compilation time if aggressive compiler optimizations are used. It can also overcome
any arbitrary implementation function size limits of your compiler. This option causes
a small increase in code size and a small reduction in execution speed.

Default

Restores the options to their default settings.

Classic Coder Options dialog box : C-SPYLink
The C-SPYLink options page contains options for debugging using C-SPYLink.

Use this page to make C-SPYLink settings for the Classic Coder. The display area under
the options shows the resulting command line for the code generation.

This options page can be accessed on both project level and system level. Depending on
which level you set options on, different sets of options are available.

See also Debugging design models using C-SPYLink, page 759.

Enable using shared DLIB breakpoint

Makes the generated code use the shared breakpoint available in the DLIB runtime
environment. If the number of breakpoints is limited, this helps to preserve the number
of allocated breakpoints. Do not use this option with the legacy CLIB runtime
environment. This option can only be set on project level.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

Enable using ARM EABI shared semi-hosting breakpoint

Makes the generated code use the shared semi-hosting breakpoint available in the Arm
EABI-specific runtime environment. If the number of breakpoints is limited, this helps
to preserve the number of allocated breakpoints. This option requires IAR Embedded
Workbench® for Arm 5.10 or later. This option can only be set on project level.

Suppress C-SPYLink common files

Prevents multiple C-SPYLink files from being generated when you are using two or
more projects in the same linked image together with C-SPYLink. This option can only
be set on project level.

Enable full instrumentation

Extracts a maximum amount of debug information from your model. This option causes
a small increase in code size and a significant reduction in execution speed. This option
can only be set on system level.

Enable sampling buffer

Enables on-target sampling buffers for a single macrostep. C-SPYLink will be able to
extract large amounts of debug information from your model. This option causes an
increase in code size and a small reduction in execution speed. If sequence recording is
used, the speed reduction will be larger. Use the option Sampling buffer size to set the
size of the buffer.

This option can only be set on system level.

Enable sampling buffer readout

Reads data from the sampling buffer while the target application is executing. The target
controller must support live read. This option can only be set on system level.

Sampling buffer size

Set the number of elements in the sampling buffer for C-SPYLink. If the value is too
low, you can only see the event that triggered the most recent transition and the states
after that microstep. If the value is too high, the target application might run out of
memory. This option does not change the behavior of the model.

This option can only be set on system level.

Number of state machine breakpoints

Set the number of available breakpoints for C-SPYLink on the target controller. Using
this option consumes memory. This option does not change the behavior of the model.

This option can only be set on system level.
AFE1_AFE2-1:1

 693

694

Graphical environment for the Classic Coder

Enable recording buffer

Makes it possible to make recordings (execution logs) at almost full speed. This option
also makes it possible to display sampled data back. Use the option Recording buffer
size to set the size of the buffer.

This option can only be set on system level.

Recording buffer size

Set the number of elements in the recording buffer for C-SPYLink. This option can only
be set on system level.

Default

Restores the options to their default settings.

Classic Coder Options dialog box : RealLink
The RealLink options page contains options for debugging using RealLink.

Use this page to make RealLink settings for the Classic Coder. The display area under
the options shows the resulting command line for the code generation.

This options page can only be accessed on project level.

See also Debugging design models using C-SPYLink, page 759.

RealLink protocol data extended keyword

Specify an extended keyword string to use for RealLink protocol data.

Use additional RealLink extended keywords

Enables additional RealLink extended keywords.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

RealLink data extended keyword

Specify an extended keyword string to use for RealLink symbol table data.

RealLink const data extended keyword

Specify an extended keyword string to use for RealLink symbol table constant data.

Enforce compatible RealLink extended keywords

Replaces all standard Visual State extended keywords with RealLink-compatible
extended keywords.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

 695

696

Graphical environment for the Classic Coder

Classic Coder Options dialog box : Types
The Types options page contains options for data types.

Use this page to specify the underlying data types to be used for Visual State data types.
The display area under the options shows the resulting command line for the code
generation.

This options page can only be accessed on project level.

See also Visual State data types, page 197.

Types style

Selects the underlying data type for the Visual State data types.

Choose between:

VisualState

Uses the standard Visual State types.

C99

Uses C99 data types, where possible, as the underlying types for the generated
VS_* types.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

Manual

Allows you to specify individually for each generated VS_* type which
underlying data type to use.

File to #include that will provide typedefs for the types specified manually

Specify a file with type definitions to include.

Type to use for Visual State data type

Specify which underlying data type to use for a specific Visual State data type. See also
Visual State data types, page 197.

Default

Restores the options to their default settings.

Classic Coder Options dialog box : MISRA
The MISRA options page contains options for generating code that is more compliant
with MISRA C/C++ rules.

Use this page to enable generation of code that is more compliant to MISRA C/C++.
The display area under the options shows the resulting command line for the code
generation.

This options page can only be accessed on project level.

Maximum MISRA C/C++ compliance

Changes the generated code so that it is more compliant with MISRA C/C++. This
causes these other Classic Coder options to be automatically set:

● -removevsnofmacros1 will be automatically set if you have enabled C++ code
generation
AFE1_AFE2-1:1

 697

698

Graphical environment for the Classic Coder

● -tsemt0

● -tvst0

These macros will not be used:

● the macros used for getting the signature: VS_RUNTIME_INFO,
VS_RUNTIME_INFO_EXTKW, VS_SIGNATURE_VERSION,
VS_SIGNATURE_CONTENT, VS_SIGNATURE_VERSION_LENGTH, and
VS_SIGNATURE_CONTENT_LENGTH. Make sure to enable and use the function
VSGetSignature instead.

● the macros VS_TRUE and VS_FALSE. If you need them for other reasons, add these
macros to your state machine model as constants instead.

These types will be changed:

● VS_VOID will not be used by the generated code. Use plain void instead.

● The new enumeration type VSResult will contain the SES_*** members in the
project header (and project name space).

● The VS_*** types (for example, VS_UINT8) will be put in the project header file
(and project name space).

If you have enabled C++ code generation, these changes also apply:

● the symbolic identifier names (events, states, and action functions) for a system will
be generated as enumerations in the system class. Calls that must use these
symbolic names must use for example, {system instance}/class
name}.Event1.

● these functions will not be generated:

● getNofActionExpressions

● getNofActionFunctions

● getNofEventGroups

● getNofExternalVariables

● getNofGuardExpressions

● getNofInternalVariables

● getNofSignals

● static cast will be used instead of old style C cast.

● the project files can optionally have their own name space.

● the Visual State constants will be generated as const variables.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State Classic Coder

SEM type identifiers
The SEM type identifiers are defined in the Classic Coder-generated file SEMTypes.h.

These are the available SEM type identifiers:

Transition rule data format
The transition rule data format is used for storing transitions in the local code layer. Each
transition rule consists of one rule data header word and one rule data element for each
element of the transition rule.

By default, the Classic Coder will optimize the size of the rule data format number.

For projects that do not use guard expressions or signals, you can apply data formats
with all data header types (type 1, 2, or 3). For projects that contain guard expressions
or signals, you must apply a format with rule data header word type 2 or 3. It is always
possible to force the Classic Coder to use a larger format than the format determined by
the Coder.

Type identifiers Description

SEM_EVENT_TYPE Event data type

SEM_EVENT_GROUP_TYPE Reserved for internal use in the Visual State APIs

SEM_GUARD_EXPRESSION_TYPE Reserved for internal use in the Visual State APIs

SEM_STATE_TYPE State data type

SEM_ACTION_FUNCTION_TYPE Action function data type. Used only for action
functions without parameters and which have the
return type VS_VOID.

SEM_ACTION_EXPRESSION_TYPE Action expression data type.

SEM_SIGNAL_QUEUE_TYPE Signal queue data type.

SEM_INSTANCE_TYPE Instance data type.

SEM_STATE_MACHINE_TYPE State machine data type.

SEM_EXPLANATION_TYPE Explanation data type.

SEM_INTERNAL_TYPE Reserved for internal use in the Visual State APIs.

SEM_RULE_INDEX_TYPE Reserved for internal use in the Visual State APIs.

SEM_RULE_TABLE_INDEX_TYPE Reserved for internal use in the Visual State APIs.

SEM_EGTI_TYPE Reserved for internal use in the Visual State APIs.

Table 31: SEM type identifiers
AFE1_AFE2-1:1

 699

700

Transition rule data format

This table shows the rule data header word type, rule data header word width, and the
rule data width of the different transition rule data formats:

Rule data format number
Rule data header word

type

Rule data header word

width
Rule data width

0 Type 1 16 bits 8 bits

1 Type 2 24 bits 8 bits

2 Type 1 32 bits 8 bits

3 Type 2 48 bits 8 bits

4 Type 1 16 bits 16 bits

5 Type 3 32 bits 16 bits

6 Type 1 32 bits 16 bits

7 Type 2 48 bits 16 bits

8 Type 1 32 bits 32 bits

9 Type 3 64 bits 32 bits

Table 32: Transition rule data format
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command
line options
● Introduction to invoking the Classic Coder using command line options

● Summary of Classic Coder options

● Descriptions of Classic Coder options.

Introduction to invoking the Classic Coder using command line options
Learn more about:

● Briefly about invoking the Classic Coder, page 701

● Invocation syntax for the Classic Coder, page 702

BRIEFLY ABOUT INVOKING THE CLASSIC CODER

You can set Classic Coder options either in the Navigator—using the Classic Coder
Options dialog box—or via the command line using command line options.

A Coder option is either a project option or a system option. In general, project options
affect the project and all systems part of it. System options only affect the systems for
which they are specified.

Both project options and system options can be specified anywhere on the command
line. System options that are specified before any system has been specified apply to all
systems.

Coder options are categorized based on these types:

If no options and no vsp file are specified on the command line, a list of the options will
be displayed.

The command line is case-sensitive.

Enumeration options [E]

Integral options [I]

Text options [T]

Boolean options [B]
AFE1_AFE2-1:1

701

702

Introduction to invoking the Classic Coder using command line options

For a complete list of available Classic Coder options, run the Coder.exe from the
command prompt.

INVOCATION SYNTAX FOR THE CLASSIC CODER

This is the invocation syntax for starting the Classic Coder from the command line:

Coder.exe vsp_file [--l] [--@option-file] -option[argument]*

Where:

--l loads options from the vtg file associated with the specified vsp file.

--@option-file loads additional options from the specified file. Each line in the file
must contain exactly one option. A line is treated as a comment if the line starts with the
character sequence //.

Example 1

Coder.exe Mobile.vsp

Example 2

Coder.exe Mobile.vsp -api_type1 -Vmobile1 -txte3 -txts3 -txta3
-Vmobile2

Example 3

Coder.exe Mobile.vsp --@MobileSetup.txt -Vmobile -txte3 -txts3
-txta3

Description: Generates code for the project and stores it in the file
Mobile.vsp.

Description: Generates code for the project, which contains the systems
Mobile1 and Mobile2. Code is generated for the Uniform
API.

In addition, the system Mobile1 will be generated with names
and descriptions for events, states, and action functions.

Description: Generates code for the project, which contains the system
Mobile. Code is generated for the Adaptive API.

In addition, the system Mobile will be generated with names
and descriptions for events, states, and action functions.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Summary of Classic Coder options
This table summarizes the Classic Coder command line options:

Command line option Description

-apiprefix Specifies a prefix to put in front of all identifiers, functions, etc,
in the system. [System option]

-api_type Specifies the runtime API to use for code generation. [Project
option]

-armsemihostingbreak

point

Determines whether the generated code uses the shared Arm
EABI semi-hosting breakpoint. [Project option]

-autoentryfunction Adds a call to a predefined function whenever a state is entered.
[Project option]

-autoexitfunction Adds a call to a predefined function whenever a state is exited.
[Project option]

-classname Specifies the class name to use for the generated system.
[System option]

-constactionfpt Determines whether the action expression function pointer
table is defined as a const variable. [System option]

-constcml Determines whether the core model logic is defined as a
const variable. [System option]

-constguardfpt Determines whether the guard expression function pointer
table is defined as a const variable. [System option]

-cppcode Specifies that C++ code will be generated. [Project option]

-cppsourcefileext Determines the filename extension that IAR Visual State uses
for generated C++ language source files. [Project option]

-cscode Specifies that C# code will be generated. [Project option]

-csourcefileext Determines the filename extension that IAR Visual State uses
for generated C language source files. [Project option]

-cspylink Determines whether the generated code can be debugged using
C-SPYLink. [Project option]

-D Specifies the data width for SEM data types for the entire
project. [Project option]

-dlibbreakpoint Determines whether the generated code uses the shared DLIB
breakpoint. [Project option]

-dw Specifies the data width for SEM data types for a specific system.
[System option]

Table 33: Classic Coder command line options
AFE1_AFE2-1:1

703

704

Summary of Classic Coder options

-fullinstrumentation Controls the amount of debug information that C-SPYLink can
extract from your model. [System option]

-funcexph Specifies how the Classic Coder should handle functional
expressions. [Project option]

-gds Determines whether the Classic Coder includes a digital
signature in the generated code. [Project option]

-generatetimeandvers

ion

Determines whether the Classic Coder includes the time of the
code generation and the version of the Coder in the generated
code. [Project option]

-H Specifies the name of the header file that contains system-level
model declarations. [System option]

-iev Specifies how to initialize external variables. [Project option]

-iiv Specifies how to initialize internal variables. [Project option]

-include_excluded Determines whether the Classic Coder generates code also for
graphical objects marked as excluded in the Designer. [Project
option]

-jvcode Specifies that Java code will be generated. [Project option]

-keywordheaderfile Specifies a C header file that contains keywords for action
functions. [System option]

-kw_actionexpr Specifies an extended keyword string for the action expression
collection variables. [Project option]

-kw_context Specifies an extended keyword string for the system context
variables. [Project option]

-kw_corelogic Specifies an extended keyword string for the core model logic
struct variables. [Project option]

-kw_dbdata Specifies an extended keyword string for the double buffer
variable. [System option]

-kw_guardexpr Specifies an extended keyword string for the guard expression
collection variables. [Project option]

-kw_intvar Specifies an extended keyword string for internal variables.
[System option]

-kw_prj_extvar Specifies an extended keyword string for external variables in
the entire project. [Project option]

-kw_rlcd Specifies an extended keyword string used for RealLink symbol
table const data. [Project option]

Command line option Description

Table 33: Classic Coder command line options (Continued)
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

-kw_rld Specifies an extended keyword string used for RealLink symbol
table data. [Project option]

-kw_rlec Controls whether to replace all standard Visual State extended
keywords with RealLink-compatible extended keywords.
[Project option]

-kw_rlpd Specifies an extended keyword string used for RealLink protocol
data. [Project option]

-kw_runtimeinfo Specifies an extended keyword string for the runtime
information struct variable. [Project option]

-kw_sys_extvar Specifies an extended keyword string for external variables in a
system. [System option]

-namespace Specifies the C++/C# namespace for all code related to the
system. [System option]

-no_warnings Determines whether warnings should be disabled. [Project
option]

-oa Determines whether the Classic Coder merges action
expressions. [System option]

-og Determines whether the Classic Coder merges guard
expressions. [System option]

-omitcontradictionte

sts

Controls the generation of contradiction test code for each
transition. [System option]

-osm Controls optimization of states and state machines. [Project
option]

-path Specifies the output path for all generated project files. [Project
option]

-projectheader Specifies the name of the header file that contains project-level
model declarations. [Project option]

-projectnamespace Specifies the project name space to use for C++ output for
project-related types and functions. [Project option]

-projectpackage Specifies the package name used when generating Java code.
[Project option]

-projectsource Specifies the name of the source file that contains project-level
model definitions. [Project option]

-R Specifies a name for a report file to contain information about
the project. [Project option]

Command line option Description

Table 33: Classic Coder command line options (Continued)
AFE1_AFE2-1:1

705

706

Summary of Classic Coder options

-rdfm Specifies the transition rule data format to use for the whole
project when generating code. [Project option]

-readable Determines whether to generate table-based or readable code.
[Project option]

-reallink Determines whether the generated code can be debugged using
RealLink. [Project option]

-recordingbuffersize Specifies the number of elements in the recording buffer for
C-SPYLink. [System option]

-removevsnofmacros Specifies whether the VS_NOF* macros are replaced with
methods on the system class. [System option]

-S Specifies the name of the source file that contains system-level
model definitions. [System option]

-samplingbuffersize Specifies the number of elements in the sampling buffer for
C-SPYLink. [System option]

-semfunc Specifies whether to enable the API function SEM_func.
[System option]

-sne Controls how symbolic event names are generated. [System
option]

-snm Controls how symbolic state machine names are generated.
[System option]

-sns Controls how symbolic state names are generated. [System
option]

-spath Specifies the output path for all generated system files. [System
option]

-splitreadable Specifies whether the Classic Coder rewrites all
systemnameVSDeduct functions to use helper functions for
event processing. [System option]

-suppress_cspylink_c

ommon_files

Controls how multiple C-SPYLink files are generated when you
are using two or more projects in the same linked image.
[Project option]

-sysrdfm Specifies the transition rule data format to use for a specific
system when generating code. [System option]

-targetbreakpoints Specifies the number of available breakpoints for C-SPYLink on
the target controller. [System option]

-tsemt Specifies how to make SEM type definitions. [Project option]

Command line option Description

Table 33: Classic Coder command line options (Continued)
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

-tvsvt Specifies how to make Visual State type definitions. [Project
option]

-txta Controls the amount of text associated with action functions to
include in the generated code. [System option]

-txte Controls the amount of text associated with events to include
in the generated code. [System option]

-txts Controls the amount of text associated with states to include in
the generated code. [System option]

-typeVStype Specifies which underlying data type to use for the generated
Visual State data type. [Project option]

-typeheaderfile Specifies a header file to include in files that need type
definitions to declare manually specified underlying data types
for the Visual State data types. [Project option]

-typestyle Selects the underlying data types for the generated Visual State
data types. [Project option]

-useapiprefix Determines whether to use the prefix specified with the
-apiprefix option in front of all identifiers, functions, etc.
[System option]

-useautovariables Determines whether auto variables are allowed in the
generated API code. [System option]

-useguardtypecast Determines whether the Classic Coder uses guard type casts.
[System option]

-useheap Determines whether the Classic Coder uses heap memory.
[Project option]

-uselivesamplingbuff

er

Determines whether C-SPYLink can read data from the
sampling buffer while the target application is executing. [System
option]

-usepop Determines whether the Classic Coder uses the same output
path for system files as the path specified for all project files.
[System option]

-userecordingbuffer Determines whether to use a recording buffer. [System option]

-userfileinclusion Specifies a file to include in every generated source file. [Project
option]

-userlkw Specifies whether to use additional RealLink extended
keywords. [Project option]

Command line option Description

Table 33: Classic Coder command line options (Continued)
AFE1_AFE2-1:1

707

708

Descriptions of Classic Coder options

Descriptions of Classic Coder options
The following pages give detailed reference information about each Classic Coder
command line option.

-apiprefix

Syntax -apiprefixprefix

Parameters

-usesamplingbuffer Controls on-target sampling buffers for a single macrostep.
[System option]

-V Specifies the system that the following system options apply to.
[System option]

-variant Specifies which variant to generate code for. [Project option]

-vsbooltype Specifies the data type to use for the VS_BOOL type at runtime.
[Project option]

-vsdeduct Enables generation of the VSDeduct function. [System option]

-vselementexpl Enables generation of the VSElementExpl function. [System
option]

-vselementname Enables generation of the VSElementName function. [System
option]

-vsinitall Enables generation of the VSInitAll function. [System
option]

-vsgetsignature Enables generation of the VSGetSignature function.
[Project option]

-warnings_affect_exi

t_code

Determines whether warnings generate a non-zero exit code.
[Project option]

-warnings_are_errors Determines whether all warnings are reclassified as errors.
[Project option]

-wrapperfunctionkeyw

ord

Specifies an extended keyword to be used for all generated
wrapper functions for guards and action calls. [System option]

Command line option Description

Table 33: Classic Coder command line options (Continued)

prefix A string that will be used as a prefix for all identifiers, functions, etc, in
the system.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Scope System level.

Description Specifies a prefix to put in front of all identifiers, functions, etc, in the system. This
option requires that you have specified the option -useapiprefix1.

See also -useapiprefix, page 747.

Project>Options>Code Generation>system>API Functions>Prefix to use for API

-api_type

Syntax -api_type{0|1}

Parameters

Scope Project level.

Description Specifies the runtime API to use for code generation.

See also The Visual State APIs, page 459.

Project>Options>Code Generation>project>Configuration>API type

-armsemihostingbreakpoint

Syntax -armsemihostingbreakpoint{0|1}

Parameters

Scope Project level.

0 (default) The Adaptive API, which is optimized for the data size of each
system and has a copy of the API functions for each system.

1 The Uniform API, which uses one shared API for all systems and
uses the same data sizes for all systems.

0 (default) The generated code does not use the shared semi-hosting breakpoint
available in the Arm EABI-specific runtime environment.

1 The generated code uses the shared semi-hosting breakpoint available in
the Arm EABI-specific runtime environment.
AFE1_AFE2-1:1

709

710

Descriptions of Classic Coder options

Description Determines whether the generated code uses the shared semi-hosting breakpoint
available in the Arm EABI-specific runtime environment. If the number of breakpoints
is limited, using this breakpoint helps to preserve the number of allocated breakpoints.
This option requires IAR Embedded Workbench® for Arm 5.10 or later.

See also -dlibbreakpoint, page 716.

Project>Options>Code Generation>project>C-SPYLink>Enable using ARM
EABI shared semi-hosting breakpoint

-autoentryfunction

Syntax -autoentryfunctionfuncname

Parameters

Scope Project level.

Description Specifies a user-defined function to call whenever a state is entered.

Example -autoentryfunctionMy_Function

See also VSProjectEnterState, page 477.

Project>Options>Code Generation>project>Code>Automatic entry function call

-autoexitfunction

Syntax -autoexitfunctionfuncname

Parameters

Scope Project level.

Description Specifies a user-defined function to call whenever a state is exited.

Example -autoexitfunctionMy_Function

funcname A user-defined function that is called whenever a state is
entered.

funcname A user-defined function that is called whenever a state is exited.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

See also VSProjectLeaveState, page 481.

Project>Options>Code Generation>project>Code>Automatic exit function call

-classname

Syntax -classnameidentifier

Parameters

Scope System level.

Description Specifies the class name to use for the generated system. It must be a legal identifier. By
default, the class name is the name of the system.

Project>Options>Code Generation>system>C++/C#/Java>Class name to use
when generating C++/C#/Java

-constactionfpt

Syntax -constactionfpt{0|1}

Parameters

Scope System level.

Description Determines whether the action expression function pointer table is defined as a const
variable. This option should always be set to 1 except in exceptional cases, for example,
when the target controller has sufficient and fast RAM, and speed is of the highest
importance.

See also -constcml, page 712 and -constguardfpt, page 712.

Project>Options>Code Generation>system>Code>Const action expression FPT

identifier A string that specifies the class name for the generated
system.

0 The action expression function pointer table is not defined as a const
variable.

1 (default) Defines the action expression function pointer table as a const variable.
AFE1_AFE2-1:1

711

712

Descriptions of Classic Coder options

-constcml

Syntax -constcml{0|1}

Parameters

Scope System level.

Description Determines whether the core model logic is defined as a const variable. This option
should always be set to 1 except in exceptional cases, for example, when the target
controller has sufficient and fast RAM, and speed is of the highest importance.

See also -constactionfpt, page 711 and -constguardfpt, page 712.

Project>Options>Code Generation>system>Code>Const core model logic

-constguardfpt

Syntax -constguardfpt{0|1}

Parameters

Scope System level.

Description Determines whether the guard expression function pointer table is defined as a const
variable. This option should always be set to 1 except in exceptional cases, for example,
when the target controller has sufficient and fast RAM, and speed is of the highest
importance.

See also -constactionfpt, page 711 and -constcml, page 712.

Project>Options>Code Generation>system>Code>Const guard expression FPT

0 The core model logic is not defined as a const variable.

1 (default) Defines the core model logic as a const variable.

0 The guard expression function pointer table is not defined as a const
variable.

1 (default) Defines the guard expression function pointer table as a const variable.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

-cppcode

Syntax -cppcode{0|1}

Parameters

Scope Project level.

Description Determines whether C++ code will be generated or not. -cppcode1 cannot be specified
together with either -cscode1 or -jvcode1.

See also Generating code for an API, page 572.

Project>Options>Code Generation>project>Configuration>C++ code generation

-cppsourcefileext

Syntax -cppsourcefileextextension

Parameters

Scope Project level.

Description Determines the filename extension that IAR Visual State uses for generated C++
language source files. By default, the filename extension is cpp.

Project>Options>Code Generation>project>Configuration>Source file extension
to use for C++ source files

0 (default) Generates C code unless one of the options -cscode1 or -jvcode1
has been specified.

1 Generates C++ code.

extension The filename extension that IAR Visual State uses for
generated C++ language source files.
AFE1_AFE2-1:1

713

714

Descriptions of Classic Coder options

-cscode

Syntax -cscode{0|1}

Parameters

Scope Project level.

Description Determines whether C# code will be generated or not. -cscode1 cannot be specified
together with either -cppcode1 or -jvcode1.

See also Generating code for an API, page 572.

Project>Options>Code Generation>project>Configuration>C# code generation

-csourcefileext

Syntax -csourcefileextextension

Parameters

Scope Project level.

Description Determines the filename extension that IAR Visual State uses for generated C language
source files. By default, the filename extension is c.

Project>Options>Code Generation>project>Configuration>Source file extension
to use for C source files

-cspylink

Syntax -cspylink{0|1}

Parameters

0 (default) Generates C code unless one of the options -cppcode1 or
-jvcode1 has been specified.

1 Generates C# code.

extension The filename extension that IAR Visual State uses for
generated C language source files.

0 (default) Does not generate code to be debugged using C-SPYLink.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Scope Project level.

Description Determines whether the generated code can be debugged using C-SPYLink.

See also Debugging design models using C-SPYLink, page 759 and -fullinstrumentation, page
717.

Project>Options>Code Generation>project>Configuration>Generate for
C-SPYLink

-D

Syntax -D{O|0|1|2}

Parameters

Scope Project level.

Description Specifies the data width for SEM data types.

See also SEM type identifiers, page 699 and -dw, page 716.

This option is not available in the graphical interface.

1 Generates code to be debugged using C-SPYLink.

O (default) Uses the most optimal data widths for SEM type definitions. The width is
the smallest possible to reduce the use of variable and constant data.

0 Sets the data width of all SEM types to 8 bits. If the target microcontroller
handles 8-bit accesses well, this setting probably increases the execution
speed.

1 Sets the data width of all SEM types to 16 bits. If the target
microcontroller handles 16-bit accesses well, this setting probably
increases the execution speed.

2 Sets the data width of all SEM types to 32 bits. If the target
microcontroller handles 32-bit accesses well, this setting probably
increases the execution speed.
AFE1_AFE2-1:1

715

716

Descriptions of Classic Coder options

-dlibbreakpoint

Syntax -dlibbreakpoint{0|1}

Parameters

Scope Project level.

Description Determines whether the generated code uses the shared breakpoint available in the
DLIB runtime environment. If the number of breakpoints is limited, using this
breakpoint helps to preserve the number of allocated breakpoints. Do not use this option
with the legacy CLIB runtime environment.

See also -armsemihostingbreakpoint, page 709.

Project>Options>Code Generation>project>C-SPYLink>Enable using shared
DLIB breakpoints

-dw

Syntax -dw{0|1|2}

Parameters

Scope System level.

0 (default) The generated code does not use the shared breakpoint available in the
DLIB runtime environment.

1 The generated code uses the shared breakpoint available in the DLIB
runtime environment.

O (default) Uses the most optimal data widths for SEM type definitions. The width is
the smallest possible to reduce the use of variable and constant data.

0 Sets the data width of all SEM types to 8 bits. If the target microcontroller
handles 8-bit accesses well, this setting probably increases the execution
speed.

1 Sets the data width of all SEM types to 16 bits. If the target
microcontroller handles 16-bit accesses well, this setting probably
increases the execution speed.

2 Sets the data width of all SEM types to 32 bits. If the target
microcontroller handles 32-bit accesses well, this setting probably
increases the execution speed.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Description Specifies the data width for SEM data types.

See also SEM type identifiers, page 699 and -D, page 715.

This option is not available in the graphical interface.

-fullinstrumentation

Syntax -fullinstrumentation{0|1}

Parameters

Scope System level.

Description Controls the amount of debug information that C-SPYLink can extract from your model.
Specifying -fullinstrumentation1 causes a small increase in code size and a
significant reduction in execution speed.

Project>Options>Code Generation>system>C-SPYLink>Enable full
instrumentation

-funcexph

Syntax -funcexph{0|1|2}

Parameters

0 (default) Disables full instrumentation.

1 Enables full instrumentation, to extract a maximum amount of debug
information.

0 (default) Uses a function pointer table for functional expressions. The table
ensures constant time access to functional expressions by defining
separate functions for functional expressions and including pointers to
those functions in an array.

1 Uses a binary if-else construct for functional expressions. A single
function is generated with a binary if-else construct to determine the
functional expression to execute. This method should only be used if the
compiler does not handle the alternative settings efficiently.
AFE1_AFE2-1:1

717

718

Descriptions of Classic Coder options

Scope Project level.

Description Specifies how the Classic Coder should handle functional expressions (guard
expressions and action expressions).

Project>Options>Code Generation>project>Code>Functional expression
handling

-gds

Syntax -gds{0|1}

Parameters

Scope Project level.

Description Determines whether the Classic Coder includes a digital signature in the generated code.

See also Digital signatures for tracking inconsistencies, page 74.

Project>Options>Code Generation>project>Code>Generate digital signature

-generatetimeandversion

Syntax -generatetimeandversion{0|1}

Parameters

Scope Project level.

2 Uses a switch-case construct for functional expressions. A single
function is generated with a switch-case construct to determine the
functional expression to execute. If the compiler can convert the
switch-case construct into a jump table, this might be the most efficient
setting.

0 (default) Does not include a digital signature in the generated code.

1 Includes a digital signature in the generated code.

0 (default) Does not include the time and the version in the generated code.

1 Includes the time and the version in the generated code.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Description Determines whether the Classic Coder includes the time of the code generation and the
version of the Coder in the generated code.

Project>Options>Code Generation>project>Code>Generate time and version

-H

Syntax -Hfile

Parameters

Scope System level.

Description Specifies the name of the header file that contains system-level model declarations. The
name used by default is System.h.

Project>Options>Code Generation>system>File Output>System header file

-iev

Syntax -iev{1|2}

Parameters

Scope Project level.

Description Specifies how to initialize external variables.

Project>Options>Code Generation>project>Code>External variable initialization

file The name of the header file.

1 Initializes external variables in a function. Specify this parameter if
variables must be reinitialized at some point during execution.

2 (default) Initializes external variables along with their definition. Specify this
parameter if variables only need to be initialized once.
AFE1_AFE2-1:1

719

720

Descriptions of Classic Coder options

-iiv

Syntax -iiv{1|2}

Parameters

Scope Project level.

Description Specifies how to initialize internal variables.

Project>Options>Code Generation>project>Code>Internal variable initialization

-include_excluded

Syntax -include_excluded{0|1}

Parameters

Scope Project level.

Description Determines whether the Classic Coder generates code also for graphical objects marked
as excluded in the Designer.

Project>Options>Code Generation>project>Configuration>Include excluded
items

1 Initializes internal variables in a function. Specify this parameter if
variables must be reinitialized at some point during execution.

2 (default) Initializes internal variables along with their definition. Specify this
parameter if variables only need to be initialized once.

0 (default) No code is generated for graphical objects marked as excluded in
the Designer.

1 Code is generated also for graphical objects marked as excluded in
the Designer.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

-jvcode

Syntax -jvcode{0|1}

Parameters

Scope Project level.

Description Determines whether Java code will be generated or not. -jvcode1 cannot be specified
together with either -cppcode1 or -cscode1.

See also Generating code for an API, page 572.

Project>Options>Code Generation>project>Configuration>Java code generation

-keywordheaderfile

Syntax -keywordheaderfilepath

Parameters

Scope System level.

Description Specifies a C header file that contains keywords for action functions. If an extended
keyword is associated with the function prototype either as a keyword or as #pragma
type_attribute, it will be used during code generation. For a description of the
syntax of this file, see Syntax of C header files, page 316.

Project>Options>Code Generation>system>Ext. Keywords>C header file with
action function keywords

0 (default) Generates C code unless one of the options -cppcode1 or
-cscode1 has been specified.

1 Generates Java code.

path The file path to the header file.
AFE1_AFE2-1:1

721

722

Descriptions of Classic Coder options

-kw_actionexpr

Syntax -kw_actionexprkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for the action expression collection variables
(constant data).

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for action expression collection

-kw_context

Syntax -kw_contextkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for the system context variables (variable data).

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for system context

-kw_corelogic

Syntax -kw_corelogickeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for the core model logic struct variables
(constant data).

keyword A string that will be used as a keyword.

keyword A string that will be used as a keyword.

keyword A string that will be used as a keyword.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for core model logic

-kw_dbdata

Syntax -kw_dbdatakeyword

Parameters

Scope System level.

Description Specifies an extended keyword string for the double buffer variable (variable data).

Project>Options>Code Generation>system>Ext. Keywords>Extended keyword
for double buffer variable

-kw_guardexpr

Syntax -kw_guardexprkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for the guard expression collection variables
(constant data).

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for guard expression collection

-kw_intvar

Syntax -kw_intvarkeyword

Parameters

Scope System level.

keyword A string that will be used as a keyword.

keyword A string that will be used as a keyword.

keyword A string that will be used as a keyword.
AFE1_AFE2-1:1

723

724

Descriptions of Classic Coder options

Description Specifies an extended keyword string for internal variables (variable data).

Project>Options>Code Generation>system>Ext. Keywords>Extended keyword
for internal variables

-kw_prj_extvar

Syntax -kw_prj_extvarkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for external variables (variable data) in the entire
project.

See also -kw_sys_extvar, page 726.

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for external variables

-kw_rlcd

Syntax -kw_rlcdkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string used for RealLink symbol table const data.

See also Debugging design models using RealLink, page 785.

Project>Options>Code Generation>project>RealLink>RealLink const data
extended keyword

keyword A string that will be used as a keyword.

keyword A string that will be used as a keyword.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

-kw_rld

Syntax -kw_rldkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string used for RealLink symbol table data.

See also Debugging design models using RealLink, page 785.

Project>Options>Code Generation>project>RealLink>RealLink data extended
keyword

-kw_rlec

Syntax -kw_rlec{0|1}

Parameters

Scope Project level.

Description Controls whether to replace all standard Visual State extended keywords with
RealLink-compatible extended keywords.

See also Debugging design models using RealLink, page 785.

Project>Options>Code Generation>project>RealLink>Enforce compatible
RealLink extended keywords

keyword A string that will be used as a keyword.

0 (default) Uses standard Visual State extended keywords instead of
RealLink-compatible extended keywords.

1 Replaces all standard Visual State extended keywords with
RealLink-compatible extended keywords.
AFE1_AFE2-1:1

725

726

Descriptions of Classic Coder options

-kw_rlpd

Syntax -kw_rlpdkeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string used for RealLink protocol data.

See also Debugging design models using RealLink, page 785.

Project>Options>Code Generation>project>RealLink>RealLink protocol data
extended keyword

-kw_runtimeinfo

Syntax -kw_runtimeinfokeyword

Parameters

Scope Project level.

Description Specifies an extended keyword string for the runtime information struct variable
(constant data). By default, the runtime information struct only contains the digital
signature for the project.

Project>Options>Code Generation>project>Ext. Keywords>Extended keyword
for runtime info

-kw_sys_extvar

Syntax -kw_sys_extvarkeyword

Parameters

Scope System level.

Description Specifies an extended keyword string for external variables (variable data) in a system.

keyword A string that will be used as a keyword.

keyword A string that will be used as a keyword.

keyword A string that will be used as a keyword.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

See also -kw_prj_extvar, page 724.

Project>Options>Code Generation>system>Ext. Keywords>Extended keyword
for external variables

-namespace

Syntax -namespacename

Parameters

Scope System level.

Description Specifies the namespace for all C++/C# code related to the system.

Project>Options>Code Generation>system>C++/C#/Java>Name space to use for
the system code when generating C++/C#

-no_warnings

Syntax -no_warnings{0|1}

Parameters

Scope Project level.

Description Determines whether warnings should be disabled.

See also -warnings_are_errors, page 755

Project>Options>Code Generation>project>Configuration>Ignore warnings

name A string that specifies the namespace for C++ or C# code.

0 (default) Warnings are issued.

1 Warnings are disabled and cannot affect the exit code.
AFE1_AFE2-1:1

727

728

Descriptions of Classic Coder options

-oa

Syntax -oa{0|1}

Parameters

Scope System level.

Description Determines whether the Classic Coder merges action expressions. This might increase
execution speed because multiple action expressions associated with a single transition
are generated as a compound statement in the code. The drawback is that one and the
same action expression might be generated multiple times if constructs such as entry
reactions, exit reactions, or history states are used. Setting this option to 0 might
generate smaller code.

See also -og, page 728

Project>Options>Code Generation>system>Code>Merge action expressions

-og

Syntax -og{0|1}

Parameters

Scope System level.

Description Determines whether the Classic Coder merges guard expressions. This might increase
execution speed because multiple guard expressions associated with a single transition
are generated as a compound statement in the code. The drawback is that one and the
same guard expression might be generated multiple times if constructs such as entry
reactions, exit reactions, or history states are used. Setting this option to 0 might
generate smaller code.

See also -oa, page 728

0 (default) The Classic Coder does not merge action expressions.

1 The Classic Coder merges action expressions.

0 (default) The Classic Coder does not merge guard expressions.

1 The Classic Coder merges guard expressions.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Project>Options>Code Generation>system>Code>Merge guard expressions

-omitcontradictiontests

Syntax -omitcontradictiontests{0|1}

Parameters

Scope System level.

Description Controls the generation of contradiction test code for each transition. Note that if the
system is verified in some way to be conflict-free, no test sequence that will exercise the
error part of the conflict test can be constructed unless you modify the generated code
by inserting test code to manipulate variable values.

This option can be used for both readable code and table-based code.

See also Briefly about Adaptive API code generation, page 569.

Project>Options>Code Generation>system>Code>Omit contradiction tests

-osm

Syntax -osm{0|1}

Parameters

Scope Project level.

0 (default) Disables generation of contradiction test code for each transition.

1 Generates contradiction test code for each transition.

You should only specify the parameter 1 if you know that your system is
free from transition conflicts or if you have particular testing
requirements, for example, various branch coverage metrics.

0 Does not optimize states and state machines.

1 (default) Optimizes states and state machines.
AFE1_AFE2-1:1

729

730

Descriptions of Classic Coder options

Description Controls optimization of states and state machines. Any state machine with a single state
is optimized away to reduce the number of states, state machines, and the size of the core
model logic.

Project>Options>Code Generation>project>Code>Optimize states and state
machines

-path

Syntax -pathdirectory

Parameters

Scope Project level.

Description Specifies the output path for all generated project files. If the path does not exist, it is
created. The path can be relative. By default, generated project files are created in the
coder directory.

See also -spath, page 738.

Project>Options>Code Generation>project>File Output>Output path

-projectheader

Syntax -projectheaderfile

Parameters

Scope Project level.

Description Specifies the name of the header file that contains macros, types, and function
prototypes meant for the project. The name used by default is Project.h.

Project>Options>Code Generation>project>File Output>Project header file

directory The output path for all generated project files.

file The name of the project header file.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

-projectnamespace

Syntax -projectnamespacenamespace

Parameters

Scope Project level.

Description Specifies the namespace to use for C++ or C# output related to the project.

Project>Options>Code Generation>project>C++/C#/Java>Name space to use for
the project when generating C++/C#

-projectpackage

Syntax -projectpackagename

Parameters

Scope Project level.

Description Specifies the package name used for Java output in all files generated for this project. It
might be a good idea to make sure that the package name is aligned with the output path.

Project>Options>Code Generation>project>C++/C#/Java>Package name to use
for the project code when generating Java

-projectsource

Syntax -projectsourcefile

Parameters

Scope Project level.

Description Specifies the name of the source code file that contains code meant for the project. The
name used by default is Project.c.

namespace The namespace to use for project types and functions when
generating C++ or C# output.

name The package name used when generating Java code.

file The name of the project source file.
AFE1_AFE2-1:1

731

732

Descriptions of Classic Coder options

Project>Options>Code Generation>project>File Output>Project source file

-R

Syntax -Rfile

Parameters

Scope Project level.

Description Specifies a name for a report file to contain information about the project, option
settings, model characteristics, statistics, and a summary of the code generation.

Project>Options>Code Generation>project>File Output>Report file

-rdfm

Syntax -rdfm{O|0|1|2|3|4|5|6|7|8|9}

Parameters

file The name of the report file.

O (default) Uses the most optimal transition rule data format. The Classic Coder
determines the optimal rule data format with regard to minimal usage of
constant data (size optimization).

0 Uses transition rule data format 0. This format uses 8-bit access to rule
data and supports transition rules with a maximum of 15 8-bit elements of
each type, but does not support guard expressions and signals.

1 Uses transition rule data format 1. This format uses 8-bit access to rule
data and supports transition rules with a maximum of 15 8-bit elements of
each type. It supports guard expressions and signals.

2 Uses transition rule data format 2. This format uses 8-bit access to rule
data and supports transition rules with a maximum of 255 8-bit elements
of each type, but does not support guard expressions and signals.

3 Uses transition rule data format 3. This format uses 8-bit access to rule
data and supports transition rules with a maximum of 255 8-bit elements
of each type. It supports guard expressions and signals.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Scope Project level.

Description Specifies the transition rule data format to use for the whole project when generating
code.

See also Transition rule data format, page 699 and -sysrdfm, page 740.

This option is not available in the graphical interface.

-readable

Syntax -readable{0|1}

Parameters

Scope Project level.

4 Uses transition rule data format 4. This format uses 16-bit access to rule
data and supports transition rules with a maximum of 15 16-bit elements
of each type, but does not support guard expressions and signals.

5 Uses transition rule data format 5. This format uses 16-bit access to rule
data and supports transition rules with a maximum of 15 16-bit elements
of each type. It supports guard expressions and signals.

6 Uses transition rule data format 6. This format uses 16-bit access to rule
data and supports transition rules with a maximum of 255 16-bit elements
of each type, but does not support guard expressions and signals.

7 Uses transition rule data format 7. This format uses 16-bit access to rule
data and supports transition rules with a maximum of 255 16-bit elements
of each type. It supports guard expressions and signals.

8 Uses transition rule data format 8. This format uses 32-bit access to rule
data and supports transition rules with a maximum of 255 32-bit elements
of each type, but does not support guard expressions and signals.

9 Uses transition rule data format 9. This format uses 32-bit access to rule
data and supports transition rules with a maximum of 255 32-bit elements
of each type. It supports guard expressions and signals.

0 (default) Generates table-based code.

1 Generates readable code.
AFE1_AFE2-1:1

733

734

Descriptions of Classic Coder options

Description Determines whether to generate table-based or readable code.

See also Briefly about Adaptive API code generation, page 569.

Project>Options>Code Generation>project>Configuration>Readable code
generation

-reallink

Syntax -reallink{0|1}

Parameters

Scope Project level.

Description Determines whether the generated code can be debugged using RealLink.

See also Debugging design models using RealLink, page 785.

Project>Options>Code Generation>project>Configuration>Generate code for
RealLink

-recordingbuffersize

Syntax -recordingbuffersizesize

Parameters

Scope System level.

Description Specifies the number of elements in the recording buffer for C-SPYLink.

See also -userecordingbuffer, page 749.

Project>Options>Code Generation>system>C-SPYLink>Recording buffer size

0 (default) Does not generate code to be debugged using RealLink.

1 Generates code to be debugged using RealLink.

size The number of elements in the recording buffer.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

-removevsnofmacros

Syntax -removevsnofmacros{0|1}

Parameters

Scope System level.

Description Specifies whether the VS_NOF* macros are replaced with methods on the system class.

Project>Options>Code Generation>system>C++/C#/Java>Remove VS_NOF*
macros

-S

Syntax -Sfile

Parameters

Scope System level.

Description Specifies the name of the source file that contains system-level model definitions. The
name used by default is System.c.

Project>Options>Code Generation>system>File Output>System source file

-samplingbuffersize

Syntax -samplingbuffersizesize

Parameters

Scope System level.

Description Specifies the number of elements in the sampling buffer for C-SPYLink. If the value is
too low, you can only see the event that triggered the most recent transition and the states

0 The VS_NOF* macros are used.

1 (default) The VS_NOF* macros are replaced by methods on the system class.

file The name of the source file.

size The number of elements in the sampling buffer.
AFE1_AFE2-1:1

735

736

Descriptions of Classic Coder options

after that microstep. If the value is too high, the target application might run out of
memory. This option does not change the behavior of the model.

See also -usesamplingbuffer, page 751.

Project>Options>Code Generation>system>C-SPYLink>Sampling buffer size

-semfunc

Syntax -semfunc{0|1}

Parameters

Scope System level.

Description Specifies whether to enable the API function SEM_func.

func The unique part of the name of the function to enable or disable. It can
be one of:

expl — specifies the Adaptive API function SEM_Expl
explabs — specifies the Adaptive API function SEM_ExplAbs
forcestate — specifies the Adaptive API function

SEM_ForceState

getinputall — specifies the Adaptive API function
SEM_GetInputAll

inquiry — specifies the Adaptive API functions SEM_Inquiry and
SEM_GetInput

machine — specifies the Adaptive API function SEM_Machine
name — specifies the Adaptive API function SEM_Name
nameabs — specifies the Adaptive API function SEM_NameAbs
nextstatechg — specifies the Adaptive API function

SEM_NextStateChg

signalqueueinfo — specifies the Adaptive API function
SEM_SignalQueueInfo

state — specifies the Adaptive API function SEM_State
stateall — specifies the Adaptive API function SEM_StateAll

0 Disables the Adaptive API function SEM_func.

1 Enables the Adaptive API function SEM_func. This is the default
value.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Example To enable the Adaptive API function SEM_ExplAbs, specify:

-semexplabs1

See also Descriptions of the Adaptive API functions, page 592.

Project>Options>Code Generation>system>API Functions>Enable SEM_*

-sne

Syntax -sne{0|1|2}

Parameters

Scope System level.

Description Controls how symbolic event names are generated.

See also -txte, page 744.

Project>Options>Code Generation>system>Names>Printing symbolic event
names

-snm

Syntax -snm{0|1|2}

Parameters

Scope System level.

0 No symbolic event names are generated.

1 (default) Generates symbolic event names as defined in the model.

2 Generates symbolic event names as defined in the model, but converted
to upper case.

0 No symbolic state machine names are generated.

1 (default) Generates symbolic state machine names as defined in the model.

2 Generates symbolic state machine names as defined in the model, but
converted to upper case.
AFE1_AFE2-1:1

737

738

Descriptions of Classic Coder options

Description Controls how symbolic state machine names are generated. Typically, this is useful
when you use the functions SEM_State, SEM_Machine, and SEM_ForceState.

Project>Options>Code Generation>system>Names>Printing symbolic state
machine names

-sns

Syntax -sns{0|1|2}

Parameters

Scope System level.

Description Controls how symbolic state names are generated.

See also -txts, page 744.

Project>Options>Code Generation>system>Names>Printing symbolic state
names

-spath

Syntax -spathdirectory

Parameters

Scope System level.

Description Specifies the output path for all generated system files. If the path does not exist, it is
created. The path can be relative. By default, generated system files are created in the
coder directory.

See also -path, page 730.

0 No symbolic state names are generated.

1 (default) Generates symbolic state names as defined in the model.

2 Generates symbolic state names as defined in the model, but converted to
upper case.

directory The output path for all generated system files.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Project>Options>Code Generation>system>File Output>Output path

-splitreadable

Syntax -splitreadable{0|1}

Parameters

Scope System level.

Description Specifies whether the Classic Coder rewrites all SystemVSDeduct functions to use
helper functions for event processing. This can be beneficial for very large
SystemVSDeduct functions, because it reduces the compilation time if aggressive
compiler optimizations are used. It can also overcome any arbitrary implementation
function size limits of your compiler. This option causes a small increase in code size
and a small reduction in execution speed.

See also Size of generated readable code, page 462.

Project>Options>Code Generation>system>Readable Code>Split readable code

-suppress_cspylink_common_files

Syntax -suppress_cspylink_common_files{0|1}

Parameters

Scope Project level.

0 (default) The Classic Coder does not rewrite any SystemVSDeduct functions to
use helper functions for event processing.

1 The Classic Coder rewrites all SystemVSDeduct functions to use helper
functions for event processing.

0 (default) Disables generation of multiple C-SPYLink files when you are using two
or more projects in the same linked image together with C-SPYLink.

1 Generates multiple C-SPYLink files when you are using two or more
projects in the same linked image together with C-SPYLink.
AFE1_AFE2-1:1

739

740

Descriptions of Classic Coder options

Description Controls how multiple C-SPYLink files are generated when you are using two or more
projects in the same linked image together with C-SPYLink.

Project>Options>Code Generation>project>C-SPYLink>Suppress C-SPYLink
common files

-sysrdfm

Syntax -sysrdfm{O|0|1|2|3|4|5|6|7|8|9}

Parameters
O (default) Uses the most optimal transition rule data format. The Classic Coder

determines the optimal rule data format with regard to minimal usage of
constant data (size optimization).

0 Uses transition rule data format 0. This format uses 8-bit access to rule
data and supports transition rules with a maximum of 15 8-bit elements of
each type, but does not support guard expressions and signals.

1 Uses transition rule data format 1. This format uses 8-bit access to rule
data and supports transition rules with a maximum of 15 8-bit elements of
each type. It supports guard expressions and signals.

2 Uses transition rule data format 2. This format uses 8-bit access to rule
data and supports transition rules with a maximum of 255 8-bit elements
of each type, but does not support guard expressions and signals.

3 Uses transition rule data format 3. This format uses 8-bit access to rule
data and supports transition rules with a maximum of 255 8-bit elements
of each type. It supports guard expressions and signals.

4 Uses transition rule data format 4. This format uses 16-bit access to rule
data and supports transition rules with a maximum of 15 16-bit elements
of each type, but does not support guard expressions and signals.

5 Uses transition rule data format 5. This format uses 16-bit access to rule
data and supports transition rules with a maximum of 15 16-bit elements
of each type. It supports guard expressions and signals.

6 Uses transition rule data format 6. This format uses 16-bit access to rule
data and supports transition rules with a maximum of 255 16-bit elements
of each type, but does not support guard expressions and signals.

7 Uses transition rule data format 7. This format uses 16-bit access to rule
data and supports transition rules with a maximum of 255 16-bit elements
of each type. It supports guard expressions and signals.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Scope System level.

Description Specifies the transition rule data format to use for a specific system when generating
code.

See also Transition rule data format, page 699 and -rdfm, page 732.

This option is not available in the graphical interface.

-targetbreakpoints

Syntax -targetbreakpointsnumber

Parameters

Scope System level.

Description Specifies the number of available breakpoints for C-SPYLink on the target controller.
Target breakpoints speed up execution but consume memory. This option does not
change the behavior of the model.

Project>Options>Code Generation>system>C-SPYLink>Number of state
machine breakpoints

-translatecomments

Syntax -translatecomments{0|1}

Parameters

8 Uses transition rule data format 8. This format uses 32-bit access to rule
data and supports transition rules with a maximum of 255 32-bit elements
of each type, but does not support guard expressions and signals.

9 Uses transition rule data format 9. This format uses 32-bit access to rule
data and supports transition rules with a maximum of 255 32-bit elements
of each type. It supports guard expressions and signals.

number The number of available breakpoints.

0 (default) Comments in the generated code are not translated to the language that
IAR Visual State is configured to run in.
AFE1_AFE2-1:1

741

742

Descriptions of Classic Coder options

Scope Project level.

Description Specifies whether to translate the comments in the generated code to another language
than English.

Project>Options>Code Generation>project>Code>Translate comments

-tsemt

Syntax -tsemt{0|1}

Parameters

Scope Project level.

Description Specifies how to make SEM type definitions.

See also SEM type identifiers, page 699.

Project>Options>Code Generation>project>Style>SEM type definitions

-tvsvt

Syntax -tvsvt{0|1}

Parameters

1 Comments in the generated code are translated from English to the
language that IAR Visual State is configured to run in.

0 (default) Uses the typedef keyword for type definitions. Specify this value if
possible, because it helps the compiler to do type checking.

1 Uses the #define keyword for type definitions. This value must be
specified if the compiler cannot determine that two type definitions
actually are the same.

0 (default) Uses the typedef keyword for type definitions. Specify this value if
possible, because it helps the compiler to do type checking.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Scope Project level.

Description Specifies how to make Visual State type definitions.

Project>Options>Code Generation>project>Style>VS type definitions

-txta

Syntax -txta{0|1|2|3}

Parameters

Scope System level.

Description Controls the amount of text associated with action functions to include in the generated
code.

Project>Options>Code Generation>system>Names>Action function name
inclusion

1 Uses the #define keyword for type definitions. This value must be
specified if the compiler cannot determine that two type definitions
actually are the same.

0 (default) Includes no text associated with action functions in the generated code.

1 Includes the names of the action functions in the generated code. This
makes it possible to extract the names from the application when it
executes on the target. See the documentation for the API functions with
suffixes _Name and _NameAbs.

2 Includes the descriptions of the action functions in the generated code.
This makes it possible to extract the descriptions from the application
when it executes on the target. See the documentation for the API
functions with suffixes _Expl and _ExplAbs.

3 Includes both the names and the descriptions of the action functions in
the generated code.
AFE1_AFE2-1:1

743

744

Descriptions of Classic Coder options

-txte

Syntax -txte{0|1|2|3}

Parameters

Scope System level.

Description Controls the amount of text associated with events to include in the generated code.

See also -sne, page 737.

Project>Options>Code Generation>system>Names>Event name inclusion

-txts

Syntax -txts{0|1|2|3}

Parameters

0 (default) Includes no text associated with events in the generated code.

1 Includes the names of the events in the generated code. This makes it
possible to extract the names from the application when it executes on the
target. See the documentation for the API functions with suffixes _Name
and _NameAbs.

2 Includes the descriptions of the events in the generated code. This makes
it possible to extract the descriptions from the application when it
executes on the target. See the documentation for the API functions with
suffixes _Expl and _ExplAbs.

3 Includes both the names and the descriptions of the events in the
generated code.

0 (default) Includes no text associated with states in the generated code.

1 Includes the names of the states in the generated code. This makes it
possible to extract the names from the application when it executes on the
target. See the documentation for the API functions with suffixes _Name
and _NameAbs.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Scope System level.

Description Controls the amount of text associated with states to include in the generated code.

See also -sns, page 738.

Project>Options>Code Generation>system>Names>State name inclusion

-typeVStype

Syntax -typeVStypeUnderlyingtype

Parameters

2 Includes the descriptions of the states in the generated code. This makes
it possible to extract the descriptions from the application when it
executes on the target. See the documentation for the API functions with
suffixes _Expl and _ExplAbs.

3 Includes both the names and the descriptions of the states in the
generated code.

VStype The generated Visual State data type. It can be one of:

VS_BOOL
VS_CHAR
VS_UCHAR
VS_SCHAR
VS_UINT
VS_INT
VS_FLOAT
VS_DOUBLE
VS_VOIDPTR
VS_UINT8
VS_INT8
VS_UINT16
VS_INT16
VS_UINT32
VS_INT32

Underlyingtype A text string that specifies the underlying data type to use
for the generated Visual State data type VStype. It must be
a legal data type.
AFE1_AFE2-1:1

745

746

Descriptions of Classic Coder options

Scope Project level.

Description Specifies which underlying data type to use for the generated Visual State data type.
This option requires that you have specified the option -typestyle2.

Example -typeVS_INT16int

See also -typestyle, page 746.

Project>Options>Code Generation>project>Types>Type to use for VS_*

-typeheaderfile

Syntax -typeheaderfilepath

Parameters

Scope Project level.

Description Specifies a header file that will be included in all files that need type definitions to
declare manually specified underlying data types for the generated Visual State data
types. This option requires that you have specified the option -typestyle2.

See also -typestyle, page 746.

Project>Options>Code Generation>project>Types>File to #include that will
provide typedefs for the types specified manually

-typestyle

Syntax -typestyle{0|1|2}

Parameters

path The file path to the file to include.

0 (default) Uses the standard Visual State data types.

1 Uses C99 data types, where possible, as the underlying types for the
generated VS_* types.

2 Allows you to specify individually for each generated VS_* type which
underlying data type to use, using one of the options -typeheaderfile
or -typeVStype.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Scope Project level.

Description Selects the underlying data types for the generated Visual State data types.

Project>Options>Code Generation>project>Types>Types style

-useapiprefix

Syntax -useapiprefix{0|1}

Parameters

Scope System level.

Description Determines whether the Classic Coder uses the prefix specified with the -apiprefix
option in front of all identifiers, functions, etc, in the system.

Project>Options>Code Generation>system>API Functions>Use prefix for API

-useautovariables

Syntax -useautovariables{0|1}

Parameters

Scope System level.

Description Determines whether auto variables are allowed in the generated API code. Allowing
auto variables might make the API code faster but it can also lead to increased stack
usage.

Project>Options>Code Generation>system>Code>Use auto variables

0 No prefix is used in front of identifiers, functions, etc.

1 (default) A prefix is used in front of all identifiers, functions, etc.

0 Auto variables are not allowed in the generated API code.

1 (default) Auto variables are allowed in the generated API code.
AFE1_AFE2-1:1

747

748

Descriptions of Classic Coder options

-useguardtypecast

Syntax -useguardtypecast{0|1}

Parameters

Scope System level.

Description Determines whether the Classic Coder uses guard type casts.

Project>Options>Code Generation>system>Code>Use guard type cast

-useheap

Syntax -useheap{0|1}

Parameters

Scope Project level.

Description Determines whether the Classic Coder uses heap memory. If heap memory is not used,
all variable data except for stack data are allocated statically, and the standard functions
malloc and free are not used.

Project>Options>Code Generation>project>Code>Use heap memory

-uselivesamplingbuffer

Syntax -uselivesamplingbuffer{0|1}

Parameters

0 The Classic Coder does not use guard type casts.

1 (default) The Classic Coder uses guard type casts.

0 The Classic Coder does not use heap memory.

1 (default) The Classic Coder uses heap memory.

0 Prevents C-SPYLink from reading data from the sampling buffer while
the target application is executing.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Scope System level.

Description Determines whether C-SPYLink can read data from the sampling buffer while the target
application is executing. The target controller must support live read.

Project>Options>Code Generation>system>C-SPYLink>Enable sampling buffer
readout

-usepop

Syntax -usepop{0|1}

Parameters

Scope System level.

Description Determines whether the Classic Coder uses the same output path for system files as the
path specified for all project files.

Project>Options>Code Generation>project>File Output>Use Project output path

-userecordingbuffer

Syntax -userecordingbuffer{0|1}

Parameters

Scope System level.

1 (default) Enables C-SPYLink to read data from the sampling buffer while the
target application is executing.

0 The Classic Coder uses the output path specified by the -spath
option for system files.

1 (default) The Classic Coder uses the same output path for system files as the
path specified for all project files.

0 Disables the recording buffer.

1 (default) Enables the recording buffer.
AFE1_AFE2-1:1

749

750

Descriptions of Classic Coder options

Description Determines whether to use a recording buffer to make it possible to make recordings
(execution logs) at almost full speed. Enabling the buffer also makes it possible to
display sampling backups. Use the option -recordingbuffersize to set the size of
the buffer.

See also -recordingbuffersize, page 734.

Project>Options>Code Generation>system>C-SPYLink>Enable recording buffer

-userfileinclusion

Syntax -userfileinclusionpath

Parameters

Scope Project level.

Description Specifies a file to include in every generated source file.

Project>Options>Code Generation>project>File Output>File that will be included
verbatim in each generated source file

-userlkw

Syntax -userlkw{0|1}

Parameters

Scope Project level.

Description Specifies whether to use additional RealLink extended keywords.

See also Debugging design models using RealLink, page 785.

Project>Options>Code Generation>project>RealLink>Use additional RealLink
extended keywords

path The file path to the file to include.

0 (default) Disables additional RealLink extended keywords.

1 Enables additional RealLink extended keywords.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

-usesamplingbuffer

Syntax -usesamplingbuffer{0|1}

Parameters

Scope System level.

Description Controls on-target sampling buffers for a single macro step. If you specify
-usesamplingbuffer1, C-SPYLink can extract large amounts of debug information
from your model. This causes an increase in code size and a small reduction in execution
speed. If sequence recording is used, the speed reduction will be larger. Use the option
-samplingbuffersize to set the size of the buffer.

See also -samplingbuffersize, page 735.

Project>Options>Code Generation>system>C-SPYLink>Enable sampling buffer

-V

Syntax -Vsystem

Parameters

Scope System level.

Description Specifies the system that the following system options apply to. System options that are
specified before any system has been specified apply to all systems.

This option is not needed in the graphical interface.

0 (default) Disables on-target sampling buffers for a single macrostep.

1 Enables on-target sampling buffers for a single macrostep.

system The name of a system.
AFE1_AFE2-1:1

751

752

Descriptions of Classic Coder options

-variant

Syntax -variantname

Parameters

Scope Project level.

Description Specifies which variant to generate code for. By default, the Coder generates code for
the complete model.

See also Using variants and features, page 217.

Use the Variant toolbar.

-vsbooltype

Syntax -vsbooltypedatatype

Parameters

Scope Project level.

Description Specifies the data type to use for the VS_BOOL type at runtime.

Project>Options>Code Generation>project>Style>VS_BOOL type

-vsdeduct

Syntax -vsdeduct{0|1}

Parameters

Scope System level.

name The name of the variant.

datatype The data type to use for the VS_BOOL type at runtime. By default,
the value is int.

0 (default) Disables the generation of the VSDeduct function.

1 Enables the generation of the VSDeduct function.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

Description Enables or disables the generation of the system-specific VSDeduct function rather than
generating the function with the name SEM_Deduct/SMP_Deduct. Setting this option to
1 makes it easier to switch between the different APIs and simplifies the code that must
be user-written.

Project>Options>Code Generation>system>API Functions

-vselementexpl

Syntax -vselementexpl{0|1}

Parameters

Scope System level.

Description Enables or disables the generation of the system-specific VSElementExpl function
rather than generating the function with the name
SEM_Expl/SEM_ExplAbs/SMP_Expl/SMP_ExplAbs. Setting this option to 1 makes it
easier to switch between the different APIs.

Project>Options>Code Generation>system>API Functions

-vselementname

Syntax -vselementname{0|1}

Parameters

Scope System level.

Description Enables or disables the generation of the system-specific VSElementName function
rather than generating code that relies on some macros. Setting this option to 1 reduces
the number of generated macros and makes the resulting code easier to read.

0 (default) Disables the generation of the VSElementExpl function.

1 Enables the generation of the VSElementExpl function.

0 (default) Disables the generation of the VSElementName function.

1 Enables the generation of the VSElementName function.
AFE1_AFE2-1:1

753

754

Descriptions of Classic Coder options

Project>Options>Code Generation>system>API Functions

-vsinitall

Syntax -vsinitall{0|1}

Parameters

Scope System level.

Description Enables or disables the generation of the system-specific VSInitAll function. Setting
this option to 1 makes it easier to switch between the different APIs.

Project>Options>Code Generation>system>API Functions

-warnings_affect_exit_code

Syntax -warnings_affect_exit_code{0|1}

Parameters

Scope Project level.

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. This option determines whether warnings also generate a non-zero
exit code.

Project>Options>Code Generation>project>Configuration>Warnings affect exit
code

0 (default) Disables the generation of the VSInitAll function.

1 Enables the generation of the VSInitAll function.

0 (default) Warnings generate a zero exit code.

1 Warnings generate a non-zero exit code.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Classic Coder command line options

-warnings_are_errors

Syntax -warnings_are_errors{0|1}

Parameters

Scope Project level.

Description Determines whether all warnings are reclassified as errors. If the Classic Coder
encounters an error, no code is generated.

Project>Options>Code Generation>project>Configuration>Treat warnings as
errors

-wrapperfunctionkeyword

Syntax -wrapperfunctionkeywordkeyword

Parameters

Scope System level.

Description Specifies an extended keyword to be used for all generated wrapper functions for guards
and action calls.

Project>Options>Code Generation>system>Ext. Keywords>Extended keyword to
use on generated wrapper functions

0 (default) Warnings are treated like warnings.

1 All warnings are reclassified as errors.

keyword A string that will be used as a keyword.
AFE1_AFE2-1:1

755

756

Descriptions of Classic Coder options

AFE1_AFE2-1:1

IAR Visual State
User Guide

Part 7. Testing your state
machine model on
hardware
This part of the IAR Visual State User Guide includes these chapters:

● Debugging design models using C-SPYLink

● Debugging design models using RealLink
757

758

Debugging design models
using C-SPYLink
● Introduction to debugging using C-SPYLink

● Debugging using C-SPYLink

● Graphical environment for C-SPYLink

Introduction to debugging using C-SPYLink
Learn more about:

● Briefly about C-SPYLink, page 759

● Operating overview, page 760

● C-SPYLink debugging resources, page 760

● C-SPYLink execution modes, page 762

● State machine breakpoints, page 766

● Execution sequences, page 768

BRIEFLY ABOUT C-SPYLINK

C-SPYLink connects IAR Visual State and IAR Embedded Workbench® to make true
high-level state machine debugging possible directly in C-SPY, in addition to the normal
C level symbolic debugging. This means that you can debug your state machine model
on target hardware.

C-SPYLink provides these main features:

● Live monitoring of the complete global state of the state machine model

● State machine level breakpoints; breakpoints can also be set on specific events,
signals, or state configurations

● A choice between running the target at full speed with small overhead and with
visual feedback, if target permits, or balancing between speed and feedback if
hardware limits the possibilities.

● No extra user-written support code for communication, configuration of port
protocols, etc., is needed.

● Graphical animation of your debug session, see Graphical animation, page 335.
AFE1_AFE2-1:1

 759

760

Introduction to debugging using C-SPYLink

C-SPYLink consists of two parts:

● A plugin module for C-SPY and the IAR Embedded Workbench IDE

● Extra instrumentation code and meta data required for the debug session.

C-SPYLink requirements

To take full advantage of C-SPYLink, you need:

● A copy of IAR Embedded Workbench with an IDE of version 4.1 or later. You will
find the version number by choosing Help>About>Product Info in the IDE.

● For hardware debugging, you need hardware debug support. For example, I-Jet or a
general JTAG probe, NEXUS® or hardware emulator support and the
corresponding C-SPY driver for the debug system.

OPERATING OVERVIEW

This figure shows the operating principles behind C-SPYLink:

Using C-SPYLink in your development project is very straightforward. See Before
starting the debug session, page 770.

C-SPYLINK DEBUGGING RESOURCES

To debug your state machine model in the C-SPY debugger, the Coder must generate
some extra instrumentation code to handle:

● breakpoints

● sampling buffers
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

● recording buffer

● full instrumentation code.

Note that including code for these resources affects both the execution speed and size of
the application, both in terms of flash memory and RAM use.

To make the Coder generate code for handling the debugging resources, you must
specify certain settings to the Navigator. For more information, see Before starting the
debug session, page 770.

The breakpoint resources

C-SPYLink requires one breakpoint on the target hardware system. This breakpoint can
either be a hardware breakpoint or a shared DLIB breakpoint (or if Arm is used, the
latter is instead an Arm EABI shared semihosting breakpoint).

The breakpoint that C-SPYLink uses will be overloaded with one or more logical
breakpoints—state machine breakpoints—that you can set during your debug session.

State machine breakpoints consist of both:

● Data structures that store information about the breakpoint.

● Instrumentation code that compares the content of the data structures with the
current situation in the state machine at the break.

C-SPYLink also uses state machine breakpoints internally, which are placed at
appropriate places to gather information needed for the debug session.

See also State machine breakpoints, page 766.

The sampling buffers

C-SPYLink uses two to three buffers on the target hardware to collect information about
the macrosteps being executed.

If you use the sampling buffers, execution speed will be a little slower and the code size
will increase.

The sampling buffers are allocated on a per-system basis. If your Visual State project
has more than one system that will run in the same application, you can decide per
system whether you want to have the sampling buffer generated. However, when you set
up for an execution mode for your debug session that uses the sampling buffers, that
mode applies to all systems that were generated for using a sampling buffer.

When you allocate the size for the buffers in your linker configuration file, you can start
by estimating the size. The linker generates an error if the sampling buffers are too large
for your available memory.
AFE1_AFE2-1:1

 761

762

Introduction to debugging using C-SPYLink

The recording buffer

If you have RAM available on your target, you can allocate some of it for a recording
buffer. This buffer can be used for recording execution sequences. See also Execution
sequences, page 768.

Full instrumentation code

The instrumentation code is code that the Coder inserts in certain positions in the
Coder-generated code, and which is used for managing breaks and required information
at certain situations.

Full instrumentation code is mainly intended to be used when you do not have enough
space for sampling buffers.

C-SPYLINK EXECUTION MODES

C-SPYLink can operate in various execution modes, with different behavior and impact
on real-time performance, typically execution speed and level of information status.

Which execution mode you decide to use depends on the available debugging resources
you have, see C-SPYLink debugging resources, page 760. If you select an execution
mode for which you do not have the required resources, C-SPYLink will issue a
warning.

In short, these execution modes are available:

● Full speed—full information continuously updated

● Full speed—full information at stops

● Medium speed—information at stops and based on snapshots

● Low speed—full information continuously updated

For information about when and how to specify the execution mode, see Before starting
the debug session, page 770.

Full speed—full information continuously updated

In this mode, your application will execute at full speed without any stops initiated by
C-SPYLink. C-SPY windows are updated continuously.

Using this mode, only on-target breakpoints can be set, see Types of state machine
breakpoints, page 766.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

To use this mode, use these option settings and menu commands:

Full speed—full information at stops

In this mode, your application will execute at full speed without any stops initiated by
C-SPYLink. No feedback is provided until execution stops, by means of a breakpoint or
Ctrl+C. When this happens, C-SPYLink will update the affected windows with the
current system state.

Using this mode, only on-target breakpoints can be set, see Types of state machine
breakpoints, page 766.

To use this mode, use these option settings and menu commands:

Medium speed—information at stops and based on snapshots

This mode provides reduced execution speed. C-SPYLink uses the sampling buffer to
collect the information at each macrostep without stopping. Execution is periodically
stopped in the background to read out information and update the displayed information.
When viewing the state machine model in C-SPYLink, the hardware seems to be
executing. In reality, the hardware has temporarily stopped at regular intervals.

Options/commands in Setting

Coder Options dialog box Enable sampling buffer live readout

Sample buffer size: specify the required buffer size

Number of state machine breakpoints: specify the
required number of hardware breakpoints

Visual State menu in the IAR
Embedded Workbench IDE

Instrumentation>Full speed, sampling buffer capture

Sampling Buffer Capture Setting>Live

Table 34: Setting up for execution mode, alternative 1

Options/commands in Setting

Coder Options dialog box Enable sampling buffer

Sample buffer size: specify the required buffer size

Number of state machine breakpoints: specify the
required number of hardware breakpoints

Visual State menu in the IAR
Embedded Workbench IDE

Instrumentation>Full speed, sampling buffer capture

Table 35: Setting up for execution mode, alternative 2
AFE1_AFE2-1:1

 763

764

Introduction to debugging using C-SPYLink

If it is critical for your hardware that the execution must not stop, do not enable this
mode.

To use this mode, use these option settings and menu commands:

Full speed—no feedback, alternated with information at stops

Initially, this mode provides full execution speed but without information feedback.
However, you can choose to stop at a certain location, for example by setting a state
machine breakpoint. When stopped, you can change to Slow speed, Full
instrumentation and you will get detailed information at slow speed.

To use this mode, use these option settings and menu commands:

Low speed—full information continuously updated

In this mode, your application will run at low speed but you will get a very fine-grained
control over what is happening on the target controller at any given point in time. The
C-SPY windows are continuously updated with detailed information. For each event,
you can see which action functions are called and their argument list.

In this mode, the synchronization hardware breakpoint is overloaded with several
internal state machine breakpoints. Each time such a breakpoint is triggered, data about
the system state is read. The continuous stopping and restarting of execution has a severe
negative impact on runtime performance, which might be a problem.

Options/commands in Setting

Coder Options dialog box Enable sampling buffer

Sample buffer size: specify the required buffer size

Number of state machine breakpoints: specify the
required number of hardware breakpoints

Visual State menu in the IAR
Embedded Workbench IDE

Instrumentation>Full speed, sampling buffer capture

Sampling Buffer Capture Setting>Periodic Stop

Table 36: Setting up for execution mode, alternative 3

Options/commands in Setting

Coder Options dialog box Number of state machine breakpoints: specify the
required number of hardware breakpoints

Visual State menu in the IAR
Embedded Workbench IDE

Instrumentation>Full speed, No instrumentation
alternated with
Instrumentation>Low speed, Full instrumentation

Table 37: Setting up for execution mode, alternative 4
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

The only extra cost in terms of memory, both ROM and RAM, for this mode is the calls
to the breakpoint function, which are few. Further, this mode requires some
instrumentation code overhead and negligible RAM overhead. The actual overhead
depends on the target CPU.

To use this mode, use these option settings and menu commands:

Hints for choosing the most useful execution mode

These are some guidelines for setting up an efficient execution mode that suits your
needs based on your available resources:

● If your target hardware supports breakpoints and sampling buffers, you would like
to use them because that gives you an efficient balance between:

● high execution performance

● good information feedback

● the possibility to set state machine breakpoints on target

● If you have a limited set of breakpoints and limited space for the sampling buffer,
you can still use both of these even though they are limited. In this case, you can set
fewer state machine breakpoints on target and you must reduce resolution for the
information feedback.

● If you do not have support for breakpoints and memory space for the sampling
buffer on your target, you must make a choice because you cannot get both high
execution performance and full information. You can achieve:

● Full speed, but without information.

However, if you can set breakpoints, you can stop execution but without getting
feedback about the situation in the state machine (except for the triggered
breakpoint).

● Very slow execution but with full information.

Note that you can alternate between these two alternatives.

● If you want to record an execution sequence, you can use a dedicated recording
buffer at full speed, the sampling buffer at reduced speed, or full instrumentation at
very low speed. See Execution sequences, page 768.

Options/commands in Setting

Coder Options dialog box Enable full instrumentation

Visual State menu in the IAR
Embedded Workbench IDE

Instrumentation>Low speed, Full instrumentation

Table 38: Setting up for execution mode, alternative 5
AFE1_AFE2-1:1

 765

766

Introduction to debugging using C-SPYLink

STATE MACHINE BREAKPOINTS

Using state machine breakpoints, you can specify a set of goal states from different
parallel regions of your state machine model. Execution will then stop when the
breakpoint states are all active at the same time. You can also specify an event or a signal
as a breakpoint condition.

When a breakpoint is triggered, there are three visual clues to highlight the breakpoint:

● The breakpoint number in the Breakpoints window is blinking.

● A message in the Debug Log window says that a state machine breakpoint has been
triggered.

● The edit window displays a green arrow on the _VS_breakpoint function. This
function is used by C-SPYLink as a placeholder for the real C-SPY breakpoint used
by IAR Visual State to synchronize data. This visual clue is not displayed if the
breakpoint is a shared DLIB breakpoint or an Arm EABI semi-hosting breakpoint,
see Using shared DLIB breakpoints, page 773.

Types of state machine breakpoints

There are two types of state machine breakpoints—full instrumentation breakpoints and
on-target breakpoints. They have the same features, but different performances. A
breakpoint can hold information about a trigger (event or signal) and state vector before
and after a step.

Full instrumentation breakpoints: For Low speed, Full instrumentation, all
breakpoints will be treated as full instrumentation
breakpoints. They do not take up any extra
memory, because C-SPYLink handles all checking
of breakpoint conditions. There is no limit to the
number of full instrumentation breakpoints.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

Pre- and post-deduct conditions

A breakpoint can be set to trigger at two different occasions: before and after an event
or signal has been processed.

A minor difference between these is that a pre-deduct condition is tested when the
trigger is injected. The real difference is seen when the pre-deduct condition is used in
combination with other conditions, such as a trigger or a second state condition at the
post-deduct node.

If you want the breakpoint to trigger when the execution passes from one specified state
configuration to another specified configuration, you can add the precondition states as
a pre-deduct condition and the postcondition states as a post-deduct condition.

On-target breakpoints: When anything else than Low Speed, Full
instrumentation is enabled, all breakpoints will be
regarded as on-target breakpoints if you have
allocated space for the breakpoint buffer. A
breakpoint buffer is created in target memory and a
small amount of code is generated to check the
breakpoint conditions.

In the Navigator, to allocate the necessary space in
target memory, use the Number of state machine
breakpoints option in the Coder Options dialog
box (on the C-SPYLink page).

In C-SPY, these breakpoints can be used with or
without the sampling buffer. Without the sampling
buffer, the C-SPY windows will not be updated
when execution stops.

On-target breakpoints can have a status message
next to them in the Breakpoints window.

Pre-deduct condition: Stops execution before processing (deduction of) a new
trigger, but after the complete processing of the preceding
microstep. This means that it is the result of the previous
microstep processing that will be used as the stop criteria.

Post-deduct condition: Stops execution after the event processing (deduction) is
complete.
AFE1_AFE2-1:1

 767

768

Introduction to debugging using C-SPYLink

The breakpoint in this example is triggered when the BackLightOn state is active. The
event ev_BUTTON2 is processed and the resulting state is BackLightOff:

For more information, see:

● Using state machine breakpoints, page 772

● Using shared DLIB breakpoints, page 773

● Breakpoints window, page 780.

EXECUTION SEQUENCES

To help you debug state machines, you can record an execution sequence of signals,
events, actions, changes to variables (requires full instrumentation code), etc, and save
the sequence to an XML file. This XML file can be loaded in the Validator. A maximum
of 100,000 steps can be recorded.

Sequences are recorded with one of these methods:

Recording buffer: The execution runs at almost full speed on the target hardware.
The target hardware must have enough RAM to record the
sequence.

In the Navigator, allocate a buffer by choosing
Project>Options>Code
Generation>C-SPYLink>Recording buffer size and
specifying a buffer size.

Sampling buffer: The recording is performed by stopping the execution after
each macrostep to read out the sampling buffer. This slows
down execution considerably more than using the recording
buffer, but it requires no extra on-target memory except for the
sampling buffer.

This method is faster than using Full instrumentation.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

To enable recording execution sequences, see Recording an execution sequence, page
774.

Debugging using C-SPYLink
What do you want to do?

● Installing C-SPYLink, page 769

● Before starting the debug session, page 770

● Using state machine breakpoints, page 772

● Using shared DLIB breakpoints, page 773

● Recording an execution sequence, page 774

● Troubleshooting—using C-SPYLink, page 775

See also Animating debug sessions graphically, page 335.

INSTALLING C-SPYLINK

Support for debugging your state machine model using C-SPY is automatically
provided when you install IAR Visual State by means of ValidatorCSpy.dll.

This DLL file can interact with the debugger to read and write data on the target
controller or in the C-SPY Simulator. The file can also control the execution of the
application on the target hardware or in the simulator.

To install additional C-SPYLink files:

1 In your IAR Embedded Workbench IDE, choose Help>About>Product Info. Note
which version number that is listed for IAR Embedded Workbench common
components, and remember it.

2 In the Visual State\plugin directory (in your IAR Visual State product
installation), click the EWx directory that matches the version number of the common
components of your IAR Embedded Workbench.

3 In the EWx directory, you will find the C-SPYLink plugin module vs.ewplugin, an
XML file that points to the ValidatorCSpy.dll file in the Visual State installation
directory. Copy the vs.ewplugin file to the common\plugins directory of your IAR
Embedded Workbench product installation.

Full instrumentation: The execution stops frequently. This allows reading out
sequences with no extra on-target memory required, but
execution is much slower.

 Note that this method can handle internal variables.
AFE1_AFE2-1:1

 769

770

Debugging using C-SPYLink

When IAR Visual State is installed, it searches for all IAR Embedded Workbench
products that can support C-SPYLink and installs the plugin module in the
common\plugins directory for each product version. In addition, a copy of the
vs.ewplugin file will be placed in the Plugin directory of the IAR Visual State
product installation.

4 If you install another IAR Embedded Workbench product version after you have
installed IAR Visual State, you must copy this vs.ewplugin file to the IAR
Embedded Workbench common\plugins directory of the new product. If you run into
problems when you install several versions:

● Make sure that the file path between the <dllFile> and </dllFile> tags in the
vs.ewplugin file matches your installation location for IAR Visual State.

● Make sure that the name of the ValidatorCSpy file in the vs.ewplugin file
reflects your Embedded Workbench version.

BEFORE STARTING THE DEBUG SESSION

Before you can debug your design model in C-SPY, you must enable C-SPYLink in both
the IAR Embedded Workbench IDE and in IAR Visual State.

1 In the Navigator, choose Project>Options>Code generation to open the Coder
Options dialog box.

2 In the left-hand pane, select the project and then select the Generate for C-SPYLink
option.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

3 In the left-hand pane, select the system you want to debug and click the C-SPYLink
tab.

For information about how to set up an efficient execution mode, see C-SPYLink
execution modes, page 762.

For reference information about the options, see Classic Coder Options dialog box :
C-SPYLink, page 692.

4 In the left-hand pane, select the project you want to debug and click the C-SPYLink
tab.

For information about breakpoints, see State machine breakpoints, page 766.

For reference information about the options, see Classic Coder Options dialog box :
C-SPYLink, page 692.

Click OK when you are finished.
AFE1_AFE2-1:1

 771

772

Debugging using C-SPYLink

5 In the IAR Embedded Workbench IDE, choose Project>Options>Debugger>Plugins
and enable the C-SPYLink plugin module. Start your debug session.

The Visual State menu is now available in the IAR Embedded Workbench IDE.

6 Choose Visual State>Instrumentation and choose the alternatives that suits your
requirements. For guidelines, see C-SPYLink debugging resources, page 760 and
C-SPYLink execution modes, page 762.

USING STATE MACHINE BREAKPOINTS

1 In the Navigator, choose Project>Options>Code generation>C-SPYLink and select
either the option Enable full instrumentation or specify Number of state machine
breakpoints to be more than 0.

2 In the IAR Embedded Workbench IDE, choose Visual State>Instrumentation>Low
Speed, Full Instrumentation if you have specified breakpoints to be 0. If you have
specified Number of state machine breakpoints to be more than 0, you can choose
any of the options Full speed, No Instrumentation, or Full speed, Sampling Buffer
Capture.

3 Choose Visual State>View>Breakpoints to open the Breakpoints window and make
sure you have the windows open that display the types of breakpoints triggers you want
to use. In this example, the States window is used.

4 To create a new breakpoint, right-click the system name node in the Breakpoints
window and choose New Breakpoint.

The new breakpoint will look like this:
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

To enable a breakpoint, use the checkbox to the left of the breakpoint. You can make it
trigger at two different occasions: before and after an event or signal has been processed.
See Pre- and post-deduct conditions, page 767.

5 Add conditional triggers to the breakpoint by dragging elements from other windows.
For example, create a post-deduct state condition by dragging one or more states from
the States window to the post-deduct node of the breakpoint.

6 Choose Debug>Go to start the execution and watch what happens when the breakpoint
is triggered.

When you have examined the state of the system, you can continue execution as usual.

USING SHARED DLIB BREAKPOINTS

Normally, C-SPYLink allocates a breakpoint that is shared by all C-SPYLink debugging
features. If you are using the IAR DLIB runtime environment, you can instead use a
shared DLIB breakpoint to make C-SPYLink share the same breakpoint as the C library
code for debugging.
AFE1_AFE2-1:1

 773

774

Debugging using C-SPYLink

To use a shared DLIB breakpoint:

1 In the Navigator, choose Project>Options>Code Generation, select the project in the
left-hand pane and click the C-SPYLink tab.

2 Select Enable using shared DLIB breakpoint.

For IAR Embedded Workbench for Arm 5.1 and later, there is another shared
breakpoint—Enable using ARM EABI shared semi-hosting breakpoint—that can be
enabled in a similar manner.

This allows you to save a breakpoint by overloading a state machine breakpoint on a
shared debug breakpoint.

RECORDING AN EXECUTION SEQUENCE

1 There are different mechanisms for recording an execution sequence. Before you can
record you must set up for it, and how you do that depends on which debugging
resources you have. Choose between:

● If possible, use the recording buffer. In the IAR Embedded Workbench IDE, choose
Visual State>Sequence>Recording Buffer.

● If a recording buffer is not available, the mechanism will automatically depend on
the execution mode you are using. Note that if you are using the sampling buffers,
the execution speed will decrease while you are recording the execution sequence.

2 Choose Visual State>View>Sequence to open the Sequences window.

3 In the Sequences window, select the appropriate system, right-click and choose New
Sequence from the context menu. A Sequence1 label appears in the window.

4 Select Sequence1, right-click and choose Start Recording from the context menu.

5 Debug your state machine.

6 When finished, right-click Sequence1 in the Sequences window and chose End
Recording from the context menu.

7 If you want, save your sequence to a file. Right-click and choose Save from the context
menu.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

TROUBLESHOOTING—USING C-SPYLINK

This is a list of issues that might arise when you use C-SPYLink:

● If code is running from flash memory and the hardware or the low-level debug
driver does not support code breakpoints in flash memory, Full instrumentation
mode and other breakpoint-dependent features will not work. Instead, build your
application for execution in RAM.

● If the available breakpoints are already used by other C-SPY functionality,
C-SPYLink will not function properly.

Here are some examples of breakpoint use that are not obvious:

● I/O emulation in C-SPY needs one breakpoint to function properly. If you are
using the DLIB runtime environment, you can make an extra breakpoint
available by enabling the shared DLIB breakpoint or Arm EABI semi-hosting
breakpoint.

● If there is no breakpoint available, a workaround is to turn off I/O emulation on
the Linker option page and link your own low-level implementation of the
functions putchar and getchar if there are calls to any standard C library I/O
in your application.

● The Run to main option on the debugger options Setup page requires a
breakpoint. Deselect this option.

● Some other C-SPY plugin modules might also need to set a breakpoint. Disable
all other plugin modules and try again.

For more information about breakpoint consumers, see the C-SPY Debugging Guide
provided with IAR Embedded Workbench. See also Using shared DLIB breakpoints,
page 773.

Graphical environment for C-SPYLink
Reference information about:

● Visual State menu, page 776

● Actions window, page 779

● Breakpoints window, page 780

● Sequences window, page 781

● Signal Queues window, page 387

● States window, page 782

● Triggers window, page 783
AFE1_AFE2-1:1

 775

776

Graphical environment for C-SPYLink

These windows are available from the Visual State menu in the IAR Embedded
Workbench IDE, when the IAR Embedded Workbench IDE is connected to a Visual
State project via the C-SPYLink plugin.

See also Designer windows in Graphical Animation mode, page 337.

Visual State menu
The Visual State menu—in the IAR Embedded Workbench IDE—provides commands
for using C-SPYLink to debug your state machine model in C-SPY:

Menu commands

These commands are available on the menu:

View

Displays a submenu from where you can open the windows specific to
C-SPYLink. See:

Actions window, page 779

Breakpoints window, page 780

Designer windows in Graphical Animation mode, page 337

Sequences window, page 781

Signal Queues window, page 387

States window, page 782

Triggers window, page 783
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

Instrumentation

Displays a submenu where you can choose between:

All instrumentation levels will affect execution speed compared to not using any
instrumentation code at all.

See also C-SPYLink debugging resources, page 760 and C-SPYLink execution
modes, page 762.

Resolution

Displays a submenu where you can choose for which elements you want
information available during your debug session. The more elements you
choose, the more memory space is required for your buffers. Choose between:
Actions, Fired Signals, States, Transitions, Variables.

Note that Variables can only be used if you have selected Enable Full
Instrumentation in the Coder Options dialog box.

Full speed,
No Instrumentation

Your application will run at full speed, without any
stops initiated by C-SPYLink.

Only on-target breakpoints can be set and recording
an execution sequence can only be performed using
the recording buffer.

Full speed,
Sampling Buffer
Capture

The sampling buffer is used.

This option requires that you have selected Enable
sampling buffer in the Coder Options dialog box.

Low speed,
Full Instrumentation

Your application will run at very low speed but you
will get a very fine-grained control over what is
happening on the target controller at any given point
in time. The C-SPY windows are continuously
updated with detailed information. For each event,
you can see which action functions are called and
their argument list.

This option requires that you have selected Enable
full instrumentation in the Coder Options dialog
box.
AFE1_AFE2-1:1

 777

778

Graphical environment for C-SPYLink

Sampling buffer Capture Settings

Displays a submenu where you can choose between:

Sequence

Displays a submenu where you can choose between:

Live C-SPYLink reads the sampling buffer without stopping
the target. Whether this is possible or not depends on the
debug probe you are using.

This capture mode requires using the Enabling
sampling buffer readout option.

If this mode is selected but not supported by the probe,
C-SPYLink issues a warning, and the feature is
disabled.

Periodic Stop C-SPYLink stops at pre-configured intervals. At each
stop, the current completed part of the sampling buffer
is read.

Delay Choose a delay in seconds.

Recording buffer Uses the recording buffer while recording an execution
sequence, see The recording buffer, page 762.

Record All Systems Records all systems.

End All Recording Ends all recording.

Delete All Deletes all recorded information.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

Actions window
The Actions window is available from the Visual State>View submenu in the IAR
Embedded Workbench IDE.

This window contains information about a step.

Display area

The display area shows:

● the action functions that are executed as a result of event processing (with
parameters but not with variable arguments) and the event or signal that caused the
processing

● transitions

● assignments (internally generated action functions)

When you single step through the Visual State event processing loop using the Enable
Full Instrumentation Coder option and the Low Speed, Full Instrumentation Visual
State menu command, the window is updated for each completed microstep.

Context menu

This context menu is available:

This command is available:

Expand All

Displays the complete hierarchy.
AFE1_AFE2-1:1

 779

780

Graphical environment for C-SPYLink

Breakpoints window
The Breakpoints window is available from the Visual State>View submenu in the IAR
Embedded Workbench IDE.

Use this dialog box to configure state machine breakpoints.

A breakpoint can be enabled and disabled with the checkbox. When the debug session
is closed, the breakpoint configuration will be remembered until the next session.

See Using state machine breakpoints, page 772.

Context menu

This context menu is available:

Note: Depending on what you have selected in the window, some or all of these
commands are available.

These commands are available:

Expand All

Displays the complete hierarchy.

New Breakpoint

Creates a state machine breakpoint. States, events, and signals can be dragged
from open windows as conditional triggers to the pre-deduct and post-deduct
nodes for the breakpoint.

Delete

Deletes the selected breakpoint.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

Sequences window
The Sequences window is available from the Visual State>View submenu in the IAR
Embedded Workbench IDE.

This window shows the execution sequences set up for recording, see Execution
sequences, page 768.

If you record using the recording buffer, the window is not updated until the buffer in
target memory is full or until you stop the recording. If you use the sampling buffer or
full instrumentation, the window is continuously updated.

Context menu

This context menu is available:

Note: Depending on what you have selected in the window, some or all of these
commands are available.

These commands are available:

Expand All

Expands a node consisting of three periods (...) to show all nodes. Nodes
corresponding to up to 1,000 underlying steps are displayed with the ... node in
the middle—500 steps on each side.

Start Recording

Starts the recording.

End Recording

Stops the recording.

New Sequence

Creates a new sequence.
AFE1_AFE2-1:1

 781

782

Graphical environment for C-SPYLink

Save

Saves the recorded sequence.

Delete

Deletes the recorded sequence.

States window
The States window is available from the Visual State>View submenu in the IAR
Embedded Workbench IDE.

This window shows the complete system state configuration.

Red arrows indicate states that have become active since the last window update. For
Full instrumentation this means the resulting states of the last complete event processing
step.

Blue arrows indicate states that were left as the result of the last complete event
processing (macrostep).

A blue arrow leaves a state and a red arrow that enters the same state indicates either
that:

● The state has an internal transition or self-transition that triggered in the event
processing, or that

● The state is already active and was not deactivated by the last event processing
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using C-SPYLink

The States window is a simplified representation of your state machine model. To see
the model as it looks in the Visual State Designer, choose Visual
State>View>Graphical Animation.

Context menu

This context menu is available:

This command is available:

Expand All

Displays the complete hierarchy.

Triggers window
The Triggers window is available from the Visual State>View submenu in the IAR
Embedded Workbench IDE.

This window shows all events and signal triggers for the systems that have C-SPYLink
enabled. Events and signal triggers can be dragged and dropped as event conditions on
breakpoints.

Context menu

This context menu is available:

This command is available:

Expand All

Displays the complete hierarchy.
AFE1_AFE2-1:1

 783

784

Graphical environment for C-SPYLink

AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models
using RealLink
● Introduction to debugging using RealLink

● Debugging using RealLink

● RealLink memory consumption

● Graphical environment for RealLink

Introduction to debugging using RealLink
Learn more about:

● Briefly about RealLink, page 785

● Visual State elements supported by RealLink, page 787

● Validator windows in target versus Validator mode, page 788

● Recorded sequences of target tests, page 789

● Target requirements, page 789

BRIEFLY ABOUT REALLINK

With RealLink you can monitor and control the runtime behavior of your state machine
model in the target application. Typically, you can use RealLink if you have another
development tool than IAR Embedded Workbench, in which case you can use
C-SPYLink instead.

RealLink consists of some specific software running on the host computer, some code
running on the target (some generated by the Coder and some for the communication
AFE1_AFE2-1:1

 785

786

Introduction to debugging using RealLink

which you should write), and a communication link between the host computer and the
target.

The communication between the Validator and target is established by means of a
communication module. RealLink supports multiple communication modules that each
provides an interface to a specific link to the target, such as a serial connection (RS232),
or a TCP/IP connection.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

Each communication module automatically integrates itself with the Validator via a
communication plugin module (DLL):

 IAR Visual State includes these communication plugin modules for RealLink:

● RealLink RS232 communication plugin module

● RealLink TCP/IP communication plugin module.

Once the RealLink connection is established, you have full control of the Visual State
model running on the target. From the Validator, events can be sent to the target, test
sequence files can be recorded and played, and variables can be changed, all on actual
hardware.

VISUAL STATE ELEMENTS SUPPORTED BY REALLINK

These Visual State elements can be monitored via the Validator windows:

Events In the Event window, you can see whether an event is active or not.
If an event is active, it will be marked with a red arrow. The
evaluation of whether or not an event is active is actually
performed on target. The values of guard expressions are not
considered, and if the target application does not include the
SEM_Inquiry/SEM_GetInput functions, all events will be
marked as active.
AFE1_AFE2-1:1

 787

788

Introduction to debugging using RealLink

With RealLink you can monitor and control the behavior of all logical Visual State
elements, except for these:

● Parameters to action functions: Their values are shown as "…" in the Validator
Action window.

● Guard expressions of active events: The Validator Event window shows the active
events but no guard expressions are considered. Therefore, the Validator might show
an event as being active when in fact a guard expression is not satisfied.

● Instances: It is not possible to change instances from the Validator.

VALIDATOR WINDOWS IN TARGET VERSUS VALIDATOR
MODE

By default, all open windows in the Validator show the Validator representation of the
state machine model—the Validator mode. However, when the Validator is connected to
target by means of RealLink, you can make the windows show the status of the model

Event parameters In the Event window, you can see the values of event parameters
used the last time a deduction with a specific event was performed,
or the value you have set.

Variables In the Variable window, you can see the value of both external and
internal variables.

TIP: If only a single element of an array is of interest, select this
element in the Variable window and press Shift + F9 to display the
element in the Watch window.

System state In the System window, you can monitor the current state of a
System. If a state is currently active, it is marked with a red arrow.

Graphical animation (Debug>Graphical Animation) is also
available when using RealLink. By using this option you can
monitor the current states in the state machine diagrams in the
Designer. See Graphical animation, page 335.

TIP: If only a single branch of a Visual State system is of interest,
select the branch in the System window. Then, either press
Shift + F9 to show the branch in the Watch window, or choose the
New Branch command from the context menu to add the branch
to the System window as a separate branch.

Signal queue The Signal Queue window shows the signal queue of all Visual
State systems.

Executed actions The Action window lists the actions executed during the last step.
This includes both executed action functions and assignments.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

as it is on target—Target mode. Generally, the windows in Target mode correspond to
the windows in Validator mode.

The only window that cannot be changed to showing values on target is the Guard
Expression window.

The title bar of a window indicates which mode the design model is displayed in:

The Validator keeps track of which windows are set to target mode, and will
automatically open them the next time RealLink is connected.

See also Changing between Validator mode and Target mode, page 799.

RECORDED SEQUENCES OF TARGET TESTS

The Validator provides commands for recording and playing test sequences. These
commands are also available when running RealLink. This means that you can record a
sequence executed on target and play a previously recorded sequence by means of a test
sequence file. A sequence recorded on target can also be used as input to a dynamic
analysis to see the test coverage.

For more information, see Recording and playing test/event sequences, page 349.

TARGET REQUIREMENTS

Target processors to be used with RealLink must comply with the following
requirements.
AFE1_AFE2-1:1

 789

790

Debugging using RealLink

Variable sizes

Variable sizes must be a multiple of 8 bits, however, max 32 bits.

Memory

Memory used by RealLink must be accessible through byte pointers. Some memory
areas in specific microprocessors have only 16-bit access. These areas cannot be
accessed by IAR Visual State.

RealLink requires additional memory in CODE, CONST DATA, and DATA. See RealLink
memory consumption, page 802.

Communication

As part of the setup for RealLink you should write a receive function. The receive
function must be interrupt-driven (polled communication is not supported), and
RealLink must have exclusive access to the communication resource. The settings of the
communication resource must match the settings of the communication module
installed on the host computer. See Setting up RealLink, page 791.

Note: To connect to a target with Harvard architecture, your compiler must be capable
of using generic pointers, or you must use extended keywords on RealLink symbol
tables.

Visual State Uniform API requirements

If more than one Visual State system is loaded in a given task (or in the main loop if no
RTOS is used), the following applies:

● Only one VS_WAIT() macro per task.

● A call to SystemVSDeduct() must be completed before the function is called a
second time.

● All systems should be running in the same task.

Debugging using RealLink
What do you want to do?

● Setting up RealLink, page 791

● Establishing the first RealLink connection, page 799

● Changing between Validator mode and Target mode, page 799

● Changing variable values on target, page 800

● Sending events to target, page 800
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

● Controlling application execution on target, page 801

● Troubleshooting, page 801

SETTING UP REALLINK

To get RealLink configured and ready for your project, these steps must be completed:

Step 1: To enable RealLink support

Step 2: To add RealLink files to your project

Step 3: To use the RealLink API

Step 4: To implement target-specific functions

Step 5: To complete the target source code

Step 6: To configure the Validator for RealLink

Step 1: To enable RealLink support:

1 In the Navigator, choose Project>Options>Code generation to open the Classic
Coder Options dialog box.

2 In the left-hand pane, select the project. On the Configuration page, select Generate
for RealLink.

3 On the RealLink page, set the options appropriate for your project.

For reference information about the options, see Classic Coder Options dialog box :
RealLink, page 694.
AFE1_AFE2-1:1

 791

792

Debugging using RealLink

If you are using a target with Harvard architecture, your compiler must be capable of
using generic pointers, or you can specify extended keywords on RealLink symbol
tables as follows:

● In the Classic Coder Options dialog box, select Generate for RealLink on the
Configuration page.

● On the RealLink tab, select Use additional RealLink extended keywords.

● Click RealLink data extended keywords and specify a keyword for a memory area
where both read and write operations can be performed.

● Click RealLink const data extended keyword and specify a keyword for a
memory area where read operations can be performed.

Note: When you use RealLink extended keywords, the keywords must match the Visual
State Coder extended keywords. For example, the RealLink data extended keyword
must match the keywords you specify for external and internal variables in the Classic
Coder Options dialog box.

4 Click OK when you are finished.

5 On the Navigator menu, choose Project>Code generate to generate the source code
for the active Visual State project.

Step 2: To add RealLink files to your project

1 To compile and link your project with RealLink support, you must add these two C
modules to your compiler project (or makefile):

● SystemRealLink.c

This file includes the C header file SystemRealLink.h. Make sure to include
SystemRealLink.h in the file that contains the Visual State deduction call (a call
to the Visual State API function VSDeduct).

Both the c and the h files are the RealLink API files. The files are always generated
by the Coder when RealLink is enabled.

● SystemVSrlps.c

This file is a Coder-generated RealLink support file. You can find it in the output
directory that you have specified, together with the other Coder-generated files.

The System prefix is prepended to the filename if the option Use prefix for API is used.

Note: Do not manually edit any RealLink files, because they will be overwritten during
the next code generation.

2 For information about how to add the source files to your development project, see
your compiler documentation.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

Step 3: To use the RealLink API:

1 Call the Adaptive API function SEM_InitAll.

This replaces calls to the Adaptive API initialization functions, such as SEM_Init,
SEM_InitSignalQueue, etc.

2 Call the RealLink API function VS_RealLinkInit.

3 Insert the RealLink API macro VS_WAIT(SEMSystem) in the main loop but before the
Visual State deduction sequence. The main loop is identified by an infinite loop,
typically a while(1) or for(;;) loop.

When IAR Visual State enters the VS_WAIT macro, data is exchanged between the
Validator and the target. When data exchange is completed, IAR Visual State resumes
execution according to your commands from the Validator.

4 Below is an example of a simple Adaptive API main function and a simple Uniform
API main function, both set up for RealLink. Note that the VS_WAIT macro is inside
the main loop, but outside the deduction sequence.

Example of a main function using the Adaptive API and RealLink:

#include "SystemSEMLibB.h"
/* include RealLink API */
#include "SystemRealLink.h"

int main (void)
{
 /* Initialize the Visual State system. */
 SystemSEM_InitAll();
 /* Initializing RealLink API. */
 VS_RealLinkInit();

 while (1)/* main loop for RealLink */
 {
 unsigned char cc;
 SEM_ACTION_EXPRESSION_TYPE actionExpressNo;
 SEM_EVENT_TYPE eventNo;

 VS_WAIT(SEMSystem);
AFE1_AFE2-1:1

 793

794

Debugging using RealLink

 /* deduction sequence - if we get an event */
 eventNo = GetEventFromQueue();
 if (eventNo != EVENT_UNDEFINED)
 {
 cc = SystemVSDeduct(eventNo);
 if ((cc != SES_OKAY) && (cc != SES_FOUND))
 handleError(cc);
 }
 }
 return 0;
}

Example of a main function using Uniform API and RealLink:

#include "RealLink.h"
/* context pointer for the system */
SEM_CONTEXT *pSEMContext = 0;

/* RL task for the system */
VS_RLTASK task;

/* Initialize this RL-task - must be before the next call */
VS_RealLinkInit(&task);

/* initialize the system */
SystemSMP_InitAll(&pSEMContext, &task);

/* main loop for RealLink with Uniform API */
while (1)
{
 unsigned char cc;
 SEM_ACTION_EXPRESSION_TYPE actionExpressNo;
 SEM_EVENT_TYPE eventNo;

 VS_WAIT(pSEMContext);

 /* deduction sequence - if we get an event */
 eventNo = GetEventFromQueue();
 if (eventNo != EVENT_UNDEFINED)
 {
 cc = SystemVSDeduct(pSEMContext, eventNo)
 if ((cc !=SES_OKAY) && (cc != SES_FOUND))
 handleError(cc);
 }
}

/* when done with the system, call this to free memory */
SMP_Free(pContext);
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

Step 4: To implement target-specific functions

1 Because both the Visual State API and the RealLink APIs are target-independent, they
contain no information on how to use the communication device of the target.

To access the communication device, you must implement the following target-specific
RealLink functions that are used by the Visual State API:

You can change the default names of the functions by defining these macros:

Note: All Visual State systems must be located in the same task if you want to apply
RealLink.

void RealLinkReset(void) Resets the target. The function will be called
by the RealLink API. This function might not
need to do anything for your target, but you
must still provide an (empty) implementation.

void
RealLinkTransmit(VS_UINT8 ch)

Transmits one byte on the communication
port or adds bytes to the buffer. The function
will be called by the RealLink API.

void TransmitFlush(void) This function must only be implemented if a
buffer is used. The function should empty the
transmit buffer.

void Receive(void) Must be interrupt-based. The function
receives characters from the communication
device. The received characters should be
passed to the RealLink protocol by calling the
function VS_RealLinkReceive().

#define VS_RL_RESET MyReset

#define VS_RL_TRANSMIT MyTransmit

#define VS_RL_TRANSMIT_FLUSH MyTransmitFlush
AFE1_AFE2-1:1

 795

796

Debugging using RealLink

2 To implement your functions, use this as an example for how to implement a transmit
function (RS232 implementation):

#if (VS_REALLINKMODE == 1)

/* *** UART functions *** */
/* Reset is not needed for this platform */
void RealLinkReset(void)
{
}

/* Transmits one byte via UART1 */
void RealLinkTransmit(unsigned char byte)
{
 unsigned char status;
 /* Wait for TXRDY */
 do
 {
 status = U1LSR;
 }
 while ((status & 0x20) == 0);
 U1THR = byte;
}

#endif

Note: The function does not transmit new data until the transmit register is empty.

The functions in the example are for the ARM7 – LPC2138 microprocessor and the IAR
Embedded Workbench for Arm compiler.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

3 To implement your functions, use this as an example for how to implement a receive
function (RS232 implementation):

/* Receive Interrupt routine for RealLink */
#if (VS_REALLINKMODE == 1)
static void UART1Interrupt()
{
 switch(U1FCR_bit.IID)
 {
 case IIR_CTI:
 case IIR_RDA: /* Receive data available */
 VS_RealLinkReceive(U1RBR); /* Call received byte callback */
 /* function */
 break;
 case IIR_THRE: /* THRE interrupt */
 case 0x0: /* Modem interrupt */
 case IIR_RSL: /* Receive line status interrupt (RDA) */
 /* Character timeout indicator interrupt (CTI) */
 default:
 break;
 }
 VICVectAddr = 0;
}
#endif

4 Include RealLink.h in the file where the Transmit() and Reset() functions are
implemented.

Step 5: To complete the target source code

1 Compile and link the complete project.

2 Download the source code to the target.

Step 6: To configure the Validator for RealLink

1 Start the Validator and open your workspace.
AFE1_AFE2-1:1

 797

798

Debugging using RealLink

2 Choose RealLink>Properties to open the RealLink Properties dialog box.

3 In the Select Active Plugin list, select which communication plugin module to use.

4 To configure the communication plugin module with the same settings as those
implemented on the target, click the Configure button. A dialog box is displayed. For
more information about the settings, see:

● RealLink TCP/IP Communication Setup dialog box, page 807

● RealLink RS232 Communication Setup dialog box, page 808

Information about the selected RealLink communication plugin is stored in the current
Validator workspace.

5 If you are using TCP/IP, you might find it useful to add the RL_TCPIP.cpp file—
which you can find in the Examples\SampleCode directory in your product
installation—to your target project. This file uses the Windows Sockets API to
implement the TCP/IP communication. Because the file uses the Berkeley function set
to the widest possible degree, it will be relatively easy to port the RL_TCPIP.cpp file
to other platforms.

Alternatively, if you prefer to set up your own TCP/IP communication on the target
instead of using RL_TCPIP.cpp:

● Set up a server to listen on the port you have configured as the target listen port. All
data from the Validator will be sent to this port and any received data should be
handed to the RealLink API.

● Each time a connection is established on this port, extract the Validator IP address
from the connection.

● Set up a server to listen on the port you have configured as the target listen port. All
data from the Validator will be sent to this port and any received data should be
handed to the RealLink API.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

● Using the Validator IP address, create a connection to the port you have configured
as the Validator listen port. All data to be sent to the Validator should be sent via this
connection. Thus, the RealLink transmit function should use this connection.

6 When finished, continue with Establishing the first RealLink connection, page 799.

ESTABLISHING THE FIRST REALLINK CONNECTION

When the communication plugin module has been configured, you can establish a
RealLink connection.

1 Choose RealLink>Connect.

2 If the connection is successfully established, the Validator Output window displays a
message about it.

3 When the RealLink connection has been successfully established, the Validator stops
the execution when the VS_WAIT() macro is reached for the first time (VS_WAIT() is
the macro that you inserted in the target application code). VS_WAIT() continuously
checks whether execution should be halted.

You can now monitor and control the target application.

CHANGING BETWEEN VALIDATOR MODE AND TARGET
MODE

1 In the Validator, select the window you want to change values for. For example, the
Events window.

2 Right-click and choose Show target values to select or deselect showing values as
they are on target (or press Alt + F8).

The window title reflects that the values are based on real target values.
AFE1_AFE2-1:1

 799

800

Debugging using RealLink

CHANGING VARIABLE VALUES ON TARGET

When the VS_WAIT macro is reached and execution of your target application stops, you
can change the value of a variable.

1 To change the value of a variable, use either the Variables window or the Watch
window:

2 Type the new value in the value field.

SENDING EVENTS TO TARGET

When the VS_WAIT macro is reached and execution of your target application stops, you
can send events to the target.

1 In the Events window (or select an event in the Watch window and press Enter),
double-click an event.

The event will be sent to the target and processed just as if the event had occurred, for
example due to a button being pressed.

Note: An event sent from the Validator bypasses all event queues on the target.

2 If the event has parameters, the Validator holds a copy of the values of these
parameters. Between deductions, the Validator event parameter values are shown. Until
the first deduction, the event parameter values are undefined.

Values can be assigned to event parameters in either of these ways:

● If an event that occurred on target is processed and the event is shown either in the
Events window in Target mode, or in the Watch window, then the Validator event
parameters will be assigned the value that the target event parameters have during
the processing.

● Alternatively, event parameters can be assigned a value in the Watch window.

Note: In Autostep mode and Run mode, you cannot send events to the state machine
model that is running on the target.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

CONTROLLING APPLICATION EXECUTION ON TARGET

You can break execution of code on target. Breaks are performed on these two macros:

● VS_WAIT, which you must insert manually in the main loop; see Setting up
RealLink, page 791. When VS_WAIT is reached, the Validator exchanges data with
the runtime application and updates all logical elements, according to the options
selected. A break on this macro corresponds to a break on a macrostep.

● A macro in the Visual State API which is parallel to VS_WAIT. Break on the API
macro corresponds to a break on a microstep.

For information about macrosteps and microsteps, see Runtime behavior—macrosteps
and microsteps, page 122.

1 Immediately after the RealLink connection with the target has been established, the
Validator will try to stop execution of the code when the first instance of the VS_WAIT
macro is reached. When code execution stops, you can use the RealLink menu
commands to continue execution and thereby debug your application.

For information about the commands, see RealLink menu, page 804.

2 Continue using the commands on the menu until you are ready.

TROUBLESHOOTING

If RealLink fails to connect to the target microcontroller, a message box appears (the
message depends on the specific error):

The message box appears when the Validator has transmitted data to the microcontroller
and does not receive any valid response from the target after a number of seconds. If you
receive this error message, check the following:

General issues

● Does the implementation of the main loop follow the sample code that you can find
in step 3, Setting up RealLink, page 791?

● Is the cable between the host computer and the target microcontroller connected?

● Is the target microcontroller powered on?
AFE1_AFE2-1:1

 801

802

RealLink memory consumption

● Have you generated code from the Coder with RealLink enabled and have you
downloaded the compiled code to the target?

● Is the correct communication plugin module selected? For information about how to
configure the Validator for RealLink, see Setting up RealLink, page 791.

● Is the communication plugin correctly configured—does it match the target
settings? See Setting up RealLink, page 791.

● Is the cable between the host computer and target microcontroller very long, or is
there much electronic noise in the environment? If so, try lowering the baud rate in
both the Validator and the microcontroller.

● Are the RealLinkTransmit and RealLinkReceive functions working?

Use a terminal program to transmit a known value to the microcontroller and have it
echo it back. For example, use a program such as HyperTerminal, which might be found
on the Internet and which used to be shipped with older versions of Microsoft Windows.

Settings for the RS232 communication plugin

● Are the baud rate, data bit, stop bit, parity, and hardware handshaking correct? If
not, change the communication settings in the Validator to match the settings in the
microcontroller.

● Is another program using the serial port? If so, close the other program using the
serial port. Other programs using a serial port include modem software, PDA
synchronization software, etc.

Version control

● Is the state machine model loaded in the Validator the same as the one running in the
target microcontroller? If not, load the correct diagram into the Validator.

● Have you changed the state machine model after you compiled and downloaded the
Coder-generated files to the target? In this case, code-generate your state machine
model again, build the complete target application, and download it to the
microcontroller.

RealLink memory consumption
Using RealLink will increase the size of the generated code. Memory consumption
depends on:

● State machine model dependent memory use

● RealLink API dependent memory use
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

STATE MACHINE MODEL DEPENDENT MEMORY USE

When RealLink is used, the Coder generates additional tables with constant data
(CONST DATA) and variable data (DATA). The sizes of these tables largely depend on
IAR Visual State.

The exact memory usage in bytes for CONST DATA memory and DATA can be found
by means of below formulas based on these constituents:

Items in monospace font refer to code generated by the Coder.

Memory use in bytes for each Visual State project

CONST DATA = (10 + S) * CDP + (1 + GEV) * DP + 10 * ST +13

Memory use in bytes for each Visual State system

CONST DATA =
8 * CDP + FP + (2 + GEV) * DP + (AE + 1) * AET + EP * ST + (IVT + 1) * ST

Additional memory usage due to code generation with Uniform API

Code generated by the Visual State Coder for the Uniform API requires additional
memory use which is calculated as follows:

DATA = S * size of SEM_CONTEXT pointer

REALLINK API DEPENDENT MEMORY USE

The RealLink API memory use largely depends on the compiler you are using.

S = Number of Visual State systems

FP = Size of function pointer

CDP = Size of CONST DATA void pointer

DP = Size of DATA pointer

GEV = Number of global external variables

ST = Size of size_t

AE = VS_NOF_ACTION_EXPRESSIONS

AET = Size of SEM_ACTION_EXPRESSION_TYPE

EP = Number of global and local event parameters

IVT = Number of internal data types
AFE1_AFE2-1:1

 803

804

Graphical environment for RealLink

Graphical environment for RealLink
Reference information about:

● RealLink menu, page 804

● RealLink Properties dialog box, page 806

● RealLink TCP/IP Communication Setup dialog box, page 807

● RealLink RS232 Communication Setup dialog box, page 808

● RealLink Options dialog box, page 809

RealLink menu
The RealLink menu provides commands for debugging using RealLink:

Menu commands

These commands are available on the menu:

Connect/Disconnect

Connects or disconnects to the target board.

Reset Communication

Resets the communication with the target board.

Run

Executes as fast as possible. The only difference in speed between this mode and
a non-RealLink application is that each time one of the break macros are passed,
for example VS_WAIT, the target checks whether or not it should stop execution.
Note that if Debug>Record is used, Run mode corresponds to Autostep mode
because the values of all Visual State elements are needed for the test sequence
file.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

Auto Step

Executes the code on target, while at the same time monitoring the values of the
Visual State elements. Each time a microstep or macrostep is reached, the values
of the elements are updated. When the values have been updated, the execution
in target continues.

Macro Step

Executes until the VS_WAIT macro is reached. The behavior depends on whether
the starting point is that execution stops on a microstep or a macrostep:

Starting point: microstep (the microstep macro)—which means that there are
signals in the signal queue, and processing will be performed with the first
signal. If the queue still holds signals, processing with the next signal will be
performed. This continues until the signal queue is empty, and the VS_WAIT
macro is reached.

Starting point: macrostep (the VS_WAIT macro)—which means that processing
with the next event in the event queue will be performed. If processing of this
event results in signals being added to the queue, processing is continued until
the entire queue has been emptied, and the VS_WAIT macro is reached again. As
with the microstep, if there are no events in the queue, this corresponds to one
loop in the Visual State main loop, without any processing being performed.

See Runtime behavior—macrosteps and microsteps, page 122.

Micro Step

Performs a deduction with the next trigger. In other words, execution continues
until either the VS_WAIT macro or the parallel microstep macro in the Visual
State API is reached. The behavior depends on whether the starting point is that
execution stops on a microstep or a macrostep:

Starting point: microstep (the microstep macro)—which means that there are
signals in the signal queue. Thus, a deduction will be performed using the first
signal in the queue.

Starting point: macrostep (the VS_WAIT macro)—which means that a deduction
is performed using the next event in the event queue. This results in one of the
following cases:

● If no events exist in the queue, this corresponds to one loop in the Visual
State main loop, without any deduction being performed.

● If an event is processed, and this results in signals being added to the queue,
execution will stop before processing the first signal (microstep macro).
This corresponds to break on a microstep.
AFE1_AFE2-1:1

 805

806

Graphical environment for RealLink

● If an event is processed, and no signals are added to the queue, execution
will stop upon the next occurrence of the VS_WAIT macro. This corresponds
to break on a macrostep.

See Runtime behavior—macrosteps and microsteps, page 122.

Break

Breaks the execution.

Properties

Displays the RealLink Properties dialog box, see RealLink Properties dialog
box, page 806.

RealLink Properties dialog box
The RealLink Properties dialog box is available from the RealLink menu.

Use this dialog box to configure the RealLink connection.

Select Active Plugin

Select the communication plugin that you are going to use.

Configure

Displays the RealLink TCP/IP Communication Setup dialog box or the RealLink
RS232 Communication Setup dialog box, depending on which plugin you have
selected in the list. See RealLink TCP/IP Communication Setup dialog box, page 807
and RealLink RS232 Communication Setup dialog box, page 808, respectively.

Timeout

Specify the number of milliseconds that the Validator waits for a response from the
target board before timing out.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

Options

Displays the RealLink Options dialog box, see RealLink Options dialog box, page 809.

RealLink TCP/IP Communication Setup dialog box
The RealLink TCP/IP Communication Setup dialog box is available from the
RealLink Properties dialog box.

Use this dialog box to configure TCP/IP communication with a target board.

Host Name/IP Address

Type the target host name or IP address.

Target TCP listen port

Specify the target listen port.

The reason for this is that both the target and the RealLink TCP/IP communication
plugin listen on a specific port to establish a connection to the target. By default, these
ports are used:

● Port 1024 is used as the target listen port.

● Port 1025 is used as the Validator listen port.

Validator TCP listen port

Specify the Validator listen port.

Receive buffer size

Specify the size of the receive buffer.

The suitable size depends on your state machine model. Set the buffer size to at least the
size of the largest entity that will be transferred between the target and the Validator.
AFE1_AFE2-1:1

 807

808

Graphical environment for RealLink

This could for example be the state vector, or a variable defined as a large array. The
buffer size only affects communication performance, not the functionality.

Get default

Restores the TCP/IP communication settings to the default values.

Set default

Saves the current TCP/IP communication settings as the new default values.

RealLink RS232 Communication Setup dialog box
The RealLink RS232 Communication Setup dialog box is available from the
RealLink Properties dialog box.

Use this dialog box to configure RS232 communication with a target board.

Note: The Visual State RealLink RS232 plugin must have exclusive access to the serial
port; it cannot be shared with other programs. You will get an error message if trying to
open a serial port that is already in use by another program.

COM port

Select one of the supported communication ports: COM1, COM2, COM3, or COM4.

Databits

Select the number of data bits: 6, 7, or 8.

Stopbits

Select the number of stop bits: 1, 1 ½, or 2.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Debugging design models using RealLink

Baudrate

Select one of these communication speeds: 2400, 9600, 19200, 38400, 57600, or
115200.

Parity

Select the parity: None, Odd, Even, Mark, or Space.

Get default

Restores the RS232 communication settings to the default values.

Set default

Saves the current RS232 communication settings as the new default values.

RealLink Options dialog box
The RealLink Options dialog box is available from the RealLink Properties dialog
box.

Use this dialog box to configure RealLink logging.

Log to screen

Directs a log of the RealLink communication to the Validator page of the Output
window.
AFE1_AFE2-1:1

 809

810

Graphical environment for RealLink

Log to file

Saves a log of the RealLink communication to the text file that you specify in the text
box. A browse button is available for your convenience.

Append

Appends all newly logged information at the end of the existing log without overwriting
the old text.

Fast log (Memory)

The logging will be done to memory. When the connection is closed, the actual logging
to the file will take place.

Immediate flush

The communication will be logged to the file. If this is selected, the data will be flushed
to the log file on the disk every time there is something to report. If this is not selected,
the data will be written to the file on the disk at the discretion of the file system.

Log raw communication

Logs all communications exactly as it is transmitted. This format requires specialized
knowledge to interpret.

Log indications from target

Logs the indications from the target without logging all the data that might be related to
the indications. To interpret this format, you need specialized knowledge.

Log commands

Logs just the commands sent to the target board.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Part 8. Documenting
Visual State projects using
the Documenter
This part of the IAR Visual State User Guide includes these chapters:

● Documenting projects

● Documenter command line options
811

812

Documenting projects
● Introduction to documenting projects using the Documenter

● Creating project reports using the Documenter

● Graphical environment for the Documenter

Introduction to documenting projects using the Documenter
Learn more about:

● A project report, page 813

A PROJECT REPORT

For documentation of your Visual State projects, you can create customized reports by
using the Visual State Documenter. The Documenter can be activated via the Navigator
or the command line.

A project report generated by the Documenter includes information on design,
functional and formal testing, generated code and implementation of your project. All
relevant project information is collected from the other Visual State components and
organized into a structured document. The document can be in HTML format, or RTF
(rich text format), according to your choice.
AFE1_AFE2-1:1

 813

814

Creating project reports using the Documenter

The information in the project report is based on a number of Visual State files, as can
be seen in this figure:

You can specify which information should be included in the report, for example design
and test, just as you can also choose between various levels of details for the report. See
Creating a project report, page 814.

Creating project reports using the Documenter
Read about:

● Creating a project report, page 814

CREATING A PROJECT REPORT

1 Start the Navigator and open your workspace file.

2 In the Workspace Browser window, select the project for which to create a report.
Right-click and choose Options>Documentation.

The Documenter Options dialog box is displayed. For reference information, see
Documenter Options dialog box, page 816.

Make your settings and click OK.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenting projects

3 Choose Project>Document to start the report generation. Progress information is
listed in the Output window.

The generated report is displayed in the HTML viewer of the Navigator, and a reports
directory for the report is created in the browser. The generated project report (filename
extension rtf) is located in the Doc subdirectory in the directory that contains your
Visual State project file.

Note: If you have opened a generated project report in Microsoft Word, close the file
before you start creating a new project report in RTF. For some systems it might also be
necessary to close the Microsoft Word application. Also, you will probably find that the
table of contents is not updated. To update it, right-click the table of contents and choose
Update Field from the context menu. To update the page references in the entire
document, press Ctrl+A to select all and press F9 to update all fields.

To change settings for the project report, see Documenter Options dialog box, page 816.

Graphical environment for the Documenter
Reference information about:

● Documenter Options dialog box, page 816
AFE1_AFE2-1:1

 815

816

Graphical environment for the Documenter

Documenter Options dialog box
The Documenter Options dialog box is available from the Project menu in the
Navigator.

Use this dialog box to set options for generating documentation reports for your project.
All options are set on project level.

For a description of an option, right-click it or select it and press Shift+F1.

You can set options on these tabbed pages:

● Documenter Options dialog box : Configuration, page 817

● Documenter Options dialog box : File Input, page 819

● Documenter Options dialog box : File Output, page 821

● Documenter Options dialog box : Format, page 823

● Documenter Options dialog box : Page Layout, page 824

● Documenter Options dialog box : Fonts, page 826

● Documenter Options dialog box : Front Page, page 827

● Documenter Options dialog box : Header/Footer, page 829

● Documenter Options dialog box : RTF Styles, page 831

● Documenter Options dialog box : HTML Styles, page 834

See also Creating a project report, page 814.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenting projects

Documenter Options dialog box : Configuration
The Configuration options page contains options for general configuration.

Use this page to specify the name of the report, which sections in the report to be
included, and the detail level of the report. The display area under the options shows the
resulting command line for the report generation.

Title

Specify the title of the report.

Detail level

Select the detail level of the report.

Choose between:

Low

Comments, state vectors from Validator test sequence files, and transitions and
reactions are excluded from the report.

Medium

Comments and state vectors from Validator test sequence files are excluded
from the report.

High

All information related to a project is included in the report.

Include introduction

Includes an introduction in the report, consisting of user-written text files.
AFE1_AFE2-1:1

 817

818

Graphical environment for the Documenter

Include model design

Includes information on your state machine model in the report. This is the main section
of the report. It contains a complete description of the model, including diagrams,
transitions, elements, etc.

Include model test

Includes information from your testing in the report. This section contains test files such
as Validator static analysis files, Validator dynamic analysis files, Validator test
sequence files, and Verificator report files.

Include model interface

Includes information on the interface of your design in the report. This section contains
a table for each transition element type that is part of the external interface: action
functions, external variables, and constants.

Include pseudo code

Includes pseudo code for the project in the report.

Include element lists

Includes transition element lists in the report. This section contains a table for each
transition element type: events, event groups, action functions, external variables,
internal variables, signals, constants, enumerators, and external states.

External states are declarations of states defined in another vsr file. The declarations
are created automatically by the Designer when states in another vsr file are referenced,
for example when using state conditions for a state in another vsr file.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenting projects

Documenter Options dialog box : File Input
The File Input options page contains options for file input to the Documenter.

Use this page to specify the files to be used as input for your project report. The display
area under the options shows the resulting command line for the report generation.

To ensure consistency between the Visual State generated files to be used as input for
the report and the Visual State project, the files are checked. By default, the generated
files are only included in the report if their digital signatures correspond to the digital
signature of the loaded project.

User text files

Specify paths to user text files to include in the introduction section of the report.

File inclusion criteria

Controls the criteria for files to be included in the project report. Only files meeting the
file inclusion criteria will be included. Choose between:

Signature and file format match

The signature (thus, also the name of the project file) and the file format must
all match.

Project filename and format match

The signatures do not need to match, but the name of the project file and file
format must match.
AFE1_AFE2-1:1

 819

820

Graphical environment for the Documenter

File format match

The signatures and the name of the project file do not need to match, but the file
format must match.

None

No criteria is used for determining which files to include.

File inclusion message level

Select the message level to use if an included file does not meet the criteria for inclusion
of generated files.

Choose between:

Information

A message will inform you if an included file does not meet the criteria for
inclusion of generated files.

Warning

A warning will be generated if an included file does not meet the criteria for
inclusion of generated files.

Error

An error will be generated if an included file does not meet the criteria for
inclusion of generated files.

Automatically include generated files

Automatically include all generated files that contain a digital signature, such as
Validator test sequence files, Coder result files, etc. Only files meeting the file inclusion
criteria will be included.

Auto inclusion searches in subdirectories

Includes generated files in subdirectories relative to the location of the project file in the
report.

Validator static analysis files

Specify paths to the Validator static analysis files to include in the report.

Validator dynamic analysis files

Specify paths to the Validator dynamic analysis files to include in the report.

Validator test sequence files

Specify paths to the Validator test sequence files to include in the report.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenting projects

Verificator result files

Specify paths to the Verificator result files to include in the report.

Coder report files

Specify paths to the Coder report files to include in the report.

Default

Restores the options to their default settings.

Documenter Options dialog box : File Output
The File Output options page contains options for file output from the Documenter.

Use this page to make file output settings for your project report. The display area under
the options shows the resulting command line for the report generation.

Output format

Select the output format for the report.

Choose between:

RTF

Creates a report in RTF (Rich Text Format) format.

The generated RTF output conforms to the RTF specification, version 1.6,
except for these Documenter-specific fields:

REF: Used for inserting links to bookmarks.

PAGEREF: Used for inserting links to pages.
AFE1_AFE2-1:1

 821

822

Graphical environment for the Documenter

HTML

Creates a report in HTML format. In addition, a single CSS2 file is generated.
The styles of the CSS2 file are based on the option that you specify on the Page
Layout page.

All images, such as icons and state machine diagrams are generated in separate
files that are linked to the HTML output. Note that the diagrams are generated
in EMF format, which is non-standard HTML. Thus, diagrams in output might
not be available in all web browsers.

The generated HTML output generally conforms to the HTML 4.01
Specification and the Cascading Style Sheets level 2, CSS2 Specification by
W3C.

Output path

Specify the output path for all generated files. If the path does not exist, it is created
automatically. The path may be a relative path.

Output to multiple files

Generates the report as a separate file for each section instead of as one single file.

Embed icons in reports

Embeds icons (as images) in the generated RTF format report. The report might grow
quite large if you select this option.

If this option is deselected, all icons are generated as separate files and imported by
reference (linking) in the generated RTF format report. This violates the RTF standard
and the resulting file might not be readable by all word processors.

Embed state machine diagrams in reports

Embeds state machine diagrams (as images) in the generated RTF format report.

If this option is deselected, all images of state machine diagrams are generated as
separate files and imported by reference (linking) in the generated RTF format report.
This violates the RTF standard and the resulting file might not be readable by all word
processors.

INCLUDEPICTURE: Used for inserting links to image files (icons and
state machine diagrams).

TOC: Used for inserting a table of contents.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenting projects

Default

Restores the options to their default settings.

Documenter Options dialog box : Format
The Format options page contains some formatting options for the Documenter report
generation.

Use this page to make formatting settings for the Documenter. The display area under
the options shows the resulting command line for the report generation.

Parse functional expressions

Generates links from transition elements used in functional expressions to their
respective definitions. Use this option when you generate documentation for incomplete
designs that contain invalid functional expressions.

Use long state names

Uses long state names in state references.

Split transition texts on multiple lines

Divides transition texts into multiple lines in the report.

Insert links

Inserts links between uses of transition elements and their associated definitions.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

 823

824

Graphical environment for the Documenter

Documenter Options dialog box : Page Layout
The Page Layout options page contains options for the graphical layout of the
Documenter report pages.

Use this page to customize the page layout of the project report, such as margins, paper
width, and paper orientation. The display area under the options shows the resulting
command line for the report generation.

Top, Bottom, Left, Right margin

Specify the top, bottom, left, right margin, respectively, for the report file. The possible
units are mm, cm, twips, and points.

Header distance to edge

Specify the distance from the header to the top of the page. The possible units are mm,
cm, twips, and points.

Footer distance to edge

Specify the distance from the footer to the bottom of the page. The possible units are
mm, cm, twips, and points.

Paper type

Select the paper size of the generated report. If you choose User-defined, the paper size
is defined by the options Paper width and Paper height.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenting projects

Paper width

Specify the width of the report page. The possible units are mm, cm, twips, and points.

Paper height

Specify the height of the report page. The possible units are mm, cm, twips, and points.

Paper orientation

Specify the orientation of the report page.

Choose between:

Portrait

The page orientation is portrait.

Landscape

The page orientation is landscape.

Default

Restores the options to their default settings. The default settings depend on the
measurement system specified for your host computer in Regional Options in the
Control Panel.
AFE1_AFE2-1:1

 825

826

Graphical environment for the Documenter

Documenter Options dialog box : Fonts
The Fonts options page contains options for font use in the generated Documenter
report.

Use this page to make fonts settings for the Documenter. The display area under the
options shows the resulting command line for the report generation.

Heading font name

Specify the name of the font used for heading text (including text on the front page).
This must exactly match the name of one of your installed fonts.

Heading font style

Select the weight of the font used for heading text (including text on the front page).

Choose between Normal, Bold, Italic, or Bold Italic.

Heading font size

Specify the size in points of the font used for heading text (including text on the front
page).

Code font name

Specify the name of the font used for code (for example pseudo code). This must exactly
match the name of one of your installed fonts.

Code font style

Select the weight of the font used for code (for example pseudo code).
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenting projects

Choose between Normal, Bold, Italic, or Bold Italic.

Code font size

Specify the size in points of the font used for code (for example pseudo code).

Text font name

Specify the name of the font used for all other text than headings and code. This must
exactly match the name of one of your installed fonts.

Text font style

Select the weight of the font used for all other text than headings and code.

Choose between Normal, Bold, Italic, or Bold Italic.

Text font size

Specify the font size used for all other text than headings and code.

Default

Restores the options to their default settings.

Documenter Options dialog box : Front Page
The Front Page options page contains options for designing the front page of the
generated Documenter report.

Use this page to make front page settings for the Documenter. The display area under
the options shows the resulting command line for the report generation.

Top text

Type the text to appear at the top of the front page of a report in RTF format.
AFE1_AFE2-1:1

 827

828

Graphical environment for the Documenter

Top text justification

Select the alignment of the topmost text of the front page of a report in RTF format.

Choose between Left, Centered, or Right.

Middle text

Type the text to appear in the middle of the front page of a report in RTF format.

Middle text justification

Select the alignment of the text in the middle of the front page of a report in RTF format.

Choose between Left, Centered, or Right.

Bottom text

Type the text to appear at the bottom of the front page of a report in RTF format.

Bottom text justification

Select the alignment of text at the bottom of the front page of a report in RTF format.

Choose between Left, Centered, or Right.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenting projects

Documenter Options dialog box : Header/Footer
The Header/Footer options page contains options for the appearance of the header and
the footer of the generated Documenter report.

Use this page to make settings for the header and footer for the pages after the front page
in the report. The display area under the options shows the resulting command line for
the report generation.

Note: These options can only be set for the RTF output format.

Header text left

Type the text string to appear at the top left of the report pages.

Header text centered

Type the text string to appear in the top middle of the report pages.

Header text right

Type the text string to appear at the top right of the report pages.

Separator line after header

Prints a separator line between the page header and the body text.

Footer text left

Type the text string to appear at the bottom left of the report pages.

Footer text centered

Type the text string to appear in the bottom middle of the report pages.
AFE1_AFE2-1:1

 829

830

Graphical environment for the Documenter

Footer text right

Type the text string to appear at the bottom right of the report pages.

Separator line before footer

Prints a separator line between the body text and the page footer.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenting projects

Documenter Options dialog box : RTF Styles
The RTF Styles options page contains options for generating Documenter reports in
RTF format.

Use this page to make your own styles and templates for a generated report in RTF. The
display area under the options shows the resulting command line for the report
generation.
AFE1_AFE2-1:1

 831

832

Graphical environment for the Documenter

Note: These options require that you are familiar with styles and templates in Microsoft
Word or a similar program.

Style template

Specify the path to the style template used by RTF reports.

If Microsoft Word is used for viewing the RTF output generated with an external
template, and the style to be applied to the Documenter RTF output is identical to the
default style in the default Microsoft Word template normal.dot, make sure to modify
the RTF style temporarily. For example, change the font size for the style, save the
template, and change the font size back to its original value.

Insert bullet and tab stop in hierarchy

Inserts a bullet and a tab stop in list hierarchies in RTF format reports. Deselect this
option if the generated report uses an external template with list styles that by definition
include such a list marker and indentation.

Front page header style name

Type the name of the front page header style in RTF format reports. The actual
properties of this style are defined by other options.

Front page text style name

Type the name of the main text style of the front page in RTF format reports. The actual
properties of this style are defined by other options.

Front page footer style name

Type the name of the front page footer style in RTF format reports. The actual properties
of this style are defined by other options.

Body text style name

Type the name of the body text style in RTF format reports. The actual properties of this
style are defined by other options.

Code style name

Type the name of the code style in RTF format reports. The actual properties of this style
are defined by other options.

TOC heading style name

Type the name of the heading style of the table of contents of RTF format reports. The
actual properties of this style are defined by other options.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenting projects

Header style name

Type the name of the header style in RTF format reports. The actual properties of this
style are defined by other options.

Footer style name

Type the name of the footer style in RTF format reports. The actual properties of this
style are defined by other options.

Heading # style name

Type the name of the style for top-level headings in RTF format reports. The actual
properties of this style are defined by other options.

List Bullet # style name

Type the name of the style for top-level list bullets in RTF format reports. The actual
properties of this style are defined by other options.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

 833

834

Graphical environment for the Documenter

Documenter Options dialog box : HTML Styles
The HTML Styles options page contains options for generating Documenter reports in
HTML format.

Use this page to make your own styles and style sheets for the generated report in HTML
format. The display area under the options shows the resulting command line for the
report generation.

Note: These options require that you are familiar with styles and style sheets in HTML
and CSS2.

Style sheet

Specify the path to the CSS style sheet used by HTML reports.

Underline links at mouse over

Makes hypertext links underlined only when the mouse pointer hovers over the link.

Simple table layout

Uses a simplified layout for tables.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenting projects

Body style class name

Type the name for the body style class (the HTML element body). The actual properties
of this style are defined by other options.

Code style class name

Type the name for the code style class (the HTML element pre). The actual properties
of this style are defined by other options.

TOC heading style class name

Type the name for the heading style class for the table of contents (the HTML element
h1). The actual properties of this style are defined by other options.

Heading # style class name

Type the name for the top-level heading style class (the HTML element h1). The actual
properties of this style are defined by other options.

Default

Restores the options to their default settings.
AFE1_AFE2-1:1

 835

836

Graphical environment for the Documenter

AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command
line options
● Introduction to invoking the Documenter using command line options

● Summary of Documenter options

● Descriptions of Documenter options.

Introduction to invoking the Documenter using command line options
Learn more about:

● Briefly about invoking the Documenter, page 837

● Invocation syntax for the Documenter, page 837

BRIEFLY ABOUT INVOKING THE DOCUMENTER

You can set Documenter options either in the Navigator—using the Documenter
Options dialog box—or via the command line. For each option available in the
Documenter Options dialog box, there is an equivalent option for the command line.

INVOCATION SYNTAX FOR THE DOCUMENTER

This is the invocation syntax for starting the Documenter from the command line:

Documenter.exe Vsp_file [--l] [--@filename]-option[argument]*

Where:

--l Loads options from the vtg file that corresponds to the
specified vsp file.

--@ Loads additional options from the specified file. Each line in
the file must contain exactly one option. A line is treated as a
comment if the line starts with the character sequence //.
AFE1_AFE2-1:1

 837

838

Summary of Documenter options

Summary of Documenter options
This table summarizes the Documenter command line options:

Command line option Description

-bottom_margin Sets the bottom margin for the report file.

-bottomtext_justi

fication

Determines the alignment of the text at the bottom of the front page
of an RTF report.

-bottomtext_str Determines the text at the bottom of the front page of an RTF
report.

-code_fname Determines the font used for code.

-code_fsize Determines the font size used for code.

-code_fstyle Determines the weight of the font used for code.

-design Includes/excludes information on the state machine in the report.

-detail Determines the detail level of the report.

-ei Enables/disables embedding icon images in the generated RTF report.

-element_lists Includes/excludes transition element lists from the report.

-embeddiagrams Enables/disables embedding state machine diagrams images in the
generated RTF report.

-fiAutoInclude Enables/disables automatic inclusion of all generated files that contain
a digital signature.

-fiCriteria Determines the criteria for inclusion of generated files that contain a
digital signature.

-fiLevel Determines the message level to use if an included file does not meet
the criteria for inclusion.

-fiSearchSubDir Includes/excludes generated files in subdirectories relative to the
project file.

-footer_from_edge Sets the distance from the footer to the bottom of the page.

-footer_separator Enables/disables printing a separator line between the body text and
the page footer.

-footertextc Specifies the text string in the bottom middle of the report pages.

-footertextl Specifies the text string at the bottom left of the report pages.

-footertextr Specifies the text string at the bottom right of the report pages.

-fullstatenames Enables/disables long state names in state references.

-hdr_fname Determines the font used for heading text.

Table 39: Documenter command line options
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-hdr_fsize Determines the font size used for heading text.

-hdr_fstyle Determines the weight of the font used for heading text.

-header_from_edge Specifies the distance from the header to the top of the page.

-header_separator Enables/disables printing a separator line between the body text and
the page header.

-headertextc Specifies the text string in the top middle of the report pages.

-headertextl Specifies the text string at the top left of the report pages.

-headertextr Specifies the text string at the top right of the report pages.

-html_stl Enables/disables a simplified layout for tables.

-html_uhover Sets how hypertext links are underlined in an HTML report.

-ibat Enables/disables insertion of a bullet and a tab stop in list hierarchies.

-il Enables/disables insertion of links between uses of transition
elements and their associated definitions.

-interface Includes information on the interface of the design in the report.

-introduction Includes an introduction consisting of user-written text files.

-left_margin Sets the left margin for the report file.

-mf Determines whether to generate the report as one single file or as a
separate file for each section.

-middletext_justi

fication

Determines the alignment of the text in the middle of the front page
of an RTF report.

-middletext_str Determines the text in the middle of the front page of an RTF report.

-of Toggles the output format for the report between HTML and RTF.

-paper_height Determines the height of the report page.

-paper_orientatio

n

Determines the orientation of the report page.

-paper_type Sets the paper size of the generated report.

-paper_width Determines the width of the report page.

-path Specifies the output path for all generated files.

-pfe Enables/disables links from transition elements used in functional
expressions to their respective definitions.

-pseudo_code Includes/excludes pseudo code for the project in the report.

-right_margin Sets the right margin for the report file.

-scn_htmlbody Specifies a name for the HTML body style class.

Command line option Description

Table 39: Documenter command line options
AFE1_AFE2-1:1

 839

840

Summary of Documenter options

-scn_htmlcode Specifies a name for the HTML code style class.

-scn_html1 Specifies a name for the HTML top-level heading style class.

-scn_html2 Specifies a name for the HTML level 2 heading style class.

-scn_html3 Specifies a name for the HTML level 3 heading style class.

-scn_html4 Specifies a name for the HTML level 4 heading style class.

-scn_html5 Specifies a name for the HTML level 5 heading style class.

-scn_html6 Specifies a name for the HTML level 6 heading style class.

-scn_html7 Specifies a name for the HTML level 7 heading style class.

-scn_html8 Specifies a name for the HTML level 8 heading style class.

-scn_html9 Specifies a name for the HTML level 9 heading style class.

-scn_htmltoc Specifies a name for the HTML heading style class for the table of
contents.

-sn_bt Determines the name of the body text style in RTF reports.

-sn_fpf Determines the name of the front page footer style in RTF reports.

-sn_fph Determines the name of the front page header style in RTF reports.

-sn_fpt Determines the name of the main text style of the front page in RTF
reports.

-sn_ftr Determines the name of the footer style in RTF reports.

-sn_hdr Determines the name of the header style in RTF reports.

-sn_lb1 Determines the name of the style for top-level list bullets in RTF
reports.

-sn_lb2 Determines the name of the style for level 2 list bullets in RTF
reports.

-sn_lb3 Determines the name of the style for level 3 list bullets in RTF
reports.

-sn_lb4 Determines the name of the style for level 4 list bullets in RTF
reports.

-sn_lb5 Determines the name of the style for level 5 list bullets in RTF
reports.

-sn_lb6 Determines the name of the style for level 6 list bullets in RTF
reports.

-sn_lb7 Determines the name of the style for level 7 list bullets in RTF
reports.

Command line option Description

Table 39: Documenter command line options
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-sn_lb8 Determines the name of the style for level 8 list bullets in RTF
reports.

-sn_lb9 Determines the name of the style for level 9 list bullets in RTF
reports.

-sn_rtfcode Determines the name of the code style in RTF reports.

-sn_rtfh1 Determines the name of the style for top-level headings in RTF
reports.

-sn_rtfh2 Determines the name of the style for level 2 headings in RTF reports.

-sn_rtfh3 Determines the name of the style for level 3 headings in RTF reports.

-sn_rtfh4 Determines the name of the style for level 4 headings in RTF reports.

-sn_rtfh5 Determines the name of the style for level 5 headings in RTF reports.

-sn_rtfh6 Determines the name of the style for level 6 headings in RTF reports.

-sn_rtfh7 Determines the name of the style for level 7 headings in RTF reports.

-sn_rtfh8 Determines the name of the style for level 8 headings in RTF reports.

-sn_rtfh9 Determines the name of the style for level 9 headings in RTF reports.

-sn_rtftoc Determines the name of the heading style of the table of contents of
RTF reports.

-split Enables/disables dividing transition texts into multiple lines in the
report.

-stylesheet Specifies the CSS style sheet used by HTML reports.

-template Specifies the style template used by RTF reports.

-test Includes/excludes information from the testing in the report.

-text_fname Determines the font used for all other text than headings and code.

-text_fsize Determines the font size used for all other text than headings and
code.

-text_fstyle Determines the weight of the font used for all other text than
headings and code.

-title Specifies the title of the report.

-top_margin Sets the top margin for the report file.

-toptext_justific

ation

Determines the alignment of the topmost text of the front page of an
RTF report.

-toptext_str Determines the topmost text of the front page of an RTF report.

-usertxtfiles Specifies which user text files to include in the report.

-variant Specifies which variant to create a report for.

Command line option Description

Table 39: Documenter command line options
AFE1_AFE2-1:1

 841

842

Descriptions of Documenter options

Descriptions of Documenter options
The following pages give detailed reference information about each Documenter
command line option.

Note: All Documenter command line options are set on project level.

-bottom_margin

Syntax -bottom_marginsize{cm|mm|twips|points}

Parameters

Description Sets the bottom margin for the report file.

Project>Options>Documentation>Page Layout>Bottom margin

-bottomtext_justification

Syntax -bottomtext_justification{0|1|2}

Parameters

Description Determines the alignment of the text at the bottom of the front page of a report in RTF
format.

-vdafiles Specifies which Validator dynamic analysis files to include in the
report.

-vlgfiles Specifies which Validator test sequence files to include in the report.

-vrefiles Specifies which Verificator result files to include in the report.

-vsafiles Specifies which Validator static analysis files to include in the report.

Command line option Description

Table 39: Documenter command line options

size The size of the margin in the given unit specified as double. By
default, the size is set to 2.5cm.

0 The text at the bottom of the front page is aligned to the left.

1 (default) The text at the bottom of the front page is centered.

2 The text at the bottom of the front page is aligned to the right.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

Project>Options>Documentation>Front Page>Bottom text justification

-bottomtext_str

Syntax -bottomtext_strtext

Parameters

Description Determines the text at the bottom of the front page of a report in RTF format.

Project>Options>Documentation>Front Page>Bottom text

-code_fname

Syntax -code_fnamefont

Parameters

Description Determines the font used for code (for example pseudo code).

Project>Options>Documentation>Fonts>Code font name

-code_fsize

Syntax -code_fsizesize

Parameters

Description Determines the font size used for code (for example pseudo code).

Project>Options>Documentation>Fonts>Code font size

text The text at the bottom of the front page.

font The name of the font used for code (for example pseudo code).
This must exactly match the name of one of your installed fonts.
By default, the value is Courier New.

size An integer that represents the size in points of the font used for
code (for example pseudo code). By default, the value is 9.
AFE1_AFE2-1:1

 843

844

Descriptions of Documenter options

-code_fstyle

Syntax -code_fstyle{0|1|2|3}

Parameters

Description Determines the weight of the font used for code (for example pseudo code).

Project>Options>Documentation>Fonts>Code font style

-design

Syntax -design{0|1}

Parameters

Description Determines whether to include information on your state machine. This is the main
section of the report. It contains a complete description of the design, including
diagrams, transitions, elements, etc.

Project>Options>Documentation>Configuration>Include model design

-detail

Syntax -detail{0|1|2}

Parameters

0 (default) The code font weight is Normal.

1 The code font weight is Bold.

2 The code font weight is Italic.

3 The code font weight is Bold Italic.

0 Does not include information on your state machine in the report.

1 (default) Includes information on your state machine in the report.

0 Low: Explanations, state vectors from Validator test sequence
files, and transitions and reactions are excluded from the report.

1 (default) Medium: Explanations and state vectors from Validator test
sequence files are excluded from the report.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

Description Determines the detail level of the report.

Project>Options>Documentation>Configuration>Detail level

-ei

Syntax -ei{0|1}

Parameters

Description Determines whether to embed icons (as images) in the generated RTF format report.

Project>Options>Documentation>File Output>Embed icons in report

-element_lists

Syntax -element_lists{0|1}

Parameters

Description Determines whether to include transition element lists. This section contains a table for
each transition element type: events, event groups, action functions, external variables,
internal variables, signals, constants, enumerators, and external states.

Project>Options>Documentation>Configuration>Include element lists

2 High: All information related to a project is included in the report.

0 Generates all icons as separate files and imports them by reference
(linking) in the generated RTF format report. This violates the
RTF standard and the resulting file might not be readable by all
word processors.

1 (default) Embeds icons (as images) in the generated RTF format report. In
this case, the report might grow quite large.

0 Does not include transition element lists in the report.

1 (default) Includes transition element lists in the report.
AFE1_AFE2-1:1

 845

846

Descriptions of Documenter options

-embeddiagrams

Syntax -embeddiagrams{0|1}

Parameters

Description Determines whether to embed state machine diagrams (as images) in the generated RTF
format report.

Project>Options>Documentation>File Output>Embed state machine diagrams in
report

-fiAutoInclude

Syntax -fiAutoInclude{0|1}

Parameters

Description Determines whether to automatically include all generated files that contain a digital
signature, such as Validator test sequence files, Coder result files, etc. Only files meeting
the file inclusion criteria will be included.

See also -fiSearchSubDir, page 848

Project>Options>Documentation>Automatically include generated files

0 Generates all images of state machine diagrams as separate files
and imports them by reference (linking) in the generated RTF
format report. This violates the RTF standard and the resulting file
might not be readable by all word processors.

1 (default) Embeds state machine diagrams (as images) in the generated RTF
format report.

0 (default) Does not include all generated files that contain a digital signature
in the report.

1 Includes all generated files that contain a digital signature in the
report.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-fiCriteria

Syntax -fiCriteria{0|1|2|3}

Parameters

Description Determines the criteria for inclusion of generated files that contain a digital signature,
for example Validator test sequence files, Coder result files, etc. If an included file does
not meet the criteria, either a message, a warning, or an error is generated.

See also -fiLevel, page 847

Project>Options>Documentation>File Input>File inclusion criteria

-fiLevel

Syntax -fiLevel{0|1|2}

Parameters

Description Determines the message level to use if an included file does not meet the criteria for
inclusion of generated files.

See also -fiCriteria, page 847

0 (default) Signature and file format match. The signatures (and thus also the
project filename) and the file format must all match.

1 Project filename and format match. The signatures do not have to
match, but the project filename and format must match.

2 File format match. The signatures and the project filename do not
have to match, but the file format must match.

3 None. No criteria are used to determine which files to include.

0 Information. A message will inform you if an included file does
not meet the criteria for inclusion of generated files.

1 Warning. A warning will be generated if an included file does not
meet the criteria for inclusion of generated files.

2 (default) Error. An error will be generated if an included file does not meet
the criteria for inclusion of generated files.
AFE1_AFE2-1:1

 847

848

Descriptions of Documenter options

Project>Options>Documentation>File Input>File inclusion message level

-fiSearchSubDir

Syntax -fiSearchSubDir{0|1}

Parameters

Description If you have specified the option -fiAutoInclude1, this option determines whether
generated files in subdirectories relative to the location of the project file will also be
included.

See also -fiAutoInclude, page 846

Project>Options>Documentation>File Input>Auto inclusion searches in
subdirectories

-footer_from_edge

Syntax -footer_from_edgedistance{cm|mm|twips|points}

Parameters

Description Sets the distance from the footer to the bottom of the page.

Project>Options>Documentation>Page Layout>Footer distance to edge

0 Does not include generated files in subdirectories relative to the
location of the project file in the report.

1 (default) Includes generated files in subdirectories relative to the location of
the project file in the report.

distance The distance from the footer to the bottom of the page, in the given
unit, specified as double. By default, set to 1.25cm.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-footer_separator

Syntax -footer_separator{0|1}

Parameters

Description Determines whether to print a separator line between the body text and the page footer.

Project>Options>Documentation>Header/Footer>Separator line before footer

-footertextc

Syntax -footertextctext

Parameters

Description Specifies the text string in the bottom middle of the report pages.

Project>Options>Documentation>Header/Footer>Footer text centered

-footertextl

Syntax -footertextltext

Parameters

Description Specifies the text string at the bottom left of the report pages.

Project>Options>Documentation>Header/Footer>Footer text left

0 (default) Does not print a separator line between the body text and the page
footer.

1 Prints a separator line between the body text and the page footer.

text The centered footer text at the bottom of the report pages.

text The left-aligned footer text at the bottom of the report pages.
AFE1_AFE2-1:1

 849

850

Descriptions of Documenter options

-footertextr

Syntax -footertextrtext

Parameters

Description Specifies the text string at the bottom right of the report pages.

Project>Options>Documentation>Header/Footer>Footer text right

-fullstatenames

Syntax -fullstatenames{0|1}

Parameters

Description Determines whether the Documenter uses long state names in state references. For
example, Tostate1.Region1.State1.Region1.State3 instead of just State3.

Project>Options>Documentation>Format>Use long state names

-hdr_fname

Syntax -hdr_fnamefont

Parameters

Description Determines the font used for heading text (including text on the front page).

Project>Options>Documentation>Fonts>Heading font name

text The right-aligned footer text at the bottom of the report pages.

0 (default) Uses abbreviated state names in state references.

1 Uses long state names in state references.

font The name of the font used for heading text (including text on the
front page). This must exactly match the name of one of your
installed fonts. By default, the value is Arial.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-hdr_fsize

Syntax -hdr_fsizesize

Parameters

Description Determines the font size used for heading text (including text on the front page).

Project>Options>Documentation>Fonts>Heading font size

-hdr_fstyle

Syntax -hdr_fstyle{0|1|2|3}

Parameters

Description Determines the weight of the font used for heading text (including text on the front
page).

Project>Options>Documentation>Fonts>Heading font style

-header_from_edge

Syntax -header_from_edgedistance{cm|mm|twips|points}

Parameters

Description Sets the distance from the header to the top of the page.

size An integer that represents the size in points of the font used for
heading text (including text on the front page). By default, the
value is 10.

0 The heading font weight is Normal.

1 (default) The heading font weight is Bold.

2 The heading font weight is Italic.

3 The heading font weight is Bold Italic.

distance The distance from the header to the top of the page, in the given
unit, specified as double. By default, set to 1.25cm.
AFE1_AFE2-1:1

 851

852

Descriptions of Documenter options

Project>Options>Documentation>Page Layout>Header distance to edge

-header_separator

Syntax -header_separator{0|1}

Parameters

Description Determines whether to print a separator line between the page header and the body text.

Project>Options>Documentation>Header/Footer>Separator line after header

-headertextc

Syntax -headertextctext

Parameters

Description Specifies the text string in the top middle of the report pages.

Project>Options>Documentation>Header/Footer>Header text centered

-headertextl

Syntax -headertextltext

Parameters

Description Specifies the text string at the top left of the report pages.

Project>Options>Documentation>Header/Footer>Header text left

0 Does not print a separator line between the page header and the
body text.

1 (default) Prints a separator line between the page header and the body text.

text The centered header text at the top of the report pages.

text The left-aligned header text at the top of the report pages.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-headertextr

Syntax -headertextrtext

Parameters

Description Specifies the text string at the top right of the report pages.

Project>Options>Documentation>Header/Footer>Header text right

-html_stl

Syntax -html_stl{0|1}

Parameters

Description Determines the table layout in an HTML report.

Project>Options>Documentation>HTML Styles>Simple table layout

-html_uhover

Syntax -html_uhover{0|1}

Parameters

Description Determines how hypertext links are underlined in an HTML report.

Project>Options>Documentation>HTML Styles>Underline links at mouse over

text The right-aligned header text at the top of the report pages. By
default, this string is Page pagenumber, where pagenumber is
the number of the page.

0 Uses a textual table with no visible borders.

1 (default) Uses a simplified layout for tables.

0 Hypertext links are always underlined.

1 (default) Hypertext links are only underlined when the mouse pointer
hovers over the link.
AFE1_AFE2-1:1

 853

854

Descriptions of Documenter options

-ibat

Syntax -ibat{0|1}

Parameters

Description Determines whether to specifically insert a bullet and a tab stop in list hierarchies in RTF
format reports. Set this option to 0 when the generated report uses an external template
with list styles that by definition include such a list marker and indentation.

See also -template, page 875

Project>Options>Documentation>RTF Styles>Insert bullet and tab stop in
hierarchy

-il

Syntax -il{0|1}

Parameters

Description Determines whether to insert links between uses of transition elements and their
associated definitions.

Project>Options>Documentation>Format>Insert links

-interface

Syntax -interface{0|1}

Parameters

0 Does not insert a bullet and a tab stop in list hierarchies.

1 (default) Inserts a bullet and a tab stop in list hierarchies.

0 Does not insert links between transition elements and their
associated definitions.

1 (default) Inserts links between transition elements and their associated
definitions.

0 Does not include information on the interface of your design in the
report.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

Description Determines whether to include information on the interface of your design. This section
contains a table for each transition element type that is part of the external interface:
action functions, external variables, and constants.

Project>Options>Documentation>Configuration>Include model interface

-introduction

Syntax -introduction{0|1}

Parameters

Description Determines whether to include an introduction in the report, consisting of user-written
text files.

See also -usertxtfiles, page 878

Project>Options>Documentation>Configuration>Include introduction

-left_margin

Syntax -left_marginsize{cm|mm|twips|points}

Parameters

Description Sets the left margin for the report file.

Project>Options>Documentation>Page Layout>Left margin

1 (default) Includes information on the interface of your design in the report.

0 (default) Does not include an introduction in the report.

1 Includes an introduction in the report.

size The size of the margin in the given unit, specified as double. By
default, set to 2.5cm.
AFE1_AFE2-1:1

 855

856

Descriptions of Documenter options

-mf

Syntax -mf{0|1}

Parameters

Description Determines whether to generate the report as one single file or as a separate file for each
section.

Project>Options>Documentation>File Output>Output to multiple files

-middletext_justification

Syntax -middletext_justification{0|1|2}

Parameters

Description Determines the alignment of the text in the middle of the front page of a report in RTF
format.

Project>Options>Documentation>Front Page>Middle text justification

-middletext_str

Syntax -middletext_strtext

Parameters

Description Determines the text in the middle of the front page of a report in RTF format.

0 (default) Generates the report as one single file.

1 Generates the report as a separate file for each section.

0 The text in the middle of the front page is aligned to the left.

1 (default) The text in the middle of the front page is centered.

2 The text in the middle of the front page is aligned to the right.

text The text in the middle of the front page. By default, this string is
the name of the project.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

Project>Options>Documentation>Front Page>Middle text

-of

Syntax -of{0|1}

Parameters

Description Specifies the output format for the report.

Project>Options>Documentation>File Output>Output format

-paper_height

Syntax -paper_heightdistance{cm|mm|twips|points}

Parameters

Description Determines the height of the report page. Use this option if you have specified the option
-paper_type0.

See also -paper_type, page 858

Project>Options>Documentation>Page Layout>Paper height

-paper_orientation

Syntax -paper_orientation{0|1}

Parameters

0 (default) Creates a report in RTF format.

1 Creates a report in HTML format.

distance The height of the page, in the given unit, specified as double. By
default, set to 0cm.

0 (default) The page orientation is portrait.

1 The page orientation is landscape.
AFE1_AFE2-1:1

 857

858

Descriptions of Documenter options

Description Determines the orientation of the report page.

Project>Options>Documentation>Page Layout>Paper orientation

-paper_type

Syntax -paper_typeformat

Parameters format is the paper size of the generated report. Choose between:

0 User-defined

1 Letter. This is the default setting if the locale setting for the host
computer uses this as the default paper format.

2 Letter Small

3 Tabloid

4 Ledger

5 Legal

6 Statement

7 Executive

8 A3

9 A4. This is the default setting if the locale setting for the host
computer uses this as the default paper format.

10 A4 Small

11 A5

12 B4 (JIS)

13 B5 (JIS)

14 Folio

15 Quarto

16 10x14

17 11x17

18 Note
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

Description Sets the paper size of the generated report. If you specify the option -paper_type0,
you must instead specify the paper size with the options -paper_width and
-paper_height.

See also -paper_width, page 860 and -paper_height, page 857

Project>Options>Documentation>Page Layout>Paper type

19 Envelope 9

20 Envelope 10

21 Envelope 11

22 Envelope 12

23 Envelope 14

24 Envelope D1

25 Envelope C5

26 Envelope C3

27 Envelope C4

28 Envelope C6

29 Envelope C65

30 Envelope B4

31 Envelope B5

32 Envelope B6

33 Envelope Italy

34 Envelope Monarch

35 6 3/4 Envelope

36 US Std Fanfold

37 German Std Fanfold

38 German Legal Fanfold
AFE1_AFE2-1:1

 859

860

Descriptions of Documenter options

-paper_width

Syntax -paper_widthdistance{cm|mm|twips|points}

Parameters

Description Determines the width of the report page. Use this option if you have specified the option
-paper_type0.

See also -paper_type, page 858

Project>Options>Documentation>Page Layout>Paper width

-path

Syntax -pathpath

Parameters

Description Specifies the output path for all generated files. If the path does not exist, it is created
automatically. The path can be a relative path. By default, all generated files are created
in the doc subdirectory of the project that you generate documentation for.

Project>Options>Documentation>File Output>Output path

-pfe

Syntax -pfe{0|1}

Parameters

Description Determines whether the Documenter parses functional expressions.

distance The width of the page, in the given unit, specified as double. By
default, set to 0cm.

path The output path for all generated files.

0 Does not generate links from transition elements in functional
expressions to their respective definitions.

1 (default) Generates links from transition elements in functional expressions
to their respective definitions.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

Project>Options>Documentation>Format>Parse functional expressions

-pseudo_code

Syntax -pseudo_code{0|1}

Parameters

Description Determines whether to include pseudo code for the project.

Project>Options>Documentation>Configuration>Include pseudo code

-right_margin

Syntax -right_marginsize{cm|mm|twips|points}

Parameters

Description Sets the right margin for the report file.

Project>Options>Documentation>Page Layout>Right margin

-scn_htmlbody

Syntax -scn_htmlbodyname

Parameters

Description Specifies a name for the body style class (the HTML element body). The actual
properties of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>Body style class name

0 Does not include pseudo code for the project in the report.

1 (default) Includes pseudo code for the project in the report.

size The size of the margin in the given unit, specified as double. By
default, set to 2.5cm.

name The name of the body style class.
AFE1_AFE2-1:1

 861

862

Descriptions of Documenter options

-scn_htmlcode

Syntax -scn_htmlcodename

Parameters

Description Specifies a name for the code style class (the HTML element pre). The actual properties
of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>Code style class name

-scn_htmlh1

Syntax -scn_htmlh1name

Parameters

Description Specifies a name for the top-level heading style class (the HTML element h1). The
actual properties of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>Heading 1 style class name

-scn_htmlh2

Syntax -scn_htmlh2name

Parameters

Description Specifies a name for the level 2 heading style class (the HTML element h2). The actual
properties of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>Heading 2 style class name

name The name of the code style.

name The name of the top-level heading style class.

name The name of the level 2 heading style class.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-scn_htmlh3

Syntax -scn_htmlh3name

Parameters

Description Specifies a name for the level 3 heading style class (the HTML element h3). The actual
properties of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>Heading 3 style class name

-scn_htmlh4

Syntax -scn_htmlh4name

Parameters

Description Specifies a name for the level 4 heading style class (the HTML element h4). The actual
properties of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>Heading 4 style class name

-scn_htmlh5

Syntax -scn_htmlh5name

Parameters

Description Specifies a name for the level 5 heading style class (the HTML element h5). The actual
properties of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>Heading 5 style class name

name The name of the level 3 heading style class.

name The name of the level 4 heading style class.

name The name of the level 5 heading style class.
AFE1_AFE2-1:1

 863

864

Descriptions of Documenter options

-scn_htmlh6

Syntax -scn_htmlh6name

Parameters

Description Specifies a name for the level 6 heading style class (the HTML element h6). The actual
properties of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>Heading 6 style class name

-scn_htmlh7

Syntax -scn_htmlh7name

Parameters

Description Specifies a name for the level 7 heading style class (the HTML element h7). The actual
properties of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>Heading 7 style class name

-scn_htmlh8

Syntax -scn_htmlh8name

Parameters

Description Specifies a name for the level 8 heading style class (the HTML element h8). The actual
properties of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>Heading 8 style class name

name The name of the level 6 heading style class.

name The name of the level 7 heading style class.

name The name of the level 8 heading style class.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-scn_htmlh9

Syntax -scn_htmlh9name

Parameters

Description Specifies a name for the level 9 heading style class (the HTML element h9). The actual
properties of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>Heading 9 style class name

-scn_htmltoc

Syntax -scn_htmltocname

Parameters

Description Specifies a name for the heading style class for the table of contents (the HTML element
h1). The actual properties of this class are defined by the CSS style sheet.

Project>Options>Documentation>HTML Styles>TOC heading style class name

-sn_bt

Syntax -sn_btname

Parameters

Description Determines the name of the body text style in RTF format reports. The actual properties
of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Body text style name

name The name of the level 9 heading style class.

name The name of the heading style class for the table of contents.

name The name of the body text style. By default, this is Body Text.
AFE1_AFE2-1:1

 865

866

Descriptions of Documenter options

-sn_fpf

Syntax -sn_fpfname

Parameters

Description Determines the name of the front page footer style in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Front page footer style name

-sn_fph

Syntax -sn_fphname

Parameters

Description Determines the name of the front page header style in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Front page header style name

-sn_fpt

Syntax -sn_fptname

Parameters

Description Determines the name of the main text style of the front page in RTF format reports. The
actual properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Front page text style name

name The name of the front page footer style. By default, this is
Front Page Footer.

name The name of the front page header style. By default, this is
Front Page Header.

name The name of the front page middle text style. By default, this is
Front Page Text.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-sn_ftr

Syntax -sn_ftrname

Parameters

Description Determines the name of the footer style in RTF format reports. The actual properties of
this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Footer style name

-sn_hdr

Syntax -sn_hdrname

Parameters

Description Determines the name of the header style in RTF format reports. The actual properties of
this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Header style name

-sn_lb1

Syntax -sn_lb1name

Parameters

Description Determines the name of the style for top-level list bullets in RTF format reports. The
actual properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>List bullet 1 style name

name The name of the footer style. By default, this is Footer.

name The name of the header style. By default, this is Header.

name The name of the style for top-level list bullets. By default, this is
List Bullet.
AFE1_AFE2-1:1

 867

868

Descriptions of Documenter options

-sn_lb2

Syntax -sn_lb2name

Parameters

Description Determines the name of the style for level 2 list bullets in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>List bullet 2 style name

-sn_lb3

Syntax -sn_lb3name

Parameters

Description Determines the name of the style for level 3 list bullets in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>List bullet 3 style name

-sn_lb4

Syntax -sn_lb4name

Parameters

Description Determines the name of the style for level 4 list bullets in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>List bullet 4 style name

name The name of the style for level 2 list bullets. By default, this is
List Bullet 2.

name The name of the style for level 3 list bullets. By default, this is
List Bullet 3.

name The name of the style for level 4 list bullets. By default, this is
List Bullet 4.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-sn_lb5

Syntax -sn_lb5name

Parameters

Description Determines the name of the style for level 5 list bullets in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>List bullet 5 style name

-sn_lb6

Syntax -sn_lb6name

Parameters

Description Determines the name of the style for level 6 list bullets in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>List bullet 6 style name

-sn_lb7

Syntax -sn_lb7name

Parameters

Description Determines the name of the style for level 7 list bullets in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>List bullet 7 style name

name The name of the style for level 5 list bullets. By default, this is
List Bullet 5.

name The name of the style for level 6 list bullets. By default, this is
List Bullet 6.

name The name of the style for level 7 list bullets. By default, this is
List Bullet 7.
AFE1_AFE2-1:1

 869

870

Descriptions of Documenter options

-sn_lb8

Syntax -sn_lb8name

Parameters

Description Determines the name of the style for level 8 list bullets in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>List bullet 8 style name

-sn_lb9

Syntax -sn_lb9name

Parameters

Description Determines the name of the style for level 9 list bullets in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>List bullet 9 style name

-sn_rtfcode

Syntax -sn_rtfcodename

Parameters

Description Determines the name of the code style in RTF format reports. The actual properties of
this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Code style name

name The name of the style for level 8 list bullets. By default, this is
List Bullet 8.

name The name of the style for level 9 list bullets. By default, this is
List Bullet 9.

name The name of the code style. By default, this is Code.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-sn_rtfh1

Syntax -sn_rtfh1name

Parameters

Description Determines the name of the style for top-level headings in RTF format reports. The
actual properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Heading 1 style name

-sn_rtfh2

Syntax -sn_rtfh2name

Parameters

Description Determines the name of the style for level 2 headings in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Heading 2 style name

-sn_rtfh3

Syntax -sn_rtfh3name

Parameters

Description Determines the name of the style for level 3 headings in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Heading 3 style name

name The name of the style for top-level headings. By default, this is
Heading 1.

name The name of the style for level 2 headings. By default, this is
Heading 2.

name The name of the style for level 3 headings. By default, this is
Heading 3.
AFE1_AFE2-1:1

 871

872

Descriptions of Documenter options

-sn_rtfh4

Syntax -sn_rtfh4name

Parameters

Description Determines the name of the style for level 4 headings in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Heading 4 style name

-sn_rtfh5

Syntax -sn_rtfh5name

Parameters

Description Determines the name of the style for level 5 headings in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Heading 5 style name

-sn_rtfh6

Syntax -sn_rtfh6name

Parameters

Description Determines the name of the style for level 6 headings in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Heading 6 style name

name The name of the style for level 4 headings. By default, this is
Heading 4.

name The name of the style for level 5 headings. By default, this is
Heading 5.

name The name of the style for level 6 headings. By default, this is
Heading 6.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-sn_rtfh7

Syntax -sn_rtfh7name

Parameters

Description Determines the name of the style for level 7 headings in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Heading 7 style name

-sn_rtfh8

Syntax -sn_rtfh8name

Parameters

Description Determines the name of the style for level 8 headings in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Heading 8 style name

-sn_rtfh9

Syntax -sn_rtfh9name

Parameters

Description Determines the name of the style for level 9 headings in RTF format reports. The actual
properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>Heading 9 style name

name The name of the style for level 7 headings. By default, this is
Heading 7.

name The name of the style for level 8 headings. By default, this is
Heading 8.

name The name of the style for level 9 headings. By default, this is
Heading 9.
AFE1_AFE2-1:1

 873

874

Descriptions of Documenter options

-sn_rtftoc

Syntax -sn_rtftocname

Parameters

Description Determines the name of the heading style of the table of contents of RTF format reports.
The actual properties of this style are defined by other command line options.

Project>Options>Documentation>RTF Styles>TOC heading style name

-split

Syntax -split{0|1}

Parameters

Description Determines whether transition texts are divided into multiple lines in the report.

Project>Options>Documentation>Format>Split transition texts on multiple lines

-stylesheet

Syntax -stylesheetpath

Parameters

Description Specifies the CSS style sheet used by HTML reports.

Project>Options>Documentation>HTML Styles>Style sheet

name The name of the heading style of the table of contents. By default,
this is TOC Heading.

0 (default) Prints transition texts on a single line in the report.

1 Divides transition texts into multiple lines in the report.

path The path to the style sheet used by HTML reports.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-template

Syntax -templatepath

Parameters

Description Specifies the style template used by RTF reports.

Project>Options>Documentation>RTF Styles>Style template

-test

Syntax -test{0|1}

Parameters

Description Determines whether to include information from your testing. This section contains test
files such as Validator static analysis files, Validator dynamic analysis files, Validator
test sequence files, and Verificator report files.

Project>Options>Documentation>Configuration>Include model test

-text_fname

Syntax -text_fnamefont

Parameters

Description Determines the font used for used for all other text than headings and code.

Project>Options>Documentation>Fonts>Text font name

path The path to the style template used by RTF reports.

0 Does not include information from your testing in the report.

1 (default) Includes information from your testing in the report.

font The name of the font used for all other text than headings and code.
This must exactly match the name of one of your installed fonts.
By default, the value is Times New Roman.
AFE1_AFE2-1:1

 875

876

Descriptions of Documenter options

-text_fsize

Syntax -text_fsizesize

Parameters

Description Determines the font size used for all other text than headings and code.

Project>Options>Documentation>Fonts>Text font size

-text_fstyle

Syntax -text_fstyle{0|1|2|3}

Parameters

Description Determines the weight of the font used for all other text than headings and code.

Project>Options>Documentation>Fonts>Text font style

-title

Syntax -titlestring

Parameters

Description Specifies the title of the report. By default, the title of the report is the same as the name
of the project.

Project>Options>Documentation>Configuration>Title

size An integer that represents the size in points of the font used for all
other text than headings and code. By default, the value is 10.

0 (default) The text font weight is Normal.

1 The text font weight is Bold.

2 The text font weight is Italic.

3 The text font weight is Bold Italic.

string The title of the report.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-top_margin

Syntax -top_marginsize{cm|mm|twips|points}

Parameters

Description Sets the top margin for the report file.

Project>Options>Documentation>Page Layout>Top margin

-toptext_justification

Syntax -toptext_justification{0|1|2}

Parameters

Description Determines the alignment of the topmost text of the front page of a report in RTF format.

Project>Options>Documentation>Front Page>Top text justification

-toptext_str

Syntax -toptext_strtext

Parameters

Description Determines the topmost text of the front page of a report in RTF format.

Project>Options>Documentation>Front Page>Top text

size A decimal value that represents the size of the margin in the given
unit. By default, the value is 2.5cm.

0 The topmost text of the front page is aligned to the left.

1 (default) The topmost text of the front page is centered.

2 The topmost text of the front page is aligned to the right.

text The topmost text of the front page.
AFE1_AFE2-1:1

 877

878

Descriptions of Documenter options

-usertxtfiles

Syntax -usertxtfilespath[;path;path...]

Parameters

Description Specifies which user text files to include in the introduction section of the report.

Project>Options>Documentation>File Input>User text files

-variant

Syntax -variantname

Parameters

Description Specifies which variant to create a report for. By default, the Documenter creates a
report for the complete model.

See also Using variants and features, page 217.

Use the Variant toolbar.

-vdafiles

Syntax -vdapath[;path;path...]

Parameters

Description Specifies which Validator dynamic analysis files to include in the report.

Project>Options>Documentation>File Input>Validator dynamic analysis files

path The path to a txt file to include in the report.

name The name of the variant.

path The path to a vda file to include in the report.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Documenter command line options

-vlgfiles

Syntax -vlgfilespath[;path;path...]

Parameters

Description Specifies which Validator test sequence files to include in the report.

Project>Options>Documentation>File Input>Validator test sequence files

-vrefiles

Syntax -vrefilespath[;path;path...]

Parameters

Description Specifies which Verificator result files to include in the report.

Project>Options>Documentation>File Input>Verificator result files

-vsafiles

Syntax -vsapath[;path;path...]

Parameters

Description Specifies which Validator static analysis files to include in the report.

Project>Options>Documentation>File Input>Validator static analysis files

path The path to a vlg file to include in the report.

path The path to a vre file to include in the report.

path The path to a vsa file to include in the report.
AFE1_AFE2-1:1

 879

880

Descriptions of Documenter options

AFE1_AFE2-1:1

IAR Visual State
User Guide

Part 9. Additional features
and utilities
This part of the IAR Visual State User Guide includes these chapters:

● Prototyping a graphical interface

● Viewing design models via the Visual State Viewer

● Using IAR Visual State remotely via the Control Center

● Importing and exporting design models via XMI® files

● The Visual State State Machine API for programmatic manipulation of
models

● Handling Visual State files from previous versions
881

882

Prototyping a graphical
interface
● Introduction to prototyping a graphical interface

● Prototyping with Altia Design

● Graphical environment for Altia Design

Introduction to prototyping a graphical interface
Learn more about:

● Briefly about prototyping a graphical interface, page 883

● Briefly about prototyping with Altia Design, page 884

● Briefly about prototyping based on Coder-generated code, page 887

BRIEFLY ABOUT PROTOTYPING A GRAPHICAL INTERFACE

Many state machine models that you design and generate code for using IAR Visual
State also have a graphical user interface.

If you integrate the state machine model with a model of your graphical user interface
you can combine the test of the human/machine interface with the test of the behavior
of the final application at an early stage in your development process. This allows you
to continue developing, and refining each part separately.

When designing the control logic part using IAR Visual State, you have two options for
creating a graphical model of the user interface and integrate this model with your state
machine model:

● Using the built-in support in the Validator for connecting to Altia Design (a tool for
designing graphical user interfaces) and setting up the connection between your
state machine model and the Altia model. This method does not require any
additional programming. See Briefly about prototyping with Altia Design, page 884.

● Creating the graphical user interface by integrating Visual State Coder-generated
code with code developed in a third-party development tool. This approach allows
you to use the code for the graphical model directly in your final application. See
Prototyping based on Coder-generated code, page 899.
AFE1_AFE2-1:1

 883

884

Introduction to prototyping a graphical interface

BRIEFLY ABOUT PROTOTYPING WITH ALTIA DESIGN

By means of Altia Design, you can create a graphical model for your state machine
model. Via the Validator you can connect the state machine model to the Altia model
and simulate it.

Altia connection

An Altia connection is a communication link between the Validator and a graphical
model created with Altia Design—an Altia model.

When the Altia>Connect model command in Validator is activated, the Validator
establishes a connection to an Altia model that is automatically loaded in a new instance
of Altia Design. See Connecting a state machine model to an Altia model, page 888.

Connections between Visual State elements and Altia objects

To use the Altia model as a user interface for the state machine model loaded in the
Validator, Visual State events and action functions must be connected to Altia objects.

If you want a push button in the Altia model to generate a Visual State event in the
Validator (the same effect as double-clicking an event in the Validator Event window),
you must connect the event to the push button. Likewise, you can make a Visual State
action function turn on a LED object in the Altia model if you connect the action
function and the LED object.

For an example of how to connect the Visual State elements to Altia objects, see
Example: Connecting Visual State elements to Altia objects for the CDplayer project,
page 893.

The objects in Altia Design are either input or output:

● Input is sent from the Altia model to the Validator, in other words, they act as events
and are often bound to button objects.

● Output is sent to the Altia model as actions, for example TurnOnLed2.

The connections you set up are saved in the same file folder as the Altia model file
(filename extension dsn), with the same filename but with the filename extension
vsatcons.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Prototyping a graphical interface

This screenshot shows the Altia Design main window with the Navigator tab active,
where the page shows the objects in the Altia model for the CDPlayer example:

The Navigator page in Altia Design shows the Altia objects in the model, and to the
right, the user interface for the CDPlayer model is shown.

For information about how to use Altia Design, see the documentation provided with it.

Parameters on Altia objects

In state machine models, events and action functions are declared to carry zero or more
parameters. However, Altia signals always carry one parameter, and many Altia objects
accept or emit one parameter. You must consider this when you set up connections to
Altia objects in the Validator.

To describe this, the example application—CDPlayer—provided with the IAR Visual
State product installation is used. In CDPlayer, the EvPowerOnKey event has no
parameter, while EvCDInserted is declared with one parameter. LED objects are input
objects that require one parameter for which the values 0 and 1 typically mean turn off
versus turn on (all parameter values for Altia design objects can be configured). Hence,
AFE1_AFE2-1:1

 885

886

Introduction to prototyping a graphical interface

to turn on a LED object, you would typically send an output signal with the parameter
value 1.

evPowerOnKey and evPowerOffKey in the CDPlayer example are typically
connected to a graphical button. In this case a toggle button, which by default uses one
as ON value, and zero as OFF value. When the button is clicked in the Altia model, a
signal is sent to the Validator with the parameter 1 or 0. The combination of the name of
the button in the Altia model with the parameter value 1 must then be connected to
evPowerOnKey, and a connection with the name of the button with the name and the
parameter value 0 must be connected to the event evPowerOff. In some cases, some
other name than the name of the button can be used as the item to assign a value to in
the Altia model. This can be the case if some variable is used in the Altia model and you
want to use that value directly:

Some action functions in the Validator might send arguments as well. If you want to, you
can use the argument sent from the Validator and pass that on to the Altia model, or you
AFE1_AFE2-1:1

IAR Visual State
User Guide

Prototyping a graphical interface

can specify that some other argument should be sent to Altia. This is an example of
sending the argument from the Validator to the Altia model:

BRIEFLY ABOUT PROTOTYPING BASED ON
CODER-GENERATED CODE

You can create a software graphical model of your Visual State model using the
Coder-generated code directly in any third-party development tool that supports
Standard C/C++/C#/Java code.

The control logic code is generated by the Coder. By means of the Visual State APIs, it
can be combined with code developed with any third-party development tool that
supports the programming language used when generating the code by the Coder.

You implement the prototype as you would implement a final application. This means
that you can reuse the control logic designed in Visual State from project to project and
only write code for the main loop, and for the handling of events and actions. The
principle of this approach is illustrated in this figure:

Creating a prototype in Microsoft Visual C++ differs from creating one in a console
application in how the Visual State event deduction sequence is implemented.
AFE1_AFE2-1:1

 887

888

Prototyping with Altia Design

Implementing an infinite while loop will halt the Windows message loop so this method
cannot be used.

Instead, you can for example use the following methods:

● Latching onto the Windows idle message by capturing the WM_IDLEMESSAGE, for
Windows, or WM_KICKIDLE message for dialog boxes. Idle messages are sent by
Windows when the process has no other messages in the message queue. The
frequency of calls to the idle message cannot be determined so an event queue
should be implemented for storing and handling Visual State events.

● Using separate threads.

For an example, see Prototyping based on Coder-generated code, page 899.

Prototyping with Altia Design
What do you want to do?

● Connecting a state machine model to an Altia model, page 888

● Connecting Visual State elements to Altia objects, page 890

● Removing a connection between an Altia object and a Visual State element, page
892

● Simulating with Altia Design, page 892

● Closing the Altia connection, page 892

● Configuring the Altia connection, page 893

● Example: Connecting Visual State elements to Altia objects for the CDplayer
project, page 893

● Prototyping based on Coder-generated code, page 899

CONNECTING A STATE MACHINE MODEL TO AN ALTIA
MODEL

To simulate your Visual State design model using an Altia model, you must first
establish a connection between the two via the Validator.

1 Start the Validator and load the state machine model that you want to simulate.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Prototyping a graphical interface

2 Choose Altia>Connect Model or click the Altia Connect button.

3 In the Open Altia Design dialog box, select the Altia model to connect to. Choose
between:

● If the desired Altia model is listed in Open Most Recently used Altia Design,
select it from the list

● Click Open an Existing Altia Design button to open a dialog box where you can
browse for the desired design file. Click OK to load the Altia model in a new
instance of Altia Design.

● Or create a new design—click Create a New Altia Design, and then click OK to
open an empty Altia editor. Here you can create the new Altia model right away
while the Altia connection is active. For information on how to use the Altia editor,
see the documentation provided with Altia Design.

Whether you connect to an existing Altia model or create a new one, it is possible to edit
it while the Altia connection is active. Any design changes will have immediate effect
in the Validator, for example adding new objects and connecting them to the state
machine model through new or existing external signal connection. See Connecting
Visual State elements to Altia objects, page 890.

You might even choose to create only the parts of the Altia model that you want to
simulate at the moment and maybe add more objects later.
AFE1_AFE2-1:1

 889

890

Prototyping with Altia Design

CONNECTING VISUAL STATE ELEMENTS TO ALTIA OBJECTS

You can use this procedure for connecting both events and actions to Altia objects.

1 In Altia Design, find the name of the Altia object that you want to connect to a Visual
State event. In this example, evPowerOnKey:

Note: If you already know the name of the Altia object you do not need to perform this
step.

2 In the Validator, choose Altia>Connect Elements, and click the Events tab or the
Actions tab to set up a connection with an event or an action, respectively.

3 Click the New button to add a new event/action connection and perform these steps:

● Double-click the event, or action, in the list to the right that you want to set up a
connection for. In this example, evPowerOnKey.

● In the Connection pane, click the Altia event/action row twice (or press F2) and
specify the name of the event/action, which is also the name of the connection in the
Altia model.

● If any parameters are needed, click twice (or press F2) on the Altia parameter row
and enter the argument to use. For a power on button, this could typically be 1 for
off.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Prototyping a graphical interface

It should now look, for example like this:

4 When you have connected your Visual State element to an Altia object, the names of
the Visual State events and action functions will be added to the Altia model as new
external signals if they are not already there.

The events and action functions that are not connected to any object in the Altia model
are listed in the Validator Output window as unbound Visual State events and
unbound Visual State action functions.

The reporting of unbound events and action functions are done when you connect to the
Altia model, and when you click Save in the Connect Elements dialog box.

See also Example: Connecting Visual State elements to Altia objects for the CDplayer
project, page 893
AFE1_AFE2-1:1

 891

892

Prototyping with Altia Design

REMOVING A CONNECTION BETWEEN AN ALTIA OBJECT
AND A VISUAL STATE ELEMENT

1 Open your state machine model in the Validator.

2 Choose Altia>Connect Model.

3 Choose Altia>Connect Elements.

4 Select the event or action connection you want to remove and click the Delete button to
delete the connection. Click Save. The editing of the connections will have effect on
the connection at once.

SIMULATING WITH ALTIA DESIGN

When you have connected your state machine model to an Altia model, you can start
simulation. You can start the simulation even if you have not created a complete Altia
model.

1 In Altia Design, choose Set Run Mode from the menu or press Ctrl+D.

2 To simulate events, you can use these two methods:

● In the Validator, double-click the event name in the Event window

When you send an event to the Visual State system using the Validator, the event is
also sent to the Altia model where the connected input object is animated
accordingly, provided that the object type supports animation. For example toggle
buttons will change from OFF to ON.

● In the Altia model, manipulate the corresponding object.

Note: When Altia Design is in edit mode, you cannot manipulate event generators such
as buttons in the Altia model, and thus no events will be sent from Altia to the design
model in the Validator.

3 Action functions that are executed in the Validator and connected to an Altia object
will have a visible effect in the Altia model, for example turning on a LED.

Note: Action functions executed in guard expressions and assignments will have no
visible effect in the Altia model.

CLOSING THE ALTIA CONNECTION

1 When you are finished using the Altia model, click the Connect/Disconnect to/from
Altia toolbar button (), or choose Altia>Disconnect in the Validator to close the
Altia connection.

The Altia connection will also be closed automatically when the Validator is closed.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Prototyping a graphical interface

2 Closing the Altia connection does not close Altia Design. When you open an Altia
connection again, a new Altia Design instance is created.

CONFIGURING THE ALTIA CONNECTION

Typically, the default values of the Altia connection works as is. However, the Altia
connection can be configured to suit specific needs.

1 Choose Altia>Properties to open the Define Altia Properties dialog box.

2 Make your settings in the dialog box. For reference information, see Define Altia
Properties dialog box, page 905.

Note: To ensure synchronization between the state machine model and the Altia model,
select the options Reset Altia design when deducting SE_RESET and Always
initialize and reset the state machine model.

3 When you are finished, click OK.

EXAMPLE: CONNECTING VISUAL STATE ELEMENTS TO
ALTIA OBJECTS FOR THE CDPLAYER PROJECT

This example procedure uses the CDPlayer project as a base for describing how to
connect some Visual State elements to Altia objects.

1 In the Validator, choose Altia>Connect Model to set up a connection between your
state machine model and your Altia model.
AFE1_AFE2-1:1

 893

894

Prototyping with Altia Design

2 In Altia Design, find the name of the Altia object that you want to connect to a Visual
State event. In this example, evPowerOnKey:

Note: If you already know the name of the Altia object you do not need to perform this
step.

3 In the Validator, choose Altia>Connect Elements, and click the Events tab.

4 Click the New button to add a new event connection and perform these steps:

● Double-click evPowerOnKey in the list of events to the right.

● Click the Altia event name twice and specify evPowerOnKey which is also the
name of the connection in the Altia model.

● Because this button uses 1 as On, click twice on the Altia parameter row and enter 1
as the argument to use.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Prototyping a graphical interface

It should now look like this:

5 If you want to, you can also make an event connection directly to a variable value
change in the Altia model. If you make such an event connection, the Validator will
respond by taking the Visual State event when it is signaled from the Altia model that
the variable is set to the value specified in the event connection. And vice versa - when
you double-click the event that is on the event connection inside the Validator, the Altia
model will be signaled from the Validator, that the variable should now be set to the
value indicated in the event connection.
AFE1_AFE2-1:1

 895

896

Prototyping with Altia Design

For CDPlayer, there is an external connection for the power off button, as well as an
animation called power_off:

6 To make an event connection that matches this, choose Altia>Connect Elements and
click the Events tab. Create a new event connection. Select the event evPowerOffKey,
specify the Altia event name to power_off, and set the Altia parameter to 1.

Click Save.

7 If you want an animation of your Altia model when an action function is called in the
Validator, you should set up an action connection.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Prototyping a graphical interface

For the CDPlayer example, the CD could be ejected when the Validator calls the action
function EjectCD. In the Altia model, the animation can be seen below:

8 To set up an action connection to do this, choose Altia>Connect Elements and click
the Actions tab. Double click EjectCD in the list to the right. Then specify the Altia
name to 374_cdA_eject_event and also edit the Altia parameter to be 1.

Click Save.

9 In some cases you want to have the state machine model signal to the Altia model what
to display. For CDPlayer, you might want to get the track number from the Validator
model.
AFE1_AFE2-1:1

 897

898

Prototyping with Altia Design

To set up an action connection in the Validator to do this, choose Altia>Edit
Connections click the Actions tab. Double-click the ShowTrackNumber to the right.
Edit the Altia name to be 392_readout_float, edit the Altia parameter to be 0, and
select Use the argument from the action.

Click Save.

10 When you have connected your state machine model to an Altia model, the names of
the Visual State events and actions functions will be added to it as new external signals
if they are not already there.

The events and action functions that are not connected to any object in the graphical
model are listed in the Validator Output window as unbound Visual State events
and unbound Visual State action functions.

The reporting of unbound events and action functions are done when you connect to the
Altia model, and when you click Save in the Edit Connections window.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Prototyping a graphical interface

PROTOTYPING BASED ON CODER-GENERATED CODE

This is an example of how a graphical model can be implemented by capturing the
Windows idle message. The example is based on a state machine with two states:
PowerOn and PowerOff:

Switching from state to state is done by triggering the event PowerBtn. When the state
machine is in the PowerOn state, an internal reaction can be triggered by the event
SetLevel. This internal reaction calls the action ShowLevel that can be used for
displaying the event parameter from SetLevel.

Implementing the prototype is done in Visual C++ using MFC. The application consists
of a dialog box with a button, a slider control and a progress bar:

The button PowerBtn will add the event PowerBtn to the event queue. The slider
control represents the SetLevel event, and the slider position is transmitted as an event
parameter. The action ShowLevel will activate the progress bar and the action
parameter is the display value of the progress bar.

To implement this in C++ code:

1 Include the Coder-generated code files in your Visual C++ project. Remember to
disable the Precompiled Headers option for these files, because you are including C
files in a C++ project.

2 Define an event queue for adding and retrieving events. For an example, see the
example code included with Visual State.
AFE1_AFE2-1:1

 899

900

Prototyping with Altia Design

3 Initialize the controls with the constants defined in IAR Visual State and initialize the
Visual State system in the OnInitDialog function like this:

BOOL CVisualStateSampleDlg::OnInitDialog()
{

...
// nMin and nMax defined in VS as constants

// Initialize the slider control
m_hSlider.SetRange(nMin, nMax);
m_hSlider.SetPos(nMin);

// Initialize the progress control
m_hLevel.SetRange(nMin, nMax);
m_hLevel.SetPos(nMin);

// Initialize the VS System
SEM_InitAll();

// Initialize the VS System by sending the SE_RESET event
QueueElement hQe;
hQe.event = SE_RESET;
hQe.parameter = NO_PARAMETER;
add(hQe);
...

}

4 Map the PowerBtn button’s click command to the function OnPowerBtn. Map the
slider control’s slide message by implementing the OnHScroll function. The
following code shows the message map and the two functions:

BEGIN_MESSAGE_MAP(CMainDlg, CDialog)
...
ON_BN_CLICKED(IDC_POWER_BTN, OnPowerBtn)
ON_WM_HSCROLL()
...

END_MESSAGE_MAP()

void CMainDlg::OnPowerBtn()
{

// add the PowerBtn event to the queue
QueueElement qe;
qe.event = PowerBtn;
qe.parameter = -1;
add(qe);

}

AFE1_AFE2-1:1

IAR Visual State
User Guide

Prototyping a graphical interface

void CMainDlg::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar*
pScrollBar)
{

CDialog::OnHScroll(nSBCode, nPos, pScrollBar);
// get slider value and add the SetLevel event to the
// queue
QueueElement qe;
qe.event = SetLevel;
qe.parameter = m_hSlider.GetPos();
add(qe);

5 Define the implementation of the Visual State action ShowLevel like this:

VS_VOID ShowLevel(VS_INT nValue)
{

// get a handle to the main dialog box
CMainDlg* pDlg = (CMainDlg*)AfxGetMainWnd();
ASSERT(pDlg);
// force the dialog box to update the progress bar
pDlg->SetProgressPos(nValue);

}

6 Implement the Visual State event loop by latching onto the Windows message
WM_KICKIDLE. The message map and the event loop defined in the OnKickIdle
function are shown below.

LRESULT CMainDlg::OnKickIdle(WPARAM, LPARAM)
{

// While events in the event queue
QueueElement hQe;
while(retrieve(hQe))
{

// Call VSDeduct with the event
unsigned char cc;
switch(hQe.event) {

case SE_RESET :
cc = VSDeduct(SE_RESET);
break;

case PowerBtn :
cc = VSDeduct(hQe.event);
break;

case SetLevel :
cc = VSDeduct(hQe.event, hQe.parameter);
break;

default :
cc = -1; // unknown event
break;

}

AFE1_AFE2-1:1

 901

902

Graphical environment for Altia Design

If ((cc != SES_OKAY) && (cc != SES_FOUND))
; // Error handler

}
return 0L;

}

Graphical environment for Altia Design
Reference information about:

● Altia menu, page 902

● Connect Elements dialog box, page 903

● Define Altia Properties dialog box, page 905

● Open Altia Model dialog box, page 906

Altia menu
The Altia menu provides commands for connecting to Altia Design:

Menu commands

These commands are available on the menu:

Connect Model

Displays the Open Altia Model dialog box where you can choose an existing
Altia model or create a new model, and then connect to Altia Design. See Open
Altia Model dialog box, page 906.

Connect Elements

Displays a dialog box, see Connect Elements dialog box, page 903.

Properties

Displays the Define Altia Properties dialog box, see Define Altia Properties
dialog box, page 905.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Prototyping a graphical interface

Connect Elements dialog box
The Connect Elements dialog box is available from the Altia menu in the Validator.

Use this dialog box to set up connections between Altia objects and Visual State events
and action functions.

See also Connecting Visual State elements to Altia objects, page 890.

Connection (for events)

Lists all connections between Visual State events and Altia objects with these details:

Click a value to edit it (or use F2).

Event connection The name of the event in the Validator.

Altia event Specify the name of the object in the Altia model that the
Visual State event should be connected to.

Altia parameter Specify the value to be sent from the Altia model for the
given Altia event, or that will be sent to the Altia model,
when the event in the Validator is sent to the state
machine model.

Use the argument from the
event

Makes the Validator send the first argument from the
event in the Validator to the Altia model, when the event
is activated in the Validator. If not selected, the value
from the Altia parameter will be sent.
AFE1_AFE2-1:1

 903

904

Graphical environment for Altia Design

Connection (for actions)

Lists all connections between Visual State action functions and Altia objects with these
details:

Click a value to edit it (or use F2).

Pane to the right

A list of all events or action functions of your state machine model, for which you can
make a connection to your Altia model. Select the event or action function you want to
connect to an object, and click the arrow button. The event/action function appears in
the Connection pane.

Action connection The name of the action function in the Validator.

Altia name Specify the name of the object in the Altia model that the
Visual State action function should be connected to.

Altia parameter Specify the value to be sent from the Altia model for the
given Altia action function, when the action function is
called in the Validator.

Use the argument from the
action

Makes the Validator send the first argument from the
action function in the Validator to the Altia model, when
the action function is called in the Validator. If not
selected, the value from the Altia parameter will be sent.

Animation delay The delay after the animation has been sent to the Altia
model. In other words, the Validator will make a pause
for the given time before sending more animation values
to the Altia model.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Prototyping a graphical interface

Define Altia Properties dialog box
The Define Altia Properties dialog box is available from the Altia menu.

Use this dialog box to configure the Altia connection between a state machine model
and an Altia model.

Altia Response Timeout

Specify the number of milliseconds that the Validator waits for a response from Altia
Design before timing out.

Reset Altia design when deducting SE_RESET

Synchronizes the Altia model with the state machine model when the Visual State reset
event SE_RESET is deducted.

Altia Command Line Parameters

Type any arguments to pass to Altia Design. For a description of recognized parameters,
see the documentation provided with Altia Design.

When connecting to Visual State

Specify whether the state machine model should be initialized and reset when
connecting to Altia. Choose between:

Always initialize and reset the state machine model

Resets and initializes the state machine model automatically when connecting
to the Altia model.
AFE1_AFE2-1:1

 905

906

Graphical environment for Altia Design

Ask before initialization and reset of the state machine model

Prompts you when connecting to the Altia model to let you decide whether to
reset and initialize the state machine model.

Never initialize and reset the state machine model

Connects to the Altia model without resetting or initializing the state machine
model.

Open Altia Model dialog box
The Open Altia Model dialog box is available by choosing Altia>Connect Model in
the Validator.

Use this dialog box to choose an existing Altia model or create a new model, and then
connect to Altia Design.

See also Connecting a state machine model to an Altia model, page 888.

Create a new Altia model

Opens a dialog box where you can create a new Altia model.

Open an existing Altia model

Opens a standard file browser dialog box where you can locate an existing Altia model
and open it.

Open most recently used

Opens the most recently used Altia model.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Viewing design models via
the Visual State Viewer
● Introduction to the Visual State Viewer

Introduction to the Visual State Viewer
Learn more about:

● Briefly about the Visual State Viewer, page 907

BRIEFLY ABOUT THE VISUAL STATE VIEWER

The Visual State Viewer is a stand-alone application that can be used for viewing all
state machine models made by using the Designer without having access to the Visual
State product. This is useful for sharing and showing design ideas to someone who does
not need to edit the models, for example sales staff or third-party companies. The Viewer
can show and print your state machine diagrams.

The Viewer does not require a license and does not depend on any other Visual State
files. It only requires some common runtime DLLs from the operating system, so you
can move a copy of the Viewer.exe file wherever you want.

The Viewer.exe file can be found in the bin directory in your IAR Visual State
product installation.

If you want someone to view your state machine model, you should give them a copy of
your model files and a copy of Viewer.exe.

For example, for the AVSystem example that is provided with IAR Visual State, you
should give a copy of the these files:

AVSystem.vsp
CDPlayer.vsr
Viewer.exe
AFE1_AFE2-1:1

 907

908

Introduction to the Visual State Viewer

AFE1_AFE2-1:1

IAR Visual State
User Guide

Using IAR Visual State
remotely via the Control
Center
● Introduction to the Visual State Control Center

● Using the Control Center

Introduction to the Visual State Control Center
Learn more about:

● Briefly about the Visual State Control Center, page 909

BRIEFLY ABOUT THE VISUAL STATE CONTROL CENTER

The Control Center is a stand-alone application that can handle a set of commands and
take appropriate actions as opening an application remotely, or forwarding a request to
the Designer or the Validator. For the Designer you can quickly create new projects and
with some initial states. For the Validator you can send events to the state machine model
being simulated.

In addition, you can use the Control Center for invoking external tools, for example tools
for creating advanced graphical user interfaces, like the CGI Studio Scene Composer.

The Control Center must be started before any command can be sent to it, and it
manages command requests and responses by means of the JSON–RPC format. TCP/IP
is used for the communication. Normally, the Control Center listens on port 8090 and it
puts no restrictions on who sends commands to it.

You can find the ControlCenter.exe file in the bin directory in the IAR Visual State
product installation.

Using the Control Center
What do you want to do?

● Starting the Control Center, page 910

● Saving all files in connected applications, page 910
AFE1_AFE2-1:1

 909

910

Using the Control Center

● Exiting the Control Center, page 911

● Starting the Designer, page 911

● Saving in the Designer, page 912

● Exiting the Designer, page 913

● Creating a project with a new state machine, page 913

● Adding a state machine to an existing design, page 915

● Starting the Validator, page 916

● Saving in the Validator, page 916

● Exiting the Validator, page 917

● Disabling look ahead of guard values in the Validator, page 918

● Deducing an event in the Validator, page 918

● Requesting an action function call return value from the Validator, page 920

● Simulating a Validator project remotely, page 922

● Starting external tools via the Control Center, page 924

STARTING THE CONTROL CENTER

1 Open a command prompt.

2 Start the Control Center with the path to the IAR Visual State product installation,
ControlCenter.exe

3 Optionally, you can:

● use ControlCenter.exe -portnnnn to communicate using port nnnn.

● use ControlCenter.exe -verbose to display status information on the screen.

SAVING ALL FILES IN CONNECTED APPLICATIONS

When you have a number of applications connected to the Control Center, you can save
the files in the connected applications remotely.

1 Send a command to the Control Center. Use this as an example of how to save all files:

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "saveAll",
}

AFE1_AFE2-1:1

IAR Visual State
User Guide

Using IAR Visual State remotely via the Control Center

2 The Control Center replies with a message that indicates success or error. In case of
success, the reply might look like this:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

EXITING THE CONTROL CENTER

1 To exit the Control Center, and optionally also all connected applications, send a
command to the Control Center with these arguments:

2 Use this as an example of how to exit the Control Center and all connected
applications:

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "quit",
 "params":
 {"all": "true"}
}

3 The Control Center replies with a message that indicates success or error. In case of
success, the reply might look like this:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

STARTING THE DESIGNER

You can start the Designer remotely, loading an existing project, and optionally set focus
to a specific item.

1 To start the Designer remotely, you can send a command to the Control Center with
these arguments:

all A Boolean value that determines whether all connected
applications should exit or not.

projectPath The full path to the project to load.
AFE1_AFE2-1:1

 911

912

Using the Control Center

2 Use this as an example of how to start the Designer:

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "launchDesigner",
 "params": {
 "projectPath": "d:/Test/JSONTestProject/JSONTestProject.vsp",
 "focusItemGuid": "1985B3C4-74A3-42B5-B03E-941B13633A5C"
 }
}

3 The Designer replies through the Control Center with a message that indicates success
or error. In case of success, the reply might look like this:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

SAVING IN THE DESIGNER

When you have started the Designer, you can make sure that you save open files in it.

1 To save the files the Designer has loaded, send a command to the Control Center with
these arguments:

2 Use this as an example of how to save in the Designer:

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "saveDesigner",
 "params":
 {"projectPath": "d:/Test/JSONTestProject/JSONTestProject.vsp"}
}

focusItemGuid Optional guid for the item to set focus on. If not used, the
Designer will choose what to focus on.

projectPath The full path to the loaded project.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using IAR Visual State remotely via the Control Center

3 The Designer replies through the Control Center with a message that indicates success
or error. In case of success, the reply might look like this:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

EXITING THE DESIGNER

You can exit the Designer remotely, without receiving a prompt to save open files.

1 To exit the Designer, send a command to the Control Center with these arguments:

2 Use this as an example of how to exit the Designer:

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "quitDesigner",
 "params":
 {"projectPath": "d:/Test/JSONTestProject/JSONTestProject.vsp"}
}

3 The Designer replies through the Control Center with a message that indicates success
or error. In case of success, the reply might look like this:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

CREATING A PROJECT WITH A NEW STATE MACHINE

The Designer can be remotely controlled to create a new project with a new system, a
new top-level state machine, and a state machine below it.

1 To start the Designer remotely, you can send a command to the Control Center with
these arguments:

projectPath The full path to the loaded project.

projectPath The full path to the project to create.

projectName The name of the project. The name must be a legal
identifier in C.
AFE1_AFE2-1:1

 913

914

Using the Control Center

2 Use this as an example for how to start the Designer and create a new state machine:

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "createProjectAndStateMachine",
 "params": {
 "projectPath": "d:/Test/TestJSON/TestJSONProject.vsp",
 "projectName": "TestProject",
 "projectGuid": "1234-5678-9012",
 "systemName": "System0",
 "systemGuid": "1234-5678-9013",
 "topStatePath": "d:/Test/TestJSON/TestJSONProject.vsr",
 "topStateName": "Topstate1",
 "topStateGuid": "1234-5678-9014",
 "stateMachineName": "State1",
 "stateMachineGuid": "1234-5678-9015"
 }
}

projectGuid Optional guid (Global Unique Identifier) to use for the
new project. If not used, a new guid is automatically
assigned to the project.

systemName The name of the new system. The name must be a legal
identifier in C.

systemGuid Optional guid to use for the new system. If not used, a
new guid is automatically assigned to the system.

topStatePath The full path to the top-level state machine file to create.

topStateName The name of the new top-level state machine. The name
must be a legal identifier in C.

topStateGuid Optional guid to use for the new top-level state machine.
If not used, a new guid is automatically assigned to the
top-level state machine.

stateMachineName The name of the new state machine. The name must be
a legal identifier in C.

stateMachineGuid Optional guid to use for the new state machine. If not
used, a new guid is automatically assigned to the state
machine.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using IAR Visual State remotely via the Control Center

3 The Designer replies through the Control Center with a message that indicates success
or error. In case of success, the reply might look like this:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

ADDING A STATE MACHINE TO AN EXISTING DESIGN

The Designer can be started remotely to load an existing project, and add a new state to
a parent region or state.

1 To start the Designer remotely, you can send a command to the Control Center with
these arguments:

2 Use this as an example for how to add a new state to a specific parent:

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "addStateMachine",
 "params": {
 "projectPath": "d:/Test/TestJSON/TestJSONProject.vsp",
 "parentGuid": "1234-5678-9015",
 "newStateMachineName": "NewState",
 "newStateMachineGuid": "1234-5678-9016"
 }
}

3 The Designer replies through the Control Center with a message that indicates success
or error. In case of success, the reply might look like this:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

projectPath The full path to the project to load and modify.

parentGuid Guid to use for the parent to add a new state to.

newStateMachineName Optional name of the new state to add. If not specified,
the Designer will choose a new name.

newStateMachineGuid Optional guid to use for the new item to add. If not used,
a new guid is automatically assigned to the new state.
AFE1_AFE2-1:1

 915

916

Using the Control Center

STARTING THE VALIDATOR

The Validator can be started remotely to load an existing project and optionally set focus
to a specific item.

1 To start the Validator remotely, you can send a command to the Control Center with
these arguments:

2 Use this as an example for how to start the Validator:

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "launchValidator",
 "params": {
 "projectPath": "d:/Test/JSONTestProject/JSONTestProject.vsp",
 "focusItemGuid": "1985B3C4-74A3-42B5-B03E-941B13633A5C"
 }
}

3 The Validator replies through the Control Center with a message that indicates success
or error. In case of success, the reply might look like this:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

SAVING IN THE VALIDATOR

When you have started the Validator, you can make sure that you save open files in it.

1 To save the files the Validator has loaded, send a command to the Control Center with
these arguments:

projectPath The full path to the project to load.

focusItemGuid Optional guid for the item to set focus on. If not used, the
Validator will choose what to focus on.

projectPath The full path to the loaded project.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using IAR Visual State remotely via the Control Center

2 Use this as an example of how to save in the Validator:

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "saveValidator",
 "params":
 {"projectPath": "d:/Test/JSONTestProject/JSONTestProject.vsp"}
}

3 The Validator replies through the Control Center with a message that indicates success
or error. In case of success, the reply might look like this:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

EXITING THE VALIDATOR

You can exit the Validator remotely, without receiving a prompt to save open files.

1 To exit the Validator, send a command to the Control Center with these arguments:

2 Use this as an example of how to exit the Validator:

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "quitValidator",
 "params":
 {"projectPath": "d:/Test/JSONTestProject/JSONTestProject.vsp"}
}

3 The Validator replies through the Control Center with a message that indicates success
or error. In case of success, the reply might look like this:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

projectPath The full path to the loaded project.
AFE1_AFE2-1:1

 917

918

Using the Control Center

DISABLING LOOK AHEAD OF GUARD VALUES IN THE
VALIDATOR

When the Validator is simulating, it can be set up to show the values of guard
expressions. That means the Validator will evaluate all guard expressions after each
deduction step. However, in the case of remote simulation, this might be undesirable.
The Validator can be set up to disable this look ahead for guard expressions during the
session being remotely controlled.

1 To change the Validator setup to enable or disable the look ahead for guard
expressions, you can send a command to the Control Center with these arguments:

2 Use this as an example for disabling look ahead of guard values in the Validator:

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "disableLookAheadGuardCheck",
 "params": {
 "projectPath": "d:/Test/JSONTestProject/JSONTestProject.vsp",
 "disable": true
 }
}

3 The Validator replies through the Control Center with a message that indicates success
or error. In case of success, the reply might look like this:

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": true
}

DEDUCING AN EVENT IN THE VALIDATOR

The Validator can be started remotely to perform a simulation step with a specific event
and optionally arguments for the event. The Validator will perform the simulation step
and reply with any action function calls that are to be performed and their optional
arguments. In the meantime, the Validator can send a request for getting action function

projectPath The full path to the project to load.

disable True or false to indicate whether to disable or not.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using IAR Visual State remotely via the Control Center

return values to determine whether guard expression is true or false, of what value to
assign to some variable.

1 To make the Validator perform a simulation step, you can send a command to the
Control Center with these arguments:

2 Use this as an example for how to call the Validator and make it perform a simulation
step for an event:

{
 "jsonrpc": "2.0",
 "id": 2,
 "method": "deductEvent",
 "params": {
 "projectPath": "d:/Test/JSONTestProject/JSONTestProject.vsp",
 "eventName": "SE_RESET"
 }
}

3 The Validator replies through the Control Center with a message that indicates success
or error, and can in this case reply with this answer which indicates that the action
function call Action0(2,0) is to be performed:

{
 "id": 2,
 "jsonrpc": "2.0",
 "result": {
 "actions": [
 {
 "action": {
 "actionArguments": [2,0],
 "actionName": "Action0"
 }
 }
]
 }
}

projectPath The full path to the project to load.

eventName The name of the event to deduce for the given model.

eventArguments Optional argument. If used, it must be an array of values.
AFE1_AFE2-1:1

 919

920

Using the Control Center

REQUESTING AN ACTION FUNCTION CALL RETURN VALUE
FROM THE VALIDATOR

The Validator might, as part of performing a simulation step with the deductEvent
command, ask for the return value from some action function call. In that case, the
Validator will send a request back to the caller that initiated the deductEvent
command to get the value from the action function call.

1 When the Validator needs the return value for an action function call, it will send a
command with these arguments:

2 Use this as an example of a sequence with the deductEvent command causing the
Validator to send a getActionFunctionCallResult command back.

The initial command sent from the client:

{
 "jsonrpc": "2.0",
 "id": 2,
 "method": "deductEvent",
 "params": {
 "projectPath": "d:/Test/JSONTestProject/JSONTestProject.vsp",
 "eventName": "Event4"
 }
}

3 The command sent from the Validator to get the return value:

{
 "id": 1,
 "jsonrpc": "2.0",
 "method": "getActionFunctionCallResult",
 "params": {
 "action": {
 "actionArguments": [2,0],
 "actionName": "Action3"
 }
 }
}

actionName The name of the action function to get the return value
for.

actionArguments Optional array with arguments for the action function
call asked for.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using IAR Visual State remotely via the Control Center

4 This is the reply from the client with the return value to use:

{
 "jsonrpc": "2.0",
 "id": 1,
 "result": 7
}

5 This is the result of the complete simulation step sent from the Validator to the client:

{
 "id": 2,
 "jsonrpc": "2.0",
 "result": {
 "actions": [
 {
 "assignment": {
 "assignedTo": "External1",
 "assignedToIndex": null,
 "value": 7
 }
 },
 {
 "action": {
 "actionArguments": null,
 "actionName": "Action5"
 }
 },
 {
 "assignment": {
 "assignedTo": "ExternalArray",
 "assignedToIndex": 2,
 "value": 7
 }
 }
]
 }
}

AFE1_AFE2-1:1

 921

922

Using the Control Center

SIMULATING A VALIDATOR PROJECT REMOTELY

You can use the Control Center to simulate a project remotely in the Validator. The steps
below give an example of how to simulate a project called AVSystem, located in the
directory e:\AVSystem.

1 Start the Control Center, located (for example) in this directory:

c:\Program Files (x86)\IAR Systems\Visual State 8.n\bin\ControlCe
nter.exe

If the Control Center needs access through the firewall, you will be prompted to allow
it. Then, a window is opened displaying the text Visual State Control Center
version x.x.x.xxxx.

2 You might need to enable telnet, which is disabled by default. Open a command
prompt with administrator privileges and type telnet /?. If it returns a description
for telnet, you can continue. Then run:

 telnet localhost 8090

If the connection is successful, the Control Center window displays connected to
127.0.0.1.

3 For most commands sent to the Control Center, a reply like this indicates success:

{"id":1,"jsonrpc":"2.0","result":true}

4 Start the Validator using this command:

{"jsonrpc": "2.0","id": 1,"method": "launchValidator","params":
{"projectPath": "e:/AVSystem/AVSystem.vsp"}
}

Note that new line characters might cause problems with telnet.

5 Disable the guard lookahead:

{"jsonrpc": "2.0", "id": 1, "method":
"disableLookAheadGuardCheck", "params":
{"projectPath": "e:/AVSystem/AVSystem.vsp", "disable": true}
}

6 Send the event SE_RESET:

{"jsonrpc": "2.0", "id": 2, "method": "deductEvent", "params":
{"projectPath": "e:/AVSystem/AVSystem.vsp", "eventName":
"SE_RESET"}
}

The reply indicates which actions that were called. In this case, no actions:

{"id":2,"jsonrpc":"2.0","result":{"actions":null}}
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using IAR Visual State remotely via the Control Center

7 Send the event evPowerKey:

{"jsonrpc": "2.0", "id": 2, "method": "deductEvent", "params":
{"projectPath": "e:/AVSystem/AVSystem.vsp", "eventName":
"evPowerKey"}
}

The reply is:

{"id":2,"jsonrpc":"2.0","result":{"actions":[{"action":{"actionAr
guments":null,"actionName":"StartCdPlayer"}}]}}

8 Send the event evDetect to indicate that there is a CD-player:

{"jsonrpc": "2.0", "id": 2, "method": "deductEvent", "params":
{"projectPath": "e:/AVSystem/AVSystem.vsp", "eventName":
"evDetect", "eventArguments": [1]}
}

The reply is:

{"id":2,"jsonrpc":"2.0","result":{"actions":null}}

9 Start playing:

{"jsonrpc": "2.0", "id": 2, "method": "deductEvent", "params":
{"projectPath": "e:/AVSystem/AVSystem.vsp", "eventName":
"evPlayKey"}
}

This prompts for the return value for the call to FindLastTrack():

{"id":1,"jsonrpc":"2.0","method":"getActionFunctionCallResult","p
arams":{"action":
{"actionArguments":null,"actionName":"FindLastTrack"}
}}

As a reply to that, you can send:

{"jsonrpc": "2.0", "id": 1, "result": 3}

and get the list:

{"id":2,"jsonrpc":"2.0","result":{"actions":[{"assignment":{"assi
gnedTo":"lastTrack","assignedToIndex":null,"value":3}},{"assignme
nt":{"assignedTo":"currentTrack","assignedToIndex":null,"value":0
}},{"action":{"actionArguments":null,"actionName":"LocateTrackSta
rt"}}]}}
AFE1_AFE2-1:1

 923

924

Using the Control Center

10 Send an event to tell that you found the track start:

{"jsonrpc": "2.0", "id": 2, "method": "deductEvent", "params":
{"projectPath": "e:/AVSystem/AVSystem.vsp", "eventName":
"evFoundTrackStart"}
}

The reply is:

{"id":2,"jsonrpc":"2.0","result":{"actions":[{"action":{"actionAr
guments":null,"actionName":"StartPlayingTrack"}}]}}

11 Send an event to tell that the track end was reached:

{"jsonrpc": "2.0", "id": 2, "method": "deductEvent", "params":
{"projectPath": "e:/AVSystem/AVSystem.vsp", "eventName":
"evTrackEnd"}
}

The reply is:

{"id":2,"jsonrpc":"2.0","result":{"actions":[{"action":{"actionAr
guments":null,"actionName":"StopPlayingTrack"}},{"assignment":{"a
ssignedTo":"currentTrack","assignedToIndex":null,"value":1}},{"ac
tion":{"actionArguments":null,"actionName":"LocateTrackStart"}}]}
}

12 Continue to send events as appropriate.

13 Exit the Validator:

{"jsonrpc": "2.0","id": 1,"method": "quitValidator","params":
{"projectPath": "e:/AVSystem/AVSystem.vsp"}
}

The reply is:

{"id":1,"jsonrpc":"2.0","result":true}

For information about other ways to exit a connected application, see the full list of
commands.

STARTING EXTERNAL TOOLS VIA THE CONTROL CENTER

You can use the Control Center for invoking external tools. This example shows how to
invoke the CGI Studio Scene Composer.

1 To start the Scene Composer remotely, you can send a command to the Control Center
with these arguments:

projectPath The full path to the project to load.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Using IAR Visual State remotely via the Control Center

2 Use this as an example for how to start the CGI Studio Scene Composer remotely:

{
 "jsonrpc": "2.0",
 "method": "launchSceneComposer",
 "params": {
 "projectPath": "d:/Test/TestJSON/TestJSONProject.vsp",
 "guidToFocus": "1234-5678-9015"
 }
}

guidToFocusGuid Guid of a state to set focus on in the Scene Composer.
AFE1_AFE2-1:1

 925

926

Using the Control Center

AFE1_AFE2-1:1

IAR Visual State
User Guide

Importing and exporting
design models via XMI®
files
● Introduction to using the XMI file format

● Using the XMI format for import and export of design models

Introduction to using the XMI file format
Learn more about:

● Briefly about the XMI file format, page 927

● Restrictions and requirements for importing XMI files to IAR Visual State, page 927

● Restrictions and requirements for exporting XMI files from IAR Visual State, page
928

BRIEFLY ABOUT THE XMI FILE FORMAT

XMI (XML Metadata Interchange) is a file format specified by the Object Management
Group, intended for tool-independent exchange of design models. This means that you
can transfer state machine models between IAR Visual State and tools by vendors other
than IAR Systems.

RESTRICTIONS AND REQUIREMENTS FOR IMPORTING XMI
FILES TO IAR VISUAL STATE

The mapping from UML to Visual State state machine elements is one-to-one, but some
exceptions apply. These exceptions, and some other properties of the XMI import to
keep in mind, are:

● The XMI file to be imported must conform to UML 2.1.

● Any other files referred to from the XMI file are ignored; only the state machine
models directly included in the XMI file are imported. This means that when
exporting from another UML tool, the UML design should be exported to a single
file.

● The XMI file to be imported must contain profile information, otherwise the XMI
import might miss some or all state machine components.
AFE1_AFE2-1:1

 927

928

Introduction to using the XMI file format

● States that specify instance termination are mapped to (region-local) final states in
IAR Visual State.

● IAR Visual State computes a graphical layout automatically. (Any graphical layout
information in the XMI file to be imported is ignored.)

● Transition guards are imported as is, without parsing them or even trying to map
them to any Visual State elements.

● Transition actions are imported as is and become explanations in IAR Visual State.

● Every transition that crosses one or more state boundary is rendered as a pair of
transitions using connector states, where these transitions do not cross any state
boundaries. (All transitions that do not cross any state boundaries are imported as
they are.)

RESTRICTIONS AND REQUIREMENTS FOR EXPORTING XMI
FILES FROM IAR VISUAL STATE

The mapping from IAR Visual State to UML state machine elements is one-to-one, but
some exceptions apply. These exceptions, and some other properties of the XMI export
to keep in mind, are:

● The generated XMI file conforms to UML 2.1.

● Models that contain submachine states are not exported, because IAR Visual State’s
support for arbitrary bindings has no counterpart in UML.

● Layout information is not exported. (Tools that import XMI automatically compute
a layout. The strategies used in that differ from tool to tool.)

● Signals are mapped to a macro, recognized by some UML tools, for sending an
event between state machines. (This might not always be the desired behavior.)

● Some UML modeling tools cannot handle regions and parallelism inside a state.

● Positive and negative state conditions are not exported, because they have no
counterpart in UML.

● Explanations are attached to the corresponding UML element if allowed. If not,
explanations are attached to the closest UML element, moving upwards in the
model hierarchy, that can carry explanations.

Visual State types map to UML types like this:

Visual State type UML type

VSBool BOOL

VSInt LONG

VSInt16 SHORT

Table 40: Mapping from Visual State types to UML types
AFE1_AFE2-1:1

IAR Visual State
User Guide

Importing and exporting design models via XMI® files

Using the XMI format for import and export of design models
What do you want to do?

● Importing an XMI file to IAR Visual State, page 929

● Exporting an XMI file from IAR Visual State, page 929

IMPORTING AN XMI FILE TO IAR VISUAL STATE

If you have a state machine model created in a tool from another vendor, you can use it
in IAR Visual State if the other tool supports the XMI format.

1 In the Designer, choose File>Open and filter the view by State Machine Files in XMI
Format (*.xmi).

2 Browse to the XMI file you want to import and click Open.

Only the state machine parts of a UML design are imported; no class structure, no
diagram information, no explanations, etc.

EXPORTING AN XMI FILE FROM IAR VISUAL STATE

If you have a state machine model created using IAR Visual State, you can export it and
then open it in a tool from another vendor if the other tool supports the XMI format.

1 In the Designer, choose File>Open and open the state machine model that you want to
export to XMI format.

2 Make sure that the state that represents the correct top-level state machine is selected in
the Project Browser window and choose File>Save As.

VSInt32 LONG

VSUChar UNSIGNED_CHAR

VSUInt UNSIGNED_LONG

VSUInt16 UNSIGNED_SHORT

VSUInt32 UNSIGNED_LONG

VSVoid VOID

VSVoidPtr VOID_PTR

VSFloat FLOAT

VSDouble DOUBLE

Visual State type UML type

Table 40: Mapping from Visual State types to UML types
AFE1_AFE2-1:1

 929

930

Using the XMI format for import and export of design models

3 Choose State Machine Files in XMI Format (*.xmi) from the Save as type
drop-down menu and save the file.

A class structure is created to hold the state machine that corresponds to the exported
top-level state machine. Exported events, action functions, and variables are generated
at appropriate places in the exported XMI structure.
AFE1_AFE2-1:1

IAR Visual State
User Guide

The Visual State State
Machine API for
programmatic
manipulation of models
● Introduction to the State Machine API and programmatic manipulation

Introduction to the State Machine API and programmatic manipulation
Learn more about:

● Briefly about the Visual State State Machine API, page 931

● Installed files, page 932

BRIEFLY ABOUT THE VISUAL STATE STATE MACHINE API

With the Visual State State Machine API (which has a C interface) you can manipulate
and extract all parts of your state machine design model.

By calling the API, you can programmatically access and change your state machine
models from various programming languages that support calling C functions based on
some foreign function binding mechanism.

For example, you can use the API to:

● Add new items to a project, or create a new project

● Delete items from a project

● Rename items in a project

● Extract copies of parts from a project to build a representation of the items for your
own purpose

● Search for items in a project.

From the API you can also add tags to items in the project. A tag is a pair of strings—a
name and a value. They look, for example, like this: Requirement Reference and
Section 5.4.6. Tags can only be manipulated by the API, but the Visual State
components keep the tags persistent.
AFE1_AFE2-1:1

 931

932

Introduction to the State Machine API and programmatic manipulation

When you work with the API you do not need to set exact positions for new items that
you add. When the Designer loads a model with any item that does not have a set
position, it will position it for you, and you can move it to the point you like. The API
preserves the positions for items that have a set position.

The State Machine API DLL is stand-alone, in other words, it does not depend on any
other Visual State DLLs, or any runtime DLLs except the usual runtime DLLs for the
operating system.

Using the API does not require a license, so you can freely copy and use it as you like.

INSTALLED FILES

The API is delivered as a set of header files, a dynamic link library (DLL), and a set of
generated documentation files in HTML format. The DLL is built with "C" linkage, so
it can be accessed from most programming languages.

The files for the API and the generated documentation can be found in the
doc\StateMachineAPI directory in the IAR Visual State product installation. The
generated documentation contains a number of examples of use cases, examples of how
to access the API from C and C++. The main documentation file is
doc\StateMachineAPI\html\index.html.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Handling Visual State files
from previous versions
● Introduction to using old design models from previous versions

Introduction to using old design models from previous versions
Learn more about:

● Using files from version 5 and later, page 933

● Converting old files by using the Navigator, page 933

● Converting old files manually by using the project converter, page 933

USING FILES FROM VERSION 5 AND LATER

The file format used in version 5 and 6 of IAR Visual State is not the same format as
being used by version 7.4, and later. When you load an old project, the Navigator can
convert the files, or you can convert the files manually by running a program from a
command prompt.

CONVERTING OLD FILES BY USING THE NAVIGATOR

1 Before you start, make sure to have backup copies of your files.

2 In the Navigator, open the workspace for the old project that you want to convert.

3 The Navigator will ask you if you want to convert and save the project. Answer Yes.

4 The Navigator saves the old files in a backup directory, converts them, and saves the
converted files in the same directory that you loaded your workspace from.

You can now use your newly converted files in the new version of IAR Visual State.

CONVERTING OLD FILES MANUALLY BY USING THE
PROJECT CONVERTER

1 Before you start, make sure to have backup copies of your files.

2 Open a command prompt.

3 Change the directory to where you have your old project.

4 To start the conversion, use this command line:

ProjectConverter.exe project.vsp converted
AFE1_AFE2-1:1

 933

934

Introduction to using old design models from previous versions

Where:

5 ProjectConverter converts the old files and places the converted files in the
directory you specified.

You can now use your newly converted files in the new version of IAR Visual State.

project.vsp is the name of your old project.

converted is the name of the destination folder for your converted project.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Glossary
Glossary
This is a glossary for terms relevant to embedded
systems programming in general, and to IAR Visual
State® and state machine design specifically.

A
Application
The program developed by the user of the IAR Systems toolkit
and which will be run as an embedded application on a target
processor.

Architecture
A term used by computer designers to designate the structure
of complex information-processing systems. It includes the
kinds of instructions and data used, the memory organization
and addressing, and the methods by which the system is
implemented. The two main architecture types used in
processor design are Harvard architecture and von Neumann
architecture.

Argument
Arguments are the values provided for the (formal) parameters
when invoking a function, template, or macro, etc. Arguments
are also referred to as actual parameters. Compare Parameter.

Auto variables
The term refers to the fact that each time the function in which
the variable is declared is called, a new instance of the variable
is created automatically. This can be compared with the
behavior of local variables in systems using static overlay,
where a local variable only exists in one instance, even if the
function is called recursively. Also called local variables.
Compare Register variables.

B
Batch files
A text file containing operating system commands which are
executed by the command line interpreter. In Unix, this is

called a “shell script” because it is the Unix shell which
includes the command line interpreter. Batch files can be used
as a simple way to combine existing commands into new
commands.

Bitfield
A group of bits considered as a unit.

Breakpoint
A breakpoint in IAR Visual State is a specification of one or
more conditions that will cause the Deduct function to break,
and wait for acknowledge before continuing. A breakpoint
might contain conditions that, if true, will cause a break before
a transition is taken (a pre-condition) and conditions that, if
true, will cause a break after a transition has been taken (a post
condition). Breakpoints can be used in C-SPYLink and in the
Validator.

C
Calling convention
A calling convention describes the way one function in a
program calls another function. This includes how register
parameters are handled, how the return value is returned, and
which registers that will be preserved by the called function.
The compiler handles this automatically for all C and C++
functions. All code written in assembler language must
conform to the rules in the calling convention to be callable
from C or C++, or to be able to call C and C++ functions. The
C calling convention and the C++ calling conventions are not
necessarily the same.

Code pointers
A code pointer is a function pointer. Compilers often provide
several different code pointers to support microcontrollers that
allow several different methods of calling a function.
Compilers for embedded systems usually provide the users
with the ability to use all these methods.

Do not confuse code pointers with data pointers.

Compilation unit
See Translation unit.
AFE1_AFE2-1:1

 935

936
Compiler options
Parameters you can specify to change the default behavior of
the compiler.

Composite state
A state that consists of concurrent regions, or mutually
exclusive states.

Context menu
A context menu appears when you right-click in the user
interface, and provides context-specific menu commands.

C-style preprocessor
A preprocessor is either a stand-alone application or an
integrated part of a compiler, that performs preprocessing of
the input stream before the actual compilation occurs. A
C-style preprocessor follows the rules set up in Standard C and
implements commands like #define, #if, and #include,
which are used to handle textual macro substitution,
conditional compilation, and inclusion of other files.

D
Data pointers
Many cores have different addressing modes to access
different memory types or address spaces. Compilers for
embedded systems usually have a set of different data pointer
types so they can access the available memory efficiently.

Data representation
How different data types are laid out in memory and what
value ranges they represent.

Declaration
A specification to the compiler that an object, a variable or
function, exists. The object itself must be defined in exactly
one translation unit (source file). An object must be declared
before the object can be referred to. Normally an object that is
used in many files is defined in one source file. A declaration

is normally placed in a header file that is included by the files
that use the object.

For example:

/* Variable "a" exists somewhere. Function
 "b" takes two int parameters and returns an
 int. */

extern int a;
int b(int, int);

Definition
The variable or function itself. Only one definition can exist
for each variable or function in an application. See also
Tentative definition.

For example:

int a;
int b(int x, int y)
{
 return x + y;
}

Device driver
A piece of software that acts as an interface to hardware
devices, to make it possible for application software to use the
hardware device without detailed knowledge of the exact
design of the device.

Dynamic initialization
Variables in a program written in C are initialized during the
initial phase of execution, before the main function is called.
These variables are always initialized with a static value,
which is determined either at compile time or at link time. This
is called static initialization. In C++, variables might require
initialization to be performed by executing code, for example,
running the constructor of global objects, or performing
dynamic memory allocation. The latter is called dynamic
initialization.

Dynamic memory allocation
There are two main strategies for storing variables: statically at
link time, or dynamically at runtime. Dynamic memory
allocation is often performed from the heap and it is the size of
AFE1_AFE2-1:1

IAR Visual State
User Guide

Glossary
the heap that determines how much memory that can be used
for dynamic objects and variables. The advantage of dynamic
memory allocation is that several variables or objects that are
not active at the same time can be stored in the same memory,
thus reducing the memory requirements of an application. See
also Heap memory.

Dynamic object
An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory
that is dynamically allocated. Compare Static object.

E
Element file
See Transition element file.

Embedded C++
A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that
performance and portability are particularly important in
embedded systems development was considered when
defining the language.

Embedded system
A combination of hardware and software, designed for a
specific purpose. Embedded systems are often part of a larger
system or product.

Emulator
An emulator is a hardware device that performs emulation of
one or more derivatives of a processor family. An emulator can
often be used instead of the actual core and connects directly
to the printed circuit board—where the core would have been
connected—via a connecting device. An emulator always
behaves exactly as the processor it emulates, and is used when
the debugging requires all systems actuators, or when
debugging device drivers.

Enumeration
A type which includes in its definition an exhaustive list of
possible values for variables of that type. Common examples
include Boolean, which takes values from the list [true, false],
and day-of-week which takes values [Sunday, Monday,

Tuesday, Wednesday, Thursday, Friday, Saturday].
Enumerated types are a feature of typed languages, including
C and Ada.

Executable image
Contains the executable image; the result of linking several
relocatable object files and libraries.

Exception
An exception is an interrupt initiated by the processor
hardware, or hardware that is tightly coupled with the
processor, for instance, a memory management unit (MMU).
The exception signals a violation of the rules of the
architecture (access to protected memory), or an extreme error
condition (division by zero).

Do not confuse this use of the word exception with the term
exception used in the C++ language (but not in Embedded
C++).

Extended keywords
Non-standard keywords in C and C++. These usually control
the definition and declaration of objects (that is, data and
functions). See also Keywords.

F
Filling
How to fill up bytes—with a specific fill pattern—that exists
between the sections in an executable image. These bytes exist
because of the alignment demands on the sections.

Format specifiers
Used to specify the format of strings sent by library functions
such as printf. In the following example, the function call
contains one format string with one format specifier, %c, that
prints the value of a as a single ASCII character:

printf("a = %c", a);
AFE1_AFE2-1:1

 937

938
G
General options
Parameters that you can specify to change the default behavior
of all tools that are included in IAR Visual State.

Generic pointers
Pointers that have the ability to point to all different memory
types in, for example, a core based on the Harvard architecture.

Global element
An event, action, variable, signal, etc, that is defined at project
level. Thus, it has the scope of the Visual State project,
including all Visual State systems contained in it.

H
Harvard architecture
A core based on the Harvard architecture has separate data and
instruction buses. This allows execution to occur in parallel.
As an instruction is being fetched, the current instruction is
executing on the data bus. Once the current instruction is
complete, the next instruction is ready to go. This theoretically
allows for much faster execution than a von Neumann
architecture, but adds some silicon complexity. Compare von
Neumann architecture.

Heap memory
The heap is a pool of memory that is reserved for dynamic
memory allocation. An application can request parts of the
heap for its own use; once memory is allocated from the heap
it remains valid until it is explicitly released back to the heap
by the application. This type of memory is useful when the
number of objects is not known until the application executes.
Note that this type of memory is risky to use in systems with a
limited amount of memory or systems that are expected to run
for a very long time.

Heap size
Total size of memory that can be dynamically allocated.

High-level device driver
A device driver written to control external peripheral units,
such as displays, etc. Compare Device driver and High-level
device driver.

Host
The computer that communicates with the target processor.
The term is used to distinguish the computer on which the
debugger is running from the core that the embedded
application you develop runs on.

I
IDE (integrated development environment)
A programming environment with all necessary tools
integrated into one single application.

Image
See Executable image.

Include file
A text file which is included into a source file. This is often
done by the preprocessor.

Initialized sections
Read/write sections that should be initialized with specific
values at startup.

Inlining
An optimization that replaces function calls with the body of
the called function. This optimization increases the execution
speed and can even reduce the size of the generated code.

Interrupt vector
A small piece of code that will be executed, or a pointer that
points to code that will be executed when an interrupt occurs.

Interrupt vector table
A table containing interrupt vectors, indexed by interrupt type.
This table contains the processor's mapping between interrupts
and interrupt service routines and must be initialized by the
programmer.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Glossary
Interrupts
In embedded systems, the use of interrupts is a method of
detecting external events immediately, for example a timer
overflow or the pressing of a button.

Interrupts are asynchronous events that suspend normal
processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by
both hardware (I/O, timer, machine check) and software
(supervisor, system call, or trap instruction). Compare Trap.

Intrinsic
An adjective describing native compiler objects, properties,
events, and methods.

Intrinsic functions
1. Function calls that are directly expanded into specific
sequences of machine code. 2. Functions called by the
compiler for internal purposes (that is, floating-point
arithmetic etc.).

K
Key bindings
Key shortcuts for menu commands used in IAR Visual State.

Keywords
A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they
cannot be used as identifiers (in other words, user-defined
objects such as variables or procedures). See also Extended
keywords.

L
L-value
A value that can be found on the left side of an assignment and
thus be changed. This includes plain variables and
dereferenced pointers. Expressions like (x + 10) cannot be
assigned a new value and are therefore not L-values.

Language extensions
Target-specific extensions to the C language.

Library configuration file
A file that contains a configuration of the runtime library. The
file contains information about what functionality is part of the
runtime environment. The file is used for tailoring a build of a
runtime library.

Local element
An event, action, variable, signal, etc, that is defined at
top-level state machine level. It normally has the scope of the
top-level state machine itself.

Local variable
See Auto variables.

Low-level device driver
A device driver written to control a chip’s on-board peripheral
units, such as A/D, timers, etc. Compare Device driver and
High-level device driver.

M
Macro
1. An assembler macro is user-defined sets of assembler lines
that can be expanded later in the source file by referring to the
given macro name. Parameters will be substituted if referred
to.

2. A C macro is a text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of
each macro is then substituted for any occurrences of the
macro name in the rest of the translation unit.

3. A C-SPY macro is a program that you can write to enhance
the functionality of C-SPY. A typical application of C-SPY
macros is to associate them with breakpoints; when such a
breakpoint is hit, the macro is run and can for example be used
to simulate peripheral devices, to evaluate complex conditions,
or to output trace data.

The C-SPY macro language is like a simple dialect of C, but is
less strict with types.
AFE1_AFE2-1:1

 939

940
Mailbox
A mailbox in an RTOS is a point of communication between
two or more tasks. One task can send messages to another task
by placing the message in the mailbox of the other task.
Mailboxes are also known as message queues or message
ports.

Memory area
A region of the memory.

Memory bank
The smallest unit of continuous memory in banked memory.
One memory bank at a time is visible in a core’s physical
address space.

Memory map
A map of the different memory areas available to the core.

Memory model
Specifies the memory hierarchy and how much memory the
system can handle. Your application must use only one
memory model at a time, and the same model must be used by
all user modules and all library modules.

Microcontroller
A microprocessor on a single integrated circuit intended to
operate as an embedded system. In addition to a CPU, a
microcontroller typically includes small amounts of RAM,
PROM, timers, and I/O ports.

Microprocessor
A CPU contained on one (or a few) integrated circuits. A
single-chip microprocessor can include other components
such as memory, memory management, caches, floating-point
unit, I/O ports and timers. Such devices are also known as
microcontrollers.

Module, link
Normally, the result of compiling a single translation unit. A
module consists of, for example, symbol definitions,
references, code, data, and relocation information. An object
file usually contains one module. See Translation unit and
Object file, relocatable.

N
Navigator workspace
A logical representation for handling a collection of projects,
systems, and state machine diagrams, and their files. The
workspace contains session-specific information. It is stored in
a file with the filename extension vnw.

Non-volatile storage
Memory devices such as battery-backed RAM, ROM,
magnetic tape and magnetic disks that can retain data when
electric power is shut off. Compare Volatile storage.

O
Object
An object file or a library member.

Object file, absolute
See Executable image.

Object file, relocatable
The result of compiling or assembling a source file. See
Module, link.

Operator
A symbol used as a function, with infix syntax if it has two
arguments (+, for example) or prefix syntax if it has only one
(for instance, bitwise negation, ~). Many languages use
operators for built-in functions such as arithmetic and logic.

Operator precedence
Each operator has a precedence number assigned to it that
determines the order in which the operator and its operands are
evaluated. The highest precedence operators are evaluated
first. Use parentheses to group operators and operands to
control the order in which the expressions are evaluated.

Options
A set of commands that control the behavior of a tool, for
example the compiler or linker. The options can be specified
on the command line or in IAR Visual State.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Glossary
Output image
See Executable image.

P
Parameter
Parameters are used in the definition of a function, template, or
macro. Parameters are also referred to as formal parameters.
Compare Argument.

Parameter passing
See Calling convention.

Peripheral unit
A hardware component other than the processor, for example
memory or an I/O device.

Pointer
An object that contains an address to another object of a
specified type.

#pragma
During compilation of a C/C++ program, the #pragma
preprocessing directive causes the compiler to behave in an
implementation-defined manner. This can include, for
example, producing output on the console, changing the
declaration of a subsequent object, changing the optimization
level, or enabling/disabling language extensions.

Preemptive multitasking
An RTOS task is allowed to run until a higher priority process
is activated. The higher priority task might become active as
the result of an interrupt. The term preemptive indicates that
although a task is allotted to run a given length of time (a
timeslice), it might lose the processor at any time. Each time
an interrupt occurs, the task scheduler looks for the highest
priority task that is active and switches to that task. If the
located task is different from the task that was executing before
the interrupt, the previous task is suspended at the point of
interruption.

Compare Round Robin.

Preprocessing directives
A set of directives that are executed before the parsing of the
actual code is started.

Preprocessor
See C-style preprocessor.

Project / Visual State project
A collection of systems. Each project can contain several state
machine diagrams in addition to global elements. The project
data is stored in a file with the filename extension vsp.

Project options
General options that apply to an entire project, for example the
signal queue mode which is a project option. The signal queue
mode can be set on a project in the Designer.

PROM
Programmable Read-Only Memory. A type of ROM that can
be programmed only once.

Q
Qualifiers
See Type qualifiers.

R
Real-time operating system (RTOS)
An operating system which guarantees the latency between an
interrupt being triggered and the interrupt handler starting, and
how tasks are scheduled. An RTOS is typically much smaller
than a normal desktop operating system. Compare Real-time
system.

Real-time system
A computer system whose processes are time-sensitive.
Compare Real-time operating system (RTOS).

Region
A region defines concurrent subsystems and represents
hierarchical state machines.
AFE1_AFE2-1:1

 941

942
Register
A small on-chip memory unit, usually just one or a few bytes
in size, which is particularly efficient to access and therefore
often reserved as a temporary storage area during program
execution.

Register variables
Typically, register variables are local variables that are placed
in registers instead of on the (stack) frame of the function.
Register variables are much more efficient than other variables
because they do not require memory accesses, so the compiler
can use shorter/faster instructions when working with them.
See also Auto variables.

Reset
A reset is a restart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft
reset). A hard reset can usually not be distinguished from the
power-on condition, which a soft reset can be. In IAR Visual
State, reset is typically related to sending SE_RESET to a
system, which means that the Visual State system is reset.

ROM-monitor
A piece of embedded software designed specifically for use as
a debugging tool. It resides in the ROM of the evaluation board
chip and communicates with a debugger via a serial port or
network connection. The ROM-monitor provides a set of
primitive commands to view and modify memory locations
and registers, create and remove breakpoints, and execute your
application. The debugger combines these primitives to fulfill
higher-level requests like program download and single-step.

Round Robin
Task scheduling in an operating system, where all tasks have
the same priority level and are executed in turn, one after the
other. Compare Preemptive multitasking.

RTOS
See Real-time operating system (RTOS).

R-value
A value that can be found on the right side of an assignment.
This is just a plain value. See also L-value.

S
Saturation arithmetics
Most, if not all, C and C++ implementations use mod-2N
2-complement-based arithmetics where an overflow wraps the
value in the value domain, that is (127+1)=-128. Saturation
arithmetics, on the other hand, does not allow wrapping in the
value domain, for instance, (127+1)=127, if 127 is the upper
limit. Saturation arithmetics is often used in signal processing,
when an overflow condition would have been fatal if wrapping
had been allowed.

Short addressing
Many cores have special addressing modes for efficient access
to internal RAM and memory-mapped I/O. Short addressing is
therefore provided as an extended feature by many compilers
for embedded systems. See also Data pointers.

Side effect
An expression in C or C++ is said to have a side-effect if it
changes the state of the system. Examples are assignments to
a variable, or using a variable with the post-increment operator.
The C and C++ standards state that a variable that is subject to
a side-effect should not be used more that once in an
expression. As an example, this statement violates that rule:

*d++ = *d;

Simulator
A debugging tool that runs on the host and behaves as similar
to the target processor as possible. A simulator is used for
debugging the application when the hardware is unavailable,
or not needed for proper debugging. A simulator is usually not
connected to any physical peripheral devices. A simulated
processor is often slower, or even much slower, than the real
hardware.

Single stepping
Executing one instruction or one C statement at a time in the
debugger.

State machine diagram
A graphical representation of your state machine model, or
parts of your model.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Glossary
State machine file
A file that contains the state machine diagram for the designed
state machine model. The state machine file represents a way
of modularizing a Visual State system. When a system is split
into more than one state machine file, it is possible to gain the
benefits of team development on the same system. The
filename extension is vsr.

State machine model
The state machine part of your application as designed with
IAR Visual State.

State machine template
The design of (or part of) a state machine model that can be
reused. The template can contain states, regions, elements, and
transitions. The template can even itself refer to another state
machine template. A state machine template can be used at any
level in the design except at the top. It is stored in a file with
the filename extension vssm. Compare Submachine state.

Static object
An object whose memory is allocated at link-time and is
created during system startup (or at first use). Compare
Dynamic object.

Statically allocated memory
This kind of memory is allocated once and for all at link-time,
and remains valid all through the execution of the application.
Variables that are either global or declared static are
allocated this way.

Structure value
An umbrella term for structs and unions. A struct is a
collection of data object placed sequentially in memory
(possibly with pad bytes between them). A union is a
collection of data sharing the same memory location.

Submachine state
A state that can refer to a specific state machine template, to
provide a concrete instance of the state machine template. As
part of the submachine state, the parts of the state machine
template meant to be specified when used, must be bound.
Compare State machine template.

Substate
A state that is below another state in the state machine
diagram.

Superstate
A state that in itself contains one or more state machines.

System / Visual State system
A collection of one or more top-level state machines, and their
files (filename extension vsr). If top-level state machines are
grouped in the same system, they can be synchronized to each
other via state conditions. The system is the logical unit of a
state machine model. Thus, when an event occurs, it is
interpreted on a per system basis. Compare Top-level state
machine.

T
Target
1. An architecture. 2. A piece of hardware. The particular
embedded system you are developing the application for. The
term is usually used to distinguish the system from the host
system.

Task (thread)
A task is an execution thread in a system. Systems that contain
many tasks that execute in parallel are called multitasking
systems. Because a processor only executes one instruction
stream at the time, most systems implement some sort of
task-switch mechanism (often called context switch) so that all
tasks get their share of processing time. The process of
determining which task that should be allowed to run next is
called scheduling. Two common scheduling methods are
Preemptive multitasking and Round Robin.

Tentative definition
A variable that can be defined in multiple files, provided that
the definition is identical and that it is an absolute variable.

Timer
A peripheral that counts independent of the program
execution.
AFE1_AFE2-1:1

 943

944
Timeslice
The (longest) time an RTOS allows a task to run without
running the task-scheduling algorithm. A task might be
allowed to execute during several consecutive time slices
before being switched out. A task might also not be allowed to
use its entire time slice, for example if, in a preemptive system,
a higher priority task is activated by an interrupt.

Top-level state machine
The topmost state in a state hierarchy determines the top-level
state machine. Such a state cannot be nested, they can only be
building blocks right below a system. They are stored in files
with the filename extension vsr. Compare System / Visual
State system.

Translation unit
A source file together with all the header files and source files
included via the preprocessor directive #include, except for
the lines skipped by conditional preprocessor directives such
as #if and #ifdef.

Transition element
The non-graphical elements available in IAR Visual State and
which you can use when defining conditions and actions for
transitions and state reactions.

You create transition elements in the scope of top-level state
machines, projects, state machine templates, or element files.

Transition element file
A file that contains transition elements and nothing else.
Having transition elements in element files allows you to reuse
small blocks of transition elements where you want. Transition
element files are similar to include files in the C/C++
programming language. Adding an element file makes the
transition elements in the files defined and available where you
added them. Transition element files have the filename
extension .vste.

Trap
A trap is an interrupt initiated by inserting a special instruction
into the instruction stream. Many systems use traps to call
operating system functions. Another name for trap is software
interrupt.

Type qualifiers
In Standard C/C++, const or volatile. IAR Systems
compilers usually add target-specific type qualifiers for
memory and other type attributes.

V
Volatile storage
Data stored in a volatile storage device is not retained when the
power to the device is turned off. To preserve data during a
power-down cycle, you should store it in non-volatile storage.
This should not be confused with the C keyword volatile.
Compare Non-volatile storage.

von Neumann architecture
A computer architecture where both instructions and data are
transferred over a common data channel. Compare Harvard
architecture.
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index

Index
A
-a (Verificator command line option) 449
action expression function pointer table, defining. 711
action expression function
pointer table, defining (HCoder) . 532
action expressions

in generated code . 461
syntax. 198

action function arguments. 243
specifying . 185

action functions
cannot be defined . 178
connect to breakpoint . 368
creating . 128
declaring in external C file. 192
definition . 182
detecting unused . 435, 437
editing . 244
listing all . 395
parameter arguments . 185
recording execution of . 349
setting return values in Validator 332
viewing during validation . 323

actions. 180
analyzing use of . 345
definition . 118
on transitions . 172
signal . 173
viewing during validation . 322

Actions window (C-SPYLink) . 779
Actions window (Validator) . 364
active, setting project or system as 79
activity in model, measuring. 346
Adaptive API

how to set up the file structure 574
overview . 569

addition operator. 195
-af_activeState (HCoder option) . 524

-af_gsos (HCoder option) . 524
-af_gvv (HCoder option). 525
-af_inquiry (HCoder option) . 525
-af_nofEventParameters (HCoder option). 526
-af_nofEvents (HCoder option). 526
-af_nofInstances (HCoder option). 527
-af_nofMachines (HCoder option) 527
-af_nofStates (HCoder option) . 528
-af_nofVariables (HCoder option) 528
-af_parentMachine (HCoder option) 529
-af_parentState (HCoder option). 529
-af_topMachine (HCoder option) 530
alias names for reactions, toggling display of 290
alias (optional name) for reactions 264, 268
alias (optional name) for states 262, 266

toggling display of . 291
alias (optional name) for transitions 274

toggling display of . 291
Alternative (feature type) . 219
Altia menu . 902
ambiguity

detecting ambiguous assignments 442–443
detecting ambiguous behavior 417
testing for increases code size 462

& (bitwise AND operator) . 195
&& (logical AND operator) . 195
analysis

dynamic . 345, 375
static . 345, 389

AND operators . 195
animating debug sessions graphically 335
Animation Speed dialog box. 365
ANSI C. 460
API functions

C# syntax . 592
for finding events 596, 598, 646, 648
for getting ASCII names
of identifiers.592, 594, 607–608, 642–643, 658–659
for preparing finding events 604, 655
Java syntax. 592
AFE1_AFE2-1:1

 945

946
simultaneous calls to same. 585
API Functions (Classic Coder Options dialog box). 689
API Functions (HCoder Coder Options dialog box) 510
-apiprefix (Coder option) . 708
-api_type (Coder option). 709
API, see Visual State API.
application development, overview. 63–65
application (user)

definition of . 935
typical components . 458

architecture, definition of . 935
argument

defining for action functions 185, 243
definition of . 935

arithmetic errors, detecting . 445
arithmetic operators . 195–196
-armsemihostingbreakpoint (Coder option). 709
-armsemihostingbreakpoint (HCoder option) 530
array subscription errors, detecting 446
ASCII names
of identifiers592, 594, 607–608, 642–643, 658–659
assignment operator . 194
assignments. 172

adding to transitions. 187
viewing during validation . 322

assumptions, programming experience 45
* (multiplication operator) . 195
asynchronous events, support for . 61
-autoentryfunction (Coder option) 710
-autoentryfunction (HCoder option) 531
-autoexitfunction (Coder option). 710
-autoexitfunction (HCoder option) 531

B
-B (Verificator command line option). 449
backup files, filename extension . 58
batch files, definition of . 935
binary arithmetic operators . 195

bit manipulation operators . 195
bitfield, definition of . 935
bitwise AND operator . 195
bitwise complement operator . 196
bitwise exclusive OR operator . 195
bitwise inclusive OR operator. 195
bitwise operators. 196
bk1 (filename extension). 58
Blank Project . 78
blue states in graphical animation 337
bold style, in this guide . 51
-bottomtext_justification (Documenter option). 842
-bottomtext_str (Documenter option) 843
-bottom_margin (Documenter option) 842
breakpoint conditions . 323
Breakpoint Reached dialog box . 365
breakpoints

conditional . 323
defining . 329
for graphical animation . 336, 338
listing all . 366
removing . 330
using . 330

Breakpoints Setup dialog box 367–373
Breakpoints window . 366
Breakpoints window (C-SPYLink) 780
breakpoint, definition of . 935

C
C header files, importing into Designer project. 234, 316
C syntax not allowed in guard or action expressions. 199
calling convention, definition of . 935
calls to same API function, simultaneous 585
calls to same HCoder API function, simultaneous 465
check mark in Guard Expressions window 380
choice state

definition of . 150
drawing . 159
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
^ (bitwise exclusive OR operator). 195
Classic Coder Options dialog box. 674

API Functions page . 689
Code page . 679
Configuration page . 675
C-SPYLink page . 692
C++/C#/Java page . 690
Extended Keywords page. 684
File Output page . 677
MISRA page . 697
Names page . 686
Readable Code page. 691
RealLink page . 694
Style page . 682
Types page. 696

Classic Coder options, on the command line 701
-classname (Coder option) . 711
code

readable. See readable code
required for an application . 65
table-based. See table-based code

code generation
code size . 461–462
C#, enabling. 573
C++, enabling . 573
for an API . 572
Java, enabling . 573
layers . 461

API layer. 461
global layer . 461
local layer . 461

optimizing for specific compiler 463
overview . 457
readable code. See readable code
table-based code. See table-based code

code pointers, definition of . 935
Code (Classic Coder Options dialog box) 679
Code (HCoder Coder Options dialog box) 499
Coder diagnostic messages, listed in report. 459

Coder options
GUI for . 674
listed in report . 458
unavailable (dimmed) . 80

Coder report
contents . 458
filename extension . 58
specifying file path. 821
specifying filename . 678
specifying filename (-R) . 732

Coder report (HCoder)
specifying filename . 497
specifying filename (-R) . 557

Coder statistics
in report file . 678
in report file (-R) . 732
listed in report . 458

Coder statistics (HCoder)
in report file . 497
in report file (-R) . 557

-code_fname (Documenter option) 843
-code_fsize (Documenter option) 843
-code_fstyle (Documenter option) 844
colored states in graphical animation 337
command line options

Classic Coder . 701
Documenter . 837
Hierarchical Coder. 517
typographic convention for . 51
Verificator . 447

command prompt icon, in this guide 51
commands

recording . 351
user-specified. 107
viewing recorded output from 351

Commands menu (Visual State Compare Tool) 105
comparing changes between versions of files 101
compiler

assumptions on . 59
AFE1_AFE2-1:1

 947

948
not supporting reentrancy. 586
not supporting reentrancy (HCoder API) 466
optimizing code for . 463
using with readable code . 462

compiler options, definition of . 936
complement operator . 196
completion transitions. 173
composite state

creating and using . 159
definition of . 140, 936
inserting in diagram . 308
reusing . 204

Compositional (verification mode) 416
optimizing . 420
setting from command line . 449
setting in GUI . 427

computer style, typographic convention 51
concurrent regions . 120
condition of transition. 180
conditional breakpoints. 323
conditions

guard expressions. 169
overview . 168
state conditions . 170
triggers. 169

configuration
Classic Coder . 675
Designer. 235, 289
Documenter . 816
Hierarchical Coder. 495
Navigator . 87
simulation . 324
Validator . 324
Verificator . 426

Configuration (Classic Coder Options dialog box) 675
Configuration (Documenter Options dialog box) 817
Configuration (HCoder Coder Options dialog box) 495
conflicts

checking for . 415

detecting . 439
excluding from verification . 453

Connect Elements dialog box . 903
connector state

context menu . 293
creating . 157
definition of . 149
inserting . 310
renaming . 157

consistency, tracking in project. 74
-constactionfpt (Coder option) . 711
-constactionfpt (HCoder option) . 532
constants . 198

creating in states and transitions. 246
detecting unused . 434, 437
in generated code . 461
listing all . 395
viewing during validation . 323

constants (in C header files), importing to Designer 316
-constcml (Coder option) . 712
-constguardfpt (Coder option). 712
-constguardfpt (HCoder option) . 532
constraints. 218

applying to state reactions . 189
-constsc (HCoder option) . 533
-constvbfpt (HCoder option) . 533
context menu, definition of . 936
contradictions

detected by API . 632
testing for increases code size 462

Control Center . 909
conventions, used in this guide . 51
copyright notice . 2
-cpp (HCoder option) . 534
-cppcode (Coder option) . 713
-cppsourcefileext (Coder option) 713
-cppsourcefileext (HCoder option) 534
cre (filename extension) . 58
cross in Guard Expressions window 380
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
-cscode (Coder option) . 714
-csourcefileext (Coder option) . 714
-cspylink (Coder option) . 714
-cspylink (HCoder option) . 534
custom commands . 107

deleting . 109
editing . 109
executing . 109
executing silently . 113
renumbering. 110

Customize Appearance dialog box (Designer) 242
Customize Graphical Animation dialog box 338
C-SPYLink (Classic Coder Options dialog box). 692
C-SPYLink (Hierarchical Coder Options dialog box). . . . 511
C-style preprocessor, definition of 936
C# code

enabling . 573, 676
no header files . 590

C++ code
enabling . 573, 676
file structure. 571
file structure (HCoder). 467
generating . 571
generating (HCoder API) . 466
not supported by readable code 571

C++ terminology. 51
C++/C#/Java (Classic Coder Options dialog box). 690
C89 . 460
C99, specifying representation 197, 696, 746

D
-D (Coder option) . 715
-D (HCoder option). 535
data model, definition of . 936
data representation, definition of. 936
data types . 197
dead ends

checking for . 415

detecting . 440–442
excluding from verification . 453

Debug menu . 404
Debug toolbar . 362

using . 353
debugging . 322

animating graphically. 335
toggling Validator modes. 334

declaration, definition of . 936
declaring global elements locally 185
deduction

calling event deduction functions. 576
getting information on . 364
pre- and post-deduct conditions 767

deep history entry into state . 141
deep history states

creating . 157
definition . 147

default entry into state. 141
default state. 141

changing name of. 129
example . 142

Define Action Function Arguments dialog box (Designer)243
Define Altia Properties dialog box 905
definition, definition of . 936
-design (Documenter option) . 844
design structure, viewing in Designer 279
Designer

configuring messages. 290
Diagram toolbar . 239
general context menus . 298
interval backup files, filename extension 58
main window . 237
settings. 235, 289
shortcut keys . 313
Size toolbar . 239–240
status bar . 241
toolbar . 238
transition element files, filename extension 58
AFE1_AFE2-1:1

 949

950
using (example procedure). 126
Variant toolbar . 241
version number . 313
Zoom toolbar . 240

Designer project
creating . 229–230
importing C header files. 234, 316

-detail (Documenter option) . 844
development process, overview 63–65
device driver, definition of . 936
diff. See comparing changes between versions of files
digital signature . 74
disclaimer . 2
division by zero, detecting . 446
division operator . 195
-dlibbreakpoint (Coder option) . 716
-dlibbreakpoint (HCoder option). 536
Do not show this message again (Navigator option) 86
document conventions . 51
documentation

overview of guides. 50
overview of this guide . 46
this guide . 45

Documenter options
GUI for . 816
on the command line . 837
unavailable (dimmed) . 80

Documenter Options dialog box . 816
Documenter-generated reports. See generated Visual State
Project reports
Documenter, configuring . 816
domain errors

detecting . 445
excluding from verification . 453

-ds (Verificator command line option) 450
-dso (HCoder option) . 536
-dw (Coder option) . 716
dynamic allocation of
system objects. enabling in Hierarchical Coder 536
dynamic analysis. 345

Dynamic Analysis window . 375
dynamic evaluation, of guards . 150
dynamic initialization, definition of 936
dynamic memory allocation, definition of 936
dynamic object, definition of . 937

E
Edit Action dialog box (Designer) 244
Edit Constant dialog box (Designer) 246
Edit Enumeration dialog box (Designer). 247
Edit Event dialog box (Designer) 248
Edit Event Group dialog box (Designer). 250
Edit External Variable dialog box (Designer) 252
Edit Features dialog box (Designer) 253
Edit Internal Variable dialog box (Designer) 255
Edit menu

in Designer. 305
in Validator . 401

Edit Note dialog box (Designer) . 256
Edit Project dialog box (Designer) 257
Edit Region dialog box (Designer) 259
Edit Signal dialog box (Designer). 260
Edit State dialog box (Designer) 261, 265
Edit System dialog box (Designer) 270
Edit Transition dialog box (Designer). 272
Edit Variants dialog box (Designer) 274
edition, of this guide . 2
editor

Altia . 889
using external. 192, 290

-ei (Documenter option) . 845
element explanations

absent from digital signature . 74
importing/exporting using XMI 928–929
in generated code . 461
retrieving from readable code using API function 577
searching for . 276

element file. See transition element file
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
elements
checking if activated . 414
detecting unused . 434
excluding from verification . 453
message when detecting non-verifiable 291
scope . 178

-element_lists (Documenter option) 845
embedded application (created with IAR Visual State)

code required for . 65
typical components of . 458

Embedded C++
Adaptive API portability compliant with 589
Classic Coder table-based code conformant with. 571
definition of . 937
Hierarchical Coder table-based code conformance . . . 466

embedded system, definition of . 937
-embeddiagrams (Documenter option) 846
emulator (C-SPY driver), definition of 937
entry point state . 201

drawing . 210
entry reactions. 150

creating . 153
definition of . 151
reusing . 300
settings. 290

Entry (keyword) . 151
enumerations. 198

editing . 247
enumeration, definition of. 937
-epm (HCoder option). 537
== (equal to operator) . 195
= (assignment operator) . 194
error messages in verification . 415
evaluation of guards, dynamic . 150
event groups . 180

detecting unused . 435, 437
editing . 250

event parameters
declaring . 180

detecting unused . 434, 437
specifying in Validator. 326
transferring to HCoder API . 537

event sequence files . 355
example . 356
syntax. 355

event sequences
playing . 350
recording . 349

events . 596, 598, 604, 646, 648, 655
analyzing use of . 345
as breakpoint conditions . 370
creating . 127
definition . 118, 179
detecting unused . 435, 437
editing . 248
handling on actual hardware . 123
in generated code . 461
monitoring . 398
processing . 122
runtime behavior . 122
sending in test sequence. 351
sending manually in Validator 327

Events window . 377
examples

ambiguous behavior . 418–419
conflicting transitions . 415
design procedure . 126
event sequence file. 356
invoking the Verificator. 447
local dead ends. 415
never activated elements . 414
source code . 67
verification. 414
verification checks . 434–446
Visual State projects . 66

exceptions, definition of . 937
! (logical negation operator) . 196
!= (not equal to operator) . 195
AFE1_AFE2-1:1

 951

952
-exclude (HCoder option) . 537
excluding states or regions from processing 163
executable image, definition of . 937
exit point state. 201

drawing . 210
exit reactions. 150

creating . 153
definition of . 152
reusing . 300
settings. 290

Exit (keyword) . 153
explicit entry into state . 141
explicit triggers . 169
expressions

as breakpoint conditions . 373
relational . 170
See also action expressions and guard expressions

Extended Keywords (Classic Coder Options dialog box) . 684
Extended Keywords (HCoder Coder Options dialog box) 508
extended keywords, definition of 937
external environment, interaction with Visual State 124
external logic, in global code layer 461
external variables

analyzing use of . 345
creating . 252
definition . 198
in generated code . 461

F
-f (Verificator command line option) 450
feature tree . 217
features . 217

alternative . 219
defining . 218
editing . 253
mandatory . 219
optional . 219
Or type. 219

overview . 75
type of . 219
working with . 253

-fiAutoInclude (Documenter option). 846
-fiCriteria (Documenter option) . 847
File Input (Documenter Options dialog box) 819
File menu

in Designer. 303
in Validator . 400
in Visual State Compare Tool 104

File Output (Classic Coder Options dialog box) 677
File Output (Documenter Options dialog box) 821
File Output (HCoder Coder Options dialog box) 496
file structure

how to set up for Adaptive API 574
in Adaptive API . 570
viewing in Designer . 279

File View (Workspace Browser). 93
File View, in Project Browser window (Designer) 279
filename extensions . 58
-fiLevel (Documenter option) . 847
filling, definition of. 937
Find dialog box (Designer) . 276
Find Trace dialog box . 379
-fiSearchSubDir (Documenter option) 848
Fonts (Documenter Options dialog box) 826
-footertextc (Documenter option) 849
-footertextl (Documenter option) 849
-footertextr (Documenter option) 850
-footer_from_edge (Documenter option) 848
-footer_separator (Documenter option). 849
fork states

creating . 158
definition of . 148

Format menu (Designer) . 310
format specifiers, definition of . 937
Format (Documenter Options dialog box) 823
Front Page (Documenter Options dialog box). 827
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
Full Compositional (verification mode) 416
optimizing . 420
setting in GUI . 427

Full Forward (verification mode) 416
setting in GUI . 427

-fullinstrumentation (Coder option) 717
-fullinstrumentation (HCoder option) 538
-fullstatenames (Documenter option) 850
-funcexph (Coder option) . 717
-funcexph (HCoder option). 538
function declarations (in C header files)

importing to Designer . 316
mapping to Visual State action functions 234

function pointer tables . 680
function pointer tables (HCoder) 501
functional safety, suitability for . 60
functions

connecting/disconnecting (Uniform API) 575
initializing, calling . 575
intrinsic, definition of. 939

G
-gds (Coder option). 718
-gds (HCoder option) . 539
general options

definition of . 938
Verificator . 427
See also project options

generated Visual State Project reports. 813
-generatetimeandversion (Coder option). 718
generic pointers, definition of . 938
-gip (HCoder option) . 539
global element

converting local element into 128, 185
creating . 127
declaring locally. 185
definition of . 938
viewing all . 295

graphical animation . 335
customizing visually . 336, 338
file containing . 58

graphical objects
inserting (Designer Insert menu) 308
working with (Designer Format menu) 310

> character in Events window. 377
>= (greater than or equal to operator) 195
> (greater than operator) . 195
>> (right shift operator) . 195
green check mark in Guard Expressions window 380
Grid Setup dialog box (Designer) 277
grid, snapping to . 277
guard expressions . 169

adding to transitions. 187
as breakpoint conditions . 373
function pointer table, defining 712
function pointer table, defining (HCoder) 532
in generated code . 461
syntax. 198
viewing during validation . 323

Guard Expressions window . 380
guards, dynamic evaluation of . 150

H
-H (Coder option) . 719
-H (HCoder option). 540
Harvard architecture, definition of 938
HCoder API

Coder-generated source files . 471
functions, summary of . 473
overview . 465
source files. 471

HCoder API functions, simultaneous calls to same. 465
-hdr_fname (Documenter option) 850
-hdr_fsize (Documenter option) . 851
-hdr_fstyle (Documenter option). 851
-headertextc (Documenter option) 852
AFE1_AFE2-1:1

 953

954
-headertextl (Documenter option) 852
-headertextr (Documenter option). 853
-header_from_edge (Documenter option) 851
-header_separator (Documenter option) 852
Header/Footer (Documenter Options dialog box) 829
heap memory

definition of . 938
using . 680, 748

heap size, definition of . 938
Help menu

in Designer. 313
in Validator . 407
in Visual State Compare Tool 105

Hierarchical Coder
See also HCoder and Coder
starting from command line . 518

Hierarchical Coder Options dialog box. 494
API Functions page . 510
Code page . 499
Configuration page . 495
C-SPYLink page . 511
Extended Keywords page. 508
File Output page . 496
Memory page. 498
Names page . 513
Optimization page . 504

Hierarchical Coder options, on the command line 517
high-level device driver, definition of. 938
host, definition of . 938
HTML Styles (Documenter Options dialog box) 834
HTML Viewer window. 85
-html_stl (Documenter option) . 853
-html_uhover (Documenter option) 853
human-readable code. See readable code
human/machine interface . 883

I
IAR Embedded Workbench

specifying location of. 87
starting . 98

IAR Visual State Compare Tool . 101
IAR Visual State Compare Tool window 103
IAR Visual State. See Visual State.
-ibat (Documenter option). 854
icons, in this guide . 51
identifiers

ASCII names592, 594, 607–608, 642–643, 658–659
IDE, definition of . 938
-iev (Coder option) . 719
-iiv (Coder option) . 720
-il (Documenter option) . 854
images, adding to Designer notes 257
implicit triggers. 169
include files, definition of . 938
-include_excluded (Coder option). 720
including excluded states or regions in processing 163
initial states

creating . 157
definition of . 141
example . 142

initialization
in Validator . 332
setting up . 151

initialized sections, definition of . 938
initializing functions

calling in Adaptive API . 574
calling in Uniform API . 588
calling in Visual State API. 575

INITRESET (event sequence file keyword) 355
inlining, definition of . 938
Insert menu (Designer) . 308
instances of state machine template 210
instances of systems . 126

API managing . 579
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
creating . 235, 271
in C++ API code . 582
in C++ API code (HCoder) . 468
reordering in Validator. 333

interaction with external environment. 124
-interface (Documenter option). 854
internal instances, reinitializing (HCoder) 558
internal reactions. 150

creating . 153
definition of . 151
reusing . 300
settings. 290

internal variables
analyzing use of . 345
creating . 255
in generated code . 461
scope . 198

Internet browser toolbar . 84
interoperability with other tools . 57
interrupt vector table, definition of 938
interrupt vector, definition of . 938
interrupts

definition of . 939
handling . 61
trap. 944

intrinsic functions, definition of . 939
intrinsic, definition of . 939
-introduction (Documenter option) 855
-ipev (HCoder option). 540
-isev (HCoder option) . 541
ISO/ANSI C . 460
-issn (HCoder option) . 541
-isvn (HCoder option) . 542
italic style, in this guide . 51
-itcfe (HCoder option) . 542
-ivsufp (HCoder option) . 543

J
Java code

enabling . 573, 676
no header files . 590
specifying package name 691, 731

join states
creating . 158
definition of . 148

junction states
definition of . 149
drawing . 159
inserting . 309

-jvcode (Coder option) . 721

K
key bindings, definition of . 939
-keywordheaderfile (Coder option) 721
keywords

definition of . 939
specifying extended keywords 684
specifying extended keywords (HCoder) 508
specifying for RealLink . 694

-kw_actionexpr (Coder option) . 722
-kw_actionexpr (HCoder option) 543
-kw_clsame (HCoder option) . 543
-kw_context (Coder option) . 722
-kw_corelogic (Coder option) . 722
-kw_dbdata (Coder option) . 723
-kw_dbexpr (HCoder option) . 544
-kw_guardexpr (Coder option) . 723
-kw_guardexpr (HCoder option). 544
-kw_intvar (Coder option) . 723
-kw_prj_extvar (Coder option) . 724
-kw_prj_extvar (HCoder option). 545
-kw_rlcd (Coder option) . 724
-kw_rld (Coder option) . 725
-kw_rlec (Coder option) . 725
AFE1_AFE2-1:1

 955

956
-kw_rlpd (Coder option) . 726
-kw_runtimeinfo (Coder option) . 726
-kw_runtimeinfo (HCoder option) 545
-kw_systemClass (HCoder option) 546
-kw_systemObject (HCoder option) 546
-kw_sys_extvar (Coder option). 726
-kw_sys_extvar (HCoder option) 546

L
language extensions, definition of. 939
languages, supported. 45
-large (Verificator command line option) 450
layer, of generated code . 461
left shift operator. 195
-left_margin (Documenter option) 855
less than or equal to operator . 195
<= (less than or equal to operator) 195
< (less than operator) . 195
<< (left shift operator). 195
library configuration file, definition of 939
lightbulb icon, in this guide. 51
live lock . 182
local element

converting to global element 128, 185
creating . 127
definition of . 939

local transitions. 173
lock, live . 182
Log Mismatch dialog box . 381
logical AND operator . 195
logical negation operator. 196
logical operators . 195–196
logical OR operator. 195
low-level device driver, definition of 939
-lssn (HCoder option) . 547
L-value, definition of . 939

M
-macros (HCoder option) . 547
macrosteps . 122
macros, definition of . 939
mailbox (RTOS), definition of . 940
Mandatory (feature type) . 219
Mealy notation, compliance with . 61
memory

accessing efficiently using data pointers 936
adjusting C-SPYLink usage of. 559, 736
adjusting C-SPYLink usage of (Classic Coder) . . 693, 741
adjusting C-SPYLink usage of (HCoder). 512, 561
allocation error (SES_MEM_ERR) 670
choice of API affecting consumption 460
freeing (SMP_Free) . 645
RealLink consumption of. 802
using less when verifying. 420–421, 450
using the heap . 680, 748

memory areas
definition of . 940
RealLink requirements. 790

memory bank, definition of. 940
memory map, definition of . 940
memory model, definition of . 940
Memory (HCoder Coder Options dialog box). 498
menu bar, Navigator . 82
menu bar, Validator . 361
messages (Designer), settings . 290
-mf (Documenter option) . 856
microcontroller, definition of . 940
microprocessor, definition of . 940
microsteps. 122
-middletext_justification (Documenter option) 856
-middletext_str (Documenter option) 856
minus operators. 196
- (subtraction operator) . 195
- (unary minus operator) . 196
MISRA (Classic Coder Options dialog box) 697
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
model characteristics, listed in report 458
model. See state machine model
modes (Validator) . 322

toggling . 334
modules, definition of . 940
modulus operator . 195
monitoring model behavior. 398
multiplication operator . 195
multitasking, definition of. 941

N
names of identifiers. .592, 594, 607–608, 642–643, 658–659
Names (Classic Coder Options dialog box) 686
Names (HCoder Coder Options dialog box) 513
-namespace (Coder option) . 727
-namespace (HCoder option) . 547
naming conventions . 52
Navigator

adding an existing workspace . 78
configuring . 87
creating a workspace . 76
menu bar . 82
shortcut keys . 100
toolbars . 83

Internet browser . 84
status bar . 85
Variant . 84

Navigator main window . 82
Navigator Reload Files dialog box 86
Navigator Settings dialog box. 87
Navigator workspaces. 73

definition of . 940
filename extension . 58

negation operator . 196
negative state conditions . 171
New Project dialog box. 89
New Workspace dialog box . 90

node space
optimizing size for verification 420
specifying from command line. 451

NOINIT (event sequence file keyword) 355
non-verifiable elements. 417
non-volatile storage, definition of 940
not equal to operator . 195
notations . 61
notes (Designer), editing. 256
-no_warnings (Coder option) . 727
-no_warnings (HCoder option) . 548

O
-oa (Coder option). 728
object file (absolute), definition of 940
object file (relocatable), definition of 940
object, definition of. 940
-of (Documenter option) . 857
off-page regions . 120, 161, 163
-og (Coder option) . 728
-omitcontradictiontests (Coder option) 729
Open Altia Model dialog box . 906
operator precedence, definition of. 940
operators

definition of . 940
in IAR Visual State . 194

Optimization (HCoder Coder Options dialog box) 504
optimizations

default . 462
inlining (definition of) . 938
size. 732, 740
specifying on HCoder command line 548–554
states and state machines 680, 730
tailoring code output . 463
verification. 420

Optional (feature type) . 219
options

Classic Coder . 674, 701
AFE1_AFE2-1:1

 957

958
definition of . 940
Documenter . 816, 837
file containing . 58
Hierarchical Coder. 494, 517
unavailable (dimmed) . 80
Verificator . 426, 447

-opt_asse (HCoder option) . 548
-opt_d (HCoder option). 549
-opt_eise (HCoder option) . 549
-opt_h (HCoder option). 550
-opt_msc (HCoder option) . 550
-opt_rrs (HCoder option) . 551
-opt_scum (HCoder option) . 551
-opt_sobitarray (HCoder option). 552
-opt_somos (HCoder option) . 552
-opt_tr (HCoder option) . 553
-opt_ubabiv (HCoder option) . 553
-opt_ubfbev (HCoder option) . 554
-opt_uso (HCoder option) . 554
OR operators. 195
Or (feature type) . 219
-osm (Coder option) . 729
output image. See executable image
Output window (Designer) . 278
Output window (Navigator) . 91
Output window (Validator) . 382
overflow errors, detecting . 446

P
-p (Verificator command line option) 450
package name (Java), specifying. 691, 731
Page Layout (Documenter Options dialog box) 824
-paper_height (Documenter option) 857
-paper_orientation (Documenter option). 857
-paper_type (Documenter option) 858
-paper_width (Documenter option). 860
parameters

declaring event parameters. 180

specifying event parameters in Validator 326
typographic convention . 51

part number, of this guide . 2
-path (Documenter option) . 860
-path (Coder option) . 730
-path (HCoder option). 555
% (modulus operator) . 195
peripheral units, definition of . 941
-pfe (Documenter option) . 860
| (bitwise inclusive OR operator) 195
|| (logical OR operator) . 195
plus operators . 196
+ (addition operator) . 195
+ (unary plus operator) . 196
pointers

definition of . 941
function pointer tables . 680
function pointer tables (HCoder) 501
generic, RealLink using . 790, 792
system context . 586
system context (HCoder API) 466

pop-up menu. See context menu
positive state conditions . 170
#pragma directive, definition of . 941
precedence, definition of. 940
preemptive multitasking, definition of 941
preprocessor directives, definition of 941
preprocessor, definition of. See C-style preprocessor
prerequisites, programming experience 45
priority, of signals . 182
process. See development workflow
programming experience . 45
programming languages, supported 45
program. See application.
project

comparing changes between versions 101
creating . 77
definition of . 941
diagram information, file containing 58
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
examples . 66
filename extension . 58
making active. 79
management. 71
organizing . 73
overview . 73
renaming . 280

Project Browser window (Designer) 278
project options

definition of . 941
file containing . 58, 73

Project View window (Designer) 284
context menus 285, 292–293, 298, 300–302

Project Wizard . 78
project (Designer)

creating . 229–230
importing C header files. 234, 316

-projectheader (Coder option) . 730
-projectheader (HCoder option) . 555
-projectnamespace (Coder option) 731
-projectnamespace (HCoder option) 555
-projectpackage (Coder option). 731
-projectsource (Coder option) . 731
-projectsource (HCoder option) . 556
PROM, definition of . 941
Properties window (Navigator) . 92
Property window (Designer) . 286
prototypes . 883
prototyping . 883
pseudostates

connector, definition of . 149
fork, definition of. 148
join, definition of . 148
junction, definition of. 149

-pseudo_code (Documenter option) 861
-pssf (HCoder option) . 556
-pssn (HCoder option) . 557
publication date, of this guide . 2

Q
qualifiers, definition of. See type qualifiers
? in Guard Expressions window . 380
queues

See also signal queue
handling asynchronous events . 61
handling interrupts . 61
structure . 180

R
-R (Coder option) . 732
-R (HCoder option). 557
range errors, detecting. 446
-rdfm (Coder option). 732
reactions

entry. 150
creating . 153
definition of . 151
settings . 290

exit . 150
creating . 153
definition of . 152
settings . 290

internal. 150
creating . 153
definition of . 151
settings . 290

manipulating . 263, 267
reusing . 300

readable code . 569
effect on choice of compiler. 462
file structure in Adaptive API 572
in Adaptive API . 571
size. 462

Readable Code (Classic Coder Options dialog box) 691
-readable (Coder option) . 733
reading guidelines. 45
AFE1_AFE2-1:1

 959

960
RealLink
toolbar . 362
VS_WAIT() . 799

RealLink menu . 804
RealLink Options dialog box . 809
RealLink Properties dialog box. 806
RealLink RS232 Communication Setup dialog box 808
RealLink TCP/IP Communication Setup dialog box. 807
RealLink (Classic Coder Options dialog box). 694
-reallink (Coder option) . 734
real-time operating system, definition of. 941
real-time system, definition of . 941
-recordingbuffersize (Coder option) 734
-recordingbuffersize (HCoder option). 557
red cross in Guard Expressions window 380
red states in graphical animation. 337
reentrancy . 585

not supported by compiler . 586
not supported by compiler (HCoder API) 466

reentrancy (HCoder API) . 465
reference information, typographic convention. 51
regions . 119

concurrent . 120
creating . 159

definition of . 941
excluding from processing . 163
including excluded regions . 163
including in variant . 220
off-page . 120, 161, 163
setting constraints for. 259

register variables, definition of . 942
registered trademarks . 2
register, definition of. 942
relational expressions . 170
relational operators . 195
reloading files in Navigator. 86
-removevsnofmacros (Coder option). 735
report (Coder), contents of . 458
reports on Visual State Projects. See generated Visual State
Project reports

ReqIF (Requirements Interchange Format). 223
requirements . 223

filename extension . 58
importing . 223
inspecting available . 286
selecting. 288
tying to diagram items . 224–225

Requirements Browser window (Designer) 286
context menu . 287

reuse . 121
state reactions . 122, 300
using state machine templates 201
using stereotypes . 121, 140, 156
using system instances . 121, 126
using transition element files 122, 179

right shift operator . 195
-right_margin (Documenter option) 861
-riins (HCoder option) . 558
ROM-monitor, definition of . 942
Round Robin, definition of . 942
route points, toggling display of . 291
RTF Styles (Documenter Options dialog box) 831
RTOS, definition of . 941
R-value, definition of . 942

S
-S (Coder option) . 735
-S (HCoder option) . 558
-S (Verificator command line option) 451
-s (Verificator command line option) 451
safe mode

enabling . 291
settings on Designer Tools menu 311

sample source code . 67
-samplingbuffersize (Coder option) 735
-samplingbuffersize (HCoder option) 559
saturation arithmetics, definition of 942
-scn_htmlbody (Documenter option) 861
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
-scn_htmlcode (Documenter option). 862
-scn_htmlh1 (Documenter option) 862
-scn_htmlh2 (Documenter option) 862
-scn_htmlh3 (Documenter option) 863
-scn_htmlh4 (Documenter option) 863
-scn_htmlh5 (Documenter option) 863
-scn_htmlh6 (Documenter option) 864
-scn_htmlh7 (Documenter option) 864
-scn_htmlh8 (Documenter option) 864
-scn_htmlh9 (Documenter option) 865
-scn_htmltoc (Documenter option) 865
searching

displaying results of . 278
for transition elements . 193, 297
in projects, systems, and top-level state machines 276, 305
in transition elements 264, 268, 270, 273

Select Requirements window (Designer) 288
context menu . 288

SEM type identifiers . 699
-semfunc (Coder option) . 736
SEM_Expl (Adaptive API function) 592
SEM_ExplAbs (Adaptive API function). 593
SEM_ForceState (Adaptive API function) 594
SEM_GetInput (Adaptive API function). 595
SEM_GetInputAll (Adaptive API function) 597
SEM_GetOutput . 595, 597, 646, 648
SEM_Init (Adaptive API function) 600
SEM_InitAll (Adaptive API function) 600
SEM_InitExternalVariables (Adaptive API function). . . . 601
SEM_InitInstances (Adaptive API function) 601
SEM_InitInternalVariables (Adaptive API function) 603
SEM_InitSignalQueue (Adaptive API function). 603
SEM_Inquiry (Adaptive API function) 604
SEM_Machine (Adaptive API function). 605
SEM_Name (Adaptive API function) 606
SEM_NameAbs (Adaptive API function). 607
SEM_SetInstance (Adaptive API function) 608
SEM_SignalQueueInfo (Adaptive API function) 609
SEM_State (Adaptive API function). 609

SEM_StateAll (Adaptive API function) 611
Sequence File dialog box . 386
Sequence File window . 383

using . 350–354
sequence files

filename extension . 58
playing . 350
recording . 349–350

sequence files (legacy), filename extension 58
Sequences window (C-SPYLink) 781
SES_ACTIVE (Adaptive API return code). 632
SES_ACTIVE (Uniform API return code) 669
SES_BUFFER_OVERFLOW (Adaptive API return code)632
SES_BUFFER_OVERFLOW (Uniform API return code) 669
SES_CONTRADICTION (Adaptive API return code) . . . 632
SES_CONTRADICTION (Uniform API return code) . . . 669
SES_EMPTY (Adaptive API return code) 633
SES_EMPTY (Uniform API return code). 670
SES_FORMAT_ERR (Uniform API return code) 670
SES_FOUND (Adaptive API return code) 633
SES_FOUND (Uniform API return code) 670
SES_MEM_ERR (Uniform API return code) 670
SES_NOT_INITIALIZED (Adaptive API return code) . . 633
SES_NULL_PTR (Uniform API return code) 671
SES_OKAY (Adaptive API return code) 633
SES_OKAY (Uniform API return code). 671
SES_RANGE_ERR (Adaptive API return code) 633
SES_RANGE_ERR (Uniform API return code) 671
SES_SIGNAL_QUEUE_FULL (Adaptive
API return code) . 634
SES_SIGNAL_QUEUE_FULL (Uniform
API return code) . 671
SES_TEXT_TOO_LONG (Adaptive API return code) . . 634
SES_TEXT_TOO_LONG (Uniform API return code) . . . 672
SES_TYPE_ERR (Adaptive API return code) 634
SES_TYPE_ERR (Uniform API return code). 672
Set Event Parameter Value dialog box 386
Settings dialog box (Designer) . 289
shallow history entry into state . 141
AFE1_AFE2-1:1

 961

962
shallow history states
creating . 157
definition . 143

shift operators . 195
shifting errors, detecting . 446
short addressing, definition of. 942
short names for reactions, toggling display of. 290
short names for transitions, toggling display of. 291
shortcut keys

in Designer. 313
Navigator . 100

shortcut menu. See context menu 936
shortcuts

See also context menu
Designer. 314–315
Designer toolbars . 238
notes in Designer View windows. 301
objects in diagrams (toolbar) 239–240
state machine diagrams (toolbar) 239
Validator . 407
zooming in diagrams (toolbar) 240

side-effect, definition of . 942
signal actions . 173
signal queue . 181

emptying manually . 353
emptying manually in Validator. 328
handling automatically in Validator 328
identifying optimal size of . 444
recording changes to . 349
setting size during verification 451
settings. 258, 271
specifying behavior of . 190

Signal Queues window . 387
signals. 181

analyzing use of . 345
as breakpoint conditions . 370
creating . 260
detecting unused . 435, 437
in generated code . 461

monitoring . 398
priority . 182
sending in test sequence. 351
viewing during validation . 323

simple states
converting to composite states 160
creating . 128
definition . 140

simulation
checking consistency when repeated 350
configuring . 324
setting up systems for . 391

simulator, definition of . 942
simultaneous calls to same API function. 585
simultaneous calls to same HCoder API function 465
-siss (HCoder option) . 559
/ (division operator) . 195
-small (Verificator command line option). 451
SMP functions . 585
SMP_Action (Uniform API function). 640
SMP_Connect (Uniform API function) 640
SMP_Expl (Uniform API function) 642
SMP_ExplAbs (Uniform API function) 643
SMP_ForceState (Uniform API function). 644
SMP_Free (Uniform API function). 645
SMP_GetInput (Uniform API function) 646
SMP_GetInputAll (Uniform API function). 648
SMP_GetOutput (Uniform API function) 650
SMP_Init (Uniform API function) 650
SMP_InitGuardCallBack (Uniform API function) 652
SMP_InitInstances (Uniform API function) 652
SMP_InitSignalQueue (Uniform API function) 654
SMP_Inquiry (Uniform API function) 655
SMP_Machine (Uniform API function) 656
SMP_Name (Uniform API function) 657
SMP_NameAbs (Uniform API function) 658
SMP_NextState (Uniform API function) 660
SMP_NextStateChg (Uniform API function) 660
SMP_SetInstance (Uniform API function) 660
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
SMP_State (Uniform API function) 660
SMP_StateAll (Uniform API function). 662
snap to grid, turning on/off . 277
-sne (Coder option) . 737
-snm (Coder option) . 737
-sns (Coder option) . 738
-sn_bt (Documenter option) . 865
-sn_fpf (Documenter option) . 866
-sn_fph (Documenter option) . 866
-sn_fpt (Documenter option). 866
-sn_ftr (Documenter option) . 867
-sn_hdr (Documenter option) . 867
-sn_lb1 (Documenter option) . 867
-sn_lb2 (Documenter option) . 868
-sn_lb3 (Documenter option) . 868
-sn_lb4 (Documenter option) . 868
-sn_lb5 (Documenter option) . 869
-sn_lb6 (Documenter option) . 869
-sn_lb7 (Documenter option) . 869
-sn_lb8 (Documenter option) . 870
-sn_lb9 (Documenter option) . 870
-sn_rtfcode (Documenter option) 870
-sn_rtfh1 (Documenter option) . 871
-sn_rtfh2 (Documenter option) . 871
-sn_rtfh3 (Documenter option) . 871
-sn_rtfh4 (Documenter option) . 872
-sn_rtfh5 (Documenter option) . 872
-sn_rtfh6 (Documenter option) . 872
-sn_rtfh7 (Documenter option) . 873
-sn_rtfh8 (Documenter option) . 873
-sn_rtfh9 (Documenter option) . 873
-sn_rttoc (Documenter option) . 874
source code examples . 67
-spath (Coder option) . 738
-spath (HCoder option) . 560
-spitreadable (Coder option) . 739
-split (Documenter option) . 874
-ssewi (HCoder option). 560
Standard C . 460

Standard Project . 77
state conditions . 170
state configuration, tracing sequence to 341
State Machine Diagram View window (Designer) 292

context menus 292–293, 298, 300–302
state machine diagrams

customizing appearance . 242
definition of . 118, 942
example illustration . 118
filename extension . 58
organizing . 73

state machine engine, in generated code 461
state machine file

comparing changes between versions 101
definition of . 943
filename extension . 58

state machine model, definition of 943
state machine template . 201

adding in Project Browser window 279, 281–282
creating . 205
definition of . 943
deleting . 283
renaming . 283

state machines
deleting . 281
hierarchical . 119
overview . 55, 117
renaming . 281
synchronizing. 136

state reaction
creating . 153
definition of . 150
reusing . 122, 300

states
as breakpoint conditions 369, 372
changing in test sequence. 351
choice, definition of . 150
colored in graphical animation. 337
compartments. 139
AFE1_AFE2-1:1

 963

964
composite
creating . 159
definition of . 140

connector
creating . 157
definition. 149

creating with state reaction . 153
deep history

creating . 157
definition. 147

deep history entry into . 141
default entry into . 141
default, example of . 142
detecting unused . 434, 437
excluding from processing . 163
explicit entry into . 141
forcing in Validator . 333
fork

creating . 158
definition of . 148

including excluded states . 163
including in variant . 221
initial

creating . 157
definition of . 141
example. 142

inserting into a concurrent region. 161
join

creating . 158
definition of . 148

junction, definition of. 149
making settings for. 261, 265
names, setting fonts . 286
organizing in diagram . 129
recording changes to . 349
reusing, see stereotypes
shallow history

creating . 157
definition. 143

shallow history entry into. 141
simple

converting to composite states 160
definition. 140

viewing during validation . 322
States window (C-SPYLink). 782
static analysis . 345
Static Analysis window. 388
static objects, definition of . 943
statically allocated memory, definition of 943
status bar (Designer) . 241
status bar (Validator) . 364
stepping, definition of . 942
stereotypes . 140

creating . 156
filename extension . 58

structure value, definition of . 943
Style (Classic Coder Options dialog box) 682
-stylesheet (Documenter option) . 874
submachine state. 201

adding . 207
definition of . 943

substate, definition of . 943
subtraction operator . 195
superstate, definition of. 943
-suppress_cspylink_common_files (Coder option) 739
-suppress_cspylink_common_files (HCoder option) 561
-sysrdfm (Coder option) . 740
system class, defining as const variable 533
system context pointer variable. 586
system context pointer variable (HCoder API) 466
system objects

enabling dynamic allocation in Hierarchical Coder . . . 536
System Setup window. 391
System View window (Designer) 294

context menus 292–293, 298, 300–302
System View, in Project Browser window (Designer) . . . 279
systems

definition of . 123, 943
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
excluding from build (HCoder) 537
forcing to a specific state . 333
initializing in test sequence . 351
instances . 126
making active. 79
making settings for. 270
multiple instances of . 235
organizing . 73, 124
reordering in Validator. 333

Systems window . 389
SystemSEM_InitExternalVariables (Uniform
API function) . 638
SystemSEM_InitInternalVariables (Uniform
API function) . 638
SystemSEM_InitPrjExternalVariables (Uniform API func-
tion) . 639
SystemSMP_InitAll (Uniform API function) 651

T
-t (Verificator command line option) 452
table-based code . 569

C++ . 571
file structure . 571

in Uniform API . 587
size. 461

table-based code (HCoder API)
C++ . 466

file structure (HCoder) . 467
-targetbreakpoints (Coder option) 741
-targetbreakpoints (HCoder option) 561
target, definition of . 943
task, definition of . 943
-template (Documenter option) . 875
templates for states, see stereotypes
tentative definition, definition of. 943
terminology. 51
-test (Documenter option) . 875
test coverage, analyzing . 345

test sequences
detecting mismatches . 381
playing . 350, 352–353
recording . 349–350
setting execution speed . 365

-text_fname (Documenter option). 875
-text_fsize (Documenter option) . 876
-text_fstyle (Documenter option) 876
thread, definition of . 943
~ (bitwise complement operator) 196
timeout, specify length of (verification) 427
timer action functions . 183

cannot be defined . 178
timer stop functions . 183

creating automatically . 291
Timer Tick Length dialog box . 392
Timers window. 392
timer, definition of . 943
timeslice, definition of . 944
-title (Documenter option) . 876
toolbars

Analyze (Validator) . 363
Debug (Validator) . 362
Designer standard . 238
Diagram (Designer) . 239
Navigator . 83
RealLink (Validator) . 362
Size (Designer) . 239–240
Validator standard . 361
Variant (Designer) . 241
Zoom (Designer) . 240

tools icon, in this guide . 51
Tools menu

in Designer. 311
in Navigator . 98

tools, interoperability with external 57
-toptext_justification (Documenter option) 877
-toptext_str (Documenter option) 877
-top_margin (Documenter option) 877
AFE1_AFE2-1:1

 965

966
top-level state machine
definition of . 944
in systems . 73
organization of systems . 124

trace
setting up destination for 379, 394

from command line . 450
tracing a verified model . 425

trace point . 343
reusing . 343

Trace Point Setup dialog box . 394
tracing. 341
trademarks . 2
transition action . 172
transition deduction, example . 174
transition element file

definition . 944
transition element files . 179

adding in Project Browser window 280, 282–283
deleting . 284
filename extension . 58
renaming . 283
working with . 193–194

transition elements
analyzing use of . 345
binding. 270
creating . 184
declaration or definition. 178
definition of . 944
editing . 273, 275
including in variant . 221
reusing . 179
searching for . 193
searching for text in 264, 268, 270, 273
shortcuts. 315
working with . 264, 268

Transition Elements window (Designer). 295
transition rule data format . 699
transition rule data format (HCoder) 516

transitions
checking for conflicting . 415
colors, setting. 286
completion . 173
conditions . 168, 180
creating . 130, 175
detecting conflicting . 439
detecting unused . 437
editing . 273, 275
excluded from the runtime model 218
excluding conflicts from verification 453
in generated code . 461
including in variant . 220
local . 173
modifying . 132
overview . 167
settings. 291
trigger-less . 173
working with . 272

-translatecomments (Coder option) 741
translation unit, definition of. 944
trap, definition of . 944
triggers . 169

explicit . 169
implicit. 169
in C header files, importing to Designer 317

Triggers window (C-SPYLink). 783
trigger-less transitions. 173
-tsemt (Coder option) . 742
-tvsvt (Coder option). 742
-txta (Coder option) . 743
-txte (Coder option) . 744
-txte (HCoder option) . 561–562
-txts (Coder option). 744
-txts (HCoder option) . 563
type identifiers (HCoder) . 515
type qualifiers, definition of . 944
Type (feature) . 219
-typeheaderfile (Coder option) . 746
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
Types (Classic Coder Options dialog box) 696
-typestyle (Coder option) . 746
-typeVStype (Coder option) . 745
typographic conventions . 51

U
-u (Verificator command line option) 452
UML conformance . 124
unary arithmetic operators . 196
unary bitwise operators . 196
unary logical operators . 196
unary minus operator . 196
unary plus operator . 196
underflow errors, detecting . 446
Unified Modeling Language. See UML
Uniform API

Coder-generated source files . 635
functions . 474, 638
functions, summary of . 636
overview . 585
source files. 635

unused elements, detecting . 434
URL

go to. 97
linking to state in diagram 262, 266
on status bar . 85

-useapiprefix (Coder option) . 747
-useautovariables (Coder option) 747
-useguardtypecast (Coder option) 748
-useheap (Coder option) . 748
-uselivesamplingbuffer (Coder option) 748
-uselivesamplingbuffer (HCoder option) 563
-usepop (Coder option) . 749
-usepop (HCoder option) . 564
user application

See also application
development cycle . 63
typical components . 458

-userecordingbuffer (Coder option) 749
-userecordingbuffer (HCoder option) 564
-userfileinclusion (Coder option) 750
-userlkw (Coder option) . 750
-usertxtfiles (Documenter option) 878
user-specified commands . 107
-usesamplingbuffer (Coder option) 751
-usesamplingbuffer (HCoder option) 565

V
-V (HCoder option). 565
-v (Verificator command line option) 452
Validator

animation files (legacy), filename extension 58
dynamic analysis files, filename extension 58
log files (legacy), filename extension. 58
main window . 360
menu bar . 361
modes. 322

toggling. 334
overview . 321, 358
shortcut keys . 407
static analysis files, filename extension 58
toolbars . 361–363

Variant . 363
workspace . 358

creating . 324
filename extension . 58

workspace backup, filename extension 58
variable buffer expressions

function pointer table, defining 533
variables

analyzing use of . 345
changing values of in test sequence 351
changing values of in Validator 332
creating in states and transitions. 252, 255
detecting unused . 434, 437
AFE1_AFE2-1:1

 967

968
external . 198
in generated code . 461

internal. 198
in generated code . 461

listing all . 395
monitoring . 398
ranges

optimizing for verification 420
setting from command line 452

recording assignments . 350
treating as signed integers . 449
viewing during validation . 323

Variables window . 395
Variant toolbar (Designer) . 241
Variant toolbar (Navigator). 84
Variant toolbar (Validator) . 363
-variant (Coder option) . 752
-variant (Documenter option) . 878
-variant (HCoder option). 566
-variant (Verificator command line option). 453
variants . 217

checking consistency of in Navigator 84
defining . 219
editing . 274
hiding all non-active . 241
overview . 75
selecting in the Designer . 241
selecting in the Navigator . 84
selecting in the Validator . 364
specifying from Coder command line 752
specifying from Documenter command line 878
specifying from HCoder command line 566
specifying from Verificator command line 453

vda (filename extension). 58
-vdafiles (Documenter option) . 878
vdg (filename extension). 58
vdi (filename extension) . 58
verification

changing heuristics from command line. 454

checks
enabling . 429
list of. 433
overview . 413

example . 414
minimizing memory usage. 450
modes for . 416, 427
non-verifiable elements . 417
optimizing the process . 420
overview . 413
partial. 421

specifying from command line 453
reducing system complexity. 421
report

filename extension . 58
saving as text file . 452

setting signal queue size. 451
specifying timeouts . 427
speeding up . 451
starting . 422
verify excluded objects . 450
warnings and errors . 415

Verificator options
command line . 447
GUI . 426
unavailable (dimmed) . 80

Verificator Options dialog box 426–429
Verificator window. 430
version number

of Designer . 313
of this guide . 2

versions of files, comparing changes between 101
vertex, in the UML standard . 138
vesq (filename extension) . 355
View menu

in Designer. 306
in Validator . 403
in Visual State Compare Tool 104
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
Visual State
components overview . 56
starting . 76

Visual State API
Adaptive. See Adaptive API
HCoder. See HCoder API
how to generate code for . 572
overview . 459
Uniform. See Uniform API

Visual State Coder. See Hierarchical Coder or Classic Coder
Visual State Compare Tool . 101
Visual State Project reports. See generated Visual State Project
reports
Visual State project. See project
Visual State safe mode . 291

settings on Designer Tools menu 311
Visual State system. See systems
Visual State Validator. See Validator
Visual State Verificator. See Verificator
visualizing debugging. See graphical animation
vlg (filename extension) . 58
-vlgfiles (Documenter option). 879
vnw (filename extension) . 58, 940
volatile storage, definition of . 944
von Neumann architecture, definition of. 944
vre (filename extension) . 58
-vrefiles (Documenter option). 879
vsa (filename extension) . 58
VSActiveState (HCoder API function) 474

enabling . 524
-vsafiles (Documenter option). 879
-vsbooltype (Coder option) . 752
VSDeduct (Adaptive API function) 612
-vsdeduct (Coder option) . 752
VSDeduct (HCoder API function) 475
VSDeduct (Uniform API function) 663
VSDeductInstance (Adaptive API function) 614
VSDelete (HCoder API function) 477
VSElementExpl (Adaptive API function) 616
-vselementexpl (Coder option) . 753

VSElementExpl (Uniform API function) 665
VSElementName (Adaptive API function) 617
-vselementname (Coder option) . 753
VSElementName (Uniform API function) 666
VSEventExpl (HCoder API function). 478
VSEventName (HCoder API function) 478
VSForceState (Adaptive API function). 618
VSForceStateInstance (Adaptive API function) 619
VSGetCurrentStateTree (Adaptive API function). 620
VSGetCurrentStateTree (Uniform API function) 667
VSGetMaxCurrentStateTree (Adaptive API function) . . . 621
VSGetMaxCurrentStateTree (Uniform API function). . . . 667
VSGetSignature (Uniform API function) 668
VSGetSystemObjectSize (HCoder API function) 479

enabling . 524
VSInitAll (Adaptive API function) 621
-vsinitall (Coder option) . 754
VSInitAll (HCoder API function) 479
VSInitAll (Uniform API function) 668
VSInitExternalVariables (Adaptive API function) 622
VSInitInternalVariables (Adaptive API function). 622
VSInquiry (Adaptive API function) 623
VSInquiry (HCoder API function) 480

enabling . 525
VSInquiryInstance (Adaptive API function). 624
VSMachine (Adaptive API function) 626
VSMachineExpl (HCoder API function) 481
VSMachineName (HCoder API function) 482
VSNew (HCoder API function) . 482
VSNofEventParameters (HCoder API function). 483

enabling . 526
VSNofEvents (HCoder API function). 484

enabling . 526
VSNofInstances (HCoder API function). 484

enabling . 527
VSNofMachines (HCoder API function) 484

enabling . 527
VSNofStates (HCoder API function) 485

enabling . 528
AFE1_AFE2-1:1

 969

970
VSNofVariables (HCoder API function) 485
enabling . 528

vsp (filename extension) . 58, 73, 941
VSParentMachine (HCoder API function) 486

enabling . 529
VSParentState (HCoder API function) 486

enabling . 529
VSProjectEnterState (HCoder API function) 477
VSProjectLeaveState (HCoder API function) 481
vsr (filename extension) . 58, 943
VSRC_CannotAllocateMemory (HCoder
API return code) . 491
VSRC_Conflict (HCoder API return code). 491
VSRC_EventActive (HCoder API return code) 491
VSRC_OK (HCoder API return code) 492
VSRC_RangeError (HCoder API return code) 492
VSRC_SignalQueueOverflow (HCoder
API return code) . 492
VSReinitialize (HCoder API function) 487
vsreqif (filename extension) . 58
VSSetInstance (HCoder API function) 487
vssm (filename extension) 58, 203, 943
VSState (Adaptive API function) 627
VSStateAll (Adaptive API function). 628
VSStateAllInstance (Adaptive API function) 629
VSStateInstance (Adaptive API function). 631
VSStateName (HCoder API function) 488
VSSymbolicVariableName (HCoder API function) 489
vst (filename extension) . 58
vste (filename extension) . 58
VSTopMachine (HCoder API function) 490

enabling . 530
VSVariableValue (HCoder API function). 490

enabling . 525
VS_BOOL (Visual State data type) 197
VS_DOUBLE (Visual State data type) 197

non-verifiable. 417
VS_EVENT_TYPE (variable type) 197
VS_FLOAT (Visual State data type) 197

non-verifiable. 417

VS_INT (Visual State data type) 197
setting size from command line 453

VS_INT8 (Visual State data type) 197
VS_INT16 (Visual State data type) 197
VS_INT32 (Visual State data type) 197
VS_UCHAR (Visual State data type) 197
VS_UINT (Visual State data type) 197

setting size from command line 453
VS_UINT8 (Visual State data type) 197
VS_UINT16 (Visual State data type) 197
VS_UINT32 (Visual State data type) 197
VS_VOID (Visual State data type) 197

cannot be internal or external. 198
VS_VOIDPTR (Visual State data type) 197

cannot be internal or external. 198
VS_WAIT() . 799
vtg (filename extension) . 58
vws (filename extension) . 58, 358
vws.bak (filename extension) . 58
vxlg (filename extension) . 58

W
-w (Verificator command line option). 453
warning messages in verification 415
warnings icon, in this guide . 52
-warnings_affect_exit_code (Coder option) 754
-warnings_affect_exit_code (HCoder option) 566
-warnings_are_errors (Coder option) 755
-warnings_are_errors (HCoder option) 566
Watch window . 398
web sites, recommended . 50
-width_babiv (HCoder option) . 567
Window menu

in Designer. 312
in Validator . 406

workflow, overview . 63
workspace

definition of . 940
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
in Navigator . 73
adding an existing . 78
creating . 76

in Validator . 358
creating . 324

Workspace Browser window (Navigator) 92
workspace files, filename extension 58
Workspace View (Workspace Browser) 93
-wrapperfunctionkeyword (Coder option). 755
wrap-arounds, detecting . 420

X
-x (Verificator command line option) 453
XOR operator . 195

Y
-y (Verificator command line option) 454

Z
Zoom View window (Designer) . 298
zooming (Designer View menu) . 307

Symbols
- (subtraction operator) . 195
- (unary minus operator) . 196
-a (Verificator command line option) 449
-af_activeState (HCoder option) . 524
-af_gsos (HCoder option) . 524
-af_gvv (HCoder option). 525
-af_inquiry (HCoder option) . 525
-af_nofEventParameters (HCoder option). 526
-af_nofEvents (HCoder option). 526
-af_nofInstances (HCoder option). 527
-af_nofMachines (HCoder option) 527
-af_nofStates (HCoder option) . 528

-af_nofVariables (HCoder option) 528
-af_parentMachine (HCoder option) 529
-af_parentState (HCoder option). 529
-af_topMachine (HCoder option) 530
-apiprefix (Coder option) . 708
-api_type (Coder option). 709
-armsemihostingbreakpoint (Coder option). 709
-armsemihostingbreakpoint (HCoder option) 530
-autoentryfunction (Coder option) 710
-autoentryfunction (HCoder option) 531
-autoexitfunction (Coder option). 710
-autoexitfunction (HCoder option) 531
-B (Verificator command line option). 449
-bottomtext_justification (Documenter option). 842
-bottomtext_str (Documenter option) 843
-bottom_margin (Documenter option) 842
-classname (Coder option) . 711
-code_fname (Documenter option) 843
-code_fsize (Documenter option) 843
-code_fstyle (Documenter option) 844
-constactionfpt (Coder option) . 711
-constactionfpt (HCoder option) . 532
-constcml (Coder option) . 712
-constguardfpt (Coder option). 712
-constguardfpt (HCoder option) . 532
-constsc (HCoder option) . 533
-constvbfpt (HCoder option) . 533
-cpp (HCoder option) . 534
-cppcode (Coder option) . 713
-cppsourcefileext (Coder option) 713
-cppsourcefileext (HCoder option) 534
-cscode (Coder option) . 714
-csourcefileext (Coder option) . 714
-cspylink (Coder option) . 714
-cspylink (HCoder option) . 534
-D (Coder option) . 715
-D (HCoder option). 535
-design (Documenter option) . 844
-detail (Documenter option) . 844
AFE1_AFE2-1:1

 971

972
-dlibbreakpoint (Coder option) . 716
-dlibbreakpoint (HCoder option). 536
-ds (Verificator command line option) 450
-dso (HCoder option) . 536
-dw (Coder option) . 716
-ei (Documenter option) . 845
-element_lists (Documenter option) 845
-embeddiagrams (Documenter option) 846
-epm (HCoder option). 537
-exclude (HCoder option) . 537
-f (Verificator command line option) 450
-fiAutoInclude (Documenter option). 846
-fiCriteria (Documenter option) . 847
-fiLevel (Documenter option) . 847
-fiSearchSubDir (Documenter option) 848
-footertextc (Documenter option) 849
-footertextl (Documenter option) 849
-footertextr (Documenter option) 850
-footer_from_edge (Documenter option) 848
-footer_separator (Documenter option). 849
-fullinstrumentation (Coder option) 717
-fullinstrumentation (HCoder option) 538
-fullstatenames (Documenter option) 850
-funcexph (Coder option) . 717
-funcexph (HCoder option). 538
-gds (Coder option). 718
-gds (HCoder option) . 539
-generatetimeandversion (Coder option). 718
-gip (HCoder option) . 539
-H (Coder option) . 719
-H (HCoder option). 540
-hdr_fname (Documenter option) 850
-hdr_fsize (Documenter option) . 851
-hdr_fstyle (Documenter option). 851
-headertextc (Documenter option) 852
-headertextl (Documenter option) 852
-headertextr (Documenter option). 853
-header_from_edge (Documenter option) 851
-header_separator (Documenter option) 852

-html_stl (Documenter option) . 853
-html_uhover (Documenter option) 853
-ibat (Documenter option). 854
-iev (Coder option) . 719
-iiv (Coder option) . 720
-il (Documenter option) . 854
-include_excluded (Coder option). 720
-interface (Documenter option). 854
-introduction (Documenter option) 855
-ipev (HCoder option). 540
-isev (HCoder option) . 541
-issn (HCoder option) . 541
-isvn (HCoder option). 542
-itcfe (HCoder option) . 542
-ivsufp (HCoder option) . 543
-jvcode (Coder option) . 721
-keywordheaderfile (Coder option) 721
-kw_actionexpr (Coder option) . 722
-kw_actionexpr (HCoder option) 543
-kw_clsame (HCoder option) . 543
-kw_context (Coder option) . 722
-kw_corelogic (Coder option) . 722
-kw_dbdata (Coder option) . 723
-kw_dbexpr (HCoder option) . 544
-kw_guardexpr (Coder option) . 723
-kw_guardexpr (HCoder option). 544
-kw_intvar (Coder option) . 723
-kw_prj_extvar (Coder option) . 724
-kw_prj_extvar (HCoder option). 545
-kw_rlcd (Coder option) . 724
-kw_rld (Coder option) . 725
-kw_rlec (Coder option) . 725
-kw_rlpd (Coder option) . 726
-kw_runtimeinfo (Coder option) . 726
-kw_runtimeinfo (HCoder option) 545
-kw_systemClass (HCoder option) 546
-kw_systemObject (HCoder option) 546
-kw_sys_extvar (Coder option). 726
-kw_sys_extvar (HCoder option) 546
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
-large (Verificator command line option) 450
-left_margin (Documenter option) 855
-lssn (HCoder option) . 547
-macros (HCoder option) . 547
-mf (Documenter option) . 856
-middletext_justification (Documenter option) 856
-middletext_str (Documenter option) 856
-namespace (Coder option) . 727
-namespace (HCoder option) . 547
-no_warnings (Coder option) . 727
-no_warnings (HCoder option) . 548
-oa (Coder option). 728
-of (Documenter option) . 857
-og (Coder option) . 728
-omitcontradictiontests (Coder option) 729
-opt_asse (HCoder option) . 548
-opt_d (HCoder option). 549
-opt_eise (HCoder option) . 549
-opt_h (HCoder option). 550
-opt_msc (HCoder option) . 550
-opt_rrs (HCoder option) . 551
-opt_scum (HCoder option) . 551
-opt_sobitarray (HCoder option). 552
-opt_somos (HCoder option) . 552
-opt_tr (HCoder option) . 553
-opt_ubabiv (HCoder option) . 553
-opt_ubfbev (HCoder option) . 554
-opt_uso (HCoder option) . 554
-osm (Coder option) . 729
-p (Verificator command line option) 450
-paper_height (Documenter option) 857
-paper_orientation (Documenter option). 857
-paper_type (Documenter option) 858
-paper_width (Documenter option). 860
-path (Coder option) . 730
-path (Documenter option) . 860
-path (HCoder option). 555
-pfe (Documenter option) . 860
-projectheader (Coder option) . 730

-projectheader (HCoder option) . 555
-projectnamespace (Coder option) 731
-projectnamespace (HCoder option) 555
-projectpackage (Coder option). 731
-projectsource (Coder option) . 731
-projectsource (HCoder option) . 556
-pseudo_code (Documenter option) 861
-pssf (HCoder option) . 556
-pssn (HCoder option) . 557
-R (Coder option) . 732
-R (HCoder option). 557
-rdfm (Coder option). 732
-readable (Coder option) . 733
-reallink (Coder option) . 734
-recordingbuffersize (Coder option) 734
-recordingbuffersize (HCoder option). 557
-removevsnofmacros (Coder option). 735
-right_margin (Documenter option) 861
-riins (HCoder option) . 558
-S (Coder option) . 735
-S (HCoder option) . 558
-S (Verificator command line option) 451
-s (Verificator command line option) 451
-samplingbuffersize (Coder option) 735
-samplingbuffersize (HCoder option) 559
-scn_htmlbody (Documenter option) 861
-scn_htmlcode (Documenter option). 862
-scn_htmlh1 (Documenter option) 862
-scn_htmlh2 (Documenter option) 862
-scn_htmlh3 (Documenter option) 863
-scn_htmlh4 (Documenter option) 863
-scn_htmlh5 (Documenter option) 863
-scn_htmlh6 (Documenter option) 864
-scn_htmlh7 (Documenter option) 864
-scn_htmlh8 (Documenter option) 864
-scn_htmlh9 (Documenter option) 865
-scn_htmltoc (Documenter option) 865
-semfunc (Coder option) . 736
-siss (HCoder option) . 559
AFE1_AFE2-1:1

 973

974
-small (Verificator command line option) 451
-sne (Coder option) . 737
-snm (Coder option) . 737
-sns (Coder option) . 738
-sn_bt (Documenter option) . 865
-sn_fpf (Documenter option) . 866
-sn_fph (Documenter option) . 866
-sn_fpt (Documenter option). 866
-sn_ftr (Documenter option) . 867
-sn_hdr (Documenter option) . 867
-sn_lb1 (Documenter option) . 867
-sn_lb2 (Documenter option) . 868
-sn_lb3 (Documenter option) . 868
-sn_lb4 (Documenter option) . 868
-sn_lb5 (Documenter option) . 869
-sn_lb6 (Documenter option) . 869
-sn_lb7 (Documenter option) . 869
-sn_lb8 (Documenter option) . 870
-sn_lb9 (Documenter option) . 870
-sn_rtfcode (Documenter option) 870
-sn_rtfh1 (Documenter option) . 871
-sn_rtfh2 (Documenter option) . 871
-sn_rtfh3 (Documenter option) . 871
-sn_rtfh4 (Documenter option) . 872
-sn_rtfh5 (Documenter option) . 872
-sn_rtfh6 (Documenter option) . 872
-sn_rtfh7 (Documenter option) . 873
-sn_rtfh8 (Documenter option) . 873
-sn_rtfh9 (Documenter option) . 873
-sn_rtftoc (Documenter option). 874
-spath (Coder option) . 738
-spath (HCoder option) . 560
-spitreadable (Coder option) . 739
-split (Documenter option) . 874
-ssewi (HCoder option). 560
-stylesheet (Documenter option) . 874
-suppress_cspylink_common_files (Coder option) 739
-suppress_cspylink_common_files (HCoder option) 561
-sysrdfm (Coder option) . 740

-t (Verificator command line option) 452
-targetbreakpoints (Coder option) 741
-targetbreakpoints (HCoder option) 561
-template (Documenter option) . 875
-test (Documenter option) . 875
-text_fname (Documenter option). 875
-text_fsize (Documenter option) . 876
-text_fstyle (Documenter option) 876
-title (Documenter option) . 876
-toptext_justification (Documenter option) 877
-toptext_str (Documenter option) 877
-top_margin (Documenter option) 877
-translatecomments (Coder option) 741
-tsemt (Coder option) . 742
-tvsvt (Coder option). 742
-txta (Coder option) . 743
-txte (Coder option) . 744
-txte (HCoder option) . 561
-txtm (HCoder option) . 562
-txts (Coder option). 744
-txts (HCoder option) . 563
-typeheaderfile (Coder option) . 746
-typestyle (Coder option) . 746
-typeVStype (Coder option) . 745
-u (Verificator command line option) 452
-useapiprefix (Coder option) . 747
-useautovariables (Coder option) 747
-useguardtypecast (Coder option) 748
-useheap (Coder option) . 748
-uselivesamplingbuffer (Coder option) 748
-uselivesamplingbuffer (HCoder option) 563
-usepop (Coder option) . 749
-usepop (HCoder option) . 564
-userecordingbuffer (Coder option) 749
-userecordingbuffer (HCoder option) 564
-userfileinclusion (Coder option) 750
-userlkw (Coder option) . 750
-usertxtfiles (Documenter option) 878
-usesamplingbuffer (Coder option) 751
AFE1_AFE2-1:1

IAR Visual State
User Guide

Index
-usesamplingbuffer (HCoder option) 565
-V (HCoder option). 565
-v (Verificator command line option) 452
-variant (Coder option) . 752
-variant (Documenter option) . 878
-variant (HCoder option). 566
-variant (Verificator command line option). 453
-vdafiles (Documenter option) . 878
-vlgfiles (Documenter option). 879
-vrefiles (Documenter option). 879
-vsafiles (Documenter option). 879
-vsbooltype (Coder option) . 752
-vsdeduct (Coder option) . 752
-vselementexpl (Coder option) . 753
-vselementname (Coder option) . 753
-vsinitall (Coder option) . 754
-w (Verificator command line option). 453
-warnings_affect_exit_code (Coder option) 754
-warnings_affect_exit_code (HCoder option) 566
-warnings_are_errors (Coder option) 755
-warnings_are_errors (HCoder option) 566
-width_babiv (HCoder option) . 567
-wrapperfunctionkeyword (Coder option). 755
-x (Verificator command line option) 453
-y (Verificator command line option) 454
! (logical negation operator) . 196
!= (not equal to operator) . 195
? in Guard Expressions window . 380
* (multiplication operator) . 195
/ (division operator) . 195
& (bitwise AND operator) . 195
&& (logical AND operator) . 195
#pragma directive, definition of . 941
% (modulus operator) . 195
^ (bitwise exclusive OR operator). 195
+ (addition operator) . 195
+ (unary plus operator) . 196
< (less than operator) . 195
<< (left shift operator). 195

<= (less than or equal to operator) 195
= (assignment operator) . 194
== (equal to operator) . 195
> character in Events window. 377
> (greater than operator) . 195
>= (greater than or equal to operator) 195
>> (right shift operator) . 195
| (bitwise inclusive OR operator) 195
|| (logical OR operator) . 195
~ (bitwise complement operator) 196
AFE1_AFE2-1:1

 975

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. IAR Visual State and its components
	Part 2. Project management using the Navigator
	Part 3. Designing using the Designer
	Part 4. Simulating using the Validator
	Part 5. Formal verification using the Verificator
	Part 6. Code generation using a Coder
	Part 7. Testing your state machine model on hardware
	Part 8. Documenting Visual State projects using the Documenter
	Part 9. Additional features and utilities

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. IAR Visual State and its components
	IAR Visual State and state machine design
	Introduction to IAR Visual State and its components
	Why use IAR Visual State and state machines
	IAR Visual State overview
	IAR Visual State filename extensions

	Important features and advantages
	Automatic code generation from a state machine model
	Product variant support in the model
	Simulation/validation of a state machine model
	Formal model checking of a state machine model
	Model debugging on target hardware
	Support for high-integrity systems
	UML (Unified Modeling Language)
	Natural interrupt handling
	Asynchronous event handling
	Easy integration with an RTOS
	Prototyping a graphical interface for your model before having the hardware

	Application development using IAR Visual State
	The application development cycle
	Control logic, data manipulation, and device drivers
	Code required for an application
	Coder-generated code and the APIs

	Project examples
	Sample source code

	Part 2. Project management using the Navigator
	Project management
	Introduction to project management using the Navigator
	Briefly about the Visual State Navigator
	The Visual State project
	The workspace
	Digital signatures for tracking inconsistencies

	Variants and features

	Setting up workspaces and projects
	Starting IAR Visual State
	Creating a standard workspace
	Creating a new project in a workspace
	Adding an existing project to a workspace
	Setting a project or system as active
	Setting Verificator, Coder, and Documenter options

	Graphical environment for the Navigator
	The Navigator main window
	Menu bar
	Standard toolbar
	Internet browser toolbar
	Variant toolbar
	Status bar

	HTML Viewer window
	Context menu

	Navigator Reload Files dialog box
	The following file(s) have been modified outside the application
	Reload
	Ignore
	Do not show this message again

	Navigator Settings dialog box
	Location of IAR Embedded Workbench
	Web page shown at startup
	Open most recent workspace at startup
	Automatic file reload
	Automatically open the code generation report in a separate window
	Automatically open the generated model documentation in a separate window

	New Project dialog box
	Display area
	Project name
	Filename
	Location
	Information

	New Workspace dialog box
	Display area
	Filename
	Location
	Information

	Output window
	Context menu

	Properties window
	Workspace Browser window
	Context menu

	Reference information on Navigator menus
	File menu
	Menu commands

	Edit menu
	Menu commands

	View menu
	Menu commands

	Project menu
	Menu commands

	Tools menu
	Menu commands

	Window menu
	Menu commands

	Help menu
	Navigator shortcut key summary

	The IAR Visual State Compare Tool
	Introduction to the IAR Visual State Compare Tool
	Using the IAR Visual State Compare Tool
	Reference information on the IAR Visual State Compare Tool
	IAR Visual State Compare Tool window
	Files
	Differences
	Output

	File menu
	Menu commands

	View menu
	Menu commands

	Commands menu
	Menu commands

	Help menu

	Custom commands
	Introduction to custom commands
	Briefly about custom commands

	Using custom commands
	Creating a custom command
	Executing a custom command
	Editing or deleting a custom command
	Renumbering custom command macros

	Graphical environment for custom commands
	Custom Commands dialog box
	Project(s)
	Command(s)
	Toolbar
	Command
	Arguments
	Initial directory
	Silent mode
	Prompt for arguments
	Use output window

	Part 3. Designing using the Designer
	Designing
	Introduction to designing state machines using the Designer
	Briefly about state machines and designing
	State machine diagrams—the graphical representation
	State machine hierarchy and concurrency
	Organizing complexity using off-page regions
	Reuse

	Runtime behavior—macrosteps and microsteps
	The Visual State system
	System notation
	Briefly about organizing your system
	Reuse of design using system instances

	Designing state machines
	Identifying and creating events and action functions
	Identifying and drawing simple states
	Organizing your states logically
	Creating transitions between your states
	Synchronizing one part of the model with other parts of the model

	States
	Introduction to states
	Briefly about states
	Overview of available states
	State compartments
	Stereotypes for creating states with a uniform look

	Simple state
	Composite state
	Initial state
	Shallow history pseudostate
	Deep history pseudostate
	Join and fork pseudostates
	Junction pseudostate
	Connector pseudostate
	Choice state
	State reactions
	Internal reaction
	Entry reaction
	Exit reaction

	Working with states
	Creating a state with a state reaction
	Creating states with a uniform look using stereotypes
	Drawing a connector state
	Drawing initial, shallow history, and deep history states (pseudostates)
	Drawing fork and join states
	Drawing a junction state
	Drawing a choice state

	Working with composite states and regions
	Creating a composite state consisting of concurrent regions
	Hiding the contents in off-page regions
	Adding descriptions for off-page regions
	Excluding states or regions from further processing

	Transitions
	Introduction to transitions
	Briefly about transitions
	The transition condition
	Triggers
	Guard expressions
	State conditions

	The transition action
	Assignments in transition actions
	Action function calls
	Signal actions

	Completion transitions
	Trigger-less transitions
	Local transitions
	Else transitions
	Transition rule deduction—an example

	Creating transitions

	Transition elements
	Introduction to transition elements
	Briefly about transition elements
	Element declarations and definitions
	Global and local elements
	Transition element files

	Events
	Event parameters

	Event group
	Signal
	Signal queue

	Action function
	Timer action function

	Working with transition elements and transition element files
	Creating a transition element
	Making local elements global
	Declaring global elements locally
	Specifying arguments for action function parameters
	Adding assignments and guard expressions
	Setting a constraint for a state reaction
	Specifying the signal queue behavior and size
	Declaring action functions in external C files
	Setting up an external editor for action functions
	Searching for a transition element
	Creating and adding a new transition element file
	Adding an existing transition element file
	Editing the contents of a transition element file
	Deleting, renaming, or saving a transition element file under a new name

	Visual State operators, reference information
	Precedence of operators
	Assignment operators
	Binary arithmetic operators
	Bit manipulation operators
	Logical operators
	Relational operators
	Unary arithmetic operators
	Unary bitwise operators
	Unary logical operators

	Visual State operands, reference information
	Visual State data types
	Internal variables
	External variables
	Visual State constants
	Visual State enumerations

	Syntax for guard expressions and action expressions

	Reusing designs using state machine templates
	Introduction to state machine templates
	State machine templates and submachine states
	Hints for designing state machine templates

	Working with state machine templates and submachine states
	Creating state machine templates
	Instantiating a state machine template
	Drawing an entry (exit) point state
	Binding state conditions

	Using variants and features
	Introduction to variants and features
	Variants
	Features
	Include/exclude parts in a variant

	Working with variants and features
	Defining a new feature in your model
	Defining a new variant in your model
	Including a region in a variant or feature
	Including a transition in a variant or feature
	Including a state in a variant or feature
	Including a transition element in a variant or feature

	Using requirements files
	Introduction to requirements files
	Working with requirements
	Importing requirements
	Customizing the appearance of requirements in use
	Tying a requirement to a state
	Tying a requirement to a transition
	Tying a requirement to an entry/exit/internal reaction
	Tying a requirement to a transition element

	The Visual State Designer
	Introduction to the Visual State Designer
	Briefly about the Visual State Designer

	Using the Visual State Designer
	Creating and saving a project with systems and state machine diagrams
	Creating systems and state machine diagrams in a blank project
	Editing objects in the state machine diagram
	Inserting notes
	Navigating in the state machine diagram
	Getting warnings for non-verifiable elements
	Importing C header files into the project or top-level state machine
	Creating multiple system instances
	Using Designer backup files
	Customizing the Designer

	Graphical environment for the Designer
	The Designer main window
	Menu bar
	Standard toolbar
	Diagram toolbar
	Size toolbar
	Stereotype toolbar
	Zoom toolbar
	Variant toolbar
	Status bar

	Customize Appearance dialog box
	Demo view

	Define Action Function Arguments dialog box
	Arguments
	Elements

	Edit Action dialog box
	Name
	Constraint
	Comments
	Requirements
	Timer action function
	Type
	Parameters
	File

	Edit Constant dialog box
	Name
	Constraint
	Create
	Comments
	Requirements
	Type
	Value

	Edit Enumeration dialog box
	Name
	Constraint
	Comments
	Requirements
	Enumerators

	Edit Event dialog box
	Name
	Constraint
	Create
	Comments
	Requirements
	Parameters

	Edit Event Group dialog box
	Name
	Constraint
	Create
	Comments
	Requirements
	Event

	Edit External Variable dialog box
	Name
	Constraint
	Create
	Comments
	Requirements
	Type
	Array

	Edit Features dialog box
	Action
	Name
	Type
	Comments
	Requirements

	Edit Internal Variable dialog box
	Name
	Constraint
	Create
	Comments
	Requirements
	Array
	Type
	Domain

	Edit Note dialog box
	Show border
	Display
	Image file

	Edit Project dialog box
	Name
	Comments
	Requirements
	Signal queue behavior

	Edit Region dialog box
	Name
	Constraint
	Comments
	Requirements

	Edit Signal dialog box
	Name
	Constraint
	Create
	Comments
	Requirements

	Edit State dialog box
	Name
	Constraint
	Alias
	Comments
	Requirements
	External URL

	Edit State dialog box : state reactions
	Reaction
	Text field just under the Reactions area
	Find
	Element
	Comments
	Alias
	Requirements
	Constraint

	Edit Submachine State dialog box
	Name
	Associate with template
	Constraint
	Alias
	Comments
	Requirements
	External URL

	Edit Submachine State dialog box : state reactions
	Reaction
	Text field just under the Reactions area
	Find
	Element
	Comments
	Alias
	Requirements
	Constraint

	Edit Submachine State dialog box : bindings
	Bindings
	Apply
	Find

	Edit System dialog box
	Name
	Alias
	Comments
	Requirements
	Signal queue length
	Number of instances

	Edit Transition dialog box
	Local transition
	Constraint
	Find
	Condition/Action
	Text field just under the Condition/Action area
	Element
	Alias
	Comments
	Requirements

	Edit Variants dialog box
	Name
	Comments
	Requirements
	Action
	Features

	Find dialog box
	Match whole word only
	Match case
	Match excluded items only
	Include elements
	Include explanations
	Include notes
	Include alias

	Grid Setup dialog box
	Slider
	Show grid
	Use snap
	On top

	Output window
	Project Browser window
	General context menu
	Project context menu
	Top-level state machine context menu
	State machine template context menu
	Transition element context menu

	Project View window
	System context menu

	Property window
	Requirements Browser window
	Requirements context menu

	Select Requirements window
	Requirements context menu

	Settings dialog box
	Backup
	External Editor
	Entry/Exit Reaction
	Internal Reaction
	Message
	Safe Mode
	State
	Timer Action
	Transition

	State machine diagram window
	Transition context menu
	Connector state context menu
	Note context menu
	Standard Designer context menu
	State context menu
	System context menu

	System View window
	Region context menu
	Note context menu
	Standard Designer context menu
	State context menu

	Transition Elements window
	Project
	Commands
	Commands context menu
	Editing pane

	Zoom View window
	General Designer windows context menus
	Standard Designer context menu
	State context menu
	Note context menu
	Region context menu

	Reference information on Designer menus
	File menu
	Menu commands

	Edit menu
	Menu commands

	View menu
	Menu commands

	Insert menu
	Menu commands

	Format menu
	Menu commands

	Tools menu
	Menu commands

	Window menu
	Menu commands

	Help menu
	Designer shortcut key summary
	General
	Working with Designer view windows
	Editing in diagrams
	Editing transition elements shortcut keys

	Syntax of C header files
	Syntax for import of function declarations
	Single import statement
	Multiple import statement

	Syntax for import of constants
	Syntax for importing triggers

	Part 4. Simulating using the Validator
	Simulation
	Introduction to simulating your model using the Validator
	Briefly about simulating using the Validator
	Debugging modes
	Viewing elements during simulation
	Conditional breakpoints

	Simulating models using the Validator
	Creating a new Validator workspace
	Preparing for the simulation
	Specifying event parameters
	Sending events manually
	Filtering events
	Activating automatic signal queue handling
	Using manual emptying of signal queues
	Handling signal queues for a single system
	Defining breakpoints
	Using breakpoints
	Changing values of variables
	Setting action function return values
	Forcing states
	Specifying the order of the systems/instances
	Toggling between Validator mode and Target mode for a window

	Graphical animation
	Introduction to graphical animation of debug sessions
	Graphical animation of debug sessions

	Animating debug sessions graphically
	Animating your debug session graphically
	Setting breakpoints for graphical animation
	Customizing shapes and colors for graphical animation

	Graphical environment for graphical animation
	Designer windows in Graphical Animation mode
	Context menu

	Customize Graphical Animation dialog box
	Frame width
	Frame color
	Show previous current state
	Flash fired transitions
	Demo view

	Tracing
	Introduction to tracing your state machine model
	Tracing using the Validator

	Tracing state machine models
	Setting up a trace
	Setting up the trace point

	Analyzing
	Introduction to analyzing using the Validator
	Static and dynamic analysis
	Static analysis
	Dynamic analysis

	Analyzing using the Validator
	Performing static analysis
	Performing dynamic analysis

	Recording and playing test/event sequences
	Introduction to recording and playing test sequences
	Briefly about recording test and event sequences
	Output types

	Briefly about playing recorded test sequences

	Recording and playing your test sequences
	Recording a test sequence to a sequence file
	Viewing output from steps
	Playing your recorded test sequence
	Jumping to a specific step in a recorded test sequence
	Comparing played test sequences with recorded output

	Event sequence files description
	Syntax
	Example of an event sequence file

	The Visual State Validator
	Introduction to the Visual State Validator
	Briefly about the Visual State Validator

	Graphical environment for the Validator
	The Validator main window
	Menu bar
	Standard toolbar
	Debug toolbar
	RealLink toolbar
	Analyze toolbar
	Variant toolbar
	Status bar

	Actions window
	Context menu

	Animation Speed dialog box
	Speed

	Breakpoint Reached dialog box
	Breakpoints
	Breakpoint Explanation
	Stop
	Step Over

	Breakpoints window
	Context menu

	Breakpoints Setup dialog box
	Breakpoints Setup dialog box : Actions
	Available action functions
	Selected action functions
	Display area and buttons

	Breakpoints Setup dialog box : Current States
	Available states
	Selected states
	Display area and buttons

	Breakpoints Setup dialog box : Events/Signals
	Events/signals
	View options
	Display area and buttons

	Breakpoints Setup dialog box : General
	System
	Instance
	Breakpoint explanation
	Display area
	New
	Remove
	Remove All
	Context menu

	Breakpoints Setup dialog box : Next States
	Available states
	Selected states
	Display area and buttons

	Breakpoints Setup dialog box : Variables
	Variables
	Operators
	View options
	Expand arrays
	Edit
	Enter expression
	Display area and buttons

	Dynamic Analysis window
	Context menu

	Events window
	Name
	Explanation
	Location
	Context menu

	Find Trace dialog box
	Trace to
	Trace output
	Setup
	Find

	Guard Expressions window
	Guard
	Value
	System

	Log Mismatch Detected dialog box
	Command
	System
	Mismatch found in
	Stop
	Continue
	Actual
	Log
	Show

	Output window
	Context menu

	Sequence File window
	Command
	System
	Output area
	Context menu

	Sequence File dialog box
	Select Sequence
	Explanation

	Set Event Parameter Value dialog box
	Events
	Parameters
	Value

	Signal Queues window
	Context menu

	Static Analysis window
	Context menu

	Systems window
	Context menu

	System Setup window
	Display area
	Context menu

	Timer Tick Length dialog box
	Tick length

	Timers window
	Name
	Value
	Event
	System
	Context menu

	Trace Point Setup dialog box
	States
	Initial
	Current
	Clear
	Load
	Save
	Save As

	Variables window
	Name
	Explanation
	Value
	Type
	Domain
	Location
	Value
	Context menu

	Watch window
	Element
	Location
	Validator
	Target
	Context menu

	Reference information on Validator menus
	File menu
	Menu commands

	Edit menu
	Menu commands

	View menu
	Menu commands

	Debug menu
	Menu commands

	Window menu
	Menu commands

	Help menu
	Validator shortcut key summary
	General
	Windows
	Simulation

	Part 5. Formal verification using the Verificator
	Formal verification
	Introduction to formal verification using the Verificator
	Briefly about verification using the Verificator
	The checks that can be performed—an overview
	An example verification
	Warnings and errors

	Verification modes
	The Full Forward mode
	The Full Compositional mode

	Verification strategies
	Formal verification on large systems
	Non-verifiable elements
	Systems with ambiguous behavior
	Variables, domains, and arithmetics

	Optimizing for verification
	Using time/memory options to help verification
	Keeping down the complexity of verifying systems

	Verifying state machine models
	Starting the verification
	Tracing your verified state machine model

	Graphical environment for the Verificator
	Verificator Options dialog box
	Verificator Options : General
	Verification mode
	Specify length of timeout
	Use alternative verification heuristics
	Set 16 as the size in bits of types VS_(U)INT
	Control variable ranges in assignments
	Length of signal queue
	Verify states and regions without excluding any
	Write Verificator report
	Name of Verificator report file
	Size of node space
	Default

	Verificator Options : Check options
	Use of elements
	Activation of elements
	Conflicting transitions
	State dead ends
	Local dead ends
	System dead ends
	Domain errors
	Default

	Verificator window
	Log area
	Verify
	Find Trace
	Stop
	Options
	Progress display
	Skip
	Output pane

	Checks performed by the Verificator
	Overview of checks, modes, and errors
	Performing various checks
	Check for unused elements
	Why perform this check
	Description
	States
	Variables, event parameters, constants, and enumerators
	Action functions
	Events, event groups, and signals
	Example

	Check for activation of elements
	Why perform this check
	Description
	States
	Variables, event parameters, constants, and enumerators
	Action functions
	Events, event groups, and signals
	Transitions
	Example

	Check for conflicting transitions
	Why perform this check
	Description
	Example

	Check for state dead ends
	Why perform this check
	Description
	Example

	Check for local dead ends
	Why perform this check
	Description
	Example

	Check for system dead ends
	Why perform this check
	Description
	Example

	Check for dynamic ambiguous assignments
	Why perform this check
	Description
	Example

	Check for static ambiguous assignments
	Why perform this check
	Description
	Example

	Check for signal queue size
	Why perform this check
	Description
	Example

	Check for domain errors
	Why perform this check
	Description
	Example

	Verificator command line options
	Introduction to invoking the Verificator using command line options
	Briefly about invoking the Verificator
	Invocation syntax for the Verificator
	Example 1
	Example 2
	Example 3

	Summary of Verificator options
	Descriptions of Verificator options
	-B
	Syntax
	Parameters
	Description

	-c
	Syntax
	Description
	See also

	-ds
	Syntax
	Parameters
	Description
	See also

	-f
	Syntax
	Description

	-large
	Syntax
	Description
	See also

	-p
	Syntax
	Description
	See also

	-s
	Syntax
	Parameters
	Description
	See also

	-S
	Syntax
	Parameters
	Description
	See also

	-small
	Syntax
	Description
	See also

	-t
	Syntax
	Parameters
	Description
	See also

	-u
	Syntax
	Description
	See also

	-v
	Syntax
	Parameters
	Description

	-variant
	Syntax
	Parameters
	Description
	See also

	-w
	Syntax
	Description

	-x
	Syntax
	Parameters
	Description

	-y
	Syntax
	Description
	See also

	Part 6. Code generation using a Coder
	Code generation
	Introduction to code generation, the Coders, and the APIs
	The Hierarchical coder versus the Classic Coder
	Code generation using the Visual State Coders
	The Visual State APIs
	Standard C conformance

	Briefly about the generated code layers
	The Visual State API layer
	The Visual State global layer
	The Visual State local layer

	Size of generated table-based code
	Tests for code size overhead

	Size of generated readable code

	Generating code using a Coder and an API
	Tailoring data types for a specific compiler

	HCoder API code generation
	Introduction to the HCoder API code generation
	Briefly about HCoder API code generation
	Projects with multiple systems and reentrancy

	API table-based code with C++
	File structure

	API code
	Using the HCoder API for table-based code and C++
	Instances in C++ API code
	Internal variables in C++ API code
	External variables in C++ API code
	Constants in C++ API code
	Enumerations in C++ API code
	Signals in C++ API code
	Event parameters in C++ API code

	Using the HCoder API
	Setting up the file structure for the HCoder API

	HCoder API reference information
	HCoder API source files
	HCoder-generated source files for the API

	Summary of the HCoder API functions
	Descriptions of the HCoder API functions
	VSActiveState
	Syntax
	Declared in
	Description
	Parameters
	Return value

	VSDeduct
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSDelete
	Syntax
	Declared in
	Description
	Parameter
	Return value
	Example

	VSProjectEnterState
	Syntax
	Declared in
	Description
	Parameters
	Return value

	VSEventExpl
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSEventName
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSGetSystemObjectSize
	Syntax
	Declared in
	Description
	Parameters
	Return value

	VSInitAll
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSInquiry
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSProjectLeaveState
	Syntax
	Declared in
	Description
	Parameters
	Return value

	VSMachineExpl
	Syntax
	Declared in
	Description
	Parameters
	Return value

	VSMachineName
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSNew
	Syntax
	Declared in
	Description
	Parameter
	Return value
	Example

	VSNofEventParameters
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSNofEvents
	Syntax
	Declared in
	Description
	Return value
	Example

	VSNofInstances
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSNofMachines
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSNofStates
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSNofVariables
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSParentMachine
	Syntax
	Declared in
	Description
	Parameters
	Return value

	VSParentState
	Syntax
	Declared in
	Description
	Parameters
	Return value

	VSReinitialize
	Syntax
	Declared in
	Description
	Parameter
	Return value

	VSSetInstance
	Syntax
	Declared in
	Description
	Parameters
	Return value
	Example

	VSStateName
	Syntax
	Declared in
	Description
	Parameters
	Return value

	VSSymbolicVariableName
	Syntax
	Declared in
	Description
	Parameters
	Return value

	VSTopMachine
	Syntax
	Declared in
	Description
	Parameters
	Return value

	VSVariableValue
	Syntax
	Declared in
	Description
	Parameters
	Return value

	HCoder API return codes
	VSRC_CannotAllocateMemory
	Return code
	Description
	Solution

	VSRC_Conflict
	Return code
	Description
	Solution

	VSRC_EventActive
	Return code
	Description
	Solution

	VSRC_OK
	Return code
	Description
	Solution

	VSRC_RangeError
	Return code
	Description
	Solution

	VSRC_SignalQueueOverflow
	Return code
	Description
	Solution

	The Visual State Hierarchical Coder
	Introduction to the Visual State Hierarchical Coder
	Briefly about the Visual State Hierarchical Coder

	Graphical environment for the Hierarchical Coder
	Hierarchical Coder Options dialog box
	Hierarchical Coder Options dialog box : Configuration
	Generate for C-SPYLink
	Treat warnings as error
	Warnings affect exit code
	Ignore warnings
	Exclude system from build
	Default

	Hierarchical Coder Options dialog box : File Output
	Use project output path
	Output path
	System header file
	System source file
	Project source file
	Project header file
	Report file
	Single source file
	C++ source file extension
	Default

	Hierarchical Coder Options dialog box : Memory
	Dynamic system objects
	Reinitializable internal instances
	Default

	Hierarchical Coder Options dialog box : Code
	Data width
	Project external variable initialization
	System external variable initialization
	Explicitly initialize static storage with zero values
	Send start event when initializing
	Functional expression handling
	Const system class
	Const variable buffer expression FPT
	Const guard expression FPT
	Const action expression FPT
	Generate digital signature
	Event parameter mechanism
	Insert type casts in functional expressions
	Insert void statements for unused formal parameters
	Generated identifier prefix
	Generate C++ code
	Project namespace
	System namespace
	Default

	Hierarchical Coder Options dialog box : Optimization
	System object members to be stack allocated
	Eliminate identical sub-expressions
	Remove redundant states
	Use system object arrays
	Use bit arrays for boolean internal variables
	Width of type for boolean internal variables bit arrays
	Use bitfields for boolean external variables
	Use state offsets
	Merge state configurations
	State configuration update method
	Action side statement execution
	Header word optimization
	Data optimization
	Completion transition optimization
	Default

	Hierarchical Coder Options dialog box : Extended Keywords
	Extended keyword for system object
	Extended keyword for external variables
	Extended keyword for system class
	Extended keyword for entire system class model
	Extended keyword for double buffer variable
	Extended keyword for guard expression collection
	Extended keyword for action expression collection
	Extended keyword for runtime information
	Default

	Hierarchical Coder Options dialog box : API Functions
	Automatic entry function
	Automatic exit function
	Generate API macros
	Enable API function function
	Default

	Hierarchical Coder Options dialog box : C-SPYLink
	Enable using shared DLIB breakpoint
	Enable using ARM EABI shared semi-hosting breakpoint
	Suppress C-SPYLink common files
	Enable full instrumentation
	Enable sampling buffer
	Enable sampling buffer readout
	Sampling buffer size
	Number of state machine breakpoints
	Enable recording buffer
	Recording buffer size
	Default

	Hierarchical Coder Options dialog box : Names
	Event name inclusion
	State name inclusion
	Print symbolic state names
	Include symbolic state name in system class struct
	Long symbolic state names
	Include symbolic variable name in system class struct
	State machine name inclusion
	Default

	Type identifiers
	Transition rule data format

	Hierarchical Coder command line options
	Introduction to invoking the HCoder using command line options
	Briefly about invoking the Hierarchical Coder
	Invocation syntax for the Hierarchical Coder
	Example 1
	Example 2
	Example 3

	Summary of Hierarchical Coder options
	Descriptions of Hierarchical Coder options
	-af_activeState
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_gsos
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_gvv
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_inquiry
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_nofEventParameters
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_nofEvents
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_nofInstances
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_nofMachines
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_nofStates
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_nofVariables
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_parentMachine
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_parentState
	Syntax
	Parameters
	Scope
	Description
	See also

	-af_topMachine
	Syntax
	Parameters
	Scope
	Description
	See also

	-armsemihostingbreakpoint
	Syntax
	Parameters
	Scope
	Description
	See also

	-autoentryfunction
	Syntax
	Parameters
	Scope
	Description
	See also

	-autoexitfunction
	Syntax
	Parameters
	Scope
	Description
	See also

	-constactionfpt
	Syntax
	Parameters
	Scope
	Description
	See also

	-constguardfpt
	Syntax
	Parameters
	Scope
	Description
	See also

	-constsc
	Syntax
	Parameters
	Scope
	Description
	See also

	-constvbfpt
	Syntax
	Parameters
	Scope
	Description
	See also

	-cpp
	Syntax
	Parameters
	Scope
	Description
	See also

	-cppsourcefileext
	Syntax
	Parameters
	Scope
	Description

	-cspylink
	Syntax
	Parameters
	Scope
	Description
	See also

	-D
	Syntax
	Parameters
	Scope
	Description
	See also

	-dlibbreakpoint
	Syntax
	Parameters
	Scope
	Description
	See also

	-dso
	Syntax
	Parameters
	Scope
	Description

	-epm
	Syntax
	Parameters
	Scope
	Description

	-exclude
	Syntax
	Parameters
	Scope
	Description

	-fullinstrumentation
	Syntax
	Parameters
	Scope
	Description

	-funcexph
	Syntax
	Parameters
	Scope
	Description

	-gds
	Syntax
	Parameters
	Scope
	Description
	See also

	-gip
	Syntax
	Parameters
	Scope
	Description

	-H
	Syntax
	Parameters
	Scope
	Description

	-ipev
	Syntax
	Parameters
	Scope
	Description

	-isev
	Syntax
	Parameters
	Scope
	Description

	-issn
	Syntax
	Parameters
	Scope
	Description

	-isvn
	Syntax
	Parameters
	Scope
	Description

	-itcfe
	Syntax
	Parameters
	Scope
	Description

	-ivsufp
	Syntax
	Parameters
	Scope
	Description

	-kw_actionexpr
	Syntax
	Parameters
	Scope
	Description

	-kw_clsame
	Syntax
	Parameters
	Scope
	Description

	-kw_dbexpr
	Syntax
	Parameters
	Scope
	Description

	-kw_guardexpr
	Syntax
	Parameters
	Scope
	Description

	-kw_prj_extvar
	Syntax
	Parameters
	Scope
	Description
	See also

	-kw_runtimeinfo
	Syntax
	Parameters
	Scope
	Description

	-kw_sys_extvar
	Syntax
	Parameters
	Scope
	Description
	See also

	-kw_systemClass
	Syntax
	Parameters
	Scope
	Description

	-kw_systemObject
	Syntax
	Parameters
	Scope
	Description

	-lssn
	Syntax
	Parameters
	Scope
	Description

	-macros
	Syntax
	Parameters
	Scope
	Description

	-namespace
	Syntax
	Parameters
	Scope
	Description

	-no_warnings
	Syntax
	Parameters
	Scope
	Description
	See also

	-opt_asse
	Syntax
	Parameters
	Scope
	Description

	-opt_d
	Syntax
	Parameters
	Scope
	Description

	-opt_eise
	Syntax
	Parameters
	Scope
	Description

	-opt_h
	Syntax
	Parameters
	Scope
	Description

	-opt_msc
	Syntax
	Parameters
	Scope
	Description

	-opt_rrs
	Syntax
	Parameters
	Scope
	Description

	-opt_scum
	Syntax
	Parameters
	Scope
	Description

	-opt_sobitarray
	Syntax
	Parameters
	Scope
	Description

	-opt_somos
	Syntax
	Parameters
	Scope
	Description

	-opt_tr
	Syntax
	Parameters
	Scope
	Description

	-opt_ubabiv
	Syntax
	Parameters
	Scope
	Description

	-opt_ubfbev
	Syntax
	Parameters
	Scope
	Description

	-opt_uso
	Syntax
	Parameters
	Scope
	Description

	-path
	Syntax
	Parameters
	Scope
	Description
	See also

	-projectheader
	Syntax
	Parameters
	Scope
	Description

	-projectnamespace
	Syntax
	Parameters
	Scope
	Description

	-projectsource
	Syntax
	Parameters
	Scope
	Description

	-pssf
	Syntax
	Parameters
	Scope
	Description

	-pssn
	Syntax
	Parameters
	Scope
	Description

	-R
	Syntax
	Parameters
	Scope
	Description

	-recordingbuffersize
	Syntax
	Parameters
	Scope
	Description
	See also

	-riins
	Syntax
	Parameters
	Scope
	Description

	-S
	Syntax
	Parameters
	Scope
	Description

	-samplingbuffersize
	Syntax
	Parameters
	Scope
	Description
	See also

	-siss
	Syntax
	Parameters
	Scope
	Description

	-spath
	Syntax
	Parameters
	Scope
	Description
	See also

	-ssewi
	Syntax
	Parameters
	Scope
	Description

	-suppress_cspylink_common_files
	Syntax
	Parameters
	Scope
	Description

	-targetbreakpoints
	Syntax
	Parameters
	Scope
	Description

	-txte
	Syntax
	Parameters
	Scope
	Description

	-txtm
	Syntax
	Parameters
	Scope
	Description

	-txts
	Syntax
	Parameters
	Scope
	Description

	-uselivesamplingbuffer
	Syntax
	Parameters
	Scope
	Description

	-usepop
	Syntax
	Parameters
	Scope
	Description

	-userecordingbuffer
	Syntax
	Parameters
	Scope
	Description
	See also

	-usesamplingbuffer
	Syntax
	Parameters
	Scope
	Description
	See also

	-V
	Syntax
	Parameters
	Scope
	Description

	-variant
	Syntax
	Parameters
	Scope
	Description
	See also

	-warnings_affect_exit_code
	Syntax
	Parameters
	Scope
	Description

	-warnings_are_errors
	Syntax
	Parameters
	Scope
	Description

	-width_babiv
	Syntax
	Parameters
	Scope
	Description

	Adaptive API code generation
	Introduction to the Adaptive API code generation
	Briefly about Adaptive API code generation
	File structure for Adaptive API code
	Adaptive API table-based code with C++
	File structure for Adaptive API table-based C++ code

	Adaptive API readable code
	File structure for Adaptive API readable code

	Using the Adaptive API
	Getting started generating code for the Adaptive API
	Generating code for an API
	Setting up the file structure for Adaptive API
	Using the API
	Connecting and disconnecting functions (Uniform API only)
	Calling initialization functions
	Calling event deduction functions
	Performing an event inquiry
	Retrieving names and descriptions
	Retrieving and setting states
	Managing instances
	Managing internal variables
	Managing external variables
	Managing constants
	Managing enumerations
	Managing signals
	Managing event arguments

	Using the Adaptive API for table-based code and C++
	Instances in C++ API code
	Internal variables in C++ API code
	External variables in C++ API code
	Constants in C++ API code
	Enumerations in C++ API code
	Signals in C++ API code
	Event parameters in C++ API code

	Converting table-based C applications to C++ code

	Uniform API code generation
	Introduction to the Uniform API code generation
	Briefly about Uniform API code generation
	Projects with multiple systems and reentrancy

	Uniform API code
	File structure for Uniform API table-based code

	Using the Uniform API
	Getting started generating code for the Uniform API
	Setting up the file structure for the Uniform API

	Adaptive API reference information
	Coder-generated source files for the Adaptive API
	Coder-generated files for Adaptive API code

	Summary of the Adaptive API functions
	Descriptions of the Adaptive API functions
	SEM_Expl
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_ExplAbs
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_ForceState
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example
	See also

	SEM_GetInput
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_GetInputAll
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_Init
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_InitAll
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_InitExternalVariables
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_InitInstances
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example
	See also

	SEM_InitInternalVariables
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_InitSignalQueue
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_Inquiry
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_Machine
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example
	See also

	SEM_Name
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_NameAbs
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_SetInstance
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_SignalQueueInfo
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	SEM_State
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example
	See also

	SEM_StateAll
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	VSDeduct
	Syntax
	Defined in
	For use with
	Description
	Parameters
	Return value
	Example

	VSDeductInstance
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSElementExpl
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSElementName
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSForceState
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSForceStateInstance
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	SystemVSGetCurrentStateTree
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SystemVSGetMaxCurrentStateTree
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	VSInitAll
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSInitExternalVariables
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSInitInternalVariables
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSInquiry
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSInquiryInstance
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSMachine
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSState
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSStateAll
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSStateAllInstance
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	VSStateInstance
	Syntax
	Parameters
	Return value
	Defined in
	For use with
	Description
	Example

	Adaptive API return codes
	SES_ACTIVE
	Return code
	Description
	Solution

	SES_BUFFER_OVERFLOW
	Return code
	Description
	Solution

	SES_CONTRADICTION
	Return code
	Description
	Solution

	SES_EMPTY
	Return code
	Description
	Solution

	SES_FOUND
	Return code
	Description
	Solution

	SES_NOT_INITIALIZED
	Return code
	Description
	Solution

	SES_OKAY
	Return code
	Description
	Solution

	SES_RANGE_ERR
	Return code
	Description
	Solution

	SES_SIGNAL_QUEUE_FULL
	Return code
	Description
	Solution

	SES_TEXT_TOO_LONG
	Return code
	Description
	Solution

	SES_TYPE_ERR
	Return code
	Description
	Solution

	Uniform API reference information
	Uniform API source files
	Coder-generated source files for the Uniform API

	Summary of the Uniform API functions
	Descriptions of the Uniform API functions
	SystemSEM_InitExternalVariables
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SystemSEM_InitInternalVariables
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	ProjectSEM_InitPrjExternalVariables
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_Action
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_Connect
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_Expl
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_ExplAbs
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_ForceState
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_Free
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_GetInput
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_GetInputAll
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_GetOutput
	Description

	SMP_Init
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SystemSMP_InitAll
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_InitGuardCallBack
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_InitInstances
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example
	See also

	SMP_InitSignalQueue
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_Inquiry
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_Machine
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_Name
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_NameAbs
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_NextState
	Description

	SMP_NextStateChg
	Description

	SMP_SetInstance
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_State
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SMP_StateAll
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SystemVSDeduct
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SystemVSElementExpl
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SystemVSElementName
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SystemVSGetCurrentStateTree
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SystemVSGetMaxCurrentStateTree
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	VSGetSignature
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	SystemVSInitAll
	Syntax
	Defined in
	Description
	Argument
	Return value
	Example

	Uniform API return codes
	SES_ACTIVE
	Return code
	Description
	Solution

	SES_BUFFER_OVERFLOW
	Return code
	Description
	Solution

	SES_CONTRADICTION
	Return code
	Description
	Solution

	SES_EMPTY
	Return code
	Description
	Solution

	SES_FORMAT_ERR
	Return code
	Description
	Solution

	SES_FOUND
	Return code
	Description
	Solution

	SES_MEM_ERR
	Return code
	Description
	Solution

	SES_NULL_PTR
	Return code
	Description
	Solution

	SES_OKAY
	Return code
	Description
	Solution

	SES_RANGE_ERR
	Return code
	Description
	Solution

	SES_SIGNAL_QUEUE_FULL
	Return code
	Description
	Solution

	SES_TEXT_TOO_LONG
	Return code
	Description
	Solution

	SES_TYPE_ERR
	Return code
	Description
	Solution

	The Visual State Classic Coder
	Introduction to the Visual State Classic Coder
	Briefly about the Visual State Classic Coder

	Graphical environment for the Classic Coder
	Classic Coder Options dialog box
	Classic Coder Options dialog box : Configuration
	API type
	Readable code generation
	C++ code generation
	C# code generation
	Java code generation
	Generate for C-SPYLink
	Generate for RealLink
	Source file extension to use for C source files
	Source file extension to use for C++ source files
	Treat warnings as error
	Warnings affect exit code
	Ignore warnings
	Include excluded items
	Default

	Classic Coder Options dialog box : File Output
	Use project output path
	Output path
	System header file
	System source file
	Report file
	Project source file
	Project header file
	File that will be included verbatim in each generated source file
	Default

	Classic Coder Options dialog box : Code
	External variable initialization
	Internal variable initialization
	Functional expression handling
	Optimize states and state machines
	Generate digital signature
	Generate time and version
	Use heap memory
	Automatic entry function call
	Automatic exit function call
	Const core model logic
	Const guard expression FPT
	Const action expression FPT
	Merge guard expressions
	Merge action expressions
	Use guard type cast
	Use auto variables
	Omit contradiction tests
	Default

	Classic Coder Options dialog box : Style
	SEM type definitions
	VS type definitions
	VS_BOOL type
	Default

	Classic Coder Options dialog box : Extended Keywords
	Extended keyword for system context
	Extended keyword for external variables
	Extended keyword for core model logic
	Extended keyword for guard expression collection
	Extended keyword for action expression collection
	Extended keyword for runtime info
	C header file with action function keywords
	Extended keyword to use on generated wrapper functions
	Extended keyword for internal variables
	Extended keyword for double buffer variable
	Default

	Classic Coder Options dialog box : Names
	Event name inclusion
	Printing symbolic event names
	State name inclusion
	Printing symbolic state names
	Action function name inclusion
	Printing symbolic state machine names
	Default

	Classic Coder Options dialog box : API Functions
	Use prefix for API
	Prefix to use for API
	Enable function
	Default

	Classic Coder Options dialog box : C++/C#/Java
	Class name to use when generating C++/C#/Java
	Remove VS_NOF* macros
	Name space to use for the project code when generating C++/C#/Java
	Name space to use for the system code when generating C++/C#/Java
	Package name to use for the project code when generating Java
	Default

	Classic Coder Options dialog box : Readable Code
	Split readable code
	Default

	Classic Coder Options dialog box : C-SPYLink
	Enable using shared DLIB breakpoint
	Enable using ARM EABI shared semi-hosting breakpoint
	Suppress C-SPYLink common files
	Enable full instrumentation
	Enable sampling buffer
	Enable sampling buffer readout
	Sampling buffer size
	Number of state machine breakpoints
	Enable recording buffer
	Recording buffer size
	Default

	Classic Coder Options dialog box : RealLink
	RealLink protocol data extended keyword
	Use additional RealLink extended keywords
	RealLink data extended keyword
	RealLink const data extended keyword
	Enforce compatible RealLink extended keywords
	Default

	Classic Coder Options dialog box : Types
	Types style
	File to #include that will provide typedefs for the types specified manually
	Type to use for Visual State data type
	Default

	Classic Coder Options dialog box : MISRA
	Maximum MISRA C/C++ compliance

	SEM type identifiers
	Transition rule data format

	Classic Coder command line options
	Introduction to invoking the Classic Coder using command line options
	Briefly about invoking the Classic Coder
	Invocation syntax for the Classic Coder
	Example 1
	Example 2
	Example 3

	Summary of Classic Coder options
	Descriptions of Classic Coder options
	-apiprefix
	Syntax
	Parameters
	Scope
	Description
	See also

	-api_type
	Syntax
	Parameters
	Scope
	Description
	See also

	-armsemihostingbreakpoint
	Syntax
	Parameters
	Scope
	Description
	See also

	-autoentryfunction
	Syntax
	Parameters
	Scope
	Description
	Example
	See also

	-autoexitfunction
	Syntax
	Parameters
	Scope
	Description
	Example
	See also

	-classname
	Syntax
	Parameters
	Scope
	Description

	-constactionfpt
	Syntax
	Parameters
	Scope
	Description
	See also

	-constcml
	Syntax
	Parameters
	Scope
	Description
	See also

	-constguardfpt
	Syntax
	Parameters
	Scope
	Description
	See also

	-cppcode
	Syntax
	Parameters
	Scope
	Description
	See also

	-cppsourcefileext
	Syntax
	Parameters
	Scope
	Description

	-cscode
	Syntax
	Parameters
	Scope
	Description
	See also

	-csourcefileext
	Syntax
	Parameters
	Scope
	Description

	-cspylink
	Syntax
	Parameters
	Scope
	Description
	See also

	-D
	Syntax
	Parameters
	Scope
	Description
	See also

	-dlibbreakpoint
	Syntax
	Parameters
	Scope
	Description
	See also

	-dw
	Syntax
	Parameters
	Scope
	Description
	See also

	-fullinstrumentation
	Syntax
	Parameters
	Scope
	Description

	-funcexph
	Syntax
	Parameters
	Scope
	Description

	-gds
	Syntax
	Parameters
	Scope
	Description
	See also

	-generatetimeandversion
	Syntax
	Parameters
	Scope
	Description

	-H
	Syntax
	Parameters
	Scope
	Description

	-iev
	Syntax
	Parameters
	Scope
	Description

	-iiv
	Syntax
	Parameters
	Scope
	Description

	-include_excluded
	Syntax
	Parameters
	Scope
	Description

	-jvcode
	Syntax
	Parameters
	Scope
	Description
	See also

	-keywordheaderfile
	Syntax
	Parameters
	Scope
	Description

	-kw_actionexpr
	Syntax
	Parameters
	Scope
	Description

	-kw_context
	Syntax
	Parameters
	Scope
	Description

	-kw_corelogic
	Syntax
	Parameters
	Scope
	Description

	-kw_dbdata
	Syntax
	Parameters
	Scope
	Description

	-kw_guardexpr
	Syntax
	Parameters
	Scope
	Description

	-kw_intvar
	Syntax
	Parameters
	Scope
	Description

	-kw_prj_extvar
	Syntax
	Parameters
	Scope
	Description
	See also

	-kw_rlcd
	Syntax
	Parameters
	Scope
	Description
	See also

	-kw_rld
	Syntax
	Parameters
	Scope
	Description
	See also

	-kw_rlec
	Syntax
	Parameters
	Scope
	Description
	See also

	-kw_rlpd
	Syntax
	Parameters
	Scope
	Description
	See also

	-kw_runtimeinfo
	Syntax
	Parameters
	Scope
	Description

	-kw_sys_extvar
	Syntax
	Parameters
	Scope
	Description
	See also

	-namespace
	Syntax
	Parameters
	Scope
	Description

	-no_warnings
	Syntax
	Parameters
	Scope
	Description
	See also

	-oa
	Syntax
	Parameters
	Scope
	Description
	See also

	-og
	Syntax
	Parameters
	Scope
	Description
	See also

	-omitcontradictiontests
	Syntax
	Parameters
	Scope
	Description
	See also

	-osm
	Syntax
	Parameters
	Scope
	Description

	-path
	Syntax
	Parameters
	Scope
	Description
	See also

	-projectheader
	Syntax
	Parameters
	Scope
	Description

	-projectnamespace
	Syntax
	Parameters
	Scope
	Description

	-projectpackage
	Syntax
	Parameters
	Scope
	Description

	-projectsource
	Syntax
	Parameters
	Scope
	Description

	-R
	Syntax
	Parameters
	Scope
	Description

	-rdfm
	Syntax
	Parameters
	Scope
	Description
	See also

	-readable
	Syntax
	Parameters
	Scope
	Description
	See also

	-reallink
	Syntax
	Parameters
	Scope
	Description
	See also

	-recordingbuffersize
	Syntax
	Parameters
	Scope
	Description
	See also

	-removevsnofmacros
	Syntax
	Parameters
	Scope
	Description

	-S
	Syntax
	Parameters
	Scope
	Description

	-samplingbuffersize
	Syntax
	Parameters
	Scope
	Description
	See also

	-semfunc
	Syntax
	Parameters
	Scope
	Description
	Example
	See also

	-sne
	Syntax
	Parameters
	Scope
	Description
	See also

	-snm
	Syntax
	Parameters
	Scope
	Description

	-sns
	Syntax
	Parameters
	Scope
	Description
	See also

	-spath
	Syntax
	Parameters
	Scope
	Description
	See also

	-splitreadable
	Syntax
	Parameters
	Scope
	Description
	See also

	-suppress_cspylink_common_files
	Syntax
	Parameters
	Scope
	Description

	-sysrdfm
	Syntax
	Parameters
	Scope
	Description
	See also

	-targetbreakpoints
	Syntax
	Parameters
	Scope
	Description

	-translatecomments
	Syntax
	Parameters
	Scope
	Description

	-tsemt
	Syntax
	Parameters
	Scope
	Description
	See also

	-tvsvt
	Syntax
	Parameters
	Scope
	Description

	-txta
	Syntax
	Parameters
	Scope
	Description

	-txte
	Syntax
	Parameters
	Scope
	Description
	See also

	-txts
	Syntax
	Parameters
	Scope
	Description
	See also

	-typeVStype
	Syntax
	Parameters
	Scope
	Description
	Example
	See also

	-typeheaderfile
	Syntax
	Parameters
	Scope
	Description
	See also

	-typestyle
	Syntax
	Parameters
	Scope
	Description

	-useapiprefix
	Syntax
	Parameters
	Scope
	Description

	-useautovariables
	Syntax
	Parameters
	Scope
	Description

	-useguardtypecast
	Syntax
	Parameters
	Scope
	Description

	-useheap
	Syntax
	Parameters
	Scope
	Description

	-uselivesamplingbuffer
	Syntax
	Parameters
	Scope
	Description

	-usepop
	Syntax
	Parameters
	Scope
	Description

	-userecordingbuffer
	Syntax
	Parameters
	Scope
	Description
	See also

	-userfileinclusion
	Syntax
	Parameters
	Scope
	Description

	-userlkw
	Syntax
	Parameters
	Scope
	Description
	See also

	-usesamplingbuffer
	Syntax
	Parameters
	Scope
	Description
	See also

	-V
	Syntax
	Parameters
	Scope
	Description

	-variant
	Syntax
	Parameters
	Scope
	Description
	See also

	-vsbooltype
	Syntax
	Parameters
	Scope
	Description

	-vsdeduct
	Syntax
	Parameters
	Scope
	Description

	-vselementexpl
	Syntax
	Parameters
	Scope
	Description

	-vselementname
	Syntax
	Parameters
	Scope
	Description

	-vsinitall
	Syntax
	Parameters
	Scope
	Description

	-warnings_affect_exit_code
	Syntax
	Parameters
	Scope
	Description

	-warnings_are_errors
	Syntax
	Parameters
	Scope
	Description

	-wrapperfunctionkeyword
	Syntax
	Parameters
	Scope
	Description

	Part 7. Testing your state machine model on hardware
	Debugging design models using C-SPYLink
	Introduction to debugging using C-SPYLink
	Briefly about C-SPYLink
	C-SPYLink requirements

	Operating overview
	C-SPYLink debugging resources
	The breakpoint resources
	The sampling buffers
	The recording buffer
	Full instrumentation code

	C-SPYLink execution modes
	Full speed—full information continuously updated
	Full speed—full information at stops
	Medium speed—information at stops and based on snapshots
	Full speed—no feedback, alternated with information at stops
	Low speed—full information continuously updated
	Hints for choosing the most useful execution mode

	State machine breakpoints
	Types of state machine breakpoints
	Pre- and post-deduct conditions

	Execution sequences

	Debugging using C-SPYLink
	Installing C-SPYLink
	Before starting the debug session
	Using state machine breakpoints
	Using shared DLIB breakpoints
	Recording an execution sequence
	Troubleshooting—using C-SPYLink

	Graphical environment for C-SPYLink
	Visual State menu
	Menu commands

	Actions window
	Display area
	Context menu

	Breakpoints window
	Context menu

	Sequences window
	Context menu

	States window
	Context menu

	Triggers window
	Context menu

	Debugging design models using RealLink
	Introduction to debugging using RealLink
	Briefly about RealLink
	Visual State elements supported by RealLink
	Validator windows in target versus Validator mode
	Recorded sequences of target tests
	Target requirements
	Variable sizes
	Memory
	Communication
	Visual State Uniform API requirements

	Debugging using RealLink
	Setting up RealLink
	Establishing the first RealLink connection
	Changing between Validator mode and Target mode
	Changing variable values on target
	Sending events to target
	Controlling application execution on target
	Troubleshooting
	General issues
	Settings for the RS232 communication plugin
	Version control

	RealLink memory consumption
	State machine model dependent memory use
	Memory use in bytes for each Visual State project
	Memory use in bytes for each Visual State system
	Additional memory usage due to code generation with Uniform API

	RealLink API dependent memory use

	Graphical environment for RealLink
	RealLink menu
	Menu commands

	RealLink Properties dialog box
	Select Active Plugin
	Configure
	Timeout
	Options

	RealLink TCP/IP Communication Setup dialog box
	Host Name/IP Address
	Target TCP listen port
	Validator TCP listen port
	Receive buffer size
	Get default
	Set default

	RealLink RS232 Communication Setup dialog box
	COM port
	Databits
	Stopbits
	Baudrate
	Parity
	Get default
	Set default

	RealLink Options dialog box
	Log to screen
	Log to file
	Append
	Fast log (Memory)
	Immediate flush
	Log raw communication
	Log indications from target
	Log commands

	Part 8. Documenting Visual State projects using the Documenter
	Documenting projects
	Introduction to documenting projects using the Documenter
	A project report

	Creating project reports using the Documenter
	Creating a project report

	Graphical environment for the Documenter
	Documenter Options dialog box
	Documenter Options dialog box : Configuration
	Title
	Detail level
	Include introduction
	Include model design
	Include model test
	Include model interface
	Include pseudo code
	Include element lists
	Default

	Documenter Options dialog box : File Input
	User text files
	File inclusion criteria
	File inclusion message level
	Automatically include generated files
	Auto inclusion searches in subdirectories
	Validator static analysis files
	Validator dynamic analysis files
	Validator test sequence files
	Verificator result files
	Coder report files
	Default

	Documenter Options dialog box : File Output
	Output format
	Output path
	Output to multiple files
	Embed icons in reports
	Embed state machine diagrams in reports
	Default

	Documenter Options dialog box : Format
	Parse functional expressions
	Use long state names
	Split transition texts on multiple lines
	Insert links
	Default

	Documenter Options dialog box : Page Layout
	Top, Bottom, Left, Right margin
	Header distance to edge
	Footer distance to edge
	Paper type
	Paper width
	Paper height
	Paper orientation
	Default

	Documenter Options dialog box : Fonts
	Heading font name
	Heading font style
	Heading font size
	Code font name
	Code font style
	Code font size
	Text font name
	Text font style
	Text font size
	Default

	Documenter Options dialog box : Front Page
	Top text
	Top text justification
	Middle text
	Middle text justification
	Bottom text
	Bottom text justification
	Default

	Documenter Options dialog box : Header/Footer
	Header text left
	Header text centered
	Header text right
	Separator line after header
	Footer text left
	Footer text centered
	Footer text right
	Separator line before footer
	Default

	Documenter Options dialog box : RTF Styles
	Style template
	Insert bullet and tab stop in hierarchy
	Front page header style name
	Front page text style name
	Front page footer style name
	Body text style name
	Code style name
	TOC heading style name
	Header style name
	Footer style name
	Heading # style name
	List Bullet # style name
	Default

	Documenter Options dialog box : HTML Styles
	Style sheet
	Underline links at mouse over
	Simple table layout
	Body style class name
	Code style class name
	TOC heading style class name
	Heading # style class name
	Default

	Documenter command line options
	Introduction to invoking the Documenter using command line options
	Briefly about invoking the Documenter
	Invocation syntax for the Documenter

	Summary of Documenter options
	Descriptions of Documenter options
	-bottom_margin
	Syntax
	Parameters
	Description

	-bottomtext_justification
	Syntax
	Parameters
	Description

	-bottomtext_str
	Syntax
	Parameters
	Description

	-code_fname
	Syntax
	Parameters
	Description

	-code_fsize
	Syntax
	Parameters
	Description

	-code_fstyle
	Syntax
	Parameters
	Description

	-design
	Syntax
	Parameters
	Description

	-detail
	Syntax
	Parameters
	Description

	-ei
	Syntax
	Parameters
	Description

	-element_lists
	Syntax
	Parameters
	Description

	-embeddiagrams
	Syntax
	Parameters
	Description

	-fiAutoInclude
	Syntax
	Parameters
	Description
	See also

	-fiCriteria
	Syntax
	Parameters
	Description
	See also

	-fiLevel
	Syntax
	Parameters
	Description
	See also

	-fiSearchSubDir
	Syntax
	Parameters
	Description
	See also

	-footer_from_edge
	Syntax
	Parameters
	Description

	-footer_separator
	Syntax
	Parameters
	Description

	-footertextc
	Syntax
	Parameters
	Description

	-footertextl
	Syntax
	Parameters
	Description

	-footertextr
	Syntax
	Parameters
	Description

	-fullstatenames
	Syntax
	Parameters
	Description

	-hdr_fname
	Syntax
	Parameters
	Description

	-hdr_fsize
	Syntax
	Parameters
	Description

	-hdr_fstyle
	Syntax
	Parameters
	Description

	-header_from_edge
	Syntax
	Parameters
	Description

	-header_separator
	Syntax
	Parameters
	Description

	-headertextc
	Syntax
	Parameters
	Description

	-headertextl
	Syntax
	Parameters
	Description

	-headertextr
	Syntax
	Parameters
	Description

	-html_stl
	Syntax
	Parameters
	Description

	-html_uhover
	Syntax
	Parameters
	Description

	-ibat
	Syntax
	Parameters
	Description
	See also

	-il
	Syntax
	Parameters
	Description

	-interface
	Syntax
	Parameters
	Description

	-introduction
	Syntax
	Parameters
	Description
	See also

	-left_margin
	Syntax
	Parameters
	Description

	-mf
	Syntax
	Parameters
	Description

	-middletext_justification
	Syntax
	Parameters
	Description

	-middletext_str
	Syntax
	Parameters
	Description

	-of
	Syntax
	Parameters
	Description

	-paper_height
	Syntax
	Parameters
	Description
	See also

	-paper_orientation
	Syntax
	Parameters
	Description

	-paper_type
	Syntax
	Parameters
	Description
	See also

	-paper_width
	Syntax
	Parameters
	Description
	See also

	-path
	Syntax
	Parameters
	Description

	-pfe
	Syntax
	Parameters
	Description

	-pseudo_code
	Syntax
	Parameters
	Description

	-right_margin
	Syntax
	Parameters
	Description

	-scn_htmlbody
	Syntax
	Parameters
	Description

	-scn_htmlcode
	Syntax
	Parameters
	Description

	-scn_htmlh1
	Syntax
	Parameters
	Description

	-scn_htmlh2
	Syntax
	Parameters
	Description

	-scn_htmlh3
	Syntax
	Parameters
	Description

	-scn_htmlh4
	Syntax
	Parameters
	Description

	-scn_htmlh5
	Syntax
	Parameters
	Description

	-scn_htmlh6
	Syntax
	Parameters
	Description

	-scn_htmlh7
	Syntax
	Parameters
	Description

	-scn_htmlh8
	Syntax
	Parameters
	Description

	-scn_htmlh9
	Syntax
	Parameters
	Description

	-scn_htmltoc
	Syntax
	Parameters
	Description

	-sn_bt
	Syntax
	Parameters
	Description

	-sn_fpf
	Syntax
	Parameters
	Description

	-sn_fph
	Syntax
	Parameters
	Description

	-sn_fpt
	Syntax
	Parameters
	Description

	-sn_ftr
	Syntax
	Parameters
	Description

	-sn_hdr
	Syntax
	Parameters
	Description

	-sn_lb1
	Syntax
	Parameters
	Description

	-sn_lb2
	Syntax
	Parameters
	Description

	-sn_lb3
	Syntax
	Parameters
	Description

	-sn_lb4
	Syntax
	Parameters
	Description

	-sn_lb5
	Syntax
	Parameters
	Description

	-sn_lb6
	Syntax
	Parameters
	Description

	-sn_lb7
	Syntax
	Parameters
	Description

	-sn_lb8
	Syntax
	Parameters
	Description

	-sn_lb9
	Syntax
	Parameters
	Description

	-sn_rtfcode
	Syntax
	Parameters
	Description

	-sn_rtfh1
	Syntax
	Parameters
	Description

	-sn_rtfh2
	Syntax
	Parameters
	Description

	-sn_rtfh3
	Syntax
	Parameters
	Description

	-sn_rtfh4
	Syntax
	Parameters
	Description

	-sn_rtfh5
	Syntax
	Parameters
	Description

	-sn_rtfh6
	Syntax
	Parameters
	Description

	-sn_rtfh7
	Syntax
	Parameters
	Description

	-sn_rtfh8
	Syntax
	Parameters
	Description

	-sn_rtfh9
	Syntax
	Parameters
	Description

	-sn_rtftoc
	Syntax
	Parameters
	Description

	-split
	Syntax
	Parameters
	Description

	-stylesheet
	Syntax
	Parameters
	Description

	-template
	Syntax
	Parameters
	Description

	-test
	Syntax
	Parameters
	Description

	-text_fname
	Syntax
	Parameters
	Description

	-text_fsize
	Syntax
	Parameters
	Description

	-text_fstyle
	Syntax
	Parameters
	Description

	-title
	Syntax
	Parameters
	Description

	-top_margin
	Syntax
	Parameters
	Description

	-toptext_justification
	Syntax
	Parameters
	Description

	-toptext_str
	Syntax
	Parameters
	Description

	-usertxtfiles
	Syntax
	Parameters
	Description

	-variant
	Syntax
	Parameters
	Description
	See also

	-vdafiles
	Syntax
	Parameters
	Description

	-vlgfiles
	Syntax
	Parameters
	Description

	-vrefiles
	Syntax
	Parameters
	Description

	-vsafiles
	Syntax
	Parameters
	Description

	Part 9. Additional features and utilities
	Prototyping a graphical interface
	Introduction to prototyping a graphical interface
	Briefly about prototyping a graphical interface
	Briefly about prototyping with Altia Design
	Altia connection
	Connections between Visual State elements and Altia objects
	Parameters on Altia objects

	Briefly about prototyping based on Coder-generated code

	Prototyping with Altia Design
	Connecting a state machine model to an Altia model
	Connecting Visual State elements to Altia objects
	Removing a connection between an Altia object and a Visual State element
	Simulating with Altia Design
	Closing the Altia connection
	Configuring the Altia connection
	Example: Connecting Visual State elements to Altia objects for the CDplayer project
	Prototyping based on Coder-generated code

	Graphical environment for Altia Design
	Altia menu
	Menu commands

	Connect Elements dialog box
	Connection (for events)
	Connection (for actions)
	Pane to the right

	Define Altia Properties dialog box
	Altia Response Timeout
	Reset Altia design when deducting SE_RESET
	Altia Command Line Parameters
	When connecting to Visual State

	Open Altia Model dialog box
	Create a new Altia model
	Open an existing Altia model
	Open most recently used

	Viewing design models via the Visual State Viewer
	Introduction to the Visual State Viewer
	Briefly about the Visual State Viewer

	Using IAR Visual State remotely via the Control Center
	Introduction to the Visual State Control Center
	Briefly about the Visual State Control Center

	Using the Control Center
	Starting the Control Center
	Saving all files in connected applications
	Exiting the Control Center
	Starting the Designer
	Saving in the Designer
	Exiting the Designer
	Creating a project with a new state machine
	Adding a state machine to an existing design
	Starting the Validator
	Saving in the Validator
	Exiting the Validator
	Disabling look ahead of guard values in the Validator
	Deducing an event in the Validator
	Requesting an action function call return value from the Validator
	Simulating a Validator project remotely
	Starting external tools via the Control Center

	Importing and exporting design models via XMI® files
	Introduction to using the XMI file format
	Briefly about the XMI file format
	Restrictions and requirements for importing XMI files to IAR Visual State
	Restrictions and requirements for exporting XMI files from IAR Visual State

	Using the XMI format for import and export of design models
	Importing an XMI file to IAR Visual State
	Exporting an XMI file from IAR Visual State

	The Visual State State Machine API for programmatic manipulation of models
	Introduction to the State Machine API and programmatic manipulation
	Briefly about the Visual State State Machine API
	Installed files

	Handling Visual State files from previous versions
	Introduction to using old design models from previous versions
	Using files from version 5 and later
	Converting old files by using the Navigator
	Converting old files manually by using the project converter

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Symbols

