
DARM-25

IAR C/C++ Development
Guide
Compiling and Linking

for Arm Limited’s
Arm® Cores

AFE1_AFE2-1:1

2
IAR C/C++ Development Guide
Compiling and Linking for Arm

COPYRIGHT NOTICE
© 1999–2019 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Arm, Cortex, Thumb, and TrustZone are registered trademarks of Arm Limited.
EmbeddedICE is a trademark of Arm Limited. uC/OS-II and uC/OS-III are trademarks
of Micrium, Inc. CMX-RTX is a trademark of CMX Systems, Inc. ThreadX is a
trademark of Express Logic. RTXC is a trademark of Quadros Systems. Fusion is a
trademark of Unicoi Systems.

Renesas Synergy is a trademark of Renesas Electronics Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Twenty-fifth edition: May 2019

Part number: DARM-25

This guide applies to version 8.40.x of IAR Embedded Workbench® for Arm.

Internal reference: BB5, csrct2010.1, V_110411, INIT.

AFE1_AFE2-1:1

3

Brief contents
Tables ... 41

Preface .. 43

Part 1. Using the build tools ... 51

Introduction to the IAR build tools .. 53

Developing embedded applications .. 59

Data storage .. 73

Functions ... 77

Linking using ILINK .. 89

Linking your application .. 107

The DLIB runtime environment ... 123

Assembler language interface ... 163

Using C .. 187

Using C++ .. 195

Application-related considerations ... 205

Efficient coding for embedded applications 227

Part 2. Reference information ... 247

External interface details .. 249

Compiler options ... 259

Linker options .. 311

Data representation .. 349

Extended keywords .. 365

AFE1_AFE2-1:1

4
IAR C/C++ Development Guide
Compiling and Linking for Arm

Pragma directives ... 383

Intrinsic functions ... 409

The preprocessor .. 457

C/C++ standard library functions .. 471

The linker configuration file .. 483

Section reference ... 517

The stack usage control file .. 523

IAR utilities .. 531

Implementation-defined behavior for Standard C++ 579

Implementation-defined behavior for Standard C 599

Implementation-defined behavior for C89 619

Index ... 631

AFE1_AFE2-1:1

5

Contents
Tables ... 41

Preface .. 43

Who should read this guide ... 43

Required knowledge .. 43

How to use this guide .. 43

What this guide contains ... 44

Part 1. Using the build tools ... 44

Part 2. Reference information .. 44

Other documentation ... 45

User and reference guides .. 46

The online help system .. 46

Further reading ... 47

Web sites .. 47

Document conventions .. 48

Typographic conventions ... 48

Naming conventions .. 49

Part 1. Using the build tools ... 51

Introduction to the IAR build tools .. 53

The IAR build tools—an overview ... 53

IAR C/C++ Compiler ... 53

IAR Assembler ... 54

The IAR ILINK Linker .. 54

Specific ELF tools .. 54

External tools ... 54

IAR language overview ... 55

Device support ... 55

Supported Arm devices .. 55

Preconfigured support files .. 56

Examples for getting started .. 56

AFE1_AFE2-1:1

6
IAR C/C++ Development Guide
Compiling and Linking for Arm

Special support for embedded systems .. 57

Extended keywords .. 57

Pragma directives ... 57

Predefined symbols .. 57

Accessing low-level features ... 57

Developing embedded applications .. 59

Developing embedded software using IAR build tools 59

Mapping of memory ... 59

Communication with peripheral units .. 60

Event handling ... 60

System startup .. 60

Real-time operating systems .. 60

Interoperability with other build tools ... 61

The build process—an overview .. 61

The translation process ... 62

The linking process .. 62

After linking ... 64

Application execution—an overview ... 64

The initialization phase .. 65

The execution phase ... 68

The termination phase .. 68

Building applications—an overview .. 69

Basic project configuration ... 69

Processor configuration .. 70

Optimization for speed and size ... 71

Data storage .. 73

Introduction ... 73

Different ways to store data ... 73

Storage of auto variables and parameters 74

The stack .. 74

Dynamic memory on the heap .. 75

Potential problems .. 75

AFE1_AFE2-1:1

Contents

7

Functions ... 77

Function-related extensions .. 77

Arm and Thumb code .. 78

Execution in RAM ... 78

Interrupt functions for Cortex-M devices 79

Interrupts for Cortex-M .. 79

Interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R
devices ... 80

Interrupt functions ... 80

Installing exception functions .. 81

Interrupts and fast interrupts .. 82

Nested interrupts .. 83

Software interrupts ... 84

Interrupt operations .. 85

Inlining functions ... 86

C versus C++ semantics ... 86

Features controlling function inlining .. 87

Stack protection .. 87

Stack protection in the IAR C/C++ compiler 88

Using stack protection in your application .. 88

TrustZone interface .. 88

Linking using ILINK .. 89

Linking—an overview .. 89

Modules and sections .. 90

The linking process in detail .. 91

Placing code and data—the linker configuration file 93

A simple example of a configuration file ... 94

Initialization at system startup ... 96

The initialization process ... 97

C++ dynamic initialization ... 98

Stack usage analysis ... 98

Introduction to stack usage analysis ... 98

Performing a stack usage analysis ... 99

AFE1_AFE2-1:1

8
IAR C/C++ Development Guide
Compiling and Linking for Arm

Result of an analysis—the map file contents 100

Specifying additional stack usage information 101

Limitations ... 103

Situations where warnings are issued .. 104

Call graph log ... 104

Call graph XML output .. 105

Linking your application .. 107

Linking considerations .. 107

Choosing a linker configuration file .. 107

Defining your own memory areas .. 108

Placing sections .. 109

Reserving space in RAM ... 110

Keeping modules .. 111

Keeping symbols and sections ... 111

Application startup ... 111

Setting up stack memory .. 111

Setting up heap memory .. 112

Setting up the atexit limit ... 112

Changing the default initialization ... 112

Interaction between ILINK and the application 116

Standard library handling ... 116

Producing other output formats than ELF/DWARF 117

Veneers ... 117

Hints for troubleshooting .. 117

Relocation errors .. 117

Checking module consistency ... 119

Runtime model attributes .. 119

Using runtime model attributes .. 120

Linker optimizations ... 121

Virtual function elimination ... 121

Small function inlining ... 121

Duplicate section merging ... 121

AFE1_AFE2-1:1

Contents

9

The DLIB runtime environment ... 123

Introduction to the runtime environment 123

Runtime environment functionality ... 123

Briefly about input and output (I/O) .. 124

Briefly about C-SPY emulated I/O .. 125

Briefly about retargeting .. 126

Setting up the runtime environment ... 127

Setting up your runtime environment .. 127

Retargeting—Adapting for your target system 129

Overriding library modules ... 131

Customizing and building your own runtime library 131

Additional information on the runtime environment 133

Bounds checking functionality ... 133

Runtime library configurations ... 134

Prebuilt runtime libraries ... 135

Formatters for printf ... 139

Formatters for scanf .. 141

The C-SPY emulated I/O mechanism .. 142

The semihosting mechanism .. 142

Math functions ... 143

System startup and termination .. 145

System initialization ... 148

The DLIB low-level I/O interface .. 149

abort ... 150

__aeabi_assert .. 150

clock ... 151

__close ... 151

__exit ... 152

getenv ... 152

__getzone ... 153

__lseek ... 153

__open .. 154

raise .. 154

AFE1_AFE2-1:1

10
IAR C/C++ Development Guide
Compiling and Linking for Arm

__read .. 154

remove .. 155

rename .. 156

signal .. 156

system ... 157

__time32, __time64 ... 157

__write ... 157

Configuration symbols for file input and output 159

Locale ... 159

Managing a multithreaded environment 160

Multithread support in the DLIB runtime environment 161

Enabling multithread support ... 162

C++ exceptions in threads .. 162

Assembler language interface ... 163

Mixing C and assembler ... 163

Intrinsic functions .. 163

Mixing C and assembler modules .. 163

Inline assembler .. 164

Reference information for inline assembler 166

An example of how to use clobbered memory 172

Calling assembler routines from C ... 172

Creating skeleton code ... 173

Compiling the skeleton code .. 173

Calling assembler routines from C++ .. 175

Calling convention .. 175

Function declarations .. 176

Using C linkage in C++ source code ... 176

Preserved versus scratch registers ... 177

Function entrance ... 178

Function exit ... 179

Examples .. 181

Call frame information ... 182

CFI directives ... 182

AFE1_AFE2-1:1

Contents

11

Creating assembler source with CFI support 183

Using C .. 187

C language overview ... 187

Extensions overview .. 187

Enabling language extensions .. 188

IAR C language extensions ... 189

Extensions for embedded systems programming 189

Relaxations to Standard C .. 191

Using C++ .. 195

Overview—Standard C++ ... 195

Modes for exceptions and RTTI support ... 195

Exception handling .. 196

Enabling support for C++ .. 198

C++ feature descriptions ... 198

Using IAR attributes with Classes ... 198

Templates .. 198

Function types .. 198

Using static class objects in interrupts ... 199

Using New handlers ... 199

Debug support in C-SPY .. 200

C++ language extensions ... 200

Porting code from EC++ or EEC++ .. 203

Application-related considerations ... 205

Output format considerations ... 205

Stack considerations ... 206

Stack size considerations ... 206

Stack alignment .. 206

Exception stack .. 206

Heap considerations .. 207

Advanced, basic, and no-free heap .. 207

Heap size and standard I/O .. 208

AFE1_AFE2-1:1

12
IAR C/C++ Development Guide
Compiling and Linking for Arm

Interaction between the tools and your application 209

Checksum calculation for verifying image integrity 210

Briefly about checksum calculation ... 211

Calculating and verifying a checksum ... 212

Troubleshooting checksum calculation .. 217

AEABI compliance ... 218

Linking AEABI-compliant modules using the IAR ILINK linker .. 219

Linking AEABI-compliant modules using a third-party linker 220

Enabling AEABI compliance in the compiler 220

CMSIS integration .. 221

CMSIS DSP library .. 221

Customizing the CMSIS DSP library .. 221

Building with CMSIS on the command line 221

Building with CMSIS in the IDE ... 222

Arm TrustZone® .. 222

An example using the Armv8-M Security Extensions (CMSE) 223

Patching symbol definitions using $Super$$ and $Sub$$... 225

An example using the $Super$$ and $Sub$$ patterns 225

Efficient coding for embedded applications 227

Selecting data types ... 227

Using efficient data types ... 227

Floating-point types ... 228

Alignment of elements in a structure ... 228

Anonymous structs and unions .. 229

Controlling data and function placement in memory 230

Data placement at an absolute location .. 231

Data and function placement in sections ... 232

Data placement in registers .. 233

Controlling compiler optimizations ... 234

Scope for performed optimizations .. 235

Multi-file compilation units ... 235

Optimization levels .. 236

Speed versus size ... 237

AFE1_AFE2-1:1

Contents

13

Fine-tuning enabled transformations ... 237

Facilitating good code generation ... 240

Writing optimization-friendly source code 240

Saving stack space and RAM memory .. 241

Function prototypes .. 241

Integer types and bit negation .. 242

Protecting simultaneously accessed variables 243

Accessing special function registers .. 243

Passing values between C and assembler objects 244

Non-initialized variables .. 244

Part 2. Reference information ... 247

External interface details .. 249

Invocation syntax ... 249

Compiler invocation syntax ... 249

ILINK invocation syntax ... 250

Passing options ... 250

Environment variables ... 251

Include file search procedure .. 251

Compiler output ... 252

Error return codes ... 253

ILINK output .. 254

Text encodings ... 254

Characters and string literals .. 255

Reserved identifiers ... 256

Diagnostics .. 256

Message format for the compiler ... 256

Message format for the linker .. 257

Severity levels .. 257

Setting the severity level .. 258

Internal error .. 258

AFE1_AFE2-1:1

14
IAR C/C++ Development Guide
Compiling and Linking for Arm

Compiler options ... 259

Options syntax ... 259

Types of options ... 259

Rules for specifying parameters ... 259

Summary of compiler options .. 261

Descriptions of compiler options ... 267

--aapcs .. 267

--aeabi ... 267

--align_sp_on_irq ... 268

--arm ... 268

--c89 ... 268

--char_is_signed ... 269

--char_is_unsigned ... 269

--cmse ... 269

--cpu ... 270

--cpu_mode .. 271

--c++ ... 271

-D ... 272

--debug, -r ... 272

--dependencies ... 273

--deprecated_feature_warnings .. 274

--diag_error .. 274

--diag_remark ... 275

--diag_suppress .. 275

--diag_warning ... 276

--diagnostics_tables .. 276

--discard_unused_publics ... 276

--dlib_config ... 277

--do_explicit_zero_opt_in_named_sections 278

-e .. 278

--enable_hardware_workaround .. 278

--enable_restrict ... 279

--endian .. 279

AFE1_AFE2-1:1

Contents

15

--enum_is_int ... 280

--error_limit .. 280

-f ... 280

--f .. 281

--fpu .. 281

--guard_calls ... 282

--header_context ... 282

-I ... 283

-l ... 283

--lock_regs ... 284

--macro_positions_in_diagnostics ... 284

--make_all_definitions_weak ... 285

--max_cost_constexpr_call .. 285

--max_depth_constexpr_call .. 285

--mfc ... 286

--no_alignment_reduction .. 286

--no_bom .. 286

--no_clustering ... 287

--no_code_motion .. 287

--no_const_align ... 287

--no_cse .. 288

--no_exceptions .. 288

--no_fragments ... 288

--no_inline .. 289

--no_literal_pool ... 289

--no_loop_align .. 290

--no_mem_idioms .. 290

--no_path_in_file_macros .. 290

--no_rtti .. 291

--no_rw_dynamic_init .. 291

--no_scheduling .. 291

--no_size_constraints ... 292

--no_static_destruction ... 292

--no_system_include .. 292

AFE1_AFE2-1:1

16
IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_tbaa .. 293

--no_typedefs_in_diagnostics .. 293

--no_unaligned_access ... 293

--no_uniform_attribute_syntax .. 294

--no_unroll ... 294

--no_var_align .. 295

--no_warnings .. 295

--no_wrap_diagnostics ... 295

--nonportable_path_warnings .. 296

-O ... 296

--only_stdout .. 297

--output, -o ... 297

--pending_instantiations ... 297

--predef_macros ... 298

--preinclude ... 298

--preprocess .. 299

--public_equ ... 299

--relaxed_fp .. 299

--remarks .. 300

--require_prototypes ... 300

--ropi ... 301

--ropi_cb ... 301

--rwpi .. 302

--rwpi_near ... 302

--section .. 303

--silent .. 303

--source_encoding .. 304

--stack_protection ... 304

--strict ... 304

--system_include_dir .. 305

--text_out .. 305

--thumb ... 306

--uniform_attribute_syntax .. 306

--use_c++_inline .. 306

AFE1_AFE2-1:1

Contents

17

--use_paths_as_written ... 307

--use_unix_directory_separators .. 307

--utf8_text_in ... 307

--vectorize .. 308

--version ... 308

--vla .. 308

--warn_about_c_style_casts ... 309

--warnings_affect_exit_code .. 309

--warnings_are_errors .. 309

Linker options .. 311

Summary of linker options ... 311

Descriptions of linker options ... 315

--advanced_heap .. 315

--basic_heap ... 316

--BE8 .. 316

--BE32 .. 316

--call_graph .. 317

--config ... 317

--config_def .. 317

--config_search ... 318

--cpp_init_routine ... 318

--cpu ... 319

--default_to_complex_ranges ... 319

--define_symbol ... 320

--dependencies ... 320

--diag_error .. 321

--diag_remark ... 321

--diag_suppress .. 322

--diag_warning ... 322

--diagnostics_tables .. 322

--do_segment_pad .. 323

--enable_hardware_workaround .. 323

--enable_stack_usage ... 323

AFE1_AFE2-1:1

18
IAR C/C++ Development Guide
Compiling and Linking for Arm

--entry ... 324

--entry_list_in_address_order .. 324

--error_limit .. 325

--exception_tables .. 325

--export_builtin_config .. 326

--extra_init .. 326

-f ... 326

--f .. 327

--force_exceptions .. 327

--force_output ... 328

--fpu .. 328

--image_input ... 328

--import_cmse_lib_in ... 329

--import_cmse_lib_out ... 329

--inline .. 330

--keep ... 330

--log .. 331

--log_file ... 331

--mangled_names_in_messages ... 332

--manual_dynamic_initialization ... 332

--map .. 332

--merge_duplicate_sections ... 333

--no_bom .. 334

--no_dynamic_rtti_elimination .. 334

--no_entry ... 334

--no_exceptions .. 335

--no_fragments ... 335

--no_free_heap ... 335

--no_inline .. 336

--no_library_search .. 336

--no_literal_pool ... 336

--no_locals .. 337

--no_range_reservations ... 337

--no_remove ... 337

AFE1_AFE2-1:1

Contents

19

--no_vfe .. 338

--no_warnings .. 338

--no_wrap_diagnostics ... 338

--only_stdout .. 338

--output, -o ... 339

--pi_veneers .. 339

--place_holder .. 339

--preconfig .. 340

--printf_multibytes ... 340

--redirect ... 340

--remarks .. 341

--scanf_multibytes .. 341

--search, -L ... 341

--semihosting .. 342

--silent .. 342

--stack_usage_control .. 343

--strip .. 343

--text_out .. 343

--threaded_lib ... 344

--timezone_lib .. 344

--treat_rvct_modules_as_softfp ... 344

--use_full_std_template_names ... 345

--use_optimized_variants ... 345

--utf8_text_in ... 346

--version ... 346

--vfe .. 346

--warnings_affect_exit_code .. 347

--warnings_are_errors .. 347

--whole_archive ... 347

Data representation .. 349

Alignment .. 349

Alignment on the Arm core .. 350

AFE1_AFE2-1:1

20
IAR C/C++ Development Guide
Compiling and Linking for Arm

Byte order .. 350

Basic data types—integer types .. 351

Integer types—an overview ... 351

Bool .. 351

The enum type .. 352

The char type ... 352

The wchar_t type ... 352

The char16_t type ... 352

The char32_t type ... 352

Bitfields .. 352

Basic data types—floating-point types 356

Floating-point environment .. 357

32-bit floating-point format ... 357

64-bit floating-point format ... 357

Representation of special floating-point numbers 358

Pointer types .. 358

Function pointers .. 358

Data pointers .. 358

Casting ... 359

Structure types ... 359

Alignment of structure types .. 359

General layout ... 360

Packed structure types ... 360

Type qualifiers .. 361

Declaring objects volatile .. 361

Declaring objects volatile and const .. 362

Declaring objects const .. 363

Data types in C++ ... 363

Extended keywords .. 365

General syntax rules for extended keywords 365

Type attributes .. 365

Object attributes .. 367

AFE1_AFE2-1:1

Contents

21

Summary of extended keywords ... 368

Descriptions of extended keywords ... 369

__absolute ... 369

__arm ... 369

__big_endian .. 370

__cmse_nonsecure_call ... 370

__cmse_nonsecure_entry ... 371

__fiq ... 371

__interwork .. 371

__intrinsic .. 372

__irq ... 372

__little_endian ... 372

__nested ... 372

__no_alloc, __no_alloc16 ... 373

__no_alloc_str, __no_alloc_str16 ... 373

__no_init .. 374

__noreturn .. 374

__packed .. 375

__ramfunc .. 376

__ro_placement .. 377

__root ... 377

__stackless ... 377

__swi .. 378

__task ... 379

__thumb ... 379

__weak ... 380

Supported GCC attributes ... 380

Pragma directives ... 383

Summary of pragma directives .. 383

Descriptions of pragma directives .. 386

bitfields ... 386

calls .. 387

call_graph_root .. 388

AFE1_AFE2-1:1

22
IAR C/C++ Development Guide
Compiling and Linking for Arm

data_alignment ... 388

default_function_attributes .. 389

default_variable_attributes ... 390

deprecated .. 391

diag_default .. 391

diag_error ... 392

diag_remark ... 392

diag_suppress ... 393

diag_warning .. 393

error .. 393

function_category ... 394

include_alias ... 394

inline ... 395

language ... 395

location ... 396

message .. 397

no_stack_protect .. 398

object_attribute ... 398

optimize .. 398

pack ... 400

__printf_args .. 401

public_equ .. 401

required .. 401

rtmodel ... 402

__scanf_args .. 403

section .. 403

stack_protect .. 404

STDC CX_LIMITED_RANGE ... 404

STDC FENV_ACCESS ... 404

STDC FP_CONTRACT .. 405

swi_number .. 405

type_attribute ... 406

unroll .. 406

vectorize ... 407

AFE1_AFE2-1:1

Contents

23

weak ... 407

Intrinsic functions ... 409

Summary of intrinsic functions ... 409

Intrinsic functions for ACLE ... 409

Intrinsic functions for Neon instructions ... 409

Descriptions of IAR Systems intrinsic functions 410

__arm_cdp ... 410

__arm_cdp2 ... 410

__arm_ldc .. 411

__arm_ldcl ... 411

__arm_ldc2 .. 411

__arm_ldc2l ... 411

__arm_mcr ... 412

__arm_mcr2 ... 412

__arm_mcrr .. 412

__arm_mcrr2 .. 412

__arm_mrc ... 413

__arm_mrc2 ... 413

__arm_mrrc .. 413

__arm_mrrc2 .. 413

__arm_rsr ... 413

__arm_rsr64 ... 413

__arm_rsrp ... 413

__arm_stc ... 414

__arm_stcl .. 414

__arm_stc2 ... 414

__arm_stc2l .. 414

__arm_wsr ... 415

__arm_wsr64 ... 415

__arm_wsrp ... 415

__CDP .. 416

__CDP2 .. 416

__CLREX .. 416

AFE1_AFE2-1:1

24
IAR C/C++ Development Guide
Compiling and Linking for Arm

__CLZ .. 417

__crc32b .. 417

__crc32h .. 417

__crc32w .. 417

__crc32d .. 417

__crc32cb ... 418

__crc32ch ... 418

__crc32cw .. 418

__crc32cd ... 418

__disable_fiq .. 418

__disable_interrupt .. 418

__disable_irq .. 419

__DMB .. 419

__DSB .. 419

__enable_fiq .. 419

__enable_interrupt ... 420

__enable_irq .. 420

__fma ... 420

__fmaf .. 420

__get_BASEPRI .. 420

__get_CONTROL .. 421

__get_CPSR ... 421

__get_FAULTMASK .. 421

__get_FPSCR .. 421

__get_interrupt_state ... 422

__get_IPSR .. 422

__get_LR ... 422

__get_MSP .. 423

__get_PRIMASK ... 423

__get_PSP .. 423

__get_PSR ... 423

__get_SB .. 423

__get_SP .. 424

__ISB ... 424

AFE1_AFE2-1:1

Contents

25

__LDC ... 424

__LDCL ... 424

__LDC2 ... 424

__LDC2L ... 424

__LDC_noidx .. 425

__LDCL_noidx .. 425

__LDC2_noidx .. 425

__LDC2L_noidx .. 425

__LDREX .. 426

__LDREXB ... 426

__LDREXD ... 426

__LDREXH ... 426

__MCR .. 426

__MCR2 .. 426

__MCRR .. 427

__MCRR2 .. 427

__MRC .. 428

__MRC2 .. 428

__MRRC .. 428

__MRRC2 .. 428

__no_operation .. 429

__PKHBT .. 429

__PKHTB .. 430

__PLD .. 430

__PLDW .. 430

__PLI ... 430

__QADD .. 431

__QDADD ... 431

__QDSUB .. 431

__QSUB ... 431

__QADD8 .. 431

__QADD16 .. 431

__QASX .. 431

__QSAX .. 431

AFE1_AFE2-1:1

26
IAR C/C++ Development Guide
Compiling and Linking for Arm

__QSUB8 ... 431

__QSUB16 ... 431

__QCFlag ... 432

__QDOUBLE .. 432

__QFlag ... 432

__RBIT .. 432

__reset_Q_flag ... 433

__reset_QC_flag .. 433

__REV ... 433

__REV16 ... 433

__REVSH .. 433

__rintn .. 433

__rintnf .. 433

__ROR ... 434

__RRX ... 434

__SADD8 .. 434

__SADD16 .. 434

__SASX ... 434

__SSAX ... 434

__SSUB8 ... 434

__SSUB16 ... 434

__SEL .. 435

__set_BASEPRI .. 435

__set_CONTROL .. 435

__set_CPSR ... 435

__set_FAULTMASK .. 436

__set_FPSCR ... 436

__set_interrupt_state .. 436

__set_LR .. 436

__set_MSP ... 436

__set_PRIMASK ... 437

__set_PSP .. 437

__set_SB .. 437

__set_SP .. 437

AFE1_AFE2-1:1

Contents

27

__SEV .. 437

__SHADD8 .. 438

__SHADD16 .. 438

__SHASX .. 438

__SHSAX .. 438

__SHSUB8 .. 438

__SHSUB16 .. 438

__SMLABB ... 439

__SMLABT ... 439

__SMLATB ... 439

__SMLATT ... 439

__SMLAWB .. 439

__SMLAWT .. 439

__SMLAD ... 439

__SMLADX .. 439

__SMLSD .. 439

__SMLSDX ... 439

__SMLALBB .. 440

__SMLALBT ... 440

__SMLALTB ... 440

__SMLALTT ... 440

__SMLALD ... 440

__SMLALDX .. 440

__SMLSLD .. 440

__SMLSLDX ... 440

__SMMLA ... 441

__SMMLAR .. 441

__SMMLS ... 441

__SMMLSR ... 441

__SMMUL ... 441

__SMMULR .. 441

__SMUAD ... 441

__SMUADX .. 441

__SMUSD .. 441

AFE1_AFE2-1:1

28
IAR C/C++ Development Guide
Compiling and Linking for Arm

__SMUSDX ... 441

__SMUL .. 442

__SMULBB ... 442

__SMULBT ... 442

__SMULTB ... 442

__SMULTT ... 442

__SMULWB .. 442

__SMULWT .. 442

__sqrt ... 442

__sqrtf .. 442

__SSAT .. 443

__SSAT16 .. 443

__STC .. 444

__STCL .. 444

__STC2 .. 444

__STC2L .. 444

__STC_noidx ... 445

__STCL_noidx .. 445

__STC2_noidx ... 445

__STC2L_noidx .. 445

__STREX ... 446

__STREXB .. 446

__STREXD .. 446

__STREXH .. 446

__SWP ... 446

__SWPB .. 446

__SXTAB .. 447

__SXTAB16 .. 447

__SXTAH .. 447

__SXTB16 ... 447

__TT .. 447

__TTT .. 447

__TTA .. 447

__TTAT ... 447

AFE1_AFE2-1:1

Contents

29

__UADD8 .. 448

__UADD16 .. 448

__UASX .. 448

__USAX .. 448

__USUB8 ... 448

__USUB16 ... 448

__UHADD8 ... 448

__UHADD16 ... 448

__UHASX .. 448

__UHSAX .. 448

__UHSUB8 .. 448

__UHSUB16 .. 448

__UMAAL ... 449

__UQADD8 ... 449

__UQADD16 ... 449

__UQASX .. 449

__UQSAX .. 449

__UQSUB8 .. 449

__UQSUB16 .. 449

__USAD8 .. 450

__USADA8 .. 450

__USAT ... 450

__USAT16 ... 450

__UXTAB .. 451

__UXTAB16 .. 451

__UXTAH ... 451

__UXTB16 .. 451

__VFMA_F64 .. 452

__VFMS_F64 .. 452

__VFNMA_F64 ... 452

__VFNMS_F64 ... 452

__VFMA_F32 .. 452

__VFMS_F32 .. 452

__VFNMA_F32 ... 452

AFE1_AFE2-1:1

30
IAR C/C++ Development Guide
Compiling and Linking for Arm

__VFNMS_F32 ... 452

__VMINNM_F64 .. 453

__VMAXNM_F64 .. 453

__VMINNM_F32 .. 453

__VMAXNM_F32 .. 453

__VRINTA_F64 .. 454

__VRINTM_F64 ... 454

__VRINTN_F64 .. 454

__VRINTP_F64 ... 454

__VRINTX_F64 .. 454

__VRINTR_F64 .. 454

__VRINTZ_F64 .. 454

__VRINTA_F32 .. 454

__VRINTM_F32 ... 454

__VRINTN_F32 .. 454

__VRINTP_F32 ... 454

__VRINTX_F32 .. 454

__VRINTR_F32 .. 454

__VRINTZ_F32 .. 454

__VSQRT_F64 .. 455

__VSQRT_F32 .. 455

__WFE ... 456

__WFI .. 456

__YIELD ... 456

The preprocessor .. 457

Overview of the preprocessor .. 457

Description of predefined preprocessor symbols 458

__AAPCS__ .. 458

__AAPCS_VFP__ ... 458

__ARM_ADVANCED_SIMD__ ... 458

__ARM_ARCH ... 459

__ARM_ARCH_ISA_ARM .. 459

__ARM_ARCH_ISA_THUMB .. 459

AFE1_AFE2-1:1

Contents

31

__ARM_ARCH_PROFILE ... 459

__ARM_BIG_ENDIAN .. 459

__ARM_FEATURE_CMSE ... 459

__ARM_FEATURE_CRC32 .. 460

__ARM_FEATURE_CRYPTO .. 460

__ARM_FEATURE_DIRECTED_ROUNDING 460

__ARM_FEATURE_DSP ... 460

__ARM_FEATURE_FMA .. 460

__ARM_FEATURE_IDIV .. 460

__ARM_FEATURE_NUMERIC_MAXMIN 461

__ARM_FEATURE_UNALIGNED ... 461

__ARM_FP .. 461

__ARM_MEDIA__ ... 461

__ARM_NEON ... 461

__ARM_NEON_FP ... 461

__ARM_PROFILE_M__ .. 462

__ARMVFP__ ... 462

__ARMVFP_D16__ .. 462

__ARMVFP_SP__ .. 462

__BASE_FILE__ .. 463

__BUILD_NUMBER__ .. 463

__CORE__ .. 463

__COUNTER__ .. 463

__cplusplus .. 463

__CPU_MODE__ ... 464

__DATE__ .. 464

__EXCEPTIONS__ ... 464

__FILE__ ... 464

__func__ .. 464

__FUNCTION__ ... 465

__IAR_SYSTEMS_ICC__ ... 465

__ICC arm __ .. 465

__LINE__ .. 465

__LITTLE_ENDIAN__ .. 465

AFE1_AFE2-1:1

32
IAR C/C++ Development Guide
Compiling and Linking for Arm

__PRETTY_FUNCTION__ .. 465

__ROPI__ .. 466

__RTTI__ .. 466

__RWPI__ ... 466

__STDC__ ... 466

__STDC_LIB_EXT1__ ... 466

__STDC_NO_ATOMICS__ ... 467

__STDC_NO_THREADS__ ... 467

__STDC_NO_VLA__ ... 467

__STDC_UTF16__ ... 467

__STDC_UTF32__ ... 467

__STDC_VERSION__ ... 467

__TIME__ ... 467

__TIMESTAMP__ .. 468

__VER__ ... 468

Descriptions of miscellaneous preprocessor extensions 468

NDEBUG .. 468

__STDC_WANT_LIB_EXT1__ ... 468

#warning message ... 469

C/C++ standard library functions .. 471

C/C++ standard library overview ... 471

Header files .. 471

Library object files ... 472

Alternative more accurate library functions 472

Reentrancy ... 472

The longjmp function ... 473

DLIB runtime environment—implementation details 473

Briefly about the DLIB runtime environment 473

C header files ... 474

C++ header files ... 475

Library functions as intrinsic functions ... 479

Not supported C/C++ functionality .. 479

Atomic operations .. 479

AFE1_AFE2-1:1

Contents

33

Added C functionality .. 479

Non-standard implementations .. 482

Symbols used internally by the library .. 482

The linker configuration file .. 483

Overview .. 483

Defining memories and regions ... 484

define memory directive .. 485

define region directive ... 485

logical directive .. 486

Regions .. 487

Region literal .. 488

Region expression .. 489

Empty region .. 490

Section handling .. 491

define block directive ... 492

define section directive .. 494

define overlay directive .. 497

initialize directive ... 498

do not initialize directive .. 501

keep directive ... 501

place at directive .. 502

place in directive .. 503

use init table directive .. 505

Section selection ... 505

section-selectors ... 506

extended-selectors .. 509

Using symbols, expressions, and numbers 510

check that directive .. 510

define symbol directive .. 511

export directive .. 512

expressions ... 512

numbers .. 513

AFE1_AFE2-1:1

34
IAR C/C++ Development Guide
Compiling and Linking for Arm

Structural configuration .. 514

error directive ... 514

if directive .. 514

include directive ... 515

Section reference ... 517

Summary of sections and blocks .. 517

Descriptions of sections and blocks .. 518

.bss .. 518

CSTACK .. 518

.data .. 519

.data_init ... 519

.exc.text .. 519

HEAP ... 519

__iar_tls.$$DATA ... 519

.iar.dynexit ... 520

.init_array ... 520

.intvec ... 520

IRQ_STACK .. 520

.noinit ... 520

.preinit_array .. 521

.prepreinit_array ... 521

.rodata ... 521

.text ... 521

.textrw .. 521

.textrw_init ... 522

Veneer$$CMSE ... 522

The stack usage control file .. 523

Overview .. 523

C++ names ... 523

Stack usage control directives .. 523

call graph root directive ... 524

exclude directive .. 524

function directive ... 524

AFE1_AFE2-1:1

Contents

35

max recursion depth directive .. 525

no calls from directive .. 525

possible calls directive ... 526

Syntactic components .. 526

category .. 527

func-spec .. 527

module-spec ... 527

name ... 528

call-info .. 528

stack-size .. 528

size .. 529

IAR utilities .. 531

The IAR Archive Tool—iarchive .. 531

Invocation syntax ... 532

Summary of iarchive commands .. 532

Summary of iarchive options ... 533

Diagnostic messages .. 533

The IAR ELF Tool—ielftool .. 535

Invocation syntax ... 535

Summary of ielftool options .. 536

The IAR ELF Dumper—ielfdump ... 536

Invocation syntax ... 537

Summary of ielfdump options .. 537

The IAR ELF Object Tool—iobjmanip .. 538

Invocation syntax ... 538

Summary of iobjmanip options .. 539

Diagnostic messages .. 539

The IAR Absolute Symbol Exporter—isymexport 541

Invocation syntax ... 541

Summary of isymexport options .. 543

Steering files .. 543

Show directive .. 544

Show-weak directive .. 544

AFE1_AFE2-1:1

36
IAR C/C++ Development Guide
Compiling and Linking for Arm

Hide directive ... 545

Rename directive .. 545

Diagnostic messages .. 546

The IAR ELF Relocatable Object Creator—iexe2obj 547

Invocation syntax ... 547

Building the input file .. 548

Summary of iexe2obj options .. 549

Descriptions of options .. 549

--a ... 549

--all ... 550

--bin .. 550

--bin-multi .. 550

--checksum ... 551

--code ... 556

--create ... 556

--delete, -d .. 556

--disasm_data ... 557

--edit ... 557

--extract, -x ... 557

-f ... 558

--fill .. 559

--front_headers ... 559

--generate_vfe_header .. 560

--hide_symbols ... 560

--ihex .. 560

--keep_mode_symbols ... 561

--no_bom .. 561

--no_header .. 561

--no_rel_section ... 562

--no_strtab .. 562

--no_utf8_in ... 562

--offset .. 563

--output, -o ... 563

--parity .. 564

AFE1_AFE2-1:1

Contents

37

--prefix ... 565

--ram_reserve_ranges ... 566

--range .. 566

--raw ... 567

--remove_file_path ... 567

--remove_section .. 567

--rename_section .. 568

--rename_symbol ... 568

--replace, -r ... 569

--reserve_ranges ... 569

--section, -s ... 570

--segment, -g .. 570

--self_reloc ... 571

--show_entry_as ... 571

--silent .. 571

--simple .. 572

--simple-ne ... 572

--source ... 572

--srec ... 573

--srec-len .. 573

--srec-s3only ... 573

--strip .. 574

--symbols .. 574

--text_out .. 575

--titxt ... 575

--toc, -t .. 575

--use_full_std_template_names ... 576

--utf8_text_in ... 576

--verbose, -V .. 577

--version ... 577

--vtoc .. 577

--wrap ... 578

AFE1_AFE2-1:1

38
IAR C/C++ Development Guide
Compiling and Linking for Arm

Implementation-defined behavior for Standard C++ 579

Descriptions of implementation-defined behavior for C++ 579

1 General .. 579

2 Lexical conventions .. 580

3 Basic concepts ... 582

4 Standard conversions .. 584

5 Expressions ... 585

7 Declarations .. 586

8 Declarators .. 586

9 Classes ... 587

14 Templates .. 587

15 Exception handling ... 587

16 Preprocessing directives .. 587

17 Library introduction .. 588

18 Language support library .. 589

20 General utilities library ... 590

21 Strings library .. 591

22 Localization library ... 592

23 Containers library .. 593

25 Algorithms library ... 593

27 Input/output library ... 593

28 Regular expressions library ... 594

29 Atomic operations library ... 595

30 Thread support library ... 595

Annex D (normative): Compatibility features 595

Implementation quantities ... 595

Implementation-defined behavior for Standard C 599

Descriptions of implementation-defined behavior 599

J.3.1 Translation ... 599

J.3.2 Environment .. 600

J.3.3 Identifiers ... 601

J.3.4 Characters .. 601

J.3.5 Integers .. 603

AFE1_AFE2-1:1

Contents

39

J.3.6 Floating point ... 604

J.3.7 Arrays and pointers .. 605

J.3.8 Hints .. 605

J.3.9 Structures, unions, enumerations, and bitfields 605

J.3.10 Qualifiers ... 606

J.3.11 Preprocessing directives .. 606

J.3.12 Library functions ... 609

J.3.13 Architecture ... 614

J.4 Locale ... 615

Implementation-defined behavior for C89 619

Descriptions of implementation-defined behavior 619

Translation ... 619

Environment ... 619

Identifiers ... 620

Characters ... 620

Integers ... 621

Floating point ... 622

Arrays and pointers .. 623

Registers ... 623

Structures, unions, enumerations, and bitfields 623

Qualifiers .. 624

Declarators ... 624

Statements .. 624

Preprocessing directives ... 624

Library functions for the IAR DLIB Runtime Environment 626

Index ... 631

AFE1_AFE2-1:1

40
IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

41

Tables
1: Typographic conventions used in this guide ... 48

2: Naming conventions used in this guide .. 49

3: Sections holding initialized data ... 96

4: Description of a relocation error ... 118

5: Example of runtime model attributes .. 120

6: Library configurations ... 134

7: Formatters for printf .. 140

8: Formatters for scanf .. 141

9: Library objects using TLS ... 161

10: Inline assembler operand constraints .. 167

11: Supported constraint modifiers ... 169

12: List of valid clobbers ... 170

13: Operand modifiers and transformations .. 171

14: Registers used for passing parameters .. 178

15: Registers used for returning values ... 180

16: Call frame information resources defined in a names block 183

17: Language extensions ... 188

18: Section operators and their symbols ... 191

19: Exception stacks for Arm7/9/11, Cortex-A, and Cortex-R 207

20: Memory ranges for TrustZone example .. 224

21: Compiler optimization levels .. 236

22: Compiler environment variables ... 251

23: ILINK environment variables ... 251

24: Error return codes .. 253

25: Compiler options summary ... 261

26: Linker options summary ... 311

27: Integer types .. 351

28: Floating-point types .. 356

29: Extended keywords summary ... 368

30: Pragma directives summary .. 383

31: Traditional Standard C header files—DLIB ... 474

AFE1_AFE2-1:1

42
IAR C/C++ Development Guide
Compiling and Linking for Arm

32: C++ header files .. 475

33: New Standard C header files—DLIB ... 478

34: Examples of section selector specifications .. 508

35: Section summary ... 517

36: iarchive parameters ... 532

37: iarchive commands summary .. 532

38: iarchive options summary ... 533

39: ielftool parameters ... 535

40: ielftool options summary ... 536

41: ielfdumparm parameters .. 537

42: ielfdumparm options summary ... 537

43: iobjmanip parameters .. 538

44: iobjmanip options summary .. 539

45: isymexport parameters .. 542

46: isymexport options summary .. 543

47: iexe2obj parameters .. 548

48: iexe2obj options summary .. 549

49: Execution character sets and their encodings .. 580

50: C++ implementation quantities ... 595

51: Execution character sets and their encodings .. 602

52: Translation of multibyte characters in the extended source character set 615

53: Message returned by strerror()—DLIB runtime environment 617

54: Execution character sets and their encodings .. 620

55: Message returned by strerror()—DLIB runtime environment 629

AFE1_AFE2-1:1

43

Preface
Welcome to the IAR C/C++ Development Guide for Arm. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the build tools to best suit your application requirements. This guide
also gives you suggestions on coding techniques so that you can develop
applications with maximum efficiency.

Who should read this guide
Read this guide if you plan to develop an application using the C or C++ language for
32-bit Arm cores, and need detailed reference information on how to use the build tools.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

● The architecture and instruction set of the Arm core you are using (refer to the chip
manufacturer's documentation)

● The C or C++ programming language

● Application development for embedded systems

● The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 45.

How to use this guide
When you start using the IAR C/C++ compiler and linker for Arm, you should read Part
1. Using the build tools in this guide.

When you are familiar with the compiler and linker, and have already configured your
project, you can focus more on Part 2. Reference information.

If you are new to using this product, we suggest that you first go through the tutorials,
which you can find in IAR Information Center in the product. They will help you get
started using IAR Embedded Workbench.

AFE1_AFE2-1:1

44

What this guide contains

IAR C/C++ Development Guide
Compiling and Linking for Arm

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

PART 1. USING THE BUILD TOOLS

● Introduction to the IAR build tools gives an introduction to the IAR build tools,
which includes an overview of the tools, the programming languages, the available
device support, and extensions provided for supporting specific features of the
various Arm cores and devices.

● Developing embedded applications gives the information you need to get started
developing your embedded software using the IAR build tools.

● Data storage describes how to store data in memory.

● Functions gives a brief overview of function-related extensions—mechanisms for
controlling functions—and describes some of these mechanisms in more detail.

● Linking using ILINK describes the linking process using the IAR ILINK Linker and
the related concepts.

● Linking your application lists aspects that you must consider when linking your
application, including using ILINK options and tailoring the linker configuration
file.

● The DLIB runtime environment describes the DLIB runtime environment in which
an application executes. It covers how you can modify it by setting options,
overriding default library modules, or building your own library. The chapter also
describes system initialization introducing the file cstartup, how to use modules
for locale, and file I/O.

● Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

● Using C gives an overview of the two supported variants of the C language, and an
overview of the compiler extensions, such as extensions to Standard C.

● Using C++ gives an overview of the level of C++ support.

● Application-related considerations discusses a selected range of application issues
related to using the compiler and linker.

● Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

PART 2. REFERENCE INFORMATION

● External interface details provides reference information about how the compiler
and linker interact with their environment—the invocation syntax, methods for
passing options to the compiler and linker, environment variables, the include file

AFE1_AFE2-1:1

Preface

45

search procedure, and the different types of compiler and linker output. The chapter
also describes how the diagnostic system works.

● Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

● Linker options gives a summary of the options, and contains detailed reference
information for each linker option.

● Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

● Extended keywords gives reference information about each of the Arm-specific
keywords that are extensions to the standard C/C++ language.

● Pragma directives gives reference information about the pragma directives.

● Intrinsic functions gives reference information about functions to use for accessing
Arm-specific low-level features.

● The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

● C/C++ standard library functions gives an introduction to the C or C++ library
functions, and summarizes the header files.

● The linker configuration file describes the purpose of the linker configuration file,
and describes its contents.

● Section reference gives reference information about the use of sections.

● The stack usage control file describes the syntax and semantics of stack usage
control files.

● IAR utilities describes the IAR utilities that handle the ELF and DWARF object
formats.

● Implementation-defined behavior for Standard C++ describes how the compiler
handles the implementation-defined areas of Standard C++.

● Implementation-defined behavior for Standard C describes how the compiler
handles the implementation-defined areas of Standard C.

● Implementation-defined behavior for C89 describes how the compiler handles the
implementation-defined areas of the C language standard C89.

Other documentation
User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

AFE1_AFE2-1:1

46

Other documentation

IAR C/C++ Development Guide
Compiling and Linking for Arm

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

● System requirements and information about how to install and register the IAR
Systems products, is available in the Installation and Licensing Quick Reference
booklet—available in the product box—and the Licensing Guide.

● Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide for Arm.

● Using the IAR C-SPY® Debugger and C-RUN runtime error checking, is available
in the C-SPY® Debugging Guide for Arm.

● Programming for the IAR C/C++ Compiler for Arm and linking using the IAR
ILINK Linker, is available in the IAR C/C++ Development Guide for Arm.

● Programming for the IAR Assembler for Arm, is available in the IAR Assembler
User Guide for Arm.

● Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

● Developing safety-critical applications using the MISRA C guidelines, is available
in the IAR Embedded Workbench® MISRA C:2004 Reference Guide or the IAR
Embedded Workbench® MISRA C:1998 Reference Guide.

● Using I-jet, refer to the IAR Debug Probes User Guide for I-jet®, I-jet Trace, and
I-scope.

● Using IAR J-Link and IAR J-Trace, refer to the J-Link/J-Trace User Guide.

● Porting application code and projects created with a previous version of the IAR
Embedded Workbench for Arm, is available in the IAR Embedded Workbench®
Migration Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains information about:

● IDE project management and building

● Debugging using the IAR C-SPY® Debugger

● The IAR C/C++ Compiler

● The IAR Assembler

● Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1.

AFE1_AFE2-1:1

Preface

47

● C-STAT

● MISRA C

FURTHER READING

These books might be of interest to you when using the IAR Systems development tools:

● Seal, David, and David Jagger. ARM Architecture Reference Manual.
Addison-Wesley.

● Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++ . O’Reilly & Associates.

● Furber, Steve. ARM System-on-Chip Architecture. Addison-Wesley.

● Harbison, Samuel P. and Guy L. Steele (contributor). C: A Reference Manual.
Prentice Hall.

● Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

● Mann, Bernhard. C für Mikrocontroller. Franzis-Verlag. [Written in German.]

● Meyers, Scott. Effective C++. Addison-Wesley.

● Meyers, Scott. More Effective C++. Addison-Wesley.

● Meyers, Scott. Effective STL. Addison-Wesley.

● Sloss, Andrew N. et al, ARM System Developer's Guide: Designing and Optimizing
System Software. Morgan Kaufmann.

● Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems,
and Solutions. Addison-Wesley.

The web site isocpp.org also has a list of recommended books about C++ programming.

WEB SITES

Recommended web sites:

● The chip manufacturer’s web site.

● The Arm Limited web site, www.arm.com, that contains information and news
about the Arm cores.

● The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

● The web site of the C standardization working group,
www.open-std.org/jtc1/sc22/wg14.

● The web site of the C++ Standards Committee, www.open-std.org/jtc1/sc22/wg21.

● The C++ programming language web site, isocpp.org. This web site also has a list
of recommended books about C++ programming.

AFE1_AFE2-1:1

48

Document conventions

IAR C/C++ Development Guide
Compiling and Linking for Arm

● The C and C++ reference web site, en.cppreference.com.

Document conventions
When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example arm\doc, the full
path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench N.n\arm\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

TYPOGRAPHIC CONVENTIONS

The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a linker or stack usage control directive, where [
and] are not part of the actual directive, but any [,], {, or } are part
of the directive syntax.

{option} A mandatory part of a linker or stack usage control directive, where {
and } are not part of the actual directive, but any [,], {, or } are part
of the directive syntax.

[option] An optional part of a command line option or pragma directive.

[a|b|c] An optional part of a command line option or pragma directive with
alternatives.

{a|b|c} A mandatory part of a command line option or pragma directive with
alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Table 1: Typographic conventions used in this guide

AFE1_AFE2-1:1

Preface

49

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Brand name Generic term

IAR Embedded Workbench® for Arm IAR Embedded Workbench®

IAR Embedded Workbench® IDE for Arm the IDE

IAR C-SPY® Debugger for Arm C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for Arm the compiler

IAR Assembler™ for Arm the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide

Style Used for

Table 1: Typographic conventions used in this guide (Continued)

AFE1_AFE2-1:1

50

Document conventions

IAR C/C++ Development Guide
Compiling and Linking for Arm

51

Part 1. Using the build
tools
This part of the IAR C/C++ Development Guide for Arm includes these
chapters:

● Introduction to the IAR build tools

● Developing embedded applications

● Data storage

● Functions

● Linking using ILINK

● Linking your application

● The DLIB runtime environment

● Assembler language interface

● Using C

● Using C++

● Application-related considerations

● Efficient coding for embedded applications

52

AFE1_AFE2-1:1

53

Introduction to the IAR
build tools
● The IAR build tools—an overview

● IAR language overview

● Device support

● Special support for embedded systems

The IAR build tools—an overview
In the IAR product installation you can find a set of tools, code examples, and user
documentation, all suitable for developing software for Arm-based embedded
applications. The tools allow you to develop your application in C, C++, or in assembler
language.

IAR Embedded Workbench® is a powerful Integrated Development Environment (IDE)
that allows you to develop and manage complete embedded application projects. It
provides an easy-to-learn and highly efficient development environment with maximum
code inheritance capabilities, and comprehensive and specific target support. IAR
Embedded Workbench promotes a useful working methodology, and therefore a
significant reduction in development time.

For information about the IDE, see the IDE Project Management and Building Guide
for Arm.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

IAR C/C++ COMPILER

The IAR C/C++ Compiler for Arm is a state-of-the-art compiler that offers the standard
features of the C and C++ languages, plus extensions designed to take advantage of the
Arm-specific facilities.

AFE1_AFE2-1:1

54

The IAR build tools—an overview

IAR C/C++ Development Guide
Compiling and Linking for Arm

IAR ASSEMBLER

The IAR Assembler for Arm is a powerful relocating macro assembler with a versatile
set of directives and expression operators. The assembler features a built-in C language
preprocessor, and supports conditional assembly.

The IAR Assembler for Arm uses the same mnemonics and operand syntax as the Arm
Limited Arm Assembler, which simplifies the migration of existing code. For more
information, see the IAR Assembler User Guide for Arm.

THE IAR ILINK LINKER

The IAR ILINK Linker for Arm is a powerful, flexible software tool for use in the
development of embedded controller applications. It is equally well suited for linking
small, single-file, absolute assembler programs as it is for linking large, relocatable
input, multi-module, C/C++, or mixed C/C++ and assembler programs.

SPECIFIC ELF TOOLS

ILINK both uses and produces industry-standard ELF and DWARF as object format,
additional IAR utilities that handle these formats are provided:

● The IAR Archive Tool—iarchive—creates and manipulates a library (archive) of
several ELF object files

● The IAR ELF Tool—ielftool—performs various transformations on an ELF
executable image (such as, fill, checksum, format conversion etc)

● The IAR ELF Dumper for ARM—ielfdumparm—creates a text representation of
the contents of an ELF relocatable or executable image

● The IAR ELF Object Tool—iobjmanip—is used for performing low-level
manipulation of ELF object files

● The IAR Absolute Symbol Exporter—isymexport—exports absolute symbols
from a ROM image file, so that they can be used when linking an add-on
application.

Note: These ELF utilities are well-suited for object files produced by the tools from IAR
Systems. Therefore, we recommend using them instead of the GNU binary utilities.

EXTERNAL TOOLS

For information about how to extend the tool chain in the IDE, see the IDE Project
Management and Building Guide for Arm.

AFE1_AFE2-1:1

Introduction to the IAR build tools

55

IAR language overview
The IAR C/C++ Compiler for Arm supports:

● C, the most widely used high-level programming language in the embedded systems
industry. You can build freestanding applications that follow these standards:

● Standard C—also known as C18. Hereafter, this standard is referred to as
Standard C in this guide.

● C89—also known as C94, C90, and ANSI C. This standard is required when
MISRA C is enabled in the compiler.

● C++, a well-established object-oriented programming language with a full-featured
library well suited for modular programming:

● Standard C++—also known as C++14—can be used with different levels of
support for exceptions and runtime type information (RTTI).

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some common deviations from the standard. Both the strict and the relaxed
mode might contain support for features in future versions of the C/C++ standards.

For more information about C, see the chapter Using C.

For more information about C++, see the chapter Using C++.

For information about how the compiler handles the implementation-defined areas of
the languages, see the chapter Implementation-defined behavior for Standard C.

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the IAR Assembler User Guide for Arm.

Device support
To get a smooth start with your product development, the IAR product installation
comes with a wide range of device-specific support.

SUPPORTED ARM DEVICES

The IAR C/C++ Compiler for Arm supports most 32-bit Arm cores and devices. The
object code that the compiler generates is not always binary compatible between the
cores. Therefore it is crucial to specify a processor option to the compiler. The default
core is Cortex-M3.

AFE1_AFE2-1:1

56

Device support

IAR C/C++ Development Guide
Compiling and Linking for Arm

PRECONFIGURED SUPPORT FILES

The IAR product installation contains preconfigured files for supporting different
devices. If you need additional files for device support, they can be created using one of
the provided ones as a template.

Header files for I/O

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. The product package supplies I/O files for all devices that are
available at the time of the product release. You can find these files in the
arm\inc\<vendor> directory. Make sure to include the appropriate include file in your
application source files. If you need additional I/O header files, they can be created using
one of the provided ones as a template. For detailed information about the header file
format, see EWARM_HeaderFormat.pdf located in the arm\doc directory.

Linker configuration files

The arm\config directory contains ready-made linker configuration files for all
supported devices. The files have the filename extension icf and contain the
information required by the linker. For more information about the linker configuration
file, see Placing code and data—the linker configuration file, page 93, and for reference
information, the chapter The linker configuration file.

Device description files

The debugger handles several of the device-specific requirements, such as definitions of
available memory areas, peripheral registers and groups of these, by using device
description files. These files are located in the arm\config directory and they have the
filename extension ddf. The peripheral registers and groups of these can be defined in
separate files (filename extension sfr), which in that case are included in the ddf file.
For more information about these files, see the C-SPY® Debugging Guide for Arm and
EWARM_DDFFORMAT.pdf located in the arm\doc directory.

EXAMPLES FOR GETTING STARTED

Example applications are provided with IAR Embedded Workbench. You can use these
examples to get started using the development tools from IAR Systems. You can also
use the examples as a starting point for your application project.

The examples are ready to be used as is. They are supplied with ready-made workspace
files, together with source code files and all other related files. For information about
how to run an example project, see the IDE Project Management and Building Guide
for Arm.

AFE1_AFE2-1:1

Introduction to the IAR build tools

57

Special support for embedded systems
This section briefly describes the extensions provided by the compiler to support
specific features of the various Arm cores and devices.

EXTENDED KEYWORDS

The compiler provides a set of keywords that can be used for configuring how the code
is generated. For example, there are keywords for controlling how to access and store
data objects, as well as for controlling how a function should work internally and how
it should be called/returned.

By default, language extensions are enabled in the IDE.

The command line option -e makes the extended keywords available, and reserves them
so that they cannot be used as variable names. See -e, page 278 for additional
information.

For more information, see the chapter Extended keywords. See also Data storage and
Functions.

PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the compiler. They are consistent with
standard C, and are useful when you want to make sure that the source code is portable.

For more information about the pragma directives, see the chapter Pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example time of compilation or the build number of the compiler.

For more information about the predefined symbols, see the chapter The preprocessor.

ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The compiler supports several ways of doing this: intrinsic functions, mixing C and
assembler modules, and inline assembler. For information about the different methods,
see Mixing C and assembler, page 163.

AFE1_AFE2-1:1

58

Special support for embedded systems

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

59

Developing embedded
applications
● Developing embedded software using IAR build tools

● The build process—an overview

● Application execution—an overview

● Building applications—an overview

● Basic project configuration

Developing embedded software using IAR build tools
Typically, embedded software written for a dedicated microcontroller is designed as an
endless loop waiting for some external events to happen. The software is located in
ROM and executes on reset. You must consider several hardware and software factors
when you write this kind of software. To assist you, compiler options, extended
keywords, pragma directives, etc., are included.

MAPPING OF MEMORY

Embedded systems typically contain various types of memory, such as on-chip RAM,
external DRAM or SRAM, ROM, EEPROM, or flash memory.

As an embedded software developer, you must understand the features of the different
types of memory. For example, on-chip RAM is often faster than other types of
memories, and variables that are accessed often would in time-critical applications
benefit from being placed here. Conversely, some configuration data might be seldom
accessed but must maintain its value after power off, so it should be saved in EEPROM
or flash memory.

For efficient memory usage, the compiler provides several mechanisms for controlling
placement of functions and data objects in memory. For more information, see
Controlling data and function placement in memory, page 230.

The linker places sections of code and data in memory according to the directives you
specify in the linker configuration file, see Placing code and data—the linker
configuration file, page 93.

AFE1_AFE2-1:1

60

Developing embedded software using IAR build tools

IAR C/C++ Development Guide
Compiling and Linking for Arm

COMMUNICATION WITH PERIPHERAL UNITS

If external devices are connected to the microcontroller, you might need to initialize and
control the signaling interface, for example by using chip select pins, and detect and
handle external interrupt signals. Typically, this must be initialized and controlled at
runtime. The normal way to do this is to use special function registers (SFR). These are
typically available at dedicated addresses, containing bits that control the chip
configuration.

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. See Device support, page 55. For an example, see Accessing
special function registers, page 243.

EVENT HANDLING

In embedded systems, using interrupts is a method for handling external events
immediately, for example, detecting that a button was pressed. In general, when an
interrupt occurs in the code, the core immediately stops executing the code it runs, and
starts executing an interrupt routine instead.

The compiler provides various primitives for managing hardware and software
interrupts, which means that you can write your interrupt routines in C, see Interrupt
functions for Cortex-M devices, page 79 and Interrupt functions for Arm7/9/11,
Cortex-A, and Cortex-R devices, page 80.

SYSTEM STARTUP

In all embedded systems, system startup code is executed to initialize the system—both
the hardware and the software system—before the main function of the application is
called. The CPU imposes this by starting execution from a fixed memory address.

As an embedded software developer, you must ensure that the startup code is located at
the dedicated memory addresses, or can be accessed using a pointer from the vector
table. This means that startup code and the initial vector table must be placed in
non-volatile memory, such as ROM, EPROM, or flash.

A C/C++ application further needs to initialize all global variables. This initialization is
handled by the linker in conjunction with the system startup code. For more information,
see Application execution—an overview, page 64.

REAL-TIME OPERATING SYSTEMS

In many cases, the embedded application is the only software running in the system.
However, using an RTOS has some advantages.

For example, the timing of high-priority tasks is not affected by other parts of the
program which are executed in lower priority tasks. This typically makes a program

AFE1_AFE2-1:1

Developing embedded applications

61

more deterministic and can reduce power consumption by using the CPU efficiently and
putting the CPU in a lower-power state when idle.

Using an RTOS can make your program easier to read and maintain, and in many cases
smaller as well. Application code can be cleanly separated into tasks that are
independent of each other. This makes teamwork easier, as the development work can
be easily split into separate tasks which are handled by one developer or a group of
developers.

Finally, using an RTOS reduces the hardware dependence and creates a clean interface
to the application, making it easier to port the program to different target hardware.

See also Managing a multithreaded environment, page 160.

INTEROPERABILITY WITH OTHER BUILD TOOLS

The IAR compiler and linker provide support for AEABI, the Embedded Application
Binary Interface for Arm. For more information about this interface specification, see
the www.arm.com web site.

The advantage of this interface is the interoperability between vendors supporting it—
an application can be built up of libraries of object files produced by different vendors
and linked with a linker from any vendor, as long as they adhere to the AEABI standard.

AEABI specifies full compatibility for C and C++ object code, and for the C library. The
AEABI does not include specifications for the C++ library.

For more information about the AEABI support in the IAR build tools, see AEABI
compliance, page 218.

The IAR build tools for Arm with version numbers from 8.xx and up are not fully
compatible with earlier versions of the product. For more information, see the IAR
Embedded Workbench® Migration Guide for ARM.

For more information, see Linker optimizations, page 121.

The build process—an overview
This section gives an overview of the build process—how the various build tools
(compiler, assembler, and linker) fit together, going from source code to an executable
image.

To become familiar with the process in practice, you should go through the tutorials
available from the IAR Information Center.

AFE1_AFE2-1:1

62

The build process—an overview

IAR C/C++ Development Guide
Compiling and Linking for Arm

THE TRANSLATION PROCESS

There are two tools in the IDE that translate application source files to intermediary
object files—the IAR C/C++ Compiler and the IAR Assembler. Both produce
relocatable object files in the industry-standard format ELF, including the DWARF
format for debug information.

Note: The compiler can also be used for translating C source code into assembler source
code. If required, you can modify the assembler source code which can then be
assembled into object code. For more information about the IAR Assembler, see the IAR
Assembler User Guide for Arm.

This illustration shows the translation process:

After the translation, you can choose to pack any number of modules into an archive, or
in other words, a library. The important reason you should use libraries is that each
module in a library is conditionally linked in the application, or in other words, is only
included in the application if the module is used directly or indirectly by a module
supplied as an object file. Optionally, you can create a library, then use the IAR utility
iarchive.

THE LINKING PROCESS

The relocatable modules in object files and libraries, produced by the IAR compiler and
assembler cannot be executed as is. To become an executable application, they must be
linked.

AFE1_AFE2-1:1

Developing embedded applications

63

Note: Modules produced by a toolset from another vendor can be included in the build
as well. Be aware that this might also require a compiler utility library from the same
vendor.

The IAR ILINK Linker (ilinkarm.exe) is used for building the final application.
Normally, the linker requires the following information as input:

● Several object files and possibly certain libraries

● A program start label (set by default)

● The linker configuration file that describes placement of code and data in the
memory of the target system

This illustration shows the linking process:

Note: The Standard C/C++ library contains support routines for the compiler, and the
implementation of the C/C++ standard library functions.

While linking, the linker might produce error messages and logging messages on
stdout and stderr. The log messages are useful for understanding why an application
was linked the way it was, for example, why a module was included or a section
removed.

For more information about the procedure performed by the linker, see The linking
process in detail, page 91.

AFE1_AFE2-1:1

64

Application execution—an overview

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFTER LINKING

The IAR ILINK Linker produces an absolute object file in ELF format that contains the
executable image. After linking, the produced absolute executable image can be used
for:

● Loading into the IAR C-SPY Debugger or any other compatible external debugger
that reads ELF and DWARF.

● Programming to a flash/PROM using a flash/PROM programmer. Before this is
possible, the actual bytes in the image must be converted into the standard Motorola
32-bit S-record format or the Intel Hex-32 format. For this, use ielftool, see The
IAR ELF Tool—ielftool, page 535.

This illustration shows the possible uses of the absolute output ELF/DWARF file:

Application execution—an overview
This section gives an overview of the execution of an embedded application divided into
three phases, the:

● Initialization phase

● Execution phase

● Termination phase.

AFE1_AFE2-1:1

Developing embedded applications

65

THE INITIALIZATION PHASE

Initialization is executed when an application is started (the CPU is reset) but before the
main function is entered. For simplicity, the initialization phase can be divided into:

● Hardware initialization, which as a minimum, generally initializes the stack pointer.

The hardware initialization is typically performed in the system startup code
cstartup.s and if required, by an extra low-level routine that you provide. It might
include resetting/restarting the rest of the hardware, setting up the CPU, etc, in
preparation for the software C/C++ system initialization.

● Software C/C++ system initialization

Typically, this includes assuring that every global (statically linked) C/C++ symbol
receives its proper initialization value before the main function is called.

● Application initialization

This depends entirely on your application. It can include setting up an RTOS kernel
and starting initial tasks for an RTOS-driven application. For a bare-bone application,
it can include setting up various interrupts, initializing communication, initializing
devices, etc.

For a ROM/flash-based system, constants and functions are already placed in ROM. The
linker has already divided the available RAM into different areas for variables, stack,
heap, etc. All symbols placed in RAM must be initialized before the main function is
called.

AFE1_AFE2-1:1

66

Application execution—an overview

IAR C/C++ Development Guide
Compiling and Linking for Arm

The following sequence of illustrations gives a simplified overview of the different
stages of the initialization.

1 When an application is started, the system startup code first performs hardware
initialization, such as initialization of the stack pointer to point at the end of the
predefined stack area:

AFE1_AFE2-1:1

Developing embedded applications

67

2 Then, memories that should be zero-initialized are cleared, in other words, filled with
zeros:

Typically, this is data referred to as zero-initialized data—variables declared as, for
example, int i = 0;

3 For initialized data, data declared, for example, like int i = 6; the initializers are
copied from ROM to RAM:

AFE1_AFE2-1:1

68

Application execution—an overview

IAR C/C++ Development Guide
Compiling and Linking for Arm

4 Finally, the main function is called:

For more information about each stage, see System startup and termination, page 145.
For more information about data initialization, see Initialization at system startup, page
96.

THE EXECUTION PHASE

The software of an embedded application is typically implemented as a loop, which is
either interrupt-driven, or uses polling for controlling external interaction or internal
events. For an interrupt-driven system, the interrupts are typically initialized at the
beginning of the main function.

In a system with real-time behavior and where responsiveness is critical, a multi-task
system might be required. This means that your application software should be
complemented with a real-time operating system (RTOS). In this case, the RTOS and
the different tasks must also be initialized at the beginning of the main function.

THE TERMINATION PHASE

Typically, the execution of an embedded application should never end. If it does, you
must define a proper end behavior.

To terminate an application in a controlled way, either call one of the Standard C library
functions exit, _Exit, quick_exit, or abort, or return from main. If you return
from main, the exit function is executed, which means that C++ destructors for static
and global variables are called (C++ only) and all open files are closed.

AFE1_AFE2-1:1

Developing embedded applications

69

Of course, in case of incorrect program logic, the application might terminate in an
uncontrolled and abnormal way—a system crash.

For more information about this, see System termination, page 147.

Building applications—an overview
In the command line interface, the following line compiles the source file myfile.c
into the object file myfile.o using the default settings:

iccarm myfile.c

You must also specify some critical options, see Basic project configuration, page 69.

On the command line, the following line can be used for starting the linker:

ilinkarm myfile.o myfile2.o -o a.out --config my_configfile.icf

In this example, myfile.o and myfile2.o are object files, and my_configfile.icf
is the linker configuration file. The option -o specifies the name of the output file.

Note: By default, the label where the application starts is __iar_program_start.
You can use the --entry command line option to change this.

When building a project, the IAR Embedded Workbench IDE can produce extensive
build information in the Build messages window. This information can be useful, for
example, as a base for producing batch files for building on the command line. You can
copy the information and paste it in a text file. To activate extensive build information,
right-click in the Build messages window, and select All on the context menu.

Basic project configuration
This section gives an overview of the basic settings needed to generate the best code for
the Arm device you are using. You can specify the options either from the command line
interface or in the IDE. On the command line, you must specify each option separately,
but if you use the IDE, many options will be set automatically, based on your settings of
some of the fundamental options.

You need to make settings for:

● Processor configuration, that is processor variant, CPU mode, VFP and
floating-point arithmetic, and byte order

● Optimization settings

● Runtime environment, see Setting up the runtime environment, page 127

● Customizing the ILINK configuration, see the chapter Linking your application.

AFE1_AFE2-1:1

70

Basic project configuration

IAR C/C++ Development Guide
Compiling and Linking for Arm

In addition to these settings, you can use many other options and settings to fine-tune
the result even further. For information about how to set options and for a list of all
available options, see the chapters Compiler options, Linker options, and the IDE
Project Management and Building Guide for Arm, respectively.

PROCESSOR CONFIGURATION

To make the compiler generate optimum code, you should configure it for the Arm core
you are using.

Processor variant

The IAR C/C++ Compiler for Arm supports most 32-bit Arm cores and devices. All
supported cores support Thumb instructions and 64-bit multiply instructions. The object
code that the compiler generates is not always binary compatible between the cores,
therefore it is crucial to specify a processor option to the compiler. The default core is
Cortex-M3.

See the IDE Project Management and Building Guide for Arm, for information about
setting the Processor variant option in the IDE.

Use the --cpu option to specify the Arm core. For syntax information, see --arm, page
268 and --thumb, page 305.

VFP and floating-point arithmetic

If you are using an Arm core that contains a Vector Floating Point (VFP) coprocessor,
you can use the --fpu option to generate code that carries out floating-point operations
utilizing the coprocessor, instead of using the software floating-point library routines.

See the IDE Project Management and Building Guide for Arm, for information about
setting the FPU option in the IDE.

Use the --fpu option to specify the Arm core. For syntax information, see --fpu, page
281.

Byte order

The compiler supports the big-endian and little-endian byte order. All user and library
modules in your application must use the same byte order.

See the IDE Project Management and Building Guide for Arm for information about
setting the Endian mode option in the IDE.

Use the --endian option to specify the byte order for your project. For syntax
information, see --endian, page 279.

AFE1_AFE2-1:1

Developing embedded applications

71

OPTIMIZATION FOR SPEED AND SIZE

The compiler’s optimizer performs, among other things, dead-code elimination,
constant propagation, inlining, common sub-expression elimination, static clustering,
instruction scheduling, and precision reduction. It also performs loop optimizations,
such as unrolling and induction variable elimination.

You can choose between several optimization levels, and for the highest level you can
choose between different optimization goals—size, speed, or balanced. Most
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

For information about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.

AFE1_AFE2-1:1

72

Basic project configuration

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

73

Data storage
● Introduction

● Storage of auto variables and parameters

● Dynamic memory on the heap

Introduction
An Arm core can address 4 Gbytes of continuous memory, ranging from 0x00000000
to 0xFFFFFFFF. Different types of physical memory can be placed in the memory
range. A typical application will have both read-only memory (ROM) and read/write
memory (RAM). In addition, some parts of the memory range contain processor control
registers and peripheral units.

DIFFERENT WAYS TO STORE DATA

In a typical application, data can be stored in memory in three different ways:

● Auto variables

All variables that are local to a function, except those declared static, are stored either
in registers or on the stack. These variables can be used as long as the function
executes. When the function returns to its caller, the memory space is no longer valid.
For more information, see Storage of auto variables and parameters, page 74.

● Global variables, module-static variables, and local variables declared static

In this case, the memory is allocated once and for all. The word static in this context
means that the amount of memory allocated for this kind of variables does not change
while the application is running. The Arm core has one single address space and the
compiler supports full memory addressing.

● Dynamically allocated data

An application can allocate data on the heap, where the data remains valid until it is
explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes.

Note: There are potential risks connected with using dynamically allocated data in
systems with a limited amount of memory, or systems that are expected to run for a
long time. For more information, see Dynamic memory on the heap, page 75.

AFE1_AFE2-1:1

74

Storage of auto variables and parameters

IAR C/C++ Development Guide
Compiling and Linking for Arm

Storage of auto variables and parameters
Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A few of these variables are placed in processor registers,
while the rest are placed on the stack. From a semantic point of view, this is equivalent.
The main differences are that accessing registers is faster, and that less memory is
required compared to when variables are located on the stack.

Auto variables can only live as long as the function executes—when the function
returns, the memory allocated on the stack is released.

THE STACK

The stack can contain:

● Local variables and parameters not stored in registers

● Temporary results of expressions

● The return value of a function (unless it is passed in registers)

● Processor state during interrupts

● Processor registers that should be restored before the function returns (callee-save
registers).

● Canaries, used in stack-protected functions. See Stack protection, page 87.

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the top of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

See also Stack considerations, page 206 and Setting up stack memory, page 111.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself either directly or indirectly—a recursive
function—and each invocation can store its own data on the stack.

AFE1_AFE2-1:1

Data storage

75

Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function returns. The following function demonstrates a common programming
mistake. It returns a pointer to the variable x, a variable that ceases to exist when the
function returns.

int *MyFunction()
{
 int x;
 /* Do something here. */
 return &x; /* Incorrect */
}

Another problem is the risk of running out of stack space. This will happen when one
function calls another, which in turn calls a third, etc., and the sum of the stack usage of
each function is larger than the size of the stack. The risk is higher if large data objects
are stored on the stack, or when recursive functions are used.

Dynamic memory on the heap
Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is useful for applications where the amount of
data is not known until runtime.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, a special keyword, new, allocates memory and runs constructors. Memory
allocated with new must be released using the keyword delete.

For information about how to set up the size for heap memory, see Setting up heap
memory, page 112.

POTENTIAL PROBLEMS

Applications that use heap-allocated data objects must be carefully designed, as it is
easy to end up in a situation where it is not possible to allocate objects on the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use was not released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation; this means a heap where small sections of free
memory is separated by memory used by allocated objects. It is not possible to allocate

AFE1_AFE2-1:1

76

Dynamic memory on the heap

IAR C/C++ Development Guide
Compiling and Linking for Arm

a new object if no piece of free memory is large enough for the object, even though the
sum of the sizes of the free memory exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

AFE1_AFE2-1:1

77

Functions
● Function-related extensions

● Arm and Thumb code

● Execution in RAM

● Interrupt functions for Cortex-M devices

● Interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices

● Inlining functions

● Stack protection

● TrustZone interface

Function-related extensions
In addition to supporting Standard C, the compiler provides several extensions for
writing functions in C. Using these, you can:

● Generate code for the different CPU modes Arm and Thumb.

● Execute functions in RAM

● Write interrupt functions for the different devices

● Control function inlining

● Facilitate function optimization

● Access hardware features.

● Create interface functions for TrustZone

The compiler uses compiler options, extended keywords, pragma directives, and
intrinsic functions to support this.

For more information about optimizations, see Efficient coding for embedded
applications, page 227. For information about the available intrinsic functions for
accessing hardware operations, see the chapter Intrinsic functions.

AFE1_AFE2-1:1

78

Arm and Thumb code

IAR C/C++ Development Guide
Compiling and Linking for Arm

Arm and Thumb code
The IAR C/C++ Compiler for Arm can generate code for either the 32-bit Arm, or the
16-bit Thumb or Thumb2 instruction set. Use the --cpu_mode option, alternatively the
--arm or --thumb options, to specify which instruction set should be used for your
project. For individual functions, it is possible to override the project setting using the
extended keywords __arm and __thumb. You can freely mix Arm and Thumb code in
the same application.

When performing function calls, the compiler always attempts to generate the most
efficient assembler language instruction or instruction sequence available. As a result,
4 Gbytes of continuous memory in the range 0x0-0xFFFFFFFF can be used for placing
code. There is a limit of 4 Mbytes per code module.

The size of all code pointers is 4 bytes. There are restrictions to implicit and explicit
casts from code pointers to data pointers or integer types or vice versa. For further
information about restrictions, see Pointer types, page 358.

In the chapter Assembler language interface, the generated code is studied in more detail
in the description of calling C functions from assembler language and vice versa.

Execution in RAM
The __ramfunc keyword makes a function execute in RAM. In other words it places
the function in a section that has read/write attributes. The function is copied from ROM
to RAM at system startup just like any initialized variable, see System startup and
termination, page 145.

The keyword is specified before the return type:

__ramfunc void foo(void);

If a function declared __ramfunc tries to access ROM, the compiler will issue a
warning.

If the whole memory area used for code and constants is disabled—for example, when
the whole flash memory is being erased—only functions and data stored in RAM may
be used. Interrupts must be disabled unless the interrupt vector and the interrupt service
routines are also stored in RAM.

String literals and other constants can be avoided by using initialized variables. For
example, the following lines:

__ramfunc void test()
{
 /* myc: initializer in ROM */
 const int myc[] = { 10, 20 };

AFE1_AFE2-1:1

Functions

79

 /* string literal in ROM */
 msg("Hello");
}

can be rewritten to:

__ramfunc void test()
{
 /* myc: initialized by cstartup */
 static int myc[] = { 10, 20 };

 /* hello: initialized by cstartup */
 static char hello[] = "Hello";

 msg(hello);
}

For more information, see Initializing code—copying ROM to RAM, page 115.

Interrupt functions for Cortex-M devices
Cortex-M has a different interrupt mechanism than previous Arm architectures, which
means the primitives provided by the compiler are also different.

INTERRUPTS FOR CORTEX-M

On Cortex-M, an interrupt service routine enters and returns in the same way as a normal
function, which means no special keywords are required. Therefore, the keywords
__irq, __fiq, and __nested are not available when you compile for Cortex-M.

These exception function names are defined in cstartup_M.c and cstartup_M.s.
They are referred to by the library exception vector code:

NMI_Handler
HardFault_Handler
MemManage_Handler
BusFault_Handler
UsageFault_Handler
SVC_Handler
DebugMon_Handler
PendSV_Handler
SysTick_Handler

The vector table is implemented as an array. It should always have the name
__vector_table, because the C-SPY debugger looks for that symbol when
determining where the vector table is located.

AFE1_AFE2-1:1

80

Interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices

IAR C/C++ Development Guide
Compiling and Linking for Arm

The predefined exception functions are defined as weak symbols. A weak symbol is
only included by the linker as long as no duplicate symbol is found. If another symbol
is defined with the same name, it will take precedence. Your application can therefore
simply define its own exception function by just defining it using the correct name from
the list above. If you need other interrupts or other exception handlers, you must make
a copy of the cstartup_M.c or cstartup_M.s file and make the proper addition to
the vector table.

The intrinsic functions __get_CPSR and __set_CPSR are not available when you
compile for Cortex-M. Instead, if you need to get or set values of these or other registers,
you can use inline assembler. For more information, see Passing values between C and
assembler objects, page 244.

Interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices
The IAR C/C++ Compiler for Arm provides the following primitives related to writing
interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices:

● The extended keywords: __irq, __fiq, __swi, __nested,

● The intrinsic functions: __enable_interrupt, __disable_interrupt,
__get_interrupt_state, __set_interrupt_state.

Note: Cortex-M has a different interrupt mechanism than other Arm devices, and for
these devices a different set of primitives is available. For more information, see
Interrupt functions for Cortex-M devices, page 79.

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately, for example, detecting that a button was pressed.

Interrupt service routines

In general, when an interrupt occurs in the code, the core immediately stops executing
the code it runs, and starts executing an interrupt routine instead. It is important that the
environment of the interrupted function is restored after the interrupt is handled—this
includes the values of processor registers and the processor status register. This makes
it possible to continue the execution of the original code after the code that handled the
interrupt was executed.

The compiler supports interrupts, software interrupts, and fast interrupts. For each
interrupt type, an interrupt routine can be written.

AFE1_AFE2-1:1

Functions

81

All interrupt functions must be compiled in Arm mode—if you are using Thumb mode,
use the __arm extended keyword or the #pragma type_attribute=__arm directive
to override the default behavior. This is not applicable for Cortex-M devices.

Interrupt vectors and the interrupt vector table

Each interrupt routine is associated with a vector address/instruction in the exception
vector table, which is specified in the Arm cores documentation. The interrupt vector is
the address in the exception vector table. For the Arm cores, the exception vector table
starts at address 0x0.

By default, the vector table is populated with a default interrupt handler which loops
indefinitely. For each interrupt source that has no explicit interrupt service routine, the
default interrupt handler will be called. If you write your own service routine for a
specific vector, that routine will override the default interrupt handler.

Defining an interrupt function—an example

To define an interrupt function, the __irq or the __fiq keyword can be used. For
example:

__irq __arm void IRQ_Handler(void)
{
 /* Do something */
}

For more information about the interrupt vector table, see the Arm cores documentation.

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

Interrupt and C++ member functions

Only static member functions can be interrupt functions. When a non-static member
function is called, it must be applied to an object. When an interrupt occurs and the
interrupt function is called, there is no object available to apply the member function to.

INSTALLING EXCEPTION FUNCTIONS

All interrupt functions and software interrupt handlers must be installed in the vector
table. This is done in assembler language in the system startup file cstartup.s.

The default implementation of the Arm exception vector table in the standard runtime
library jumps to predefined functions that implement an infinite loop. Any exception
that occurs for an event not handled by your application will therefore be caught in the
infinite loop (B.).

AFE1_AFE2-1:1

82

Interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices

IAR C/C++ Development Guide
Compiling and Linking for Arm

The predefined functions are defined as weak symbols. A weak symbol is only included
by the linker as long as no duplicate symbol is found. If another symbol is defined with
the same name, it will take precedence. Your application can therefore simply define its
own exception function by just defining it using the correct name.

These exception function names are defined in cstartup.s and referred to by the
library exception vector code:

Undefined_Handler
SWI_Handler
Prefetch_Handler
Abort_Handler
IRQ_Handler
FIQ_Handler

To implement your own exception handler, define a function using the appropriate
exception function name from the list above.

For example, to add an interrupt function in C, it is sufficient to define an interrupt
function named IRQ_Handler:

__irq __arm void IRQ_Handler()
{
}

An interrupt function must have C linkage, read more in Calling convention, page 175.

If you use C++, an interrupt function could look, for example, like this:

extern "C"
{
 __irq __arm void IRQ_Handler(void);
}
__irq __arm void IRQ_Handler(void)
{
}

No other changes are needed.

INTERRUPTS AND FAST INTERRUPTS

The interrupt and fast interrupt functions are easy to handle as they do not accept
parameters or have a return value. Use any of these keywords:

● To declare an interrupt function, use the __irq extended keyword or the #pragma
type_attribute=__irq directive. For syntax information, see__irq, page 372
and type_attribute, page 406, respectively.

AFE1_AFE2-1:1

Functions

83

● To declare a fast interrupt function, use the __fiq extended keyword or the
#pragma type_attribute=__fiq directive. For syntax information, see __fiq,
page 371, and type_attribute, page 406, respectively.

Note: An interrupt function (irq) and a fast interrupt function (fiq) must have a return
type of void and cannot have any parameters. A software interrupt function (swi) may
have parameters and return values. By default, only four registers, R0–R3, can be used
for parameters and only the registers R0–R1 can be used for return values.

NESTED INTERRUPTS

Interrupts are automatically disabled by the Arm core prior to entering an interrupt
handler. If an interrupt handler re-enables interrupts, calls functions, and another
interrupt occurs, then the return address of the interrupted function—stored in LR—is
overwritten when the second IRQ is taken. In addition, the contents of SPSR will be
destroyed when the second interrupt occurs. The __irq keyword itself does not save
and restore LR and SPSR. To make an interrupt handler perform the necessary steps
needed when handling nested interrupts, the keyword __nested must be used in
addition to __irq. The function prolog—function entrance sequence—that the
compiler generates for nested interrupt handlers will switch from IRQ mode to system
mode. Make sure that both the IRQ stack and system stack is set up. If you use the
default cstartup.s file, both stacks are correctly set up.

Compiler-generated interrupt handlers that allow nested interrupts are supported for
IRQ interrupts only. The FIQ interrupts are designed to be serviced quickly, which in
most cases mean that the overhead of nested interrupts would be too high.

This example shows how to use nested interrupts with the Arm vectored interrupt
controller (VIC):

__irq __nested __arm void interrupt_handler(void)
{
 void (*interrupt_task)();
 unsigned int vector;

 /* Get interrupt vector. */
 vector = VICVectAddr;

 interrupt_task = (void(*)()) vector;

 /* Allow other IRQ interrupts to be serviced. */
 __enable_interrupt();

 /* Execute the task associated with this interrupt. */

 (*interrupt_task)();
}

AFE1_AFE2-1:1

84

Interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: The __nested keyword requires the processor mode to be in either User or
System mode.

SOFTWARE INTERRUPTS

Software interrupt functions are slightly more complex than other interrupt functions, in
the way that they need a software interrupt handler (a dispatcher), are invoked (called)
from running application software, and that they accept arguments and have return
values. The mechanisms for calling a software interrupt function and how the software
interrupt handler dispatches the call to the actual software interrupt function is described
here.

Calling a software interrupt function

To call a software interrupt function from your application source code, the assembler
instruction SVC #immed is used, where immed is an integer value that is referred to as
the software interrupt number—or swi_number—in this guide. The compiler provides
an easy way to implicitly generate this instruction from C/C++ source code, by using the
__swi keyword and the #pragma swi_number directive when declaring the function.

A __swi function can, for example, be declared like this:

#pragma swi_number=0x23
__swi int swi_function(int a, int b);

In this case, the assembler instruction SVC 0x23 will be generated where the function
is called.

Software interrupt functions follow the same calling convention regarding parameters
and return values as an ordinary function, except for the stack usage, see Calling
convention, page 175.

For more information, see __swi, page 378, and swi_number, page 405, respectively.

The software interrupt handler and functions

The interrupt handler—for example SWI_Handler—works as a dispatcher for software
interrupt functions. It is invoked from the interrupt vector and is responsible for
retrieving the software interrupt number and then calling the proper software interrupt
function. The SWI_Handler must be written in assembler as there is no way to retrieve
the software interrupt number from C/C++ source code.

The software interrupt functions

The software interrupt functions can be written in C or C++. Use the __swi keyword in
a function definition to make the compiler generate a return sequence suited for a

AFE1_AFE2-1:1

Functions

85

specific software interrupt function. The #pragma swi_number directive is not needed
in the interrupt function definition.

For more information, see __swi, page 378.

Setting up the software interrupt stack pointer

If software interrupts will be used in your application, then the software interrupt stack
pointer (SVC_STACK) must be set up and some space must be allocated for the stack. The
SVC_STACK pointer can be set up together with the other stacks in the cstartup.s file.
As an example, see the set up of the interrupt stack pointer. Relevant space for the
SVC_STACK pointer is set up in the linker configuration file, see Setting up stack
memory, page 111.

INTERRUPT OPERATIONS

An interrupt function is called when an external event occurs. Normally it is called
immediately while another function is executing. When the interrupt function has
finished executing, it returns to the original function. It is imperative that the
environment of the interrupted function is restored—this includes the value of processor
registers and the processor status register.

When an interrupt occurs, the following actions are performed:

● The operating mode is changed corresponding to the particular exception

● The address of the instruction following the exception entry instruction is saved in
R14 of the new mode

● The old value of the CPSR is saved in the SPSR of the new mode

● Interrupt requests are disabled by setting bit 7 of the CPSR and, if the exception is a
fast interrupt, further fast interrupts are disabled by setting bit 6 of the CPSR

● The PC is forced to begin executing at the relevant vector address.

For example, if an interrupt for vector 0x18 occurs, the processor will start to execute
code at address 0x18. The memory area that is used as start location for interrupts is
called the interrupt vector table. The content of the interrupt vector is normally a branch
instruction jumping to the interrupt routine.

Note: If the interrupt function enables interrupts, the special processor registers needed
to return from the interrupt routine must be assumed to be destroyed. For this reason they
must be stored by the interrupt routine to be restored before it returns. This is handled
automatically if the __nested keyword is used.

AFE1_AFE2-1:1

86

Inlining functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

Inlining functions
Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the function call. This
optimization, which is performed at optimization level High, normally reduces
execution time, but might increase the code size. The resulting code might become more
difficult to debug. Whether the inlining actually occurs is subject to the compiler’s
heuristics.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.
Normally, code size does not increase when optimizing for size.

C VERSUS C++ SEMANTICS

In C++, all definitions of a specific inline function in separate translation units must be
exactly the same. If the function is not inlined in one or more of the translation units,
then one of the definitions from these translation units will be used as the function
implementation.

In C, you must manually select one translation unit that includes the non-inlined version
of an inline function. You do this by explicitly declaring the function as extern in that
translation unit. If you declare the function as extern in more than one translation unit,
the linker will issue a multiple definition error. In addition, in C, inline functions cannot
refer to static variables or functions.

For example:

// In a header file.
static int sX;
inline void F(void)
{
 //static int sY; // Cannot refer to statics.
 //sX; // Cannot refer to statics.
}

// In one source file.
// Declare this F as the non-inlined version to use.
extern inline void F();

AFE1_AFE2-1:1

Functions

87

FEATURES CONTROLLING FUNCTION INLINING

There are several mechanisms for controlling function inlining:

● The inline keyword advises the compiler that the function defined immediately
after the directive should be inlined.

If you compile your function in C or C++ mode, the keyword will be interpreted
according to its definition in Standard C or Standard C++, respectively.

The main difference in semantics is that in Standard C you cannot (in general) simply
supply an inline definition in a header file. You must supply an external definition in
one of the compilation units, by designating the inline definition as being external in
that compilation unit.

● #pragma inline is similar to the inline keyword, but with the difference that the
compiler always uses C++ inline semantics.

By using the #pragma inline directive you can also disable the compiler’s
heuristics to either force inlining or completely disable inlining. For more
information, see inline, page 395.

● --use_c++_inline forces the compiler to use C++ semantics when compiling a
Standard C source code file.

● --no_inline, #pragma optimize=no_inline, and #pragma inline=never
all disable function inlining. By default, function inlining is enabled at optimization
level High.

The compiler can only inline a function if the definition is known. Normally, this is
restricted to the current translation unit. However, when the --mfc compiler option for
multi-file compilation is used, the compiler can inline definitions from all translation
units in the multi-file compilation unit. For more information, see Multi-file compilation
units, page 235.

For more information about function inlining optimization, see Function inlining, page
238.

Stack protection
In software, a stack buffer overflow occurs when a program writes to a memory address
on the program’s call stack outside of the intended data structure, which is usually a
fixed-length buffer. The result is, almost always, corruption of nearby data, and it can
even change which function to return to. If it is deliberate, it is often called stack
smashing. One method to guard against stack buffer overflow is to use stack canaries,
named for their analogy to the use of canaries in coal mines.

AFE1_AFE2-1:1

88

TrustZone interface

IAR C/C++ Development Guide
Compiling and Linking for Arm

STACK PROTECTION IN THE IAR C/C++ COMPILER

The IAR C/C++ Compiler for Arm supports stack protection.

To enable stack protection for functions considered needing it, use the compiler option
--stack_protection. For more information, see --stack_protection, page 304.

The IAR Systems implementation of stack protection uses a heuristic to determine
whether a function needs stack protection or not. If any defined local variable has the
array type or a structure type that contains a member of array type, the function will need
stack protection. In addition, if the address of any local variable is propagated outside of
a function, such a function will also need stack protection.

If a function needs stack protection, the local variables are sorted to let the variables with
array type to be placed as high as possible in the function stack block. After those
variables, a canary element is placed. The canary is initialized at function entrance. The
initialization value is taken from the global variable __stack_chk_guard. At function
exit, the code verifies that the canary element still contains the original value. If not, the
function __stack_chk_fail is called.

USING STACK PROTECTION IN YOUR APPLICATION

To use stack protection, you must define these objects in your application:

● extern uint32_t __stack_chk_guard

The global variable __stack_chk_guard must be initialized prior to first use. If
the initialization value is randomized, it will be more secure.

● __interwork __nounwind __noreturn void __stack_chk_fail(void)

The purpose of the function __stack_chk_fail is to notify about the problem and
then terminate the application.

Note: The return address from this function will point into the function that failed.

The file stack_protection.c in the directory arm\src\lib\runtime can be used
as a template for both __stack_chk_guard and __stack_chk_fail.

TrustZone interface
TrustZone for Arm V8-M needs some compiler support to create a secure interface
between the secure and the non-secure code. For this purpose, there are two function
type attributes that control how code is generated: __cmse_nonsecure_entry and
__cmse_nonsecure_call. For more information, see Arm TrustZone®, page 222.

AFE1_AFE2-1:1

89

Linking using ILINK
● Linking—an overview

● Modules and sections

● The linking process in detail

● Placing code and data—the linker configuration file

● Initialization at system startup

● Stack usage analysis

Linking—an overview
The IAR ILINK Linker is a powerful, flexible software tool for use in the development
of embedded applications. It is equally well suited for linking small, single-file, absolute
assembler programs as it is for linking large, relocatable, multi-module, C/C++, or
mixed C/C++ and assembler programs.

The linker combines one or more relocatable object files—produced by the IAR
Systems compiler or assembler—with selected parts of one or more object libraries to
produce an executable image in the industry-standard format Executable and Linking
Format (ELF).

The linker will automatically load only those library modules—user libraries and
Standard C or C++ library variants—that are actually needed by the application you are
linking. Furthermore, the linker eliminates duplicate sections and sections that are not
required.

ILINK can link both Arm and Thumb code, as well as a combination of them. By
automatically inserting additional instructions (veneers), ILINK will assure that the
destination will be reached for any calls and branches, and that the processor state is
switched when required. For more details about how to generate veneers, see Veneers,
page 117.

The linker uses a configuration file where you can specify separate locations for code
and data areas of your target system memory map. This file also supports automatic
handling of the application’s initialization phase, which means initializing global
variable areas and code areas by copying initializers and possibly decompressing them
as well.

AFE1_AFE2-1:1

90

Modules and sections

IAR C/C++ Development Guide
Compiling and Linking for Arm

The final output produced by ILINK is an absolute object file containing the executable
image in the ELF (including DWARF for debug information) format. The file can be
downloaded to C-SPY or any other compatible debugger that supports ELF/DWARF, or
it can be stored in EPROM or flash.

To handle ELF files, various tools are included. For information about included utilities,
see Specific ELF tools, page 54.

Modules and sections
Each relocatable object file contains one module, which consists of:

● Several sections of code or data

● Runtime attributes specifying various types of information, for example, the version
of the runtime environment

● Optionally, debug information in DWARF format

● A symbol table of all global symbols and all external symbols used.

A section is a logical entity containing a piece of data or code that should be placed at a
physical location in memory. A section can consist of several section fragments,
typically one for each variable or function (symbols). A section can be placed either in
RAM or in ROM. In a normal embedded application, sections that are placed in RAM
do not have any content, they only occupy space.

Each section has a name and a type attribute that determines the content. The type
attribute is used (together with the name) for selecting sections for the ILINK
configuration.

The main purpose of section attributes is to distinguish between sections that can be
placed in ROM and sections that must be placed in RAM:

In each category, sections can be further divided into those that contain code and those
that contain data, resulting in four main categories:

ro|readonly ROM sections

rw|readwrite RAM sections

ro code Normal code

ro data Constants

rw code Code copied to RAM

rw data Variables

AFE1_AFE2-1:1

Linking using ILINK

91

readwrite data also has a subcategory—zi|zeroinit—for sections that are
zero-initialized at application startup.

Note: In addition to these section types—sections that contain the code and data that are
part of your application—a final object file will contain many other types of sections,
for example, sections that contain debugging information or other type of meta
information.

A section is the smallest linkable unit—but if possible, ILINK can exclude smaller
units—section fragments—from the final application. For more information, see
Keeping modules, page 111, and Keeping symbols and sections, page 111.

At compile time, data and functions are placed in different sections. At link time, one of
the most important functions of the linker is to assign addresses to the various sections
used by the application.

The IAR build tools have many predefined section names. For more information about
each section, see the chapter Section reference.

You can group sections together for placement by using blocks. See define block
directive, page 492.

The linking process in detail
The relocatable modules in object files and libraries, produced by the IAR compiler and
assembler, cannot be executed as is. To become an executable application, they must be
linked.

Note: Modules produced by a toolset from another vendor can be included in the build
as well, as long as the module is AEABI (Arm Embedded Application Binary Interface)
compliant. Be aware that this might also require a compiler utility library from the same
vendor.

The linker is used for the link process. It normally performs the following procedure
(note that some of the steps can be turned off by command line options or by directives
in the linker configuration file):

● Determine which modules to include in the application. Modules provided in object
files are always included. A module in a library file is only included if it provides a
definition for a global symbol that is referenced from an included module.

● Select which standard library files to use. The selection is based on attributes of the
included modules. These libraries are then used for satisfying any still outstanding
undefined symbols.

● Handle symbols with more than one definition. If there is more than one non-weak
definition, an error is emitted. Otherwise, one of the definitions is picked (the
non-weak one, if there is one) and the others are suppressed. Weak definitions are

AFE1_AFE2-1:1

92

The linking process in detail

IAR C/C++ Development Guide
Compiling and Linking for Arm

typically used for inline and template functions. If you need to override some of the
non-weak definitions from a library module, you must ensure that the library
module is not included (typically by providing alternate definitions for all the
symbols your application uses in that library module).

● Determine which sections/section fragments from the included modules to include
in the application. Only those sections/section fragments that are actually needed by
the application are included. There are several ways to determine of which
sections/section fragments that are needed, for example, the __root object
attribute, the #pragma required directive, and the keep linker directive. In case
of duplicate sections, only one is included.

● Where appropriate, arrange for the initialization of initialized variables and code in
RAM. The initialize directive causes the linker to create extra sections to
enable copying from ROM to RAM. Each section that will be initialized by copying
is divided into two sections—one for the ROM part, and one for the RAM part. If
manual initialization is not used, the linker also arranges for the startup code to
perform the initialization.

● Determine where to place each section according to the section placement directives
in the linker configuration file. Sections that are to be initialized by copying appear
twice in the matching against placement directives, once for the ROM part and once
for the RAM part, with different attributes. During the placement, the linker also
adds any required veneers to make a code reference reach its destination or to
switch CPU modes.

● Produce an absolute file that contains the executable image and any debug
information provided. The contents of each needed section in the relocatable input
files is calculated using the relocation information supplied in its file and the
addresses determined when placing sections. This process can result in one or more
relocation failures if some of the requirements for a particular section are not met,
for instance if placement resulted in the destination address for a PC-relative jump
instruction being out of range for that instruction.

● Optionally, produce a map file that lists the result of the section placement, the
address of each global symbol, and finally, a summary of memory usage for each
module and library.

AFE1_AFE2-1:1

Linking using ILINK

93

This illustration shows the linking process:

During the linking, ILINK might produce error and logging messages on stdout and
stderr. The log messages are useful for understanding why an application was linked
as it was. For example, why a module or section (or section fragment) was included.

Note: To see the actual content of an ELF object file, use ielfdumparm. See The IAR
ELF Dumper—ielfdump, page 536.

Placing code and data—the linker configuration file
The placement of sections in memory is performed by the IAR ILINK Linker. It uses the
linker configuration file where you can define how ILINK should treat each section and
how they should be placed into the available memories.

A typical linker configuration file contains definitions of:

● Available addressable memories

● Populated regions of those memories

● How to treat input sections

● Created sections

● How to place sections into the available regions.

AFE1_AFE2-1:1

94

Placing code and data—the linker configuration file

IAR C/C++ Development Guide
Compiling and Linking for Arm

The file consists of a sequence of declarative directives. This means that the linking
process will be governed by all directives at the same time.

To use the same source code with different derivatives, just rebuild the code with the
appropriate configuration file.

A SIMPLE EXAMPLE OF A CONFIGURATION FILE

Assume a simple 32-bit architecture that has these memory prerequisites:

● There are 4 Gbytes of addressable memory.

● There is ROM memory in the address range 0x0000–0x10000.

● There is RAM memory in the range 0x20000–0x30000.

● The stack has an alignment of 8.

● The system startup code must be located at a fixed address.

A simple configuration file for this assumed architecture can look like this:

/* The memory space denoting the maximum possible amount
 of addressable memory */
define memory Mem with size = 4G;

/* Memory regions in an address space */
define region ROM = Mem:[from 0x00000 size 0x10000];
define region RAM = Mem:[from 0x20000 size 0x10000];

/* Create a stack */
define block STACK with size = 0x1000, alignment = 8 { };

/* Handle initialization */
initialize by copy { readwrite }; /* Initialize RW sections */

/* Place startup code at a fixed address */
place at start of ROM { readonly section .cstartup };

/* Place code and data */
place in ROM { readonly }; /* Place constants and initializers in
 ROM: .rodata and .data_init */
place in RAM { readwrite, /* Place .data, .bss, and .noinit */
 block STACK }; /* and STACK */

This configuration file defines one addressable memory Mem with the maximum of
4 Gbytes of memory. Furthermore, it defines a ROM region and a RAM region in Mem,
namely ROM and RAM. Each region has the size of 64 Kbytes.

The file then creates an empty block called STACK with a size of 4 Kbytes in which the
application stack will reside. To create a block is the basic method which you can use to

AFE1_AFE2-1:1

Linking using ILINK

95

get detailed control of placement, size, etc. It can be used for grouping sections, but also
as in this example, to specify the size and placement of an area of memory.

Next, the file defines how to handle the initialization of variables, read/write type
(readwrite) sections. In this example, the initializers are placed in ROM and copied at
startup of the application to the RAM area. By default, ILINK may compress the
initializers if this appears to be advantageous.

The last part of the configuration file handles the actual placement of all the sections into
the available regions. First, the startup code—defined to reside in the read-only
(readonly) section .cstartup—is placed at the start of the ROM region, that is at
address 0x10000.

Note: The part within {} is referred to as section selection and it selects the sections for
which the directive should be applied to. Then the rest of the read-only sections are
placed in the ROM region.

Note: The section selection { readonly section .cstartup } takes precedence
over the more generic section selection { readonly }.

Finally, the read/write (readwrite) sections and the STACK block are placed in the RAM
region.

This illustration gives a schematic overview of how the application is placed in memory:

AFE1_AFE2-1:1

96

Initialization at system startup

IAR C/C++ Development Guide
Compiling and Linking for Arm

In addition to these standard directives, a configuration file can contain directives that
define how to:

● Map a memory that can be addressed in multiple ways

● Handle conditional directives

● Create symbols with values that can be used in the application

● More in detail, select the sections a directive should be applied to

● More in detail, initialize code and data.

For more details and examples about customizing the linker configuration file, see the
chapter Linking your application.

For more information about the linker configuration file, see the chapter The linker
configuration file.

Initialization at system startup
In Standard C, all static variables—variables that are allocated at a fixed memory
address—must be initialized by the runtime system to a known value at application
startup. This value is either an explicit value assigned to the variable, or if no value is
given, it is cleared to zero. In the compiler, there are exceptions to this rule, for example,
variables declared __no_init, which are not initialized at all.

The compiler generates a specific type of section for each type of variable initialization:

Categories of

declared data
Source Section type Section name

Section

content

Zero-initialized
data

int i; Read/write
data, zero-init

.bss None

Zero-initialized
data

int i = 0; Read/write
data, zero-init

.bss None

Initialized data
(non-zero)

int i = 6; Read/write
data

.data The
initializer

Non-initialized
data

__no_init int i; Read/write
data, zero-init

.noinit None

Constants const int i = 6; Read-only data .rodata The
constant

Code __ramfunc void
 myfunc() {}

Read/write
code

.textrw The code

Table 3: Sections holding initialized data

AFE1_AFE2-1:1

Linking using ILINK

97

Note: Clustering of static variables might group zero-initialized variables together with
initialized data in .data. The compiler can decide to place constants in the .text
section to avoid loading the address of a constant from a constant table.

For information about all supported sections, see the chapter Section reference.

THE INITIALIZATION PROCESS

Initialization of data is handled by ILINK and the system startup code in conjunction.

To configure the initialization of variables, you must consider these issues:

● Sections that should be zero-initialized, or not initialized at all (__no_init) are
handled automatically by ILINK.

● Sections that should be initialized, except for zero-initialized sections, should be
listed in an initialize directive.

Normally during linking, a section that should be initialized is split into two sections,
where the original initialized section will keep the name. The contents are placed in
the new initializer section, which will get the original name suffixed with _init. The
initializers should be placed in ROM and the initialized sections in RAM, by means
of placement directives. The most common example is the .data section which the
linker splits into .data and .data_init.

● Sections that contains constants should not be initialized—they should only be
placed in flash/ROM.

In the linker configuration file, it can look like this:

/* Handle initialization */
initialize by copy { readwrite }; /* Initialize RW sections */

/* Place startup code at a fixed address */
place at start of ROM { readonly section .cstartup };

/* Place code and data */
place in ROM { readonly }; /* Place constants and initializers in
 ROM: .rodata and .data_init */
place in RAM { readwrite, /* Place .data, .bss, and .noinit */
 block STACK }; /* and STACK */

Note: When compressed initializers are used (see initialize directive, page 498), the
contents sections (that is, sections with the _init suffix) are not listed as separate
sections in the map file. Instead, they are combined into aggregates of “initializer bytes”.
You can place the contents sections the usual way in the linker configuration file,
however, this affects the placement—and possibly the number—of the “initializer
bytes” aggregates.

AFE1_AFE2-1:1

98

Stack usage analysis

IAR C/C++ Development Guide
Compiling and Linking for Arm

For more information about and examples of how to configure the initialization, see
Linking considerations, page 107.

C++ DYNAMIC INITIALIZATION

The compiler places subroutine pointers for performing C++ dynamic initialization into
sections of the ELF section types SHT_PREINIT_ARRAY and SHT_INIT_ARRAY. By
default, the linker will place these into a linker-created block, ensuring that all sections
of the section type SHT_PREINIT_ARRAY are placed before those of the type
SHT_INIT_ARRAY. If any such sections were included, code to call the routines will also
be included.

The linker-created blocks are only generated if the linker configuration does not contain
section selector patterns for the preinit_array and init_array section types. The
effect of the linker-created blocks will be very similar to what happens if the linker
configuration file contains this:

define block SHT$$PREINIT_ARRAY { preinit_array };
define block SHT$$INIT_ARRAY { init_array };
define block CPP_INIT with fixed order { block
 SHT$$PREINIT_ARRAY,
 block SHT$$INIT_ARRAY };

If you put this into your linker configuration file, you must also mention the CPP_INIT
block in one of the section placement directives. If you wish to select where the
linker-created block is placed, you can use a section selector with the name
".init_array".

See also section-selectors, page 506.

Stack usage analysis
This section describes how to perform a stack usage analysis using the linker.

In the arm\src directory, you can find an example project that demonstrates stack
usage analysis.

INTRODUCTION TO STACK USAGE ANALYSIS

Under the right circumstances, the linker can accurately calculate the maximum stack
usage for each call graph, starting from the program start, interrupt functions, tasks etc.
(each function that is not called from another function, in other words, the root).

If you enable stack usage analysis, a stack usage chapter will be added to the linker map
file, listing for each call graph root the particular call chain which results in the
maximum stack depth.

AFE1_AFE2-1:1

Linking using ILINK

99

The analysis is only accurate if there is accurate stack usage information for each
function in the application.

In general, the compiler will generate this information for each C function, but if there
are indirect calls—calls using function pointers—in your application, you must supply
a list of possible functions that can be called from each calling function.

If you use a stack usage control file, you can also supply stack usage information for
functions in modules that do not have stack usage information.

You can use the check that directive in your stack usage control file to check that the
stack usage calculated by the linker does not exceed the stack space you have allocated.

PERFORMING A STACK USAGE ANALYSIS

1 Enable stack usage analysis:

In the IDE, choose Project>Options>Linker>Advanced>Enable stack usage
analysis.

On the command line, use the linker option --enable_stack_usage.

See --enable_stack_usage, page 323.

2 Enable the linker map file:

In the IDE, choose Project>Options>Linker>List>Generate linker map file

On the command line, use the linker option --map

3 Link your project.

Note: The linker will issue warnings related to stack usage under certain circumstances,
see Situations where warnings are issued, page 104.

4 Review the linker map file, which now contains a stack usage chapter with a summary
of the stack usage for each call graph root. For more information, see Result of an
analysis—the map file contents, page 100.

5 For more details, analyze the call graph log, see Call graph log, page 104.

Note: There are limitations and sources of inaccuracy in the analysis, see Limitations,
page 103.

You might need to specify more information to the linker to get a more representative
result. See Specifying additional stack usage information, page 101

In the IDE, choose Project>Options>Linker>Advanced>Enable stack usage
analysis>Control file.

AFE1_AFE2-1:1

100

Stack usage analysis

IAR C/C++ Development Guide
Compiling and Linking for Arm

On the command line, use the linker option --stack_usage_control.

See --stack_usage_control, page 343.

6 To add an automatic check that you have allocated memory enough for the stack, use
the check that directive in your linker configuration file. For example, assuming a
stack block named MY_STACK, you can write like this:

check that size(block MY_STACK) >=maxstack("Program entry")
 + totalstack("interrupt") + 100;

When linking, the linker emits an error if the check fails. In this example, an error will
be emitted if the sum of the following exceeds the size of the MY_STACK block:

● The maximum stack usage in the category Program entry (the main program).

● The sum of each individual maximum stack usage in the category interrupt
(assuming that all interrupt routines need space at the same time).

● A safety margin of 100 bytes (to account for stack usage not visible to the analysis).

See also check that directive, page 510 and Stack considerations, page 206.

RESULT OF AN ANALYSIS—THE MAP FILE CONTENTS

When stack usage analysis is enabled, the linker map file contains a stack usage chapter
with a summary of the stack usage for each call graph root category, and lists the call
chain that results in the maximum stack depth for each call graph root. This is an
example of what the stack usage chapter in the map file might look like:

 *** STACK USAGE

 Call Graph Root Category Max Use Total Use
 ------------------------ ------- ---------
 interrupt 104 136
 Program entry 168 168

Program entry
 "__iar_program_start": 0x000085ac
 Maximum call chain 168 bytes

AFE1_AFE2-1:1

Linking using ILINK

101

 "__iar_program_start" 0
 "__cmain" 0
 "main" 8
 "printf" 24
 "_PrintfTiny" 56
 "_Prout" 16
 "putchar" 16
 "__write" 0
 "__dwrite" 0
 "__iar_sh_stdout" 24
 "__iar_get_ttio" 24
 "__iar_lookup_ttioh" 0

interrupt
 "FaultHandler": 0x00008434

 Maximum call chain 32 bytes

 "FaultHandler" 32

interrupt
 "IRQHandler": 0x00008424

 Maximum call chain 104 bytes

 "IRQHandler" 24
 "do_something" in suexample.o [1] 80

The summary contains the depth of the deepest call chain in each category as well as the
sum of the depths of the deepest call chains in that category.

Each call graph root belongs to a call graph root category to enable convenient
calculations in check that directives.

SPECIFYING ADDITIONAL STACK USAGE INFORMATION

To specify additional stack usage information you can use either a stack usage control
file (suc) where you specify stack usage control directives or annotate the source code.

You can:

● Specify complete stack usage information (call graph root category, stack usage,
and possible calls) for a function, by using the stack usage control directive

AFE1_AFE2-1:1

102

Stack usage analysis

IAR C/C++ Development Guide
Compiling and Linking for Arm

function. Typically, you do this if stack usage information is missing, for example
in an assembler module. In your suc file you can, for example, write like this:

function MyFunc: 32,
 calls MyFunc2,
 calls MyFunc3, MyFunc4: 16;

function [interrupt] MyInterruptHandler: 44;

See also function directive, page 524.

● Exclude certain functions from stack usage analysis, by using the stack usage
control directive exclude. In your suc file you can, for example, write like this:

exclude MyFunc5, MyFunc6;

See also exclude directive, page 524.

● Specify a list of possible destinations for indirect calls in a function, by using the
stack usage control directive possible calls. Use this for functions which are
known to perform indirect calls and where you know exactly which functions that
might be called in this particular application. In your suc file you can, for example,
write like this:

possible calls MyFunc7: MyFunc8, MyFunc9;

If the information about which functions that might be called is available at compile
time, consider using the #pragma calls directive instead.

See also possible calls directive, page 526 and calls, page 387.

● Specify that functions are call graph roots, including an optional call graph root
category, by using the stack usage control directive call graph root or the
#pragma call_graph_root directive. In your suc file you can, for example,
write like this:

call graph root [task]: MyFunc10, MyFunc11;

If your interrupt functions have not already been designated as call graph roots by the
compiler, you must do so manually. You can do this either by using the #pragma
call_graph_root directive in your source code or by specifying a directive in your
suc file, for example:

call graph root [interrupt]: Irq1Handler, Irq2Handler;

See also call graph root directive, page 524 and call_graph_root, page 388.

● Specify a maximum number of iterations through any of the cycles in the recursion
nest of which the function is a member. In your suc file you can, for example, write
like this:

max recursion depth MyFunc12: 10;

● Selectively suppress the warning about unmentioned functions referenced by a
module for which you have supplied stack usage information in the stack usage

AFE1_AFE2-1:1

Linking using ILINK

103

control file. Use the no calls from directive in your suc file, for example, like
this:

no calls from [file.o] to MyFunc13, MyFunc14;

● Instead of specifying stack usage information about assembler modules in a stack
usage control file, you can annotate the assembler source with call frame
information. For more information, see the IAR Assembler User Guide for Arm.

For more information, see the chapter The stack usage control file.

LIMITATIONS

Apart from missing or incorrect stack usage information, there are also other sources of
inaccuracy in the analysis:

● The linker cannot always identify all functions in object modules that lack stack
usage information. In particular, this might be a problem with object modules
written in assembly language or produced by non-IAR tools. You can provide stack
usage information for such modules using a stack usage control file, and for
assembly language modules you can also annotate the assembler source code with
CFI directives to provide stack usage information. See the IAR Assembler User
Guide for Arm.

● If you use inline assembler to change the frame size or to perform function calls,
this will not be reflected in the analysis.

● Extra space consumed by other sources (the processor, an operating system, etc) is
not accounted for.

● Source code that uses exceptions is not supported.

● If you use other forms of function calls, like software interrupts, they will not be
reflected in the call graph.

● Using multi-file compilation (--mfc) can interfere with using a stack usage control
file to specify properties of module-local functions in the involved files.

Note: Stack usage analysis produces a worst case result. The program might not actually
ever end up in the maximum call chain, by design, or by coincidence. In particular, the
set of possible destinations for a virtual function call in C++ might sometimes include
implementations of the function in question which cannot, in fact, be called from that
point in the code.

Stack usage analysis is only a complement to actual measurement. If the result is
important, you need to perform independent validation of the results of the analysis.

AFE1_AFE2-1:1

104

Stack usage analysis

IAR C/C++ Development Guide
Compiling and Linking for Arm

SITUATIONS WHERE WARNINGS ARE ISSUED

When stack usage analysis is enabled in the linker, warnings will be generated in the
following circumstances:

● There is a function without stack usage information.

● There is an indirect call site in the application for which a list of possible called
functions has not been supplied.

● There are no known indirect calls, but there is an uncalled function that is not
known to be a call graph root.

● The application contains recursion (a cycle in the call graph) for which no
maximum recursion depth has been supplied, or which is of a form for which the
linker is unable to calculate a reliable estimate of stack usage.

● There are calls to a function declared as a call graph root.

● You have used the stack usage control file to supply stack usage information for
functions in a module that does not have such information, and there are functions
referenced by that module which have not been mentioned as being called in the
stack usage control file.

CALL GRAPH LOG

To help you interpret the results of the stack usage analysis, there is a log output option
that produces a simple text representation of the call graph (--log call_graph).

AFE1_AFE2-1:1

Linking using ILINK

105

Example output:

 Program entry:
 0 __iar_program_start [168]
 0 __cmain [168]
 0 __iar_data_init3 [16]
 8 __iar_zero_init3 [8]
 16 - [0]
 8 __iar_copy_init3 [8]
 16 - [0]
 0 __low_level_init [0]
 0 main [168]
 8 printf [160]
 32 _PrintfTiny [136]
 88 _Prout [80]
 104 putchar [64]
 120 __write [48]
 120 __dwrite [48]
 120 __iar_sh_stdout [48]
 144 __iar_get_ttio [24]
 168 __iar_lookup_ttioh [0]
 120 __iar_sh_write [24]
 144 - [0]
 88 __aeabi_uidiv [0]
 88 __aeabi_idiv0 [0]
 88 strlen [0]
 0 exit [8]
 0 _exit [8]
 0 __exit [8]
 0 __iar_close_ttio [8]
 8 __iar_lookup_ttioh [0] ***
 0 __exit [8] ***

Each line consists of this information:

● The stack usage at the point of call of the function

● The name of the function, or a single '-' to indicate usage in a function at a point
with no function call (typically in a leaf function)

● The stack usage along the deepest call chain from that point. If no such value could
be calculated, "[---]" is output instead. "***" marks functions that have already
been shown.

CALL GRAPH XML OUTPUT

The linker can also produce a call graph file in XML format. This file contains one node
for each function in your application, with the stack usage and call information relevant

AFE1_AFE2-1:1

106

Stack usage analysis

IAR C/C++ Development Guide
Compiling and Linking for Arm

to that function. It is intended to be input for post-processing tools and is not particularly
human-readable.

For more information about the XML format used, see the callGraph.txt file in your
product installation.

AFE1_AFE2-1:1

107

Linking your application
● Linking considerations

● Hints for troubleshooting

● Checking module consistency

● Linker optimizations

Linking considerations
Before you can link your application, you must set up the configuration required by
ILINK. Typically, you must consider:

● Choosing a linker configuration file, page 107

● Defining your own memory areas, page 108

● Placing sections, page 109

● Reserving space in RAM, page 110

● Keeping modules, page 111

● Keeping symbols and sections, page 111

● Application startup, page 111

● Setting up stack memory, page 111

● Setting up heap memory, page 112

● Setting up the atexit limit, page 112

● Changing the default initialization, page 112

● Interaction between ILINK and the application, page 116

● Standard library handling, page 116

● Producing other output formats than ELF/DWARF, page 117

● Veneers, page 117

CHOOSING A LINKER CONFIGURATION FILE

The config directory contains two ready-made templates for the linker configuration
files:

● generic.icf, designed for all cores except for Cortex-M cores

● generic_cortex.icf, designed for all Cortex-M cores.

AFE1_AFE2-1:1

108

Linking considerations

IAR C/C++ Development Guide
Compiling and Linking for Arm

The files contain the information required by ILINK. The only change, if any, you will
normally have to make to the supplied configuration file is to customize the start and end
addresses of each region so they fit the target system memory map. If, for example, your
application uses additional external RAM, you must also add details about the external
RAM memory area.

For some devices, device-specific configuration files are automatically selected.

To edit a linker configuration file, use the editor in the IDE, or any other suitable editor.
Alternatively, choose Project>Options>Linker and click the Edit button on the Config
page to open the dedicated linker configuration file editor.

Do not change the original template file. We recommend that you make a copy in the
working directory, and modify the copy instead. If you are using the linker configuration
file editor in the IDE, the IDE will make a copy for you.

Each project in the IDE should have a reference to one, and only one, linker
configuration file. This file can be edited, but for the majority of all projects it is
sufficient to configure the vital parameters in Project>Options>Linker>Config.

DEFINING YOUR OWN MEMORY AREAS

The default configuration file that you selected has predefined ROM and RAM regions.
This example will be used as a starting-point for all further examples in this chapter:

/* Define the addressable memory */
define memory Mem with size = 4G;

/* Define a region named ROM with start address 0 and to be 64
Kbytes large */
define region ROM = Mem:[from 0 size 0x10000];

/* Define a region named RAM with start address 0x20000 and to be
64 Kbytes large */
define region RAM = Mem:[from 0x20000 size 0x10000];

Each region definition must be tailored for the actual hardware.

To find out how much of each memory that was filled with code and data after linking,
inspect the memory summary in the map file (command line option --map).

Adding an additional region

To add an additional region, use the define region directive, for example:

/* Define a 2nd ROM region to start at address 0x80000 and to be
128 Kbytes large */
define region ROM2 = Mem:[from 0x80000 size 0x20000];

AFE1_AFE2-1:1

Linking your application

109

Merging different areas into one region

If the region is comprised of several areas, use a region expression to merge the different
areas into one region, for example:

/* Define the 2nd ROM region to have two areas. The first with
the start address 0x80000 and 128 Kbytes large, and the 2nd with
the start address 0xC0000 and 32 Kbytes large */
define region ROM2 = Mem:[from 0x80000 size 0x20000]
 | Mem:[from 0xC0000 size 0x08000];

or equivalently

define region ROM2 = Mem:[from 0x80000 to 0xC7FFF]
 –Mem:[from 0xA0000 to 0xBFFFF];

PLACING SECTIONS

The default configuration file that you selected places all predefined sections in memory,
but there are situations when you might want to modify this. For example, if you want
to place the section that holds constant symbols in the CONSTANT region instead of in
the default place. In this case, use the place in directive, for example:

/* Place sections with readonly content in the ROM region */
place in ROM {readonly};

/* Place the constant symbols in the CONSTANT region */
place in CONSTANT {readonly section .rodata};

Note: Placing a section—used by the IAR build tools—in a different memory which use
a different way of referring to its content, will fail.

For the result of each placement directive after linking, inspect the placement summary
in the map file (the command line option --map).

Placing a section at a specific address in memory

To place a section at a specific address in memory, use the place at directive, for
example:

/* Place section .vectors at address 0 */
place at address Mem:0x0 {readonly section .vectors};

Placing a section first or last in a region

To place a section first or last in a region is similar, for example:

/* Place section .vectors at start of ROM */
place at start of ROM {readonly section .vectors};

AFE1_AFE2-1:1

110

Linking considerations

IAR C/C++ Development Guide
Compiling and Linking for Arm

Declare and place your own sections

To declare new sections—in addition to the ones used by the IAR build tools—to hold
specific parts of your code or data, use mechanisms in the compiler and assembler. For
example:

/* Place a variable in that section. */
const short MyVariable @ "MYOWNSECTION" = 0xF0F0;

This is the corresponding example in assembler language:

 name createSection
 section MYOWNSECTION:CONST ; Create a section,
 ; and fill it with
 dc16 0xF0F0 ; constant bytes.
 end

To place your new section, the original place in ROM {readonly}; directive is
sufficient.

However, to place the section MyOwnSection explicitly, update the linker configuration
file with a place in directive, for example:

/* Place MyOwnSection in the ROM region */
place in ROM {readonly section MyOwnSection};

RESERVING SPACE IN RAM

Often, an application must have an empty uninitialized memory area to be used for
temporary storage, for example, a heap or a stack. It is easiest to achieve this at link time.
You must create a block with a specified size and then place it in a memory.

In the linker configuration file, it can look like this:

define block TempStorage with size = 0x1000, alignment = 4 { };
place in RAM { block TempStorage };

To retrieve the start of the allocated memory from the application, the source code could
look like this:

/* Define a section for temporary storage. */
#pragma section = "TempStorage"
char *GetTempStorageStartAddress()
{
 /* Return start address of section TempStorage. */
 return __section_begin("TempStorage");
}

AFE1_AFE2-1:1

Linking your application

111

KEEPING MODULES

If a module is linked as an object file, it is always kept. That is, it will contribute to the
linked application. However, if a module is part of a library, it is included only if it is
symbolically referred to from other parts of the application. This is true, even if the
library module contains a root symbol. To assure that such a library module is always
included, use iarchive to extract the module from the library, see The IAR Archive
Tool—iarchive, page 531.

For information about included and excluded modules, inspect the log file (the
command line option --log modules).

For more information about modules, see Modules and sections, page 90.

KEEPING SYMBOLS AND SECTIONS

By default, ILINK removes any sections, section fragments, and global symbols that are
not needed by the application. To retain a symbol that does not appear to be needed—or
actually, the section fragment it is defined in—you can either use the root attribute on
the symbol in your C/C++ or assembler source code, or use the ILINK option --keep.
To retain sections based on attribute names or object names, use the directive keep in
the linker configuration file.

To prevent ILINK from excluding sections and section fragments, use the command line
options --no_remove or --no_fragments, respectively.

For information about included and excluded symbols and sections, inspect the log file
(the command line option --log sections).

For more information about the linking procedure for keeping symbols and sections, see
The linking process, page 62.

APPLICATION STARTUP

By default, the point where the application starts execution is defined by the
__iar_program_start label, which is defined to point at the start of the cstartup.s
file. The label is also communicated via ELF to any debugger that is used.

To change the start point of the application to another label, use the ILINK option
--entry, see --entry, page 324.

SETTING UP STACK MEMORY

The size of the CSTACK block is defined in the linker configuration file. To change the
allocated amount of memory, change the block definition for CSTACK:

define block CSTACK with size = 0x2000, alignment = 8{ };

Specify an appropriate size for your application.

AFE1_AFE2-1:1

112

Linking considerations

IAR C/C++ Development Guide
Compiling and Linking for Arm

For more information about the stack, see Stack considerations, page 206.

SETTING UP HEAP MEMORY

The size of the heap is defined in the linker configuration file as a block:

define block HEAP with size = 0x1000, alignment = 8{ };
place in RAM {block HEAP};

Specify the appropriate size for your application. If you use a heap, you must allocate at
least 50 bytes for it.

SETTING UP THE ATEXIT LIMIT

By default, the atexit function can be called a maximum of 32 times from your
application. To either increase or decrease this number, add a line to your configuration
file. For example, to reserve room for 10 calls instead, write:

define symbol __iar_maximum_atexit_calls = 10;

CHANGING THE DEFAULT INITIALIZATION

By default, memory initialization is performed during application startup. ILINK sets
up the initialization process and chooses a suitable packing method. If the default
initialization process does not suit your application and you want more precise control
over the initialization process, these alternatives are available:

● Suppressing initialization

● Choosing the packing algorithm

● Manual initialization

● Initializing code—copying ROM to RAM.

For information about the performed initializations, inspect the log file (the command
line option --log initialization).

Suppressing initialization

If you do not want the linker to arrange for initialization by copying, for some or all
sections, make sure that those sections do not match a pattern in an initialize by
copy directive—or use an except clause to exclude them from matching. If you do not
want any initialization by copying at all, you can omit the initialize by copy
directive entirely.

This can be useful if your application, or just your variables, are loaded into RAM by
some other mechanism before application startup.

AFE1_AFE2-1:1

Linking your application

113

Choosing a packing algorithm

To override the default packing algorithm, write for example:

initialize by copy with packing = lz77 { readwrite };

For more information about the available packing algorithms, see initialize directive,
page 498.

Manual initialization

In the usual case, the initialize by copy directive is used for making the linker
arrange for initialization by copying—with or without packing—of sections with
content at application startup. The linker achieves this by logically creating an
initialization section for each such section, holding the content of the section, and
turning the original section into a section without content. Then, the linker adds table
elements to the initialization table so that the initialization will be performed at
application startup. You can use initialize manually to suppress the creation of
table elements to take control over when and how the elements are copied. This is useful
for overlays, but also in other circumstances.

For sections without content (zero-initialized sections), the situation is reversed. The
linker arranges for zero initialization of all such sections at application startup, except
for those that are mentioned in a do not initialize directive.

Simple copying example with an automatic block

Assume that you have some initialized variables in MYSECTION. If you add this directive
to your linker configuration file:

initialize manually { section MYSECTION };

you can use this source code example to initialize the section:

#pragma section = "MYSECTION"
#pragma section = "MYSECTION_init"

void DoInit()
{
 char * from = __section_begin("MYSECTION_init");
 char * to = __section_begin("MYSECTION");
 memcpy(to, from, __section_size("MYSECTION"));
}

This piece of source code takes advantage of the fact that if you use __section_begin
(and related operators) with a section name, an automatic block is created by the linker
for those sections.

AFE1_AFE2-1:1

114

Linking considerations

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: Automatic blocks override the normal section selection process and forces
everything that matches the section name to form on block.

Example with explicit blocks

Assume that you instead of needing manual initialization for variables in a specific
section, you need it for all initialized variables from a particular library. In that case, you
must create explicit blocks for both the variables and the content. Like this:

initialize manually { section .data object mylib.a };
define block MYBLOCK { section .data object mylib.a };
define block MYBLOCK_init { section .data_init object mylib.a };

You must also place the two new blocks using one of the section placement directives,
the block MYBLOCK in RAM and the block MYBLOCK_init in ROM.

Then you can initialize the sections using the same source code as in the previous
example, only with MYBLOCK instead of MYSECTION.

Overlay example

This is a simple overlay example that takes advantage of automatic block creation:

initialize manually { section MYOVERLAY* };

define overlay MYOVERLAY { section MYOVERLAY1 };
define overlay MYOVERLAY { section MYOVERLAY2 };

You must also place overlay MYOVERLAY somewhere in RAM. The copying could
look like this:

#pragma section = "MYOVERLAY"
#pragma section = "MYOVERLAY1_init"
#pragma section = "MYOVERLAY2_init"

void SwitchToOverlay1()
{
 char * from = __section_begin("MYOVERLAY1_init");
 char * to = __section_begin("MYOVERLAY");
 memcpy(to, from, __section_size("MYOVERLAY1_init"));
}

void SwitchToOverlay2()
{
 char * from = __section_begin("MYOVERLAY2_init");
 char * to = __section_begin("MYOVERLAY");
 memcpy(to, from, __section_size("MYOVERLAY2_init"));
}

AFE1_AFE2-1:1

Linking your application

115

Initializing code—copying ROM to RAM

Sometimes, an application copies pieces of code from flash/ROM to RAM. You can
direct the linker to arrange for this to be done automatically at application startup, or do
it yourself at some later time using the techniques described in Manual initialization,
page 113.

You need to list the code sections that should be copied in an initialize by copy
directive. The easiest way is usually to place the relevant functions in a particular
section—for example, RAMCODE— and add section RAMCODE to your initialize
by copy directive. For example:

initialize by copy { rw, section RAMCODE };

If you need to place the RAMCODE functions in some particular location, you must
mention them in a placement directive, otherwise they will be placed together with other
read/write sections.

If you need to control the manner and/or time of copying, you must use an initialize
manually directive instead. See Manual initialization, page 113.

If the functions need to run without accessing the flash/ROM, you can use the
__ramfunc keyword when compiling. See Execution in RAM, page 78.

Running all code from RAM

If you want to copy the entire application from ROM to RAM at program startup, use
the initilize by copy directive, for example:

initialize by copy { readonly, readwrite };

The readwrite pattern will match all statically initialized variables and arrange for
them to be initialized at startup. The readonly pattern will do the same for all read-only
code and data, except for code and data needed for the initialization.

Because the function __low_level_init, if present, is called before initialization, it
and anything it needs, will not be copied from ROM to RAM either. In some
circumstances—for example, if the ROM contents are no longer available to the
program after startup—you might need to avoid using the same functions during startup
and in the rest of the code.

If anything else should not be copied, include it in an except clause. This can apply to,
for example, the interrupt vector table.

AFE1_AFE2-1:1

116

Linking considerations

IAR C/C++ Development Guide
Compiling and Linking for Arm

It is also recommended to exclude the C++ dynamic initialization table from being
copied to RAM, as it is typically only read once and then never referenced again. For
example, like this:

initialize by copy { readonly, readwrite }
 except { section .intvec, /* Don’t copy
 interrupt table */
 section .init_array }; /* Don’t copy
 C++ init table */

INTERACTION BETWEEN ILINK AND THE APPLICATION

ILINK provides the command line options --config_def and --define_symbol to
define symbols which can be used for controlling the application. You can also use
symbols to represent the start and end of a continuous memory area that is defined in the
linker configuration file. For more information, see Interaction between the tools and
your application, page 209.

To change a reference to one symbol to another symbol, use the ILINK command line
option --redirect. This is useful, for example, to redirect a reference from a
non-implemented function to a stub function, or to choose one of several different
implementations of a certain function, for example, how to choose the DLIB formatter
for the standard library functions printf and scanf.

The compiler generates mangled names to represent complex C/C++ symbols. If you
want to refer to these symbols from assembler source code, you must use the mangled
names.

For information about the addresses and sizes of all global (statically linked) symbols,
inspect the entry list in the map file (the command line option --map).

For more information, see Interaction between the tools and your application, page 209.

STANDARD LIBRARY HANDLING

By default, ILINK determines automatically which variant of the standard library to
include during linking. The decision is based on the sum of the runtime attributes
available in each object file and the library options passed to ILINK.

To disable the automatic inclusion of the library, use the option
--no_library_search. In this case, you must explicitly specify every library file to
be included. For information about available library files, see Prebuilt runtime libraries,
page 135.

AFE1_AFE2-1:1

Linking your application

117

PRODUCING OTHER OUTPUT FORMATS THAN ELF/DWARF

ILINK can only produce an output file in the ELF/DWARF format. To convert that
format into a format suitable for programming PROM/flash, see The IAR ELF Tool—
ielftool, page 535.

VENEERS

Veneers are small sequences of code inserted by the linker to bridge the gap when a call
instruction does not reach its destination or cannot switch to the correct mode.

Code for veneers can be inserted between any caller and called function. As a result, the
R12 register must be treated as a scratch register at function calls, including functions
written in assembler. This also applies to jumps.

Hints for troubleshooting
ILINK has several features that can help you manage code and data placement correctly,
for example:

● Messages at link time, for examples when a relocation error occurs

● The --log option that makes ILINK log information to stdout, which can be
useful to understand why an executable image became the way it is, see --log, page
331

● The --map option that makes ILINK produce a memory map file, which contains
the result of the linker configuration file, see --map, page 332.

RELOCATION ERRORS

For each instruction that cannot be relocated correctly, ILINK will generate a relocation
error. This can occur for instructions where the target is out of reach or is of an
incompatible type, or for many other reasons.

AFE1_AFE2-1:1

118

Hints for troubleshooting

IAR C/C++ Development Guide
Compiling and Linking for Arm

A relocation error produced by ILINK can look like this:

Error[Lp002]: relocation failed: out of range or illegal value
 Kind : R_XXX_YYY[0x1]
 Location : 0x40000448
 "myfunc" + 0x2c
 Module: somecode.o
 Section: 7 (.text)
 Offset: 0x2c
 Destination: 0x9000000c
 "read"
 Module: read.o(iolib.a)
 Section: 6 (.text)
 Offset: 0x0

The message entries are described in this table:

Message entry Description

Kind The relocation directive that failed. The directive depends on the
instruction used.

Location The location where the problem occurred, described with the following
details:
• The instruction address, expressed both as a hexadecimal value and as
 a label with an offset. In this example, 0x40000448 and
 "myfunc" + 0x2c.
• The module, and the file. In this example, the
 module somecode.o.
• The section number and section name. In this example, section
number 7 with the name .text.
• The offset, specified in number of bytes, in the section. In this
example, 0x2c.

Destination The target of the instruction, described with the following details:
• The instruction address, expressed both as a hexadecimal value and as
 a label with an offset. In this example, 0x9000000c and
 "read"—therefore, no offset.
• The module, and when applicable the library. In this example, the
 module read.o and the library iolib.a.
• The section number and section name. In this example, section
number 6 with the name .text.
• The offset, specified in number of bytes, in the section. In this
example, 0x0.

Table 4: Description of a relocation error

AFE1_AFE2-1:1

Linking your application

119

Possible solutions

In this case, the distance from the instruction in myfunc to __read is too long for the
branch instruction.

Possible solutions include ensuring that the two .text sections are allocated closer to
each other or using some other calling mechanism that can reach the required distance.
It is also possible that the referring function tried to refer to the wrong target and that
this caused the range error.

Different range errors have different solutions. Usually, the solution is a variant of the
ones presented above, in other words modifying either the code or the section
placement.

Checking module consistency
This section introduces the concept of runtime model attributes, a mechanism used by
the tools provided by IAR Systems to ensure that modules that are linked into an
application are compatible, in other words, are built using compatible settings. The tools
use a set of predefined runtime model attributes. In addition to these, you can define your
own that you can use to ensure that incompatible modules are not used together.

Note: In addition to the predefined attributes, compatibility is also checked against the
AEABI runtime attributes. These attributes deal mainly with object code compatibility,
etc. They reflect compilation settings and are not user-configurable.

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. In
general, two modules can only be linked together if they have the same value for each
key that they both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that
property.

Note: For IAR predefined runtime model attributes, the linker checks them in several
ways.

AFE1_AFE2-1:1

120

Checking module consistency

IAR C/C++ Development Guide
Compiling and Linking for Arm

Example

In this table, the object files could (but do not have to) define the two runtime attributes
color and taste:

In this case, file1 cannot be linked with any of the other files, since the runtime
attribute color does not match. Also, file4 and file5 cannot be linked together,
because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
file4 or file5, but not with both.

USING RUNTIME MODEL ATTRIBUTES

To ensure module consistency with other object files, use the #pragma rtmodel
directive to specify runtime model attributes in your C/C++ source code. For example,
if you have a UART that can run in two modes, you can specify a runtime model
attribute, for example uart. For each mode, specify a value, for example mode1 and
mode2. Declare this in each module that assumes that the UART is in a particular mode.
This is how it could look like in one of the modules:

#pragma rtmodel="uart", "mode1"

Alternatively, you can also use the rtmodel assembler directive to specify runtime
model attributes in your assembler source code. For example:

 rtmodel "uart", "mode1"

Note: Key names that start with two underscores are reserved by the compiler. For more
information about the syntax, see rtmodel, page 402 and the IAR Assembler User Guide
for Arm.

At link time, the IAR ILINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

Object file Color Taste

file1 blue not defined

file2 red not defined

file3 red *

file4 red spicy

file5 red lean

Table 5: Example of runtime model attributes

AFE1_AFE2-1:1

Linking your application

121

Linker optimizations
This section contains information about:

● Virtual function elimination, page 121

● Small function inlining, page 121

● Duplicate section merging, page 121

VIRTUAL FUNCTION ELIMINATION

Virtual Function Elimination (VFE) is a linker optimization that removes unneeded
virtual functions and dynamic runtime type information.

In order for Virtual Function Elimination to work, all relevant modules must provide
information about virtual function table layout, which virtual functions are called, and
for which classes dynamic runtime type information is needed. If one or more modules
do not provide this information, a warning is generated by the linker and Virtual
Function Elimination is not performed.

If you know that modules that lack such information do not perform any virtual function
calls and do not define any virtual function tables, you can use the --vfe=forced
linker option to enable Virtual Function Elimination anyway.

In the IDE, select Project>Options>Linker>Optimizations>Perform C++ Virtual
Function Elimination to enable this optimization.

Note: You can disable Virtual Function Elimination entirely by using the --no_vfe
linker option. In this case, no warning will be issued for modules that lack VFE
information.

For more information, see --vfe, page 346 and --no_vfe, page 338.

SMALL FUNCTION INLINING

Small function inlining is a linker optimization that replaces some calls to small
functions with the body of the function. This requires the body to fit in the space of the
instruction that calls the function.

In the IDE, select Project>Options>Linker>Optimizations>Inline small routines to
enable this optimization.

Use the linker option --inline.

DUPLICATE SECTION MERGING

The linker can detect read-only sections with identical contents and keep only one copy
of each such section, redirecting all references to any of the duplicate sections to the
retained section.

AFE1_AFE2-1:1

122

Linker optimizations

IAR C/C++ Development Guide
Compiling and Linking for Arm

In the IDE, select Project>Options>Linker>Optimizations>Merge duplicate
sections to enable this optimization.

Use the linker option --merge_duplicate_sections.

Note: This optimization can cause different functions or constants to have the same
address, so if your application depends on the addresses being different, for example, by
using the addresses as keys into a table, you should not enable this optimization.

AFE1_AFE2-1:1

123

The DLIB runtime
environment
● Introduction to the runtime environment

● Setting up the runtime environment

● Additional information on the runtime environment

● Managing a multithreaded environment

Introduction to the runtime environment
A runtime environment is the environment in which your application executes.

This section contains information about:

● Runtime environment functionality, page 123

● Briefly about input and output (I/O), page 124

● Briefly about C-SPY emulated I/O, page 125

● Briefly about retargeting, page 126

RUNTIME ENVIRONMENT FUNCTIONALITY

The DLIB runtime environment supports Standard C and C++ and consists of:

● The C/C++ standard library, both its interface (provided in the system header files)
and its implementation.

● Startup and exit code.

● Low-level I/O interface for managing input and output (I/O).

● Special compiler support, for instance functions for switch handling or integer
arithmetics.

● Support for hardware features:

● Direct access to low-level processor operations by means of intrinsic functions,
such as functions for interrupt mask handling

● Peripheral unit registers and interrupt definitions in include files

● The Vector Floating Point (VFP) coprocessor.

Runtime environment functions are provided in a runtime library.

AFE1_AFE2-1:1

124

Introduction to the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

The runtime library is delivered both as a prebuilt library and (depending on your
product package) as source files. The prebuilt libraries are available in different
configurations to meet various needs, see Runtime library configurations, page 134.
You can find the libraries in the product subdirectories arm\lib and arm\src\lib,
respectively.

For more information about the library, see the chapter C/C++ standard library
functions.

BRIEFLY ABOUT INPUT AND OUTPUT (I/O)

Every application must communicate with its environment. The application might for
example display information on an LCD, read a value from a sensor, get the current date
from the operating system, etc. Typically, your application performs I/O via the C/C++
standard library or some third-party library.

There are many functions in the C/C++ standard library that deal with I/O, including
functions for: standard character streams, file system access, time and date,
miscellaneous system actions, and termination and assert. This set of functions is
referred to as the standard I/O interface.

On a desktop computer or a server, the operating system is expected to provide I/O
functionality to the application via the standard I/O interface in the runtime
environment. However, in an embedded system, the runtime library cannot assume that
such functionality is present, or even that there is an operating system at all. Therefore,
the low-level part of the standard I/O interface is not completely implemented by
default:

AFE1_AFE2-1:1

The DLIB runtime environment

125

To make the standard I/O interface work, you can:

● Let the C-SPY debugger emulate I/O operations on the host computer, see Briefly
about C-SPY emulated I/O, page 125

● Retarget the standard I/O interface to your target system by providing a suitable
implementation of the interface, see Briefly about retargeting, page 126.

It is possible to mix these two approaches. You can, for example, let debug printouts and
asserts be emulated by the C-SPY debugger, but implement your own file system. The
debug printouts and asserts are useful during debugging, but no longer needed when
running the application stand-alone (not connected to the C-SPY debugger).

BRIEFLY ABOUT C-SPY EMULATED I/O

C-SPY emulated I/O is a mechanism which lets the runtime environment interact with
the C-SPY debugger to emulate I/O actions on the host computer:

For example, when C-SPY emulated I/O is enabled:

● Standard character streams are directed to the C-SPY Terminal I/O window

● File system operations are performed on the host computer

● Time and date functions return the time and date of the host computer

● Termination and failed asserts break execution and notify the C-SPY debugger.

This behavior can be valuable during the early development of an application, for
example in an application that uses file I/O before any flash file system I/O drivers are

AFE1_AFE2-1:1

126

Introduction to the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

implemented, or if you need to debug constructions in your application that use stdin
and stdout without the actual hardware device for input and output being available.

See Setting up your runtime environment, page 127 and The semihosting mechanism,
page 142.

BRIEFLY ABOUT RETARGETING

Retargeting is the process where you adapt the runtime environment so that your
application can execute I/O operations on your target system.

The standard I/O interface is large and complex. To make retargeting easier, the DLIB
runtime environment is designed so that it performs all I/O operations through a small
set of simple functions, which is referred to as the DLIB low-level I/O interface. By
default, the functions in the low-level interface lack usable implementations. Some are
unimplemented, others have stub implementations that do not perform anything except
returning error codes.

To retarget the standard I/O interface, all you have to do is to provide implementations
for the functions in the DLIB low-level I/O interface.

For example, if your application calls the functions printf and fputc in the standard
I/O interface, the implementations of those functions both call the low-level function
__write to output individual characters. To make them work, you just need to provide
an implementation of the __write function—either by implementing it yourself, or by
using a third-party implementation.

AFE1_AFE2-1:1

The DLIB runtime environment

127

For information about how to override library modules with your own implementations,
see Overriding library modules, page 131. See also The DLIB low-level I/O interface,
page 149 for information about the functions that are part of the interface.

Setting up the runtime environment
This section contains these tasks:

● Setting up your runtime environment, page 127

A runtime environment with basic project settings to be used during the initial phase
of development.

● Retargeting—Adapting for your target system, page 129

● Overriding library modules, page 131

● Customizing and building your own runtime library, page 131

See also:

● Managing a multithreaded environment, page 160 for information about how to
adapt the runtime environment to treat all library objects according to whether they
are global or local to a thread.

SETTING UP YOUR RUNTIME ENVIRONMENT

You can set up the runtime environment based on some basic project settings. It is also
often convenient to let the C-SPY debugger manage things like standard streams, file
I/O, and various other system interactions. This basic runtime environment can be used
for simulation before you have any target hardware.

To set up the runtime environment:

1 Before you build your project, choose Project>Options>General Options to open the
Options dialog box.

2 On the Library Configuration page, verify the following settings:

● Library: choose which library configuration to use. Typically, choose None,
Normal, Full, or Custom.

For information about the various library configurations, see Runtime library
configurations, page 134.

AFE1_AFE2-1:1

128

Setting up the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

3 On the Library Options page, select Auto with multibyte support or Auto without
multibyte support for both Printf formatter and Scanf formatter. This means that
the linker will automatically choose the appropriate formatters based on information
from the compiler. For more information about the available formatters and how to
choose one manually, see Formatters for printf, page 139 and Formatters for scanf,
page 141, respectively.

4 To enable C-SPY emulated I/O, choose Project>Options>General Options>Library
Configuration and choose Semihosted (--semihosted) or IAR breakpoint
(--semihosting=iar_breakpoint).

Note: For some Cortex-M devices it is also possible to direct stdout/stderr via
SWO. This can significantly improve stdout/stderr performance compared to
semihosting. For hardware requirements, see the C-SPY® Debugging Guide for Arm.

To enable stdout via SWO on the command line, use the linker option --redirect
__iar_sh_stdout=__iar_sh_stdout_swo.

To enable stdout via SWO in the IDE, select the Semihosted option and the
stdout/stderr via SWO option.

See Briefly about C-SPY emulated I/O, page 125 and The semihosting mechanism, page
142.

5 On some systems, terminal output might be slow because the host computer and the
target system must communicate for each character.

For this reason, a replacement for the __write function called __write_buffered is
included in the runtime library. This module buffers the output and sends it to the
debugger one line at a time, speeding up the output.

Note: This function uses about 80 bytes of RAM memory.

To use this feature in the IDE, choose Project>Options>General Options>Library
Options 1 and select the option Buffered terminal output.

To enable this function on the command line, add this to the linker command line:

--redirect __write=__write_buffered

6 Some math functions are available in different versions: default versions, smaller than
the default versions, and larger but more accurate than default versions. Consider
which versions you should use.

For more information, see Math functions, page 143.

7 When you build your project, a suitable prebuilt library and library configuration file
are automatically used based on the project settings you made.

AFE1_AFE2-1:1

The DLIB runtime environment

129

For information about which project settings affect the choice of library file, see
Runtime library configurations, page 134.

You have now set up a runtime environment that can be used while developing your
application source code.

RETARGETING—ADAPTING FOR YOUR TARGET SYSTEM

Before you can run your application on your target system, you must adapt some parts
of the runtime environment, typically the system initialization and the DLIB low-level
I/O interface functions.

To adapt your runtime environment for your target system:

1 Adapt system initialization.

It is likely that you must adapt the system initialization, for example, your application
might need to initialize interrupt handling, I/O handling, watchdog timers, etc. You do
this by implementing the routine __low_level_init, which is executed before the
data sections are initialized. See System startup and termination, page 145 and System
initialization, page 148.

Note: You can find device-specific examples on this in the example projects provided in
the product installation, see the Information Center.

2 Adapt the runtime library for your target system. To implement such functions, you
need a good understanding of the DLIB low-level I/O interface, see Briefly about
retargeting, page 126.

Typically, you must implement your own functions if your application uses:

● Standard streams for input and output

If any of these streams are used by your application, for example by the functions
printf and scanf, you must implement your versions of the low-level functions
__read and __write.

The low-level functions identify I/O streams, such as an open file, with a file handle
that is a unique integer. The I/O streams normally associated with stdin, stdout,
and stderr have the file handles 0, 1, and 2, respectively. When the handle is -1,
all streams should be flushed. Streams are defined in stdio.h.

● File input and output

The library contains a large number of powerful functions for file I/O operations,
such as fopen, fclose, fprintf, fputs, etc. All these functions call a small set of
low-level functions, each designed to accomplish one particular task, for example,
__open opens a file, and __write outputs characters. Implement your version of
these low-level functions.

AFE1_AFE2-1:1

130

Setting up the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

● signal and raise

If the default implementation of these functions does not provide the functionality
you need, you can implement your own versions.

● Time and date

To make the time and date functions work, you must implement the functions clock,
__time32, __time64, and __getzone. Whether you use __time32 or __time64
depends on which interface you use for time_t, see time.h, page 481.

● Assert, see __aeabi_assert, page 150.

● Environment interaction

If the default implementation of system or getenv does not provide the
functionality you need, you can implement your own versions.

For more information about the functions, see The DLIB low-level I/O interface, page
149.

The library files that you can override with your own versions are located in the
arm\src\lib directory.

3 When you have implemented your functions of the low-level I/O interface, you must
add your version of these functions to your project. For information about this, see
Overriding library modules, page 131.

Note: If you have implemented a DLIB low-level I/O interface function and added it to
a project that you have built with support for C-SPY emulated I/O, your low-level
function will be used and not the functions provided with C-SPY emulated I/O. For
example, if you implement your own version of __write, output to the C-SPY
Terminal I/O window will not be supported. See Briefly about C-SPY emulated I/O,
page 125.

4 Before you can execute your application on your target system, you must rebuild your
project with a Release build configuration. This means that the linker will not include
the C-SPY emulated I/O mechanism and the low-level I/O functions it provides. If your
application calls any of the low-level functions of the standard I/O interface, either
directly or indirectly, and your project does not contain these, the linker will issue an
error for every missing low-level function.

Note: The NDEBUG symbol is defined in a Release build configuration, which means
asserts will no longer be generated. For more information, see __aeabi_assert, page
150.

AFE1_AFE2-1:1

The DLIB runtime environment

131

OVERRIDING LIBRARY MODULES

To override a library function and replace it with your own
implementation:

1 Use a template source file—a library source file or another template—and place a copy
of it in your project directory.

The library files that you can override with your own versions are located in the
arm\src\lib directory.

2 Modify the file.

Note: To override the functions in a module, you must provide alternative
implementations for all the needed symbols in the overridden module. Otherwise you
will get error messages about duplicate definitions.

3 Add the modified file to your project, like any other source file.

Note: If you have implemented a DLIB low-level I/O interface function and added it to
a project that you have built with support for C-SPY emulated I/O, your low-level
function will be used and not the functions provided with C-SPY emulated I/O. For
example, if you implement your own version of __write, output to the C-SPY
Terminal I/O window will not be supported. See Briefly about C-SPY emulated I/O,
page 125.

You have now finished the process of overriding the library module with your version.

CUSTOMIZING AND BUILDING YOUR OWN RUNTIME
LIBRARY

If the prebuilt library configurations do not meet your requirements, you can customize
your own library configuration, but that requires that you rebuild relevant parts of the
library.

Building a customized library is a complex process. Therefore, consider carefully
whether it is really necessary. You must build your own runtime library when:

● You want to define your own library configuration with support for locale, file
descriptors, multibyte characters, etc. This will include or exclude certain parts of
the DLIB runtime environment.

In those cases, you must:

● Make sure that you have installed the library source code (src\lib). If not already
installed, you can install it using the IAR License Manager, see the Installation and
Licensing Guide.

● Set up a library project

● Make the required library customizations

AFE1_AFE2-1:1

132

Setting up the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

● Build your customized runtime library

● Finally, make sure your application project will use the customized runtime library.

Note that the customized library only replaces the part of the DLIB runtime
environment implemented in the libraries for C and C++ library functions.
Rebuilding libraries for the following is not supported:

● math functions

● runtime support functions

● thread support functions

● timezone and daylight saving time functions

● debug support functions

To set up a library project:

1 In the IDE, choose Project>Create New Project and use the library project template
which can be used for customizing the runtime environment configuration. There is a
library template for the Full library configuration, see Runtime library configurations,
page 134

Note: When you create a new library project from a template, the majority of the files
included in the new project are the original installation files. If you are going to modify
these files, make copies of them first and replace the original files in the project with
these copies.

To customize the library functionality:

1 The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file DLib_Defaults.h which you can find
in arm\inc\c. This read-only file describes the configuration possibilities. Note that
you should not modify this file.

In addition, your custom library has its own library configuration file
dlarmCustom.h—which you can find in the newly created library project—and which
sets up that specific library with the required library configuration. Customize this file
by setting the values of the configuration symbols according to the application
requirements.

For information about configuration symbols that you might want to customize, see:

● Configuration symbols for file input and output, page 159

● Locale, page 159

● Managing a multithreaded environment, page 160

2 When you are finished, build your library project with the appropriate project options.

After you build your library, you must make sure to use it in your application project.

AFE1_AFE2-1:1

The DLIB runtime environment

133

To build IAR Embedded Workbench projects from the command line, use the IAR
Command Line Build Utility (iarbuild.exe). However, no make or batch files for
building the library from the command line are provided. For information about the
build process and the IAR Command Line Build Utility, see the IDE Project
Management and Building Guide for Arm.

To use the customized runtime library in your application project:

1 In the IDE, choose Project>Options>General Options and click the Library
Configuration tab.

2 From the Library drop-down menu, choose Custom.

3 In the Configuration file text box, locate your library configuration file.

4 Click the Library tab, also in the Linker category. Use the Additional libraries text
box to locate your library file.

Additional information on the runtime environment
This section gives additional information on the runtime environment:

● Bounds checking functionality, page 133

● Runtime library configurations, page 134

● Prebuilt runtime libraries, page 135

● Formatters for printf, page 139

● Formatters for scanf, page 141

● The C-SPY emulated I/O mechanism, page 142

● The semihosting mechanism, page 142

● Math functions, page 143

● System startup and termination, page 145

● System initialization, page 148

● The DLIB low-level I/O interface, page 149

● Configuration symbols for file input and output, page 159

● Locale, page 159

BOUNDS CHECKING FUNCTIONALITY

To enable the bounds checking functions specified in Annex K (Bounds-checking
interfaces) of the C standard, define the preprocessor symbol
__STDC_WANT_LIB_EXT1__ to 1 prior to including any system headers.

AFE1_AFE2-1:1

134

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

RUNTIME LIBRARY CONFIGURATIONS

The runtime library is provided with different library configurations, where each
configuration is suitable for different application requirements.

The runtime library configuration is defined in the library configuration file. It contains
information about what functionality is part of the runtime environment. The less
functionality you need in the runtime environment, the smaller the environment
becomes.

These predefined library configurations are available:

Note: In addition to these predefined library configurations, you can provide your own
configuration, see Customizing and building your own runtime library, page 131

If you do not specify a library configuration explicitly you will get the default
configuration. If you use a prebuilt runtime library, a configuration file that matches the
runtime library file will automatically be used. See Setting up the runtime environment,
page 127.

To override the default library configuration, use one of these methods:

1 Use a prebuilt configuration of your choice—to specify a runtime configuration
explicitly:

Choose Project>Options>General Options>Library Configuration>Library and
change the default setting.

Use the --dlib_config compiler option, see --dlib_config, page 276.

The prebuilt libraries are based on the default configurations, see Runtime library
configurations, page 134.

2 If you have built your own customized library, choose Project>Options>Library
Configuration>Library and choose Custom to use your own configuration. For more
information, see Customizing and building your own runtime library, page 131.

Library configuration Description

Normal DLIB (default) C locale, but no locale interface, no file descriptor support, no
multibyte characters in printf and scanf.

Full DLIB Full locale interface, C locale, file descriptor support, and optionally
multibyte characters in printf and scanf.

Table 6: Library configurations

AFE1_AFE2-1:1

The DLIB runtime environment

135

PREBUILT RUNTIME LIBRARIES

The prebuilt runtime libraries are configured for different combinations of these options:

● Library configuration—Normal or Full.

The linker will automatically include the correct library files and library configuration
file. To explicitly specify a library configuration, use the --dlib_config compiler
option.

AFE1_AFE2-1:1

136

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

Library filename syntax

The names of the libraries are constructed from these elements:

{architecture} Specifies the CPU architecture:

4t = Armv4T
5E = Armv5E
6M or 6Mx = Armv6M (6Mx is built with

--no_literal_pool)
7M or 7Mx = Armv7M (7Mx is built with

--no_literal_pool)
7Sx = Armv7-A and Armv7-R, built with

--no_literal_pool

4as = Generic Armv4, built with bounds-checking
7as = Generic Armv7, built with bounds-checking

{cpu-mode} Specifies the default processor mode:

a = Arm mode
t = Thumb mode

{byte-order} Specifies the byte order:

l = little-endian
b = big-endian

{lib-config} Specifies the library configuration:

n = Normal
f = Full

{rwpi} Specifies whether the library supports RWPI:

s = RWPI supported
not present = no RWPI support

{fp-implementation} Specifies how floating-point operations are implemented:

v = VFP
s = VFP for single precision only
not present = software implementation

AFE1_AFE2-1:1

The DLIB runtime environment

137

You can find the library object files in the directory arm\lib\ and the library
configuration files in the directory arm\inc\.

{architecture} Specifies the CPU architecture:

4t = Armv4T
5E = Armv5E
6M or 6Mx = Armv6M (6Mx is built with

--no_literal_pool)
7M or 7Mx = Armv7M (7Mx is built with

--no_literal_pool)
7Sx = Armv7-A and Armv7-R, built with

--no_literal_pool

4as = Generic Armv4, built with bounds-checking
7as = Generic Armv7, built with bounds-checking

{cpu-mode} Specifies the default processor mode:

a = Arm mode
t = Thumb mode

{byte-order} Specifies the byte order:

l = little-endian
b = big-endian

{lib-config} Specifies the library configuration:

n = Normal
f = Full

{rwpi} Specifies whether the library supports RWPI:

s = RWPI supported
not present = no RWPI support

{fp-implementation} Specifies how floating-point operations are implemented:

v = VFP
s = VFP for single precision only
not present = software implementation

{debug-interface} Specifies a semihosting mechanism:

s = SVC
b = BKPT
i = IAR-breakpoint

AFE1_AFE2-1:1

138

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

Groups of library files

The libraries are delivered in groups of library functions:

Library files for C library functions

These are the functions defined by Standard C, for example, functions like printf and
scanf. Note that this library does not include math functions.

The names of the library files are constructed in the following way:

dl{architecture}_{cpu-mode}{byte-order}{lib-config}[rwpi].a

which more specifically means

dl{4t|5E|6M|6Mx|7M|7Mx|7Sx}_{a|t}{l|b}{n|f}[s].a

Library files for C++ library functions

These are the functions defined by C++, compiled with support for Standard C++.

The names of the library files are constructed in the following way:

dlpp{architecture}_{cpu-mode}{byte-order}
_{lib-config}c[rwpi].a

which more specifically means

dlpp{4t|5E|6M|6Mx|7M|7Mx|7Sx|4as|7as}_{a|t}{l|b}_{n|f}c[s].a

Library files for math functions

These are the functions for floating-point arithmetic and functions with a floating-point
type in its signature as defined by Standard C, for example, functions like sqrt.

The names of the library files are constructed in the following way:

m{architecture}_{cpu-mode}{byte-order}{fp-implementation}.a

which more specifically means

m{4t|5E|6M|6Mx|7M|7Mx|7Sx}_{a|t}{l|b}{|v|s}.a

Library files for thread support functions

These are the functions for thread support.

The names of the library files are constructed in the following way:

th{architecture}_{cpu-mode}{byte-order}{lib-config}.a

which more specifically means

th{4t|5E|6M|6Mx|7M|7Mx|7Sx}_{a|t}{l|b}{n|f}.a

AFE1_AFE2-1:1

The DLIB runtime environment

139

Library files for timezone and daylight saving time support functions

These are the functions with support for timezone and daylight saving time
functionality.

The names of the library files are constructed in the following way:

tz{architecture}_{cpu-mode}{byte-order}[rwpi].a

which more specifically means

tz{4t|5E|6M|6Mx|7M|7Mx|7Sx}_{a|t}{l|b}[s].a

Library files for runtime support functions

These are functions for system startup, initialization, non floating-point AEABI support
routines, and some of the functions that are part of Standard C and C++.

The names of the library files are constructed in the following way:

rt{architecture}_{cpu-mode}{byte-order}.a

which more specifically means

rt{4t|5E|6M|6Mx|7M|7Mx|7Sx}_{a|t}{l|b}.a

Library files for debug support functions

These are functions for debug support for the semihosting interface. The names of the
library files are constructed in the following way:

sh{debug-interface}_{byte-order}.a

or

sh{architecture}_{byte-order}.a

which more specifically means

sh{s|b|i}_{l|b}.a

or

sh{6Mx|7Mx|7Sx}_{l|b}.a

FORMATTERS FOR PRINTF

The printf function uses a formatter called _Printf. The full version is quite large,
and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided. Note that
the wprintf variants are not affected.

AFE1_AFE2-1:1

140

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

This table summarizes the capabilities of the different formatters:

† NoMb means without multibytes.

The compiler can automatically detect which formatting capabilities are needed in a
direct call to printf, if the formatting string is a string literal. This information is
passed to the linker, which combines the information from all modules to select a
suitable formatter for the application. However, if the formatting string is a variable, or
if the call is indirect through a function pointer, the compiler cannot perform the
analysis, forcing the linker to select the Full formatter. In this case, you might want to
override the automatically selected printf formatter.

To override the automatically selected printf formatter in the IDE:

1 Choose Project>Options>General Options to open the Options dialog box.

2 On the Library Options page, select the appropriate formatter.

To override the automatically selected printf formatter from the command
line:

1 Use one of these ILINK command line options:

--redirect _Printf=_PrintfFull
--redirect _Printf=_PrintfFullNoMb
--redirect _Printf=_PrintfLarge
--redirect _Printf=_PrintfLargeNoMb
--redirect _Printf=_PrintfSmall
--redirect _Printf=_PrintfSmallNoMb
--redirect _Printf=_PrintfTiny
--redirect _Printf=_PrintfTinyNoMb

Formatting capabilities Tiny
Small/

SmallNoMb†

Large/

LargeNoMb†

Full/

FullNoMb†

Basic specifiers c, d, i, o, p, s, u, X, x, and % Yes Yes Yes Yes

Multibyte support No Yes/No Yes/No Yes/No

Floating-point specifiers a, and A No No No Yes

Floating-point specifiers e, E, f, F, g, and G No No Yes Yes

Conversion specifier n No No Yes Yes

Format flag +, -, #, 0, and space No Yes Yes Yes

Length modifiers h, l, L, s, t, and Z No Yes Yes Yes

Field width and precision, including * No Yes Yes Yes

long long support No No Yes Yes

wchar_t support No No No Yes

Table 7: Formatters for printf

AFE1_AFE2-1:1

The DLIB runtime environment

141

If the compiler does not recognize multibyte support, you can enable it:

Select Project>Options>General Options>Library Options 1>Enable multibyte
support.

Use the linker option --printf_multibytes.

FORMATTERS FOR SCANF

In a similar way to the printf function, scanf uses a common formatter, called
_Scanf. The full version is quite large, and provides facilities that are not required in
many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided. Note that the wscanf versions are not affected.

This table summarizes the capabilities of the different formatters:

† NoMb means without multibytes.

The compiler can automatically detect which formatting capabilities are needed in a
direct call to scanf, if the formatting string is a string literal. This information is passed
to the linker, which combines the information from all modules to select a suitable
formatter for the application. However, if the formatting string is a variable, or if the call
is indirect through a function pointer, the compiler cannot perform the analysis, forcing
the linker to select the full formatter. In this case, you might want to override the
automatically selected scanf formatter.

To manually specify the scanf formatter in the IDE:

1 Choose Project>Options>General Options to open the Options dialog box.

2 On the Library Options page, select the appropriate formatter.

Formatting capabilities
Small/

SmallNoMb†

Large/

LargeNoMb†

Full/

FullNoMb†

Basic specifiers c, d, i, o, p, s, u, X, x, and % Yes Yes Yes

Multibyte support Yes/No Yes/No Yes/No

Floating-point specifiers a, and A No No Yes

Floating-point specifiers e, E, f, F, g, and G No No Yes

Conversion specifier n No No Yes

Scan set [and] No Yes Yes

Assignment suppressing * No Yes Yes

long long support No No Yes

wchar_t support No No Yes

Table 8: Formatters for scanf

AFE1_AFE2-1:1

142

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

To manually specify the scanf formatter from the command line:

1 Use one of these ILINK command line options:

--redirect _Scanf=_ScanfFull
--redirect _Scanf=_ScanfFullNoMb
--redirect _Scanf=_ScanfLarge
--redirect _Scanf=_ScanfLargeNoMb
--redirect _Scanf=_ScanfSmall
--redirect _Scanf=_ScanfSmallNoMb

If the compiler does not recognize multibyte support, you can enable it:

Select Project>Options>General Options>Library Options 1>Enable multibyte
support.

Use the linker option --scanf_multibytes.

THE C-SPY EMULATED I/O MECHANISM

1 The debugger will detect the presence of the function __DebugBreak, which will
be part of the application if you linked it with the linker option for C-SPY emulated
I/O.

2 In this case, the debugger will automatically set a breakpoint at the __DebugBreak
function.

3 When your application calls a function in the DLIB low-level I/O interface, for
example, open, the __DebugBreak function is called, which will cause the
application to stop at the breakpoint and perform the necessary services.

4 The execution will then resume.

See also Briefly about C-SPY emulated I/O, page 125.

THE SEMIHOSTING MECHANISM

C-SPY emulated I/O is compatible with the semihosting interface provided by Arm
Limited. When an application invokes a semihosting call, the execution stops at a
debugger breakpoint. The debugger then handles the call, performs any necessary
actions on the host computer and then resumes the execution.

There are three variants of semihosting mechanisms available:

● For Cortex-M, the interface uses BKPT instructions to perform semihosting calls

● For other Arm cores, SVC instructions are used for the semihosting calls

● IAR breakpoint, which is an IAR-specific alternative to semihosting that uses SVC.

To support semihosting via SVC, the debugger must set its semihosting breakpoint on
the Supervisor Call vector to catch SVC calls. If your application uses SVC calls for

AFE1_AFE2-1:1

The DLIB runtime environment

143

other purposes than semihosting, the handling of this breakpoint will cause a severe
performance penalty for each such call. IAR breakpoint is a way to get around this. By
using a special function call instead of an SVC instruction to perform semihosting, the
semihosting breakpoint can be set on that special function instead. This means that
semihosting will not interfere with other uses of the Supervisor Call vector.

Note: IAR breakpoint is an IAR-specific extension of the semihosting standard. If you
link your application with libraries built with toolchains from other vendors than IAR
Systems and use IAR breakpoint, semihosting calls made from code in those libraries
will not work.

MATH FUNCTIONS

Some C/C++ standard library math functions are available in different versions:

● The default versions

● Smaller versions (but less accurate)

● More accurate versions (but larger).

Smaller versions

The functions cos, exp, log, log2, log10, pow, sin, and tan exist in additional,
smaller versions in the library. They are about 20% smaller and about 20% faster than
the default versions. The functions handle INF and NaN values. The drawbacks are that
they almost always lose some precision and they do not have the same input range as the
default versions.

The names of the functions are constructed like:

__iar_xxx_small<f|l>

where f is used for float variants, l is used for long double variants, and no suffix
is used for double variants.

To specify individual math functions from the command line:

1 Redirect the default function names to these names when linking, using these options:

--redirect sin=__iar_sin_small
--redirect cos=__iar_cos_small
--redirect tan=__iar_tan_small
--redirect log=__iar_log_small
--redirect log2=__iar_log2_small
--redirect log10=__iar_log10_small
--redirect exp=__iar_exp_small
--redirect pow=__iar_pow_small

AFE1_AFE2-1:1

144

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

--redirect sinf=__iar_sin_smallf
--redirect cosf=__iar_cos_smallf
--redirect tanf=__iar_tan_smallf
--redirect logf=__iar_log_smallf
--redirect log2f=__iar_log2_smallf
--redirect log10f=__iar_log10_smallf
--redirect expf=__iar_exp_smallf
--redirect powf=__iar_pow_smallf

--redirect sinl=__iar_sin_smalll
--redirect cosl=__iar_cos_smalll
--redirect tanl=__iar_tan_smalll
--redirect logl=__iar_log_smalll
--redirect log2l=__iar_log2_smalll
--redirect log10l=__iar_log10_smalll
--redirect expl=__iar_exp_smalll
--redirect powl=__iar_pow_smalll

More accurate versions

The functions cos, pow, sin, and tan exist in versions in the library that are more exact
and can handle larger argument ranges. The drawback is that they are larger and slower
than the default versions.

The names of the functions are constructed like:

__iar_xxx_accurate<f|l>

where f is used for float variants, l is used for long double variants, and no suffix
is used for double variants.

To specify individual math functions from the command line:

1 Redirect the default function names to these names when linking, using these options:

--redirect sin=__iar_sin_accurate
--redirect cos=__iar_cos_accurate
--redirect tan=__iar_tan_accurate
--redirect pow=__iar_pow_accurate

--redirect sinf=__iar_sin_accuratef
--redirect cosf=__iar_cos_accuratef
--redirect tanf=__iar_tan_accuratef
--redirect powf=__iar_pow_accuratef

--redirect sinl=__iar_sin_accuratel
--redirect cosl=__iar_cos_accuratel
--redirect tanl=__iar_tan_accuratel
--redirect powl=__iar_pow_accuratel

AFE1_AFE2-1:1

The DLIB runtime environment

145

SYSTEM STARTUP AND TERMINATION

This section describes the runtime environment actions performed during startup and
termination of your application.

The code for handling startup and termination is located in the source files
cstartup.s, cmain.s, cexit.s located in the arm\src\lib\arm or
arm\src\lib\thumb directory (thumb for Cortex-M), and low_level_init.c
located in the arm\src\lib\runtime directory.

For information about how to customize the system startup code, see System
initialization, page 148.

System startup

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs initializations required for the target hardware and
the C/C++ environment.

For the hardware initialization, it looks like this:

● When the CPU is reset it will start executing at the program entry label
__iar_program_start in the system startup code.

● The stack pointer is initialized to the end of the CSTACK block

● For Arm7/9/11, Cortex-A, and Cortex-R devices, exception stack pointers are
initialized to the end of each corresponding section

● The function __low_level_init is called if you defined it, giving the application
a chance to perform early initializations.

AFE1_AFE2-1:1

146

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

For the C/C++ initialization, it looks like this:

● Static and global variables are initialized. That is, zero-initialized variables are
cleared and the values of other initialized variables are copied from ROM to RAM
memory. This step is skipped if __low_level_init returns zero. For more
information, see Initialization at system startup, page 96.

● Static C++ objects are constructed

● The main function is called, which starts the application.

For information about the initialization phase, see Application execution—an overview,
page 64.

AFE1_AFE2-1:1

The DLIB runtime environment

147

System termination

This illustration shows the different ways an embedded application can terminate in a
controlled way:

An application can terminate normally in two different ways:

● Return from the main function

● Call the exit function.

Because the C standard states that the two methods should be equivalent, the system
startup code calls the exit function if main returns. The parameter passed to the exit
function is the return value of main.

The default exit function is written in C. It calls a small assembler function _exit that
will:

● Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard function atexit. See also Setting up the atexit limit, page 112.

● Close all open files

● Call __exit

● When __exit is reached, stop the system.

An application can also exit by calling the abort, the _Exit, or the quick_exit
function. The abort function just calls __exit to halt the system, and does not perform
any type of cleanup. The _Exit function is equivalent to the abort function, except for
the fact that _Exit takes an argument for passing exit status information. The

AFE1_AFE2-1:1

148

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

quick_exit function is equivalent to the _Exit function, except that it calls each
function passed to at_quick_exit before calling __exit.

If you want your application to do anything extra at exit, for example, resetting the
system (and if using atexit is not sufficient), you can write your own implementation
of the __exit(int) function.

The library files that you can override with your own versions are located in the
arm\src\lib directory. See Overriding library modules, page 131.

C-SPY debugging support for system termination

If you have enabled C-SPY emulated I/O during linking, the normal __exit function
is replaced with a special one. C-SPY will then recognize when this function is called
and can take appropriate actions to emulate program termination. For more information,
see Briefly about C-SPY emulated I/O, page 125.

SYSTEM INITIALIZATION

It is likely that you need to adapt the system initialization. For example, your application
might need to initialize memory-mapped special function registers (SFRs), or omit the
default initialization of data sections performed by the system startup code.

You can do this by implementing your own version of the routine __low_level_init,
which is called from the cmain.s file before the data sections are initialized. Modifying
the cmain.s file directly should be avoided.

For Cortex-M, the code for handling system startup is located in the source files
cstartup_M.s and low_level_init.c, located in the arm\src\lib directory.

For other Arm devices, the code for handling system startup is located in the source files
cstartup.s and low_level_init.c, located in the arm\src\lib directory.

Note that normally, you do not need to customize either of the files cmain.s or
cexit.s.

Note: Regardless of whether you implement your own version of __low_level_init
or the file cstartup.s, you do not have to rebuild the library.

Customizing __low_level_init

A skeleton low-level initialization file is supplied with the product:
low_level_init.c.

Note: Static initialized variables cannot be used within the file, because variable
initialization has not been performed at this point.

AFE1_AFE2-1:1

The DLIB runtime environment

149

The value returned by __low_level_init determines whether or not data sections
should be initialized by the system startup code. If the function returns 0, the data
sections will not be initialized.

Modifying the cstartup file

As noted earlier, you should not modify the cstartup.s file if implementing your own
version of __low_level_init is enough for your needs. However, if you do need to
modify the cstartup.s file, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 131.

Note: You must make sure that the linker uses the start label used in your version of
cstartup.s. For information about how to change the start label used by the linker, see
--entry, page 324.

For Cortex-M, you must create a modified copy of cstartup_M.s or cstartup_M.c
to use interrupts or other exception handlers.

THE DLIB LOW-LEVEL I/O INTERFACE

The runtime library uses a set of low-level functions—which are referred to as the DLIB
low-level I/O interface—to communicate with the target system. Most of the low-level
functions have no implementation.

For more information, see Briefly about input and output (I/O), page 124.

These are the functions in the DLIB low-level I/O interface:

abort

__aeabi_assert

clock

__close

__exit

getenv

__getzone

__lseek

__open

raise

__read

AFE1_AFE2-1:1

150

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: You should normally not use the low-level functions prefixed with __ directly in
your application. Instead you should use the standard library functions that use these
functions. For example, to write to stdout, you should use standard library functions
like printf or puts, which in turn calls the low-level function __write. If you have
forgot to implement a low-level function and your application calls that function via a
standard library function, the linker issues an error when you link in release build
configuration.

Note: If you implement your own variants of the functions in this interface, your
variants will be used even though you have enabled C-SPY emulated I/O, see Briefly
about C-SPY emulated I/O, page 125.

abort

Source file arm\src\lib\runtime\abort.c

Declared in stdlib.h

Description Standard C library function that aborts execution.

C-SPY debug action Exits the application.

Default implementation Calls __exit(EXIT_FAILURE).

See also Briefly about retargeting, page 126

System termination, page 147.

__aeabi_assert

Source file arm\src\lib\runtime\assert.c

Declared in assert.h

remove

rename

signal

system

__time32, __time64

__write

AFE1_AFE2-1:1

The DLIB runtime environment

151

Description Low-level function that handles a failed assert.

C-SPY debug action Notifies the C-SPY debugger about the failed assert.

Default implementation Failed asserts are reported by the function __aeabi_assert. By default, it prints an
error message and calls abort. If this is not the behavior you require, you can
implement your own version of the function.

The assert macro is defined in the header file assert.h. To turn off assertions, define
the symbol NDEBUG.

In the IDE, the symbol NDEBUG is by default defined in a Release project and not defined
in a Debug project. If you build from the command line, you must explicitly define the
symbol according to your needs. See NDEBUG, page 468.

See also Briefly about retargeting, page 126.

clock

Source file arm\src\lib\time\clock.c

Declared in time.h

Description Standard C library function that accesses the processor time.

C-SPY debug action Returns the clock on the host computer.

Default implementation Returns -1 to indicate that processor time is not available.

See also Briefly about retargeting, page 126.

__close

Source file arm\src\lib\file\close.c

Declared in LowLevelIOInterface.h

Description Low-level function that closes a file.

C-SPY debug action Closes the associated host file on the host computer.

Default implementation None.

AFE1_AFE2-1:1

152

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

See also Briefly about retargeting, page 126.

__exit

Source file arm\src\lib\runtime\xxexit.c

Declared in LowLevelIOInterface.h

Description Low-level function that halts execution.

C-SPY debug action Notifies that the end of the application was reached.

Default implementation Loops forever.

See also Briefly about retargeting, page 126

System termination, page 147.

getenv

Source file arm\src\lib\runtime\getenv.c
arm\src\lib\runtime\environ.c

Declared in Stdlib.h and LowLevelIOInterface.h

C-SPY debug action Accesses the host environment.

Default implementation The getenv function in the library searches the string pointed to by the global variable
__environ, for the key that was passed as argument. If the key is found, the value of it
is returned, otherwise 0 (zero) is returned. By default, the string is empty.

To create or edit keys in the string, you must create a sequence of null-terminated strings
where each string has the format:

key=value\0

End the string with an extra null character (if you use a C string, this is added
automatically). Assign the created sequence of strings to the __environ variable.

For example:

const char MyEnv[] = "Key=Value\0Key2=Value2\0";
__environ = MyEnv;

AFE1_AFE2-1:1

The DLIB runtime environment

153

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

See also Briefly about retargeting, page 126.

__getzone

Source file arm\src\lib\time\getzone.c

Declared in LowLevelIOInterface.h

Description Low-level function that returns the current time zone.

Note: You must enable the time zone functionality in the library by using the linker
option --timezone_lib.

C-SPY debug action Not applicable.

Default implementation Returns ":".

See also Briefly about retargeting, page 126 and --timezone_lib, page 344.

For more information, see the source file getzone.c.

__lseek

Source file arm\src\lib\file\lseek.c

Declared in LowLevelIOInterface.h

Description Low-level function for changing the location of the next access in an open file.

C-SPY debug action Searches in the associated host file on the host computer.

Default implementation None.

See also Briefly about retargeting, page 126.

AFE1_AFE2-1:1

154

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

__open

Source file arm\src\lib\file\open.c

Declared in LowLevelIOInterface.h

Description Low-level function that opens a file.

C-SPY debug action Opens a file on the host computer.

Default implementation None.

See also Briefly about retargeting, page 126.

raise

Source file arm\src\lib\runtime\raise.c

Declared in signal.h

Description Standard C library function that raises a signal.

C-SPY debug action Not applicable.

Default implementation Calls the signal handler for the raised signal, or terminates with call to
__exit(EXIT_FAILURE).

See also Briefly about retargeting, page 126.

__read

Source file arm\src\lib\file\read.c

Declared in LowLevelIOInterface.h

Description Low-level function that reads characters from stdin and from files.

C-SPY debug action Directs stdin to the Terminal I/O window. All other files will read the associated host
file.

Default implementation None.

AFE1_AFE2-1:1

The DLIB runtime environment

155

Example The code in this example uses memory-mapped I/O to read from a keyboard, whose port
is assumed to be located at 0x1000:

#include <stddef.h>
#include <LowLevelIOInterface.h>

__no_init volatile unsigned char kbIO @ 0x1000;

size_t __read(int handle,
 unsigned char *buf,
 size_t bufSize)
{
 size_t nChars = 0;

 /* Check for stdin
 (only necessary if FILE descriptors are enabled) */
 if (handle != 0)
 {
 return -1;
 }

 for (/*Empty*/; bufSize > 0; --bufSize)
 {
 unsigned char c = kbIO;
 if (c == 0)
 break;

 *buf++ = c;
 ++nChars;
 }

 return nChars;
}

For information about the handles associated with the streams, see Retargeting—
Adapting for your target system, page 129.

For information about the @ operator, see Controlling data and function placement in
memory, page 230.

See also Briefly about retargeting, page 126.

remove

Source file arm\src\lib\file\remove.c

AFE1_AFE2-1:1

156

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

Declared in stdio.h

Description Standard C library function that removes a file.

C-SPY debug action Removes a file on the host computer.

Default implementation Returns 0 to indicate success, but without removing a file.

See also Briefly about retargeting, page 126.

rename

Source file arm\src\lib\file\rename.c

Declared in stdio.h

Description Standard C library function that renames a file.

C-SPY debug action Renames a file on the host computer.

Default implementation Returns -1 to indicate failure.

See also Briefly about retargeting, page 126.

signal

Source file arm\src\lib\runtime\signal.c

Declared in signal.h

Description Standard C library function that changes signal handlers.

C-SPY debug action Not applicable.

Default implementation As specified by Standard C. You might want to modify this behavior if the environment
supports some kind of asynchronous signals.

See also Briefly about retargeting, page 126.

AFE1_AFE2-1:1

The DLIB runtime environment

157

system

Source file arm\src\lib\runtime\system.c

Declared in stdlib.h

Description Standard C library function that executes commands.

C-SPY debug action Notifies the C-SPY debugger that system has been called and then returns -1.

Default implementation The system function available in the library returns 0 if a null pointer is passed to it to
indicate that there is no command processor, otherwise it returns -1 to indicate failure.
If this is not the functionality that you require, you can implement your own version.
This does not require that you rebuild the library.

See also Briefly about retargeting, page 126.

__time32, __time64

Source file arm\src\lib\time\time.c
arm\src\lib\time\time64.c

Declared in time.h

Description Low-level functions that return the current calendar time.

C-SPY debug action Returns the time on the host computer.

Default implementation Returns -1 to indicate that calendar time is not available.

See also Briefly about retargeting, page 126.

__write

Source file arm\src\lib\file\write.c

Declared in LowLevelIOInterface.h

Description Low-level function that writes to stdout, stderr, or a file.

C-SPY debug action Directs stdout and stderr to the Terminal I/O window. All other files will write to
the associated host file.

AFE1_AFE2-1:1

158

Additional information on the runtime environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

Default implementation None.

Example The code in this example uses memory-mapped I/O to write to an LCD display, whose
port is assumed to be located at address 0x1000:

#include <stddef.h>
#include <LowLevelIOInterface.h>

__no_init volatile unsigned char lcdIO @ 0x1000;

size_t __write(int handle,
 const unsigned char *buf,
 size_t bufSize)
{
 size_t nChars = 0;

 /* Check for the command to flush all handles */
 if (handle == -1)
 {
 return 0;
 }

 /* Check for stdout and stderr
 (only necessary if FILE descriptors are enabled.) */
 if (handle != 1 && handle != 2)
 {
 return -1;
 }

 for (/* Empty */; bufSize > 0; --bufSize)
 {
 lcdIO = *buf;
 ++buf;
 ++nChars;
 }

 return nChars;
}

For information about the handles associated with the streams, see Retargeting—
Adapting for your target system, page 129.

See also Briefly about retargeting, page 126.

AFE1_AFE2-1:1

The DLIB runtime environment

159

CONFIGURATION SYMBOLS FOR FILE INPUT AND OUTPUT

File I/O is only supported by libraries with the Full library configuration, see Runtime
library configurations, page 134, or in a customized library when the configuration
symbol __DLIB_FILE_DESCRIPTOR is defined. If this symbol is not defined, functions
taking a FILE * argument cannot be used.

To customize your library and rebuild it, see Customizing and building your own
runtime library, page 131.

LOCALE

Locale is a part of the C language that allows language and country-specific settings for
several areas, such as currency symbols, date and time, and multibyte character
encoding.

Depending on which library configuration you are using, you get different levels of
locale support. However, the more locale support, the larger your code will get. It is
therefore necessary to consider what level of support your application needs. See
Runtime library configurations, page 134.

The DLIB runtime library can be used in two main modes:

● Using a full library configuration that has a locale interface, which makes it possible
to switch between different locales during runtime

The application starts with the C locale. To use another locale, you must call the
setlocale function or use the corresponding mechanisms in C++. The locales that
the application can use are set up at linkage.

● Using a normal library configuration that does not have a locale interface, where the
C locale is hardwired into the application.

Note: If multibytes are to be printed, you must make sure that the implementation of
__write in the DLIB low-level I/O interface can handle them.

Specifying which locales that should be available in your application

Choose Project>Options>General Options>Library Options 2>Locale support.

Use the linker option --keep with the tag of the locale as the parameter, for example:

--keep _Locale_cs_CZ_iso8859_2

The available locales are listed in the file SupportedLocales.json in the
arm\config directory, for example:

['Czech language locale for Czech Republic', 'iso8859-2',

'cs_CZ.iso8859-2', '_Locale_cs_CZ_iso8859_2'],

AFE1_AFE2-1:1

160

Managing a multithreaded environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

The line contains the full locale name, the encoding for the locale, the abbreviated locale
name, and the tag to be used as parameter to the linker option --keep.

Changing locales at runtime

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern LC_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang_REGION

or

lang_REGION.encoding

The lang part specifies the language code, and the REGION part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.
The available encodings are ISO-8859-1, ISO-8859-2, ISO-8859-4, ISO-8859-5,
ISO-8859-7, ISO-8859-8, ISO-8859-9, ISO-8859-15, CP932, and UTF-8.

For a complete list of the available locales and their respective encoding, see the file
SupportedLocales.json in the arm\config directory.

Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.UTF8");

Managing a multithreaded environment
This section contains information about:

● Multithread support in the DLIB runtime environment, page 161

● Enabling multithread support, page 162

● C++ exceptions in threads, page 162

In a multithreaded environment, the standard library must treat all library objects
according to whether they are global or local to a thread. If an object is a true global
object, any updates of its state must be guarded by a locking mechanism to make sure
that only one thread can update it at any given time. If an object is local to a thread, the

AFE1_AFE2-1:1

The DLIB runtime environment

161

static variables containing the object state must reside in a variable area local to that
thread. This area is commonly named thread-local storage (TLS).

The low-level implementations of locks and TLS are system-specific, and is not
included in the DLIB runtime environment. If you are using an RTOS, check if it
provides some or all of the required functions. Otherwise, you must provide your own.

MULTITHREAD SUPPORT IN THE DLIB RUNTIME
ENVIRONMENT

The DLIB runtime environment uses two kinds of locks—system locks and file stream
locks. The file stream locks are used as guards when the state of a file stream is updated,
and are only needed in the Full library configuration. The following objects are guarded
with system locks:

● The heap (in other words when malloc, new, free, delete, realloc, or calloc
is used).

● The C file system (only available in the Full library configuration), but not the file
streams themselves. The file system is updated when a stream is opened or closed,
in other words when fopen, fclose, fdopen, fflush, or freopen is used.

● The signal system (in other words when signal is used).

● The temporary file system (in other words when tmpnam is used).

● C++ dynamically initialized function-local objects with static storage duration.

● C++ locale facet handling

● C++ regular expression handling

● C++ terminate and unexpected handling

These library objects use TLS:

Note: If you are using printf/scanf (or any variants) with formatters, each individual
formatter will be guarded, but the complete printf/scanf invocation will not be
guarded.

If C++ is used in a runtime environment with multithread support, the compiler option
--guard_calls must be used to make sure that function-static variables with dynamic
initializers are not initialized simultaneously by several threads.

Library objects using TLS When these functions are used

Error functions errno, strerror

C++ exception engine Not applicable

Table 9: Library objects using TLS

AFE1_AFE2-1:1

162

Managing a multithreaded environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

ENABLING MULTITHREAD SUPPORT

To configure multithread support for use with threaded applications:

1 To enable multithread support:

On the command line, use the linker option --threaded_lib.

If C++ is used, the compiler option --guard_calls should be used as well to make
sure that function-static variables with dynamic initializers are not initialized
simultaneously by several threads.

In the IDE, choose Project>Options>General Options>Library
Configuration>Enable thread support in the library. This will invoke the linker
option --threaded_lib and if C++ is used, the IDE will automatically use the
compiler option --guard_calls to make sure that function-static variables with
dynamic initializers are not initialized simultaneously by several threads.

2 To complement the built-in multithread support in the runtime library, you must also:

● Implement code for the library’s system locks interface.

● If file streams are used, implement code for the library’s file stream locks interface.

● Implement code that handles thread creation, thread destruction, and TLS access
methods for the library.

You can find the required declaration of functions in the DLib_Threads.h file. There
you will also find more information.

3 Build your project.

Note: If you are using a third-party RTOS, check their guidelines for how to enable
multithread support with IAR Systems tools.

C++ EXCEPTIONS IN THREADS

Using exceptions in threads works as long as the main function for the thread has the
noexcept exception specification. Otherwise non-caught exceptions will not correctly
terminate the application.

AFE1_AFE2-1:1

163

Assembler language
interface
● Mixing C and assembler

● Calling assembler routines from C

● Calling assembler routines from C++

● Calling convention

● Call frame information

Mixing C and assembler
The IAR C/C++ Compiler for Arm provides several ways to access low-level resources:

● Modules written entirely in assembler

● Intrinsic functions (the C alternative)

● Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a few predefined functions that allow direct access to low-level
processor operations without having to use the assembler language. These functions are
known as intrinsic functions. They can be useful in, for example, time-critical routines.

An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

For more information about the available intrinsic functions, see the chapter Intrinsic
functions.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules.

AFE1_AFE2-1:1

164

Mixing C and assembler

IAR C/C++ Development Guide
Compiling and Linking for Arm

This causes some overhead in the form of function call and return instruction sequences,
and the compiler will regard some registers as scratch registers. In many cases, the
overhead of the extra instructions can be removed by the optimizer.

An important advantage is that you will have a well-defined interface between what the
compiler produces and what you write in assembler. When using inline assembler, you
will not have any guarantees that your inline assembler lines do not interfere with the
compiler generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with several questions:

● How should the assembler code be written so that it can be called from C?

● Where does the assembler code find its parameters, and how is the return value
passed back to the caller?

● How should assembler code call functions written in C?

● How are global C variables accessed from code written in assembler language?

● Why does not the debugger display the call stack when assembler code is being
debugged?

The first question is discussed in the section Calling assembler routines from C, page
172. The following two are covered in the section Calling convention, page 175.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 182.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 172, and Calling assembler routines from
C++, page 175, respectively.

INLINE ASSEMBLER

Inline assembler can be used for inserting assembler instructions directly into a C or
C++ function. Typically, this can be useful if you need to:

● Access hardware resources that are not accessible in C (in other words, when there
is no definition for an SFR or there is no suitable intrinsic function available).

● Manually write a time-critical sequence of code that if written in C will not have the
right timing.

● Manually write a speed-critical sequence of code that if written in C will be too
slow.

An inline assembler statement is similar to a C function in that it can take input
arguments (input operands), have return values (output operands), and read or write to

AFE1_AFE2-1:1

Assembler language interface

165

C symbols (via the operands). An inline assembler statement can also declare clobbered
resources, that is, values in registers and memory that have been overwritten.

Limitations

Most things you can to do in normal assembler language are also possible with inline
assembler, with the following differences:

● Alignment cannot be controlled—this means, for example, that DC32 directives
might be misaligned.

● The only accepted register synonyms are SP (for R13), LR (for R14), and PC (for
R15).

● In general, assembler directives will cause errors or have no meaning. However,
data definition directives will work as expected.

● Resources used (registers, memory, etc) that are also used by the C compiler must
be declared as operands or clobbered resources.

● If you do not want to risk that the inline assembler statement to be optimized away
by the compiler, you must declare it volatile.

● Accessing a C symbol or using a constant expression requires the use of operands.

● Dependencies between the expressions for the operands might result in an error.

● The pseudo-instruction LDR Rd, =expr is not available from inline assembler.

Risks with inline assembler

Without operands and clobbered resources, inline assembler statements have no
interface with the surrounding C source code. This makes the inline assembler code
fragile, and might also become a maintenance problem if you update the compiler in the
future. There are also several limitations to using inline assembler without operands and
clobbered resources:

● The compiler’s various optimizations will disregard any effects of the inline
statements, which will not be optimized at all.

● Inlining of functions with assembler statements without declared side-effects will
not be done.

● The inline assembler statement will be volatile and clobbered memory is not
implied. This means that the compiler will not remove the assembler statement. It
will simply be inserted at the given location in the program flow. The consequences
or side-effects that the insertion might have on the surrounding code are not taken
into consideration. If, for example, registers or memory locations are altered, they
might have to be restored within the sequence of inline assembler instructions for
the rest of the code to work properly.

AFE1_AFE2-1:1

166

Mixing C and assembler

IAR C/C++ Development Guide
Compiling and Linking for Arm

The following example—for Arm mode—demonstrates the risks of using the asm
keyword without operands and clobbers:

int Add(int term1, int term2)
{
 asm("adds r0,r0,r1");
 return term1;
}

In this example:

● The function Add assumes that values are passed and returned in registers in a way
that they might not always be, for example, if the function is inlined.

● The s in the adds instruction implies that the condition flags are updated, which
you specify using the cc clobber operand. Otherwise, the compiler will assume that
the condition flags are not modified.

Inline assembler without using operands or clobbered resources is therefore often best
avoided. The compiler will issue a remark for them.

Reference information for inline assembler

The asm and __asm keywords both insert inline assembler instructions. However, when
you compile C source code, the asm keyword is not available when the option
--strict is used. The __asm keyword is always available.

Syntax The syntax of an inline assembler statement is (similar to the one used by GNU GCC):

asm [volatile](string [assembler-interface])

A string can contain one or more operations, separated by \n. Each operation can be
a valid assembler instruction or a data definition assembler directive prefixed by an
optional label. There can be no whitespace before the label and it must be followed by :.

For example:

asm("label:nop\n"
 "b label");

Note: Any labels you define in the inline assembler statement will be local to that
statement. You can use this for loops or conditional code.

If you define a label in an inline assembler statement using two colons—for example,
"label:: nop\n"—instead of one, the label will be public, not only in the inline
assembler statement, but in the module as well. This feature is intended for testing only.

AFE1_AFE2-1:1

Assembler language interface

167

An assembler statement without declared side-effects will be treated as a volatile
assembler statement, which means it cannot be optimized at all. The compiler will issue
a remark for such an assembler statement.

assembler-interface is:

 : comma-separated list of output operands /* optional */
 : comma-separated list of input operands /* optional */
 : comma-separated list of clobbered resources /* optional */

Operands An inline assembler statement can have one input and one output comma-separated list
of operands. Each operand consists of an optional symbolic name in brackets, a quoted
constraint, followed by a C expression in parentheses.

Syntax of operands [[symbolic-name]] "[modifiers]constraint" (expr)

For example:

int Add(int term1, int term2)
{
 int sum;

 asm("add %0,%1,%2"
 : "=r"(sum)
 : "r" (term1), "r" (term2));

 return sum;
}

In this example, the assembler instruction uses one output operand, sum, two input
operands, term1 and term2, and no clobbered resources.

It is possible to omit any list by leaving it empty. For example:

int matrix[M][N];

void MatrixPreloadRow(int row)
{
 asm volatile ("pld [%0]" : : "r" (&matrix[row][0]));
}

Operand constraints
Constraint Description

r Uses a general purpose register for the expression:
R0-R12, R14 (for Arm and Thumb2)
R0-R7 (for Thumb1)

l R0-R7 (only valid for Thumb1)

Table 10: Inline assembler operand constraints

AFE1_AFE2-1:1

168

Mixing C and assembler

IAR C/C++ Development Guide
Compiling and Linking for Arm

Constraint modifiers Constraint modifiers can be used together with a constraint to modify its meaning. This
table lists the supported constraint modifiers:

Rp Uses a pair of general purpose registers, for example R0, R1

i An immediate integer operand with a constant value. Symbolic
constants are allowed.

j A 16-bit constant suitable for a MOVW instruction (valid for Arm and
Thumb2).

n An immediate operand, alias for i.

I An immediate constant valid for a data processing instruction (for Arm
and Thumb2), or a constant in the range 0 to 255 (for Thumb1).

J An immediate constant in the range -4095 to 4095 (for Arm and
Thumb2), or a constant in the range -255 to -1 (for Thumb1).

K An immediate constant that satisfies the I constraint if inverted (for
Arm and Thumb2), or a constant that satisfies the I constraint
multiplied by any power of 2 (for Thumb1).

L An immediate constant that satisfies the I constraint if negated (for
Arm and Thumb2), or a constant in the range -7 to 7 (for Thumb1).

M An immediate constant that is a multiple of 4 in the range 0 to 1020
(only valid for Thumb1).

N An immediate constant in the range 0 to 31 (only valid for Thumb1).

O An immediate constant that is a multiple of 4 in the range -508 to 508
(only valid for Thumb1).

t An S register.

w A D register.

q A Q register.

Dv A 32-bit floating-point immediate constant for the VMOV.F32
instruction.

Dy A 64-bit floating-point immediate constant for the VMOV.F64
instruction.

v2S ... v4Q A vector of 2, 3, or 4 consecutive S, D, or Q registers. For example,
v4Q is a vector of four Q registers. The vectors do not overlap, so the
available v4Q register vectors are Q0-Q3, Q4-Q7, Q8-Q11, and
Q12-Q15.

Constraint Description

Table 10: Inline assembler operand constraints (Continued)

AFE1_AFE2-1:1

Assembler language interface

169

Referring to operands Assembler instructions refer to operands by prefixing their order number with %. The
first operand has order number 0 and is referred to by %0.

If the operand has a symbolic name, you can refer to it using the syntax
%[operand.name]. Symbolic operand names are in a separate namespace from C/C++
code and can be the same as a C/C++ variable names. Each operand name must however
be unique in each assembler statement. For example:

int Add(int term1, int term2)
{
 int sum;

 asm("add %[Rd],%[Rn],%[Rm]"
 : [Rd]"=r"(sum)
 : [Rn]"r" (term1), [Rm]"r" (term2));

 return sum;
}

Input operands Input operands cannot have any constraint modifiers, but they can have any valid C
expression as long as the type of the expression fits the register.

The C expression will be evaluated just before any of the assembler instructions in the
inline assembler statement and assigned to the constraint, for example, a register.

Output operands Output operands must have = as a constraint modifier and the C expression must be an
l-value and specify a writable location. For example, =r for a write-only general purpose
register. The constraint will be assigned to the evaluated C expression (as an l-value)
immediately after the last assembler instruction in the inline assembler statement. Input
operands are assumed to be consumed before output is produced and the compiler may
use the same register for an input and output operand. To prohibit this, prefix the output
constraint with & to make it an early clobber resource, for example, =&r. This will ensure
that the output operand will be allocated in a different register than the input operands.

Input/output operands An operand that should be used both for input and output must be listed as an output
operand and have the + modifier. The C expression must be an l-value and specify a

Modifier Description

= Write-only operand

+ Read-write operand

& Early clobber output operand which is written to before the instruction
has processed all the input operands.

Table 11: Supported constraint modifiers

AFE1_AFE2-1:1

170

Mixing C and assembler

IAR C/C++ Development Guide
Compiling and Linking for Arm

writable location. The location will be read immediately before any assembler
instructions and it will be written to right after the last assembler instruction.

This is an example of using a read-write operand:

int Double(int value)
{
 asm("add %0,%0,%0" : "+r"(value));

 return value;
}

In the example above, the input value for value will be placed in a general purpose
register. After the assembler statement, the result from the ADD instruction will be placed
in the same register.

Clobbered resources An inline assembler statement can have a list of clobbered resources.

"resource1", "resource2", ...

Specify clobbered resources to inform the compiler about which resources the inline
assembler statement destroys. Any value that resides in a clobbered resource and that is
needed after the inline assembler statement will be reloaded.

Clobbered resources will not be used as input or output operands.

This is an example of how to use clobbered resources:

int Add(int term1, int term2)
{
 int sum;

 asm("adds %0,%1,%2"
 : "=r"(sum)
 : "r" (term1), "r" (term2)
 : "cc");

 return sum;
}

In this example, the condition codes will be modified by the ADDS instruction.
Therefore, "cc" must be listed in the clobber list.

This table lists valid clobbered resources:

Clobber Description

R0-R12, R14for Arm mode and Thumb2
R0-R7, R12, R14 for Thumb1

General purpose registers

Table 12: List of valid clobbers

AFE1_AFE2-1:1

Assembler language interface

171

Operand modifiers An operand modifier is a single letter between the % and the operand number, which is
used for transforming the operand.

In the example below, the modifiers L and H are used for accessing the least and most
significant 16 bits, respectively, of an immediate operand:

int Mov32()
{
 int a;
 asm("movw %0,%L1 \n"
 "movt %0,%H1 \n" : "=r"(a) : "i"(0x12345678UL));
 return a;
}

Some operand modifiers can be combined, in which case each letter will transform the
result from the previous modifier. This table describes the transformation performed by
each valid modifier:

S0-S31, D0-D31, Q0-Q15 Floating-point registers

cc The condition flags (N, Z, V, and C)

memory To be used if the instructions modify any
memory. This will avoid keeping memory
values cached in registers across the inline
assembler statement.

Clobber Description

Table 12: List of valid clobbers (Continued)

Modifier Description

L The lowest-numbered register of a register pair, or the low 16 bits of an
immediate constant.

H The highest-numbered register of a register pair, or the high 16 bits of
an immediate constant.

c For an immediate operand, an integer or symbol address without a
preceding # sign. Cannot be transformed by additional operand
modifiers.

B For an immediate operand, the bitwise inverse of integer or symbol
without a preceding # sign. Cannot be transformed by additional
operand modifiers.

Q The least significant register of a register pair.

R The most significant register of a register pair.

Table 13: Operand modifiers and transformations

AFE1_AFE2-1:1

172

Calling assembler routines from C

IAR C/C++ Development Guide
Compiling and Linking for Arm

AN EXAMPLE OF HOW TO USE CLOBBERED MEMORY

int StoreExclusive(unsigned long * location, unsigned long value)
{
 int failed;

 asm("strex %0,%2,[%1]"
 : "=&r"(failed)
 : "r"(location), "r"(value)
 : "memory");

 /* Note: 'strex' requires Armv6 (Arm) or Armv6T2 (THUMB) */

 return failed;
}

Calling assembler routines from C
An assembler routine that will be called from C must:

● Conform to the calling convention

● Have a PUBLIC entry-point label

● Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in these examples:

M For a register or a register pair, the register list suitable for ldm or
stm. Cannot be transformed by additional operand modifiers.

a Transforms a register Rn into a memory operand [Rn,#0] suitable
for pld.

b The low S register part of a D register.

p The high S register part of a D register.

e The low D register part of a Q register, or the low register in a vector of
Neon registers.

f The high D register part of a Q register, or the high register in a vector
of Neon registers.

h For a (vector of) D or Q registers, the corresponding list of D registers
within curly braces. For example, Q0 becomes {D0,D1}. Cannot be
transformed by additional operand modifiers.

y S register as indexed D register, for example S7 becomes D3[1].
Cannot be transformed by additional operand modifiers.

Modifier Description

Table 13: Operand modifiers and transformations (Continued)

AFE1_AFE2-1:1

Assembler language interface

173

extern int foo(void);

or

extern int foo(int i, int j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.

Note: You must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the
variables required and perform simple accesses to them. In this example, the assembler
routine takes an int and a char, and then returns an int:

extern int gInt;
extern char gChar;

int Func(int arg1, char arg2)
{
 int locInt = arg1;
 gInt = arg1;
 gChar = arg2;
 return locInt;
}

int main()
{
 int locInt = gInt;
 gInt = Func(locInt, gChar);
 return 0;
}

Note: In this example, we use a low optimization level when compiling the code to show
local and global variable access. If a higher level of optimization is used, the required
references to local variables could be removed during the optimization. The actual
function declaration is not changed by the optimization level.

COMPILING THE SKELETON CODE

In the IDE, specify list options on file level. Select the file in the workspace window.
Then choose Project>Options. In the C/C++ Compiler category, select Override
inherited settings. On the List page, deselect Output list file, and instead select the

AFE1_AFE2-1:1

174

Calling assembler routines from C

IAR C/C++ Development Guide
Compiling and Linking for Arm

Output assembler file option and its suboption Include source. Also, be sure to specify
a low level of optimization.

Use these options to compile the skeleton code:

iccarm skeleton.c -lA . -On -e

The -lA option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s. The -On option means that no optimization will be used and -e enables
language extensions. In addition, make sure to use relevant compiler options, usually the
same as you use for other C or C++ source files in your project.

The result is the assembler source output file skeleton.s.

Note: The -lA option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file.

In the IDE, to exclude the CFI directives from the list file, choose
Project>Options>C/C++ Compiler>List and deselect the suboption Include call
frame information.

On the command line, to exclude the CFI directives from the list file, use the option -lB
instead of -lA.

Note: CFI information must be included in the source code to make the C-SPY Call
Stack window work.

The output file

The output file contains the following important information:

● The calling convention

● The return values

● The global variables

● The function parameters

● How to create space on the stack (auto variables)

● Call frame information (CFI).

The CFI directives describe the call frame information needed by the Call Stack
window in the debugger. For more information, see Call frame information, page 182.

AFE1_AFE2-1:1

Assembler language interface

175

Calling assembler routines from C++
The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine can therefore be called from C++ when declared in
this manner:

extern "C"
{
 int MyRoutine(int);
}

The following example shows how to achieve the equivalent to a non-static member
function, which means that the implicit this pointer must be made explicit. It is also
possible to “wrap” the call to the assembler routine in a member function. Use an inline
member function to remove the overhead of the extra call—this assumes that function
inlining is enabled:

class MyClass;

extern "C"
{
 void DoIt(MyClass *ptr, int arg);
}

class MyClass
{
public:
 inline void DoIt(int arg)
 {
 ::DoIt(this, arg);
 }
};

Calling convention
A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

AFE1_AFE2-1:1

176

Calling convention

IAR C/C++ Development Guide
Compiling and Linking for Arm

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

This section describes the calling convention used by the compiler. These items are
examined:

● Function declarations

● C and C++ linkage

● Preserved versus scratch registers

● Function entrance

● Function exit

● Return address handling

At the end of the section, some examples are shown to describe the calling convention
in practice.

The calling convention used by the compiler adheres to the Procedure Call Standard for
the Arm architecture, AAPCS, a part of AEABI, see AEABI compliance, page 218.
AAPCS is not fully described here. For example, the use of floating-point coprocessor
registers when using the VFP calling convention is not covered.

FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int MyFunction(int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.

USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++, it is easiest if you make the C++ function have C linkage.

This is an example of a declaration of a function with C linkage:

extern "C"
{
 int F(int);
}

AFE1_AFE2-1:1

Assembler language interface

177

It is often practical to share header files between C and C++. This is an example of a
declaration that declares a function with C linkage in both C and C++:

#ifdef __cplusplus
extern "C"
{
#endif

int F(int);

#ifdef __cplusplus
}
#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general Arm CPU registers are divided into three separate sets, which are described
in this section.

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example, on the stack.

Any of the registers R0 to R3, and R12, can be used as a scratch register by the function.

Note: R12 is also a scratch register when calling between assembler functions because
of automatically inserted instructions for veneers.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. The called
function can use the register for other purposes, but must save the value before using the
register and restore it at the exit of the function.

The registers R4 through to R11 are preserved registers. They are preserved by the called
function.

Special registers

For some registers, you must consider certain prerequisites:

● The stack pointer register, R13/SP, must at all times point to or below the last
element on the stack. In the eventuality of an interrupt, everything below the point
the stack pointer points to, can be destroyed. At function entry and exit, the stack
pointer must be 8-byte aligned. In the function, the stack pointer must always be
word aligned. At exit, SP must have the same value as it had at the entry.

AFE1_AFE2-1:1

178

Calling convention

IAR C/C++ Development Guide
Compiling and Linking for Arm

● The register R15/PC is dedicated for the Program Counter.

● The link register, R14/LR, holds the return address at the entrance of the function.

FUNCTION ENTRANCE

Parameters can be passed to a function using one of these basic methods:

● In registers

● On the stack

It is much more efficient to use registers than to take a detour via memory, so the calling
convention is designed to use registers as much as possible. Only a limited number of
registers can be used for passing parameters—when no more registers are available, the
remaining parameters are passed on the stack. These exceptions to the rules apply:

● Interrupt functions cannot take any parameters, except software interrupt functions
that accept parameters and have return values

● Software interrupt functions cannot use the stack in the same way as ordinary
functions. When an SVC instruction is executed, the processor switches to
supervisor mode where the supervisor stack is used. Arguments can therefore not be
passed on the stack if your application is not running in supervisor mode previous to
the interrupt.

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters:

● If the function returns a structure larger than 32 bits, the memory location where the
structure is to be stored is passed as an extra parameter. Notice that it is always
treated as the first parameter.

● If the function is a non-static C++ member function, then the this pointer is passed
as the first parameter (but placed after the return structure pointer, if there is one).
For more information, see Calling assembler routines from C, page 172.

Register parameters

Parameters Passed in registers

Scalar and floating-point values no larger than 32 bits,
and single-precision (32-bits) floating-point values

Passed using the first free register:
R0-R3

long long and double-precision (64-bit) values Passed in the first available register pair:
R0:R1 or R2:R3

Table 14: Registers used for passing parameters

AFE1_AFE2-1:1

Assembler language interface

179

The assignment of registers to parameters is a straightforward process. Traversing the
parameters from left to right, the first parameter is assigned to the available register or
registers. Should there be no more available registers, the parameter is passed on the
stack in reverse order.

When functions that have parameters smaller than 32 bits are called, the values are sign
or zero extended to ensure that the unused bits have consistent values. Whether the
values will be sign or zero extended depends on their type—signed or unsigned.

Stack parameters and layout

Stack parameters are stored in memory, starting at the location pointed to by the stack
pointer. Below the stack pointer (towards low memory) there is free space that the called
function can use. The first stack parameter is stored at the location pointed to by the
stack pointer. The next one is stored at the next location on the stack that is divisible by
four, etc. It is the responsibility of the caller to clean the stack after the called function
has returned.

This figure illustrates how parameters are stored on the stack:

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure.

AFE1_AFE2-1:1

180

Calling convention

IAR C/C++ Development Guide
Compiling and Linking for Arm

Registers used for returning values

The registers available for returning values are R0 and R0:R1.

If the returned value is smaller than 32 bits, the value is sign or zero-extended to 32 bits.

Stack layout at function exit

It is the responsibility of the caller to clean the stack after the called function has
returned.

Return address handling

A function written in assembler language should, when finished, return to the caller, by
jumping to the address pointed to by the register LR.

At function entry, non-scratch registers and the LR register can be pushed with one
instruction. At function exit, all these registers can be popped with one instruction. The
return address can be popped directly to PC.

The following example shows what this can look like:

 name call
 section .text:CODE
 extern func

 push {r4-r6,lr} ; Preserve stack alignment 8
 bl func

 ; Do something here.

 pop {r4-r6,pc} ; return

 end

Return values Passed in registers

Scalar and structure return values no larger
than 32 bits, and single-precision (32-bit)
floating-point return values

R0

The memory address of a structure return
value larger than 32 bits

R0

long long and double-precision (64-bit)
return values

R0:R1

Table 15: Registers used for returning values

AFE1_AFE2-1:1

Assembler language interface

181

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases toward the end.

Example 1

Assume this function declaration:

int add1(int);

This function takes one parameter in the register R0, and the return value is passed back
to its caller in the register R0.

This assembler routine is compatible with the declaration—it will return a value that is
one number higher than the value of its parameter:

 name return
 section .text:CODE
 add r0, r0, #1
 bx lr
 end

Example 2

This example shows how structures are passed on the stack. Assume these declarations:

struct MyStruct
{
 short a;
 short b;
 short c;
 short d;
 short e;
};

int MyFunction(struct MyStruct x, int y);

The values of the structure members a, b, c, and d are passed in registers R0-R3. The
last structure member e and the integer parameter y are passed on the stack. The calling
function must reserve eight bytes on the top of the stack and copy the contents of the two
stack parameters to that location. The return value is passed back to its caller in the
register R0.

AFE1_AFE2-1:1

182

Call frame information

IAR C/C++ Development Guide
Compiling and Linking for Arm

Example 3

The function below will return a structure of type struct MyStruct.

struct MyStruct
{
 int mA[20];
};

struct MyStruct MyFunction(int x);

It is the responsibility of the calling function to allocate a memory location for the return
value and pass a pointer to it as a hidden first parameter. The pointer to the location
where the return value should be stored is passed in R0. The parameter x is passed in R1.

Assume that the function instead was declared to return a pointer to the structure:

struct MyStruct *MyFunction(int x);

In this case, the return value is a scalar, so there is no hidden parameter. The parameter
x is passed in R0, and the return value is returned in R0.

Call frame information
When you debug an application using C-SPY, you can view the call stack, that is, the
chain of functions that called the current function. To make this possible, the compiler
supplies debug information that describes the layout of the call frame, in particular
information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the IAR Assembler
User Guide for Arm.

CFI DIRECTIVES

The CFI directives provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice.

When describing the call frame information, the following three components must be
present:

● A names block describing the available resources to be tracked

AFE1_AFE2-1:1

Assembler language interface

183

● A common block corresponding to the calling convention

● A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

CREATING ASSEMBLER SOURCE WITH CFI SUPPORT

The recommended way to create an assembler language routine that handles call frame
information correctly is to start with an assembler language source file created by the
compiler.

1 Start with suitable C source code, for example:

int F(int);
int cfiExample(int i)
{
 return i + F(i);
}

2 Compile the C source code, and make sure to create a list file that contains call frame
information—the CFI directives.

On the command line, use the option -lA.

In the IDE, choose Project>Options>C/C++ Compiler>List and make sure the
suboption Include call frame information is selected.

Resource Description

CFA R13 The call frames of the stack

R0–R12 Processor general-purpose 32-bit registers

R13 Stack pointer, SP

R14 Link register, LR

D0-D31 Vector Floating Point (VFP) 64-bit coprocessor register

CPSR Current program status register

SPSR Saved program status register

Table 16: Call frame information resources defined in a names block

AFE1_AFE2-1:1

184

Call frame information

IAR C/C++ Development Guide
Compiling and Linking for Arm

For the source code in this example, the list file looks like this:

 NAME Cfi

 RTMODEL "__SystemLibrary", "DLib"

 EXTERN F

 PUBLIC cfiExample

 CFI Names cfiNames0
 CFI StackFrame CFA R13 DATA
 CFI Resource R0:32, R1:32, R2:32, R3:32, R4:32, R5:32,
R6:32, R7:32
 CFI Resource R8:32, R9:32, R10:32, R11:32, R12:32,
R13:32, R14:32
 CFI EndNames cfiNames0

 CFI Common cfiCommon0 Using cfiNames0
 CFI CodeAlign 4
 CFI DataAlign 4
 CFI ReturnAddress R14 CODE
 CFI CFA R13+0
 CFI R0 Undefined
 CFI R1 Undefined
 CFI R2 Undefined
 CFI R3 Undefined
 CFI R4 SameValue
 CFI R5 SameValue
 CFI R6 SameValue
 CFI R7 SameValue
 CFI R8 SameValue
 CFI R9 SameValue
 CFI R10 SameValue
 CFI R11 SameValue
 CFI R12 Undefined
 CFI R14 SameValue
 CFI EndCommon cfiCommon0

 SECTION `.text`:CODE:NOROOT(2)
 CFI Block cfiBlock0 Using cfiCommon0
 CFI Function cfiExample
 ARM
cfiExample:
 PUSH {R4,LR}
 CFI R14 Frame(CFA, -4)
 CFI R4 Frame(CFA, -8)

AFE1_AFE2-1:1

Assembler language interface

185

 CFI CFA R13+8
 MOVS R4,R0
 MOVS R0,R4
 BL F
 ADDS R0,R0,R4
 POP {R4,PC} ;; return
 CFI EndBlock cfiBlock0

 END

Note: The header file Common.i contains the macros CFI_NAMES_BLOCK,
CFI_COMMON_ARM, and CFI_COMMON_Thumb, which declare a typical names block and
a typical common block. These two macros declare several resources, both concrete and
virtual.

AFE1_AFE2-1:1

186

Call frame information

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

187

Using C
● C language overview

● Extensions overview

● IAR C language extensions

C language overview
The IAR C/C++ Compiler for Arm supports the INCITS/ISO/IEC 9899:2018 standard,
also known as C18. C18 addresses defects in C11 (INCITS/ISO/IEC 9899:2012)
without introducing any new language features. This means that the C11 standard is also
supported. In this guide, the C18 standard is referred to as Standard C and is the default
standard used in the compiler. This standard is stricter than C89.

The compiler will accept source code written in the C18 standard or a superset thereof.

In addition, the compiler also supports the ISO 9899:1990 standard (including all
technical corrigenda and addenda), also known as C94, C90, C89, and ANSI C. In this
guide, this standard is referred to as C89. Use the --c89 compiler option to enable this
standard.

With Standard C enabled, the IAR C/C++ Compiler for Arm can compile all C18/C11
source code files, except for those that depend on thread-related system header files.

Annex K (Bounds-checking interfaces) of the C standard is supported. See Bounds
checking functionality, page 133.

For an overview of the differences between the various versions of the C standard, see
the Wikipedia articles C18 (C standard revision), C11 (C standard revision), or C99.

Extensions overview
The compiler offers the features of Standard C and a wide set of extensions, ranging
from features specifically tailored for efficient programming in the embedded industry
to the relaxation of some minor standards issues.

This is an overview of the available extensions:

● IAR C language extensions

For information about available language extensions, see IAR C language extensions,
page 189. For more information about the extended keywords, see the chapter

AFE1_AFE2-1:1

188

Extensions overview

IAR C/C++ Development Guide
Compiling and Linking for Arm

Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions, see the chapter Using C++.

● Pragma directives

The #pragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source code is
still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example, how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler. For
several of them there is also a corresponding C/C++ language extension. For
information about available pragma directives, see the chapter Pragma directives.

● Preprocessor extensions

The preprocessor of the compiler adheres to Standard C. The compiler also makes
several preprocessor-related extensions available to you. For more information, see
the chapter The preprocessor.

● Intrinsic functions

The intrinsic functions provide direct access to low-level processor operations and
can be useful in, for example, time-critical routines. The intrinsic functions compile
into inline code, either as a single instruction or as a short sequence of instructions.
For more information about using intrinsic functions, see Mixing C and assembler,
page 163. For information about available functions, see the chapter Intrinsic
functions.

● Library functions

The DLIB runtime environment provides the C and C++ library definitions in the
C/C++ standard library that apply to embedded systems. For more information, see
DLIB runtime environment—implementation details, page 473.

Note: Any use of these extensions, except for the pragma directives, makes your source
code inconsistent with Standard C.

ENABLING LANGUAGE EXTENSIONS

You can choose different levels of language conformance by means of project options:

Command line IDE* Description

--strict Strict All IAR C language extensions are disabled—
errors are issued for anything that is not part
of Standard C.

Table 17: Language extensions

AFE1_AFE2-1:1

Using C

189

* In the IDE, choose Project>Options>C/C++ Compiler>Language 1>Language
conformance and select the appropriate option. Note that language extensions are
enabled by default.

IAR C language extensions
The compiler provides a wide set of C language extensions. To help you to find the
extensions required by your application, they are grouped like this in this section:

● Extensions for embedded systems programming—extensions specifically tailored
for efficient embedded programming for the specific core you are using, typically to
meet memory restrictions

● Relaxations to Standard C—that is, the relaxation of some minor Standard C issues
and also some useful but minor syntax extensions, see Relaxations to Standard C,
page 191.

EXTENSIONS FOR EMBEDDED SYSTEMS PROGRAMMING

The following language extensions are available both in the C and the C++
programming languages and they are well suited for embedded systems programming:

● Type attributes and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.

● Placement at an absolute address or in a named section

The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named
section. For more information about using these features, see Controlling data and
function placement in memory, page 230, and location, page 396.

● Alignment control

Each data type has its own alignment. For more information, see Alignment, page
349. If you want to change the alignment, the __packed data type attribute, the

None Standard All extensions to Standard C are enabled, but no
extensions for embedded systems programming.
For information about extensions, see IAR C
language extensions, page 189.

-e Standard with IAR
extensions

All IAR C language extensions are enabled.

Command line IDE* Description

Table 17: Language extensions (Continued)

AFE1_AFE2-1:1

190

IAR C language extensions

IAR C/C++ Development Guide
Compiling and Linking for Arm

#pragma pack, and the #pragma data_alignment directives are available. If you
want to check the alignment of an object, use the __ALIGNOF__() operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

● __ALIGNOF__ (type)

● __ALIGNOF__ (expression)

In the second form, the expression is not evaluated.

See also the Standard C file stdalign.h.

● Bitfields and non-standard types

In Standard C, a bitfield must be of the type int or unsigned int. Using IAR C
language extensions, any integer type or enumeration can be used. The advantage is
that the struct will sometimes be smaller. For more information, see Bitfields, page
352.

Dedicated section operators

The compiler supports getting the start address, end address, and size for a section with
these built-in section operators:

Note: The aliases __segment_begin/__sfb, __segment_end/__sfe, and
__segment_size/__sfs can also be used.

The operators can be used on named sections or on named blocks defined in the linker
configuration file.

These operators behave syntactically as if declared like:

void * __section_begin(char const * section)
void * __section_end(char const * section)
size_t __section_size(char const * section)

When you use the @ operator or the #pragma location directive to place a data object
or a function in a user-defined section, or when you use named blocks in the linker
configuration file, the section operators can be used for getting the start and end address
of the memory range where the sections or blocks were placed.

__section_begin Returns the address of the first byte of the named section or
block.

__section_end Returns the address of the first byte after the named section
or block.

__section_size Returns the size of the named section or block in bytes.

AFE1_AFE2-1:1

Using C

191

The named section must be a string literal and it must have been declared earlier with
the #pragma section directive. The type of the __section_begin operator is a
pointer to void. Note that you must enable language extensions to use these operators.

The operators are implemented in terms of symbols with dedicated names, and will
appear in the linker map file under these names:

Note: The linker will not necessarily place sections with the same name consecutively
when these operators are not used. Using one of these operators (or the equivalent
symbols) will cause the linker to behave as if the sections were in a named block. This
is to assure that the sections are placed consecutively, so that the operators can be
assigned meaningful values. If this is in conflict with the section placement as specified
in the linker configuration file, the linker will issue an error.

Example

In this example, the type of the __section_begin operator is void *.

#pragma section="MYSECTION"
...
section_start_address = __section_begin("MYSECTION");

See also section, page 403, and location, page 396.

RELAXATIONS TO STANDARD C

This section lists and briefly describes the relaxation of some Standard C issues and also
some useful but minor syntax extensions:

● Arrays of incomplete types

An array can have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

● Forward declaration of enum types

The extensions allow you to first declare the name of an enum and later resolve it by
specifying the brace-enclosed list.

● Accepting missing semicolon at the end of a struct or union specifier

A warning—instead of an error—is issued if the semicolon at the end of a struct
or union specifier is missing.

Operator Symbol

__section_begin(sec) sec$$Base

__section_end(sec) sec$$Limit

__section_size(sec) sec$$Length

Table 18: Section operators and their symbols

AFE1_AFE2-1:1

192

IAR C language extensions

IAR C/C++ Development Guide
Compiling and Linking for Arm

● Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In Standard C, some operators allow this kind
of behavior, while others do not allow it.

● Casting pointers to integers in static initializers

In an initializer, a pointer constant value can be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 359.

● Taking the address of a register variable

In Standard C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

● long float means double

The type long float is accepted as a synonym for double.

● Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

● Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical, for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning is issued.

● Non-lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.

● Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled unless the strict Standard C mode is used. The purpose of this language
extension is to support compilation of legacy code—we do not recommend that you
write new code in this fashion.

● An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict Standard C
mode, a warning is issued.

● A label preceding a }

In Standard C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. The compiler allows this, but issues a
warning. Note that this also applies to the labels of switch statements.

AFE1_AFE2-1:1

Using C

193

● Empty declarations

An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

● Single-value initialization

Standard C requires that all initializer expressions of static arrays, structs, and unions
are enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is
issued. The compiler accepts this expression:

struct str
{
 int a;
} x = 10;

● Declarations in other scopes

External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the if statement. A warning is issued.

int test(int x)
{
 if (x)
 {
 extern int y;
 y = 1;
 }

 return y;
}

● Static functions in function and block scopes

Static functions may be declared in function and block scopes. Their declarations are
moved to the file scope.

● Numbers scanned according to the syntax for numbers

Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Therefore, 0x123e+1 is scanned as three tokens instead of one
valid token. (If the --strict option is used, the pp-number syntax is used instead.)

● Empty translation unit

A translation unit (input file) might be empty of declarations.

● Assignment of pointer types

Assignment of pointer types is allowed in cases where the destination type has added
type qualifiers that are not at the top level, for example, int ** to const int **.
Comparisons and pointer difference of such pairs of pointer types are also allowed.
A warning is issued.

AFE1_AFE2-1:1

194

IAR C language extensions

IAR C/C++ Development Guide
Compiling and Linking for Arm

● Pointers to different function types

Pointers to different function types might be assigned or compared for equality (==)
or inequality (!=) without an explicit type cast. A warning is issued. This extension
is not allowed in C++ mode.

● Assembler statements

Assembler statements are accepted. This is disabled in strict C mode because it
conflicts with the C standard for a call to the implicitly declared asm function.

● #include_next

The non-standard preprocessing directive #include_next is supported. This is a
variant of the #include directive. It searches for the named file only in the
directories on the search path that follow the directory in which the current source
file (the one containing the #include_next directive) is found. This is an extension
found in the GNU C compiler.

● #warning

The non-standard preprocessing directive #warning is supported. It is similar to the
#error directive, but results in a warning instead of a catastrophic error when
processed. This directive is not recognized in strict mode. This is an extension found
in the GNU C compiler.

● Concatenating strings

Mixed string concatenations are accepted.

wchar_t * str="a" L "b";

AFE1_AFE2-1:1

195

Using C++
● Overview—Standard C++

● Enabling support for C++

● C++ feature descriptions

● C++ language extensions

● Porting code from EC++ or EEC++

Overview—Standard C++
The IAR C++ implementation fully complies with the ISO/IEC 14882:2015 C++
standard, except for source code that depends on thread-related system headers.

Atomic operations are available for cores where the instruction set supports them. See
Atomic operations, page 479.

The ISO/IEC 14882:2015 C++ standard is also known as C++14. In this guide, this
standard is referred to as Standard C++.

The IAR C/C++ compiler accepts source code written in the C++14 standard or a
superset thereof.

For an overview of the differences between the various versions of the C++ standard, see
the Wikipedia articles C++17, C++14, C++11, or C++ (for information about C++98).

MODES FOR EXCEPTIONS AND RTTI SUPPORT

Both exceptions and runtime type information result in increased code size simply by
being included in your application. You might want to disable either or both of these
features to avoid this increase:

● Support for runtime type information constructs can be disabled by using the
compiler option --no_rtti

● Support for exceptions can be disabled by using the compiler option
--no_exceptions

Even if support is enabled while compiling, the linker can avoid including the extra code
and tables in the final application. If no part of your application actually throws an
exception, the code and tables supporting the use of exceptions are not included in the
application code image. Also, if dynamic runtime type information constructs

AFE1_AFE2-1:1

196

Overview—Standard C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

(dynamic_cast/typeid) are not used with polymorphic types, the objects needed to
support them are not included in the application code image. To control this behavior,
use the linker options --no_exceptions, --force_exceptions, and
--no_dynamic_rtti_elimination.

Disabling exception support

When you use the compiler option --no_exceptions, the following will generate a
compiler error:

● throw expressions

● try-catch statements

● Exception specifications on function definitions.

In addition, the extra code and tables needed to handle destruction of objects with auto
storage duration when an exception is propagated through a function will not be
generated when the compiler option --no_exceptions is used.

All functionality in system header files not directly involving exceptions is supported
when the compiler option --no_exceptions is used.

The linker will produce an error if you try to link C++ modules compiled with exception
support with modules compiled without exception support

For more information, see --no_exceptions, page 288.

Disabling RTTI support

When you use the compiler option --no_rtti, the following will generate a compiler
error:

● The typeid operator

● The dynamic_cast operator.

Note: If --no_rtti is used but exception support is enabled, most RTTI support is still
included in the compiler output object file because it is needed for exceptions to work.

For more information, see --no_rtti, page 290.

EXCEPTION HANDLING

Exception handling can be divided into three parts:

● Exception raise mechanisms—in C++ they are the throw and rethrow
expressions.

● Exception catch mechanisms—in C++ they are the try–catch statements, the
exception specifications for a function, and the implicit catch to prevent an
exception leaking out from main.

AFE1_AFE2-1:1

Using C++

197

● Information about currently active functions—if they have try–catch statements
and the set of auto objects whose destructors need to be run if an exception is
propagated through the function.

When an exception is raised, the function call stack is unwound, function by function,
block by block. For each function or block, the destructors of auto objects that need
destruction are run, and a check is made whether there is a catch handler for the
exception. If there is, the execution will continue from that catch handler.

An application that mixes C++ code with assembler and C code, and that throws
exceptions from one C++ function to another via assembler routines and C functions
must use the linker option --exception_tables with the argument unwind.

The implementation of exceptions

Exceptions are implemented using a table method. For each function, the tables
describe:

● How to unwind the function, that is, how to find its caller on the stack and restore
registers that need restoring

● Which catch handlers that exist in the function

● Whether the function has an exception specification and which exceptions it allows
to propagate

● The set of auto objects whose destructors must be run.

When an exception is raised, the runtime will proceed in two phases. The first phase will
use the exception tables to search the stack for a function invocation containing a catch
handler or exception specification that would cause stack unwinding to halt at that point.
Once this point is found, the second phase is entered, doing the actual unwinding, and
running the destructors of auto objects where that is needed.

The table method results in virtually no overhead in execution time or RAM usage when
an exception is not actually thrown. It does incur a significant penalty in read-only
memory usage for the tables and the extra code, and throwing and catching an exception
is a relatively expensive operation.

The destruction of auto objects when the stack is being unwound as a result of an
exception is implemented in code separated from the code that handles the normal
operation of a function. This code, together with the code in catch handlers, is placed in
a separate section (.exc.text) from the normal code (normally placed in .text). In
some cases, for instance when there is fast and slow ROM memory, it can be
advantageous to select on this difference when placing sections in the linker
configuration file.

AFE1_AFE2-1:1

198

Enabling support for C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

Enabling support for C++
In the compiler, the default language is C.

To compile files written in Standard C++, use the --c++ compiler option. See --c++,
page 271.

To enable C++ in the IDE, choose Project>Options>C/C++ Compiler>Language
1>Language>C++.

C++ feature descriptions
When you write C++ source code for the IAR C/C++ Compiler for Arm, you must be
aware of some benefits and some possible quirks when mixing C++ features—such as
classes, and class members—with IAR language extensions, such as IAR-specific
attributes.

USING IAR ATTRIBUTES WITH CLASSES

Static data members of C++ classes are treated the same way global variables are, and
can have any applicable IAR type and object attribute.

Member functions are in general treated the same way free functions are, and can have
any applicable IAR type and object attributes. Virtual member functions can only have
attributes that are compatible with default function pointers, and constructors and
destructors cannot have any such attributes.

The location operator @ and the #pragma location directive can be used on static data
members and with all member functions.

TEMPLATES

C++ supports templates according to the C++ standard. The implementation uses a
two-phase lookup which means that the keyword typename must be inserted wherever
needed. Furthermore, at each use of a template, the definitions of all possible templates
must be visible. This means that the definitions of all templates must be in include files
or in the actual source file.

FUNCTION TYPES

A function type with extern "C" linkage is compatible with a function that has C++
linkage.

AFE1_AFE2-1:1

Using C++

199

Example

extern "C"
{
 typedef void (*FpC)(void); // A C function typedef
}

typedef void (*FpCpp)(void); // A C++ function typedef

FpC F1;
FpCpp F2;
void MyF(FpC);

void MyG()
{
 MyF(F1); // Always works
 MyF(F2); // FpCpp is compatible with FpC
}

USING STATIC CLASS OBJECTS IN INTERRUPTS

If interrupt functions use static class objects that need to be constructed (using
constructors) or destroyed (using destructors), your application will not work properly
if the interrupt occurs before the objects are constructed, or, during or after the objects
are destroyed.

To avoid this, make sure that these interrupts are not enabled until the static objects have
been constructed, and are disabled when returning from main or calling exit. For
information about system startup, see System startup and termination, page 145.

Function local static class objects are constructed the first time execution passes through
their declaration, and are destroyed when returning from main or when calling exit.

USING NEW HANDLERS

To handle memory exhaustion, you can use the set_new_handler function.

New handlers in Standard C++ with exceptions enabled

If you do not call set_new_handler, or call it with a NULL new handler, and
operator new fails to allocate enough memory, operator new will throw
std::bad_alloc if exceptions are enabled. If exceptions are not enabled, operator
new will instead call abort.

If you call set_new_handler with a non-NULL new handler, the provided new
handler will be called by operator new if the operator new fails to allocate enough
memory. The new handler must then make more memory available and return, or abort
execution in some manner. If exceptions are enabled, the new handler can also throw a

AFE1_AFE2-1:1

200

C++ language extensions

IAR C/C++ Development Guide
Compiling and Linking for Arm

std::bad_alloc exception. The nothrow variant of operator new will only return
NULL in the presence of a new handler if exceptions are enabled and the new handler
throws std::bad_alloc.

New handlers in Standard C++ with exceptions disabled

If you do not call set_new_handler, or call it with a NULL new handler, and
operator new fails to allocate enough memory, it will call abort. The nothrow
variant of the new operator will instead return NULL.

If you call set_new_handler with a non-NULL new handler, the provided new
handler will be called by operator new if operator new fails to allocate memory. The
new handler must then make more memory available and return, or abort execution in
some manner. The nothrow variant of operator new will never return NULL in the
presence of a new handler.

This is the same behavior as using the nothrow variants of new.

DEBUG SUPPORT IN C-SPY

C-SPY® has built-in display support for the STL containers. The logical structure of
containers is presented in the watch views in a comprehensive way that is easy to
understand and follow.

Using C++, you can make C-SPY stop at a throw statement or if a raised exception does
not have any corresponding catch statement.

For more information, see the C-SPY® Debugging Guide for Arm.

C++ language extensions
When you use the compiler in C++ mode and enable IAR language extensions, the
following C++ language extensions are available in the compiler:

● In a friend declaration of a class, the class keyword can be omitted, for example:

class B;
class A
{
 friend B; //Possible when using IAR language
 //extensions
 friend class B; //According to the standard
};

AFE1_AFE2-1:1

Using C++

201

● In the declaration of a class member, a qualified name can be used, for example:

struct A
{
 int A::F(); // Possible when using IAR language extensions
 int G(); // According to the standard
};

● It is permitted to use an implicit type conversion between a pointer to a function
with C linkage (extern "C") and a pointer to a function with C++ linkage
(extern "C++"), for example:

extern "C" void F(); // Function with C linkage
void (*PF)() // PF points to a function with C++ linkage
 = &F; // Implicit conversion of function pointer.

According to the standard, the pointer must be explicitly converted.

● If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals—which in C++ are constants—the operands can
be implicitly converted to char * or wchar_t *, for example:

bool X;

char *P1 = X ? "abc" : "def"; //Possible when using IAR
 //language extensions
char const *P2 = X ? "abc" : "def";//According to the standard

● Default arguments can be specified for function parameters not only in the top-level
function declaration, which is according to the standard, but also in typedef
declarations, in pointer-to-function function declarations, and in pointer-to-member
function declarations.

● In a function that contains a non-static local variable and a class that contains a
non-evaluated expression—for example a sizeof expression—the expression can
reference the non-static local variable. However, a warning is issued.

● An anonymous union can be introduced into a containing class by a typedef name.
It is not necessary to first declare the union. For example:

typedef union
{
 int i,j;
} U; // U identifies a reusable anonymous union.

class A
{
public:
 U; // OK -- references to A::i and A::j are allowed.
};

In addition, this extension also permits anonymous classes and anonymous structs,
as long as they have no C++ features—for example, no static data members or

AFE1_AFE2-1:1

202

C++ language extensions

IAR C/C++ Development Guide
Compiling and Linking for Arm

member functions, and no non-public members—and have no nested types other
than other anonymous classes, structs, or unions. For example:

struct A
{
 struct
 {
 int i,j;
 }; // OK -- references to A::i and A::j are allowed.
};

● The friend class syntax allows nonclass types as well as class types expressed
through a typedef without an elaborated type name. For example:

typedef struct S ST;

class C
{
public:
 friend S; // Okay (requires S to be in scope)
 friend ST; // Okay (same as "friend S;")
 // friend S const; // Error, cv-qualifiers cannot
 // appear directly
};

● It is allowed to specify an array with no size or size 0 as the last member of a struct.
For example:

typedef struct
{
 int i;
 char ir[0]; // Zero-length array
};

typedef struct
{
 int i;
 char ir[]; // Zero-length array
};

● Arrays of incomplete types

An array can have an incomplete struct, union, enum, or class type as its element
type. The types must be completed before the array is used—if it is— or by the end
of the compilation unit—if it is not.

● Concatenating strings

Mixed string literal concatenations are accepted.

wchar_t * str = "a" L "b";

AFE1_AFE2-1:1

Using C++

203

● Trailing comma

A trailing comma in the definition of an enumeration type is silently accepted.

Except where noted, all of the extensions described for C are also allowed in C++ mode.

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.

Porting code from EC++ or EEC++
 Apart from the fact that Standard C++ is a much larger language than EC++ or EEC++,
there are two issues that might prevent EC++ and EEC++ code from compiling:

● The library is placed in namespace std.

There are two remedy options:

● Prefix each used library symbol with std::.

● Insert using namespace std; after the last include directive for a C++ system
header file.

● Some library symbols have changed names or parameter passing.

To resolve this, look up the new names and parameter passing.

AFE1_AFE2-1:1

204

Porting code from EC++ or EEC++

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

205

Application-related
considerations
● Output format considerations

● Stack considerations

● Heap considerations

● Interaction between the tools and your application

● Checksum calculation for verifying image integrity

● AEABI compliance

● CMSIS integration

● Arm TrustZone®

● Patching symbol definitions using $Super$$ and $Sub$$

Output format considerations
The linker produces an absolute executable image in the ELF/DWARF object file
format.

You can use the IAR ELF Tool—ielftool— to convert an absolute ELF image to a
format more suitable for loading directly to memory, or burning to a PROM or flash
memory etc.

ielftool can produce these output formats:

● Plain binary

● Motorola S-records

● Intel hex.

For a complete list of supported output formats, run ielftool without options.

Note: ielftool can also be used for other types of transformations, such as filling and
calculating checksums in the absolute image.

AFE1_AFE2-1:1

206

Stack considerations

IAR C/C++ Development Guide
Compiling and Linking for Arm

The source code for ielftool is provided in the arm/src directory. For more
information about ielftool, see The IAR ELF Tool—ielftool, page 535.

Stack considerations
To make your application use stack memory efficiently, there are some considerations
to be made.

STACK SIZE CONSIDERATIONS

The required stack size depends heavily on the application’s behavior. If the given stack
size is too large, RAM will be wasted. If the given stack size is too small, one of two
things can happen, depending on where in memory you located your stack:

● Variable storage will be overwritten, leading to undefined behavior

● The stack will fall outside of the memory area, leading to an abnormal termination
of your application.

Both alternatives are likely to result in application failure. Because the second
alternative is easier to detect, you should consider placing your stack so that it grows
toward the end of the memory.

For more information about the stack size, see Setting up stack memory, page 111, and
Saving stack space and RAM memory, page 241.

STACK ALIGNMENT

The default cstartup code automatically initializes all stacks to an 8-byte aligned
address.

For more information about aligning the stack, see Calling convention, page 175 and
more specifically Special registers, page 177 and Stack parameters and layout, page
179.

EXCEPTION STACK

Cortex-M does not have individual exception stacks. By default, all exception stacks are
placed in the CSTACK section.

The Arm7/9/11, Cortex-A, and Cortex-R devices support five exception modes which
are entered when different exceptions occur. Each exception mode has its own stack to
avoid corrupting the System/User mode stack.

AFE1_AFE2-1:1

Application-related considerations

207

The table shows proposed stack names for the various exception stacks, but any name
can be used:

For each processor mode where a stack is needed, a separate stack pointer must be
initialized in your startup code, and section placement should be done in the linker
configuration file. The IRQ and FIQ stacks are the only exception stacks which are
preconfigured in the supplied cstartup.s and lnkarm.icf files, but other exception
stacks can easily be added.

To view any of these stacks in the Stack window available in the IDE, these
preconfigured section names must be used instead of user-defined section names.

Heap considerations
The heap contains dynamic data allocated by use of the C function malloc (or a
corresponding function) or the C++ operator new.

If your application uses dynamic memory allocation, you should be familiar with:

● The use of advanced, basic, and no-free heap memory allocation

● Linker sections used for the heap

● Allocating the heap size, see Setting up heap memory, page 112.

ADVANCED, BASIC, AND NO-FREE HEAP

The system library contains three separate heap memory handlers—the basic, the
advanced, and the no-free heap handler.

Processor mode Proposed stack section name Description

Supervisor SVC_STACK Operation system stack.

IRQ IRQ_STACK Stack for general-purpose (IRQ)
interrupt handlers.

FIQ FIQ_STACK Stack for high-speed (FIQ)
interrupt handlers.

Undefined UND_STACK Stack for undefined instruction
interrupts. Supports software
emulation of hardware
coprocessors and instruction set
extensions.

Abort ABT_STACK Stack for instruction fetch and data
access memory abort interrupt
handlers.

Table 19: Exception stacks for Arm7/9/11, Cortex-A, and Cortex-R

AFE1_AFE2-1:1

208

Heap considerations

IAR C/C++ Development Guide
Compiling and Linking for Arm

● If there are calls to heap memory allocation routines in your application, but no calls
to heap deallocation routines, the linker automatically chooses the no-free heap.

● If there are calls to heap memory allocation routines in your application, the linker
automatically chooses the advanced heap.

● If there are calls to heap memory allocation routines in, for example, the library, the
linker automatically chooses the basic heap.

Note: If your product has a size-limited KickStart license, the basic heap is
automatically chosen.

You can use a linker option to explicitly specify which handler you want to use:

● The basic heap (--basic_heap) is a simple heap allocator, suitable for use in
applications that do not use the heap very much. In particular, it can be used in
applications that only allocate heap memory and never free it. The basic heap is not
particularly speedy, and using it in applications that repeatedly free memory is quite
likely to lead to unneeded fragmentation of the heap. The code for the basic heap is
significantly smaller than that for the advanced heap. See --basic_heap, page 316.

● The advanced heap (--advanced_heap) provides efficient memory management
for applications that use the heap extensively. In particular, applications that
repeatedly allocate and free memory will likely get less overhead in both space and
time. The code for the advanced heap is significantly larger than that for the basic
heap. See --advanced_heap, page 315. For information about the definition, see
iar_dlmalloc.h, page 480.

● The no-free heap (--no_free_heap) is the smallest possible heap implementation.
This heap does not support free or realloc. See --no_free_heap, page 335.

HEAP SIZE AND STANDARD I/O

If you excluded FILE descriptors from the DLIB runtime environment, as in the Normal
configuration, there are no input and output buffers at all. Otherwise, as in the Full
configuration, be aware that the size of the input and output buffers is set to 512 bytes
in the stdio library header file. If the heap is too small, I/O will not be buffered, which
is considerably slower than when I/O is buffered. If you execute the application using
the simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the speed
penalty, but it is quite noticeable when the application runs on an Arm core. If you use
the standard I/O library, you should set the heap size to a value which accommodates the
needs of the standard I/O buffer.

AFE1_AFE2-1:1

Application-related considerations

209

Interaction between the tools and your application
The linking process and the application can interact symbolically in four ways:

● Creating a symbol by using the linker command line option --define_symbol.
The linker will create a public absolute constant symbol that the application can use
as a label, as a size, as setup for a debugger, etc.

● Creating an exported configuration symbol by using the command line option
--config_def or the configuration directive define symbol, and exporting the
symbol using the export symbol directive. ILINK will create a public absolute
constant symbol that the application can use as a label, as a size, as setup for a
debugger, etc.

One advantage of this symbol definition is that this symbol can also be used in
expressions in the configuration file, for example, to control the placement of
sections into memory ranges.

● Using the compiler operators __section_begin, __section_end, or
__section_size, or the assembler operators SFB, SFE, or SIZEOF on a named
section or block. These operators provide access to the start address, end address,
and size of a contiguous sequence of sections with the same name, or of a linker
block specified in the linker configuration file.

● The command line option --entry informs the linker about the start label of the
application. It is used by the linker as a root symbol and to inform the debugger
where to start execution.

The following lines illustrate how to use -D to create a symbol. If you need to use this
mechanism, add these options to your command line like this:

--define_symbol NrOfElements=10
--config_def HEAP_SIZE=1024

The linker configuration file can look like this:

define memory Mem with size = 4G;
define region ROM = Mem:[from 0x00000 size 0x10000];
define region RAM = Mem:[from 0x20000 size 0x10000];

/* Export of symbol */
export symbol MY_HEAP_SIZE;

/* Setup a heap area with a size defined by an ILINK option */
define block MyHEAP with size = MY_HEAP_SIZE, alignment = 8 {};

place in RAM { block MyHEAP };

AFE1_AFE2-1:1

210

Checksum calculation for verifying image integrity

IAR C/C++ Development Guide
Compiling and Linking for Arm

Add these lines to your application source code:

#include <stdlib.h>

/* Use symbol defined by ILINK option to dynamically allocate an
array of elements with specified size. The value takes the form
of a label.
 */
extern int NrOfElements;

typedef char Elements;
Elements *GetElementArray()
{
 return malloc(sizeof(Elements) * (long) &NrOfElements);
}

/* Use a symbol defined by ILINK option, a symbol that in the
 * configuration file was made available to the application.
 */
extern char MY_HEAP_SIZE;

/* Declare the section that contains the heap. */
#pragma section = "MYHEAP"

char *MyHeap()
{
 /* First get start of statically allocated section, */
 char *p = __section_begin("MYHEAP");

 /* ...then we zero it, using the imported size. */
 for (int i = 0; i < (int) &MY_HEAP_SIZE; ++i)
 {
 p[i] = 0;
 }
 return p;
}

Checksum calculation for verifying image integrity
This section contains information about checksum calculation:

● Briefly about checksum calculation, page 211

● Calculating and verifying a checksum, page 212

● Troubleshooting checksum calculation, page 217

For more information, see also The IAR ELF Tool—ielftool, page 535.

AFE1_AFE2-1:1

Application-related considerations

211

BRIEFLY ABOUT CHECKSUM CALCULATION

You can use a checksum to verify that the image is the same at runtime as when the
image’s original checksum was generated. In other words, to verify that the image has
not been corrupted.

This works as follows:

● You need an initial checksum.

You can either use the IAR ELF Tool—ielftool—to generate an initial checksum
or you might have a third-party checksum available.

● You must generate a second checksum during runtime.

You can either add specific code to your application source code for calculating a
checksum during runtime or you can use some dedicated hardware on your device
for calculating a checksum during runtime.

● You must add specific code to your application source code for comparing the two
checksums and take an appropriate action if they differ.

If the two checksums have been calculated in the same way, and if there are no errors
in the image, the checksums should be identical. If not, you should first suspect that
the two checksums were not generated in the same way.

No matter which solutions you use for generating the two checksum, you must make
sure that both checksums are calculated in the exact same way. If you use ielftool for
the initial checksum and use a software-based calculation during runtime, you have full
control of the generation for both checksums. However, if you are using a third-party
checksum for the initial checksum or some hardware support for the checksum
calculation during runtime, there might be additional requirements that you must
consider.

For the two checksums, there are some choices that you must always consider and there
are some choices to make only if there are additional requirements. Still, all of the details
must be the same for both checksums.

Always consider:

● Checksum range

The memory range (or ranges) that you want to verify by means of checksums.
Typically, you might want to calculate a checksum for all ROM memory. However,
you might want to calculate a checksum only for specific ranges. Remember that:

● It is OK to have several ranges for one checksum.

● The checksum must be calculated from the lowest to the highest address for
every memory range.

● Each memory range must be verified in the same order as defined, for example,
0x100–0x1FF,0x400–0x4FF is not the same as 0x400–0x4FF,0x100–0x1FF.

AFE1_AFE2-1:1

212

Checksum calculation for verifying image integrity

IAR C/C++ Development Guide
Compiling and Linking for Arm

● If several checksums are used, you should place them in sections with unique
names and use unique symbol names.

● A checksum should never be calculated on a memory range that contains a
checksum or a software breakpoint.

● Algorithm and size of checksum

You should consider which algorithm is most suitable in your case. There are two
basic choices, Sum—a simple arithmetic algorithm—or CRC—which is the most
commonly used algorithm. For CRC there are different sizes to choose for the
checksum, 2, 4, or 8 bytes where the predefined polynomials are wide enough to suit
the size, for more error detecting power. The predefined polynomials work well for
most, but possibly not for all data sets. If not, you can specify your own polynomial.
If you just want a decent error detecting mechanism, use the predefined CRC
algorithm for your checksum size, typically CRC16 or CRC32.

Note: For an n-bit polynomial, the n:th bit is always considered to be set. For a 16-bit
polynomial—for example, CRC16—this means that 0x11021 is the same as
0x1021.

For more information about selecting an appropriate polynomial for data sets with
non-uniform distribution, see for example section 3.5.3 in Tannenbaum, A.S.,
Computer Networks, Prentice Hall 1981, ISBN: 0131646990.

● Fill

Every byte in the checksum range must have a well-defined value before the
checksum can be calculated. Typically, bytes with unknown values are pad bytes that
have been added for alignment. This means that you must specify which fill pattern
to be used during calculation, typically 0xFF or 0x00.

● Initial value

The checksum must always have an explicit initial value.

In addition to these mandatory details, there might be other details to consider.
Typically, this might happen when you have a third-party checksum, you want the
checksum be compliant with the Rocksoft™ checksum model, or when you use
hardware support for generating a checksum during runtime. ielftool also provides
support for controlling alignment, complement, bit order, byte order within words, and
checksum unit size.

CALCULATING AND VERIFYING A CHECKSUM

In this example procedure, a checksum is calculated for ROM memory from 0x8002 up
to 0x8FFF and the 2-byte calculated checksum is placed at 0x8000.

1 If you are using ielftool from the command line, you must first allocate a memory
location for the calculated checksum.

AFE1_AFE2-1:1

Application-related considerations

213

Note: If you instead are using the IDE (and not the command line), the __checksum,
__checksum_begin, and __checksum_end symbols, and the .checksum section are
automatically allocated when you calculate the checksum, which means that you can
skip this step.

You can allocate the memory location in two ways:

● By creating a global C/C++ or assembler constant symbol with a proper size,
residing in a specific section—in this example, .checksum

● By using the linker option --place_holder.

For example, to allocate a 2-byte space for the symbol __checksum in the section
.checksum, with alignment 4, specify:

--place_holder __checksum,2,.checksum,4

2 The .checksum section will only be included in your application if the section appears
to be needed. If the checksum is not needed by the application itself, use the linker
option --keep=__checksum (or the linker directive keep) to force the section to be
included.

Alternatively, choose Project>Options>Linker>Output and specify __checksum:

3 To control the placement of the .checksum section, you must modify the linker
configuration file. For example, it can look like this (note the handling of the block
CHECKSUM):

define block CHECKSUM { ro section .checksum };
place in ROM_region { ro, first block CHECKSUM };

AFE1_AFE2-1:1

214

Checksum calculation for verifying image integrity

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: It is possible to skip this step, but in that case the .checksum section will
automatically be placed with other read-only data.

4 When configuring ielftool to calculate a checksum, there are some basic choices to
make:

● Checksum algorithm

Choose which checksum algorithm you want to use. In this example, the CRC16
algorithm is used.

● Memory range

Using the IDE, you can specify one memory range for which the checksum should
be calculated. From the command line, you can specify any ranges.

● Fill pattern

Specify a fill pattern—typically 0xFF or 0x00—for bytes with unknown values. The
fill pattern will be used in all checksum ranges.

For more information, see Briefly about checksum calculation, page 211.

To run ielftool from the IDE, choose Project>Options>Linker>Checksum and
make your settings, for example:

In the simplest case, you can ignore (or leave with default settings) these options:
Complement, Bit order, Reverse byte order within word, and Checksum unit size.

To run ielftool from the command line, specify the command, for example, like this:

ielftool --fill=0x00;0x8002–0x8FFF
--checksum=__checksum:2,crc16;0x8002–0x8FFF sourceFile.out
destinationFile.out

AFE1_AFE2-1:1

Application-related considerations

215

Note: ielftool needs an unstripped input ELF image. If you use the linker option
--strip, remove it and use the ielftooloption --strip instead.

The checksum will be created later on when you build your project and will be
automatically placed in the specified symbol __checksum in the section .checksum.

5 You can specify several ranges instead of only one range.

If you are using the IDE, perform these steps:

● Choose Project>Options>Linker>Checksum and make sure to deselect Fill
unused code memory.

● Choose Project>Options>Build Actions and specify the ranges together with the
rest of the required commands in the Post-build command line text field, for
example like this:

$TOOLKIT_DIR$\bin\ielftool $PROJ_DIR$\debug\exe\output.out
$PROJ_DIR$\debug\exe\output.out
--fill 0x0;0x0-0x3FF;0x8002-0x8FFF
--checksum=__checksum:2,crc16;0x0-0x3FF;0x8002-0x8FFF

In your example, replace output.out with the name of your output file.

If you are using the command line, specify the ranges, for example like this:

ielftool output.out output.out --fill 0x0;0x0-0x3FF;0x8002-0x8FFF
--checksum=__checksum:2,crc16;0x0-0x3FF;0x8002-0x8FFF

In your example, replace output.out with the name of your output file.

AFE1_AFE2-1:1

216

Checksum calculation for verifying image integrity

IAR C/C++ Development Guide
Compiling and Linking for Arm

6 Add a function for checksum calculation to your source code. Make sure that the
function uses the same algorithm and settings as for the checksum calculated by
ielftool. For example, a slow variant of the crc16 algorithm but with small memory
footprint (in contrast to the fast variant that uses more memory):

unsigned short SmallCrc16(uint16_t
 sum,
 unsigned char *p,
 unsigned int len)
{
 while (len--)
 {
 int i;
 unsigned char byte = *(p++);

 for (i = 0; i < 8; ++i)
 {
 unsigned long oSum = sum;
 sum <<= 1;
 if (byte & 0x80)
 sum |= 1;
 if (oSum & 0x8000)
 sum ^= 0x1021;
 byte <<= 1;
 }
 }
 return sum;
}

You can find the source code for this checksum algorithm in the arm\src\linker
directory of your product installation.

7 Make sure that your application also contains a call to the function that calculates the
checksum, compares the two checksums, and takes appropriate action if the checksum
values do not match.

This code gives an example of how the checksum can be calculated for your application
and to be compared with the ielftool generated checksum:

AFE1_AFE2-1:1

Application-related considerations

217

/* The calculated checksum */

/* Linker generated symbols */
extern unsigned short const __checksum;
extern int __checksum_begin;
extern int __checksum_end;

void TestChecksum()
{
 unsigned short calc = 0;
 unsigned char zeros[2] = {0, 0};

 /* Run the checksum algorithm */
 calc = SmallCrc16(0,
 (unsigned char *) &__checksum_begin,
 ((unsigned char *) &__checksum_end -
 ((unsigned char *) &__checksum_begin)+1));

 /* Fill the end of the byte sequence with zeros. */
 calc = SmallCrc16(calc, zeros, 2);

 /* Test the checksum */
 if (calc != __checksum)
 {
 printf("Incorrect checksum!\n");
 abort(); /* Failure */
 }

 /* Checksum is correct */
}

8 Build your application project and download it.

During the build, ielftool creates a checksum and places it in the specified symbol
__checksum in the section .checksum.

9 Choose Download and Debug to start the C-SPY debugger.

During execution, the checksum calculated by ielftool and the checksum calculated
by your application should be identical.

TROUBLESHOOTING CHECKSUM CALCULATION

If the two checksums do not match, there are several possible causes. These are some
troubleshooting hints:

● If possible, start with a small example when trying to get the checksums to match.

AFE1_AFE2-1:1

218

AEABI compliance

IAR C/C++ Development Guide
Compiling and Linking for Arm

● Verify that the exact same memory range or ranges are used in both checksum
calculations.

To help you do this, ielftool lists the ranges for which the checksum is calculated
on stdout about the exact addresses that were used and the order in which they were
accessed.

● Make sure that all checksum symbols are excluded from all checksum calculations.

Compare the checksum placement with the checksum range and make sure they do
not overlap. You can find information in the Build message window after ielftool
has generated a checksum.

● Verify that the checksum calculations use the same polynomial.

● Verify that the bits in the bytes are processed in the same order in both checksum
calculations, from the least to the most significant bit or the other way around. You
control this with the Bit order option (or from the command line, the -m parameter
of the --checksum option).

● If you are using the small variant of CRC, check whether you need to feed
additional bytes into the algorithm.

The number of zeros to add at the end of the byte sequence must match the size of
the checksum, in other words, one zero for a 1-byte checksum, two zeros for a 2-byte
checksum, four zeros for a 4-byte checksum, and eight zeros for an 8-byte checksum.

● Any breakpoints in flash memory change the content of the flash. This means that
the checksum which is calculated by your application will no longer match the
initial checksum calculated by ielftool. To make the two checksums match
again, you must disable all your breakpoints in flash and any breakpoints set in flash
by C-SPY internally. The stack plugin and the debugger option Run to both require
C-SPY to set breakpoints. Read more about possible breakpoint consumers in the
C-SPY® Debugging Guide for Arm.

● By default, a symbol that you have allocated in memory by using the linker option
--place_holder is considered by C-SPY to be of the type int. If the size of the
checksum is different than the size of an int, you can change the display format of
the checksum symbol to match its size.

In the C-SPY Watch window, select the symbol and choose Show As from the
context menu. Choose the display format that matches the size of the checksum
symbol.

AEABI compliance
The IAR build tools for Arm support the Embedded Application Binary Interface for
Arm, AEABI, defined by Arm Limited. This interface is based on the Intel IA64 ABI
interface. The advantage of adhering to AEABI is that any such module can be linked

AFE1_AFE2-1:1

Application-related considerations

219

with any other AEABI-compliant module, even modules produced by tools provided by
other vendors.

The IAR build tools for Arm support the following parts of the AEABI:

The IAR build tools only support a bare metal platform, that is a ROM-based system
that lacks an explicit operating system.

Note:

● The AEABI is specified for C89 only

● The AEABI does not specify C++ library compatibility

● Neither the size of an enum or of wchar_t is constant in the AEABI.

If AEABI compliance is enabled, certain preprocessor constants become real constant
variables instead.

LINKING AEABI-COMPLIANT MODULES USING THE IAR
ILINK LINKER

When building an application using the IAR ILINK Linker, the following types of
modules can be combined:

● Modules produced using IAR build tools, both AEABI-compliant modules as well
as modules that are not AEABI-compliant

● AEABI-compliant modules produced using build tools from another vendor.

Note: To link a module produced by a compiler from another vendor, extra support
libraries from that vendor might be required.

The IAR ILINK Linker automatically chooses the appropriate standard C/C++ libraries
to use based on attributes from the object files. Imported object files might not have all
these attributes. Therefore, you might need to help ILINK choose the standard library
by verifying one or more of the following details:

● Include at least one module built with the IAR C/C++ Compiler for Arm.

● The used CPU by specifying the --cpu linker option

AAPCS Procedure Call Standard for the Arm architecture

CPPABI C++ ABI for the Arm architecture

AAELF ELF for the Arm architecture

AADWARF DWARF for the Arm architecture

RTABI Runtime ABI for the Arm architecture

CLIBABI C library ABI for the Arm architecture

AFE1_AFE2-1:1

220

AEABI compliance

IAR C/C++ Development Guide
Compiling and Linking for Arm

● If full I/O is needed, make sure to link with a Full library configuration in the
standard library

Potential incompatibilities include but are not limited to:

● The size of enum

● The size of wchar_t

● The calling convention

● The instruction set used.

When linking AEABI-compliant modules, also consider the information in the chapters
Linking using ILINK and Linking your application.

LINKING AEABI-COMPLIANT MODULES USING A
THIRD-PARTY LINKER

If you have a module produced using the IAR C/C++ Compiler and you plan to link that
module using a linker from a different vendor, that module must be AEABI-compliant,
see Enabling AEABI compliance in the compiler, page 220.

In addition, if that module uses any of the IAR-specific compiler extensions, you must
make sure that those features are also supported by the tools from the other vendor. Note
specifically:

● Support for the following extensions must be verified: #pragma pack,
__no_init, __root, and __ramfunc

● The following extensions are harmless to use: #pragma location/@, __arm,
__thumb, __swi, __irq, __fiq, and __nested.

ENABLING AEABI COMPLIANCE IN THE COMPILER

You can enable AEABI compliance in the compiler by setting the --aeabi option. In
this case, you must also use the --guard_calls option.

In the IDE, use the Project>Options>C/C++ Compiler>Extra Options page to
specify the --aeabi and --guard_calls options.

On the command line, use the options --aeabi and --guard_calls to enable AEABI
support in the compiler.

Alternatively, to enable support for AEABI for a specific system header file, you must
define the preprocessor symbol _AEABI_PORTABILITY_LEVEL to non-zero prior to

AFE1_AFE2-1:1

Application-related considerations

221

including a system header file, and make sure that the symbol AEABI_PORTABLE is set
to non-zero after the inclusion of the header file:

#define _AEABI_PORTABILITY_LEVEL 1
#undef _AEABI_PORTABLE
#include <header.h>
#ifndef _AEABI_PORTABLE
 #error "header.h not AEABI compatible"
#endif

CMSIS integration
The arm\CMSIS subdirectory contains CMSIS (Cortex Microcontroller Software
Interface Standard) and CMSIS DSP header and library files, and documentation. For
more information, see http://www.arm.com/cmsis.

The special header file inc\c\cmsis_iar.h is provided as a CMSIS adaptation of the
current version of the IAR C/C++ Compiler.

CMSIS DSP LIBRARY

IAR Embedded Workbench comes with prebuilt CMSIS DSP libraries in the
arm\CMSIS\Lib\IAR directory. The names of the library files are constructed in this
way:

iar_cortexM<0|3|4><l|b>[f]_math.a

where <0|3|4> selects the Cortex–M variant, <l|b> selects the byte order, and [f]
indicates that the library is built for FPU (Cortex–M4 only).

The libraries for Cortex-M4 are also applicable to Cortex-M7.

CUSTOMIZING THE CMSIS DSP LIBRARY

The source code of the CMSIS DSP library is provided in the
arm\CMSIS\DSP_Lib\Source directory. You can find an IAR Embedded Workbench
project which is prepared for building a customized DSP library in the
arm\CMSIS\DSP_Lib\Source\IAR directory.

BUILDING WITH CMSIS ON THE COMMAND LINE

This section contains examples of how to build your CMSIS-compatible application on
the command line.

CMSIS only (that is without the DSP library)

iccarm -I EW_DIR\arm\CMSIS\Include

AFE1_AFE2-1:1

222

Arm TrustZone®

IAR C/C++ Development Guide
Compiling and Linking for Arm

With the DSP library, for Cortex-M4, little-endian, and with FPU

iccarm --endian=little --cpu=Cortex-M4 --fpu=VFPv4_sp -I
EW_DIR\arm\CMSIS\Include -D ARM_MATH_CM4

ilinkarm EW_DIR\arm\CMSIS\Lib\IAR\iar_cortexM3l_math.a

BUILDING WITH CMSIS IN THE IDE

Choose Project>Options>General Options>Library Configuration to enable
CMSIS support.

When enabled, CMSIS include paths and the DSP library will automatically be used.
For more information, see the IDE Project Management and Building Guide for Arm.

Arm TrustZone®
The Arm TrustZone® technology is a System on Chip (SOC) and CPU system-wide
approach to security.

The Arm TrustZone for ArmV8-M adds a security extension (CMSE) to the Armv8-M
core. This extension includes two modes of execution—secure and non-secure. It also
adds memory protection and instructions for validating memory access and controlled
transition between the two modes.

To use TrustZone for Armv8-M, build two separate images—one for secure mode and
one for non-secure mode. The secure image can export function entries that can be used
by the non-secure image.

The IAR build tools support TrustZone by means of intrinsic functions, linker options,
compiler options, predefined preprocessor symbols, extended keywords, and the section
Veneer$$CMSE.

You can find the data types and utility functions needed for working with TrustZone in
the header file arm_cmse.h.

The function type attributes __cmse_nonsecure_call and
__cmse_nonsecure_entry add code to clear the used registers when calling from
secure code to non-secure code.

The IAR build tools follow the standard interface for development tools targeting
Cortex-M Security Extensions (CMSE), with the following exceptions:

● Variadic secure entry functions are not allowed.

● Secure entry functions with parameters or return values that do not fit in registers
are not allowed.

AFE1_AFE2-1:1

Application-related considerations

223

● Non-secure calls with parameters or return values that do not fit in registers are not
allowed.

● Non-secure calls with parameters or return values in floating-point registers.

● The compiler option --cmse requires the architecture Armv8-M with security
extensions, and is not supported when building ROPI (read-only
position-independent) images or RWPI (read-write position-independent) images.

For more information about Arm TrustZone, see www.arm.com.

AN EXAMPLE USING THE ARMV8-M SECURITY EXTENSIONS
(CMSE)

In the arm\src\ARMv8M_Secure directory, you can find an example project that
demonstrates the use of Arm TrustZone and CMSE.

The example consists of two projects:

● hello_s: The secure part of the application

● hello_ns: The non-secure part of the application

Note: You must build the secure project before building the non-secure project.

There are two entry functions in hello_s, available to hello_ns via secure gateways
in a non-secure callable region:

● secure_hello: Prints a greeting, in the style of the classic Hello world
example.

● register_secure_goodbye: A callback that returns a string printed on exiting
the secure part.

The linker will automatically generate the code for the needed secure gateways and
place them in the section Veneers$$CMSE.

To set up and build the example:

1 Open the example workspace hello_s.eww located in
arm\src\ARMv8M_Secure\Hello_Secure.

2 Set up the project hello_s to run in secure mode by choosing
Project>Options>General Options>Target and then selecting the options
TrustZone and Mode: Secure.

3 Set up the project hello_ns to run in non-secure mode by choosing
Project>Options>General Options>Target and then selecting the options
TrustZone and Mode: Non-secure.

The non-secure part must populate a small vector at 0x200000 with addresses to the
initialization routine, non-secure top of stack, and non-secure main. This vector is used

AFE1_AFE2-1:1

224

Arm TrustZone®

IAR C/C++ Development Guide
Compiling and Linking for Arm

by the secure part to set up and interact with the non-secure part. In this example, this is
done with the following code in nonsecure_hello.c:

/* Interface towards the secure part */
#pragma location=NON_SECURE_ENTRY_TABLE
__root const non_secure_init_t init_table =
{
 __iar_data_init3, /* initialization function */
 __section_end("CSTACK"), /* non-secure stack */
 main_ns /* non-secure main */
};

4 When the secure project is built, the linker will automatically generate an import
library file for the non-secure part that only includes references to functions in the
secure part that can be called from the non-secure part. Specify this file by using
Project>Options>Linker>Output>TrustZone import library.

5 Build the secure project.

6 Include the TrustZone import library file manually in the project hello_ns by
specifying an additional library: Project>Options>Linker>Library>Additional
libraries.

7 Build the non-secure project.

8 The secure project must specify the non-secure project output file as an extra image
that should be loaded by the debugger. To do this, use
Project>Options>Debugger>Images>Download extra images.

To debug the example:

1 To debug in the simulator, set the hello_s project as the active project by
right-clicking on the project and choosing Set as Active.

2 Choose Project>Options>Debugger>Driver and select Simulator.

3 Choose Simulator>Memory Configuration. Make sure that the option Use ranges
based on is deselected.

4 Select Use manual ranges and add the following new ranges:

Access type Start address End address

RAM 0x0000000 0x003FFFFF

RAM 0x2000000 0x203FFFFF

SFR 0x40000000 0x5FFFFFFF

SFR 0xE0000000 0xE00FFFFF

Table 20: Memory ranges for TrustZone example

AFE1_AFE2-1:1

Application-related considerations

225

5 Click OK to close the Memory Configuration dialog box.

6 Start C-SPY by choosing Project>Download and Debug.

7 Choose View>Terminal I/O to open the Terminal I/O window.

8 Choose Debug>Go to start the execution.

9 The Terminal I/O window should now print this text:

Hello from secure World!
Hello from non-secure World!
Goodbye, for now.

Patching symbol definitions using $Super$$ and $Sub$$
Using the $Sub$$ and $Super$$ special patterns, you can patch existing symbol
definitions in situations where you would otherwise not be able to modify the symbol,
for example, when a symbol is located in an external library or in ROM code.

The $Super$$ special pattern identifies the original unpatched function used for calling
the original function directly.

The $Sub$$ special pattern identifies the new function that is called instead of the
original function. You can use the $Sub$$ special pattern to add processing before or
after the original function.

AN EXAMPLE USING THE $SUPER$$ AND $SUB$$ PATTERNS

The following example shows how to use the $Super$$ and $Sub$$ patterns to insert
a call to the function ExtraFunc() before the call to the legacy function foo().

extern void ExtraFunc(void);
extern void $Super$$foo(void);

/* this function is called instead of the original foo() *\
void $Sub$$foo(void)
{
 ExtraFunc(); /* does some extra setup work */
 $Super$$foo(); /* calls the original foo() function */
 /* To avoid calling the original foo() function
 * omit the $Super$$foo(); function call.
 */
}

AFE1_AFE2-1:1

226

Patching symbol definitions using $Super$$ and $Sub$$

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

227

Efficient coding for
embedded applications
● Selecting data types

● Controlling data and function placement in memory

● Controlling compiler optimizations

● Facilitating good code generation

Selecting data types
For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.

● Use int or long instead of char or short whenever possible, to avoid sign
extension or zero extension. In particular, loop indexes should always be int or
long to minimize code generation. Also, in Thumb mode, accesses through the
stack pointer (SP) is restricted to 32-bit data types, which further emphasizes the
benefits of using one of these data types.

● Use unsigned data types, unless your application really requires signed values.

● Be aware of the costs of using 64-bit data types, such as double and long long.

● Bitfields and packed structures generate large and slow code.

● Using floating-point types on a microprocessor without a math co-processor is
inefficient, both in terms of code size and execution speed.

● Declaring a pointer to const data tells the calling function that the data pointed to
will not change, which opens for better optimizations.

For information about representation of supported data types, pointers, and structures
types, see the chapter Data representation.

AFE1_AFE2-1:1

228

Selecting data types

IAR C/C++ Development Guide
Compiling and Linking for Arm

FLOATING-POINT TYPES

Using floating-point types on a microprocessor without a math coprocessor is
inefficient, both in terms of code size and execution speed. Therefore, you should
consider replacing code that uses floating-point operations with code that uses integers,
because these are more efficient.

The compiler supports two floating-point formats—32 and 64 bits. The 32-bit
floating-point type float is more efficient in terms of code size and execution speed.
However, the 64-bit format double supports higher precision and larger numbers.

In the compiler, the floating-point type float always uses the 32-bit format, and the
type double always uses the 64-bit format.

Unless the application requires the extra precision that 64-bit floating-point numbers
give, we recommend using 32-bit floating-point numbers instead.

By default, a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision. In the example below a is converted from a float to a double, the double
constant 1.0 is added and the result is converted back to a float:

double Test(float a)
{
 return a + 1.0;
}

To treat a floating-point constant as a float rather than as a double, add the suffix f
to it, for example:

double Test(float a)
{
 return a + 1.0f;
}

For more information about floating-point types, see Basic data types—floating-point
types, page 356.

ALIGNMENT OF ELEMENTS IN A STRUCTURE

Some Arm cores require that when accessing data in memory, the data must be aligned.
Each element in a structure must be aligned according to its specified type requirements.
This means that the compiler might need to insert pad bytes to keep the alignment
correct.

There are situations when this can be a problem:

● There are external demands, for example, network communication protocols are
usually specified in terms of data types with no padding in between

AFE1_AFE2-1:1

Efficient coding for embedded applications

229

● You need to save data memory.

For information about alignment requirements, see Alignment, page 349.

Use the #pragma pack directive or the __packed data type attribute for a tighter
layout of the structure. The drawback is that each access to an unaligned element in the
structure will use more code.

Alternatively, write your own customized functions for packing and unpacking
structures. This is a more portable way, which will not produce any more code apart
from your functions. The drawback is the need for two views on the structure data—
packed and unpacked.

For more information about the #pragma pack directive, see pack, page 400.

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Example

In this example, the members in the anonymous union can be accessed, in function F,
without explicitly specifying the union name:

struct S
{
 char mTag;
 union
 {
 long mL;
 float mF;
 };
} St;

void F(void)
{
 St.mL = 5;
}

AFE1_AFE2-1:1

230

Controlling data and function placement in memory

IAR C/C++ Development Guide
Compiling and Linking for Arm

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in this example:

__no_init volatile
union
{
 unsigned char IOPORT;
 struct
 {
 unsigned char way: 1;
 unsigned char out: 1;
 };
} @ 0x1000;

/* The variables are used here. */
void Test(void)
{
 IOPORT = 0;
 way = 1;
 out = 1;
}

This declares an I/O register byte IOPORT at address 0x1000. The I/O register has 2 bits
declared, Way and Out—both the inner structure and the outer union are anonymous.

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _A_ to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_IOPORT.

Controlling data and function placement in memory
The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms and know which one is best suited for different situations. You can use:

● The @ operator and the #pragma location directive for absolute placement.

Using the @ operator or the #pragma location directive, you can place individual
global and static variables at absolute addresses. Note that it is not possible to use this
notation for absolute placement of individual functions. For more information, see
Data placement at an absolute location, page 231.

AFE1_AFE2-1:1

Efficient coding for embedded applications

231

● The @ operator and the #pragma location directive for section placement.

Using the @ operator or the #pragma location directive, you can place individual
functions, variables, and constants in named sections. The placement of these
sections can then be controlled by linker directives. For more information, see Data
and function placement in sections, page 232.

● The @ operator and the #pragma location directive for register placement

Use the @ operator or the #pragma location directive to place individual global
and static variables in registers. The variables must be declared __no_init. This is
useful for individual data objects that must be located in a specific register.

● Using the --section option, you can set the default segment for functions,
variables, and constants in a particular module. For more information, see --section,
page 302.

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses.

To place a variable at an absolute address, the argument to the @ operator and the
#pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfill the alignment requirement for the variable
that should be located.

Note: All declarations of __no_init variables placed at an absolute address are
tentative definitions. Tentatively defined variables are only kept in the output from the
compiler if they are needed in the module being compiled. Such variables will be
defined in all modules in which they are used, which will work as long as they are
defined in the same way. The recommendation is to place all such declarations in header
files that are included in all modules that use the variables.

Other variables placed at an absolute address use the normal distinction between
declaration and definition. For these variables, you must provide the definition in only
one module, normally with an initializer. Other modules can refer to the variable by
using an extern declaration, with or without an explicit address.

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ 0xFF2000;/* OK */

The next example contains two const declared objects. The first one is not initialized,
and the second one is initialized to a specific value. (The first case is useful for
configuration parameters, because they are accessible from an external interface.) Both

AFE1_AFE2-1:1

232

Controlling data and function placement in memory

IAR C/C++ Development Guide
Compiling and Linking for Arm

objects are placed in ROM. Note that in the second case, the compiler is not obliged to
actually read from the variable, because the value is known.

#pragma location=0xFF2002
__no_init const int beta; /* OK */

const int gamma @ 0xFF2004 = 3; /* OK */

In the first case, the value is not initialized by the compiler—the value must be set by
other means. The typical use is for configurations where the values are loaded to ROM
separately, or for special function registers that are read-only.

__no_init int epsilon @ 0xFF2007; /* Error, misaligned. */

C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain
a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x100; /* Bad in C++ */

the linker will report that more than one variable is located at address 0x100.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

/* The extern keyword makes x public. */
extern volatile const __no_init int x @ 0x100;

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.

DATA AND FUNCTION PLACEMENT IN SECTIONS

The following method can be used for placing data or functions in named sections other
than default:

● The @ operator, alternatively the #pragma location directive, can be used for
placing individual variables or individual functions in named sections. The named
section can either be a predefined section, or a user-defined section.

● The --section option can be used for placing variables and functions, which are
parts of the whole compilation unit, in named sections.

C++ static member variables can be placed in named sections just like any other static
variable.

If you use your own sections, in addition to the predefined sections, the sections must
also be defined in the linker configuration file.

AFE1_AFE2-1:1

Efficient coding for embedded applications

233

Note: Take care when explicitly placing a variable or function in a predefined section
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
a malfunctioning application. Carefully consider the circumstances—there might be
strict requirements on the declaration and use of the function or variable.

The location of the sections can be controlled from the linker configuration file.

For more information about sections, see the chapter Section reference.

Examples of placing variables in named sections

In the following examples, a data object is placed in a user-defined section. Note that
you must as always ensure that the section is placed in the appropriate memory area
when linking.

__no_init int alpha @ "MY_NOINIT"; /* OK */

#pragma location="MY_CONSTANTS"
const int beta = 42; /* OK */

const int gamma @ "MY_CONSTANTS" = 17;/* OK */
int theta @ "MY_ZEROS"; /* OK */
int phi @ "MY_INITED" = 4711; /* OK */

The linker will normally arrange for the correct type of initialization for each variable.
If you want to control or suppress automatic initialization, you can use the initialize
and do not initialize directives in the linker configuration file.

Examples of placing functions in named sections

void f(void) @ "MY_FUNCTIONS";

void g(void) @ "MY_FUNCTIONS"
{
}

#pragma location="MY_FUNCTIONS"
void h(void);

DATA PLACEMENT IN REGISTERS

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables in a register.

To place a variable in a register, the argument to the @ operator and the #pragma
location directive should be an identifier that corresponds to an Arm core register in

AFE1_AFE2-1:1

234

Controlling compiler optimizations

IAR C/C++ Development Guide
Compiling and Linking for Arm

the range R4–R11 (R9 cannot be specified in combination with the --rwpi command
line option).

A variable can be placed in a register only if it is declared as __no_init, has file scope,
and its size is four bytes. A variable placed in a register does not have a memory address,
so the address operator & cannot be used.

Within a module where a variable is placed in a register, the specified register will only
be used for accessing that variable. The value of the variable is preserved across function
calls to other modules because the registers R4–R11 are callee saved, and as such they
are restored when execution returns. However, the value of a variable placed in a register
is not always preserved as expected:

● In an exception handler or library callback routine (such as the comparator function
passed to qsort) the value might not be preserved. The value will be preserved if
the command line option --lock_regs is used for locking the register in all
modules of the application, including library modules.

● In a fast interrupt handler, the value of a variable in R8–R11 is not preserved from
outside the handler, because these registers are banked.

● The longjmp function and C++ exceptions might restore variables placed in
registers to old values, unlike other variables with static storage duration which are
not restored.

The linker does not prevent modules from placing different variables in the same
register. Variables in different modules can be placed in the same register, and another
module could use the register for other purposes.

Note: A variable placed in a register should be defined in an include file, to be included
in every module that uses the variable. An unused definition in a module will cause the
register to not be used in that module.

Controlling compiler optimizations
The compiler performs many transformations on your application to generate the best
possible code. Examples of such transformations are storing values in registers instead
of memory, removing superfluous code, reordering computations in a more efficient
order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, because
some optimizations are performed by the linker. For instance, all unused functions and
variables are removed and not included in the final output.

AFE1_AFE2-1:1

Efficient coding for embedded applications

235

SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute quickly into a separate file and compile it for
minimal execution time, and the rest of the code for minimal code size. This will give a
small program, which is still fast enough where it matters.

You can also exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. See optimize, page 398, for
information about the pragma directive.

MULTI-FILE COMPILATION UNITS

In addition to applying different optimizations to different source files or even functions,
you can also decide what a compilation unit consists of—one or several source code
files.

By default, a compilation unit consists of one source file, but you can also use multi-file
compilation to make several source files in a compilation unit. The advantage is that
interprocedural optimizations such as inlining and cross jump have more source code to
work on. Ideally, the whole application should be compiled as one compilation unit.
However, for large applications this is not practical because of resource restrictions on
the host computer. For more information, see --mfc, page 285.

Note: Only one object file is generated, and therefore all symbols will be part of that
object file.

If the whole application is compiled as one compilation unit, it is useful to make the
compiler also discard unused public functions and variables before the interprocedural
optimizations are performed. Doing this limits the scope of the optimizations to
functions and variables that are actually used. For more information, see
--discard_unused_publics, page 276.

AFE1_AFE2-1:1

236

Controlling compiler optimizations

IAR C/C++ Development Guide
Compiling and Linking for Arm

OPTIMIZATION LEVELS

The compiler supports different levels of optimizations. This table lists optimizations
that are typically performed on each level:

Note: Some of the performed optimizations can be individually enabled or disabled. For
more information, see Fine-tuning enabled transformations, page 237.

A high level of optimization might result in increased compile time, and will also most
likely make debugging more difficult, because it is less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope, or even occasionally display an incorrect value. At any time, if you
experience difficulties when debugging your code, try lowering the optimization level.

Optimization level Description

None (Best debug support) Variables live through their entire scope

Low Same as above but variables only live for as long as they are
needed, not necessarily through their entire scope

Medium Same as above, and:
Live-dead analysis and optimization
Dead code elimination
Redundant label elimination
Redundant branch elimination
Code hoisting
Peephole optimization
Some register content analysis and optimization
Common subexpression elimination
Code motion
Static clustering

High (Balanced) Same as above, and:
Instruction scheduling
Cross jumping
Advanced register content analysis and optimization
Loop unrolling
Function inlining
Type-based alias analysis

Table 21: Compiler optimization levels

AFE1_AFE2-1:1

Efficient coding for embedded applications

237

SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used—speed will trade size
for speed, whereas size will trade speed for size.

Note: One optimization sometimes enables other optimizations to be performed, and an
application might in some cases become smaller, even when optimizing for speed rather
than size.

If you use the optimization level High speed, the --no_size_constraints compiler
option relaxes the normal restrictions for code size expansion and enables more
aggressive optimizations.

You can choose an optimization goal for each module, or even individual functions,
using command line options and pragma directives (see -O, page 295 and optimize, page
398). For a small embedded application, this makes it possible to achieve acceptable
speed performance while minimizing the code size: Typically, only a few places in the
application need to be fast, such as the most frequently executed inner loops, or the
interrupt handlers.

Rather than compiling the whole application with High (Balanced) optimization, you
can use High (Size) in general, but override this to get High (Speed) optimization only
for those functions where the application needs to be fast.

Because of the unpredictable way in which different optimizations interact, where one
optimization can enable other optimizations, sometimes a function becomes smaller
when compiled with High (Speed) optimization than if High (Size) is used. Also, using
multi-file compilation (see --mfc, page 285) can enable many optimizations to improve
both speed and size performance. It is recommended that you experiment with different
optimization settings so that you can pick the best ones for your project.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IDE Function inlining, or
the #pragma optimize directive. These transformations can be disabled individually:

● Common subexpression elimination

● Loop unrolling

● Function inlining

● Code motion

● Type-based alias analysis

AFE1_AFE2-1:1

238

Controlling compiler optimizations

IAR C/C++ Development Guide
Compiling and Linking for Arm

● Static clustering

● Instruction scheduling.

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_cse, page 287.

Loop unrolling

Loop unrolling means that the code body of a loop, whose number of iterations can be
determined at compile time, is duplicated. Loop unrolling reduces the loop overhead by
amortizing it over several iterations.

This optimization is most efficient for smaller loops, where the loop overhead can be a
substantial part of the total loop body.

Loop unrolling, which can be performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Only relatively small loops
where the loop overhead reduction is noticeable will be unrolled. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To disable loop unrolling, use the command line option --no_unroll, see --no_unroll,
page 294.

Function inlining

Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the call. This
optimization normally reduces execution time, but might increase the code size.

For more information, see Inlining functions, page 86.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization

AFE1_AFE2-1:1

Efficient coding for embedded applications

239

level Medium and above, normally reduces code size and execution time. The resulting
code might however be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

For more information about the command line option, see --no_code_motion, page 287.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

Type-based alias analysis optimization assumes that all accesses to an object are
performed using its declared type or as a char type. This assumption lets the compiler
detect whether pointers can reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For application code
conforming to standard C or C++ application code, this optimization can reduce code
size and execution time. However, non-standard C or C++ code might result in the
compiler producing code that leads to unexpected behavior. Therefore, it is possible to
turn this optimization off.

Note: This option has no effect at optimization levels None, Low, and Medium.

For more information about the command line option, see --no_tbaa, page 292.

Example

short F(short *p1, long *p2)
{
 *p2 = 0;
 *p1 = 1;
 return *p2;
}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the long value that p2 points to. Therefore, it is known at compile
time that this function returns 0. However, in non-standard-conforming C or C++ code
these pointers could overlap each other by being part of the same union. If you use
explicit casts, you can also force pointers of different pointer types to point to the same
memory location.

Static clustering

When static clustering is enabled, static and global variables that are defined within the
same module are arranged so that variables that are accessed in the same function are

AFE1_AFE2-1:1

240

Facilitating good code generation

IAR C/C++ Development Guide
Compiling and Linking for Arm

stored close to each other. This makes it possible for the compiler to use the same base
pointer for several accesses.

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_clustering, page 286.

Instruction scheduling

The compiler features an instruction scheduler to increase the performance of the
generated code. To achieve that goal, the scheduler rearranges the instructions to
minimize the number of pipeline stalls emanating from resource conflicts within the
microprocessor.

For more information about the command line option, see --no_scheduling, page 291.

Facilitating good code generation
This section contains hints on how to help the compiler generate good code:

● Writing optimization-friendly source code, page 240

● Saving stack space and RAM memory, page 241

● Function prototypes, page 241

● Integer types and bit negation, page 242

● Protecting simultaneously accessed variables, page 243

● Accessing special function registers, page 243

● Passing values between C and assembler objects, page 244

● Non-initialized variables, page 244

WRITING OPTIMIZATION-FRIENDLY SOURCE CODE

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

● Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions can modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

● Avoid taking the address of local variables using the & operator. This is inefficient
for two main reasons. First, the variable must be placed in memory, and therefore
cannot be placed in a processor register. This results in larger and slower code.

AFE1_AFE2-1:1

Efficient coding for embedded applications

241

Second, the optimizer can no longer assume that the local variable is unaffected
over function calls.

● Module-local variables—variables that are declared static—are preferred over
global variables (non-static). Also, avoid taking the address of frequently accessed
static variables.

● The compiler is capable of inlining functions, see Function inlining, page 238. To
maximize the effect of the inlining transformation, it is good practice to place the
definitions of small functions called from more than one module in the header file
rather than in the implementation file. Alternatively, you can use multi-file
compilation. For more information, see Multi-file compilation units, page 235.

● Avoid using inline assembler without operands and clobbered resources. Instead,
use SFRs or intrinsic functions if available. Otherwise, use inline assembler with
operands and clobbered resources or write a separate module in assembler
language. For more information, see Mixing C and assembler, page 163.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that save memory and stack space:

● If stack space is limited, avoid long call chains and recursive functions.

● Avoid using large non-scalar types, such as structures, as parameters or return type.
To save stack space, you should instead pass them as pointers or, in C++, as
references.

FUNCTION PROTOTYPES

It is possible to declare and define functions using one of two different styles:

● Prototyped

● Kernighan & Ritchie C (K&R C)

Both styles are valid C, however it is strongly recommended to use the prototyped style,
and provide a prototype declaration for each public function in a header that is included
both in the compilation unit defining the function and in all compilation units using it.

The compiler will not perform type checking on parameters passed to functions declared
using K&R style. Using prototype declarations will also result in more efficient code in
some cases, as there is no need for type promotion for these functions.

To make the compiler require that all function definitions use the prototyped style, and
that all public functions have been declared before being defined, use the
Project>Options>C/C++ Compiler>Language 1>Require prototypes compiler
option (--require_prototypes).

AFE1_AFE2-1:1

242

Facilitating good code generation

IAR C/C++ Development Guide
Compiling and Linking for Arm

Prototyped style

In prototyped function declarations, the type for each parameter must be specified.

int Test(char, int); /* Declaration */

int Test(char ch, int i) /* Definition */
{
 return i + ch;
}

Kernighan & Ritchie style

In K&R style—pre-Standard C—it is not possible to declare a function prototyped.
Instead, an empty parameter list is used in the function declaration. Also, the definition
looks different.

For example:

int Test(); /* Declaration */

int Test(ch, i) /* Definition */
char ch;
int i;
{
 return i + ch;
}

INTEGER TYPES AND BIT NEGATION

In some situations, the rules for integer types and their conversion lead to possibly
confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size, and logical operations, especially bit
negation. Here, types also includes types of constants.

In some cases there might be warnings—for example, for constant conditional or
pointless comparison—in others just a different result than what is expected. Under
certain circumstances the compiler might warn only at higher optimizations, for
example, if the compiler relies on optimizations to identify some instances of constant
conditionals. In this example, an 8-bit character, a 32-bit integer, and two’s complement
is assumed:

void F1(unsigned char c1)
{
 if (c1 == ~0x80)
 ;
}

AFE1_AFE2-1:1

Efficient coding for embedded applications

243

Here, the test is always false. On the right hand side, 0x80 is 0x00000080, and
~0x00000080 becomes 0xFFFFFF7F. On the left hand side, c1 is an 8-bit unsigned
character, so it cannot be larger than 255. Also, it cannot be negative, which means that
the integral promoted value can never have the topmost 24 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example, by interrupt routines or by
code executing in separate threads, must be properly marked and have adequate
protection. The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable—for example, keeping track of the variable
in registers—will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code.

For more information about the volatile type qualifier and the rules for accessing
volatile objects, see Declaring objects volatile, page 361.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several Arm devices are included in the IAR product
installation. The header files are named iodevice.h and define the processor-specific
special function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

SFRs with bitfields are declared in the header file. This example is from
ioks32c5000a.h:

__no_init volatile union
{
 unsigned short mwctl2;
 struct
 {
 unsigned short edr: 1;
 unsigned short edw: 1;
 unsigned short lee: 2;
 unsigned short lemd: 2;
 unsigned short lepl: 2;
 } mwctl2bit;
} @ 0x1000;

AFE1_AFE2-1:1

244

Facilitating good code generation

IAR C/C++ Development Guide
Compiling and Linking for Arm

/* By including the appropriate include file in your code,
 * it is possible to access either the whole register or any
 * individual bit (or bitfields) from C code as follows.
 */

void Test()
{
 /* Whole register access */
 mwctl2 = 0x1234;

 /* Bitfield accesses */
 mwctl2bit.edw = 1;
 mwctl2bit.lepl = 3;
}

You can also use the header files as templates when you create new header files for other
Arm devices.

PASSING VALUES BETWEEN C AND ASSEMBLER OBJECTS

The following example shows how you in your C source code can use inline assembler
to set and get values from a special purpose register:

static unsigned long get_APSR(void)
{
 unsigned long value;
 asm volatile("MRS %0, APSR" : "=r"(value));
 return value;
}

static void set_APSR(unsigned long value)
{
 asm volatile("MSR APSR, %0" :: "r"(value));
}

The general purpose register is used for getting and setting the value of the special
purpose register APSR. The same method can also be used for accessing other special
purpose registers and specific instructions.

To read more about inline assembler, see Inline assembler, page 164.

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the

AFE1_AFE2-1:1

Efficient coding for embedded applications

245

#pragma object_attribute directive. The compiler places such variables in a
separate section.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a __no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For more information, see __no_init, page 374.

Note: To use this keyword, language extensions must be enabled, see -e, page 278. For
more information, see object_attribute, page 398.

AFE1_AFE2-1:1

246

Facilitating good code generation

IAR C/C++ Development Guide
Compiling and Linking for Arm

247

Part 2. Reference
information
This part of the IAR C/C++ Development Guide for Arm contains these
chapters:

● External interface details

● Compiler options

● Linker options

● Data representation

● Extended keywords

● Pragma directives

● Intrinsic functions

● The preprocessor

● C/C++ standard library functions

● The linker configuration file

● Section reference

● The stack usage control file

● IAR utilities

● Implementation-defined behavior for Standard C++

● Implementation-defined behavior for Standard C

● Implementation-defined behavior for C89.

248

AFE1_AFE2-1:1

249

External interface details
● Invocation syntax

● Include file search procedure

● Compiler output

● ILINK output

● Text encodings

● Reserved identifiers

● Diagnostics

Invocation syntax
You can use the compiler and linker either from the IDE or from the command line. See
the IDE Project Management and Building Guide for Arm for information about using
the build tools from the IDE.

COMPILER INVOCATION SYNTAX

The invocation syntax for the compiler is:

iccarm [options] [sourcefile] [options]

For example, when compiling the source file prog.c, use this command to generate an
object file with debug information:

iccarm prog.c --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the
extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order as they are specified on the
command line.

AFE1_AFE2-1:1

250

Invocation syntax

IAR C/C++ Development Guide
Compiling and Linking for Arm

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

ILINK INVOCATION SYNTAX

The invocation syntax for ILINK is:

ilinkarm [arguments]

Each argument is either a command-line option, an object file, or a library.

For example, when linking the object file prog.o, use this command:

ilinkarm prog.o --config configfile

If no filename extension is specified for the linker configuration file, the configuration
file must have the extension icf.

Generally, the order of arguments on the command line is not significant. There is,
however, one exception: when you supply several libraries, the libraries are searched in
the same order that they are specified on the command line. The default libraries are
always searched last.

The output executable image will be placed in a file named a.out, unless the -o option
is used.

If you run ILINK from the command line without any arguments, the ILINK version
number and all available options including brief descriptions are directed to stdout and
displayed on the screen.

PASSING OPTIONS

There are three different ways of passing options to the compiler and to ILINK:

● Directly from the command line

Specify the options on the command line after the iccarm or ilinkarm commands,
see Invocation syntax, page 249.

● Via environment variables

The compiler and linker automatically append the value of the environment variables
to every command line, see Environment variables, page 251.

● Via a text file, using the -f option, see -f, page 280.

For general guidelines for the option syntax, an options summary, and a detailed
description of each option, see the chapter Compiler options.

AFE1_AFE2-1:1

External interface details

251

ENVIRONMENT VARIABLES

These environment variables can be used with the compiler:

This environment variable can be used with ILINK:

Include file search procedure
This is a detailed description of the compiler’s #include file search procedure:

● The string found between the "" and <> in the #include directive is used verbatim
as a source file name.

● If the name of the #include file is an absolute path specified in angle brackets or
double quotes, that file is opened.

● If the compiler encounters the name of an #include file in angle brackets, such as:

#include <stdio.h>

it searches these directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified, see -I, page 282.

2 The directories specified using the C_INCLUDE environment variable, if any, see
Environment variables, page 251.

3 The automatically set up library system include directories. See --dlib_config,
page 276.

● If the compiler encounters the name of an #include file in double quotes, for
example:

#include "vars.h"

Environment variable Description

C_INCLUDE Specifies directories to search for include files, for example:
C_INCLUDE=c:\program files\iar systems\embedded

workbench 8.n\arm\inc;c:\headers

QCCARM Specifies command line options, for example: QCCARM=-lA
asm.lst

Table 22: Compiler environment variables

Environment variable Description

ILINKARM_CMD_LINE Specifies command line options, for example:
ILINKARM_CMD_LINE=--config full.icf

--silent

Table 23: ILINK environment variables

AFE1_AFE2-1:1

252

Compiler output

IAR C/C++ Development Guide
Compiling and Linking for Arm

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the compiler starts searching the directory of the file
that was last included, iterating upwards for each included file, searching the source file
directory last. For example:

src.c in directory dir\src
#include "src.h"
...

src.h in directory dir\include
#include "config.h"
...

When dir\exe is the current directory, use this command for compilation:

iccarm ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

For more information, see Overview of the preprocessor, page 457.

Compiler output
The compiler can produce the following output:

● A linkable object file

The object files produced by the compiler use the industry-standard format ELF. By
default, the object file has the filename extension o.

● Optional list files

Various kinds of list files can be specified using the compiler option -l, see -l, page
283. By default, these files will have the filename extension lst.

dir\include Current file is src.h.

dir\src File including current file (src.c).

dir\include As specified with the first -I option.

dir\debugconfig As specified with the second -I option.

AFE1_AFE2-1:1

External interface details

253

● Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option. The
file will have the filename extension i, by default.

● Diagnostic messages

Diagnostic messages are directed to the standard error stream and displayed on the
screen, and printed in an optional list file. For more information about diagnostic
messages, see Diagnostics, page 256.

● Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 253.

● Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to the standard output stream and displayed on the screen. Some
of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

ERROR RETURN CODES

The compiler and linker return status information to the operating system that can be
tested in a batch file.

These command line error codes are supported:

Code Description

0 Compilation or linking successful, but there might have been warnings.

1 Warnings were produced and the option --warnings_affect_exit_code
was used.

2 Errors occurred.

3 Fatal errors occurred, making the tool abort.

4 Internal errors occurred, making the tool abort.

Table 24: Error return codes

AFE1_AFE2-1:1

254

ILINK output

IAR C/C++ Development Guide
Compiling and Linking for Arm

ILINK output
ILINK can produce the following output:

● An absolute executable image

The final output produced by the IAR ILINK Linker is an absolute object file
containing the executable image that can be put into an EPROM, downloaded to a
hardware emulator, or executed on your PC using the IAR C-SPY Debugger
Simulator. By default, the file has the filename extension out. The output format is
always in ELF, which optionally includes debug information in the DWARF format.

● Optional logging information

During operation, ILINK logs its decisions on stdout, and optionally to a file. For
example, if a library is searched, whether a required symbol is found in a library
module, or whether a module will be part of the output. Timing information for each
ILINK subsystem is also logged.

● Optional map files

A linker map file—containing summaries of linkage, runtime attributes, memory,
and placement, as well as an entry list— can be generated by the ILINK option
--map, see --map, page 332. By default, the map file has the filename extension map.

● Diagnostic messages

Diagnostic messages are directed to stderr and displayed on the screen, as well as
printed in the optional map file. For more information about diagnostic messages, see
Diagnostics, page 256.

● Error return codes

ILINK returns status information to the operating system which can be tested in a
batch file, see Error return codes, page 253.

● Size information about used memory and amount of time

Information about the generated amount of bytes for functions and data for each
memory is directed to stdout and displayed on the screen.

● An import library for use when building a non-secure image, a relocatable ELF
object module containing symbols and their addresses. See the linker option
--import_cmse_lib_out, page 329.

Text encodings
Text files read or written by IAR tools can use a variety of text encodings:

● Raw

This is a backward-compatibility mode for C/C++ source files. Only 7-bit ASCII
characters can be used in symbol names. Other characters can only be used in

AFE1_AFE2-1:1

External interface details

255

comments, literals, etc. This is the default source file encoding if there is no Byte
Order Mark (BOM).

● The system default locale

The locale that you have configured your Windows OS to use.

● UTF-8

Unicode encoded as a sequence of 8-bit bytes, with or without a Byte Order Mark.

● UTF-16

Unicode encoded as a sequence of 16-bit words using a big-endian or little-endian
representation. These files always start with a Byte Order Mark.

In any encoding other than Raw, you can use Unicode characters of the appropriate kind
(alphabetic, numeric, etc) in the names of symbols.

When an IAR tool reads a text file with a Byte Order Mark, it will use the appropriate
Unicode encoding, regardless of the any options set for input file encoding.

For source files without a Byte Order Mark, the compiler will use the Raw encoding,
unless you specify the compiler option --source_encoding. See --source_encoding,
page 303.

For source files without a Byte Order Mark, the assembler will use the Raw encoding
unless you specify the assembler option --source_encoding.

For other text input files, like the extended command line (.xcl files), without a Byte
Order Mark, the IAR tools will use the system default locale unless you specify the
compiler option --utf8_text_in, in which case UTF-8 will be used. See
--utf8_text_in, page 307.

For compiler list files and preprocessor output, the same encoding as the main source
file will be used by default. Other tools that generate text output will use the UTF-8
encoding by default. You can change this by using the compiler options --text_out
and --no_bom. See --text_out, page 305 and --no_bom, page 286.

CHARACTERS AND STRING LITERALS

When you compile source code, characters (x) and string literals (xx) are handled as
follows:

'x', "xx" Characters in untyped character and string literals are copied
verbatim, using the same encoding as in the source file.

u8"xx" Characters in UTF-8 string literals are converted to UTF-8.

u'x', u"xx" Characters in UTF-16 character and string literals are converted
to UTF-16.

AFE1_AFE2-1:1

256

Reserved identifiers

IAR C/C++ Development Guide
Compiling and Linking for Arm

Reserved identifiers
Some identifiers are reserved for use by the implementation. Some of the more
important identifiers that the C/C++ standards reserve for any use are:

● Identifiers that contain a double underscore (__)

● Identifiers that begin with an underscore followed by an uppercase letter

In addition to this, the IAR tools reserve for any use:

● Identifiers that contain a double dollar sign ($$)

● Identifiers that contain a question mark (?)

More specific reservations are in effect in particular circumstances, see the C/C++
standards for more information.

Diagnostics
This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

MESSAGE FORMAT FOR THE COMPILER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename,linenumber level[tag]: message

with these elements:

U'x', U"xx" Characters in UTF-32 character and string literals are converted
to UTF-32.

L'x', L"xx" Characters in wide character and string literals are converted to
UTF-32.

filename The name of the source file in which the issue was encountered

linenumber The line number at which the compiler detected the issue

level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long

AFE1_AFE2-1:1

External interface details

257

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.

MESSAGE FORMAT FOR THE LINKER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from ILINK is produced in the form:

level[tag]: message

with these elements:

Diagnostic messages are displayed on the screen and printed in the optional map file.

Use the option --diagnostics_tables to list all possible linker diagnostic messages.

SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler or linker finds a construct that
can possibly lead to erroneous behavior in the generated code. Remarks are by default
not issued, but can be enabled, see --remarks, page 300.

Warning

A diagnostic message that is produced when the compiler or linker finds a potential
problem which is of concern, but which does not prevent completion of the compilation
or linking. Warnings can be disabled by use of the command line option
--no_warnings, see --no_warnings, page 295.

Error

A diagnostic message that is produced when the compiler or linker finds a serious error.
An error will produce a non-zero exit code.

level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long

AFE1_AFE2-1:1

258

Diagnostics

IAR C/C++ Development Guide
Compiling and Linking for Arm

Fatal error

A diagnostic message produced when the compiler finds a condition that not only
prevents code generation, but also makes further processing pointless. After the message
is issued, compilation terminates. A fatal error will produce a non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

For information about the compiler options that are available for setting severity levels,
see the chapter Compiler options.

For information about the pragma directives that are available for setting severity levels
for the compiler, see the chapter Pragma directives.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the compiler or linker. It is produced using this form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Systems Technical Support. Include enough
information to reproduce the problem, typically:

● The product name

● The version number of the compiler or of ILINK, which can be seen in the header of
the list or map files generated by the compiler or by ILINK, respectively

● Your license number

● The exact internal error message text

● The files involved of the application that generated the internal error

● A list of the options that were used when the internal error occurred.

AFE1_AFE2-1:1

259

Compiler options
● Options syntax

● Summary of compiler options

● Descriptions of compiler options

Options syntax
Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IDE.

See the online help system for information about the compiler options available in the
IDE and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and long names.
Some options have both.

● A short option name consists of one character, and it can have parameters. You
specify it with a single dash, for example -e

● A long option name consists of one or several words joined by underscores, and it
can have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 250.

RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specifying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-O or -Oh

AFE1_AFE2-1:1

260

Options syntax

IAR C/C++ Development Guide
Compiling and Linking for Arm

For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), for example:

--misrac2004=n

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\src or -I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=MyDiagnostics.lst

or

--diagnostics_tables MyDiagnostics.lst

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

● For short options, optional parameters are specified without a preceding space

● For long options, optional parameters are specified with a preceding equal sign (=)

● For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-lA MyList.lst

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n PreprocOutput.lst

Rules for specifying a filename or directory as parameters

These rules apply for options taking a filename or directory as parameters:

● Options that take a filename as a parameter can optionally take a file path. The path
can be relative or absolute. For example, to generate a listing to the file List.lst
in the directory ..\listings\:

iccarm prog.c -l ..\listings\List.lst

AFE1_AFE2-1:1

Compiler options

261

● For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name was
specified with the option -o, in which case that name is used. For example:

iccarm prog.c -l ..\listings\

The produced list file will have the default name ..\listings\prog.lst

● The current directory is specified with a period (.). For example:

iccarm prog.c -l .

● / can be used instead of \ as the directory delimiter.

● By specifying -, input files and output files can be redirected to the standard input
and output stream, respectively. For example:

iccarm prog.c -l -

Additional rules

These rules also apply:

● When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes—this example will create a list file called -r:

iccarm prog.c -l ---r

● For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:

--diag_warning=Be0001,Be0002

Alternatively, the option can be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002

Summary of compiler options
This table summarizes the compiler command line options:

Command line option Description

--aapcs Specifies the calling convention

--aeabi Enables AEABI-compliant code generation

--align_sp_on_irq Generates code to align SP on entry to __irq
functions

--arm Sets the default function mode to Arm

Table 25: Compiler options summary

AFE1_AFE2-1:1

262

Summary of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--c89 Specifies the C89 dialect

--char_is_signed Treats char as signed

--char_is_unsigned Treats char as unsigned

--cmse Enables CMSE secure object generation

--cpu Specifies a processor variant

--cpu_mode Specifies the default CPU mode for functions

--c++ Specifies Standard C++

-D Defines preprocessor symbols

--debug Generates debug information

--dependencies Lists file dependencies

--deprecated_feature_warnings Enables/disables warnings for deprecated features

--diag_error Treats these as errors

--diag_remark Treats these as remarks

--diag_suppress Suppresses these diagnostics

--diag_warning Treats these as warnings

--diagnostics_tables Lists all diagnostic messages

--discard_unused_publics Discards unused public symbols

--dlib_config Uses the system include files for the DLIB library
and determines which configuration of the library
to use

--do_explicit_zero_opt_in_nam

ed_sections

For user-named sections, treats explicit
initializations to zero as zero initializations

-e Enables language extensions

--enable_hardware_workaround Enables a specific hardware workaround

--enable_restrict Enables the Standard C keyword restrict

--endian Specifies the byte order of the generated code and
data

--enum_is_int Sets the minimum size on enumeration types

--error_limit Specifies the allowed number of errors before
compilation stops

-f Extends the command line

--f Extends the command line, optionally with a
dependency.

Command line option Description

Table 25: Compiler options summary (Continued)

AFE1_AFE2-1:1

Compiler options

263

--fpu Selects the type of floating-point unit

--generate_entries_without_bo

unds

Generates extra functions for use from
non-instrumented code. See the C-RUN
documentation in the C-SPY® Debugging Guide for
Arm.

--guard_calls Enables guards for function static variable
initialization

--header_context Lists all referred source files and header files

-I Specifies include file path

--ignore_uninstrumented_point

ers

Disables checking of accesses via pointers from
non-instrumented code. See the C-RUN
documentation in the C-SPY® Debugging Guide for
Arm.

-l Creates a list file

--lock_regs Prevents the compiler from using specified
registers

--macro_positions_in_diagnost

ics

Obtains positions inside macros in diagnostic
messages

--make_all_definitions_weak Turns all variable and function definitions into
weak definitions.

--max_cost_constexpr_call Specifies the limit for constexpr evaluation cost

--max_depth_constexpr_call Specifies the limit for constexpr recursion
depth

--mfc Enables multi-file compilation

--misrac Enables error messages specific to MISRA-C:1998.
This option is a synonym of --misrac1998 and
is only available for backwards compatibility.

--misrac1998 Enables error messages specific to MISRA-C:1998.
See the IAR Embedded Workbench® MISRA C:1998
Reference Guide.

--misrac2004 Enables error messages specific to MISRA-C:2004.
See the IAR Embedded Workbench® MISRA C:2004
Reference Guide.

--misrac_verbose IAR Embedded Workbench® MISRA C:1998
Reference Guide or the IAR Embedded Workbench®
MISRA C:2004 Reference Guide.

Command line option Description

Table 25: Compiler options summary (Continued)

AFE1_AFE2-1:1

264

Summary of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_alignment_reduction Disables alignment reduction for simple Thumb
functions

--no_bom Omits the Byte Order Mark for UTF-8 output files

--no_call_frame_info Disables output of call frame information

--no_clustering Disables static clustering optimizations

--no_code_motion Disables code motion optimization

--no_const_align Disables the alignment optimization for constants.

--no_cse Disables common subexpression elimination

--no_exceptions Disables C++ exception support

--no_fragments Disables section fragment handling

--no_inline Disables function inlining

--no_literal_pool Generates code that should run from a memory
region where it is not allowed to read data, only to
execute code

--no_loop_align Disables the alignment of labels in loops

--no_mem_idioms Makes the compiler not optimize certain memory
access patterns

--no_path_in_file_macros Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

--no_rtti Disables C++ RTTI support

--no_rw_dynamic_init Disables runtime initialization of static C variables.

--no_scheduling Disables the instruction scheduler

--no_size_constraints Relaxes the normal restrictions for code size
expansion when optimizing for speed.

--no_static_destruction Disables destruction of C++ static variables at
program exit

--no_system_include Disables the automatic search for system include
files

--no_tbaa Disables type-based alias analysis

--no_typedefs_in_diagnostics Disables the use of typedef names in diagnostics

--no_unaligned_access Avoids unaligned accesses

--no_uniform_attribute_syntax Specifies the default syntax rules for IAR type
attributes

--no_unroll Disables loop unrolling

Command line option Description

Table 25: Compiler options summary (Continued)

AFE1_AFE2-1:1

Compiler options

265

--no_var_align Aligns variable objects based on the alignment of
their type.

--no_warnings Disables all warnings

--no_wrap_diagnostics Disables wrapping of diagnostic messages

--nonportable_path_warnings Generates a warning when the path used for
opening a source header file is not in the same
case as the path in the file system.

-O Sets the optimization level

-o Sets the object filename. Alias for --output.

--only_stdout Uses standard output only

--output Sets the object filename

--pending_instantiations Sets the maximum number of instantiations of a
given C++ template.

--predef_macros Lists the predefined symbols.

--preinclude Includes an include file before reading the source
file

--preprocess Generates preprocessor output

--public_equ Defines a global named assembler label

-r Generates debug information. Alias for --debug.

--relaxed_fp Relaxes the rules for optimizing floating-point
expressions

--remarks Enables remarks

--require_prototypes Verifies that functions are declared before they are
defined

--ropi Generates code that uses PC-relative references
to address code and read-only data.

--ropi_cb Makes all accesses to constant data,
base-addressed relative to the register R8

--runtime_checking Enables runtime error checking. See the C-RUN
documentation in the C-SPY® Debugging Guide for
Arm.

--rwpi Generates code that uses an offset from the static
base register to address-writable data.

Command line option Description

Table 25: Compiler options summary (Continued)

AFE1_AFE2-1:1

266

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Descriptions of compiler options
The following section gives detailed reference information about each compiler option.

If you use the options page Extra Options to specify specific command line options,
the IDE does not perform an instant check for consistency problems like conflicting
options, duplication of options, or use of irrelevant options.

--rwpi_near Generates code that uses an offset from the static
base register to address-writable data. Addresses
max 64 Kbytes of memory.

--section Changes a section name

--silent Sets silent operation

--source_encoding Specifies the encoding for source files

--stack_protection Enables stack protection

--strict Checks for strict compliance with Standard
C/C++

--system_include_dir Specifies the path for system include files

--text_out Specifies the encoding for text output files

--thumb Sets default function mode to Thumb

--uniform_attribute_syntax Specifies the same syntax rules for IAR type
attributes as for const and volatile

--use_c++_inline Uses C++ inline semantics in C99

--use_paths_as_written Use paths as written in debug information

--use_unix_directory_separato

rs

Uses / as directory separator in paths

--utf8_text_in Uses the UTF-8 encoding for text input files

--vectorize Enables generation of NEON vector instructions

--version Sends compiler output to the console and then
exits.

--vla Enables C99 VLA support

--warn_about_c_style_casts Makes the compiler warn when C-style casts are
used in C++ source code

--warnings_affect_exit_code Warnings affect exit code

--warnings_are_errors Warnings are treated as errors

Command line option Description

Table 25: Compiler options summary (Continued)

AFE1_AFE2-1:1

Compiler options

267

--aapcs

Syntax aapcs={std|vfp}

Parameters

Description Use this option to specify the floating-point calling convention.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--aeabi

Syntax --aeabi

Description Use this option to generate AEABI-compliant object code.

Note: This option must be used together with the --guard_calls option.

Note: This option cannot be used together with C++ header files.

See also AEABI compliance, page 218 and --guard_calls, page 282.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--align_sp_on_irq

Syntax --align_sp_on_irq

Description Use this option to align the stack pointer (SP) on entry to __irq declared functions.

This is especially useful for nested interrupts, where the interrupted code uses the same
SP as the interrupt handler. This means that the stack might only have 4-byte alignment,
instead of the 8-byte alignment required by AEABI (and some instructions generated by
the compiler for some cores).

std Processor registers are used for floating-point parameters and
return values in function calls according to standard AAPCS.
std is the default when the software FPU is selected.

vfp VFP registers are used for floating-point parameters and
return values. The generated code is not compatible with
AEABI code. vfp is the default when a VFP unit is used.

AFE1_AFE2-1:1

268

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

See also __irq, page 372.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--arm

Syntax --arm

Description Use this option to set default function mode to Arm.

Note: This option has the same effect as the --cpu_mode=arm option.

Project>Options>C/C++ Compiler>Code>Processor mode>Arm

--c89

Syntax --c89

Description Use this option to enable the C89 C dialect instead of Standard C.

Note: This option is mandatory when the MISRA C checking is enabled.

See also C language overview, page 187.

Project>Options>C/C++ Compiler>Language 1>C dialect>C89

--char_is_signed

Syntax --char_is_signed

Description By default, the compiler interprets the plain char type as unsigned. Use this option to
make the compiler interpret the plain char type as signed instead. This can be useful
when you, for example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option and
cannot be used with code that is compiled with this option.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is

AFE1_AFE2-1:1

Compiler options

269

--char_is_unsigned

Syntax --char_is_unsigned

Description Use this option to make the compiler interpret the plain char type as unsigned. This is
the default interpretation of the plain char type.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is

--cmse

Syntax --cmse

Description This option enables language extensions for TrustZone for Armv8-M. Use this option
for object files that are to be linked in a secure image. The option allows the use of
instructions, keywords, and types that are not available for non-secure code:

● The function attributes _cmse_nonsecure_call and _cmse_nonsecure_entry.

● The functions for CMSE have names with the prefix cmse_, and are defined in the
header file arm_cmse.h.

Note: To use this option, you must first select the option Project>Options>General
Options>Target>TrustZone.

See also Arm TrustZone®, page 222 and ARMv8-M Security Extensions: Requirements on
Development Tools (ARM-ECM-0359818).

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--cpu

Syntax --cpu=core|list

Parameters

Description Use this option to select the architecture or processor variant for which the code is to be
generated.

The default core is Cortex-M3.

core Specifies a specific processor variant

list Lists all supported values for the option --cpu

AFE1_AFE2-1:1

270

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Some of the supported values for the --cpu option are:

See also Processor variant, page 70.

Project>Options>General Options>Target>Processor configuration

6-M 7-A 7E-M

7-M 7-R 7-S

8-A.AArch32 8-M.baseline 8-M.mainline

8-R.AArch32 Cortex-A5 Cortex-A7

Cortex-A8 Cortex-A9 Cortex-A12

Cortex-A15 Cortex-A17 Cortex-M0

Cortex-M0+ Cortex-M23 Cortex-M23.no_se

(core without support for
TrustZone)

Cortex-M3 Cortex-M33 Cortex-M33.no_dsp

(core without integer DSP
extension)

Cortex-M33.fp

(floating-point unit with
support for single
precision)

Cortex-M33.no_se

(core without support for
TrustZone)

Cortex-M4

Cortex-M4F Cortex-M7 Cortex-R4

Cortex-R5 Cortex-R52 Cortex-R52.no_neon

Cortex-R7 Cortex-M7.fp.dp

(floating-point unit with
support for double
precision)

Cortex-M7.fp.sp

(floating-point unit with
support for single precision)

AFE1_AFE2-1:1

Compiler options

271

--cpu_mode

Syntax --cpu_mode={arm|a|thumb|t}

Parameters

Description Use this option to select the default mode for functions.

Project>Options>General Options>Target>Processor mode

--c++

Syntax --c++

Description By default, the language supported by the compiler is C. If you use Standard C++, you
must use this option to set the language the compiler uses to C++.

See also Using C++, page 195.

Project>Options>C/C++ Compiler>Language 1>C++

and

Project>Options>C/C++ Compiler>Language 1>C++ dialect>C++

-D

Syntax -D symbol[=value]

Parameters

Description Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

The option -D has the same effect as a #define statement at the top of the source file:

-Dsymbol

arm, a (default) Selects the arm mode as the default mode for functions

thumb, t Selects the thumb mode as the default mode for functions

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol

AFE1_AFE2-1:1

272

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

is equivalent to:

#define symbol 1

To get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:

-DFOO=

Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--debug, -r

Syntax --debug
-r

Description Use the --debug or -r option to make the compiler include information in the object
modules required by the IAR C-SPY® Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--dependencies

Syntax --dependencies[=[i|m|n][s]] {filename|directory|+}

Parameters

See also Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to make the compiler list the names of all source and header files opened
for input into a file with the default filename extension i.

i (default) Lists only the names of files

m Lists in makefile style (multiple rules)

n Lists in makefile style (one rule)

s Suppresses system files

+ Gives the same output as -o, but with the filename extension d

AFE1_AFE2-1:1

Compiler options

273

Example If --dependencies or --dependencies=i is used, the name of each opened input
file, including the full path, if available, is output on a separate line. For example:

 c:\iar\product\include\stdio.h
 d:\myproject\include\foo.h

If --dependencies=m is used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of an input file. For example:

 foo.o: c:\iar\product\include\stdio.h
 foo.o: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as gmake
(GNU make):

1 Set up the rule for compiling files to be something like:

 %.o : %.c
 $(ICC) $(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style—in this example, using the extension .d.

2 Include all the dependency files in the makefile using, for example:

 -include $(sources:.c=.d)

Because of the dash (-) it works the first time, when the .d files do not yet exist.

This option is not available in the IDE.

--deprecated_feature_warnings

Syntax --deprecated_feature_warnings=[+|-]feature[,[+|-]feature,...]

Parameters

Description Use this option to disable or enable warnings for the use of a deprecated feature. The
deprecated features are:

● attribute_syntax

See --uniform_attribute_syntax, page 305, --no_uniform_attribute_syntax, page
294, and Syntax for type attributes used on data objects, page 366.

feature A feature can be attribute_syntax or
segment_pragmas.

AFE1_AFE2-1:1

274

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

● segment_pragmas

See the pragma directives dataseg, constseg, and memory. Use the #pragma
location and #pragma default_variable_attributes directives instead.

Because the deprecated features will be removed in a future version of the IAR C/C++
compiler, it is prudent to remove the use of them in your source code. To do this, enable
warnings for a deprecated feature. For each warning, rewrite your code so that the
deprecated feature is no longer used.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--diag_error

Syntax --diag_error=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

--diag_remark

Syntax --diag_remark=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Note: By default, remarks are not displayed—use the --remarks option to display
them.

tag The number of a diagnostic message, for example, the
message number Pe117

tag The number of a diagnostic message, for example, the
message number Pe177

AFE1_AFE2-1:1

Compiler options

275

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress

Syntax --diag_suppress=tag[,tag,...]

Parameters

Description Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

--diag_warning

Syntax --diag_warning=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler
to stop before compilation is completed. This option may be used more than once on the
command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as warnings

--diagnostics_tables

Syntax --diagnostics_tables {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 260.

tag The number of a diagnostic message, for example, the
message number Pe117

tag The number of a diagnostic message, for example, the
message number Pe826

AFE1_AFE2-1:1

276

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Use this option to list all possible diagnostic messages to a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

Typically, this option cannot be given together with other options.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--discard_unused_publics

Syntax --discard_unused_publics

Description Use this option to discard unused public functions and variables when compiling with
the --mfc compiler option.

Note: Do not use this option only on parts of the application, as necessary symbols
might be removed from the generated output. Use the object attribute __root to keep
symbols that are used from outside the compilation unit, for example, interrupt handlers.
If the symbol does not have the __root attribute and is defined in the library, the library
definition will be used instead.

See also --mfc, page 285 and Multi-file compilation units, page 235.

Project>Options>C/C++ Compiler>Discard unused publics

--dlib_config

Syntax --dlib_config filename.h|config

Parameters
filename A DLIB configuration header file, see Rules for specifying a

filename or directory as parameters, page 260.

config The default configuration file for the specified configuration
will be used. Choose between:

none, no configuration will be used

normal, the normal library configuration will be used
(default)

full, the full library configuration will be used.

AFE1_AFE2-1:1

Compiler options

277

Description Use this option to specify which library configuration to use, either by specifying an
explicit file or by specifying a library configuration—in which case the default file for
that library configuration will be used. Make sure that you specify a configuration that
corresponds to the library you are using. If you do not specify this option, the default
library configuration file will be used.

All prebuilt runtime libraries are delivered with corresponding configuration files. You
can find the library object files in the directory arm\lib and the library configuration
files in the directory arm\inc\c. For examples and information about prebuilt runtime
libraries, see Prebuilt runtime libraries, page 135.

If you build your own customized runtime library, you should also create a
corresponding customized library configuration file, which must be specified to the
compiler. For more information, see Customizing and building your own runtime
library, page 131.

To set related options, choose:

Project>Options>General Options>Library Configuration

--do_explicit_zero_opt_in_named_sections

Syntax --do_explicit_zero_opt_in_named_sections

Description By default, the compiler treats static initialization of variables explicitly and implicitly
initialized to zero the same, except for variables which are to be placed in user-named
sections. For these variables, an explicit zero initialization is treated as a copy
initialization, that is the same way as variables statically initialized to something other
than zero.

Use this option to disable the exception for variables in user-named sections, and thus
treat explicit initializations to zero as zero initializations, not copy initializations.

Example int var1; // Implicit zero init -> zero inited
int var2 = 0; // Explicit zero init -> zero inited
int var3 = 7; // Not zero init -> copy inited
int var4 @ "MYDATA"; // Implicit zero init -> zero inited
int var5 @ "MYDATA" = 0; // Explicit zero init -> copy inited
 // If option specified, then zero inited
int var6 @ "MYDATA" = 7; // Not zero init -> copy inited

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

AFE1_AFE2-1:1

278

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

-e

Syntax -e

Description In the command line version of the compiler, language extensions are disabled by
default. If you use language extensions such as extended keywords and anonymous
structs and unions in your source code, you must use this option to enable them.

Note: The -e option and the --strict option cannot be used at the same time.

See also Enabling language extensions, page 188.

Project>Options>C/C++ Compiler>Language 1>Standard with IAR extensions

Note: By default, this option is selected in the IDE.

--enable_hardware_workaround

Syntax --enable_hardware_workaround=waid[,waid...]

Parameters

Description Use this option to make the compiler generate a workaround for a specific hardware
problem.

See also The release notes for the compiler for a list of available parameters.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--enable_restrict

Syntax --enable_restrict

Description Enables the Standard C keyword restrict in C89 and C++. By default, restrict is
recognized in Standard C and __restrict is always recognized.

This option can be useful for improving analysis precision during optimization.

To set this option, use Project>Options>C/C++ Compiler>Extra options

waid The ID number of the workaround to enable. For a list of
available workarounds to enable, see the release notes.

AFE1_AFE2-1:1

Compiler options

279

--endian

Syntax --endian=

Parameters

Description Use this option to specify the byte order of the generated code and data. By default, the
compiler generates code in little-endian byte order.

See also Byte order, page 350.

Project>Options>General Options>Target>Endian mode

--enum_is_int

Syntax --enum_is_int

Description Use this option to force the size of all enumeration types to be at least 4 bytes.

Note: This option will not consider the fact that an enum type can be larger than an
integer type.

See also The enum type, page 352.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--error_limit

Syntax --error_limit=n

Parameters

Description Use the --error_limit option to specify the number of errors allowed before the
compiler stops the compilation. By default, 100 errors are allowed.

big, b Specifies big-endian as the default byte order

little, l (default) Specifies little-endian as the default byte order

n The number of errors before the compiler stops the
compilation. n must be a positive integer. 0 indicates no
limit.

AFE1_AFE2-1:1

280

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

This option is not available in the IDE.

-f

Syntax -f filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to make the compiler read command line options from the named file,
with the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

See also --f, page 280.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--f

Syntax --f filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to make the compiler read command line options from the named file,
with the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the compiler option --dependencies, extended command line files
specified using --f will generate a dependency, but those specified using -f will not
generate a dependency.

AFE1_AFE2-1:1

Compiler options

281

See also --dependencies, page 272 and -f, page 280.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--fpu

Syntax --fpu={name|list|none}

Parameters

Description Use this option to generate code that performs floating-point operations using a Floating
Point Unit (FPU). By selecting an FPU, you will override the use of the software
floating-point library for all supported floating-point operations.

The name of a target FPU is constructed in one of these ways:

● none: No FPU (default)

● fp-architecture: Base variant of the specified architecture

● fp-architecture-SP: Single-precision variant

● fp-architecture_D16: Variant with 16 D registers

● fp_architecture_Fp16: Variant with half-precision extensions

The available combinations include:

● {VFPv2|VFPv3|VFPv4|VFPv5}

● {VFPv3|FPv4|FPv5}_D16

● {FPv4|FPv5}-SP

● VFPv3_Fp16

● VFPv3_D16_Fp16

See also VFP and floating-point arithmetic, page 70.

Project>Options>General Options>Target>FPU

name The target FPU architecture.

list Lists all supported values for the --fpu option.

none (default) No FPU.

AFE1_AFE2-1:1

282

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--guard_calls

Syntax --guard_calls

Description Use this option to enable guards for function static variable initialization. This option
should be used in a threaded C++ environment.

See also Managing a multithreaded environment, page 160.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--header_context

Syntax --header_context

Description Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at
that point.

This option is not available in the IDE.

-I

Syntax -I path

Parameters

Description Use this option to specify the search paths for #include files. This option can be used
more than once on the command line.

See also Include file search procedure, page 251.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

path The search path for #include files

AFE1_AFE2-1:1

Compiler options

283

-l

Syntax -l[a|A|b|B|c|C|D][N][H] {filename|directory}

Parameters

* This makes the list file less useful as input to the assembler, but more useful for reading
by a human.

See also Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to generate an assembler or C/C++ listing to a file.

Note: This option can be used one or more times on the command line.

To set related options, choose:

Project>Options>C/C++ Compiler>List

--lock_regs

Syntax --lock_regs=register

a (default) Assembler list file

A Assembler list file with C or C++ source as comments

b Basic assembler list file. This file has the same contents as a
list file produced with -la, except that no extra
compiler-generated information (runtime model attributes,
call frame information, frame size information) is included *

B Basic assembler list file. This file has the same contents as a
list file produced with -lA, except that no extra compiler
generated information (runtime model attributes, call frame
information, frame size information) is included *

c C or C++ list file

C (default) C or C++ list file with assembler source as comments

D C or C++ list file with assembler source as comments, but
without instruction offsets and hexadecimal byte values

N No diagnostics in file

H Include source lines from header files in output. Without this
option, only source lines from the primary source file are
included

AFE1_AFE2-1:1

284

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Parameters

Description Use this option to prevent the compiler from generating code that uses the specified
registers.

Example --lock_regs=R4
--lock_regs=R8—R11
--lock_regs=R4,R8—R11

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--macro_positions_in_diagnostics

Syntax --macro_positions_in_diagnostics

Description Use this option to obtain position references inside macros in diagnostic messages. This
is useful for detecting incorrect source code constructs in macros.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--make_all_definitions_weak

Syntax --make_all_definitions_weak

Description Turns all variable and function definitions in the compilation unit into weak definitions.

Note: Normally, it is better to use extended keywords or pragma directives to turn
individual variable and function definitions into weak definitions.

See also __weak, page 380.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

registers A comma-separated list of register names and register
intervals to be locked, in the range R4–R11.

AFE1_AFE2-1:1

Compiler options

285

--max_cost_constexpr_call

Syntax --max_cost_constexpr_call=limit

Parameters

Description Use this option to specify an upper limit for the cost for folding a top-level constexpr
call (function or constructor). The cost is a combination of the number of calls
interpreted and the number of loop iterations preformed during the interpretation of a
top-level call.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--max_depth_constexpr_call

Syntax --max_depth_constexpr_call=limit

Parameters

Description Use this option to specify the maximum depth of recursion for folding a top-level
constexpr call (function or constructor).

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--mfc

Syntax --mfc

Description Use this option to enable multi-file compilation. This means that the compiler compiles
one or several source files specified on the command line as one unit, which enhances
interprocedural optimizations.

Note: The compiler will generate one object file per input source code file, where the
first object file contains all relevant data and the other ones are empty. If you want only
the first file to be produced, use the -o compiler option and specify a certain output file.

Example iccarm myfile1.c myfile2.c myfile3.c --mfc

limit The number of calls and loop iterations. The default is 2000000.

limit The depth of recursion. The default is 1000.

AFE1_AFE2-1:1

286

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

See also --discard_unused_publics, page 276, --output, -o, page 297, and Multi-file compilation
units, page 235.

Project>Options>C/C++ Compiler>Multi-file compilation

--no_alignment_reduction

Syntax --no_alignment_reduction

Description Some simple Thumb/Thumb2 functions can be 2-byte aligned. Use this option to keep
those functions 4-byte aligned.

This option has no effect when compiling for Arm mode.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_bom

Syntax --no_bom

Description Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

See also --text_out, page 305, and Text encodings, page 254.

Project>Options>C/C++ Compiler>Encodings>Text output file encoding

--no_clustering

Syntax --no_clustering

Description Use this option to disable static clustering optimizations.

Note: This option has no effect at optimization levels below Medium.

See also Static clustering, page 239.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Static clustering

AFE1_AFE2-1:1

Compiler options

287

--no_code_motion

Syntax --no_code_motion

Description Use this option to disable code motion optimizations.

Note: This option has no effect at optimization levels below Medium.

See also Code motion, page 238.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Code motion

--no_const_align

Syntax --no_const_align

Description By default, the compiler uses alignment 4 for objects with a size of 4 bytes or more. Use
this option to make the compiler align const objects based on the alignment of their
type.

For example, a string literal will get alignment 1, because it is an array with elements of
the type const char which has alignment 1. Using this option might save ROM space,
possibly at the expense of processing speed.

See also Alignment, page 349.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_cse

Syntax --no_cse

Description Use this option to disable common subexpression elimination.

Note: This option has no effect at optimization levels below Medium.

See also Common subexpression elimination, page 238.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Common subexpression elimination

AFE1_AFE2-1:1

288

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_exceptions

Syntax --no_exceptions

Description Use this option to disable exception support in the C++ language. Exception statements
like throw and try–catch, and exception specifications on function definitions will
generate an error message. Exception specifications on function declarations are
ignored. The option is only valid when used together with the --c++ compiler option.

If exceptions are not used in your application, it is recommended to disable support for
them by using this option, because exceptions cause a rather large increase in code size.

See also Exception handling, page 196 and __EXCEPTIONS__, page 464.

Project>Options>C/C++ Compiler>Language 1>C++

and

Project>Options>C/C++ Compiler>Language 1>C++ dialect>C++>With
exceptions

--no_fragments

Syntax --no_fragments

Description Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and further minimize the
size of the executable image. When you use this option, this information is not output in
the object files.

See also Keeping symbols and sections, page 111.

To set this option, use Project>Options>C/C++ Compiler>Extra Options

--no_inline

Syntax --no_inline

Description Use this option to disable function inlining.

See also Inlining functions, page 86.

AFE1_AFE2-1:1

Compiler options

289

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Function inlining

--no_literal_pool

Syntax --no_literal_pool

Description Use this option to generate code that should run from a memory region where it is not
allowed to read data, only to execute code.

When this option is used, the compiler will construct addresses and large constants with
the MOV32 pseudo instruction instead of using a literal pool: switch statements are no
longer translated using tables, and constant data is placed in the .rodata section.

This option also affects the automatic library selection performed by the linker. An
IAR-specific ELF attribute is used for determining whether libraries compiled with this
option should be used.

This option is only allowed for Armv6-M and Armv7 cores, and can be combined with
the options --ropi or --rwpi only for Armv7 cores.

See also --no_literal_pool, page 336.

Project>Options>C/C++ Compiler>Code>No data reads in code memory

--no_loop_align

Syntax --no_loop_align

Description Use this option to disable the 4-byte alignment of labels in loops. This option is only
useful in Thumb2 mode.

In Arm/Thumb1 mode, this option is enabled but does not perform anything.

See also Alignment, page 349.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

AFE1_AFE2-1:1

290

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_mem_idioms

Syntax --no_mem_idioms

Description Use this option to make the compiler not optimize code sequences that clear, set, or copy
a memory region. These memory access patterns (idioms) can otherwise be aggressively
optimized, in some cases using calls to the runtime library. In principle, the
transformation can involve more than a library call.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_path_in_file_macros

Syntax --no_path_in_file_macros

Description Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE__.

See also Description of predefined preprocessor symbols, page 458.

This option is not available in the IDE.

--no_rtti

Syntax --no_rtti

Description Use this option to disable the runtime type information (RTTI) support in the C++
language. RTTI statements like dynamic_cast and typeid will generate an error
message. This option is only valid when used together with the --c++ compiler option.

See also Using C++, page 195 and __RTTI__, page 466.

Project>Options>C/C++ Compiler>Language 1>C++

and

Project>Options>C/C++ Compiler>Language 1>C++ dialect>C++>With RTTI

AFE1_AFE2-1:1

Compiler options

291

--no_rw_dynamic_init

Syntax --no_rw_dynamic_init

Description Use this option to disable runtime initialization of static C variables.

C source code that is compiled with --ropi or --rwpi cannot have static pointer
variables and constants initialized to addresses of objects that do not have a known
address at link time. To solve this for writable static variables, the compiler generates
code that performs the initialization at program startup (in the same way as dynamic
initialization in C++).

See also --ropi, page 300 and --rwpi, page 301.

Project>Options>C/C++ Compiler>Code>No dynamic read/write/initialization

--no_scheduling

Syntax --no_scheduling

Description Use this option to disable the instruction scheduler.

Note: This option has no effect at optimization levels below High.

See also Instruction scheduling, page 240.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Instruction scheduling

--no_size_constraints

Syntax --no_size_constraints

Description Use this option to relax the normal restrictions for code size expansion when optimizing
for high speed.

Note: This option has no effect unless used with -Ohs.

See also Speed versus size, page 237.

Project>Options>C/C++ Compiler>Optimizations>Enable transformations>No
size constraints

AFE1_AFE2-1:1

292

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_static_destruction

Syntax --no_static_destruction

Description Normally, the compiler emits code to destroy C++ static variables that require
destruction at program exit. Sometimes, such destruction is not needed.

Use this option to suppress the emission of such code.

See also Setting up the atexit limit, page 112.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_system_include

Syntax --no_system_include

Description By default, the compiler automatically locates the system include files. Use this option
to disable the automatic search for system include files. In this case, you might need to
set up the search path by using the -I compiler option.

See also --dlib_config, page 276, and --system_include_dir, page 304.

Project>Options>C/C++ Compiler>Preprocessor>Ignore standard include
directories

--no_tbaa

Syntax --no_tbaa

Description Use this option to disable type-based alias analysis.

Note: This option has no effect at optimization levels below High.

See also Type-based alias analysis, page 239.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis

AFE1_AFE2-1:1

Compiler options

293

--no_typedefs_in_diagnostics

Syntax --no_typedefs_in_diagnostics

Description Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

Example typedef int (*MyPtr)(char const *);
MyPtr p = "My text string";

will give an error message like this:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

If the --no_typedefs_in_diagnostics option is used, the error message will be like
this:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "int (*)(char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_unaligned_access

Syntax --no_unaligned_access

Description Use this option to make the compiler avoid unaligned accesses. Data accesses are
usually performed aligned for improved performance. However, some accesses, most
notably when reading from or writing to packed data structures, might be unaligned.
When using this option, all such accesses will be performed using a smaller data size to
avoid any unaligned accesses. This option is only useful for Armv6 architectures and
higher.

For the architectures Armv7-M and Armv8-M.mainline, the hardware support for
unaligned access can be controlled by software. There are variants of library routines for
these architectures that are faster when unaligned access is supported in hardware
(symbols with the prefix __iar_unaligned_). The IAR linker will not use these
variants if any of the input modules does not allow unaligned access.

See also Alignment, page 349.

AFE1_AFE2-1:1

294

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_uniform_attribute_syntax

Syntax --no_uniform_attribute_syntax

Description Use this option to apply the default syntax rules to IAR type attributes specified before
a type specifier.

See also --uniform_attribute_syntax, page 305 and Syntax for type attributes used on data
objects, page 366.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_unroll

Syntax --no_unroll

Description Use this option to disable loop unrolling.

Note: This option has no effect at optimization levels below High.

See also Loop unrolling, page 238.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Loop unrolling

--no_var_align

Syntax --no_var_align

Description By default, the compiler uses alignment 4 for variable objects with a size of 4 bytes or
more. Use this option to make the compiler align variable objects based on the alignment
of their type.

For example, a char array will get alignment 1, because its elements of the type char
have alignment 1. Using this option might save RAM space, possibly at the expense of
processing speed.

See also Alignment, page 349 and --no_const_align, page 287.

AFE1_AFE2-1:1

Compiler options

295

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_warnings

Syntax --no_warnings

Description By default, the compiler issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

Syntax --no_wrap_diagnostics

Description By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

--nonportable_path_warnings

Syntax --nonportable_path_warnings

Description Use this option to make the compiler generate a warning when characters in the path
used for opening a source file or header file are lower case instead of upper case, or vice
versa, compared with the path in the file system.

This option is not available in the IDE.

-O

Syntax -O[n|l|m|h|hs|hz]

Parameters
n None* (Best debug support)

l (default) Low*

AFE1_AFE2-1:1

296

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

*The most important difference between None and Low is that at None, all non-static
variables will live during their entire scope.

Description Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level is used by default.
If only -O is used without any parameter, the optimization level High balanced is used.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

At high optimization levels, when favoring speed or size (-Ohs or -Ohz), the compiler
will emit AEABI attributes indicating the requested optimization goal. This information
can be used by the linker to select smaller or faster variants of DLIB library functions.

● If a module referencing a function is compiled with -Ohs, and the DLIB library
contains a fast variant, that variant is used.

● If all modules referencing a function are compiled with -Ohz, and the DLIB library
contains a small variant, that variant is used.

For example, using -Ohz for Cortex-M0 will result in the use of a smaller AEABI
library routine for integer division.

See also Controlling compiler optimizations, page 234.

Project>Options>C/C++ Compiler>Optimizations

--only_stdout

Syntax --only_stdout

Description Use this option to make the compiler use the standard output stream (stdout), and
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

m Medium

h High, balanced

hs High, favoring speed

hz High, favoring size

n None* (Best debug support)

AFE1_AFE2-1:1

Compiler options

297

--output, -o

Syntax --output {filename|directory}
-o {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension o. Use this option to explicitly
specify a different output filename for the object code output.

This option is not available in the IDE.

--pending_instantiations

Syntax --pending_instantiations number

Parameters

Description Use this option to specify the maximum number of instantiations of a given C++
template that is allowed to be in process of being instantiated at a given time. This is
used for detecting recursive instantiations.

Project>Options>C/C++ Compiler>Extra Options

--predef_macros

Syntax --predef_macros {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to list all symbols defined by the compiler or on the command line.
(Symbols defined in the source code are not listed.) When using this option, make sure
to also use the same options as for the rest of your project.

If a filename is specified, the compiler stores the output in that file. If a directory is
specified, the compiler stores the output in that directory, in a file with the predef
filename extension.

number An integer that specifies the limit, where 64 is default. If 0
is used, there is no limit.

AFE1_AFE2-1:1

298

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: This option requires that you specify a source file on the command line.

This option is not available in the IDE.

--preinclude

Syntax --preinclude includefile

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to make the compiler read the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess

Syntax --preprocess[=[c][n][s]] {filename|directory}

Parameters

See also Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to generate preprocessed output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

--public_equ

Syntax --public_equ symbol[=value]

Parameters

c Include comments

n Preprocess only

s Suppress #line directives

symbol The name of the assembler symbol to be defined

AFE1_AFE2-1:1

Compiler options

299

Description This option is equivalent to defining a label in assembler language using the EQU
directive and exporting it using the PUBLIC directive. This option can be used more than
once on the command line.

This option is not available in the IDE.

--relaxed_fp

Syntax --relaxed_fp

Description Use this option to allow the compiler to relax the language rules and perform more
aggressive optimization of floating-point expressions. This option improves
performance for floating-point expressions that fulfill these conditions:

● The expression consists of both single and double-precision values

● The double-precision values can be converted to single precision without loss of
accuracy

● The result of the expression is converted to single precision.

Note: Performing the calculation in single precision instead of double precision might
cause a loss of accuracy.

Example float F(float a, float b)
{
 return a + b * 3.0;
}

The C standard states that 3.0 in this example has the type double and therefore the
whole expression should be evaluated in double precision. However, when the
--relaxed_fp option is used, 3.0 will be converted to float and the whole expression
can be evaluated in float precision.

To set related options, choose:

Project>Options>C/C++ Compiler>Language 2>Floating-point semantics

value An optional value of the defined assembler symbol

AFE1_AFE2-1:1

300

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--remarks

Syntax --remarks

Description The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

See also Severity levels, page 257.

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

--require_prototypes

Syntax --require_prototypes

Description Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

● A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

● A function definition of a public function with no previous prototype declaration

● An indirect function call through a function pointer with a type that does not include
a prototype.

Project>Options>C/C++ Compiler>Language 1>Require prototypes

--ropi

Syntax --ropi

Description Use this option to make the compiler generate code that uses PC-relative references to
address code and read-only data.

When this option is used, these limitations apply:

● C++ constructions cannot be used

● The object attribute __ramfunc cannot be used

AFE1_AFE2-1:1

Compiler options

301

● Pointer constants cannot be initialized with the address of another constant, a string
literal, or a function. However, writable variables can be initialized to constant
addresses at runtime.

Consider using movable blocks in the linker configuration file. See define block
directive, page 492.

See also --no_rw_dynamic_init, page 291, and Description of predefined preprocessor symbols,
page 458.

Project>Options>C/C++ Compiler>Code>Code and read-only data (ropi)

--ropi_cb

Syntax --ropi_cb

Description Use this option to make all accesses to constant data, base-addressed relative to the
register R8.

Use --ropi_cb together with --ropi to activate a variant of ROPI that uses the Arm
core register R8 as the base address for read-only data, instead of using the PC. This is
useful, for example, when using ROPI in code that runs from execute-only memory,
which is enabled if you compile and link with --no_literal_pool.

Note:

● The use of --ropi_cb is not AEABI-compliant.

● There is no provided setup of the register R8. This must be handled by your
application.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--rwpi

Syntax --rwpi

Description Use this option to make the compiler generate code that uses the offset from the static
base register (R9) to address-writable data.

When this option is used, these limitations apply:

● The object attribute __ramfunc cannot be used

AFE1_AFE2-1:1

302

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

● Pointer constants cannot be initialized with the address of a writable variable.
However, static writable variables can be initialized to writable addresses at
runtime.

Consider using movable blocks in the linker configuration file. See define block
directive, page 492.

See also --no_rw_dynamic_init, page 291, and Description of predefined preprocessor symbols,
page 458.

Project>Options>C/C++ Compiler>Code>Read/write data (rwpi)

--rwpi_near

Syntax --rwpi_near

Description Use this option to make the compiler generate code that uses the offset from the static
base register (R9) to address-writable data.

When this option is used, these limitations apply

● The object attribute __ramfunc cannot be used.

● Pointer constants cannot be initialized with the address of a writable variable.
However, static writable variables can be initialized to writable addresses at
runtime.

● A maximum of 64 Kbytes of read/write memory can be addressed.

See also --no_rw_dynamic_init, page 291 and Description of predefined preprocessor symbols,
page 458.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--section

Syntax --section OldName=NewName

Description The compiler places functions and data objects into named sections which are referred
to by the IAR ILINK Linker. Use this option to change the name of the section OldName
to NewName.

This is useful if you want to place your code or data in different address ranges and you
find the @ notation, alternatively the #pragma location directive, insufficient.

AFE1_AFE2-1:1

Compiler options

303

Note: Any changes to the section names require corresponding modifications in the
linker configuration file.

Example To place functions in the section MyText, use:

--section .text=MyText

See also Controlling data and function placement in memory, page 230.

Project>Options>C/C++ Compiler>Output>Code section name

--silent

Syntax --silent

Description By default, the compiler issues introductory messages and a final statistics report. Use
this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--source_encoding

Syntax --source_encoding {locale|utf8}

Parameters

Description When reading a source file with no Byte Order Mark (BOM), use this option to specify
the encoding. If this option is not specified and the source file does not have a BOM, the
Raw encoding will be used.

See also Text encodings, page 254.

Project>Options>C/C++ Compiler>Encodings>Default source file encoding

locale The default source encoding is the system locale encoding.

utf8 The default source encoding is the UTF-8 encoding.

AFE1_AFE2-1:1

304

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--stack_protection

Syntax --stack_protection

Description Use this option to enable stack protection for the functions that are considered to need it.

See also Stack protection, page 87.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--strict

Syntax --strict

Description By default, the compiler accepts a relaxed superset of Standard C and C++. Use this
option to ensure that the source code of your application instead conforms to strict
Standard C and C++.

Note: The -e option and the --strict option cannot be used at the same time.

See also Enabling language extensions, page 188.

Project>Options>C/C++ Compiler>Language 1>Language conformance>Strict

--system_include_dir

Syntax --system_include_dir path

Parameters

Description By default, the compiler automatically locates the system include files. Use this option
to explicitly specify a different path to the system include files. This might be useful if
you have not installed IAR Embedded Workbench in the default location.

See also --dlib_config, page 276, and --no_system_include, page 292.

This option is not available in the IDE.

path The path to the system include files, see Rules for specifying
a filename or directory as parameters, page 260.

AFE1_AFE2-1:1

Compiler options

305

--text_out

Syntax --text_out {utf8|utf16le|utf16be|locale}

Parameters

Description Use this option to specify the encoding to be used when generating a text output file.

The default for the compiler list files is to use the same encoding as the main source file.
The default for all other text files is UTF-8 with a Byte Order Mark (BOM).

If you want text output in UTF-8 encoding without a BOM, use the option --no_bom.

See also --no_bom, page 286 and Text encodings, page 254.

Project>Options>C/C++ Compiler>Encodings>Text output file encoding

--thumb

Syntax --thumb

Description Use this option to set default function mode to Thumb.

Note: This option has the same effect as the --cpu_mode=thumb option.

Project>Options>C/C++ Compiler>Code>Processor mode>Thumb

--uniform_attribute_syntax

Syntax --uniform_attribute_syntax

Description By default, an IAR type attribute specified before the type specifier applies to the object
or typedef itself, and not to the type specifier, as const and volatile do. If you specify
this option, IAR type attributes obey the same syntax rules as const and volatile.

The default for IAR type attributes is to not use uniform attribute syntax.

utf8 Uses the UTF-8 encoding

utf16le Uses the UTF-16 little-endian encoding

utf16be Uses the UTF-16 big-endian encoding

locale Uses the system locale encoding

AFE1_AFE2-1:1

306

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

See also --no_uniform_attribute_syntax, page 294 and Syntax for type attributes used on data
objects, page 366.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--use_c++_inline

Syntax --use_c++_inline

Description Standard C uses slightly different semantics for the inline keyword than C++ does.
Use this option if you want C++ semantics when you are using C.

See also Inlining functions, page 86.

Project>Options>C/C++ Compiler>Language 1>C dialect>C99>C++ inline
semantics

--use_paths_as_written

Syntax --use_paths_as_written

Description By default, the compiler ensures that all paths in the debug information are absolute,
even if not originally specified that way.

If you use this option, paths that were originally specified as relative will be relative in
the debug information.

The paths affected by this option are:

● the paths to source files

● the paths to header files that are found using an include path that was specified as
relative

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--use_unix_directory_separators

Syntax --use_unix_directory_separators

Description Use this option to make DWARF debug information use / (instead of \) as directory
separators in file paths.

AFE1_AFE2-1:1

Compiler options

307

This option can be useful if you have a debugger that requires directory separators in
UNIX style.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--utf8_text_in

Syntax --utf8_text_in

Description Use this option to specify that the compiler shall use UTF-8 encoding when reading a
text input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

See also Text encodings, page 254.

Project>Options>C/C++ Compiler>Encodings>Default input file encoding

--vectorize

Syntax --vectorize

Description Use this option to enable generation of NEON vector instructions.

Loops will only be vectorized if the target processor has NEON capability and the
optimization level is -Ohs.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Vectorize

--version

Syntax --version

Description Use this option to make the compiler send version information to the console and then
exit.

This option is not available in the IDE.

AFE1_AFE2-1:1

308

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--vla

Syntax --vla

Description Use this option to enable support for C99 variable length arrays. Such arrays are located
on the heap. This option requires Standard C and cannot be used together with the
--c89 compiler option.

Note: --vla should not be used together with the longjmp library function, as that can
lead to memory leakages.

See also C language overview, page 187.

Project>Options>C/C++ Compiler>Language 1>C dialect>Allow VLA

--warn_about_c_style_casts

Syntax --warn_about_c_style_casts

Description Use this option to make the compiler warn when C-style casts are used in C++ source
code.

This option is not available in the IDE.

--warnings_affect_exit_code

Syntax --warnings_affect_exit_code

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors

Syntax --warnings_are_errors

Description Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

AFE1_AFE2-1:1

Compiler options

309

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

See also --diag_warning, page 275.

Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors

AFE1_AFE2-1:1

310

Descriptions of compiler options

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

311

Linker options
● Summary of linker options

● Descriptions of linker options

For general syntax rules, see Options syntax, page 259.

Summary of linker options
This table summarizes the linker options:

Command line option Description

--advanced_heap Uses an advanced heap

--basic_heap Uses a basic heap

--BE8 Uses the big-endian format BE8

--BE32 Uses the big-endian format BE32

--bounds_table_size Specifies the size of the global bounds table. See
the C-RUN documentation in the C-SPY®
Debugging Guide for Arm.

--call_graph Produces a call graph file in XML format

--config Specifies the linker configuration file to be used by
the linker

--config_def Defines symbols for the configuration file

--config_search Specifies more directories to search for linker
configuration files

--cpp_init_routine Specifies a user-defined C++ dynamic initialization
routine

--cpu Specifies a processor variant

--debug_heap Uses the checked heap. See the C-RUN
documentation in the C-SPY® Debugging Guide for
Arm.

--default_to_complex_ranges Makes complex ranges the default
decompressor in initialize directives

--define_symbol Defines symbols that can be used by the
application

Table 26: Linker options summary

AFE1_AFE2-1:1

312

Summary of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--dependencies Lists file dependencies

--diag_error Treats these message tags as errors

--diag_remark Treats these message tags as remarks

--diag_suppress Suppresses these diagnostic messages

--diag_warning Treats these message tags as warnings

--diagnostics_tables Lists all diagnostic messages

--do_segment_pad Pads each ELF segment to n-byte alignment

--enable_hardware_workaround Enables specified hardware workaround

--enable_stack_usage Enables stack usage analysis

--entry Treats the symbol as a root symbol and as the
start of the application

--entry_list_in_address_order Generates an additional entry list in the map file
sorted in address order

--error_limit Specifies the allowed number of errors before
linking stops

--exception_tables Generates exception tables for C code

--export_builtin_config Produces an icf file for the default configuration

--extra_init Specifies an extra initialization routine that will be
called if it is defined.

-f Extends the command line

--f Extends the command line, optionally with a
dependency.

--force_exceptions Always includes exception runtime code

--force_output Produces an output file even if errors occurred

--fpu Selects the FPU to link your application for

--ignore_uninstrumented_point

ers

Disables checking of accessing via pointers in
memory for which no bounds have been set. See
the C-RUN documentation in the C-SPY®
Debugging Guide for Arm.

--image_input Puts an image file in a section

--import_cmse_lib_in Reads previous version of import library for
building a non-secure image

--import_cmse_lib_out Produces an import library, for building a
non-secure image

Command line option Description

Table 26: Linker options summary (Continued)

AFE1_AFE2-1:1

Linker options

313

--inline Inlines small routines

--keep Forces a symbol to be included in the application

-L Specifies more directories to search for object and
library files. Alias for --search.

--log Enables log output for selected topics

--log_file Directs the log to a file

--mangled_names_in_messages Adds mangled names in messages

--manual_dynamic_initializati

on

Suppresses automatic initialization during system
startup

--map Produces a map file

--merge_duplicate_sections Merges equivalent read-only sections

--misrac Enables error messages specific to MISRA-C:1998.
This option is a synonym to --misrac1998 and
is only available for backwards compatibility.

--misrac1998 Enables error messages specific to MISRA-C:1998.
See the IAR Embedded Workbench® MISRA C:1998
Reference Guide.

--misrac2004 Enables error messages specific to MISRA-C:2004.
See the IAR Embedded Workbench® MISRA C:2004
Reference Guide.

--misrac_verbose Enables verbose logging of MISRA C checking. See
the IAR Embedded Workbench® MISRA C:1998
Reference Guide and the IAR Embedded
Workbench® MISRA C:2004 Reference Guide.

--no_bom Omits the Byte Order Mark from UTF-8 output
files

--no_dynamic_rtti_elimination Includes dynamic runtime type information even
when it is not needed.

--no_entry Sets the entry point to zero

--no_exceptions Generates an error if exceptions are used

--no_fragments Disables section fragment handling

--no_free_heap Uses the smallest possible heap implementation

--no_inline Excludes functions from small function inlining

--no_library_search Disables automatic runtime library search

Command line option Description

Table 26: Linker options summary (Continued)

AFE1_AFE2-1:1

314

Summary of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_literal_pool Generates code that should run from a memory
region where it is not allowed to read data, only to
execute code

--no_locals Removes local symbols from the ELF executable
image.

--no_range_reservations Disables range reservations for absolute symbols

--no_remove Disables removal of unused sections

--no_vfe Disables Virtual Function Elimination

--no_warnings Disables generation of warnings

--no_wrap_diagnostics Does not wrap long lines in diagnostic messages

-o Sets the object filename. Alias for --output.

--only_stdout Uses standard output only

--output Sets the object filename

--pi_veneers Generates position independent veneers.

--place_holder Reserve a place in ROM to be filled by some other
tool, for example, a checksum calculated by
ielftool.

--preconfig Reads the specified file before reading the linker
configuration file

--printf_multibytes Makes the printf formatter support multibytes

--redirect Redirects a reference to a symbol to another
symbol

--remarks Enables remarks

--scanf_multibytes Makes the scanf formatter support multibytes

--search Specifies more directories to search for object and
library files

--semihosting Links with debug interface

--silent Sets silent operation

--stack_usage_control Specifies a stack usage control file

--strip Removes debug information from the executable
image

--text_out Specifies the encoding for text output files

--threaded_lib Configures the runtime library for use with
threads

Command line option Description

Table 26: Linker options summary (Continued)

AFE1_AFE2-1:1

Linker options

315

Descriptions of linker options
The following section gives detailed reference information about each linker option.

If you use the options page Extra Options to specify specific command line options,
the IDE does not perform an instant check for consistency problems like conflicting
options, duplication of options, or use of irrelevant options.

--advanced_heap

Syntax --advanced_heap

Description Use this option to use an advanced heap.

See also Advanced, basic, and no-free heap, page 207.

Project>Options>General Options>Library options 2>Heap selection

--timezone_lib Enables the time zone and daylight savings time
functionality in the library

--treat_rvct_modules_as_softf

p

Treats all modules generated by RVCT as using the
standard (non-VFP) calling convention

--use_full_std_template_names Enables full names for standard C++ templates

--use_optimized_variants Controls the use of optimized variants of DLIB
library functions

--utf8_text_in Uses the UTF-8 encoding for text input files

--version Sends version information to the console and then
exits

--vfe Controls Virtual Function Elimination

--warnings_affect_exit_code Warnings affects exit code

--warnings_are_errors Warnings are treated as errors

--whole_archive Treats every object file in the archive as if it was
specified on the command line.

Command line option Description

Table 26: Linker options summary (Continued)

AFE1_AFE2-1:1

316

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--basic_heap

Syntax --basic_heap

Description Use this option to use the basic heap handler.

See also Advanced, basic, and no-free heap, page 207.

Project>Options>General Options>Library options 2>Heap selection

--BE8

Syntax --BE8

Description Use this option to specify the Byte Invariant Addressing mode.

This means that the linker reverses the byte order of the instructions, resulting in
little-endian code and big-endian data. This is the default byte addressing mode for
Armv6 big-endian images. This is the only mode available for Arm v6M and Arm v7
with big-endian images.

Byte Invariant Addressing mode is only available on Arm processors that support
Armv6, Arm v6M, and Arm v7.

See also Byte order, page 70, Byte order, page 350, --BE32, page 316, and --endian, page 279.

Project>Options>General Options>Target>Endian mode

--BE32

Syntax --BE32

Description Use this option to specify the legacy big-endian mode.

This produces big-endian code and data. This is the only byte-addressing mode for all
big-endian images prior to Armv6. This mode is also available for Arm v6 with
big-endian, but not for Arm v6M or Arm v7.

See also Byte order, page 70, Byte order, page 350, --BE8, page 316, and --endian, page 279.

Project>Options>General Options>Target>Endian mode

AFE1_AFE2-1:1

Linker options

317

--call_graph

Syntax --call_graph {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to produce a call graph file. If no filename extension is specified, the
extension cgx is used. This option can only be used once on the command line.

Using this option enables stack usage analysis in the linker.

See also Stack usage analysis, page 98

Project>Options>Linker>Advanced>Call graph output (XML)

--config

Syntax --config filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to specify the configuration file to be used by the linker (the default
filename extension is icf). If no configuration file is specified, a default configuration
is used. This option can only be used once on the command line.

See also The chapter The linker configuration file.

Project>Options>Linker>Config>Linker configuration file

--config_def

Syntax --config_def symbol=constant_value

Parameters

Description Use this option to define a constant configuration symbol to be used in the configuration
file. This option has the same effect as the define symbol directive in the linker
configuration file. This option can be used more than once on the command line.

symbol The name of the symbol to be used in the configuration file.

constant_value The constant value of the configuration symbol.

AFE1_AFE2-1:1

318

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

See also --define_symbol, page 320 and Interaction between ILINK and the application, page
116.

Project>Options>Linker>Config>Defined symbols for configuration file

--config_search

Syntax --config_search path

Parameters

Description Use this option to specify more directories to search for files when processing an
include directive in a linker configuration file.

By default, the linker searches for configuration include files only in the system
configuration directory. To specify more than one search directory, use this option for
each path.

See also include directive, page 515.

To set this option, use Project>Options>Linker>Extra Options.

--cpp_init_routine

Syntax --cpp_init_routine routine

Parameters

Description When using the IAR C/C++ compiler and the standard library, C++ dynamic
initialization is handled automatically. In other cases you might need to use this option.

If any sections with the section type INIT_ARRAY or PREINIT_ARRAY are included in
your application, the C++ dynamic initialization routine is considered to be needed. By
default, this routine is named __iar_cstart_call_ctors and is called by the startup
code in the standard library. Use this option if you require another routine to handle the
initialization, for instance if you are not using the standard library.

path A path to a directory where the linker should search for
linker configuration include files.

routine A user-defined C++ dynamic initialization routine.

AFE1_AFE2-1:1

Linker options

319

To set this option, use Project>Options>Linker>Extra Options.

--cpu

Syntax --cpu=core

Parameters

Description Use this option to select the processor variant to link your application for. The default is
to use a processor or architecture compatible with the object file attributes.

See also --cpu, page 269

Project>Options>General Options>Target>Processor configuration

--default_to_complex_ranges

Syntax --default_to_complex_ranges

Description Normally, if initialize directives in a linker configuration file do not specify simple
ranges or complex ranges, the linker uses simple ranges if the associated
section placement directives use single range regions.

Use this option to make the linker always use complex ranges by default. This was
the behavior of the linker before the introduction of simple ranges and complex
ranges.

See also initialize directive, page 498.

Project>Options>Linker>Extra Options

core Specifies a specific processor variant

AFE1_AFE2-1:1

320

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--define_symbol

Syntax --define_symbol symbol=constant_value

Parameters

Description Use this option to define a constant symbol, that is a label, that can be used by your
application. This option can be used more than once on the command line.

Note: This option is different from the define symbol directive.

See also --config_def, page 317 and Interaction between ILINK and the application, page 116.

Project>Options>Linker>#define>Defined symbols

--dependencies

Syntax --dependencies[=[i|m]] {filename|directory}

Parameters

See also Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to make the linker list the names of the linker configuration, object, and
library files opened for input into a file with the default filename extension i.

Example If --dependencies or --dependencies=i is used, the name of each opened input
file, including the full path, if available, is output on a separate line. For example:

 c:\myproject\foo.o
 d:\myproject\bar.o

If --dependencies=m is used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the output file, a colon, a space, and the name of an input file. For example:

 a.out: c:\myproject\foo.o
 a.out: d:\myproject\bar.o

symbol The name of the constant symbol that can be used by the
application.

constant_value The constant value of the symbol.

i (default) Lists only the names of files

m Lists in makefile style

AFE1_AFE2-1:1

Linker options

321

This option is not available in the IDE.

--diag_error

Syntax --diag_error=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as errors. An error indicates a
problem of such severity that an executable image will not be generated. The exit code
will be non-zero. This option may be used more than once on the command line.

Project>Options>Linker>Diagnostics>Treat these as errors

--diag_remark

Syntax --diag_remark=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a construction that may cause
strange behavior in the executable image.

Note: Not all diagnostic messages can be reclassified. This option may be used more
than once on the command line.

Note: By default, remarks are not displayed—use the --remarks option to display
them.

Project>Options>Linker>Diagnostics>Treat these as remarks

tag The number of a diagnostic message, for example, the
message number Pe117

tag The number of a diagnostic message, for example, the
message number Go109

AFE1_AFE2-1:1

322

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--diag_suppress

Syntax --diag_suppress=tag[,tag,...]

Parameters

Description Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Note: Not all diagnostic messages can be reclassified.

Project>Options>Linker>Diagnostics>Suppress these diagnostics

--diag_warning

Syntax --diag_warning=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the linker to
stop before linking is completed. This option may be used more than once on the
command line.

Note: Not all diagnostic messages can be reclassified.

Project>Options>Linker>Diagnostics>Treat these as warnings

--diagnostics_tables

Syntax --diagnostics_tables {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to list all possible diagnostic messages in a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

tag The number of a diagnostic message, for example, the
message number Pa180

tag The number of a diagnostic message, for example, the
message number Li004

AFE1_AFE2-1:1

Linker options

323

This option cannot be given together with other options.

This option is not available in the IDE.

--do_segment_pad

Syntax --do_segment_pad

Description Use this option to extend each ELF segment in the executable file with content, to make
it an even multiple of 4 bytes long (if possible). Some runtime library routines might
access memory in units of 4 bytes, and might, if the right data object is placed last in an
ELF segment, access memory outside the strict bounds of the segment. If you are
executing in an environment where this is a problem, you can use this option to extend
the ELF segments appropriately so that this is not a problem.

This option is not available in the IDE.

--enable_hardware_workaround

Syntax --enable_hardware_workaround=waid[waid[...]]

Parameters

Description Use this option to make the linker generate a workaround for a specific hardware
problem.

See also The release notes for the linker for a list of available parameters.

To set this option, use Project>Options>Linker>Extra Options.

--enable_stack_usage

Syntax --enable_stack_usage

Description Use this option to enable stack usage analysis. If a linker map file is produced, a stack
usage chapter is included in the map file.

waid The ID number of the workaround that you want to
enable. For a list of available workarounds, see the release
notes available in the Information Center.

AFE1_AFE2-1:1

324

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: If you use at least one of the --stack_usage_control or --call_graph
options, stack usage analysis is automatically enabled.

See also Stack usage analysis, page 98.

Project>Options>Linker>Advanced>Enable stack usage analysis

--entry

Syntax --entry symbol

Parameters

Description Use this option to make a symbol be treated as a root symbol and the start label of the
application. This is useful for loaders. If this option is not used, the default start symbol
is __iar_program_start. A root symbol is kept whether or not it is referenced from
the rest of the application, provided its module is included. A module in an object file is
always included but a module part of a library is only included if needed.

Note: The label referred to must be available in your application. You must also make
sure that the reset vector refers to the new start label, for example --redirect
__iar_program_start=_myStartLabel.

Project>Options>Linker>Library>Override default program entry

--entry_list_in_address_order

Syntax --entry_list_in_address_order

Description Use this option to generate an additional entry list in the map file. This entry list will be
sorted in address order.

To set this option use Project>Options>Linker>Extra Options.

symbol The name of the symbol to be treated as a root symbol and
start label

AFE1_AFE2-1:1

Linker options

325

--error_limit

Syntax --error_limit=n

Parameters

Description Use the --error_limit option to specify the number of errors allowed before the
linker stops the linking. By default, 100 errors are allowed.

This option is not available in the IDE.

--exception_tables

Syntax --exception_tables={nocreate|unwind|cantunwind}

Parameters

Description Use this option to determine what the linker should do with functions that do not have
exception information but which do have correct call frame information.

The compiler ensures that C functions get correct call frame information. For functions
written in assembler language you need to use assembler directives to generate call
frame information.

See also Using C++, page 195.

To set this option, use Project>Options>Linker>Extra Options.

n The number of errors before the linker stops linking. n must
be a positive integer. 0 indicates no limit.

nocreate (default) Does not generate entries. Uses the least amount of memory,
but the result is undefined if an exception is propagated
through a function without exception information.

unwind Generates unwind entries that enable an exception to be
correctly propagated through functions without exception
information.

cantunwind Generates no-unwind entries so that any attempt to
propagate an exception through the function will result in a
call to terminate.

AFE1_AFE2-1:1

326

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--export_builtin_config

Syntax --export_builtin_config filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Exports the configuration used by default to a file.

This option is not available in the IDE.

--extra_init

Syntax --extra_init routine

Parameters

Description Use this option to make the linker add an entry for the specified routine at the end of the
initialization table. The routine will be called during system startup, after other
initialization routines have been called and before main is called. No entry is added if
the routine is not defined.

Note: The routine must preserve the value passed to it in register R0.

To set this option, use Project>Options>Linker>Extra Options.

-f

Syntax -f filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to make the linker read command line options from the named file, with
the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

routine A user-defined initialization routine.

AFE1_AFE2-1:1

Linker options

327

See also --f, page 327.

To set this option, use Project>Options>Linker>Extra Options.

--f

Syntax --f filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to make the linker read command line options from the named file, with
the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the linker option --dependencies, extended command line files specified
using --f will generate a dependency, but those specified using -f will not generate a
dependency.

See also --dependencies, page 272 and -f, page 280.

To set this option, use Project>Options>Linker>Extra Options.

--force_exceptions

Syntax --force_exceptions

Description Use this option to make the linker include exception tables and exception code even
when the linker heuristics indicate that exceptions are not used.

The linker considers exceptions to be used if there is a throw expression that is not a
rethrow in the included code. If there is no such throw expression in the rest of the
code, the linker arranges for operator new, dynamic_cast, and typeid to call
abort instead of throwing an exception on failure. If you need to catch exceptions from
these constructs but your code contains no other throws, you might need to use this
option.

AFE1_AFE2-1:1

328

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

See also Using C++, page 195.

Project>Options>Linker>Optimizations>C++ Exceptions>Allow>Always include

--force_output

Syntax --force_output

Description Use this option to produce an output executable image regardless of any linking errors.

To set this option, use Project>Options>Linker>Extra Options

--fpu

Syntax --fpu=name|none

Parameters

Description Use this option to select the FPU to link your application for. The default is to use an
FPU compatible with the object file attribute.

See also --fpu, page 281

Project>Options>General Options>Target>FPU

--image_input

Syntax --image_input filename [,symbol,[section[,alignment]]]

Parameters

name The target FPU architecture.

none No FPU.

filename The pure binary file containing the raw image you want to
link

symbol The symbol which the binary data can be referenced with.

section The section where the binary data will be placed. Default is
.text.

AFE1_AFE2-1:1

Linker options

329

Description Use this option to link pure binary files in addition to the ordinary input files. The file’s
entire contents are placed in the section, which means it can only contain pure binary
data.

Note: Just as for sections from object files, sections created by using the
--image_input option are not included unless actually needed. You can either specify
a symbol in the option and reference this symbol in your application (or use a --keep
option), or you can specify a section name and use the keep directive in a linker
configuration file to ensure that the section is included.

Example --image_input bootstrap.abs,Bootstrap,CSTARTUPCODE,4

The contents of the pure binary file bootstrap.abs are placed in the section
CSTARTUPCODE. The section where the contents are placed is 4-byte aligned and will
only be included if your application (or the command line option --keep) includes a
reference to the symbol Bootstrap.

See also --keep, page 330.

Project>Options>Linker>Input>Raw binary image

--import_cmse_lib_in

Syntax --import_cmse_lib_in filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Reads a previous version of the import library and creates gateway veneers with the
same address as given in the import library. Use this option to create a secure image
where each entry function that exists in the provided import library is placed at the same
address in the output import library.

See also --cmse, page 269 and --import_cmse_lib_out, page 329

To set this option, use Project>Options>Linker>Extra Options.

--import_cmse_lib_out

Syntax --import_cmse_lib_out filename|directory

alignment The alignment of the section. Default is 1.

AFE1_AFE2-1:1

330

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option when building a secure image to automatically create an import library
for use in a corresponding non-secure image. The import library consists of a relocatable
ELF object module that contains only a symbol table. Each symbol specifies an absolute
address of a secure gateway for an entry in the section Veneer$$CMSE.

See also --cmse, page 269 and --import_cmse_lib_in, page 329

To set this option, use Project>Options>Linker>Extra Options.

--inline

Syntax --inline

Description Some routines are so small that they can fit in the space of the instruction that calls the
routine. Use this option to make the linker replace the call of a routine with the body of
the routine, where applicable.

See also Small function inlining, page 121.

Project>Options>Linker>Optimizations>Inline small routines

--keep

Syntax --keep symbol

Parameters

Description Normally, the linker keeps a symbol only if it is needed by your application. Use this
option to make a symbol always be included in the final application.

Project>Options>Linker>Input>Keep symbols

symbol The name of the symbol to be treated as a root symbol

AFE1_AFE2-1:1

Linker options

331

--log

Syntax --log topic[,topic,...]

Parameters topic can be one of:

Description Use this option to make the linker log information to stdout. The log information can
be useful for understanding why an executable image became the way it is.

See also --log_file, page 331.

Project>Options>Linker>List>Generate log

--log_file

Syntax --log_file filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to direct the log output to the specified file.

call_graph Lists the call graph as seen by stack usage analysis.

initialization Lists copy batches and the compression selected for each
batch.

libraries Lists all decisions made by the automatic library selector.
This might include extra symbols needed (--keep),
redirections (--redirect), as well as which runtime
libraries that were selected.

modules Lists each module that is selected for inclusion in the
application, and which symbol that caused it to be included.

redirects Lists redirected symbols.

sections Lists each symbol and section fragment that is selected for
inclusion in the application, and the dependence that caused
it to be included.

veneers Lists some veneer creation and usage statistics.

unused_fragments Lists those section fragments that were not included in the
application.

AFE1_AFE2-1:1

332

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

See also --log, page 331.

Project>Options>Linker>List>Generate log

--mangled_names_in_messages

Syntax --mangled_names_in_messages

Description Use this option to produce both mangled and unmangled names for C/C++ symbols in
messages. Mangling is a technique used for mapping a complex C name or a C++
name—for example, for overloading—into a simple name. For example, void h(int,
char) becomes _Z1hic.

This option is not available in the IDE.

--manual_dynamic_initialization

Syntax --manual_dynamic_initialization

Description Normally, dynamic initialization (typically initialization of C++ objects with static
storage duration) is performed automatically during application startup. If you use
--manual_dynamic_initialization, you must call
__iar_dynamic_initialization at some later point for this initialization to be
done.

The function __iar_dynamic_initialization is declared in the header file
iar_dynamic_init.h.

To set this option use Project>Options>Linker>Extra Options.

--map

Syntax --map {filename|directory}

Description Use this option to produce a linker memory map file. The map file has the default
filename extension map. The map file contains:

● Linking summary in the map file header which lists the version of the linker, the
current date and time, and the command line that was used.

● Runtime attribute summary which lists runtime attributes.

AFE1_AFE2-1:1

Linker options

333

● Placement summary which lists each section/block in address order, sorted by
placement directives.

● Initialization table layout which lists the data ranges, packing methods, and
compression ratios.

● Module summary which lists contributions from each module to the image, sorted
by directory and library.

● Entry list which lists all public and some local symbols in alphabetical order,
indicating which module they came from.

● Some of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is also sometimes used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

 This option can only be used once on the command line.

Project>Options>Linker>List>Generate linker map file

--merge_duplicate_sections

Syntax --merge_duplicate_sections

Description Use this option to keep only one copy of equivalent read-only sections.

Note: This can cause different functions or constants to have the same address, so an
application that depends on the addresses being different will not work correctly with
this option enabled.

See also Duplicate section merging, page 121.

Project>Options>Linker>Optimizations>Merge duplicate sections

AFE1_AFE2-1:1

334

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_bom

Syntax --no_bom

Description Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

See also --text_out, page 343 and Text encodings, page 254.

Project>Options>Linker>Encodings>Text output file encoding

--no_dynamic_rtti_elimination

Syntax --no_dynamic_rtti_elimination

Description Use this option to make the linker include dynamic (polymorphic) runtime type
information (RTTI) data in the application image even when the linker heuristics
indicate that it is not needed.

The linker considers dynamic runtime type information to be needed if there is a
typeid or dynamic_cast expression for a polymorphic type in the included code. By
default, if the linker detects no such expression, RTTI data will not be included just to
make dynamic RTTI requests work.

Note: A typeid expression for a non-polymorphic type results in a direct reference to
a particular RTTI object and will not cause the linker to include any potentially
unneeded objects.

See also Using C++, page 195.

To set this option, use Project>Options>Linker>Extra Options.

--no_entry

Syntax --no_entry

Description Use this option to set the entry point field to zero for produced ELF files.

Project>Options>Linker>Library>Override default program entry

AFE1_AFE2-1:1

Linker options

335

--no_exceptions

Syntax --no_exceptions

Description Use this option to make the linker generate an error if there is a throw in the included
code. This option is useful for making sure that your application does not use
exceptions.

See also Using C++, page 195.

To set related options, choose:

Project>Options>Linker>Advanced>Allow C++ exceptions

--no_fragments

Syntax --no_fragments

Description Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and further minimize the
size of the executable image. Use this option to disable the removal of fragments of
sections, instead including or not including each section in its entirety, usually resulting
in a larger application.

See also Keeping symbols and sections, page 111.

To set this option, use Project>Options>Linker>Extra Options

--no_free_heap

Syntax --no_free_heap

Description Use this option to use the smallest possible heap implementation. Because this heap
does not support free or realloc, it is only suitable for applications that in the startup
phase allocate heap memory for various buffers, etc, and for applications that never
deallocate memory.

See also --advanced_heap, page 315 and --basic_heap, page 316.

Project>Options>General Options>Library Options 2>Heap selection

AFE1_AFE2-1:1

336

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_inline

Syntax --no_inline func[,func...]

Parameters

Description Use this option to exclude some functions from small function inlining.

See also --inline, page 330.

To set this option, use Project>Options>Linker>Extra Options.

--no_library_search

Syntax --no_library_search

Description Use this option to disable the automatic runtime library search. This option turns off the
automatic inclusion of the correct standard libraries. This is useful, for example, if the
application needs a user-built standard library, etc.

Note: The option disables all steps of the automatic library selection, some of which
might need to be reproduced if you are using the standard libraries. Use the
--log libraries linker option together with automatic library selection enabled to
determine which the steps are.

Project>Options>Linker>Library>Automatic runtime library selection

--no_literal_pool

Syntax --no_literal_pool

Description Use this option for code that should run from a memory region where it is not allowed
to read data, only to execute code.

When this option is used, the linker will use the MOV32 pseudo instruction in a
mode-changing veneer, to avoid using the data bus to load the destination address. The
option also means that libraries compiled with this option will be used.

The option --no_literal_pool is only allowed for Armv6-M and Armv7-M cores.

See also --no_literal_pool, page 289.

func The name of a function symbol

AFE1_AFE2-1:1

Linker options

337

To set this option, use Project>Options>Linker>Extra Options.

--no_locals

Syntax --no_locals

Description Use this option to remove local symbols from the ELF executable image.

Note: This option does not remove any local symbols from the DWARF information in
the executable image.

Project>Options>Linker>Output

--no_range_reservations

Syntax --no_range_reservations

Description Normally, the linker reserves any ranges used by absolute symbols with a non-zero size,
excluding them from consideration for place in commands.

When this option is used, these reservations are disabled, and the linker is free to place
sections in such a way as to overlap the extent of absolute symbols.

To set this option, use Project>Options>Linker>Extra Options.

--no_remove

Syntax --no_remove

Description When this option is used, unused sections are not removed. In other words, each module
that is included in the executable image contains all its original sections.

See also Keeping symbols and sections, page 111.

To set this option, use Project>Options>Linker>Extra Options.

AFE1_AFE2-1:1

338

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_vfe

Syntax --no_vfe

Description Use this option to disable the Virtual Function Elimination optimization. All virtual
functions in all classes with at least one instance will be kept, and Runtime Type
Information data will be kept for all polymorphic classes. Also, no warning message will
be issued for modules that lack VFE information.

See also --vfe, page 346 and Virtual function elimination, page 121.

To set related options, choose:

Project>Options>Linker>Optimizations>PerformC++ Virtual Function
Elimination

--no_warnings

Syntax --no_warnings

Description By default, the linker issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

Syntax --no_wrap_diagnostics

Description By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

--only_stdout

Syntax --only_stdout

Description Use this option to make the linker use the standard output stream (stdout), and
messages that are normally directed to the error output stream (stderr).

AFE1_AFE2-1:1

Linker options

339

This option is not available in the IDE.

--output, -o

Syntax --output {filename|directory}
-o {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description By default, the object executable image produced by the linker is located in a file with
the name a.out. Use this option to explicitly specify a different output filename, which
by default will have the filename extension out.

Project>Options>Linker>Output>Output file

--pi_veneers

Syntax --pi_veneers

Description Use this option to make the linker generate position-independent veneers. Note that this
type of veneer is larger and slower than normal veneers.

See also Veneers, page 117.

To set this option, use Project>Options>Linker>Extra Options.

--place_holder

Syntax --place_holder symbol[,size[,section[,alignment]]]

Parameters
symbol The name of the symbol to create

size Size in ROM. Default is 4 bytes

section Section name to use. Default is .text

alignment Alignment of section. Default is 1

AFE1_AFE2-1:1

340

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Use this option to reserve a place in ROM to be filled by some other tool, for example,
a checksum calculated by ielftool. Each use of this linker option results in a section
with the specified name, size, and alignment. The symbol can be used by your
application to refer to the section.

Note: Like any other section, sections created by the --place_holder option will only
be included in your application if the section appears to be needed. The --keep linker
option, or the keep linker directive can be used for forcing such section to be included.

See also IAR utilities, page 531.

To set this option, use Project>Options>Linker>Extra Options

--preconfig

Syntax --preconfig filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to make the linker read the specified file before reading the linker
configuration file.

To set this option, use Project>Options>Linker>Extra Options.

--printf_multibytes

Syntax --printf_multibytes

Description Use this option to make the linker automatically select a printf formatter that supports
multibytes.

Project>Options>General Options>Library options 1>Printf formatter

--redirect

Syntax --redirect from_symbol=to_symbol

Parameters
from_symbol The name of the source symbol

AFE1_AFE2-1:1

Linker options

341

Description Use this option to change references to an external symbol so that they refer to another
symbol.

Note: Redirection will normally not affect references within a module.

To set this option, use Project>Options>Linker>Extra Options

--remarks

Syntax --remarks

Description The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
linker does not generate remarks. Use this option to make the linker generate remarks.

See also Severity levels, page 257.

Project>Options>Linker>Diagnostics>Enable remarks

--scanf_multibytes

Syntax --scanf_multibytes

Description Use this option to make the linker automatically select a scanf formatter that supports
multibytes.

Project>Options>General Options>Library options 1>Scanf formatter

--search, -L

Syntax --search path

-L path

Parameters

to_symbol The name of the destination symbol

path A path to a directory where the linker should search for
object and library files.

AFE1_AFE2-1:1

342

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Use this option to specify more directories for the linker to search for object and library
files in.

By default, the linker searches for object and library files only in the working directory.
Each use of this option on the command line adds another search directory.

See also The linking process in detail, page 91.

This option is not available in the IDE.

--semihosting

Syntax --semihosting[=iar_breakpoint]

Parameters

Description Use this option to include the debug interface—breakpoint mechanism—in the output
image. If no parameter is specified, the SWI/SVC mechanism is included for
Arm7/9/11, and the BKPT mechanism is included for Cortex-M.

See also The semihosting mechanism, page 142.

Project>Options>General Options>Library Configuration>Semihosted

--silent

Syntax --silent

Description By default, the linker issues introductory messages and a final statistics report. Use this
option to make the linker operate without sending these messages to the standard output
stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

iar_breakpoint The IAR-specific mechanism can be used when
debugging applications that use SWI/SVC extensively.

AFE1_AFE2-1:1

Linker options

343

--stack_usage_control

Syntax --stack_usage_control=filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to specify a stack usage control file. This file controls stack usage
analysis, or provides more stack usage information for modules or functions. You can
use this option multiple times to specify multiple stack usage control files. If no filename
extension is specified, the extension suc is used.

Using this option enables stack usage analysis in the linker.

See also Stack usage analysis, page 98.

Project>Options>Linker>Advanced>Control file

--strip

Syntax --strip

Description By default, the linker retains the debug information from the input object files in the
output executable image. Use this option to remove that information.

To set related options, choose:

Project>Options>Linker>Output>Include debug information in output

--text_out

Syntax --text_out{utf8|utf16le|utf16be|locale}

Parameters

Description Use this option to specify the encoding to be used when generating a text output file.

utf8 Uses the UTF-8 encoding

utf16le Uses the UTF-16 little-endian encoding

utf16be Uses the UTF-16 big-endian encoding

locale Uses the system locale encoding

AFE1_AFE2-1:1

344

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

The default for the linker list files is to use the same encoding as the main source file.
The default for all other text files is UTF-8 with a Byte Order Mark (BOM).

If you want text output in UTF-8 encoding without BOM, you can use the option
--no_bom as well.

See also --no_bom, page 334 and Text encodings, page 254.

Project>Options>Linker>Encodings>Text output file encoding

--threaded_lib

Syntax --threaded_lib

Description Use this option to automatically configure the runtime library for use with threads.

Project>Options>General Options>Library Configuration>Enable thread
support in library

--timezone_lib

Syntax --timezone_lib

Description Use this option to enable the time zone and daylight savings time functionality in the
DLIB library.

Note: You need to implement the time zone functionality.

See also __getzone, page 153.

To set this option, use Project>Option>Linker>Extra Options.

--treat_rvct_modules_as_softfp

Syntax --treat_rvct_modules_as_softfp

Description Use this option to treat all modules generated by RVCT as using the standard (non-VFP)
calling convention.

To set this option, use Project>Options>Linker>Extra Options.

AFE1_AFE2-1:1

Linker options

345

--use_full_std_template_names

Syntax --use_full_std_template_names

Description In the unmangled names of C++ entities, the linker by default uses shorter names for
some classes. For example, "std::string" instead of
"std::basic_string<char,

std::char_traits<char>,std::allocator<char>>". Use this option to make
the linker instead use the full, unabbreviated names.

This option is not available in the IDE.

--use_optimized_variants

Syntax --use_optimized_variants=no|auto|small|fast

Parameters

Description Use this option to control the use of optimized variants of DLIB library functions.

Some DLIB libraries delivered with the product contain optimized variants, such as a
small integer division routing for Cortex-M0, or a fast strcpy implementation for cores
that support the Thumb-2 ISA architecture.

no always uses the default variant.

auto selects a variant based on AEABI attributes that indicate the requested
optimization goal:

● If a module is compiled with -Ohs, and the DLIB library contains a fast variant of a
function that is referenced in the module, that variant is used.

● If all modules referencing a function are compiled with -Ohz, and the DLIB library
contains a small variant of that function, that variant is used.

small uses a small variant if there is one in the DLIB library.

fast uses a fast variant if there is one in the DLIB library.

no Never uses optimized variants.

auto (default) Uses optimized variants based on attributes in the object
files.

small Always uses a small variant if available.

fast Always uses a fast variant if available.

AFE1_AFE2-1:1

346

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

To set this option, use Project>Option>Linker>Extra Options.

--utf8_text_in

Syntax --utf8_text_in

Description Use this option to specify that the linker shall use the UTF-8 encoding when reading a
text input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

See also Text encodings, page 254.

Project>Options>Linker>Encodings>Default input file encoding

--version

Syntax --version

Description Use this option to make the linker send version information to the console and then exit.

This option is not available in th IDE.

--vfe

Syntax --vfe=[forced]

Parameters

Description By default, Virtual Function Elimination is always performed but requires that all object
files contain the necessary virtual function elimination information. Use
--vfe=forced to perform Virtual Function Elimination even if one or more modules
do not have the necessary information.

forced Performs Virtual Function Elimination even if one or more
modules lack the needed virtual function elimination
information.

AFE1_AFE2-1:1

Linker options

347

Forcing the use of Virtual Function Elimination can be unsafe if some of the modules
that lack the needed information perform virtual function calls or use dynamic Runtime
Type Information.

See also --no_vfe, page 338 and Virtual function elimination, page 121.

To set related options, choose:

Project>Options>Linker>Optimizations>Perform C++ Virtual Function
Elimination

--warnings_affect_exit_code

Syntax --warnings_affect_exit_code

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors

Syntax --warnings_are_errors

Description Use this option to make the linker treat all warnings as errors. If the linker encounters
an error, no executable image is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning will also be treated as errors when --warnings_are_errors is
used.

See also --diag_warning, page 275 and --diag_warning, page 322.

Project>Options>Linker>Diagnostics>Treat all warnings as errors

--whole_archive

Syntax --whole_archive filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

AFE1_AFE2-1:1

348

Descriptions of linker options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Use this option to make the linker treat every object file in the archive as if it was
specified on the command line. This is useful when an archive contains root content that
is always included from an object file (filename extension o), but only included from an
archive if some entry from the module is referred to.

Example If archive.a contains the object files file1.o, file2.o, and file3.o, using
--whole_archive archive.a is equivalent to specifying file1.o file2.o
file3.o.

See also Keeping modules, page 111.

To set this option, use Project>Options>Linker>Extra Options

AFE1_AFE2-1:1

349

Data representation
● Alignment

● Byte order

● Basic data types—integer types

● Basic data types—floating-point types

● Pointer types

● Structure types

● Type qualifiers

● Data types in C++

See the chapter Efficient coding for embedded applications for information about
which data types provide the most efficient code for your application.

Alignment
Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time—in that environment, the
alignment for a 4-byte long integer might be 2.

A structure type will have the same alignment as the structure member with the most
strict alignment. To decrease the alignment requirements on the structure and its
members, use #pragma pack or the __packed data type attribute.

AFE1_AFE2-1:1

350

Byte order

IAR C/C++ Development Guide
Compiling and Linking for Arm

All data types must have a size that is a multiple of their alignment. Otherwise, only the
first element of an array would be guaranteed to be placed in accordance with the
alignment requirements. This means that the compiler might add pad bytes at the end of
the structure. For more information about pad bytes, see Packed structure types, page
360.

Note: With the #pragma data_alignment directive, you can increase the alignment
demands on specific variables.

See also the Standard C file stdalign.h.

ALIGNMENT ON THE ARM CORE

The alignment of a data object controls how it can be stored in memory. The reason for
using alignment is that the Arm core can access 4-byte objects more efficiently when the
object is stored at an address divisible by 4.

Objects with alignment 4 must be stored at an address divisible by 4, while objects with
alignment 2 must be stored at addresses divisible by 2.

The compiler ensures this by assigning an alignment to every data type, ensuring that
the Arm core will be able to read the data.

For related information, see --align_sp_on_irq, page 267 and --no_const_align, page
287.

Byte order
In the little-endian byte order, which is default, the least significant byte is stored at the
lowest address in memory. The most significant byte is stored at the highest address.

In the big-endian byte order, the most significant byte is stored at the lowest address in
memory. The least significant byte is stored at the highest address. If you use the
big-endian byte order, it might be necessary to use the
#pragma bitfields=reversed directive to be compatible with code for other
compilers and I/O register definitions of some devices, see Bitfields, page 352.

Note: There are two variants of the big-endian mode, BE8 and BE32, which you specify
at link time. In BE8 data is big-endian and code is little-endian. In BE32 both data and
code are big-endian. In architectures before v6, the BE32 endian mode is used, and after
v6 the BE8 mode is used. In the v6 (Arm11) architecture, both big-endian modes are
supported.

AFE1_AFE2-1:1

Data representation

351

Basic data types—integer types
The compiler supports both all Standard C basic data types and some additional types.

These topics are covered:

● Integer types—an overview, page 351

● Bool, page 351

● The enum type, page 352

● The char type, page 352

● The wchar_t type, page 352

● The char16_t type, page 352

● The char32_t type, page 352

● Bitfields, page 352

INTEGER TYPES—AN OVERVIEW

This table gives the size and range of each integer data type:

Signed variables are represented using the two’s complement form.

BOOL

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

Data type Size Range Alignment

bool 8 bits 0 to 1 1

char 8 bits 0 to 255 1

signed char 8 bits -128 to 127 1

unsigned char 8 bits 0 to 255 1

signed short 16 bits -32768 to 32767 2

unsigned short 16 bits 0 to 65535 2

signed int 32 bits -231 to 231-1 4

unsigned int 32 bits 0 to 232-1 4

signed long 32 bits -231 to 231-1 4

unsigned long 32 bits 0 to 232-1 4

signed long long 64 bits -263 to 263-1 8

unsigned long long 64 bits 0 to 264-1 8

Table 27: Integer types

AFE1_AFE2-1:1

352

Basic data types—integer types

IAR C/C++ Development Guide
Compiling and Linking for Arm

THE ENUM TYPE

The compiler will use the smallest type required to hold enum constants, preferring
signed rather than unsigned.

When IAR Systems language extensions are enabled, and in C++, the enum constants
and types can also be of the type long, unsigned long, long long, or unsigned
long long.

To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example:

/* Disables usage of the char type for enum */
enum Cards{Spade1, Spade2,
 DontUseChar=257};

See also the C++ enum struct syntax.

For related information, see --enum_is_int, page 279.

THE CHAR TYPE

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed.

Note: The library is compiled with the char type as unsigned.

THE WCHAR_T TYPE

The wchar_t data type is 4 bytes and the encoding used for it is UTF-32.

THE CHAR16_T TYPE

The char16_t data type is 2 bytes and the encoding used for it is UTF-16.

THE CHAR32_T TYPE

The char32_t data type is 4 bytes and the encoding used for it is UTF-32.

BITFIELDS

In Standard C, int, signed int, and unsigned int can be used as the base type for
integer bitfields. In standard C++, and in C when language extensions are enabled in the
compiler, any integer or enumeration type can be used as the base type. It is
implementation defined whether a plain integer type (char, short, int, etc) results in
a signed or unsigned bitfield.

In the IAR C/C++ Compiler for Arm, plain integer types are treated as unsigned.

AFE1_AFE2-1:1

Data representation

353

Bitfields in expressions are treated as int if int can represent all values of the bitfield.
Otherwise, they are treated as the bitfield base type.

Each bitfield is placed in the next suitably aligned container of its base type that has
enough available bits to accommodate the bitfield. Within each container, the bitfield is
placed in the first available byte or bytes, taking the byte order into account. Note that
containers can overlap if needed, as long as they are suitably aligned for their type.

In addition, the compiler supports an alternative bitfield allocation strategy (disjoint
types), where bitfield containers of different types are not allowed to overlap. Using this
allocation strategy, each bitfield is placed in a new container if its type is different from
that of the previous bitfield, or if the bitfield does not fit in the same container as the
previous bitfield. Within each container, the bitfield is placed from the least significant
bit to the most significant bit (disjoint types) or from the most significant bit to the least
significant bit (reverse disjoint types). This allocation strategy will never use less space
than the default allocation strategy (joined types), and can use significantly more space
when mixing bitfield types.

Use the #pragma bitfields directive to choose which bitfield allocation strategy to
use, see bitfields, page 386.

Assume this example:

struct BitfieldExample
{
 uint32_t a : 12;
 uint16_t b : 3;
 uint16_t c : 7;
 uint8_t d;
};

The example in the joined types bitfield allocation strategy

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the first and second bytes of the container.

For the second bitfield, b, a 16-bit container is needed and because there are still four
bits free at offset 0, the bitfield is placed there.

For the third bitfield, c, as there is now only one bit left in the first 16-bit container, a
new container is allocated at offset 2, and c is placed in the first byte of this container.

The fourth member, d, can be placed in the next available full byte, which is the byte at
offset 3.

AFE1_AFE2-1:1

354

Basic data types—integer types

IAR C/C++ Development Guide
Compiling and Linking for Arm

In little-endian mode, each bitfield is allocated starting from the least significant free bit
of its container to ensure that it is placed into bytes from left to right.

In big-endian mode, each bitfield is allocated starting from the most significant free bit
of its container to ensure that it is placed into bytes from left to right.

The example in the disjoint types bitfield allocation strategy

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the least significant 12 bits of the container.

To place the second bitfield, b, a new container is allocated at offset 4, because the type
of the bitfield is not the same as that of the previous one. b is placed into the least
significant three bits of this container.

The third bitfield, c, has the same type as b and fits into the same container.

AFE1_AFE2-1:1

Data representation

355

The fourth member, d, is allocated into the byte at offset 6. d cannot be placed into the
same container as b and c because it is not a bitfield, it is not of the same type, and it
would not fit.

When using reverse order (reverse disjoint types), each bitfield is instead placed starting
from the most significant bit of its container.

This is the layout of bitfield_example in little-endian mode:

AFE1_AFE2-1:1

356

Basic data types—floating-point types

IAR C/C++ Development Guide
Compiling and Linking for Arm

This is the layout of bitfield_example in big-endian mode:

Basic data types—floating-point types
In the IAR C/C++ Compiler for Arm, floating-point values are represented in standard
IEEE 754 format. The sizes for the different floating-point types are:

For Cortex-M0 and Cortex-M1, the compiler does not support subnormal numbers. All
operations that should produce subnormal numbers will instead generate zero. For
information about the representation of subnormal numbers for other cores, see
Representation of special floating-point numbers, page 358.

The __fp16 floating-point type is only a storage type. All numerical operations will
operate on values promoted to float.

Type Size Range (+/-) Decimals Exponent Mantissa Alignment

__fp16 16 bits ±2E-14 to 65504 3 5 bits 11 bits 2

float 32 bits ±1.18E-38 to ±3.40E+38 7 8 bits 23 bits 4

double 64 bits ±2.23E-308 to ±1.79E+308 15 11 bits 52 bits 8

long
double

64 bits ±2.23E-308 to ±1.79E+308 15 11 bits 52 bits 8

Table 28: Floating-point types

AFE1_AFE2-1:1

Data representation

357

FLOATING-POINT ENVIRONMENT

Exception flags for floating-point values are supported for devices with a VFP unit, and
they are defined in the fenv.h file. For devices without a VFP unit, the functions
defined in the fenv.h file exist but have no functionality.

The feraiseexcept function does not raise an inexact floating-point exception
when called with FE_OVERFLOW or FE_UNDERFLOW.

32-BIT FLOATING-POINT FORMAT

The representation of a 32-bit floating-point number as an integer is:

The exponent is 8 bits, and the mantissa is 23 bits.

The value of the number is:

(-1)S * 2(Exponent-127) * 1.Mantissa

The range of the number is at least:

±1.18E-38 to ±3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

64-BIT FLOATING-POINT FORMAT

The representation of a 64-bit floating-point number as an integer is:

The exponent is 11 bits, and the mantissa is 52 bits.

The value of the number is:

(-1)S * 2(Exponent-1023) * 1.Mantissa

The range of the number is at least:

±2.23E-308 to ±1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

AFE1_AFE2-1:1

358

Pointer types

IAR C/C++ Development Guide
Compiling and Linking for Arm

REPRESENTATION OF SPECIAL FLOATING-POINT NUMBERS

This list describes the representation of special floating-point numbers:

● Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

● Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

● Not a number (NaN) is represented by setting the exponent to the highest positive
value and the most significant bit in the mantissa to 1. The value of the sign bit is
ignored.

● Subnormal numbers are used for representing values smaller than what can be
represented by normal values. The drawback is that the precision will decrease with
smaller values. The exponent is set to 0 to signify that the number is subnormal,
even though the number is treated as if the exponent was 1. Unlike normal numbers,
subnormal numbers do not have an implicit 1 as the most significant bit (the MSB)
of the mantissa. The value of a subnormal number is:

(-1)S * 2(1-BIAS) * 0.Mantissa

where BIAS is 127 and 1023 for 32-bit and 64-bit floating-point values, respectively.

Pointer types
The compiler has two basic types of pointers: function pointers and data pointers.

FUNCTION POINTERS

The size of function pointers is always 32 bits, and the range is 0x0-0xFFFFFFFF.

When function pointer types are declared, attributes are inserted before the * sign, for
example:

typedef void (__thumb * IntHandler) (void);

This can be rewritten using #pragma directives:

#pragma type_attribute=__thumb
typedef void IntHandler_function(void);
typedef IntHandler_function *IntHandler;

DATA POINTERS

There is one data pointer available. Its size is 32 bits and the range is 0x0–0xFFFFFFFF.

AFE1_AFE2-1:1

Data representation

359

CASTING

Casts between pointers have these characteristics:

● Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

● Casting a pointer type to a smaller integer type is performed by truncation

● Casting a pointer type to a larger integer type is performed by zero extension

● Casting a data pointer to a function pointer and vice versa is illegal

● Casting a function pointer to an integer type gives an undefined result

● Casting a value of an unsigned integer type to a pointer of a larger type is performed
by zero extension

size_t

size_t is the unsigned integer type of the result of the sizeof operator. In the IAR
C/C++ Compiler for Arm, the type used for size_t is unsigned int.

ptrdiff_t

ptrdiff_t is the signed integer type of the result of subtracting two pointers. In the
IAR C/C++ Compiler for Arm, the type used for ptrdiff_t is the signed integer
variant of the size_t type.

intptr_t

intptr_t is a signed integer type large enough to contain a void *. In the IAR C/C++
Compiler for Arm, the type used for intptr_t is signed long int.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types
The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

ALIGNMENT OF STRUCTURE TYPES

The struct and union types have the same alignment as the member with the highest
alignment requirement—this alignment requirement also applies to a member that is a
structure. To allow arrays of aligned structure objects, the size of a struct is adjusted
to an even multiple of the alignment.

AFE1_AFE2-1:1

360

Structure types

IAR C/C++ Development Guide
Compiling and Linking for Arm

GENERAL LAYOUT

Members of a struct are always allocated in the order specified in the declaration.
Each member is placed in the struct according to the specified alignment (offsets).

struct First
{
 char c;
 short s;
} s;

This diagram shows the layout in memory:

The alignment of the structure is 2 bytes, and a pad byte must be inserted to give
short s the correct alignment.

PACKED STRUCTURE TYPES

The is used for relaxing the alignment requirements of the members of a structure. This
changes the layout of the structure. The members are placed in the same order as when
declared, but there might be less pad space between members.

Note: Accessing an object that is not correctly aligned requires code that is both larger
and slower. If such structure members are accessed many times, it is usually better to
construct the correct values in a struct that is not packed, and access this struct
instead.

Special care is also needed when creating and using pointers to misaligned members.
For direct access to misaligned members in a packed struct, the compiler will emit the
correct (but slower and larger) code when needed. However, when a misaligned member
is accessed through a pointer to the member, the normal (smaller and faster) code is
used. In the general case, this will not work, because the normal code might depend on
the alignment being correct.

This example declares a packed structure:

#pragma pack(1)
struct S
{
 char c;
 short s;
};

#pragma pack()

AFE1_AFE2-1:1

Data representation

361

The structure S has this memory layout:

The next example declares a new non-packed structure, S2, that contains the structure s
declared in the previous example:

struct S2
{
 struct S s;
 long l;
};

The structure S2 has this memory layout

The structure S will use the memory layout, size, and alignment described in the
previous example. The alignment of the member l is 4, which means that alignment of
the structure S2 will become 4.

For more information, see Alignment of elements in a structure, page 228.

Type qualifiers
According to the C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

By declaring an object volatile, the compiler is informed that the value of the object
can change beyond the compiler’s control. The compiler must also assume that any
accesses can have side effects—therefore all accesses to the volatile object must be
preserved.

There are three main reasons for declaring an object volatile:

● Shared access—the object is shared between several tasks in a multitasking
environment

● Trigger access—as for a memory-mapped SFR where the fact that an access occurs
has an effect

AFE1_AFE2-1:1

362

Type qualifiers

IAR C/C++ Development Guide
Compiling and Linking for Arm

● Modified access—where the contents of the object can change in ways not known to
the compiler.

Definition of access to volatile objects

The C standard defines an abstract machine, which governs the behavior of accesses to
volatile declared objects. In general and in accordance to the abstract machine:

● The compiler considers each read and write access to an object declared volatile
as an access

● The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:

char volatile a;
a = 5; /* A write access */
a += 6; /* First a read then a write access */

● An access to a bitfield is treated as an access to the underlying type

● Adding a const qualifier to a volatile object will make write accesses to the
object impossible. However, the object will be placed in RAM as specified by the C
standard.

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the IAR C/C++ Compiler for Arm are described
below.

Rules for accesses

In the IAR C/C++ Compiler for Arm, accesses to volatile declared objects are subject
to these rules:

● All accesses are preserved

● All accesses are complete, that is, the whole object is accessed

● All accesses are performed in the same order as given in the abstract machine

● All accesses are atomic, that is, they cannot be interrupted.

The compiler adheres to these rules for accesses to all 8-, 16-, and 32-bit scalar types,
except for accesses to unaligned 16- and 32-bit fields in packed structures.

For all combinations of object types not listed, only the rule that states that all accesses
are preserved applies.

DECLARING OBJECTS VOLATILE AND CONST

If you declare a volatile object const, it will be write-protected but it will still be
stored in RAM memory as the C standard specifies.

AFE1_AFE2-1:1

Data representation

363

To store the object in read-only memory instead, but still make it possible to access it as
a const volatile object, declare it with the __ro_placement attribute. See
__ro_placement, page 377.

To store the object in read-only memory instead, but still make it possible to access it as
a const volatile object, define the variable like this:

const volatile int x @ "FLASH";

The compiler will generate the read/write section FLASH. That section should be placed
in ROM and is used for manually initializing the variables when the application starts
up.

Thereafter, the initializers can be reflashed with other values at any time.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const are allocated in ROM.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++
In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any C++ features are used for a type, no assumptions can be made
concerning the data representation. This means, for example, that it is not supported to
write assembler code that accesses class members.

AFE1_AFE2-1:1

364

Data types in C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

365

Extended keywords
● General syntax rules for extended keywords

● Summary of extended keywords

● Descriptions of extended keywords

● Supported GCC attributes

General syntax rules for extended keywords
The compiler provides a set of attributes that can be used on functions or data objects to
support specific features of the Arm core. There are two types of attributes—type
attributes and object attributes:

● Type attributes affect the external functionality of the data object or function

● Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For more information about each attribute, see Descriptions of extended keywords, page
369.

Note: The extended keywords are only available when language extensions are enabled
in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 278.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.

You can either place the type attributes explicitly in your declarations, or use the pragma
directive #pragma type_attribute.

General type attributes

Available function type attributes (affect how the function should be called):

AFE1_AFE2-1:1

366

General syntax rules for extended keywords

IAR C/C++ Development Guide
Compiling and Linking for Arm

__arm, __cmse_nonsecure_call, __fiq, __interwork, __irq, __swi, __task,
__thumb

Available data type attributes:

__big_endian, __little_endian__packed

You can specify as many type attributes as required for each level of pointer indirection.

Syntax for type attributes used on data objects

If you select the uniform attribute syntax, data type attributes use the same syntax rules
as the type qualifiers const and volatile.

If not, data type attributes use almost the same syntax rules as the type qualifiers const
and volatile. For example:

__little_endian int i;
int __little_endian j;

Both i and j will be accessed with little-endian byte order.

Unlike const and volatile, when a type attribute is used before the type specifier in
a derived type, the type attribute applies to the object, or typedef itself, except in
structure member declarations.

The third case is interpreted differently when uniform attribute syntax is selected. If so,
it is equivalent to the first case, just as would be the case if const or volatile were
used correspondingly.

Using a type definition can sometimes make the code clearer:

typedef __packed int packed_int;
packed_int *q1;

packed_int is a typedef for packed integers. The variable q1 can point to such integers.

You can also use the #pragma type_attributes directive to specify type attributes
for a declaration. The type attributes specified in the pragma directive are applied to the
data object or typedef being declared.

#pragma type_attribute=__packed
int * q2;

The variable q2 is packed.

For more information about the uniform attribute syntax, see
--uniform_attribute_syntax, page 305 and --no_uniform_attribute_syntax, page 294.

AFE1_AFE2-1:1

Extended keywords

367

Syntax for type attributes used on functions

The syntax for using type attributes on functions differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, or inside the parentheses for function pointers, for example:

__irq __arm void my_handler(void);

or

void (__irq __arm * my_fp)(void);

You can also use #pragma type_attribute to specify the function type attributes:

#pragma type_attribute=__irq __arm
void my_handler(void);

#pragma type attribute=__irq __arm
typedef void my_fun_t(void);
my_fun_t * my_fp;

OBJECT ATTRIBUTES

Normally, object attributes affect the internal functionality of functions and data objects,
but not directly how the function is called or how the data is accessed. This means that
an object attribute does not normally need to be present in the declaration of an object.

These object attributes are available:

● Object attributes that can be used for variables:

__absolute, __no_alloc, __no_alloc16, __no_alloc_str,
__no_alloc_str16, __no_init, __ro_placement

● Object attributes that can be used for functions and variables:

location, @, __root, __weak

● Object attributes that can be used for functions:

__cmse_nonsecure_entry, __intrinsic, __nested, __noreturn,
__ramfunc, __stackless

You can specify as many object attributes as required for a specific function or data
object.

For more information about location and @, see Controlling data and function
placement in memory, page 230.

AFE1_AFE2-1:1

368

Summary of extended keywords

IAR C/C++ Development Guide
Compiling and Linking for Arm

Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray
in memory that is not initialized at startup:

__no_init int myarray[10];

The #pragma object_attribute directive can also be used. This declaration is
equivalent to the previous one:

#pragma object_attribute=__no_init
int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.

Summary of extended keywords
This table summarizes the extended keywords:

Extended keyword Description

__absolute Makes references to the object use absolute addressing

__arm Makes a function execute in Arm mode

__big_endian Declares a variable to use the big-endian byte order

__cmse_nonsecure_call Declares a function pointer to call non-secure code

__cmse_nonsecure_entry Makes a function callable from a non-secure image

__fiq Declares a fast interrupt function

__interwork Declares a function to be callable from both Arm and
Thumb mode

__intrinsic Reserved for compiler internal use only

__irq Declares an interrupt function

__little_endian Declares a variable to use the little-endian byte order

__nested Allows an __irq declared interrupt function to be nested,
that is, interruptible by the same type of interrupt

__no_alloc,

__no_alloc16

Makes a constant available in the execution file

__no_alloc_str,

__no_alloc_str16

Makes a string literal available in the execution file

__no_init Places a data object in non-volatile memory

__noreturn Informs the compiler that the function will not return

__packed Decreases data type alignment to 1

Table 29: Extended keywords summary

AFE1_AFE2-1:1

Extended keywords

369

Descriptions of extended keywords
This section gives detailed information about each extended keyword.

__absolute

Syntax See Syntax for object attributes, page 368.

Description The __absolute keyword makes references to the object use absolute addressing.

The following limitations apply:

● Only available when the --ropi or --rwpi compiler option is used

● Can only be used on external declarations.

Example extern __absolute char otherBuffer[100];

__arm

Syntax See Syntax for type attributes used on functions, page 367.

Description The __arm keyword makes a function execute in Arm mode.

__pcrel Used internally by the compiler for constant data when the
--ropi compiler option is used

__ramfunc Makes a function execute in RAM

__ro_placement Places const volatile data in read-only memory.

__root Ensures that a function or variable is included in the object
code even if unused

__sbrel Used internally by the compiler for constant data when the
--rwpi compiler option is used

__stackless Makes a function callable without a working stack

__swi Declares a software interrupt function

__task Relaxes the rules for preserving registers

__thumb Makes a function execute in Thumb mode

__weak Declares a symbol to be externally weakly linked

Extended keyword Description

Table 29: Extended keywords summary (Continued)

AFE1_AFE2-1:1

370

Descriptions of extended keywords

IAR C/C++ Development Guide
Compiling and Linking for Arm

A function declared __arm cannot be declared __thumb.

Example __arm int func1(void);

__big_endian

Syntax See Syntax for type attributes used on data objects, page 366.

Description The __big_endian keyword is used for accessing a variable that is stored in the
big-endian byte order regardless of what byte order the rest of the application uses. The
__big_endian keyword is available when you compile for Armv6 or higher.

Note: This keyword cannot be used on pointers. This attribute cannot be used on arrays.

Example __big_endian long my_variable;

See also __little_endian, page 372.

__cmse_nonsecure_call

Syntax See Syntax for type attributes used on functions, page 367.

Description The keyword __cmse_nonsecure_call can be used on a function pointer, and
indicates that a call via the pointer will enter non-secure state. The execution state will
be cleared up before such a call, to avoid leaking sensitive data to the non-secure state.

The __cmse_nonsecure_call keyword can only be used with a function pointer, and
it is only allowed when compiling with --cmse.

The keyword __cmse_nonsecure_call is not supported for variadic functions, for
functions with parameters or return values that do not fit in registers, or for functions
with parameters or return values in floating-point registers.

Example #include <arm_cmse.h>
typedef __cmse_nonsecure_call void (*fp_ns_t)(void);
static fp_ns_t callback_ns = 0;
__cmse_nonsecure_entry void set_callback_ns(fp_ns_t func_ns) {
 callback_ns = cmse_nsfptr_create(func_ns);
}

See also --cmse, page 269.

AFE1_AFE2-1:1

Extended keywords

371

__cmse_nonsecure_entry

Syntax See Syntax for object attributes, page 368.

Description The __cmse_nonsecure_entry keyword declares an entry function that can be called
from the non-secure state. The execution state will be cleared before returning to the
caller, to avoid leaking sensitive data to the non-secure state.

The keyword __cmse_nonsecure_entry is not supported for variadic functions or
functions with parameters or return values that do not fit in registers.

The keyword __cmse_nonsecure_entry is only allowed when compiling with
--cmse.

Example #include <arm_cmse.h>
__cmse_nonsecure_entry int secure_add(int a, int b) {
 return cmse_nonsecure_caller() ? a + b : 0;
}

See also --cmse, page 269.

__fiq

Syntax See Syntax for type attributes used on functions, page 367.

Description The __fiq keyword declares a fast interrupt function. All interrupt functions must be
compiled in Arm mode. A function declared __fiq does not accept parameters and
does not have a return value. This keyword is not available when you compile for
Cortex-M devices.

Example __fiq __arm void interrupt_function(void);

__interwork

Syntax See Syntax for type attributes used on functions, page 367.

Description A function declared __interwork can be called from functions executing in either
Arm or Thumb mode.

Note: All functions are interwork. The keyword exists for compatibility reasons.

Example typedef void (__thumb __interwork *IntHandler)(void);

AFE1_AFE2-1:1

372

Descriptions of extended keywords

IAR C/C++ Development Guide
Compiling and Linking for Arm

__intrinsic

Description The __intrinsic keyword is reserved for compiler internal use only.

__irq

Syntax See Syntax for type attributes used on functions, page 367.

Description The __irq keyword declares an interrupt function. All interrupt functions must be
compiled in Arm mode. A function declared __irq does not accept parameters and
does not have a return value. This keyword is not available when you compile for
Cortex-M devices.

Example __irq __arm void interrupt_function(void);

See also --align_sp_on_irq, page 267.

__little_endian

Syntax See Syntax for type attributes used on data objects, page 366.

Description The __little_endian keyword is used for accessing a variable that is stored in the
little-endian byte order regardless of what byte order the rest of the application uses. The
__little_endian keyword is available when you compile for Armv6 or higher.

Note: This keyword cannot be used on pointers. This attribute cannot be used on arrays.

Example __little_endian long my_variable;

See also __big_endian, page 370.

__nested

Syntax See Syntax for object attributes, page 368.

Description The __nested keyword modifies the enter and exit code of an interrupt function to
allow for nested interrupts. This allows interrupts to be enabled, which means new
interrupts can be served inside an interrupt function, without overwriting the SPSR and
return address in R14. Nested interrupts are only supported for __irq declared
functions.

AFE1_AFE2-1:1

Extended keywords

373

Note: The __nested keyword requires the processor mode to be in either User or
System mode.

Example __irq __nested __arm void interrupt_handler(void);

See also Nested interrupts, page 83 and --align_sp_on_irq, page 267.

__no_alloc, __no_alloc16

Syntax See Syntax for object attributes, page 368.

Description Use the __no_alloc or __no_alloc16 object attribute on a constant to make the
constant available in the executable file without occupying any space in the linked
application.

You cannot access the contents of such a constant from your application. You can take
its address, which is an integer offset to the section of the constant. The type of the offset
is unsigned long when __no_alloc is used, and unsigned short when
__no_alloc16 is used.

Example __no_alloc const struct MyData my_data @ "XXX" = {...};

See also __no_alloc_str, __no_alloc_str16, page 373.

__no_alloc_str, __no_alloc_str16

Syntax __no_alloc_str(string_literal @ section)

and

__no_alloc_str16(string_literal @ section)

where

Description Use the __no_alloc_str or __no_alloc_str16 operators to make string literals
available in the executable file without occupying any space in the linked application.

string_literal The string literal that you want to make available in the
executable file.

section The name of the section to place the string literal in.

AFE1_AFE2-1:1

374

Descriptions of extended keywords

IAR C/C++ Development Guide
Compiling and Linking for Arm

The value of the expression is the offset of the string literal in the section. For
__no_alloc_str, the type of the offset is unsigned long. For __no_alloc_str16,
the type of the offset is unsigned short.

Example #define MYSEG "YYY"
#define X(str) __no_alloc_str(str @ MYSEG)

extern void dbg_printf(unsigned long fmt, ...)

#define DBGPRINTF(fmt, ...) dbg_printf(X(fmt), __VA_ARGS__)

void
foo(int i, double d)
{
 DBGPRINTF("The value of i is: %d, the value of d is: %f",i,d);
}

Depending on your debugger and the runtime support, this could produce trace output
on the host computer.

Note: There is no such runtime support in C-SPY, unless you use an external plugin
module.

See also __no_alloc, __no_alloc16, page 373.

__no_init

Syntax See Syntax for object attributes, page 368.

Description Use the __no_init keyword to place a data object in non-volatile memory. This means
that the initialization of the variable, for example at system startup, is suppressed.

Example __no_init int myarray[10];

See also Non-initialized variables, page 244 and do not initialize directive, page 501.

__noreturn

Syntax See Syntax for object attributes, page 368.

Description The __noreturn keyword can be used on a function to inform the compiler that the
function will not return. If you use this keyword on such functions, the compiler can
optimize more efficiently. Examples of functions that do not return are abort and exit.

AFE1_AFE2-1:1

Extended keywords

375

Note: At optimization levels Medium or High, the __noreturn keyword might cause
incorrect call stack debug information at any point where it can be determined that the
current function cannot return.

Note: The extended keyword __noreturn has the same meaning as the Standard C
keyword _Noreturn or the macro noreturn (if stdnoreturn.h has been included)
and as the Standard C++ attribute [[noreturn]].

Example __noreturn void terminate(void);

__packed

Syntax See Syntax for type attributes used on data objects, page 366. An exception is when the
keyword is used for modifying the structure type in a struct or union declarations,
see below.

Description Use the __packed keyword to specify a data alignment of 1 for a data type. __packed
can be used in two ways:

● When used before the struct or union keyword in a structure definition, the
maximum alignment of each member in the structure is set to 1, eliminating the
need for gaps between the members.

You can also use the __packed keyword with structure declarations, but it is illegal
to refer to a structure type defined without the __packed keyword using a structure
declaration with the __packed keyword.

● When used in any other position, it follows the syntax rules for type attributes, and
affects a type in its entirety. A type with the __packed type attribute is the same as
the type attribute without the __packed type attribute, except that it has a data
alignment of 1. Types that already have an alignment of 1 are not affected by the
__packed type attribute.

A normal pointer can be implicitly converted to a pointer to __packed, but the reverse
conversion requires a cast.

Note: Accessing data types at other alignments than their natural alignment can result
in code that is significantly larger and slower.

Use either __packed or #pragma pack to relax the alignment restrictions for a type
and the objects defined using that type. Mixing __packed and #pragma pack might
lead to unexpected behavior.

AFE1_AFE2-1:1

376

Descriptions of extended keywords

IAR C/C++ Development Guide
Compiling and Linking for Arm

Example /* No pad bytes in X: */
__packed struct X { char ch; int i; };
/* __packed is optional here: */
struct X * xp;

/* NOTE: no __packed: */
struct Y { char ch; int i; };
/* ERROR: Y not defined with __packed: */
__packed struct Y * yp ;

/* Member 'i' has alignment 1: */
struct Z { char ch; __packed int i; };

void Foo(struct X * xp)
{
 /* Error:"int __packed *" -> "int *" not allowed: */
 int * p1 = &xp->1;
 /* OK: */
 int __packed * p2 = &xp->i;
 /* OK, char not affected */
 char * p3 = &xp->ch;
}

See also pack, page 400.

__ramfunc

Syntax See Syntax for object attributes, page 368.

Description The __ramfunc keyword makes a function execute in RAM. Two code sections will be
created: one for the RAM execution (.textrw), and one for the ROM initialization
(.textrw_init).

If a function declared __ramfunc tries to access ROM, the compiler will issue a
warning. This behavior is intended to simplify the creation of upgrade routines, for
instance, rewriting parts of flash memory. If this is not why you have declared the
function __ramfunc, you can safely ignore or disable these warnings.

Functions declared __ramfunc are by default stored in the section named .textrw.

Example __ramfunc int FlashPage(char * data, char * page);

See also The C-SPY® Debugging Guide for Arm to read more about __ramfunc declared
functions in relation to breakpoints.

AFE1_AFE2-1:1

Extended keywords

377

__ro_placement

Syntax See Syntax for object attributes, page 368.

Description The __ro_placement attribute specifies that a data object should be placed in
read-only memory. There are two cases where you might want to use this object
attribute:

● Data objects declared const volatile are by default placed in read-write
memory. Use the __ro_placement object attribute to place the data object in
read-only memory instead.

● In C++, a data object declared const and that needs dynamic initialization is placed
in read-write memory and initialized at system startup. If you use the
__ro_placement object attribute, the compiler will give an error message if the
data object needs dynamic initialization.

You can only use the __ro_placement object attribute on const objects.

You can use the __ro_placement attribute with C++ objects if the compiler can
optimize the C++ dynamic initialization of the data objects into static initialization. This
is possible only for relatively simple constructors that have been defined in the header
files of the relevant class definitions, so that they are visible to the compiler. If the
compiler cannot find the constructor, or if the constructor is too complex, an error
message will be issued (Error[Go023]) and the compilation will fail.

Example __ro_placement const volatile int x = 10;

__root

Syntax See Syntax for object attributes, page 368.

Description A function or variable with the __root attribute is kept whether or not it is referenced
from the rest of the application, provided its module is included. Program modules are
always included and library modules are only included if needed.

Example __root int myarray[10];

See also For more information about root symbols and how they are kept, see Keeping symbols
and sections, page 111.

__stackless

Syntax See Syntax for object attributes, page 368.

AFE1_AFE2-1:1

378

Descriptions of extended keywords

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description The __stackless keyword declares a function that can be called without a working
stack.

A function declared __stackless violates the calling convention in such a way that it
is not possible to return from it. However, the compiler cannot reliably detect if the
function returns and will not issue an error if it does.

Example __stackless void start_application(void);

__swi

Syntax See Syntax for type attributes used on functions, page 367.

Description The __swi declares a software interrupt function. It inserts an SVC (formerly SWI)
instruction and the specified software interrupt number to make a proper function call.
A function declared __swi accepts arguments and returns values. The __swi keyword
makes the compiler generate the correct return sequence for a specific software interrupt
function. Software interrupt functions follow the same calling convention regarding
parameters and return values as an ordinary function, except for the stack usage.

The __swi keyword also expects a software interrupt number which is specified with
the #pragma swi_number=number directive. The swi_number is used as an
argument to the generated assembler SVC instruction, and can be used by the SVC
interrupt handler, for example SWI_Handler, to select one software interrupt function
in a system containing several such functions.

Note: The software interrupt number should only be specified in the function
declaration—typically, in a header file that you include in the source code file that calls
the interrupt function—not in the function definition.

Note: All interrupt functions must be compiled in Arm mode, except for Cortex-M. Use
either the __arm keyword or the #pragma type_attribute=__arm directive to alter
the default behavior if needed.

Example To declare your software interrupt function, typically in a header file, write for example
like this:

#pragma swi_number=0x23
__swi int swi0x23_function(int a, int b);
...

AFE1_AFE2-1:1

Extended keywords

379

To call the function:

...
int x = swi0x23_function(1, 2); /* Will be replaced by SVC 0x23,
 hence the linker will never
 try to locate the
 swi0x23_function */
...

Somewhere in your application source code, you define your software interrupt
function:

...
__swi __arm int the_actual_swi0x23_function(int a, int b)
{
 ...
 return 42;
}

See also Software interrupts, page 84 and Calling convention, page 175.

__task

Syntax See Syntax for type attributes used on functions, page 367.

Description This keyword allows functions to relax the rules for preserving registers. Typically, the
keyword is used on the start function for a task in an RTOS.

By default, functions save the contents of used preserved registers on the stack upon
entry, and restore them at exit. Functions that are declared __task do not save all
registers, and therefore require less stack space.

Because a function declared __task can corrupt registers that are needed by the calling
function, you should only use __task on functions that do not return or call such a
function from assembler code.

The function main can be declared __task, unless it is explicitly called from the
application. In real-time applications with more than one task, the root function of each
task can be declared __task.

Example __task void my_handler(void);

__thumb

Syntax See Syntax for type attributes used on functions, page 367.

AFE1_AFE2-1:1

380

Supported GCC attributes

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description The __thumb keyword makes a function execute in Thumb mode.

A function declared __thumb cannot be declared __arm.

Example __thumb int func2(void);

__weak

Syntax See Syntax for object attributes, page 368.

Description Using the __weak object attribute on an external declaration of a symbol makes all
references to that symbol in the module weak.

Using the __weak object attribute on a public definition of a symbol makes that
definition a weak definition.

The linker will not include a module from a library solely to satisfy weak references to
a symbol, nor will the lack of a definition for a weak reference result in an error. If no
definition is included, the address of the object will be zero.

When linking, a symbol can have any number of weak definitions, and at most one
non-weak definition. If the symbol is needed, and there is a non-weak definition, this
definition will be used. If there is no non-weak definition, one of the weak definitions
will be used.

Example extern __weak int foo; /* A weak reference. */

__weak void bar(void) /* A weak definition. */
{
 /* Increment foo if it was included. */
 if (&foo != 0)
 ++foo;
}

Supported GCC attributes
In extended language mode, the IAR C/C++ Compiler also supports a limited selection
of GCC-style attributes. Use the __attribute__ ((attribute-list)) syntax for
these attributes.

The following attributes are supported in part or in whole. For more information, see the
GCC documentation.

● alias

AFE1_AFE2-1:1

Extended keywords

381

● aligned

● always_inline

● cmse_nonsecure_call

● cmse_nonsecure_entry

● constructor

● deprecated

● noinline

● noreturn

● packed

● pcs (for IAR type attributes used on functions)

● section

● target (for IAR object attributes used on functions)

● transparent_union

● unused

● used

● volatile

● weak

AFE1_AFE2-1:1

382

Supported GCC attributes

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

383

Pragma directives
● Summary of pragma directives

● Descriptions of pragma directives

Summary of pragma directives
The #pragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source code is still
portable.

The pragma directives control the behavior of the compiler, for example, how it allocates
memory for variables and functions, whether it allows extended keywords, and whether
it outputs warning messages.

The pragma directives are always enabled in the compiler.

This table lists the pragma directives of the compiler that can be used either with the
#pragma preprocessor directive or the _Pragma() preprocessor operator:

Pragma directive Description

bitfields Controls the order of bitfield members.

calls Lists possible called functions for indirect calls.

call_graph_root Specifies that the function is a call graph root.

cstat_disable See the C-STAT® Static Analysis Guide.

cstat_enable See the C-STAT® Static Analysis Guide.

cstat_restore See the C-STAT® Static Analysis Guide.

cstat_suppress See the C-STAT® Static Analysis Guide.

data_alignment Gives a variable a higher (more strict) alignment.

default_function_attributes Sets default type and object attributes for
declarations and definitions of functions.

default_no_bounds Applies #pragma no_bounds to a whole set of
functions. See the C-RUN documentation in the
C-SPY® Debugging Guide for Arm.

default_variable_attributes Sets default type and object attributes for
declarations and definitions of variables.

Table 30: Pragma directives summary

AFE1_AFE2-1:1

384

Summary of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

define_with_bounds Instruments a function to track pointer bounds. See
the C-RUN documentation in the C-SPY® Debugging
Guide for Arm.

define_without_bounds Defines the version of a function that does not have
extra bounds information. See the C-RUN
documentation in the C-SPY® Debugging Guide for
Arm.

deprecated Marks an entity as deprecated.

diag_default Changes the severity level of diagnostic messages.

diag_error Changes the severity level of diagnostic messages.

diag_remark Changes the severity level of diagnostic messages.

diag_suppress Suppresses diagnostic messages.

diag_warning Changes the severity level of diagnostic messages.

disable_check Specifies that the immediately following function
does not check accesses against bounds. See the
C-RUN documentation in the C-SPY® Debugging
Guide for Arm.

error Signals an error while parsing.

function_category Declares function categories for stack usage analysis.

generate_entry_without_boun

ds

Enables generation of an extra entry without bounds
for the immediately following function. See the
C-RUN documentation in the C-SPY® Debugging
Guide for Arm.

include_alias Specifies an alias for an include file.

inline Controls inlining of a function.

language Controls the IAR Systems language extensions.

location Specifies the absolute address of a variable, places a
variable in a register, or places groups of functions or
variables in named sections.

message Prints a message.

no_arith_checks Specifies that no C-RUN arithmetic checks will be
performed in the following function. See the C-RUN
documentation in the C-SPY® Debugging Guide for
Arm.

Pragma directive Description

Table 30: Pragma directives summary (Continued)

AFE1_AFE2-1:1

Pragma directives

385

no_bounds Specifies that the immediately following function is
not instrumented for bounds checking. See the
C-RUN documentation in the C-SPY® Debugging
Guide for Arm.

no_stack_protect Disables stack protection for the following function.

object_attribute Adds object attributes to the declaration or
definition of a variable or function.

optimize Specifies the type and level of an optimization.

pack Specifies the alignment of structures and union
members.

__printf_args Verifies that a function with a printf-style format
string is called with the correct arguments.

public_equ Defines a public assembler label and gives it a value.

required Ensures that a symbol that is needed by another
symbol is included in the linked output.

rtmodel Adds a runtime model attribute to the module.

__scanf_args Verifies that a function with a scanf-style format
string is called with the correct arguments.

section Declares a section name to be used by intrinsic
functions.

segment This directive is an alias for #pragma section.

stack_protect Forces stack protection for the function that follows.

STDC CX_LIMITED_RANGE Specifies whether the compiler can use normal
complex mathematical formulas or not.

STDC FENV_ACCESS Specifies whether your source code accesses the
floating-point environment or not.

STDC FP_CONTRACT Specifies whether the compiler is allowed to contract
floating-point expressions or not.

swi_number Sets the interrupt number of a software interrupt.

unroll Unrolls loops.

vectorize Enables or disables generation of NEON vector
instructions for a loop.

weak Makes a definition a weak definition, or creates a
weak alias for a function or a variable.

Pragma directive Description

Table 30: Pragma directives summary (Continued)

AFE1_AFE2-1:1

386

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: For portability reasons, see also Recognized pragma directives (6.10.6), page
607.

Descriptions of pragma directives
This section gives detailed information about each pragma directive.

bitfields

Syntax #pragma bitfields=disjoint_types|joined_types|
 reversed_disjoint_types|reversed|default}

Parameters

Description Use this pragma directive to control the layout of bitfield members.

type_attribute Adds type attributes to a declaration or to
definitions.

Pragma directive Description

Table 30: Pragma directives summary (Continued)

disjoint_types Bitfield members are placed from the least significant
bit to the most significant bit in the container type.
Storage containers of bitfields with different base
types will not overlap.

joined_types Bitfield members are placed depending on the byte
order. Storage containers of bitfields will overlap other
structure members. For more information, see
Bitfields, page 352.

reversed_disjoint_types Bitfield members are placed from the most significant
bit to the least significant bit in the container type.
Storage containers of bitfields with different base
types will not overlap.

reversed This is an alias for reversed_disjoint_types.

default Restores the default layout of bitfield members. The
default behavior for the compiler is joined_types.

AFE1_AFE2-1:1

Pragma directives

387

Example #pragma bitfields=disjoint_types
/* Structure that uses disjoint bitfield types. */
struct S
{
 unsigned char error : 1;
 unsigned char size : 4;
 unsigned short code : 10;
};
#pragma bitfields=default /* Restores to default setting. */

See also Bitfields, page 352.

calls

Syntax #pragma calls=arg[, arg...]

Parameters arg can be one of these:

Description Use this pragma directive to specify all functions that can be indirectly called in the
following statement. This information can be used for stack usage analysis in the linker.
You can specify individual functions or function categories. Specifying a category is
equivalent to specifying all included functions in that category.

Example void Fun1(), Fun2();

void Caller(void (*fp)(void))
{
#pragma calls = Fun1, Fun2, "Cat1"
 (*fp)(); // Can call Fun1, Fun2, and all
 // functions in category "Cat1"
}

See also function_category, page 394 and Stack usage analysis, page 98.

function A declared function

category A string that represents the name of a function category

AFE1_AFE2-1:1

388

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

call_graph_root

Syntax #pragma call_graph_root[=category]

Parameters

Description Use this pragma directive to specify that, for stack usage analysis purposes, the
immediately following function is a call graph root. You can also specify an optional
category. The compiler will usually automatically assign a call graph root category to
interrupt and task functions. If you use the #pragma call_graph_root directive on
such a function you will override the default category. You can specify any string as a
category.

Example #pragma call_graph_root="interrupt"

See also Stack usage analysis, page 98.

data_alignment

Syntax #pragma data_alignment=expression

Parameters

Description Use this pragma directive to give the immediately following variable a higher (more
strict) alignment of the start address than it would otherwise have. This directive can be
used on variables with static and automatic storage duration.

When you use this directive on variables with automatic storage duration, there is an
upper limit on the allowed alignment for each function, determined by the calling
convention used.

Note: Normally, the size of a variable is a multiple of its alignment. The
data_alignment directive only affects the alignment of the variable’s start address,
and not its size, and can therefore be used for creating situations where the size is not a
multiple of the alignment.

Note: To comply with the ISO C11 standard and later, it is recommended to use the
alignment specifier _Alignas for C code. To comply with the C++11 standard and later,
it is recommended to use the alignment specifier alignas for C++ code.

category A string that identifies an optional call graph root category

expression A constant which must be a power of two (1, 2, 4, etc.).

AFE1_AFE2-1:1

Pragma directives

389

default_function_attributes

Syntax #pragma default_function_attributes=[attribute...]

where attribute can be:

type_attribute
object_attribute
@ section_name

Parameters

Description Use this pragma directive to set default section placement, type attributes, and object
attributes for function declarations and definitions. The default settings are only used for
declarations and definitions that do not specify type or object attributes or location in
some other way.

Specifying a default_function_attributes pragma directive with no attributes,
restores the initial state where no such defaults have been applied to function
declarations and definitions.

Example /* Place following functions in section MYSEC" */
#pragma default_function_attributes = @ "MYSEC"
int fun1(int x) { return x + 1; }
int fun2(int x) { return x - 1;
/* Stop placing functions into MYSEC */
#pragma default_function_attributes =

has the same effect as:

int fun1(int x) @ "MYSEC" { return x + 1; }
int fun2(int x) @ "MYSEC" { return x - 1; }

See also location, page 396.

object_attribute, page 398.

type_attribute, page 406.

type_attribute See Type attributes, page 365.

object_attribute See Object attributes, page 367.

@ section_name See Data and function placement in sections, page 232.

AFE1_AFE2-1:1

390

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

default_variable_attributes

Syntax #pragma default_variable_attributes=[attribute...]

where attribute can be:

type_attribute
object_attribute
@ section_name

Parameters

Description Use this pragma directive to set default section placement, type attributes, and object
attributes for declarations and definitions of variables with static storage duration. The
default settings are only used for declarations and definitions that do not specify type or
object attributes or location in some other way.

Specifying a default_variable_attributes pragma directive with no attributes
restores the initial state of no such defaults being applied to variables with static storage
duration.

Note: The extended keyword __packed can be used in two ways: as a normal type
attribute and in a structure type definition. The pragma directive
default_variable_attributes only affects the use of __packed as a type
attribute. Structure definitions are not affected by this pragma directive. See __packed,
page 375.

Example /* Place following variables in section MYSEC" */
#pragma default_variable_attributes = @ "MYSEC"
int var1 = 42;
int var2 = 17;
/* Stop placing variables into MYSEC */
#pragma default_variable_attributes =

has the same effect as:

int var1 @ "MYSEC" = 42;
int var2 @ "MYSEC" = 17;

See also location, page 396.

object_attribute, page 398.

type_attribute, page 406.

type_attribute See Type attributes, page 365.

object_attributes See Object attributes, page 367.

@ section_name See Data and function placement in sections, page 232.

AFE1_AFE2-1:1

Pragma directives

391

deprecated

Syntax #pragma deprecated=entity

Description If you place this pragma directive immediately before the declaration of a type, variable,
function, field, or constant, any use of that type, variable, function, field, or constant will
result in a warning.

The deprecated pragma directive has the same effect as the C++ attribute
[[deprecated]], but is available in C as well.

Example #pragma deprecated
typedef int * intp_t; // typedef intp_t is deprecated

#pragma deprecated
extern int fun(void); // function fun is deprecated

#pragma deprecated
struct xx { // struct xx is deprecated
 int x;
};

struct yy {
#pragma deprecated
 int y; // field y is deprecated
};

intp_t fun(void) // Warning here
{
 struct xx ax; // Warning here
 struct yy ay;
 fun(); // Warning here
 return ay.y; // Warning here
}

See also Annex K (Bounds-checking interfaces) of the C standard.

diag_default

Syntax #pragma diag_default=tag[,tag,...]

Parameters
tag The number of a diagnostic message, for example, the

message number Pe177.

AFE1_AFE2-1:1

392

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Use this pragma directive to change the severity level back to the default, or to the
severity level defined on the command line by any of the options --diag_error,
--diag_remark, --diag_suppress, or --diag_warnings, for the diagnostic
messages specified with the tags. This level remains in effect until changed by another
diagnostic-level pragma directive.

See also Diagnostics, page 256.

diag_error

Syntax #pragma diag_error=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to error for the specified
diagnostics. This level remains in effect until changed by another diagnostic-level
pragma directive.

See also Diagnostics, page 256.

diag_remark

Syntax #pragma diag_remark=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to remark for the specified
diagnostic messages. This level remains in effect until changed by another
diagnostic-level pragma directive.

See also Diagnostics, page 256.

tag The number of a diagnostic message, for example, the
message number Pe177.

tag The number of a diagnostic message, for example, the
message number Pe177.

AFE1_AFE2-1:1

Pragma directives

393

diag_suppress

Syntax #pragma diag_suppress=tag[,tag,...]

Parameters

Description Use this pragma directive to suppress the specified diagnostic messages. This level
remains in effect until changed by another diagnostic-level pragma directive.

See also Diagnostics, page 256.

diag_warning

Syntax #pragma diag_warning=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to warning for the specified
diagnostic messages. This level remains in effect until changed by another
diagnostic-level pragma directive.

See also Diagnostics, page 256.

error

Syntax #pragma error message

Parameters

Description Use this pragma directive to cause an error message when it is parsed. This mechanism
is different from the preprocessor directive #error, because the #pragma error
directive can be included in a preprocessor macro using the _Pragma form of the
directive and only causes an error if the macro is used.

tag The number of a diagnostic message, for example, the
message number Pe117.

tag The number of a diagnostic message, for example, the
message number Pe826.

message A string that represents the error message.

AFE1_AFE2-1:1

394

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

Example #if FOO_AVAILABLE
#define FOO ...
#else
#define FOO _Pragma("error\"Foo is not available\"")
#endif

If FOO_AVAILABLE is zero, an error will be signaled if the FOO macro is used in actual
source code.

function_category

Syntax #pragma function_category=category[, category...]

Parameters

Description Use this pragma directive to specify one or more function categories that the
immediately following function belongs to. When used together with #pragma calls,
the function_category directive specifies the destination for indirect calls for stack
usage analysis purposes.

Example #pragma function_category="Cat1"

See also calls, page 387 and Stack usage analysis, page 98.

include_alias

Syntax #pragma include_alias ("orig_header" , "subst_header")
#pragma include_alias (<orig_header> , <subst_header>)

Parameters

Description Use this pragma directive to provide an alias for a header file. This is useful for
substituting one header file with another, and for specifying an absolute path to a relative
file.

This pragma directive must appear before the corresponding #include directives and
subst_header must match its corresponding #include directive exactly.

category A string that represents the name of a function category.

orig_header The name of a header file for which you want to create an
alias.

subst_header The alias for the original header file.

AFE1_AFE2-1:1

Pragma directives

395

Example #pragma include_alias (<stdio.h> , <C:\MyHeaders\stdio.h>)
#include <stdio.h>

This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

See also Include file search procedure, page 251.

inline

Syntax #pragma inline[=forced|=never]

Parameters

Description Use #pragma inline to advise the compiler that the function defined immediately after
the directive should be inlined according to C++ inline semantics.

Specifying #pragma inline=forced will always inline the defined function. If the
compiler fails to inline the function for some reason, for example due to recursion, a
warning message is emitted.

Inlining is normally performed only on the High optimization level. Specifying
#pragma inline=forced will inline the function or result in an error due to recursion
etc.

See also Inlining functions, page 86.

language

Syntax #pragma language={extended|default|save|restore}

Parameters

No parameter Has the same effect as the inline keyword.

forced Disables the compiler’s heuristics and forces inlining.

never Disables the compiler’s heuristics and makes sure that the
function will not be inlined.

extended Enables the IAR Systems language extensions from the first
use of the pragma directive and onward.

AFE1_AFE2-1:1

396

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Use this pragma directive to control the use of language extensions.

Example At the top of a file that needs to be compiled with IAR Systems extensions enabled:

#pragma language=extended
/* The rest of the file. */

Around a particular part of the source code that needs to be compiled with IAR Systems
extensions enabled, but where the state before the sequence cannot be assumed to be the
same as that specified by the compiler options in use:

#pragma language=save
#pragma language=extended
/* Part of source code. */
#pragma language=restore

See also -e, page 278 and --strict, page 304.

location

Syntax #pragma location={address|register|NAME}

Parameters

Description Use this pragma directive to specify:

default From the first use of the pragma directive and onward,
restores the settings for the IAR Systems language
extensions to whatever that was specified by compiler
options.

save|restore Saves and restores, respectively, the IAR Systems language
extensions setting around a piece of source code.

Each use of save must be followed by a matching restore
in the same file without any intervening #include directive.

address The absolute address of the global or static variable or
function for which you want an absolute location.

register An identifier that corresponds to one of the Arm core
registers R4–R11.

NAME A user-defined section name—cannot be a section name
predefined for use by the compiler and linker.

AFE1_AFE2-1:1

Pragma directives

397

● The location—the absolute address—of the global or static variable whose
declaration follows the pragma directive. The variables must be declared
__no_init.

● An identifier specifying a register. The variable defined after the pragma directive is
placed in the register. The variable must be declared as __no_init and have file
scope.

A string specifying a section for placing either a variable or function whose declaration
follows the pragma directive. Do not place variables that would normally be in different
sections—for example, variables declared as __no_init and variables declared as
const—in the same named section.

Example #pragma location=0xFFFF0400
__no_init volatile char PORT1; /* PORT1 is located at address
 0xFFFF0400 */

#pragma location=R8
__no_init int TASK; /* TASK is placed in R8 */

#pragma location="FLASH"
char PORT2; /* PORT2 is located in section FLASH */

/* A better way is to use a corresponding mechanism */
#define FLASH _Pragma("location=\"FLASH\"")
/* ... */
FLASH int i; /* i is placed in the FLASH section */

See also Controlling data and function placement in memory, page 230 and Declare and place
your own sections, page 110.

message

Syntax #pragma message(message)

Parameters

Description Use this pragma directive to make the compiler print a message to the standard output
stream when the file is compiled.

Example #ifdef TESTING
#pragma message("Testing")
#endif

message The message that you want to direct to the standard output
stream.

AFE1_AFE2-1:1

398

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

no_stack_protect

Syntax #pragma no_stack_protect

Description Use this pragma directive to disable stack protection for the defined function that
follows.

This pragma directive only has effect if the compiler option --stack_protection has
been used.

See also Stack protection, page 87.

object_attribute

Syntax #pragma object_attribute=object_attribute[object_attribute...]

Parameters For information about object attributes that can be used with this pragma directive, see
Object attributes, page 367.

Description Use this pragma directive to add one or more IAR-specific object attributes to the
declaration or definition of a variable or function. Object attributes affect the actual
variable or function and not its type. When you define a variable or function, the union
of the object attributes from all declarations including the definition, is used.

Example #pragma object_attribute=__no_init
char bar;

is equivalent to:

__no_init char bar;

See also General syntax rules for extended keywords, page 365.

optimize

Syntax #pragma optimize=[goal][level][vectorize][disable]

AFE1_AFE2-1:1

Pragma directives

399

Parameters

Description Use this pragma directive to decrease the optimization level, or to turn off some specific
optimizations. This pragma directive only affects the function that follows immediately
after the directive.

The parameters size, balanced, speed, and no_size_constraints only have
effect on the high optimization level and only one of them can be used as it is not
possible to optimize for speed and size at the same time. It is also not possible to use
preprocessor macros embedded in this pragma directive. Any such macro will not be
expanded by the preprocessor.

Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

goal Choose between:

size, optimizes for size

balanced, optimizes balanced between speed and size

speed, optimizes for speed.

no_size_constraints, optimizes for speed, but relaxes the
normal restrictions for code size expansion.

level Specifies the level of optimization—choose between none,
low, medium, or high.

vectorize Enables generation of NEON vector instructions.

disable Disables one or several optimizations (separated by spaces).
Choose between:

no_code_motion, disables code motion

no_cse, disables common subexpression elimination

no_inline, disables function inlining

no_relaxed_fp, disables the language relaxation that
optimizes floating-point expressions more aggressively

no_tbaa, disables type-based alias analysis

no_scheduling, disables instruction scheduling.

no_vectorize, disables generation of NEON vector
instructions

no_unroll, disables loop unrolling

AFE1_AFE2-1:1

400

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

Example #pragma optimize=speed
int SmallAndUsedOften()
{
 /* Do something here. */
}

#pragma optimize=size
int BigAndSeldomUsed()
{
 /* Do something here. */
}

See also Fine-tuning enabled transformations, page 237.

pack

Syntax #pragma pack(n)
#pragma pack()
#pragma pack({push|pop}[,name] [,n])

Parameters

Description Use this pragma directive to specify the maximum alignment of struct and union
members.

The #pragma pack directive affects declarations of structures following the pragma
directive to the next #pragma pack or the end of the compilation unit.

Note: This can result in significantly larger and slower code when accessing members
of the structure.

Use either __packed or #pragma pack to relax the alignment restrictions for a type
and the objects defined using that type. Mixing __packed and #pragma pack might
lead to unexpected behavior.

See also Structure types, page 359 and __packed, page 375.

n Sets an optional structure alignment—one of: 1, 2, 4, 8, or 16

Empty list Restores the structure alignment to default

push Sets a temporary structure alignment

pop Restores the structure alignment from a temporarily pushed
alignment

name An optional pushed or popped alignment label

AFE1_AFE2-1:1

Pragma directives

401

__printf_args

Syntax #pragma __printf_args

Description Use this pragma directive on a function with a printf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier, for
example %d, is syntactically correct.

You cannot use this pragma directive on functions that are members of an overload set
with more than one member.

Example #pragma __printf_args
int printf(char const *,...);

void PrintNumbers(unsigned short x)
{
 printf("%d", x); /* Compiler checks that x is an integer */
}

public_equ

Syntax #pragma public_equ="symbol",value

Parameters

Description Use this pragma directive to define a public assembler label and give it a value.

Example #pragma public_equ="MY_SYMBOL",0x123456

See also --public_equ, page 298.

required

Syntax #pragma required=symbol

Parameters

symbol The name of the assembler symbol to be defined (string).

value The value of the defined assembler symbol (integer constant
expression).

symbol Any statically linked function or variable.

AFE1_AFE2-1:1

402

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Use this pragma directive to ensure that a symbol which is needed by a second symbol
is included in the linked output. The directive must be placed immediately before the
second symbol.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example, if a variable is only referenced indirectly through the section
it resides in.

Example const char copyright[] = "Copyright by me";

#pragma required=copyright
int main()
{
 /* Do something here. */
}

Even if the copyright string is not used by the application, it will still be included by the
linker and available in the output.

rtmodel

Syntax #pragma rtmodel="key","value"

Parameters

Description Use this pragma directive to add a runtime model attribute to a module, which can be
used by the linker to check consistency between modules.

This pragma directive is useful for enforcing consistency between modules. All modules
that are linked together and define the same runtime attribute key must have the same
value for the corresponding key, or the special value *. It can, however, be useful to state
explicitly that the module can handle any runtime model.

A module can have several runtime model definitions.

Note: The predefined compiler runtime model attributes start with a double underscore.
To avoid confusion, this style must not be used in the user-defined attributes.

Example #pragma rtmodel="I2C","ENABLED"

"key" A text string that specifies the runtime model attribute.

"value" A text string that specifies the value of the runtime model
attribute. Using the special value * is equivalent to not
defining the attribute at all.

AFE1_AFE2-1:1

Pragma directives

403

The linker will generate an error if a module that contains this definition is linked with
a module that does not have the corresponding runtime model attributes defined.

__scanf_args

Syntax #pragma __scanf_args

Description Use this pragma directive on a function with a scanf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier, for
example %d, is syntactically correct.

You cannot use this pragma directive on functions that are members of an overload set
with more than one member.

Example #pragma __scanf_args
int scanf(char const *,...);

int GetNumber()
{
 int nr;
 scanf("%d", &nr); /* Compiler checks that
 the argument is a
 pointer to an integer */

 return nr;
}

section

Syntax #pragma section="NAME"

alias

#pragma segment="NAME"

Parameters

Description Use this pragma directive to define a section name that can be used by the section
operators __section_begin, __section_end, and __section_size. All section
declarations for a specific section must have the same alignment.

Note: To place variables or functions in a specific section, use the #pragma location
directive or the @ operator.

NAME The name of the section.

AFE1_AFE2-1:1

404

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

Example #pragma section="MYSECTION"

See also Dedicated section operators, page 190 and the chapter Linking your application.

stack_protect

Syntax #pragma stack_protect

Description Use this pragma directive to force stack protection for the defined function that follows.

See also Stack protection, page 87.

STDC CX_LIMITED_RANGE

Syntax #pragma STDC CX_LIMITED_RANGE {ON|OFF|DEFAULT}

Parameters

Description Use this pragma directive to specify that the compiler can use the normal complex
mathematic formulas for * (multiplication), / (division), and abs.

Note: This directive is required by Standard C. The directive is recognized but has no
effect in the compiler.

STDC FENV_ACCESS

Syntax #pragma STDC FENV_ACCESS {ON|OFF|DEFAULT}

Parameters

ON Normal complex mathematic formulas can be used.

OFF Normal complex mathematic formulas cannot be used.

DEFAULT Sets the default behavior, that is OFF.

ON Source code accesses the floating-point environment.

Note: This argument is not supported by the compiler.

OFF Source code does not access the floating-point environment.

DEFAULT Sets the default behavior, that is OFF.

AFE1_AFE2-1:1

Pragma directives

405

Description Use this pragma directive to specify whether your source code accesses the
floating-point environment or not.

Note: This directive is required by Standard C.

STDC FP_CONTRACT

Syntax #pragma STDC FP_CONTRACT {ON|OFF|DEFAULT}

Parameters

Description Use this pragma directive to specify whether the compiler is allowed to contract
floating-point expressions or not. This directive is required by Standard C.

Example #pragma STDC FP_CONTRACT=ON

swi_number

Syntax #pragma swi_number=number

Parameters

Description Use this pragma directive together with the __swi extended keyword. It is used as an
argument to the generated SVC assembler instruction, and is used for selecting one
software interrupt function in a system containing several such functions.

Example #pragma swi_number=17

See also Software interrupts, page 84.

ON The compiler is allowed to contract floating-point
expressions.

OFF The compiler is not allowed to contract floating-point
expressions.

Note: This argument is not supported by the compiler.

DEFAULT Sets the default behavior, that is ON.

number The software interrupt number

AFE1_AFE2-1:1

406

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

type_attribute

Syntax #pragma type_attribute=type_attr[type_attr...]

Parameters For information about type attributes that can be used with this pragma directive, see
Type attributes, page 365.

Description Use this pragma directive to specify IAR-specific type attributes, which are not part of
Standard C. Note however, that a given type attribute might not be applicable to all kind
of objects.

This directive affects the declaration of the identifier, the next variable, or the next
function that follows immediately after the pragma directive.

Example In this example, thumb-mode code is generated for the function foo:

#pragma type_attribute=__thumb
void foo(void)
{
}

This declaration, which uses extended keywords, is equivalent:

__thumb void foo(void)
{
}

See also The chapter Extended keywords.

unroll

Syntax #pragma unroll=n

Parameters

Description Use this pragma directive to specify that the loop following immediately after the
directive should be unrolled and that the unrolled loop should have n copies of the loop
body. The pragma directive can only be placed immediately before a for, do, or while
loop, whose number of iterations can be determined at compile time.

Normally, unrolling is most effective for relatively small loops. However, in some cases,
unrolling larger loops can be beneficial if it exposes opportunities for further

n The number of loop bodies in the unrolled loop, a constant
integer. #pragma unroll = 1 will prevent the unrolling of
a loop.

AFE1_AFE2-1:1

Pragma directives

407

optimizations between the unrolled loop iterations, for example, common subexpression
elimination or dead code elimination.

The #pragma unroll directive can be used to force a loop to be unrolled if the
unrolling heuristics are not aggressive enough. The pragma directive can also be used to
reduce the aggressiveness of the unrolling heuristics.

Example #pragma unroll=4
for (i = 0; i < 64; ++i)
{
 foo(i * k, (i + 1) * k);
}

See also Loop unrolling, page 238

vectorize

Syntax #pragma vectorize [= never]

Parameters

Description Use this pragma directive to enable or disable generation of NEON vector instructions
for the loop that follows immediately after the pragma directive. This pragma directive
can only be placed immediately before a for, do, or while loop. If the optimization
level is lower than High, the pragma directive has no effect.

Example #pragma vectorize
for (i = 0; i < 1024; ++i)
{
 a[i] = b[i] * c[i];]
}

weak

Syntax #pragma weak symbol1[=symbol2]

Parameters

No parameter Enables generation of NEON vector instructions.

never Disables generation of NEON vector instructions.

symbol1 A function or variable with external linkage.

symbol2 A defined function or variable.

AFE1_AFE2-1:1

408

Descriptions of pragma directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description This pragma directive can be used in one of two ways:

● To make the definition of a function or variable with external linkage a weak
definition. The __weak attribute can also be used for this purpose.

● To create a weak alias for another function or variable. You can make more than one
alias for the same function or variable.

Example To make the definition of foo a weak definition, write:

#pragma weak foo

To make NMI_Handler a weak alias for Default_Handler, write:

#pragma weak NMI_Handler=Default_Handler

If NMI_Handler is not defined elsewhere in the program, all references to
NMI_Handler will refer to Default_Handler.

See also __weak, page 380.

AFE1_AFE2-1:1

409

Intrinsic functions
● Summary of intrinsic functions

● Descriptions of IAR Systems intrinsic functions

Summary of intrinsic functions
The IAR C/C++ Compiler for Arm can be used with several different sets of intrinsic
functions.

To use the IAR Systems intrinsic functions in an application, include the header file
intrinsics.h.

To use the ACLE (Arm C Language Extensions) intrinsic functions in an application,
include the header file arm_acle.h. For more information, see Intrinsic functions for
ACLE, page 409.

To use the Neon intrinsic functions in an application, include the header file
arm_neon.h. For more information, see Intrinsic functions for Neon instructions, page
409.

To use the CMSIS intrinsic functions in an application, include the main CMSIS header
file for your device or core. Note that the CMSIS header files should not be included in
the same module as intrinsics.h. For more information, see CMSIS integration,
page 221.

Note: The intrinsic function names start with double underscores, for example:

__disable_interrupt

INTRINSIC FUNCTIONS FOR ACLE

ACLE (Arm C Language Extensions) specifies a number of intrinsic functions. These
are not documented here. Instead, see the Arm C Language Extensions (IHI 0053D).

To use the intrinsic functions for ACLE in an application, include the header file
arm_acle.h.

INTRINSIC FUNCTIONS FOR NEON INSTRUCTIONS

The Neon co-processor implements the Advanced SIMD instruction set extension, as
defined by the Arm architecture. To use Neon intrinsic functions in an application,

AFE1_AFE2-1:1

410

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

include the header file arm_neon.h. The functions use vector types that are named
according to this pattern:

<type><size>x<number_of_lanes>_t

where:

● type is int, unsigned int, float, or poly

● size is 8, 16, 32, or 64

● number_of_lanes is 1, 2, 4, 8, or 16.

The total bit width of a vector type is size times number_of_lanes, and should fit in
a D register (64 bits) or a Q register (128 bits).

For example:

__intrinsic float32x2_t vsub_f32(float32x2_t, float32x2_t);

The intrinsic function vsub_f32 inserts a VSUB.F32 instruction that operates on two
64-bit vectors (D registers), each with two elements (lanes) of 32-bit floating-point type.

Some functions use an array of vector types. As an example, the definition of an array
type with four elements of type float32x2_t is:

typedef struct
{
 float32x2_t val[4];
}
float32x2x4_t;

Descriptions of IAR Systems intrinsic functions
This section gives reference information about each IAR Systems intrinsic function.

__arm_cdp

__arm_cdp2

Syntax void __arm_cdp(__cpid coproc, __cpopcw opc1, __cpreg CRd,
__cpreg CRn, __cpreg CRm, __cpopc opc2);
void __arm_cdp2(__cpid , __cpopw coprocopc1, __cpreg CRd,
__cpreg CRn, __cpreg CRm, __cpopc opc2);

Parameters
coproc The coprocessor number 0..15.

AFE1_AFE2-1:1

Intrinsic functions

411

Description Inserts the coprocessor-specific data operation instruction CDP or CDP2. The parameters
will be encoded in the instruction and must therefore be constants.

These intrinsic functions are defined according to the Arm C Language Extensions
(ACLE).

See also __CDP, page 416 and __CDP2, page 416.

__arm_ldc

__arm_ldcl

__arm_ldc2

__arm_ldc2l

Syntax void __arm_ldc(__cpid coproc, __cpreg CRd, const void* p);
void __arm_ldcl(__cpid coproc, __cpreg CRd, const void* p);
void __arm_ldc2(__cpid coproc, __cpreg CRd, const void* p);
void __arm_ldcl2(__cpid coproc, __cpreg CRd, const void* p);

Parameters

Description Inserts the coprocessor load instruction LDC (or one of its variants), which means that a
value will be loaded into a coprocessor register. The parameters coproc,and CRd will
be encoded in the instruction and must therefore be constants.

These intrinsic functions are defined according to the Arm C Language Extensions
(ACLE).

See also __LDC, page 424, __LDCL, page 424, __LDC2, page 424, and __LDC2L, page 424.

opc1, opc2 Coprocessor-specific operation codes.

CRd, CRn, CRm Coprocessor registers.

coproc The coprocessor number 0..15.

CRd A coprocessor register.

p Pointer to memory that the coprocessor will read from.

AFE1_AFE2-1:1

412

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__arm_mcr

__arm_mcr2

__arm_mcrr

__arm_mcrr2

Syntax void __arm_mcr(__cpid coproc, __cpopc opc1, __ul src, __cpreg
CRn, __cpreg CRm, __cpopc opc2);
void __arm_mcr2(__cpid coproc, __cpopc opc1, __ul src, __cpreg
CRn, __cpreg CRm, __cpopc opc2);
void __arm_mcrr(__cpid coproc, __cpopc opc1, unsigned long long
src, __cpreg CRm);
void __arm_mcrr2(__cpid coproc, __cpopc opc1, unsigned long long
src, __cpreg CRm);

Parameters

Description Inserts a coprocessor write instruction, MCR, MCR2, MCRR, or MCRR2. The parameters
coproc, opc1, opc2, CRn, and CRm will be encoded in the instruction and must
therefore be constants.

These intrinsic functions are defined according to the Arm C Language Extensions
(ACLE).

See also __MCR, page 426, __MCR2, page 426, __MCRR, page 427, and __MCRR2, page 427.

coproc The coprocessor number 0..15.

opc1, opc2 Coprocessor-specific operation code.

src The value to be written to the coprocessor.

CRn, CRm The coprocessor register to read from.

AFE1_AFE2-1:1

Intrinsic functions

413

__arm_mrc

__arm_mrc2

__arm_mrrc

__arm_mrrc2

Syntax unsigned int __arm_mrc(__cpid coproc, __cpopc opc1, __cpreg CRn,
__cpreg CRm, __cpopc opc2);
unsigned int __arm_mrc2(__cpid coproc, __cpopc opc1, __cpreg
CRn, __cpreg CRm, __cpopc opc2);
unsigned long long __arm_mrrc(__cpid coproc, __cpopc opc1,
__cpreg CRm);
unsigned long long __arm_mrrc2(__cpid coproc, __cpopc opc1,
__cpreg CRm);

Parameters

Description Inserts a coprocessor read instruction, MRC, MRC2, MRRC, or MRRC2. Returns the value of
the specified coprocessor register. The parameters coproc, opc1, opc2, CRn, and CRm
will be encoded in the instruction and must therefore be constants.

These intrinsic functions are defined according to the Arm C Language Extensions
(ACLE).

See also __MRC, page 428, __MRC2, page 428, __MRRC, page 428, and __MRRC2, page 428.

__arm_rsr

__arm_rsr64

__arm_rsrp

Syntax unsigned int __arm_rsr(sys_reg special_register);
unsigned long long __arm_rsr64(__sys_reg special_register);

coproc The coprocessor number 0..15.

opc1, opc2 Coprocessor-specific operation code.

CRn, CRm The coprocessor register to read from.

AFE1_AFE2-1:1

414

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

void * __arm_rsrp(sys_reg special_register);

Parameters

Description Reads a system register. Use a string literal to specify which register to read. For
__arm_rsr and __arm_rsrp, the string literal can specify the name of a system
register accepted in an MRS or VMRS instruction for the architecture specified by the
compiler option --cpu.

For __arm_rsr and __arm_rsrp, the string literal can also specify a 32-bit
coprocessor register, using this format:

coprocessor : opc1 :c CRn :c CRm : opc2

For __arm_rsr64, the string literal can specify a 64-bit coprocessor register using this
format:

coprocessor : opc1 :c CRm

where, for both formats

● coprocessor is a number, c0..c15 or cp0..cp15

● opc1 and opc2 are coprocessor-specific operation codes, 0..7

● CRn and CRm are coprocessor registers 0..15

These intrinsic functions are defined according to the Arm C Language Extensions
(ACLE).

__arm_stc

__arm_stcl

__arm_stc2

__arm_stc2l

Syntax void __arm_stc(__cpid coproc, __cpreg CRd, const void* p);
void __arm_stcl(__cpid coproc, __cpreg CRd, const void* p);
void __arm_stc2(__cpid coproc, __cpreg CRd, const void* p);
void __arm_stc2l(__cpid coproc, __cpreg CRd, const void* p);

special_register A string literal specifying a register.

AFE1_AFE2-1:1

Intrinsic functions

415

Parameters

Description Inserts the coprocessor store instruction STC (or one of its variants). The parameters
coproc, CRd, and p will be encoded in the instruction and must therefore be constants.

These intrinsic functions are defined according to the Arm C Language Extensions
(ACLE).

See also __STC, page 444, __STCL, page 444, __STC2, page 444, and __STC2L, page 444.

__arm_wsr

__arm_wsr64

__arm_wsrp

Syntax void __arm_wsr(const char * special_reg, _uint32_t value);
void __arm_wsr64(const char * special_reg, uint64_t value);
void __arm_wsrp(const char * special_reg, const void * value);

Parameters

Description Writes to a system register. Use a string literal to specify which register to write to. For
__arm_wsr and __arm_wsrp, the string literal can specify the name of a system
register accepted in an MSR or VMSR instruction for the architecture specified by the
compiler option --cpu.

For __arm_wsr and __arm_wsrp, the string literal can also specify a 32-bit
coprocessor register, using this format:

coprocessor : opc1 :c CRn :c CRm : opc2

For __arm_wsr64, the string literal can specify a 64-bit coprocessor register using this
format:

coprocessor : opc1 :c CRm

coproc The coprocessor number 0..15.

CRd A coprocessor register.

p Pointer to memory that the coprocessor will write to.

special_reg A string literal specifying a system register.

value The value to write to the system register.

AFE1_AFE2-1:1

416

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

where, for both formats

● coprocessor is the coprocessor number, cp0..cp15 or p0..p15

● opc1 and opc2 are coprocessor-specific operation codes, 0..7

● CRn and CRm are coprocessor registers, 0..15

These intrinsic functions are defined according to ACLE (Arm C Language Extensions).

__CDP

__CDP2

Syntax void __CDP(__cpid coproc, __cpopcw opc1, __cpreg CRd, __cpreg
CRn, __cpreg CRm, __cpopc opc2);
void __CDP2(__cpid coproc, __cpopcw opc1, __cpreg CRd, __cpreg
CRn, __cpreg CRm, __cpopc opc2);

Parameters

Description Inserts the coprocessor-specific data operation instruction CDP or CDP2.

The parameters will be encoded in the instruction and must therefore be constants.

The intrinsic functions __CDP and __CDP2 require an Armv5 architecture or higher for
Arm mode, or Armv6 or higher for Thumb mode.

See also __arm_cdp, page 410 and __arm_cdp2, page 410.

__CLREX

Syntax void __CLREX(void);

Description Inserts a CLREX instruction.

This intrinsic function requires architecture Armv6K or Armv7 for Arm mode, and
AVRv7 for Thumb mode.

coproc The coprocessor number 0..15.

opc1, opc2 Coprocessor-specific operation codes.

CRd, CRn, CRm Coprocessor registers.

AFE1_AFE2-1:1

Intrinsic functions

417

__CLZ

Syntax unsigned int __CLZ(unsigned int);

Description Inserts a CLZ instruction. If the CLZ instruction is not available, a separate sequence of
instructions is inserted to achieve the same result.

See also The Arm C Language Extensions (ACLE) intrinsic functions __clz, __clzl, and
__clzll.

__crc32b

__crc32h

__crc32w

__crc32d

Syntax unsigned int __crc32b(unsigned int crc, unsigned char data);
unsigned int __crc32h(unsigned int crc, unsigned short data);
unsigned int __crc32w(unsigned int crc, unsigned int data);
unsigned int __crc32d(unsigned int crc, unsigned long long
data);

Description Calculates a CRC32 checksum from a checksum (or initial value) crc and one item of
data.

Note: The 32-bit Arm/Thumb instructions do not include CRC32X, so __crc32d is
implemented as two calls to __crc32w.

These intrinsic functions are defined according to the Arm C Language Extensions
(ACLE).

AFE1_AFE2-1:1

418

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__crc32cb

__crc32ch

__crc32cw

__crc32cd

Syntax unsigned int __crc32cb(unsigned int crc, unsigned char data);
unsigned int __crc32ch(unsigned int crc, unsigned short data);
unsigned int __crc32cw(unsigned int crc, unsigned int data);
unsigned int __crc32cd(unsigned int crc, unsigned long long
data);

Description Calculates a CRC32C checksum from a checksum (or initial value) crc and one item of
data.

Note: The 32-bit Arm/Thumb instructions do not include CRC32CX, so __crc32cd is
implemented as two calls to __crc32cw.

These intrinsic functions are defined according to the Arm C Language Extensions
(ACLE).

__disable_fiq

Syntax void __disable_fiq(void);

Description Disables fast interrupt requests (fiq).

This intrinsic function can only be used in privileged mode and is not available for
Cortex-M devices.

__disable_interrupt

Syntax void __disable_interrupt(void);

Description Disables interrupts. For Cortex-M devices, it raises the execution priority level to 0 by
setting the priority mask bit, PRIMASK. For other devices, it disables interrupt requests
(irq) and fast interrupt requests (fiq).

This intrinsic function can only be used in privileged mode.

AFE1_AFE2-1:1

Intrinsic functions

419

__disable_irq

Syntax void __disable_irq(void);

Description Disables interrupt requests (irq).

This intrinsic function can only be used in privileged mode and is not available for
Cortex-M devices.

__DMB

Syntax void __DMB(void);

Description Inserts a DMB instruction. This intrinsic function requires an Armv6M architecture, or an
Armv7 architecture or higher.

See also The Arm C Language Extensions (ACLE) intrinsic function __dmb.

__DSB

Syntax void __DSB(void);

Description Inserts a DSB instruction. This intrinsic function requires an Armv6M architecture, or an
Armv7 architecture or higher.

See also The Arm C Language Extensions (ACLE) intrinsic function __dsb.

__enable_fiq

Syntax void __enable_fiq(void);

Description Enables fast interrupt requests (fiq).

This intrinsic function can only be used in privileged mode, and it is not available for
Cortex-M devices.

AFE1_AFE2-1:1

420

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__enable_interrupt

Syntax void __enable_interrupt(void);

Description Enables interrupts. For Cortex-M devices, it resets the execution priority level to default
by clearing the priority mask bit, PRIMASK. For other devices, it enables interrupt
requests (irq) and fast interrupt requests (fiq).

This intrinsic function can only be used in privileged mode.

__enable_irq

Syntax void __enable_irq(void);

Description Enables interrupt requests (irq).

This intrinsic function can only be used in privileged mode, and it is not available for
Cortex-M devices.

__fma

__fmaf

Syntax double __fma(double x, double y, double z);
float __fmaf(float x, float y, float z);

Description Fused floating-point multiply-accumulate computes x*y+z without intermediate
rounding, which corresponds either to the intrinsic call __VFMA_F64(z, x, y) for
double precision, or __VFMA_F32(z, x, y) for single precision.

These intrinsic functions are defined according to the Arm C Language Extensions
(ACLE).

__get_BASEPRI

Syntax unsigned int __get_BASEPRI(void);

Description Returns the value of the BASEPRI register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M3, Cortex-M4, or Cortex-M7 device.

See also __arm_rsr, page 413.

AFE1_AFE2-1:1

Intrinsic functions

421

__get_CONTROL

Syntax unsigned int __get_CONTROL(void);

Description Returns the value of the CONTROL register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M device.

See also __arm_rsr, page 413.

__get_CPSR

Syntax unsigned int __get_CPSR(void);

Description Returns the value of the Arm CPSR (Current Program Status Register). This intrinsic
function can only be used in privileged mode, is not available for Cortex-M devices, and
it requires Arm mode.

See also __arm_rsr, page 413.

__get_FAULTMASK

Syntax unsigned int __get_FAULTMASK(void);

Description Returns the value of the FAULTMASK register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M3, Cortex-M4, or Cortex-M7 device.

See also __arm_rsr, page 413.

__get_FPSCR

Syntax unsigned int __get_FPSCR(void);

Description Returns the value of FPSCR (floating-point status and control register).

This intrinsic function is only available for devices with a VFP coprocessor.

See also __arm_rsr, page 413.

AFE1_AFE2-1:1

422

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__get_interrupt_state

Syntax __istate_t __get_interrupt_state(void);

Description Returns the global interrupt state. The return value can be used as an argument to the
__set_interrupt_state intrinsic function, which will restore the interrupt state.

This intrinsic function can only be used in privileged mode, and cannot be used when
using the --aeabi compiler option.

Example #include "intrinsics.h"

void CriticalFn()
{
 __istate_t s = __get_interrupt_state();
 __disable_interrupt();

 /* Do something here. */

 __set_interrupt_state(s);
}

The advantage of using this sequence of code compared to using
__disable_interrupt and __enable_interrupt is that the code in this example
will not enable any interrupts disabled before the call of __get_interrupt_state.

__get_IPSR

Syntax unsigned int __get_IPSR(void);

Description Returns the value of the IPSR register (Interrupt Program Status Register). This intrinsic
function can only be used in privileged mode, and is only available for Cortex-M
devices.

See also __arm_rsr, page 413.

__get_LR

Syntax unsigned int __get_LR(void);

Description Returns the value of the link register (R14).

AFE1_AFE2-1:1

Intrinsic functions

423

__get_MSP

Syntax unsigned int __get_MSP(void);

Description Returns the value of the MSP register (Main Stack Pointer). This intrinsic function can
only be used in privileged mode, and is only available for Cortex-M devices.

See also __arm_rsr, page 413.

__get_PRIMASK

Syntax unsigned int __get_PRIMASK(void);

Description Returns the value of the PRIMASK register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M device.

See also __arm_rsr, page 413.

__get_PSP

Syntax unsigned int __get_PSP(void);

Description Returns the value of the PSP register (Process Stack Pointer). This intrinsic function can
only be used in privileged mode, and is only available for Cortex-M devices.

See also __arm_rsr, page 413.

__get_PSR

Syntax unsigned int __get_PSR(void);

Description Returns the value of the PSR register (combined Program Status Register). This intrinsic
function can only be used in privileged mode, and is only available for Cortex-M
devices.

See also __arm_rsr, page 413.

__get_SB

Syntax unsigned int __get_SB(void);

AFE1_AFE2-1:1

424

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Returns the value of the static base register (R9).

__get_SP

Syntax unsigned int __get_SP(void);

Description Returns the value of the stack pointer register (R13).

__ISB

Syntax void __ISB(void);

Description Inserts an ISB instruction. This intrinsic function requires an Armv6M architecture, or
an Armv7 architecture or higher.

See also The Arm C Language Extensions (ACLE) intrinsic function __isb.

__LDC

__LDCL

__LDC2

__LDC2L

Syntax void __LDCxxx(__ul coproc, __ul CRn, __ul const *src);

Parameters

Description Inserts the coprocessor load instruction LDC—or one of its variants—which means that
a value will be loaded into a coprocessor register. The parameters coproc and CRn will
be encoded in the instruction and must therefore be constants.

The intrinsic functions __LDC and __LDCL require architecture Armv4 or higher for
Arm mode, and Armv6T2 or higher for Thumb mode.

coproc The coprocessor number 0..15.

CRn The coprocessor register to load.

src A pointer to the data to load.

AFE1_AFE2-1:1

Intrinsic functions

425

The intrinsic functions __LDC2 and __LDC2L require architecture Armv5 or higher for
Arm mode, and Armv6T2 or higher for Thumb mode.

See also __arm_ldc, page 411, __arm_ldcl, page 411, __arm_ldc2, page 411, and __arm_ldc2l,
page 411.

__LDC_noidx

__LDCL_noidx

__LDC2_noidx

__LDC2L_noidx

Syntax void __LDCxxx_noidx(__ul coproc, __ul CRn, __ul const *src, __ul
option);

Parameters

Description Inserts the coprocessor load instruction LDC, or one of its variants. A value will be
loaded into a coprocessor register. The parameters coproc, CRn, and option will be
encoded in the instruction and must therefore be constants.

The intrinsic functions __LDC_noidx and __LDCL_noidx require architecture Armv4
or higher for Arm mode, and Armv6T2 or higher for Thumb mode.

The intrinsic functions __LDC2_noidx and __LDC2L_noidx require architecture
Armv5 or higher for Arm mode, and Armv6T2 or higher for Thumb mode.

coproc The coprocessor number 0..15.

CRn The coprocessor register to load.

src A pointer to the data to load.

option Additional coprocessor option 0..255.

AFE1_AFE2-1:1

426

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__LDREX

__LDREXB

__LDREXD

__LDREXH

Syntax unsigned int __LDREX(unsigned int *);
unsigned char __LDREXB(unsigned char *);
unsigned long long __LDREXD(unsigned long long *);
unsigned short __LDREXH(unsigned short *);

Description Inserts the specified instruction.

The __LDREX intrinsic function requires architecture Armv6 or higher for Arm mode,
and Armv6T2 or baseline Armv8-M for Thumb mode.

The __LDREXB and the __LDREXH intrinsic functions require architecture Armv6K or
Armv7 for Arm mode, and Armv7 or baseline Armv8-M for Thumb mode.

The __LDREXD intrinsic function requires architecture Armv6K or Armv7 for Arm
mode, and Armv7 but not Armv7-M for Thumb mode.

__MCR

__MCR2

Syntax void __MCR(__ul coproc, __ul opcode_1, __ul src, __ul CRn, __ul
CRm, __ul opcode_2);
void __MCR2(__ul coproc, __ul opcode_1, __ul src, __ul CRn, __ul
CRm, __ul opcode_2);

Parameters
coproc The coprocessor number 0..15.

opcode_1 Coprocessor-specific operation code.

src The value to be written to the coprocessor.

CRn The coprocessor register to write to.

CRm Additional coprocessor register—set to zero if not used.

AFE1_AFE2-1:1

Intrinsic functions

427

Description Inserts a coprocessor write instruction (MCR or MCR2). The parameters coproc,
opcode_1, CRn, CRm, and opcode_2 will be encoded in the instruction and must
therefore be constants.

The intrinsic function __MCR requires either Arm mode, or an Armv6T2 or higher for
Thumb mode.

The intrinsic function __MCR2 requires an Armv5T architecture or higher for Arm
mode, or Armv6T2 or higher for Thumb mode.

See also __arm_mcr, page 412 and __arm_mcr2, page 412.

__MCRR

__MCRR2

Syntax void __MCRR(__cpid coproc, __cpopc opc1, unsigned long long src,
__cpreg CRm);
void __MCRR2(__cpid coproc, __cpopc opc1, unsigned long long
src, __cpreg CRm);

Parameters

Description Inserts a coprocessor write instruction, MCRR or MCRR2. The parameters coproc, opc1,
and CRm will be encoded in the instruction and must therefore be constants.

The intrinsic functions __MCRR and __MCRR2 require an Armv6 architecture or higher
for Arm mode, or Armv6T2 or higher for Thumb mode.

See also __arm_mcrr, page 412 and __arm_mcrr2, page 412.

opcode_2 Additional coprocessor-specific operation code—set to zero if
not used.

coproc The coprocessor number 0..15.

opc1 Coprocessor-specific operation code.

src The value to be written to the coprocessor.

CRm The coprocessor register to read from.

AFE1_AFE2-1:1

428

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__MRC

__MRC2

Syntax unsigned int __MRC(__ul coproc, __ul opcode_1, __ul CRn, __ul
CRm, __ul opcode_2);
unsigned int __MRC2(__ul coproc, __ul opcode_1, __ul CRn, __ul
CRm, __ul opcode_2);

Parameters

Description Inserts a coprocessor read instruction (MRC or MRC2). Returns the value of the specified
coprocessor register. The parameters coproc, opcode_1, CRn, CRm, and opcode_2 will
be encoded in the instruction and must therefore be constants.

The intrinsic function __MRC requires either Arm mode, or an Armv6T2 or higher for
Thumb mode.

The intrinsic function __MRC2 requires an Armv5T architecture or higher for Arm
mode, or Armv6T2 or higher for Thumb mode.

See also __arm_mrc, page 413 and __arm_mrc2, page 413.

__MRRC

__MRRC2

Syntax unsigned long long __MRRC(__cpid coproc, __cpopc opc1, __cpreg
CRm);
unsigned long long __MRRC2(__cpid coproc, __cpopc opc1, __cpreg
CRm);

Parameters

coproc The coprocessor number 0..15.

opcode_1 Coprocessor-specific operation code.

CRn The coprocessor register to write to.

CRm Additional coprocessor register—set to zero if not used.

opcode_2 Additional coprocessor-specific operation code—set to zero if
not used.

coproc The coprocessor number 0..15.

AFE1_AFE2-1:1

Intrinsic functions

429

Description Inserts a coprocessor read instruction, MRRC or MRRC2. Returns the value of the specified
coprocessor register. The parameters coproc, opc1, and CRm will be encoded in the
instruction and must therefore be constants.

The intrinsic functions __MRRC and __MRRC2 require an Armv6 architecture or higher
for Arm mode, or ArmV6T2 or higher for Thumb mode.

See also __arm_mrrc, page 413 and __arm_mrrc2, page 413.

__no_operation

Syntax void __no_operation(void);

Description Inserts a NOP instruction.

This intrinsic function is equivalent to the Arm C Language Extensions (ACLE) intrinsic
function __nop.

__PKHBT

Syntax unsigned int __PKHBT(unsigned int x, unsigned int y, unsigned
int count);

Parameters

Description Inserts a PKHBT instruction, with an optionally shifted operand (LSL) for count in the
range 1–31.

This intrinsic function requires an Arm v6 architecture or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

opc1 Coprocessor-specific operation code.

CRm The coprocessor register to read from.

x First operand.

y Second operand, optionally shifted left.

count Shift count 0–31, where 0 means no shift.

AFE1_AFE2-1:1

430

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__PKHTB

Syntax unsigned int __PKHTB(unsigned int x, unsigned int y, unsigned
int count);

Parameters

Description Inserts a PKHTB instruction, with an optionally shifted operand (ASR) for count in the
range 1–32.

This intrinsic function requires an Arm v6 architecture or higher for Arm mode, and
Armv7-A, Armv7-R, or Arm v7E-M for Thumb mode.

__PLD

__PLDW

Syntax void __PLD(void const *);
void __PLDW(void const *);

Description Inserts a preload data instruction (PLD or PLDW).

The intrinsic function __PLD requires an Armv7 architecture. __PLDW requires an
Armv7 architecture with MP extensions, for example, Cortex-A5.

See also The Arm C Language Extensions (ACLE) intrinsic functions __pld.

__PLI

Syntax void __PLI(void const *);

Description Inserts a PLI instruction.

This intrinsic function requires an Arm v7 architecture.

See also The Arm C Language Extensions (ACLE) intrinsic function __pli.

x First operand.

y Second operand, optionally shifted right (arithmetic shift).

count Shift count 0–32, where 0 means no shift.

AFE1_AFE2-1:1

Intrinsic functions

431

__QADD

__QDADD

__QDSUB

__QSUB

Syntax signed int __Qxxx(signed int, signed int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv5E or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

These intrinsic functions are equivalent to the Arm C Language Extensions (ACLE)
intrinsic functions __qadd and __qsub.

__QADD8

__QADD16

__QASX

__QSAX

__QSUB8

__QSUB16

Syntax unsigned int __Qxxx(unsigned int, unsigned int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

AFE1_AFE2-1:1

432

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

These intrinsic functions are equivalent to the Arm C Language Extensions (ACLE)
intrinsic functions __qadd8, __qadd16, __qasx, __qsax, __qsub8, and __qsub16.

__QCFlag

Syntax unsigned int __QCFlag(void);

Description Returns the value of the cumulative saturation flag QC of the FPSCR register
(Floating-point Status and Control Register). This intrinsic function is only available for
devices with Neon (Advanced SIMD).

__QDOUBLE

Syntax signed int __QDOUBLE(signed int);

Description Inserts an instruction QADD Rd,Rs,Rs for a source register Rs, and a destination register
Rd.

This intrinsic function requires architecture Armv5E or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__QFlag

Syntax int __QFlag(void);

Description Returns the Q flag that indicates if overflow/saturation has occurred.

This intrinsic function requires architecture Armv5E or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__RBIT

Syntax unsigned int __RBIT(unsigned int);

Description Inserts an RBIT instruction, which reverses the bit order in a 32-bit register. If the RBIT
instruction is not available, a separate sequence of instructions is inserted to achieve the
same result.

This intrinsic function is equivalent to the Arm C Language Extensions (ACLE) intrinsic
function __rbit.

AFE1_AFE2-1:1

Intrinsic functions

433

__reset_Q_flag

Syntax void __reset_Q_flag(void);

Description Clears the Q flag that indicates if overflow/saturation has occurred.

This intrinsic function requires an Arm v5E architecture or higher for Arm mode, and
Arm v7A, Arm v7R, or Arm v7E-M for Thumb mode.

__reset_QC_flag

Syntax void __reset_QC_flag(void);

Description Clears the value of the cumulative saturation flag QC of the FPSCR register
(Floating-point Status and Control Register). This intrinsic function is only available for
devices with Neon (Advanced SIMD).

__REV

__REV16

__REVSH

Syntax unsigned int __REV(unsigned int);
unsigned int __REV16(unsigned int);
signed int __REVSH(short);

Description Inserts the specified instruction. If the instruction is not available, a separate sequence
of instructions is inserted to achieve the same result.

These intrinsic functions are equivalent to the Arm C Language Extensions (ACLE)
intrinsic functions __rev, __rev16, and __revsh.

__rintn

__rintnf

Syntax double __rintn(double x);
float __rintnf(float x);

AFE1_AFE2-1:1

434

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Rounds a number x to the nearest integer number (with ties to even), which corresponds
either to the intrinsic call __VRINTN_F64(x) for double precision, or
__VRINTN_F32(x) for single precision.

These intrinsic functions are defined according to the Arm C Language Extensions
(ACLE).

__ROR

Syntax unsigned int __ROR(unsigned int);

Description Inserts an ROR instruction.

This intrinsic function is equivalent to the Arm C Language Extensions (ACLE) intrinsic
function __ror.

__RRX

Syntax unsigned int __RRX(unsigned int);

Description Inserts an RRX instruction.

__SADD8

__SADD16

__SASX

__SSAX

__SSUB8

__SSUB16

Syntax unsigned int __Sxxx(unsigned int, unsigned int);

Description Inserts the specified instruction.

AFE1_AFE2-1:1

Intrinsic functions

435

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

These intrinsic functions are equivalent to the Arm C Language Extensions (ACLE)
intrinsic functions __sadd8, __sadd16, __sasx, __ssax, __ssub8, and __ssub16.

__SEL

Syntax unsigned int __SEL(unsigned int, unsigned int);

Description Inserts an SEL instruction.

This intrinsic function requires architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__set_BASEPRI

Syntax void __set_BASEPRI(unsigned int);

Description Sets the value of the BASEPRI register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M3, Cortex-M4, or Cortex-M7 device.

See also __arm_wsr, page 415.

__set_CONTROL

Syntax void __set_CONTROL(unsigned int);

Description Sets the value of the CONTROL register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M device.

See also __arm_wsr, page 415.

__set_CPSR

Syntax void __set_CPSR(unsigned int);

Description Sets the value of the Arm CPSR (Current Program Status Register). Only the control field
is changed (bits 0-7). This intrinsic function can only be used in privileged mode, is not
available for Cortex-M devices, and it requires Arm mode.

AFE1_AFE2-1:1

436

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

See also __arm_wsr, page 415.

__set_FAULTMASK

Syntax void __set_FAULTMASK(unsigned int);

Description Sets the value of the FAULTMASK register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M3, Cortex-M4, or Cortex-M7 device.

See also __arm_wsr, page 415.

__set_FPSCR

Syntax void __set_FPSCR(unsigned int);

Description Sets the value of FPSCR (floating-point status and control register)

This intrinsic function is only available for devices with a VFP coprocessor.

See also __arm_wsr, page 415.

__set_interrupt_state

Syntax void __set_interrupt_state(__istate_t);

Description Restores the interrupt state to a value previously returned by the
__get_interrupt_state function.

For information about the __istate_t type, see __get_interrupt_state, page 422.

__set_LR

Syntax void __set_LR(unsigned int);

Description Assigns a new address to the link register (R14).

__set_MSP

Syntax void __set_MSP(unsigned int);

AFE1_AFE2-1:1

Intrinsic functions

437

Description Sets the value of the MSP register (Main Stack Pointer). This intrinsic function can only
be used in privileged mode, and is only available for Cortex-M devices.

See also __arm_wsr, page 415.

__set_PRIMASK

Syntax void __set_PRIMASK(unsigned int);

Description Sets the value of the PRIMASK register. This intrinsic function can only be used in
privileged mode and it requires a Cortex-M device.

See also __arm_wsr, page 415.

__set_PSP

Syntax void __set_PSP(unsigned int);

Description Sets the value of the PSP register (Process Stack Pointer). This intrinsic function can
only be used in privileged mode, and is only available for Cortex-M devices.

See also __arm_wsr, page 415.

__set_SB

Syntax void __set_SB(unsigned int);

Description Assigns a new address to the static base register (R9).

__set_SP

Syntax void __set_SP(unsigned int);

Description Assigns a new address to the stack pointer register (R13).

__SEV

Syntax void __SEV(void);

AFE1_AFE2-1:1

438

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Inserts an SEV instruction.

This intrinsic function requires architecture Armv7 for Arm mode, and Armv6-M or
Armv7 for Thumb mode.

This intrinsic function is equivalent to the Arm C Language Extensions (ACLE) intrinsic
function __sev.

__SHADD8

__SHADD16

__SHASX

__SHSAX

__SHSUB8

__SHSUB16

Syntax unsigned int __SHxxx(unsigned int, unsigned int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

These intrinsic functions are equivalent to the Arm C Language Extensions (ACLE)
intrinsic functions __shadd8, __shadd16, __shasx, __shsax, __shsub8, and
__shsub16.

AFE1_AFE2-1:1

Intrinsic functions

439

__SMLABB

__SMLABT

__SMLATB

__SMLATT

__SMLAWB

__SMLAWT

Syntax unsigned int __SMLAxxx(unsigned int, unsigned int, unsigned
int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__SMLAD

__SMLADX

__SMLSD

__SMLSDX

Syntax unsigned int __SMLxxx(unsigned int, unsigned int, unsigned int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

These intrinsic functions are equivalent to the Arm C Language Extensions (ACLE)
intrinsic functions __smlad, __smladx, __smlsd, and __smlsdx.

AFE1_AFE2-1:1

440

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__SMLALBB

__SMLALBT

__SMLALTB

__SMLALTT

Syntax unsigned long long __SMLALxxx(unsigned int, unsigned int,
unsigned long long);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__SMLALD

__SMLALDX

__SMLSLD

__SMLSLDX

Syntax unsigned long long __SMLxxx(unsigned int, unsigned int, unsigned
long long);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

These intrinsic functions are equivalent to the Arm C Language Extensions (ACLE)
intrinsic functions __smlald, __smlaldx, __smlsld, and __smlsldx.

AFE1_AFE2-1:1

Intrinsic functions

441

__SMMLA

__SMMLAR

__SMMLS

__SMMLSR

Syntax unsigned int __SMMLxxx(unsigned int, unsigned int, unsigned
int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__SMMUL

__SMMULR

Syntax signed int __SMMULxxx(signed int, signed int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__SMUAD

__SMUADX

__SMUSD

__SMUSDX

Syntax unsigned int __SMUxxx(unsigned int, unsigned int);

Description Inserts the specified instruction.

AFE1_AFE2-1:1

442

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__SMUL

Syntax signed int __SMUL(signed short, signed short);

Description Inserts a signed 16-bit multiplication.

This intrinsic function requires architecture Armv5-E or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__SMULBB

__SMULBT

__SMULTB

__SMULTT

__SMULWB

__SMULWT

Syntax unsigned int __SMULxxx(unsigned int, unsigned int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__sqrt

__sqrtf

Syntax double __sqrt(double x);
float __sqrtf(float x);

AFE1_AFE2-1:1

Intrinsic functions

443

Description Computes the square root of the operand x, which corresponds either to the intrinsic call
__VSQRT_F64(x) for double precision, or __VSQRT_F32(x) for single precision.

These intrinsic functions are defined according to the Arm C Language Extensions
(ACLE).

__SSAT

Syntax signed int __SSAT(signed int, unsigned int);

Description Inserts an SSAT instruction.

The compiler will incorporate a shift instruction into the operand when possible. For
example, __SSAT(x << 3,11) compiles to SSAT Rd,#11,Rn,LSL #3, where the
value of x has been placed in register Rn and the return value of __SSAT will be placed
in register Rd.

This intrinsic function requires architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7-M for Thumb mode.

This intrinsic function is equivalent to the Arm C Language Extensions (ACLE) intrinsic
function __ssat.

__SSAT16

Syntax unsigned int __SSAT16(unsigned int, unsigned int);

Description Inserts an SSAT16 instruction.

This intrinsic function requires architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Arm v7E-M for Thumb mode.

This intrinsic function is equivalent to the Arm C Language Extensions (ACLE) intrinsic
function __ssat16.

AFE1_AFE2-1:1

444

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__STC

__STCL

__STC2

__STC2L

Syntax void __STCxxx(__ul coproc, __ul CRn, __ul const *dst);

Parameters

Description Inserts the coprocessor store instruction STC—or one of its variants—which means that
the value of the specified coprocessor register will be written to a memory location. The
parameters coproc and CRn will be encoded in the instruction and must therefore be
constants.

The intrinsic functions __STC and __STCL require architecture Armv4 or higher for
Arm mode, and Arm v6T2 or higher for Thumb mode.

The intrinsic functions __STC2 and __STC2L require architecture Armv5 or higher for
Arm mode, and Armv6-T2 or higher for Thumb mode.

See also __arm_stc, page 414, __arm_stcl, page 414, __arm_stc2, page 414, and __arm_stc2l,
page 414.

coproc The coprocessor number 0..15.

CRn The coprocessor register to load.

dst A pointer to the destination.

AFE1_AFE2-1:1

Intrinsic functions

445

__STC_noidx

__STCL_noidx

__STC2_noidx

__STC2L_noidx

Syntax void __STCxxx_noidx(__ul coproc, __ul CRn, __ul const *dst, __ul
option);

Parameters

Description Inserts the coprocessor store instruction STC—or one of its variants—which means that
the value of the specified coprocessor register will be written to a memory location. The
parameters coproc, CRn, and option will be encoded in the instruction and must
therefore be constants.

The intrinsic functions __STC_noidx and __STCL_noidx require architecture Armv4
or higher for Arm mode, and Armv6-T2 or higher for Thumb mode.

The intrinsic functions __STC2_noidx and __STC2L_noidx require architecture
Armv5 or higher for Arm mode, and Armv6-T2 or higher for Thumb mode.

coproc The coprocessor number 0..15.

CRn The coprocessor register to load.

dst A pointer to the destination.

option Additional coprocessor option 0..255.

AFE1_AFE2-1:1

446

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__STREX

__STREXB

__STREXD

__STREXH

Syntax unsigned int __STREX(unsigned int, unsigned int *);
unsigned int __STREXB(unsigned char, unsigned char *);
unsigned int __STREXD(unsigned long long, unsigned long long*);
unsigned int __STREXH(unsigned short, unsigned short *);

Description Inserts the specified instruction.

The __STREX intrinsic function requires architecture Armv6 or higher for Arm mode,
and Armv6-T2 or baseline Armv8-M for Thumb mode.

The __STREXB and the __STREXH intrinsic functions require architecture Armv6K or
Armv7 for Arm mode, and Armv7 or baseline Armv8-M for Thumb mode.

The __STREXD intrinsic function requires architecture Armv6K or Armv7 for Arm
mode, and Armv7 except for Armv7-M for Thumb mode.

__SWP

__SWPB

Syntax unsigned int __SWP(unsigned int, unsigned int *);
char __SWPB(unsigned char, unsigned char *);

Description Inserts the specified instruction.

These intrinsic functions require Arm mode.

AFE1_AFE2-1:1

Intrinsic functions

447

__SXTAB

__SXTAB16

__SXTAH

__SXTB16

Syntax unsigned int __SXTxxx(unsigned int, unsigned int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__TT

__TTT

__TTA

__TTAT

Syntax unsigned int __TT(unsigned int);
unsigned int __TTT(unsugned int);
unsigned int __TTA(unsigned int);
unsigned int __TTAT(unsigned int);

Description Inserts the specified instruction. Avoid using these intrinsic functions directly. Instead
use the functions cmse_TT, cmse_TTT, cmse_TT_fptr, and cmse_TTT_fptr, which
are defined in the header file arm_cmse.h.

These intrinsic functions require architecture Armv8-M with security extensions.

See also --cmse, page 269.

AFE1_AFE2-1:1

448

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__UADD8

__UADD16

__UASX

__USAX

__USUB8

__USUB16

Syntax unsigned int __Uxxx(unsigned int, unsigned int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

These intrinsic functions are equivalent to the Arm C Language Extensions (ACLE)
intrinsic functions __uadd8, __uadd16, __uasx, __usax, __usub8, and __usub16.

__UHADD8

__UHADD16

__UHASX

__UHSAX

__UHSUB8

__UHSUB16

Syntax unsigned int __UHxxx(unsigned int, unsigned int);

AFE1_AFE2-1:1

Intrinsic functions

449

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

These intrinsic functions are equivalent to the Arm C Language Extensions (ACLE)
intrinsic functions __uhadd8, __uhadd16, __uhasx, __uhsax, __uhsub8, and
__uhsub16.

__UMAAL

Syntax unsigned long long __UMAAL(unsigned int, unsigned int, unsigned
int, unsigned int);

Description Inserts an UMAAL instruction.

This intrinsic function requires architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__UQADD8

__UQADD16

__UQASX

__UQSAX

__UQSUB8

__UQSUB16

Syntax unsigned int __UQxxx(unsigned int, unsigned int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

AFE1_AFE2-1:1

450

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

These intrinsic functions are equivalent to the Arm C Language Extensions (ACLE)
intrinsic functions __uqadd8, __uqadd16, __uqasx, __uqsax, __uqsub8, and
__uqsub16.

__USAD8

__USADA8

Syntax unsigned int __USADxxx(unsigned int, unsigned int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

__USAT

Syntax unsigned int __USAT(signed int, unsigned int);

Description Inserts a USAT instruction.

The compiler will incorporate a shift instruction into the operand when possible. For
example, __USAT(x << 3,11) compiles to USAT Rd,#11,Rn,LSL #3, where the
value of x has been placed in register Rn and the return value of __USAT will be placed
in register Rd.

This intrinsic function requires architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7-M for Thumb mode.

This intrinsic function is equivalent to the Arm C Language Extensions (ACLE) intrinsic
function __usat.

__USAT16

Syntax unsigned int __USAT16(unsigned int, unsigned int);

Description Inserts a USAT16 instruction.

This intrinsic function requires architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

This intrinsic function is equivalent to the Arm C Language Extensions (ACLE) intrinsic
function __usat16.

AFE1_AFE2-1:1

Intrinsic functions

451

__UXTAB

__UXTAB16

__UXTAH

__UXTB16

Syntax unsigned int __UXTxxx(unsigned int, unsigned int);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv6 or higher for Arm mode, and
Armv7-A, Armv7-R, or Armv7E-M for Thumb mode.

AFE1_AFE2-1:1

452

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__VFMA_F64

__VFMS_F64

__VFNMA_F64

__VFNMS_F64

__VFMA_F32

__VFMS_F32

__VFNMA_F32

__VFNMS_F32

Syntax double __VFMA_F64(double a, double x, double y);
double __VFMS_F64(double a, double x, double y);
double __VFNMA_F64(double a, double x, double y);
double __VFNMS_F64(double a, double x, double y);
float __VFMA_f32(float a, float x, float y);
float __VFMS_f32(float a, float x, float y);
float __VFNMA_F32(float a, float x, float y);
float __VFNMS_F32(float a, float x, float y);

Description Inserts a fused floating-point multiply-accumulate instruction VFMA, VFMS, VFNMA, or
VFNMS.

AFE1_AFE2-1:1

Intrinsic functions

453

__VMINNM_F64

__VMAXNM_F64

__VMINNM_F32

__VMAXNM_F32

Syntax double __VMINNM_F64(double x, double y);
double __VMAXNM_F64(double x, double y);
float __VMINNM_F32(float x, float y);
float __VMAXNM_F32(float x, float y);

Description Inserts a VMINNM or VMAXNM instruction.

AFE1_AFE2-1:1

454

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__VRINTA_F64

__VRINTM_F64

__VRINTN_F64

__VRINTP_F64

__VRINTX_F64

__VRINTR_F64

__VRINTZ_F64

__VRINTA_F32

__VRINTM_F32

__VRINTN_F32

__VRINTP_F32

__VRINTX_F32

__VRINTR_F32

__VRINTZ_F32

Syntax double __VRINTA_F64(double x);
double __VRINTM_F64(double x);
double __VRINTN_F64(double x);
double __VRINTP_F64(double x);
double __VRINTX_F64(double x);
double __VRINTR_F64(double x);

AFE1_AFE2-1:1

Intrinsic functions

455

double __VRINTZ_F64(double x);
float __VRINTA_F32(float x);
float __VRINTM_F32(float x);
float __VRINTN_F32(float x);
float __VRINTP_F32(float x);
float __VRINTX_F32(float x);
float __VRINTR_F32(float x);
float __VRINTZ_F32(float x);

Description Performs a directed rounding and inserts the corresponding instruction:

● VRINTA: Rounds floating-point to integer to Nearest with Ties to Away

● VRINTM: Rounds floating-point to integer towards -Infinity

● VRINTN: Rounds floating-point to integer to Nearest

● VRINTP: Rounds floating-point to integer towards +Infinity

● VRINTR: Rounds floating-point to integer (using rounding mode in FPSCR)

● VRINTX: rounds floating-point to integer inexact (using rounding mode in FPSCR)

● VRINTZ: Rounds floating-point to integer towards Zero

If the result of, for example __VRINTA_F64, is converted to int, the instruction
VCVTA.S32.F64 is used instead. For conversion to unsigned int, the instruction
VCVTA.U32.F64 is used instead. Similarly, VRINTM, VRINTN, VRINTP, and VRINTR use
corresponding instructions VCVTM, VCVTN, VCVTP, and VCVTR for integer conversion.

__VSQRT_F64

__VSQRT_F32

Syntax double __VSQRT_F64(double x);
float __VSQRT_F32(float x);

Description Inserts the square root instruction VSQRT.

AFE1_AFE2-1:1

456

Descriptions of IAR Systems intrinsic functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__WFE

__WFI

__YIELD

Syntax void int __xxx(void);

Description Inserts the specified instruction.

These intrinsic functions require architecture Armv7 for Arm mode, and Armv6-M, or
Armv7 for Thumb mode.

These intrinsic functions are equivalent to the Arm C Language Extensions (ACLE)
intrinsic functions __wfe, __wfi, and __yield.

AFE1_AFE2-1:1

457

The preprocessor
● Overview of the preprocessor

● Description of predefined preprocessor symbols

● Descriptions of miscellaneous preprocessor extensions

Overview of the preprocessor
The preprocessor of the IAR C/C++ Compiler for Arm adheres to Standard C. The
compiler also makes these preprocessor-related features available to you:

● Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example, the
time and date of compilation. For more information, see Description of predefined
preprocessor symbols, page 458.

● User-defined preprocessor symbols defined using a compiler option

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D, see -D, page 271.

● Preprocessor extensions

There are several preprocessor extensions, for example, many pragma directives. For
more information, see the chapter Pragma directives. For information about the
corresponding _Pragma operator and the other extensions related to the
preprocessor, see Descriptions of miscellaneous preprocessor extensions, page 468.

● Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 298.

To specify a path for an include file, use forward slashes:

#include "mydirectory/myfile"

In source code, use forward slashes:

file = fopen("mydirectory/myfile","rt");

Note: Backslashes can also be used—use one in include file paths and two in source
code strings.

AFE1_AFE2-1:1

458

Description of predefined preprocessor symbols

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description of predefined preprocessor symbols
This section lists and describes the preprocessor symbols.

Note: To list the predefined preprocessor symbols, use the compiler option
--predef_macros. See --predef_macros, page 297.

__AAPCS__

Description An integer that is set based on the compiler option --aapcs. The symbol is set to 1 if
the AAPCS base standard is the selected calling convention (--aapcs=std). The
symbol is undefined for other calling conventions.

This preprocessor symbol is equivalent to the ACLE (Arm C Language Extensions)
macro __ARM_PCS.

See also --aapcs, page 267.

__AAPCS_VFP__

Description An integer that is set based on the compiler option --aapcs. The symbol is set to 1 if
the VFP variant of AAPCS is the selected calling convention (--aapcs=vfp). The
symbol is undefined for other calling conventions.

This preprocessor symbol is equivalent to the ACLE (Arm C Language Extensions)
macro __ARM_PCS_VFP.

See also --aapcs, page 267.

__ARM_ADVANCED_SIMD__

Description An integer that is set based on the compiler option --cpu. The symbol is set to 1 if the
selected processor architecture has the Advanced SIMD architecture extension. The
symbol is undefined for other cores.

This preprocessor symbol is equivalent to the ACLE (Arm C Language Extensions)
macro __ARM_NEON.

See also --cpu, page 269.

AFE1_AFE2-1:1

The preprocessor

459

__ARM_ARCH

Description This symbol is defined according to ACLE (Arm C Language Extensions).

See also Arm C Language Extensions (IHI 0053D)

__ARM_ARCH_ISA_ARM

Description This symbol is defined according to ACLE (Arm C Language Extensions).

See also Arm C Language Extensions (IHI 0053D)

__ARM_ARCH_ISA_THUMB

Description This symbol is defined according to ACLE (Arm C Language Extensions).

See also Arm C Language Extensions (IHI 0053D)

__ARM_ARCH_PROFILE

Description This symbol is defined according to ACLE (Arm C Language Extensions).

See also Arm C Language Extensions (IHI 0053D)

__ARM_BIG_ENDIAN

Description This symbol is defined according to ACLE (Arm C Language Extensions).

See also Arm C Language Extensions (IHI 0053D)

__ARM_FEATURE_CMSE

Description An integer that is set based on the compiler options --cpu and --cmse. The symbol is
set to 3 if the selected processor architecture has CMSE (Cortex-M security extensions)
and the compiler option --cmse is specified.

The symbol is set to 1 if the selected processor architecture has CMSE and the compiler
option --cmse is not specified.

The symbol is undefined for cores without CMSE.

AFE1_AFE2-1:1

460

Description of predefined preprocessor symbols

IAR C/C++ Development Guide
Compiling and Linking for Arm

See also --cmse, page 269 and --cpu, page 269

__ARM_FEATURE_CRC32

Description This symbol is defined to 1 if the CRC32 instructions are supported (optional in
Armv8-A/R).

This symbol is defined according to ACLE (Arm C Language Extensions).

__ARM_FEATURE_CRYPTO

Description This symbol is defined to 1 if the crypto instructions are supported (implies Armv8-A/R
with Neon).

This symbol is defined according to ACLE (Arm C Language Extensions).

__ARM_FEATURE_DIRECTED_ROUNDING

Description This symbol is defined to 1 if the directed rounding and conversion instructions are
supported.

This symbol is defined according to ACLE (Arm C Language Extensions).

__ARM_FEATURE_DSP

Description This symbol is defined according to ACLE (Arm C Language Extensions).

See also Arm C Language Extensions (IHI 0053D)

__ARM_FEATURE_FMA

Description This symbol is defined to 1 if the FPU supports fused floating-point
multiply-accumulate.

This symbol is defined according to ACLE (Arm C Language Extensions).

__ARM_FEATURE_IDIV

Description This symbol is defined according to ACLE (Arm C Language Extensions).

See also Arm C Language Extensions (IHI 0053D)

AFE1_AFE2-1:1

The preprocessor

461

__ARM_FEATURE_NUMERIC_MAXMIN

Description This symbol is defined to 1 if the floating-point maximum and minimum instructions
are supported.

This symbol is defined according to ACLE (Arm C Language Extensions).

__ARM_FEATURE_UNALIGNED

Description This symbol is defined only if the target supports unaligned access, and unaligned
access is allowed. The compiler option --no_unaligned_access can be used to
disallow unaligned access.

This symbol is defined according to ACLE (Arm C Language Extensions).

__ARM_FP

Description This symbol is defined according to ACLE (Arm C Language Extensions).

See also Arm C Language Extensions (IHI 0053D)

__ARM_MEDIA__

Description An integer that is set based on the compiler option --cpu. The symbol is set to 1 if the
selected processor architecture has the Armv6 SIMD extensions for multimedia. The
symbol is undefined for other cores.

This preprocessor symbol is equivalent to the ACLE (Arm C Language Extensions)
macro __ARM_FEATURE_SIMD32.

See also --cpu, page 269.

__ARM_NEON

Description This symbol is defined according to ACLE (Arm C Language Extensions).

__ARM_NEON_FP

Description This symbol is defined according to ACLE (Arm C Language Extensions).

AFE1_AFE2-1:1

462

Description of predefined preprocessor symbols

IAR C/C++ Development Guide
Compiling and Linking for Arm

__ARM_PROFILE_M__

Description An integer that is set based on the compiler option --cpu. The symbol is set to 1 if the
selected processor architecture is a profile M core. The symbol is undefined for other
cores.

This preprocessor symbol is related to the ACLE (Arm C Language Extensions) macro
__ARM_ARCH_PROFILE.

See also --cpu, page 269.

__ARMVFP__

Description An integer that reflects the --fpu option and is defined to __ARMVFPV2__,
__ARMVFPV3__, or __ARMVFPV4__. These symbolic names can be used when testing
the __ARMVFP__ symbol. If VFP code generation is disabled (default), the symbol will
be undefined.

See also --fpu, page 281.

__ARMVFP_D16__

Description An integer that is set based on the compiler option --fpu. The symbol is set to 1 if the
selected FPU is a VFPv3 or VFPv4 unit with only 16 D registers. Otherwise, the symbol
is undefined.

See also --fpu, page 281.

__ARMVFP_SP__

Description An integer that is set based on the compiler option --fpu. The symbol is set to 1 if the
selected FPU only supports 32-bit single-precision. Otherwise, the symbol is undefined.

This preprocessor symbol is related to the ACLE (Arm C Language Extensions) macro
__ARM_FP.

See also --fpu, page 281.

AFE1_AFE2-1:1

The preprocessor

463

__BASE_FILE__

Description A string that identifies the name of the base source file (that is, not the header file), being
compiled.

See also __FILE__, page 464, and --no_path_in_file_macros, page 290.

__BUILD_NUMBER__

Description A unique integer that identifies the build number of the compiler currently in use.

__CORE__

Description An integer that identifies the chip core in use. The value reflects the setting of the --cpu
option and is defined to __ARM4TM__, __ARM5__, __ARM5E__, __ARM6__,
__ARM6M__, __ARM6SM__, __ARM7M__, __ARM7EM__, __ARM7A__, __ARM7R__,
__ARM8A__, __ARM8M_BASELINE__, __ARM8M_MAINLINE__, __ARM8R__, or
__ARM8EM_MAINLINE__. These symbolic names can be used when testing the
__CORE__ symbol.

This preprocessor symbol is related to the ACLE (Arm C Language Extensions) macro
__ARM_ARCH.

__COUNTER__

Description A macro that expands to a new integer each time it is expanded, starting at zero (0) and
counting up.

__cplusplus

Description An integer which is defined when the compiler runs in any of the C++ modes, otherwise
it is undefined. When defined, its value is 201402L. This symbol can be used with
#ifdef to detect whether the compiler accepts C++ code. It is particularly useful when
creating header files that are to be shared by C and C++ code.

This symbol is required by Standard C.

AFE1_AFE2-1:1

464

Description of predefined preprocessor symbols

IAR C/C++ Development Guide
Compiling and Linking for Arm

__CPU_MODE__

Description An integer that reflects the selected CPU mode and is defined to 1 for Thumb and 2 for
Arm.

__DATE__

Description A string that identifies the date of compilation, which is returned in the form "Mmm dd
yyyy", for example, "Oct 30 2018".

This symbol is required by Standard C.

__EXCEPTIONS__

Description A symbol that is defined when exceptions are supported in C++.

See also --no_exceptions, page 288.

__FILE__

Description A string that identifies the name of the file being compiled, which can be both the base
source file and any included header file.

This symbol is required by Standard C.

See also __BASE_FILE__, page 463, and --no_path_in_file_macros, page 290.

__func__

Description A predefined string identifier that is initialized with the name of the function in which
the symbol is used. This is useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled.

This symbol is required by Standard C.

See also -e, page 278 and __PRETTY_FUNCTION__, page 465.

AFE1_AFE2-1:1

The preprocessor

465

__FUNCTION__

Description A predefined string identifier that is initialized with the name of the function in which
the symbol is used. This is useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled.

See also -e, page 278 and __PRETTY_FUNCTION__, page 465.

__IAR_SYSTEMS_ICC__

Description An integer that identifies the IAR compiler platform. The current value is 9—the
number could be higher in a future version of the product. This symbol can be tested
with #ifdef to detect whether the code was compiled by a compiler from IAR Systems.

__ICCARM__

Description An integer that is set to 1 when the code is compiled with the IAR C/C++ Compiler for
Arm.

__LINE__

Description An integer that identifies the current source line number of the file being compiled,
which can be both the base source file and any included header file.

This symbol is required by Standard C.

__LITTLE_ENDIAN__

Description An integer that reflects the setting of the compiler option --endian and is defined to 1
when the byte order is little-endian. The symbol is defined to 0 when the byte order is
big-endian.

This preprocessor symbol is related to the ACLE (Arm C Language Extensions) macro
__ARM_BIG_ENDIAN.

__PRETTY_FUNCTION__

Description A predefined string identifier that is initialized with the function name, including
parameter types and return type, of the function in which the symbol is used, for

AFE1_AFE2-1:1

466

Description of predefined preprocessor symbols

IAR C/C++ Development Guide
Compiling and Linking for Arm

example, "void func(char)". This symbol is useful for assertions and other trace
utilities. The symbol requires that language extensions are enabled.

See also -e, page 278 and__func__, page 464.

__ROPI__

Description An integer that is defined when the compiler option --ropi is used.

This preprocessor symbol is equivalent to the ACLE (Arm C Language Extensions)
macro __ARM_ROPI.

See also --ropi, page 300.

__RTTI__

Description A symbol that is defined when runtime type information (RTTI) is supported in C++.

See also --no_rtti, page 290.

__RWPI__

Description An integer that is defined when the compiler option --rwpi is used.

This preprocessor symbol is equivalent to the ACLE (Arm C Language Extensions)
macro __ARM_RWPI.

See also --rwpi, page 301.

__STDC__

Description An integer that is set to 1, which means the compiler adheres to Standard C. This symbol
can be tested with #ifdef to detect whether the compiler in use adheres to Standard C.*

This symbol is required by Standard C.

__STDC_LIB_EXT1__

Description An integer that is set to 201112L and that signals that Annex K, Bounds-checking
interfaces, of the C standard is supported.

AFE1_AFE2-1:1

The preprocessor

467

See also __STDC_WANT_LIB_EXT1__, page 468.

__STDC_NO_ATOMICS__

Description Set to 1 if the compiler does not support atomic types nor stdatomic.h.

__STDC_NO_THREADS__

Description Set to 1 to indicate that the implementation does not support threads.

__STDC_NO_VLA__

Description Set to 1 to indicate that C variable length arrays, VLAs, are not enabled.

See also --vla, page 308.

__STDC_UTF16__

Description Set to 1 to indicate that the values of type char16_t are UTF-16 encoded.

__STDC_UTF32__

Description Set to 1 to indicate that the values of type char32_t are UTF-32 encoded.

__STDC_VERSION__

Description An integer that identifies the version of the C standard in use. The symbol expands to
201710L, unless the --c89 compiler option is used, in which case the symbol expands
to 199409L.

This symbol is required by Standard C.

__TIME__

Description A string that identifies the time of compilation in the form "hh:mm:ss".

This symbol is required by Standard C.

AFE1_AFE2-1:1

468

Descriptions of miscellaneous preprocessor extensions

IAR C/C++ Development Guide
Compiling and Linking for Arm

__TIMESTAMP__

Description A string constant that identifies the date and time of the last modification of the current
source file. The format of the string is the same as that used by the asctime standard
function (in other words, "Tue Sep 16 13:03:52 2014").

__VER__

Description An integer that identifies the version number of the IAR compiler in use. For example,
version 5.11.3 is returned as 5011003.

Descriptions of miscellaneous preprocessor extensions
This section gives reference information about the preprocessor extensions that are
available in addition to the predefined symbols, pragma directives, and Standard C
directives.

NDEBUG

Description This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

● defined, the assert code will not be included

● not defined, the assert code will be included

This means that if you write any assert code and build your application, you should
define this symbol to exclude the assert code from the final application.

Note: The assert macro is defined in the assert.h standard include file.

In the IDE, the NDEBUG symbol is automatically defined if you build your application in
the Release build configuration.

See also __aeabi_assert, page 150.

__STDC_WANT_LIB_EXT1__

Description If this symbol is defined to 1 prior to any inclusions of system header files, it will enable
the use of functions from Annex K, Bounds-checking interfaces, of the C standard.

AFE1_AFE2-1:1

The preprocessor

469

See also Bounds checking functionality, page 133.

#warning message

Syntax #warning message

where message can be any string.

Description Use this preprocessor directive to produce messages. Typically, this is useful for
assertions and other trace utilities, similar to the way the Standard C #error directive
is used. This directive is not recognized when the --strict compiler option is used.

AFE1_AFE2-1:1

470

Descriptions of miscellaneous preprocessor extensions

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

471

C/C++ standard library
functions
● C/C++ standard library overview

● DLIB runtime environment—implementation details

For detailed reference information about the library functions, see the online
help system.

C/C++ standard library overview
The IAR DLIB Runtime Environment is a complete implementation of the C/C++
standard library, compliant with Standard C and C++. This library also supports
floating-point numbers in IEEE 754 format and it can be configured to include different
levels of support for locale, file descriptors, multibyte characters, etc.

For more information about customization, see the chapter The DLIB runtime
environment.

For detailed information about the library functions, see the online documentation
supplied with the product. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

For more information about library functions, see the chapter Implementation-defined
behavior for Standard C.

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into several
different header files, each covering a particular functional area, letting you include just
those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

AFE1_AFE2-1:1

472

C/C++ standard library overview

IAR C/C++ Development Guide
Compiling and Linking for Arm

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
set up a runtime library, see Setting up the runtime environment, page 127. The linker
will include only those routines that are required—directly or indirectly—by your
application.

For information about how you can override library modules with your own versions,
see Overriding library modules, page 131.

ALTERNATIVE MORE ACCURATE LIBRARY FUNCTIONS

The default implementation of cos, sin, tan, and pow is designed to be fast and small.
As an alternative, there are versions designed to provide better accuracy. They are
named __iar_xxx_accuratef for float variants of the functions and
__iar_xxx_accuratel for long double variants of the functions, and where xxx is
cos, sin, etc.

To use any of these more accurate versions, use the --redirect linker option.

REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant.

Most parts of the DLIB runtime environment are reentrant, but the following functions
and parts are not reentrant because they need static data:

● Heap functions—malloc, free, realloc, calloc, etc. and the C++ operators
new and delete

● Locale functions—localeconv, setlocale

● Multibyte functions—mblen, mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb,
wcsrtomb, wctomb

● Rand functions—rand, srand

● Time functions—asctime, localtime, gmtime, mktime

● The miscellaneous functions atexit, perror, strerror, strtok

● Functions that use files or the heap in some way. This includes scanf, sscanf,
getchar, getwchar, putchar, and putwchar. In addition, if you are using the
options --enable_multibyte and --dlib_config=Full, the printf and
sprintf functions (or any variants) can also use the heap.

AFE1_AFE2-1:1

C/C++ standard library functions

473

Functions that can set errno are not reentrant, because an errno value resulting from
one of these functions can be destroyed by a subsequent use of the function before it is
read. This applies to math and string conversion functions, among others.

Remedies for this are:

● Do not use non-reentrant functions in interrupt service routines

● Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

THE LONGJMP FUNCTION

A longjmp is in effect a jump to a previously defined setjmp. Any variable length
arrays or C++ objects residing on the stack during stack unwinding will not be
destroyed. This can lead to resource leaks or incorrect application behavior.

DLIB runtime environment—implementation details
These topics are covered:

● Briefly about the DLIB runtime environment, page 473

● C header files, page 474

● C++ header files, page 475

● Library functions as intrinsic functions, page 479

● Not supported C/C++ functionality, page 479

● Atomic operations, page 479

● Added C functionality, page 479

● Non-standard implementations, page 482

● Symbols used internally by the library, page 482

BRIEFLY ABOUT THE DLIB RUNTIME ENVIRONMENT

The DLIB runtime environment provides most of the important C and C++ standard
library definitions that apply to embedded systems. These are of the following types:

● Adherence to a free-standing implementation of Standard C. The library supports
most of the hosted functionality, but you must implement some of its base
functionality. For more information, see the chapter Implementation-defined
behavior for Standard C.

● Standard C library definitions, for user programs.

● C++ library definitions, for user programs.

● CSTARTUP, the module containing the start-up code, see the chapter The DLIB
runtime environment.

AFE1_AFE2-1:1

474

DLIB runtime environment—implementation details

IAR C/C++ Development Guide
Compiling and Linking for Arm

● Runtime support libraries, for example, low-level floating-point routines.

● Intrinsic functions, allowing low-level use of Arm features. For more information,
see the chapter Intrinsic functions.

In addition, the DLIB runtime environment includes some added C functionality, see
Added C functionality, page 479.

C HEADER FILES

This section lists the C header files specific to the DLIB runtime environment. Header
files may additionally contain target-specific definitions, which are documented in the
chapter Using C.

This table lists the C header files:

Header file Usage

assert.h Enforcing assertions when functions execute

complex.h Computing common complex mathematical functions

ctype.h Classifying characters

errno.h Testing error codes reported by library functions

fenv.h Floating-point exception flags

float.h Testing floating-point type properties

inttypes.h Defining formatters for all types defined in stdint.h

iso646.h Alternative spellings

limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions

setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions

stdalign.h Handling alignment on data objects

stdarg.h Accessing a varying number of arguments

stdatomic.h Adding support for atomic operations.
Atomic operations are available in cores where the instruction set
supports them.

stdbool.h Adds support for the bool data type in C.

stddef.h Defining several useful types and macros

stdint.h Providing integer characteristics

stdio.h Performing input and output

Table 31: Traditional Standard C header files—DLIB

AFE1_AFE2-1:1

C/C++ standard library functions

475

C++ HEADER FILES

This section lists the C++ header files:

● The C++ library header files

The header files that constitute the Standard C++ library.

● The C++ C header files

The C++ header files that provide the resources from the C library.

The C++ library header files

This table lists the header files that can be used in C++:

stdlib.h Performing a variety of operations

stdnoreturn.h Adding support for non-returning functions

string.h Manipulating several kinds of strings

tgmath.h Type-generic mathematical functions

threads.h Adding support for multiple threads of execution
This functionality is not supported.

time.h Converting between various time and date formats

uchar.h Unicode functionality

wchar.h Support for wide characters

wctype.h Classifying wide characters

Header file Usage

algorithm Defines several common operations on containers and other
sequences

array Adding support for the array sequencer container

atomic Adding support for atomic operations
Atomic operations are available in cores where the instruction
set supports them.

bitset Defining a container with fixed-sized sequences of bits

chrono Adding support for time utilities

codecvt Adding support for conversions between encodings

complex Defining a class that supports complex arithmetic

Table 32: C++ header files

Header file Usage

Table 31: Traditional Standard C header files—DLIB (Continued)

AFE1_AFE2-1:1

476

DLIB runtime environment—implementation details

IAR C/C++ Development Guide
Compiling and Linking for Arm

condition_variable Adding support for thread condition variables.
This functionality is not supported.

deque A deque sequence container

exception Defining several functions that control exception handling

forward_list Adding support for the forward list sequence container

fstream Defining several I/O stream classes that manipulate external files

functional Defines several function objects

future Adding support for passing function information between threads
This functionality is not supported.

hash_map A map associative container, based on a hash algorithm

hash_set A set associative container, based on a hash algorithm

initializer_list Adding support for the initializer_list class

iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams
classes

iosfwd Declaring several I/O stream classes before they are necessarily
defined

iostream Declaring the I/O stream objects that manipulate the standard
streams

istream Defining the class that performs extractions

iterator Defines common iterators, and operations on iterators

limits Defining numerical values

list A doubly-linked list sequence container

locale Adapting to different cultural conventions

map A map associative container

memory Defines facilities for managing memory

mutex Adding support for the data race protection object mutex.
This functionality is not supported.

new Declaring several functions that allocate and free storage

numeric Performs generalized numeric operations on sequences

ostream Defining the class that performs insertions

queue A queue sequence container

random Adding support for random numbers

Header file Usage

Table 32: C++ header files (Continued)

AFE1_AFE2-1:1

C/C++ standard library functions

477

Using Standard C libraries in C++

The C++ library works in conjunction with some of the header files from the Standard
C library, sometimes with small alterations. The header files come in two forms—new
and traditional—for example, cassert and assert.h. The former puts all declared

ratio Adding support for compile-time rational arithmetic

regex Adding support for regular expressions

scoped_allocator Adding support for the memory resource
scoped_allocator_adaptor

set A set associative container

shared_mutex Adding support for the data race protection object
shared_mutex.
This functionality is not supported.

slist A singly-linked list sequence container

sstream Defining several I/O stream classes that manipulate string
containers

stack A stack sequence container

stdexcept Defining several classes useful for reporting exceptions

streambuf Defining classes that buffer I/O stream operations

string Defining a class that implements a string container

strstream Defining several I/O stream classes that manipulate in-memory
character sequences

system_error Adding support for global error reporting

thread Adding support for multiple threads of execution.
This functionality is not supported.

tuple Adding support for the tuple class

typeinfo Defining type information support

typeindex Adding support for type indexes

typetraits Adding support for traits on types

unordered_map Adding support for the unordered map associative container

unordered_set Adding support for the unordered set associative container

utility Defines several utility components

valarray Defining varying length array container

vector A vector sequence container

Header file Usage

Table 32: C++ header files (Continued)

AFE1_AFE2-1:1

478

DLIB runtime environment—implementation details

IAR C/C++ Development Guide
Compiling and Linking for Arm

symbols in the global and std namespace, whereas the latter puts them in the global
namespace only.

This table shows the new header files:

Header file Usage

cassert Enforcing assertions when functions execute

ccomplex Computing common complex mathematical functions

cctype Classifying characters

cerrno Testing error codes reported by library functions

cfenv Floating-point exception flags

cfloat Testing floating-point type properties

cinttypes Defining formatters for all types defined in stdint.h

ciso646 Alternative spellings

climits Testing integer type properties

clocale Adapting to different cultural conventions

cmath Computing common mathematical functions

csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions

cstdalign Handling alignment on data objects

cstdarg Accessing a varying number of arguments

cstdatomic Adding support for atomic operations

cstdbool Adds support for the bool data type in C.

cstddef Defining several useful types and macros

cstdint Providing integer characteristics

cstdio Performing input and output

cstdlib Performing a variety of operations

cstdnoreturn Adding support for non-returning functions

cstring Manipulating several kinds of strings

ctgmath Type-generic mathematical functions

cthreads Adding support for multiple threads of execution.
This functionality is not supported.

ctime Converting between various time and date formats

cuchar Unicode functionality

cwchar Support for wide characters

Table 33: New Standard C header files—DLIB

AFE1_AFE2-1:1

C/C++ standard library functions

479

LIBRARY FUNCTIONS AS INTRINSIC FUNCTIONS

Certain C library functions will under some circumstances be handled as intrinsic
functions and will generate inline code instead of an ordinary function call, for example,
memcpy, memset, and strcat.

NOT SUPPORTED C/C++ FUNCTIONALITY

The following files have contents that are not supported by the IAR C/C++ Compiler:

● threads.h, condition_variable, future, mutex, shared_mutex, thread,
cthreads

Some library functions will have the same address. This occurs, most notably, when the
library function parameters differ in type but not in size, as for example, cos(double)
and cosl(long double).

The IAR C/C++ compiler does not support threads as described in the C11 and C++14
standards. However, using DLib_Threads.h and an RTOS, you can build an
application with thread support. For more information, see Managing a multithreaded
environment, page 160.

ATOMIC OPERATIONS

When you compile for cores with instruction set support for atomic accesses, the
standard C and C++ atomic operations are available. If atomic operations are not
available, the macro __STDC_NO_ATOMICS__ is defined to 1. This is true both in C and
C++.

Atomic operations that cannot be handled natively by the hardware are passed on to
library functions. The IAR C/C++ Compiler for Arm does not include implementations
for these functions. A template implementation can be found in the file
src\lib\atomic\libatomic.c.

ADDED C FUNCTIONALITY

The DLIB runtime environment includes some added C functionality:

● C bounds-checking interface

● DLib_Threads.h

● iar_dlmalloc.h

● LowLevelIOInterface.h

cwctype Classifying wide characters

Header file Usage

Table 33: New Standard C header files—DLIB (Continued)

AFE1_AFE2-1:1

480

DLIB runtime environment—implementation details

IAR C/C++ Development Guide
Compiling and Linking for Arm

● stdio.h

● stdlib.h

● string.h

● time.h

C bounds-checking interface

The C library supports Annex K (Bounds-checking interfaces) of the C standard. It adds
symbols, types, and functions in the header files errno.h, stddef.h, stdint.h,
stdlib.h, string.h, time.h, and wchar.h.

To enable the interface, define the preprocessor extension __STDC_WANT_LIB_EXT1__
to 1 prior to including any system header file. See __STDC_WANT_LIB_EXT1__, page
468.

As an added benefit, the compiler will issue warning messages for the use of unsafe
functions for which the interface has a more safe version. For example, using strcpy
instead of the more safe strcpy_s will make the compiler issue a warning message.

DLib_Threads.h

The DLib_Threads.h header file contains support for locks and thread-local storage
(TLS) variables. This is useful for implementing thread support. For more information,
see the header file.

iar_dlmalloc.h

The iar_dlmalloc.h header file contains support for the advanced (dlmalloc) heap
handler. For more information, see Heap considerations, page 207.

LowLevelIOInterface.h

The header file LowLevelInterface.h contains declarations for the low-level I/O
functions used by DLIB. See The DLIB low-level I/O interface, page 149.

stdio.h

These functions provide additional I/O functionality:

fdopen Opens a file based on a low-level file descriptor.

fileno Gets the low-level file descriptor from the file descriptor
(FILE*).

__gets Corresponds to fgets on stdin.

getw Gets a wchar_t character from stdin.

AFE1_AFE2-1:1

C/C++ standard library functions

481

string.h

These are the additional functions defined in string.h:

time.h

There are two interfaces for using time_t and the associated functions time, ctime,
difftime, gmtime, localtime, and mktime:

● The 32-bit interface supports years from 1900 up to 2035 and uses a 32-bit integer
for time_t. The type and function have names like __time32_t, __time32, etc.
This variant is mainly available for backwards compatibility.

● The 64-bit interface supports years from -9999 up to 9999 and uses a signed
long long for time_t. The type and function have names like __time64_t,
__time64, etc.

The interfaces are defined in three header files:

● time32.h defines __time32_t, time_t, __time32, time, and associated
functions.

● time64.h defines __time64_t, time_t, __time64, time, and associated
functions.

● time.h includes time32.h or time64.h depending on the definition of
_DLIB_TIME_USES_64.

If _DLIB_TIME_USES_64 is:

● defined to 1, it will include time64.h.

● defined to 0, it will include time32.h.

● undefined, it will include time32.h.

In both interfaces, time_t starts at the year 1970.

putw Puts a wchar_t character to stdout.

__ungetchar Corresponds to ungetc on stdout.

__write_array Corresponds to fwrite on stdout.

strdup Duplicates a string on the heap.

strcasecmp Compares strings case-insensitive.

strncasecmp Compares strings case-insensitive and bounded.

strnlen Bounded string length.

AFE1_AFE2-1:1

482

DLIB runtime environment—implementation details

IAR C/C++ Development Guide
Compiling and Linking for Arm

An application can use either interface, and even mix them by explicitly using the 32 or
64-bit variants.

See also __time32, __time64, page 157.

clock_t is represented by a 32-bit integer type.

By default, the time library does not support the timezone and daylight saving time
functionality. To enable that functionality, use the linker option --timezone_lib. See
--timezone_lib, page 344.

There are two functions that can be used for loading or force-loading the timezone and
daylight saving time information from __getzone:

● int _ReloadDstRules (void)

● int _ForceReloadDstRules (void)

Both these functions return 0 for DST rules found and -1 for DST rules not found.

NON-STANDARD IMPLEMENTATIONS

These functions do not work as specified by the C standard:

● fopen_s and freopen

These functions will not propagate the u exclusivity attribute to the low-level
interface.

● towupper and towlower

These functions will only handle A, ..., Z and a, ..., z.

● iswalnum, ..., iswxdigit

These functions will only handle arguments in the range 0 to 127.

● The collate functions strcoll and strxfrm will not work as intended. The same
applies to the C++ equivalent functionality.

SYMBOLS USED INTERNALLY BY THE LIBRARY

The system header files use intrinsic functions, symbols, pragma directives etc. Some
are defined in the library and some in the compiler. These reserved symbols start with
__ (double underscores) and should only be used by the library.

Use the compiler option --predef_macros to determine the value for any predefined
symbols.

The symbols used internally by the library are not listed in this guide.

AFE1_AFE2-1:1

483

The linker configuration
file
● Overview

● Defining memories and regions

● Regions

● Section handling

● Section selection

● Using symbols, expressions, and numbers

● Structural configuration

Before you read this chapter you must be familiar with the concept of sections,
see Modules and sections, page 90.

Overview
To link and locate an application in memory according to your requirements, ILINK
needs information about how to handle sections and how to place them into the available
memory regions. In other words, ILINK needs a configuration, passed to it by means of
the linker configuration file.

This file consists of a sequence of directives and typically, provides facilities for:

● Defining available addressable memories

giving the linker information about the maximum size of possible addresses and
defining the available physical memory, as well as dealing with memories that can be
addressed in different ways.

● Defining the regions of the available memories that are populated with ROM or
RAM

giving the start and end address for each region.

AFE1_AFE2-1:1

484

Defining memories and regions

IAR C/C++ Development Guide
Compiling and Linking for Arm

● Section groups

dealing with how to group sections into blocks and overlays depending on the section
requirements.

● Defining how to handle initialization of the application

giving information about which sections that are to be initialized, and how that
initialization should be made.

● Memory allocation

defining where—in what memory region—each set of sections should be placed.

● Using symbols, expressions, and numbers

expressing addresses and sizes, etc, in the other configuration directives. The
symbols can also be used in the application itself.

● Structural configuration

meaning that you can include or exclude directives depending on a condition, and to
split the configuration file into several different files.

● Special characters in names

When specifying the name of a symbol or section that uses non-identifier characters,
you can enclose the name in back quotes. Example: ‘My Name‘.

Comments can be written either as C comments (/*...*/) or as C++ comments
(//...).

Defining memories and regions
ILINK needs information about the available memory spaces, or more specifically it
needs information about:

● The maximum size of possible addressable memories

The define memory directive defines a memory space with a given size, which is
the maximum possible amount of addressable memory, not necessarily physically
available. See define memory directive, page 485.

● Available physical memory

The define region directive defines a region in the available memories in which
specific sections of application code and sections of application data can be placed.
See define region directive, page 485.

A region consists of one or several memory ranges. A range is a continuous sequence
of bytes in a memory and several ranges can be expressed by using region
expressions. See Region expression, page 489.

This section gives detailed information about each linker directive specific to defining
memories and regions.

AFE1_AFE2-1:1

The linker configuration file

485

define memory directive

Syntax define memory [name] with size = size_expr [,unit-size];

where unit-size is one of:

unitbitsize = bitsize_expr
unitbytesize = bytesize_expr

and where expr is an expression, see expressions, page 512.

Parameters

Description The define memory directive defines a memory space with a given size, which is the
maximum possible amount of addressable memory, not necessarily physically available.
This sets the limits for the possible addresses to be used in the linker configuration file.
For many microcontrollers, one memory space is sufficient. However, some
microcontrollers require two or more. For example, a Harvard architecture usually
requires two different memory spaces, one for code and one for data. If only one
memory is defined, the memory name is optional. If no unit-size is given, the unit
contains 8 bits.

Example /* Declare the memory space Mem of four Gigabytes */
define memory Mem with size = 4G;

define region directive

Syntax define region name = region-expr;

where region-expr is a region expression, see also Regions, page 487.

Parameters

Description The define region directive defines a region in which specific sections of code and
sections of data can be placed. A region consists of one or several memory ranges, where
each memory range consists of a continuous sequence of bytes in a specific memory.

size_expr Specifies how many units the memory space
contains—always counted from address zero.

bitsize_expr Specifies how many bits each unit contains.

bytesize_expr Specifies how many bytes each unit contains. Each
byte contains 8 bits.

name The name of the region.

AFE1_AFE2-1:1

486

Defining memories and regions

IAR C/C++ Development Guide
Compiling and Linking for Arm

Several ranges can be combined by using region expressions—these ranges do not need
to be consecutive or even in the same memory.

Example /* Define the 0x10000-byte code region ROM located at address
 0x10000 in memory Mem */
define region ROM = Mem:[from 0x10000 size 0x10000];

logical directive

Syntax logical range-list = physical range-list

where range-list is one of

[region-expr,...]region-expr
[region-expr,...]from address-expr

Parameters

Description The logical directive maps logical addresses to physical addresses. The physical
address is typically used when loading or burning content into memory, while the logical
address is the one seen by your application. The physical address is the same as the
logical address, if no logical directives are used, or if the address is in a range
specified in a logical directive.

When generating ELF output, the mapping affects the physical address in program
headers. When generating output in the Intel hex or Motorola S-records formats, the
physical address is used.

Each address in the logical range list, in the order specified, is mapped to the
corresponding address in the physical range list, in the order specified.

Unless one or both of the range lists end with the from form, the total size of the logical
ranges and the physical ranges must be the same. If one side ends with the from form
and not the other, the side that ends with the from form will include a final range of a
size that makes the total sizes match, if possible. If both sides end with a from form, the
ranges will extend to the highest possible address that makes the total sizes match.

Setting up a mapping from logical to physical addresses can affect how sections and
other content are placed. No content will be placed to overlap more than one individual
logical or physical range. Also, if there is a mapping from a different logical range to the
corresponding physical range, any logical range for which no mapping to physical
ranges has been specified—by not being mentioned in a logical directive—is
excluded from placement.

region-expr A region expression, see also Regions, page 487.

address-expr An address expression

AFE1_AFE2-1:1

The linker configuration file

487

All logical directives are applied together. Using one or using several directives to
specify the same mapping makes no difference to the result.

Example // Logical range 0x8000-0x8FFF maps to physical 0x10000-0x10FFF.
// No content can be placed in the logical range 0x10000-0x10FFF.
logical [from 0x8000 size 4K] = physical [from 0x10000 size 4K];

// Another way to specify the same mapping
logical [from 0x8000 size 4K] = physical from 0x10000;

// Logical range 0x8000-0x8FFF maps to physical 0x10000-0x10FFF.
// Logical range 0x10000-0x10FFF maps to physical 0x8000-0x8FFF.
// No logical range is excluded from placement because of
// this mapping.
logical [from 0x8000 size 4K] = physical [from 0x10000 size 4K];
logical [from 0x10000 size 4K] = physical [from 0x8000 size 4K];

// Logical range 0x1000-0x13FF maps to physical 0x8000-0x83FF.
// Logical range 0x1400-0x17FF maps to physical 0x9000-0x93FF.
// Logical range 0x1800-0x1BFF maps to physical 0xA000-0xA3FF.
// Logical range 0x1C00-0x1FFF maps to physical 0xB000-0xB3FF.
// No content can be placed in the logical ranges 0x8000-0x83FF,
// 0x9000-0x9FFF, 0xA000-0xAFFF, or 0xB000-0xBFFF.
logical [from 0x1000 size 4K] =
 physical [from 0x8000 size 1K repeat 4 displacement 4K];

// Another way to specify the same mapping.
logical [from 0x1000 to 0x13FF] = physical [from 0x8000 to
0x83FF];
logical [from 0x1400 to 0x17FF] = physical [from 0x9000 to
0x93FF];
logical [from 0x1800 to 0x1BFF] = physical [from 0xA000 to
0xA3FF];
logical [from 0x1C00 to 0x1FFF] = physical [from 0xB000 to
0xB3FF];

Regions
A region is s a set of non-overlapping memory ranges. A region expression is built up
out of region literals and set operations (union, intersection, and difference) on regions.

AFE1_AFE2-1:1

488

Regions

IAR C/C++ Development Guide
Compiling and Linking for Arm

Region literal

Syntax [memory-name:][from expr { to expr | size expr }

 [repeat expr [displacement expr]]]

where expr is an expression, see expressions, page 512.

Parameters

Description A region literal consists of one memory range. When you define a range, the memory it
resides in, a start address, and a size must be specified. The range size can be stated
explicitly by specifying a size, or implicitly by specifying the final address of the range.
The final address is included in the range and a zero-sized range will only contain an
address. A range can span over the address zero and such a range can even be expressed
by unsigned values, because it is known where the memory wraps.

The repeat parameter will create a region literal that contains several ranges, one for
each repeat. This is useful for banked or far regions.

memory-name The name of the memory space in which the region literal
will be located. If there is only one memory, the name is
optional.

from expr expr is the start address of the memory range (inclusive).

to expr expr is the end address of the memory range (inclusive).

size expr expr is the size of the memory range.

repeat expr expr defines several ranges in the same memory for the
region literal.

displacement expr expr is the displacement from the previous range start in the
repeat sequence. Default displacement is the same value as
the range size.

AFE1_AFE2-1:1

The linker configuration file

489

Example /* The 5-byte size range spans over the address zero */
Mem:[from -2 to 2]

/* The 512-byte size range spans over zero, in a 64-Kbyte memory
*/
Mem:[from 0xFF00 to 0xFF]

/* Defining several ranges in the same memory, a repeating
 literal */
Mem:[from 0 size 0x100 repeat 3 displacement 0x1000]

/* Resulting in a region containing:
 Mem:[from 0 size 0x100]
 Mem:[from 0x1000 size 0x100]
 Mem:[from 0x2000 size 0x100]
*/

See also define region directive, page 485, and Region expression, page 489.

Region expression

Syntax region-operand
 | region-expr | region-operand
 | region-expr - region-operand
 | region-expr & region-operand

where region-operand is one of:

(region-expr)
region-name
region-literal
empty-region

where region-name is a region, see define region directive, page 485

where region-literal is a region literal, see Region literal, page 488

and where empty-region is an empty region, see Empty region, page 490.

Description Normally, a region consists of one memory range, which means a region literal is
sufficient to express it. When a region contains several ranges, possibly in different
memories, it is instead necessary to use a region expression to express it. Region
expressions are actually set expressions on sets of memory ranges.

AFE1_AFE2-1:1

490

Regions

IAR C/C++ Development Guide
Compiling and Linking for Arm

To create region expressions, three operators are available: union (|), intersection (&),
and difference (-). These operators work as in set theory. For example, if you have the
sets A and B, then the result of the operators would be:

● A | B: all elements in either set A or set B

● A & B: all elements in both set A and B

● A - B: all elements in set A but not in B.

Example /* Resulting in a range starting at 1000 and ending at 2FFF, in
 memory Mem */
Mem:[from 0x1000 to 0x1FFF] | Mem:[from 0x1500 to 0x2FFF]

/* Resulting in a range starting at 1500 and ending at 1FFF, in
 memory Mem */
Mem:[from 0x1000 to 0x1FFF] & Mem:[from 0x1500 to 0x2FFF]

/* Resulting in a range starting at 1000 and ending at 14FF, in
 memory Mem */
Mem:[from 0x1000 to 0x1FFF] - Mem:[from 0x1500 to 0x2FFF]

/* Resulting in two ranges. The first starting at 1000 and ending
 at 1FFF, the second starting at 2501 and ending at 2FFF.
 Both located in memory Mem */
Mem:[from 0x1000 to 0x2FFF] - Mem:[from 0x2000 to 0x24FF]

Empty region

Syntax []

Description The empty region does not contain any memory ranges. If the empty region is used in a
placement directive that actually is used for placing one or more sections, ILINK will
issue an error.

Example define region Code = Mem:[from 0 size 0x10000];
if (Banked) {
 define region Bank = Mem:[from 0x8000 size 0x1000];
} else {
 define region Bank = [];
}
define region NonBanked = Code - Bank;

/* Depending on the Banked symbol, the NonBanked region is either
 one range with 0x10000 bytes, or two ranges with 0x8000 and
 0x7000 bytes, respectively. */

AFE1_AFE2-1:1

The linker configuration file

491

See also Region expression, page 489.

Section handling
Section handling describes how ILINK should handle the sections of the execution
image, which means:

● Placing sections in regions

The place at and place in directives place sets of sections with similar attributes
into previously defined regions. See place at directive, page 502 and place in
directive, page 503.

● Making sets of sections with special requirements

The block directive makes it possible to create empty sections with specific or
expanding sizes, specific alignments, sequentially sorted sections of different types,
etc.

The overlay directive makes it possible to create an area of memory that can
contain several overlay images. See define block directive, page 492, and define
overlay directive, page 497.

● Initializing the application

The directives initialize and do not initialize control how the application
should be started. With these directives, the application can initialize global symbols
at startup, and copy pieces of code. The initializers can be stored in several ways, for
example, they can be compressed. See initialize directive, page 498 and do not
initialize directive, page 501.

● Keeping removed sections

The keep directive retains sections even though they are not referred to by the rest
of the application, which means it is equivalent to the root concept in the assembler
and compiler. See keep directive, page 501.

● Specifying the contents of linker-generated sections

The define section directive can be used for creating specific sections with
content and calculations that are only available at link time.

● Additional more specialized directives:

use init table directive

This section gives detailed information about each linker directive specific to section
handling.

AFE1_AFE2-1:1

492

Section handling

IAR C/C++ Development Guide
Compiling and Linking for Arm

define block directive

Syntax define [movable] block name
 [with param, param...]
{
 extended-selectors
}
[except
 {
 section-selectors
 }];

where param can be one of:

size = expr
minimum size = expr
maximum size = expr
expanding size
alignment = expr
fixed order
alphabetical order
static base [basename]

and where the rest of the directive selects sections to include in the block, see Section
selection, page 505.

Parameters
name The name of the block to be defined.

size Customizes the size of the block. By default, the size of a
block is the sum of its parts dependent of its contents.

minimum size Specifies a lower limit for the size of the block. The block is
at least this large, even if its contents would otherwise not
require it.

maximum size Specifies an upper limit for the size of the block. An error is
generated if the sections in the block do not fit.

expanding size The block will expand to use all available space in the
memory range where it is placed.

alignment Specifies a minimum alignment for the block. If any section
in the block has a higher alignment than the minimum
alignment, the block will have that alignment.

fixed order Places sections in the specified order. Each
extended-selector is added in a separate nested block,
and these blocks are kept in the specified order.

AFE1_AFE2-1:1

The linker configuration file

493

Description The block directive defines a contiguous area of memory that contains a possibly
empty set of sections or other blocks. Blocks with no content are useful for allocating
space for stacks or heaps. Blocks with content are usually used to group together
sections that must to be consecutive.

You can access the start, end, and size of a block from an application by using the
__section_begin, __section_end, or __section_size operators. If there is no
block with the specified name, but there are sections with that name, a block will be
created by the linker, containing all such sections.

movable blocks are for use with read-only and read-write position independence.
Making blocks movable enables the linker to validate the application’s use of addresses.
Movable blocks are located in exactly the same way as other blocks, but the linker will
check that the appropriate relocations are used when referring to symbols in movable
blocks.

Blocks with expanding size are most often used for heaps or stacks.

Note: You cannot place a block with expanding size inside another block with
expanding size, inside a block with a maximum size, or inside an overlay.

Example /* Create a block with a minimum size for the heap that will use
all remaining space in its memory range */
define block HEAP with minimum size = 4K, expanding size,
alignment = 8 { };

See also Interaction between the tools and your application, page 209. For an accessing example,
see define overlay directive, page 497.

alphabetical order Places sections in alphabetical order by section name.
Onlysection-selector patterns are allowed in
alphabetical order blocks, for example, no nested
blocks. All sections in a particular alphabetical order
block must use the same kind of initialization (read-only,
zero-init, copy-init, or no-init, and otherwise equivalent).
You cannot use __section_begin, etc on individual
sections contained in an alphabetical order block.

static base
[basename]

Specifies that the static base with the name basename will
be placed at the start of the block or in the middle of the
block, as appropriate for the particular static base. The
startup code must ensure that the register that holds the static
base is initialized to the correct value. If there is only one
static base, the name can be omitted.

AFE1_AFE2-1:1

494

Section handling

IAR C/C++ Development Guide
Compiling and Linking for Arm

define section directive

Syntax define [root] section name
 [with alignment = sec-align]
{
 section-content-item...
};

where each section-content-item can be one of:

udata8 { data | string };
sdata8 data [,data] ...;
udata16 data [,data] ...;
sdata16 data [,data] ...;
udata24 data [,data] ...;
sdata24 data [,data] ...;
udata32 data [,data] ...;
sdata32 data [,data] ...;
udata64 data [,data] ...;
sdata64 data [,data] ...;
pad_to data-align;
[public] label:
if-item;

where if-item is:

if (condition) {
 section-content-item...
[} else if (condition] {
 section-content-item...]...
[} else {
 section-content-item...]
}

Parameters
name The name of the section.

sec-align The alignment of the section, an expression.

root Optional. If root is specified, the section is always
included, even if it is not referenced.

AFE1_AFE2-1:1

The linker configuration file

495

udata8 {data|string}; If the parameter is an expression (data), it generates an
unsigned one-byte member in the section. The data
expression is only evaluated during relocation and only if
the value is needed. It causes a relocation error if the
value of data is too large to fit in a byte. The possible
range of values is 0 to 0xFF.

If the parameter is a quoted string, it generates one
one-byte member in the section for each character in the
string.

sdata8 data; As udata8 data, except that it generates a signed
one-byte member.

The possible range of values is –0x80 to 0x7F.

udata16 data; As sdata8, except that it generates an unsigned
two-byte member. The possible range of values is 0 to
0xFFFF.

sdata16 data; As sdata8, except that it generates a signed two-byte
member. The possible range of values is –0x8000 to
0x7FFF.

udata24 data; As sdata8, except that it generates an unsigned
three-byte member. The possible range of values is 0 to
0xFFFFFF.

sdata24 data; As sdata8, except that it generates a signed three-byte
member. The possible range of values is –0x800000 to
0x7FFFFF.

udata32 data; As sdata8, except that it generates an unsigned
four-byte member. The possible range of values is 0 to
0xFFFFFFFF.

sdata32 data; As sdata8, except that it generates a signed four-byte
member.

The possible range of values is –0x80000000 to
0x7FFFFFFF.

udata64 data; As sdata8, except that it generates an unsigned
eight-byte member. The possible range of values is 0 to
0xFFFFFFFFFFFFFFFF.

AFE1_AFE2-1:1

496

Section handling

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Use the define section directive to create sections with content that is not available
from assembler language or C/C++. Examples of this are the results of stack usage
analysis, the size of blocks, and arithmetic operations that do not exist as relocations.

Unknown identifiers in data expressions are assumed to be labels.

Note: Only data expressions can use labels, stack usage analysis results, etc. All the
other expressions are evaluated immediately when the configuration file is read.

Example define section data {
 /* The application entry in a 16-bit word, provided it is less
 than 256K and 4-byte aligned. */
 udata16 __iar_program_start >> 2;
 /* The maximum stack usage in the program entry category. */
 udata16 maxstack("Application entry");
 /* The size of the DATA block */
 udata32 size(block DATA);
};

sdata64 data; As sdata8, except that it generates a signed eight-byte
member. The possible range of values is
-0x8000000000000000 to 0x7FFFFFFFFFFFFFFF.

pad_to data_align; Generates pad bytes to make the current offset from the
start of the section to be aligned to the expression
data-align.

[public] label: Defines a label at the current offset from the start of the
section. If public is specified, the label is visible to
other program modules. If not, it is only visible to other
data expressions in the linker configuration file.

if-item Configuration-time selection of items.

condition An expression.

data An expression that is only evaluated during relocation
and only if the value is needed.

AFE1_AFE2-1:1

The linker configuration file

497

define overlay directive

Syntax define overlay name [with param, param...]
{
 extended-selectors;
}
[except
 {
 section-selectors
 }];

For information about extended selectors and except clauses, see Section selection, page
505.

Parameters

Description The overlay directive defines a named set of sections. In contrast to the block
directive, the overlay directive can define the same name several times. Each definition
will then be grouped in memory at the same place as all other definitions of the same
name. This creates an overlaid memory area, which can be useful for an application that
has several independent sub-applications.

Place each sub-application image in ROM and reserve a RAM overlay area that can hold
all sub-applications. To execute a sub-application, first copy it from ROM to the RAM
overlay.

Note: ILINK does not help you with managing interdependent overlay definitions, apart
from generating a diagnostic message for any reference from one overlay to another
overlay.

The size of an overlay will be the same size as the largest definition of that overlay name
and the alignment requirements will be the same as for the definition with the highest
alignment requirements.

name The name of the overlay.

size Customizes the size of the overlay. By default, the size of a
overlay is the sum of its parts dependent of its contents.

maximum size Specifies an upper limit for the size of the overlay. An error
is generated if the sections in the overlay do not fit.

alignment Specifies a minimum alignment for the overlay. If any
section in the overlay has a higher alignment than the
minimum alignment, the overlay will have that alignment.

fixed order Places sections in fixed order—if not specified, the order of
the sections will be arbitrary.

AFE1_AFE2-1:1

498

Section handling

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: Sections that were overlaid must be split into a RAM and a ROM part and you
must take care of all the copying needed.

Code in overlaid memory areas cannot be debugged; the C-SPY Debugger cannot
determine which code is currently loaded.

See also Manual initialization, page 113.

initialize directive

Syntax initialize { by copy | manually }
 [with param, param...]
{
 section-selectors
}
[except
 {
 section-selectors
 }];

where param can be one of:

packing = algorithm
simple ranges
complex ranges
no exclusions

For information about section selectors and except clauses, see Section selection, page
505.

Parameters
by copy Splits the section into sections for initializers and initialized

data, and handles the initialization at application startup
automatically.

manually Splits the section into sections for initializers and initialized
data. The initialization at application startup is not handled
automatically.

AFE1_AFE2-1:1

The linker configuration file

499

Description The initialize directive splits each selected section into one section that holds
initializer data and another section that holds the space for the initialized data. The
section that holds the space for the initialized data retains the original section name, and
the section that holds initializer data gets the name suffix _init. You can choose
whether the initialization at startup should be handled automatically (initialize by
copy) or whether you should handle it yourself (initialize manually).

When you use the packing method auto (default for initialize by copy), ILINK
will automatically choose an appropriate packing algorithm for the initializers. To
override this, specify a different packing method. The --log initialization
option shows how ILINK decided which packing algorithm to use.

When initializers are compressed, a decompressor is automatically added to the image.

Each decompressor has two variants: one that can only handle a single source and
destination range at a time, and one that can handle more complex cases. By default, the
linker chooses a decompressor variant based on whether the associated section
placement directives specify a single or multi-range memory region. In general, this is
the desired behavior, but you can use the with complex ranges or the with simple
ranges modifier on an initialize directive to specify which decompressor variant
to use. You can also use the command line option --default_to_complex_ranges
to make initialize directives by default use complex ranges. The simple ranges
decompressors are normally hundreds of bytes smaller than the complex ranges
variants.

algorithm Specifies how to handle the initializers. Choose between:

none - Disables compression of the selected section
contents. This is the default method for initialize manually.

zeros - Compresses consecutive bytes with the value zero.

packbits - Compresses with the PackBits algorithm. This
method generates good results for data with many identical
consecutive bytes.

lz77 - Compresses with the Lempel-Ziv-77 algorithm.
This method handles a larger variety of inputs well, but has
a slightly larger decompressor.

auto - ILINK estimates the resulting size using each
packing method (except for auto), and then chooses the
packing method that produces the smallest estimated size.
Note that the size of the decompressor is also included. This
is the default method for initialize by copy.

smallest - This is a synonym for auto.

AFE1_AFE2-1:1

500

Section handling

IAR C/C++ Development Guide
Compiling and Linking for Arm

When initializers are compressed, the exact size of the compressed initializers is
unknown until the exact content of the uncompressed data is known. If this data contains
other addresses, and some of these addresses are dependent on the size of the
compressed initializers, the linker fails with error Lp017. To avoid this, place
compressed initializers last, or in a memory region together with sections whose
addresses do not need to be known.

Due to an internal dependence, generation of compressed initializers can also fail (with
error LP021) if the address of the initialized area depends on the size of its initializers.
To avoid this, place the initializers and the initialized area in different parts of the
memory (for example, the initializers are placed in ROM and the initialized area in
RAM).

If you specify the parameter no exclusions, an error is emitted if any sections are
excluded (because they are needed for the initialization). no exclusions can only be
used with initialize by copy (automatic initialization), not with initialize
manually.

Unless initialize manually is used, ILINK will arrange for initialization to occur
during system startup by including an initialization table. Startup code calls an
initialization routine that reads this table and performs the necessary initializations.

Zero-initialized sections are not affected by the initialize directive.

The initialize directive is normally used for initialized variables, but can be used for
copying any sections, for example, copying executable code from slow ROM to fast
RAM, or for overlays. For another example, see define overlay directive, page 497.

Sections that are needed for initialization are not affected by the initialize by copy
directive. This includes the __low_level_init function and anything it references.

Anything reachable from the program entry label is considered needed for initialization
unless reached via a section fragment with a label starting with __iar_init$$done.
The --log sections option, in addition to logging the marking of section fragments
to be included in the application, also logs the process of determining which sections are
needed for initialization.

Example /* Copy all read-write sections automatically from ROM to RAM at
 program start */
initialize by copy { rw };
place in RAM { rw };
place in ROM { ro };

See also Initialization at system startup, page 96, and do not initialize directive, page 501.

AFE1_AFE2-1:1

The linker configuration file

501

do not initialize directive

Syntax do not initialize
{
 section-selectors
}
[except
 {
 section-selectors
 }];

For information about section selectors and except clauses, see Section selection, page
505.

Description Use the do not initialize directive to specify the sections that you do not want to be
automatically zero-initialized by the system startup code. The directive can only be used
on zeroinit sections.

Typically, this is useful if you want to handle zero-initialization in some other way for
all or some zeroinit sections.

This can also be useful if you want to suppress zero-initialization of variables entirely.
Normally, this is handled automatically for variables specified as __no_init in the
source, but if you link with object files produced by older tools from IAR Systems or
other tool vendors, you might need to suppress zero-initialization specifically for some
sections.

Example /* Do not initialize read-write sections whose name ends with
 _noinit at program start */
do not initialize { rw section .*_noinit };
place in RAM { rw section .*_noinit };

See also Initialization at system startup, page 96, and initialize directive, page 498.

keep directive

Syntax keep
{
 [{ section-selectors | block name }
 [, {section-selectors | block name }...]]
}
[except
 {
 section-selectors
 }];

AFE1_AFE2-1:1

502

Section handling

IAR C/C++ Development Guide
Compiling and Linking for Arm

For information about selectors and except clauses, see Section selection, page 505.

Description The keep directive can be used for including blocks, overlays, or sections in the
executable image that would otherwise be discarded because no references to them exist
in the included parts of the application. Note that only sections from included modules
are considered for inclusion.

The keep directive does not cause any additional modules to be included in the
application. To cause modules that define the specified symbols to be included, use the
Keep symbols linker option (or the --keep command line option).

Example keep { section .keep* } except {section .keep};

place at directive

Syntax ["name":]
place [noload] at { address [memory:] address |
 start of region_expr [with mirroring to mirror_address] |
 end of region_expr [with mirroring to mirror_address] }

{
 extended-selectors
}
[except
 {
 section-selectors
 }];

For information about extended selectors and except clauses, see Section selection, page
505.

Parameters
name Optional. If it is specified, it is used in the map file, in

some log messages, and is part of the name of any ELF
output sections resulting from the directive.

noload Optional. If it is specified, it prevents the sections in the
directive from being loaded to the target system. To use
the sections, you must put them into the target system in
some other way. noload can only be used when a name
is specified.

AFE1_AFE2-1:1

The linker configuration file

503

Description The place at directive places sections and blocks either at a specific address or, at the
beginning or the end of a region. The same address cannot be used for two different
place at directives. It is also not possible to use an empty region in a place at
directive. If placed in a region, the sections and blocks will be placed before any other
sections or blocks placed in the same region with a place in directive.

Note: with mirroring to can be used only together with start of and end of.

Example /* Place the RO section .startup at the start of code_region */
"START": place at start of ROM { readonly section .startup };

See also place in directive, page 503.

place in directive

Syntax ["name":]
place [noload] in region-expr
 [with mirroring to mirror_address]
{
 extended-selectors
}
 [except{
 section-selectors
 }];

memory: address A specific address in a specific memory. The address must
be available in the supplied memory defined by the
define memory directive. The memory specifier is
optional if there is only one memory.

start of region_expr A region expression that results in a single-internal
region. The start of the interval is used.

end of region_expr A region expression that results in a single-internal
region. The end of the interval is used.

mirror_address If with mirroring to is specified, the contents of any
sections are assumed to be mirrored to this address,
therefore debug information and symbols will appear in
the mirrored range, but the actual content bytes are placed
as if with mirroring to was not specified.

Note: This functionality is intended to support external
(target-specific) mirroring.

AFE1_AFE2-1:1

504

Section handling

IAR C/C++ Development Guide
Compiling and Linking for Arm

where region-expr is a region expression, see also Regions, page 487.

and where the rest of the directive selects sections to include in the block. See Section
selection, page 505.

Parameters

Description The place in directive places sections and blocks in a specific region. The sections and
blocks will be placed in the region in an arbitrary order.

To specify a specific order, use the block directive. The region can have several ranges.

Note: When with mirroring to is specified, the region-expr must result in a
single range.

Example /* Place the read-only sections in the code_region */
"ROM": place in ROM { readonly };

See also place at directive, page 502.

name Optional. If it is specified, it is used in the map file, in
some log messages, and is part of the name of any ELF
output sections resulting from the directive.

noload Optional. If it is specified, it prevents the sections in the
directive from being loaded to the target system. To use
the sections, you must put them into the target system in
some other way. noload can only be used when a name
is specified.

mirror_address If with mirroring to is specified, the contents of any
sections are assumed to be mirrored to this address,
therefore debug information and symbols will appear in
the mirrored range, but the actual content bytes are placed
as if with mirroring to was not specified.

Note: This functionality is intended to support external
(target-specific) mirroring.

AFE1_AFE2-1:1

The linker configuration file

505

use init table directive

Syntax use init table name for
{
 section-selectors
}
[except
 {
 section-selectors
 }];

For information about section selectors and except clauses, see Section selection, page
505.

Parameters

Description Normally, all initialization entries are generated into a single initialization table (called
Table). Use this directive to cause some of the entries to be put into a separate table.
You can then use this initialization table at another time, or under different
circumstances, than the normal initialization table.

Initialization entries for all variables not mentioned in a use init table directive are
put into the normal initialization table. By having multiple use init table directives
you can have multiple initialization tables.

The start, end, and size of the init table can be accessed in the application program by
using __section_begin, __section_end, or __section_size of
"Region$$name", respectively, or via the symbols Region$$name$$Base,
Region$$name$$Limit, and Region$$name$$Length.

Example use init table Core2 for { section *.core2};

/* __section_begin("Region$$Core2") can be used to get the start
 of the Core2 init table. */

Section selection
The purpose of section selection is to specify—by means of section selectors and except
clauses—the sections that an ILINK directive should be applied to. All sections that
match one or more of the section selectors will be selected, and none of the sections
selectors in the except clause, if any. Each section selector can match sections on section
attributes, section name, and object or library name.

name The name of the init table.

AFE1_AFE2-1:1

506

Section selection

IAR C/C++ Development Guide
Compiling and Linking for Arm

Some directives provide functionality that requires more detailed selection capabilities,
for example, directives that can be applied on both sections and blocks. In this case, the
extended-selectors are used.

This section gives detailed information about each linker directive specific to section
selection.

section-selectors

Syntax [section-selector [, section-selector...]]

section-selector is:

 [section-attribute][section-type]
 [symbol symbol-name][section section-name]
 [object module-spec]

section-attribute is:

 ro [code | data] | rw [code | data] | zi

section-type is:

 [preinit_array | init_array]

Parameters
section-attribute Only sections with the specified attribute will be selected.

section-attribute can consist of:

ro|readonly, for ROM sections.
rw|readwrite, for RAM sections.

In each category, sections can be further divided into those
that contain code and those that contain data, resulting in
four main categories:

ro code, for normal code
ro data, for constants
rw code, for code copied to RAM
rw data, for variables

readwrite data also has a subcategory—
zi|zeroinit—for sections that are zero-initialized at
application startup.

AFE1_AFE2-1:1

The linker configuration file

507

Description A section selector selects all sections that match the section attribute, section type,
symbol name, section name, and the name of the module. Up to four of the five
conditions can be omitted.

section-type Only sections with that ELF section type will be selected.
section-type can be:

preinit_array, sections of the ELF section type
SHT_PREINIT_ARRAY.

init_array, sections of the ELF section type
SHT_INIT_ARRAY.

symbol symbol-name Only sections that define at least one public symbol that
matches the symbol name pattern will be selected.
symbol-name is the symbol name pattern. Two wildcards
are allowed:

? matches any single character.
* matches zero or more characters.

section section-name Only sections whose names match the section-name
will be selected. Two wildcards are allowed:

? matches any single character

* matches zero or more characters.

object module-spec Only sections that originate from library modules or object
files that matches module-spec will be selected.
module-spec can be in one of two forms:

module, a name in the form
objectname(libraryname). Sections from object
modules where both the object name and the library
name match their respective patterns are selected. An
empty library name pattern selects only sections from
object files. If libraryname is :sys, the pattern will
match only sections from the system library.

filename, the name of an object file, or an object in a
library.

Two wildcards are allowed:

? matches any single character

* matches zero or more characters.

AFE1_AFE2-1:1

508

Section selection

IAR C/C++ Development Guide
Compiling and Linking for Arm

It is also possible to use only { } without any section selectors, which can be useful
when defining blocks.

Note: A section selector with narrower scope has higher priority than a more generic
section selector. If more than one section selector matches for the same purpose, one of
them must be more specific. A section selector is more specific than another one if in
priority order:

● It specifies a symbol name with no wildcards and the other one does not.

● It specifies a section name or object name with no wildcards and the other one does
not

● It specifies a section type and the other one does not

● There could be sections that match the other selector that also match this one,
however, the reverse is not true.

Example { rw } /* Selects all read-write sections */

{ section .mydata* } /* Selects only .mydata* sections */
/* Selects .mydata* sections available in the object special.o */
{ section .mydata* object special.o }

Assuming a section in an object named foo.o in a library named lib.a, any of these
selectors will select that section:

object foo.o(lib.a)
object f*(lib*)
object foo.o
object lib.a

See also initialize directive, page 498, do not initialize directive, page 501, and keep directive,
page 501.

Selector 1 Selector 2 More specific

ro ro code Selector 2

symbol mysym section foo Selector 1

ro code section f* ro section f* Selector 1

section foo* section f* Selector 1

section *x section f* Neither

init_array section f* Selector 1

section .intvec ro section .int* Selector 1

section .intvec object foo.o Neither

Table 34: Examples of section selector specifications

AFE1_AFE2-1:1

The linker configuration file

509

extended-selectors

Syntax [extended-selector [, extended-selector...]]

where extended-selector is:

 [first | last | midway]
 { section-selector |
 block name [inline-block-def] |
 overlay name }

where inline-block-def is:

 [block-params] extended-selectors

Parameters

Description Use extended-selectors to select content for inclusion in a placement directive,
block, or overlay. In addition to using section selection patterns, you can also explicitly
specify blocks or overlays for inclusion.

Using the first or last keyword, you can specify one pattern, block, or overlay that
is to be placed first or last in the containing placement directive, block, or overlay. If you
need more precise control of the placement order you can instead use a block with fixed
order.

Blocks can be defined separately, using the define block directive, or inline, as part
of an extended-selector.

The midway parameter is primarily useful together with a static base that can have both
negative and positive offsets.

first Places the selected sections, block, or overlay first in the
containing placement directive, block, or overlay.

last Places the selected sections, block or overlay last in the
containing placement directive, block, or overlay.

midway Places the selected sections, block, or overlay so that they are
no further than half the maximum size of the containing
block away from either edge of the block. Note that this
parameter can only be used inside a block that has a
maximum size.

name The name of the block or overlay.

AFE1_AFE2-1:1

510

Using symbols, expressions, and numbers

IAR C/C++ Development Guide
Compiling and Linking for Arm

Example define block First { ro section .f* }; /* Define a block holding
 any read-only section*/
 matching ".f*" */
define block Table { first block First, ro section .b };
 /* Define a block where
 the block First comes
 before the sections
 matching ".b*". */

You can also define the block First inline, instead of in a separate define block
directive:

define block Table { first block First { ro section .f* },
 ro section .b* };

See also define block directive, page 492, define overlay directive, page 497, and place at
directive, page 502.

Using symbols, expressions, and numbers
In the linker configuration file, you can also:

● Define and export symbols

The define symbol directive defines a symbol with a specified value that can be
used in expressions in the configuration file. The symbol can also be exported to be
used by the application or the debugger. See define symbol directive, page 511, and
export directive, page 512.

● Use expressions and numbers

In the linker configuration file, expressions and numbers are used for specifying
addresses, sizes, etc. See expressions, page 512.

This section gives detailed information about each linker directive specific to defining
symbols, expressions and numbers.

check that directive

Syntax check that expression;

Parameters
expression A boolean expression.

AFE1_AFE2-1:1

The linker configuration file

511

Description You can use the check that directive to compare the results of stack usage analysis
against the sizes of blocks and regions. If the expression evaluates to zero, an error is
emitted.

Three extra operators are available for use only in check that expressions:

Example check that maxstack("Program entry")
 + totalstack("interrupt")
 + 1K
 <= size(block CSTACK);

See also Stack usage analysis, page 98.

define symbol directive

Syntax define [exported] symbol name = expr;

Parameters

Description The define symbol directive defines a symbol with a specified value. The symbol can
then be used in expressions in the configuration file. The symbols defined in this way
work exactly like the symbols defined with the option --config_def outside of the
configuration file.

The define exported symbol variant of this directive is a shortcut for using the
directive define symbol in combination with the export symbol directive. On the
command line this would require both a --config_def option and a
--define_symbol option to achieve the same effect.

Note:

● A symbol cannot be redefined

maxstack(category) The stack depth of the deepest call chain for any call
graph root function in the category.

totalstack(category) The sum of the stack depths of the deepest call chains
for each call graph root function in the category.

size(block) The size of the block.

exported Exports the symbol to be usable by the executable
image.

name The name of the symbol.

expr The symbol value.

AFE1_AFE2-1:1

512

Using symbols, expressions, and numbers

IAR C/C++ Development Guide
Compiling and Linking for Arm

● Symbols that are either prefixed by _X, where X is a capital letter, or that contain __
(double underscore) are reserved for toolset vendors.

Example /* Define the symbol my_symbol with the value 4 */
define symbol my_symbol = 4;

See also export directive, page 512 and Interaction between ILINK and the application, page
116.

export directive

Syntax export symbol name;

Parameters

Description The export directive defines a symbol to be exported, so that it can be used both from
the executable image and from a global label. The application, or the debugger, can then
refer to it for setup purposes etc.

Example /* Define the symbol my_symbol to be exported */
export symbol my_symbol;

expressions

Syntax An expression is built up of the following constituents:

expression binop expression
unop expression
expression ? expression : expression
(expression)
number
symbol
func-operator

where binop is one of these binary operators:

+, -, *, /, %, <<, >>, <, >, ==, !=, &, ^, |, &&, ||

where unop is one of this unary operators:

+, -, !, ~

where number is a number, see numbers, page 513

name The name of the symbol.

AFE1_AFE2-1:1

The linker configuration file

513

where symbol is a defined symbol, see define symbol directive, page 511 and
--config_def, page 317

and where func-operator is one of these function-like operators:

where expr is an expression, and r is a region expression, see Region expression, page
489.

Description In the linker configuration file, an expression is a 65-bit value with the range -2^64 to
2^64. The expression syntax closely follows C syntax with some minor exceptions.
There are no assignments, casts, pre or post-operations, and no address operations (*, &,
[], ->, and .). Some operations that extract a value from a region expression, etc, use a
syntax resembling that of a function call. A boolean expression returns 0 (False) or 1
(True).

numbers

Syntax nr [nr-suffix]

where nr is either a decimal number or a hexadecimal number (0x... or 0X...).

and where nr-suffix is one of:

K /* Kilo = (1 << 10) 1024 */
M /* Mega = (1 << 20) 1048576 */
G /* Giga = (1 << 30) 1073741824 */
T /* Tera = (1 << 40) 1099511627776 */
P /* Peta = (1 << 50) 1125899906842624 */

Description A number can be expressed either by normal C means or by suffixing it with a set of
useful suffixes, which provides a compact way of specifying numbers.

minimum(expr,expr) Returns the smallest of the two parameters.

maximum(expr,expr) Returns the largest of the two parameters.

isempty(r) Returns True if the region is empty, otherwise
False.

isdefinedsymbol(expr-symbol

)

Returns True if the expression symbol is defined,
otherwise False.

start(r) Returns the lowest address in the region.

end(r) Returns the highest address in the region.

size(r) Returns the size of the complete region.

AFE1_AFE2-1:1

514

Structural configuration

IAR C/C++ Development Guide
Compiling and Linking for Arm

Example 1024 is the same as 0x400, which is the same as 1K.

Structural configuration
The structural directives provide means for creating structure within the configuration,
such as:

● Conditional inclusion

An if directive includes or excludes other directives depending on a condition,
which makes it possible to have directives for several different memory
configurations in the same file. See if directive, page 514.

● Dividing the linker configuration file into several different files

The include directive makes it possible to divide the configuration file into several
logically distinct files. See include directive, page 515.

● Signaling an error for unsupported cases

This section gives detailed information about each linker directive specific to structural
configuration.

error directive

Syntax error string

Parameters

Description An error directive can be used for signaling an error if the directive occurs in the active
part of a conditional directive.

Example error "Unsupported configuration"

if directive

Syntax if (expr) {
 directives
[} else if (expr) {
 directives]
[} else {
 directives]
}

string The error message.

AFE1_AFE2-1:1

The linker configuration file

515

where expr is an expression, see expressions, page 512.

Parameters

Description An if directive includes or excludes other directives depending on a condition, which
makes it possible to have directives for several different memory configurations, for
example, both a banked and non-banked memory configuration, in the same file.

The directives inside an if part, else if part, or an else part are syntax checked and
processed regardless of whether the conditional expression was true or false, but only
the directives in the part where the conditional expression was true, or the else part if
none of the conditions were true, will have any effect outside the if directive. The if
directives can be nested.

Example See Empty region, page 490.

include directive

Syntax include "filename";

Parameters

Description The include directive makes it possible to divide the configuration file into several
logically distinct parts, each in a separate file. For instance, there might be parts that you
need to change often and parts that you seldom edit.

Normally, the linker searches for configuration include files in the system configuration
directory. You can use the --config_search linker option to add more directories to
search.

See also --config_search, page 318

directives Any ILINK directive.

filename A path where both / and \ can be used as the directory
delimiter.

AFE1_AFE2-1:1

516

Structural configuration

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

517

Section reference
● Summary of sections and blocks

● Descriptions of sections and blocks

For more information, see the chapter Modules and sections, page 90.

Summary of sections and blocks
This table lists the ELF sections and blocks that are used by the IAR build tools:

Section Description

.bss Holds zero-initialized static and global variables.

CSTACK Holds the stack used by C or C++ programs.

.data Holds static and global initialized variables.

.data_init Holds initial values for .data sections when the linker directive
initialize is used.

.exc.text Holds exception-related code.

HEAP Holds the heap used for dynamically allocated data.

__iar_tls.$$DATA Holds initial values for TLS variables.

.iar.dynexit Holds the atexit table.

.init_array Holds a table of dynamic initialization functions.

.intvec Holds the reset vector table

IRQ_STACK Holds the stack for interrupt requests, IRQ, and exceptions.

.noinit Holds __no_init static and global variables.

.preinit_array Holds a table of dynamic initialization functions.

.prepreinit_array Holds a table of dynamic initialization functions.

.rodata Holds constant data.

.text Holds the program code.

.textrw Holds __ramfunc declared program code.

.textrw_init Holds initializers for the .textrw declared section.

Veneer$$CMSE Holds secure gateway veneers.

Table 35: Section summary

AFE1_AFE2-1:1

518

Descriptions of sections and blocks

IAR C/C++ Development Guide
Compiling and Linking for Arm

In addition to the ELF sections used for your application, the tools use a number of other
ELF sections for a variety of purposes:

● Sections starting with .debug generally contain debug information in the DWARF
format

● Sections starting with .iar.debug contain supplemental debug information in an
IAR format

● The section .comment contains the tools and command lines used for building the
file

● Sections starting with .rel or .rela contain ELF relocation information

● The section .symtab contains the symbol table for a file

● The section .strtab contains the names of the symbol in the symbol table

● The section .shstrtab contains the names of the sections.

Descriptions of sections and blocks
This section gives reference information about each section, where the:

● Description describes what type of content the section is holding and, where
required, how the section is treated by the linker

● Memory placement describes memory placement restrictions.

For information about how to allocate sections in memory by modifying the linker
configuration file, see Placing code and data—the linker configuration file, page 93.

.bss

Description Holds zero-initialized static and global variables.

Memory placement This section can be placed anywhere in memory.

CSTACK

Description Block that holds the internal data stack.

Memory placement This block can be placed anywhere in memory.

See also Setting up stack memory, page 111.

AFE1_AFE2-1:1

Section reference

519

.data

Description Holds static and global initialized variables. In object files, this includes the initial
values. When the linker directive initialize is used, a corresponding .data_init
section is created for each .data section, holding the possibly compressed initial
values.

Memory placement This section can be placed anywhere in memory.

.data_init

Description Holds the possibly compressed initial values for .data sections. This section is created
by the linker if the initialize linker directive is used.

Memory placement This section can be placed anywhere in memory.

.exc.text

Description Holds code that is only executed when your application handles an exception.

Memory placement In the same memory as .text.

See also Exception handling, page 196.

HEAP

Description Holds the heap used for dynamically allocated data in memory, in other words data
allocated by malloc and free, and in C++, new and delete.

Memory placement This section can be placed anywhere in memory.

See also Setting up heap memory, page 112.

__iar_tls.$$DATA

Description Holds initial values for TLS variables. This section is created by the linker if the linker
option --threaded_lib is used.

Memory placement This section can be placed anywhere in memory.

AFE1_AFE2-1:1

520

Descriptions of sections and blocks

IAR C/C++ Development Guide
Compiling and Linking for Arm

See also Managing a multithreaded environment, page 160

.iar.dynexit

Description Holds the table of calls to be made at exit.

Memory placement This section can be placed anywhere in memory.

See also Setting up the atexit limit, page 112.

.init_array

Description Holds pointers to routines to call for initializing one or more C++ objects with static
storage duration.

Memory placement This section can be placed anywhere in memory.

.intvec

Description Holds the reset vector table and exception vectors which contain branch instructions to
cstartup, interrupt service routines etc.

Memory placement The placement of this section is device-dependent. See the manufacturer’s hardware
manual.

IRQ_STACK

Description Holds the stack which is used when servicing IRQ exceptions. Other stacks may be
added as needed for servicing other exception types: FIQ, SVC, ABT, and UND. The
cstartup.s file must be modified to initialize the exception stack pointers used.

Note: This section is not used when compiling for Cortex-M.

Memory placement This section can be placed anywhere in memory.

See also Exception stack, page 206.

.noinit

Description Holds static and global __no_init variables.

AFE1_AFE2-1:1

Section reference

521

Memory placement This section can be placed anywhere in memory.

.preinit_array

Description Like .init_array, but is used by the library to make some C++ initializations happen
before the others.

Memory placement This section can be placed anywhere in memory.

See also .init_array, page 520.

.prepreinit_array

Description Like .init_array, but is used when C static initialization is rewritten as dynamic
initialization. Performed before all C++ dynamic initialization.

Memory placement This section can be placed anywhere in memory.

See also .init_array, page 520.

.rodata

Description Holds constant data. This can include constant variables, string and aggregate literals,
etc.

Memory placement This section can be placed anywhere in memory.

.text

Description Holds program code, including the code for system initialization.

Memory placement This section can be placed anywhere in memory.

.textrw

Description Holds __ramfunc declared program code.

Memory placement This section can be placed anywhere in memory.

AFE1_AFE2-1:1

522

Descriptions of sections and blocks

IAR C/C++ Development Guide
Compiling and Linking for Arm

See also __ramfunc, page 376.

.textrw_init

Description Holds initializers for the .textrw declared sections.

Memory placement This section can be placed anywhere in memory.

See also __ramfunc, page 376.

Veneer$$CMSE

Description This section contains secure gateway veneers created automatically by the linker for
each entry function, as determined by the extended keyword
__cmse_nonsecure_entry.

Memory placement This section should be placed in an NSC (non-secure callable) memory region. NSC
regions can be programmed using an SAU (security attribution unit) or an IDAU
(implementation-defined attribute unit). For information about how to program the SAU
or IDAU, see the documentation for your Armv8-M core.

See also Arm TrustZone®, page 222, --cmse, page 269, __cmse_nonsecure_entry, page 371, and
--import_cmse_lib_out, page 329

AFE1_AFE2-1:1

523

The stack usage control file
● Overview

● Stack usage control directives

● Syntactic components

Before you read this chapter, see Stack usage analysis, page 98.

Overview
A stack usage control file consists of a sequence of directives that control stack usage
analysis. You can use C ("/*...*/") and C++ ("//...") comments in these files.

The default filename extension for stack usage control files is suc.

C++ NAMES

When you specify the name of a C++ function in a stack usage control file, you must
use the name exactly as used by the linker. Both the number and names of parameters,
as well as the names of types must match. However, most non-significant white-space
differences are accepted. In particular, you must enclose the name in quote marks
because all C++ function names include non-identifier characters.

You can also use wildcards in function names. "#*" matches any sequence of characters,
and "#?" matches a single character. This makes it possible to write function names that
will match any instantiation of a template function.

Examples:

"operator new(unsigned int)"
"std::ostream::flush()"
"operator <<(std::ostream &, char const *)"
"void _Sort<#*>(#*, #*, #*)"

Stack usage control directives
This section gives detailed reference information about each stack usage control
directive.

AFE1_AFE2-1:1

524

Stack usage control directives

IAR C/C++ Development Guide
Compiling and Linking for Arm

call graph root directive

Syntax call graph root [category] : func-spec [, func-spec...];

Parameters

Description Specifies that the listed functions are call graph roots. You can optionally specify a call
graph root category. Call graph roots are listed under their category in the Stack Usage
chapter in the linker map file.

The linker will normally issue a warning for functions needed in the application that are
not call graph roots and which do not appear to be called.

Example call graph root [task]: MyFunc10, MyFunc11;

See also call_graph_root, page 388.

exclude directive

Syntax exclude func-spec [, func-spec...];

Parameters

Description Excludes the specified functions, and call trees originating with them, from stack usage
calculations.

Example exclude MyFunc5, MyFunc6;

function directive

Syntax [override] function [category] func-spec : stack-size
[, call-info...];

Parameters

category See category, page 527

func-spec See func-spec, page 527

func-spec See func-spec, page 527

category See category, page 527

func-spec See func-spec, page 527

call-info See call-info, page 528

AFE1_AFE2-1:1

The stack usage control file

525

Description Specifies what the maximum stack usage is in a function and which other functions that
are called from that function.

Normally, an error is issued if there already is stack usage information for the function,
but if you start with override, the error will be suppressed and the information
supplied in the directive will be used instead of the previous information.

Example function MyFunc1: 32,
 calls MyFunc2,
 calls MyFunc3, MyFunc4: 16;

function [interrupt] MyInterruptHandler: 44;

max recursion depth directive

Syntax max recursion depth func-spec : size;

Parameters

Description Specifies the maximum number of iterations through any of the cycles in the recursion
nest of which the function is a member.

A recursion nest is a set of cycles in the call graph where each cycle shares at least one
node with another cycle in the nest.

Stack usage analysis will base its result on the max recursion depth multiplied by the
stack usage of the deepest cycle in the nest. If the nest is not entered on a point along
one of the deepest cycles, no stack usage result will be calculated for such calls.

Example max recursion depth MyFunc12: 10;

no calls from directive

Syntax no calls from module-spec to func-spec [, func-spec...];

Parameters

stack-size See stack-size, page 528

func-spec See func-spec, page 527

size See size, page 529

func-spec See func-spec, page 527

AFE1_AFE2-1:1

526

Syntactic components

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description When you provide stack usage information for some functions in a module without
stack usage information, the linker warns about functions that are referenced from the
module but not listed as called. This is primarily to help avoid problems with C runtime
routines, calls to which are generated by the compiler, beyond user control.

If there actually is no call to some of these functions, use the no calls from directive
to selectively suppress the warning for the specified functions. You can also disable the
warning entirely (--diag_suppress or
Project>Options>Linker>Diagnostics>Suppress these diagnostics).

Example no calls from [file.o] to MyFunc13, MyFun14;

possible calls directive

Syntax possible calls calling-func : called-func [, called-func...];

Parameters

Description Specifies an exhaustive list of possible destinations for all indirect calls in one function.
Use this for functions which are known to perform indirect calls and where you know
exactly which functions that might be called in this particular application. Consider
using the #pragma calls directive if the information about which functions that might
be called is available when compiling.

Example possible calls MyFunc7: MyFunc8, MyFunc9;

When the function does not perform any calls, the list is empty:

possible calls MyFunc8: ;

See also calls, page 387.

Syntactic components
This section describes the syntactical components that can be used by the stack usage
control directives.

module-spec See module-spec, page 527

calling-func See func-spec, page 527

called-func See func-spec, page 527

AFE1_AFE2-1:1

The stack usage control file

527

category

Syntax [name]

Description A call graph root category. You can use any name you like. Categories are not
case-sensitive.

Example category examples:

[interrupt]
[task]

func-spec

Syntax [?] name [module-spec]

Description Specifies the name of a symbol, and for module-local symbols, the name of the module
it is defined in. Normally, if func-spec does not match a symbol in the program, a
warning is emitted. Prefixing with ? suppresses this warning.

Example func-spec examples:

xFun
MyFun [file.o]
?"fun1(int)"

module-spec

Syntax [name [(name)]]

Description Specifies the name of a module, and optionally, in parentheses, the name of the library
it belongs to. To distinguish between modules with the same name, you can specify:

● The complete path of the file ("D:\C1\test\file.o")

● As many path elements as are needed at the end of the path ("test\file.o")

● Some path elements at the start of the path, followed by "...", followed by some
path elements at the end ("D:\...\file.o").

Note: When using multi-file compilation (--mfc), multiple files are compiled into a
single module, named after the first file.

AFE1_AFE2-1:1

528

Syntactic components

IAR C/C++ Development Guide
Compiling and Linking for Arm

Example module-spec examples:

[file.o]
[file.o(lib.a)]
["D:\C1\test\file.o"]

name

Description A name can be either an identifier or a quoted string.

The first character of an identifier must be either a letter or one of the characters "_",
"$", or ".". The rest of the characters can also be digits.

A quoted string starts and ends with " and can contain any character. Two consecutive
" characters can be used inside a quoted string to represent a single ".

Example name examples:

MyFun
file.o
"file-1.o"

call-info

Syntax calls func-spec [, func-spec...][: stack-size]

Description Specifies one or more called functions, and optionally, the stack size at the calls.

Example call-info examples:

calls MyFunc1 : stack 16
calls MyFunc2, MyFunc3, MyFunc4

stack-size

Syntax [stack] size
([stack] size)

Description Specifies the size of a stack frame. A stack may not be specified more than once.

Example stack-size examples:

24
stack 28

AFE1_AFE2-1:1

The stack usage control file

529

size

Description A decimal integer, or 0x followed by a hexadecimal integer. Either alternative can
optionally be followed by a suffix indicating a power of two (K=210, M=220, G=230,
T=240, P=250).

Example size examples:

24
0x18
2048
2K

AFE1_AFE2-1:1

530

Syntactic components

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

531

IAR utilities
● The IAR Archive Tool—iarchive—creates and manipulates a library (an

archive) of several ELF object files

● The IAR ELF Tool—ielftool—performs various transformations on an ELF
executable image (such as fill, checksum, format conversions, etc)

● The IAR ELF Dumper—ielfdump—creates a text representation of the
contents of an ELF relocatable or executable image

● The IAR ELF Object Tool—iobjmanip—is used for performing low-level
manipulation of ELF object files

● The IAR Absolute Symbol Exporter—isymexport—exports absolute
symbols from a ROM image file, so that they can be used when you link an
add-on application.

● The IAR ELF Relocatable Object Creator—iexe2obj—creates a
relocatable ELF object file from an executable ELF object file.

● Descriptions of options—detailed reference information about each
command line option available for the different utilities.

The IAR Archive Tool—iarchive
The IAR Archive Tool, iarchive, can create a library (an archive) file from several
ELF object files. You can also use iarchive to manipulate ELF libraries.

A library file contains several relocatable ELF object modules, each of which can be
independently used by a linker. In contrast with object modules specified directly to the
linker, each module in a library is only included if it is needed.

For information about how to build a library in the IDE, see the IDE Project
Management and Building Guide for Arm.

AFE1_AFE2-1:1

532

The IAR Archive Tool—iarchive

IAR C/C++ Development Guide
Compiling and Linking for Arm

INVOCATION SYNTAX

The invocation syntax for the archive builder is:

iarchive parameters

Parameters

The parameters are:

Examples

This example creates a library file called mylibrary.a from the source object files
module1.o, module.2.o, and module3.o:

iarchive mylibrary.a module1.o module2.o module3.o.

This example lists the contents of mylibrary.a:

iarchive --toc mylibrary.a

This example replaces module3.o in the library with the content in the module3.o file
and appends module4.o to mylibrary.a:

iarchive --replace mylibrary.a module3.o module4.o

SUMMARY OF IARCHIVE COMMANDS

This table summarizes the iarchive commands:

Parameter Description

command Command line options that define an operation to be performed.
Such an option must be specified before the name of the library file.

libraryfile The library file to be operated on.

objectfile1 ...

objectfileN

The object file(s) that the specified command operates on.

options Command line options that define actions to be performed. These
options can be placed anywhere on the command line.

Table 36: iarchive parameters

Command line option Description

--create Creates a library that contains the listed object files.

--delete, -d Deletes the listed object files from the library.

--extract, -x Extracts the listed object files from the library.

--replace, -r Replaces or appends the listed object files to the library.

Table 37: iarchive commands summary

AFE1_AFE2-1:1

IAR utilities

533

For more information, see Descriptions of options, page 549.

SUMMARY OF IARCHIVE OPTIONS

This table summarizes the iarchive command line options:

For more information, see Descriptions of options, page 549.

DIAGNOSTIC MESSAGES

This section lists the messages produced by iarchive:

La001: could not open file filename

iarchive failed to open an object file.

La002: illegal path pathname

The path pathname is not a valid path.

La006: too many parameters to cmd command

A list of object modules was specified as parameters to a command that only accepts a
single library file.

La007: too few parameters to cmd command

A command that takes a list of object modules was issued without the expected modules.

--symbols Lists all symbols defined by files in the library.

--toc, -t Lists all files in the library.

Command line option Description

-f Extends the command line.

--no_bom Omits the byte order mark from UTF-8 output files.

--output, -o Specifies the library file.

--text_out Specifies the encoding for text output files.

--utf8_text_in Uses the UTF-8 encoding for text input files.

--verbose, -V Reports all performed operations.

--version Sends tool output to the console and then exits.

--vtoc Produces a verbose list of files in the library.

Table 38: iarchive options summary

Command line option Description

Table 37: iarchive commands summary (Continued)

AFE1_AFE2-1:1

534

The IAR Archive Tool—iarchive

IAR C/C++ Development Guide
Compiling and Linking for Arm

La008: lib is not a library file

The library file did not pass a basic syntax check. Most likely the file is not the intended
library file.

La009: lib has no symbol table

The library file does not contain the expected symbol information. The reason might be
that the file is not the intended library file, or that it does not contain any ELF object
modules.

La010: no library parameter given

The tool could not identify which library file to operate on. The reason might be that a
library file has not been specified.

La011: file file already exists

The file could not be created because a file with the same name already exists.

La013: file confusions, lib given as both library and object

The library file was also mentioned in the list of object modules.

La014: module module not present in archive lib

The specified object module could not be found in the archive.

La015: internal error

The invocation triggered an unexpected error in iarchive.

Ms003: could not open file filename for writing

iarchive failed to open the archive file for writing. Make sure that it is not write
protected.

Ms004: problem writing to file filename

An error occurred while writing to file filename. A possible reason for this is that the
volume is full.

Ms005: problem closing file filename

An error occurred while closing the file filename.

AFE1_AFE2-1:1

IAR utilities

535

The IAR ELF Tool—ielftool
The IAR ELF Tool, ielftool, can generate a checksum on specific ranges of
memories. This checksum can be compared with a checksum calculated on your
application.

The source code for ielftool and a Microsoft VisualStudio template project are
available in the arm\src\elfutils directory. If you have specific requirements for
how the checksum should be generated or requirements for format conversion, you can
modify the source code accordingly.

INVOCATION SYNTAX

The invocation syntax for the IAR ELF Tool is:

ielftool [options] inputfile outputfile [options]

The ielftool tool will first process all the fill options, then it will process all the
checksum options (from left to right).

Parameters

The parameters are:

See also Rules for specifying a filename or directory as parameters, page 260.

Example

This example fills a memory range with 0xFF and then calculates a checksum on the
same range:

ielftool my_input.out my_output.out --fill 0xFF;0–0xFF
 --checksum __checksum:4,crc32;0–0xFF

Parameter Description

inputfile An absolute ELF executable image produced by the ILINK linker.

options Any of the available command line options, see Summary of ielftool
options, page 536.

outputfile An absolute ELF executable image, or if one of the relevant command
line options is specified, an image file in another format.

Table 39: ielftool parameters

AFE1_AFE2-1:1

536

The IAR ELF Dumper—ielfdump

IAR C/C++ Development Guide
Compiling and Linking for Arm

SUMMARY OF IELFTOOL OPTIONS

This table summarizes the ielftool command line options:

For more information, see Descriptions of options, page 549.

The IAR ELF Dumper—ielfdump
The IAR ELF Dumper for Arm, ielfdumparm, can be used for creating a text
representation of the contents of a relocatable or absolute ELF file.

ielfdumparm can be used in one of three ways:

● To produce a listing of the general properties of the input file and the ELF segments
and ELF sections it contains. This is the default behavior when no command line
options are used.

Command line option Description

--bin Sets the format of the output file to raw binary.

--bin-multi Produces output to multiple raw binary files.

--checksum Generates a checksum.

--fill Specifies fill requirements.

--front_headers Outputs headers in the beginning of the file.

--ihex Sets the format of the output file to 32-bit linear Intel Extended hex.

--offset Adds (or subtracts) an offset to all addresses in the generated output
file.

--parity Generates parity bits.

--self_reloc Not for general use.

--silent Sets silent operation.

--simple Sets the format of the output file to Simple-code.

--simple-ne As --simple, but without an entry record.

--srec Sets the format of the output file to Motorola S-records.

--srec-len Restricts the number of data bytes in each S-record.

--srec-s3only Restricts the S-record output to contain only a subset of records.

--strip Removes debug information.

--titxt Sets the format of the output file to Texas Instruments TI-TXT.

--verbose, -V Prints all performed operations.

--version Sends tool output to the console and then exits.

Table 40: ielftool options summary

AFE1_AFE2-1:1

IAR utilities

537

● To also include a textual representation of the contents of each ELF section in the
input file. To specify this behavior, use the command line option --all.

● To produce a textual representation of selected ELF sections from the input file. To
specify this behavior, use the command line option --section.

INVOCATION SYNTAX

The invocation syntax for ielfdumparm is:

ielfdumparm input_file [output_file]

Note: ielfdumparm is a command line tool which is not primarily intended to be used
in the IDE.

Parameters

The parameters are:

See also Rules for specifying a filename or directory as parameters, page 260.

SUMMARY OF IELFDUMP OPTIONS

This table summarizes the ielfdumparm command line options:

Parameter Description

input_file An ELF relocatable or executable file to use as input.

output_file A file or directory where the output is emitted. If absent and no
--output option is specified, output is directed to the console.

Table 41: ielfdumparm parameters

Command line option Description

--a Generates output for all sections except string table sections.

--all Generates output for all input sections regardless of their names or
numbers.

--code Dumps all sections that contain executable code.

--disasm_data Dumps data sections as code sections.

-f Extends the command line.

--output, -o Specifies an output file.

--no_bom Omits the Byte Order Mark from UTF-8 output files.

--no_header Suppresses production of a list header in the output.

--no_rel_section Suppresses dumping of .rel/.rela sections.

--no_strtab Suppresses dumping of string table sections.

Table 42: ielfdumparm options summary

AFE1_AFE2-1:1

538

The IAR ELF Object Tool—iobjmanip

IAR C/C++ Development Guide
Compiling and Linking for Arm

For more information, see Descriptions of options, page 549.

The IAR ELF Object Tool—iobjmanip
Use the IAR ELF Object Tool, iobjmanip, to perform low-level manipulation of ELF
object files.

INVOCATION SYNTAX

The invocation syntax for the IAR ELF Object Tool is:

iobjmanip options inputfile outputfile

Parameters

The parameters are:

--no_utf8_in Do not assume UTF-8 for non-IAR ELF files.

--range Disassembles only addresses in the specified range.

--raw Uses the generic hexadecimal/ASCII output format for the contents
of any selected section, instead of any dedicated output format for
that section.

--section, -s Generates output for selected input sections.

--segment, -g Generates output for segments with specified numbers.

--source Includes source with disassembled code in executable files.

--text_out Specifies the encoding for text output files.

--use_full_std_t

emplate_names

Uses full short full names for some Standard C++ templates.

--utf8_text_in Uses the UTF-8 encoding for text input files.

--version Sends tool output to the console and then exits.

Command line option Description

Table 42: ielfdumparm options summary (Continued)

Parameter Description

options Command line options that define actions to be performed. These
options can be placed anywhere on the command line. At least one of
the options must be specified.

inputfile A relocatable ELF object file.

outputfile A relocatable ELF object file with all the requested operations applied.

Table 43: iobjmanip parameters

AFE1_AFE2-1:1

IAR utilities

539

See also Rules for specifying a filename or directory as parameters, page 260.

Examples

This example renames the section .example in input.o to .example2 and stores the
result in output.o:

iobjmanip --rename_section .example=.example2 input.o output.o

SUMMARY OF IOBJMANIP OPTIONS

This table summarizes the iobjmanip options:

For more information, see Descriptions of options, page 549.

DIAGNOSTIC MESSAGES

This section lists the messages produced by iobjmanip:

Lm001: No operation given

None of the command line parameters specified an operation to perform.

Lm002: Expected nr parameters but got nr

Too few or too many parameters. Check invocation syntax for iobjmanip and for the
used command line options.

Lm003: Invalid section/symbol renaming pattern pattern

The pattern does not define a valid renaming operation.

Command line option Description

-f Extends the command line.

--no_bom Omits the Byte Order Mark from UTF-8 output files.

--remove_file_path Removes path information from the file symbol.

--remove_section Removes one or more section.

--rename_section Renames a section.

--rename_symbol Renames a symbol.

--strip Removes debug information.

--text_out Specifies the encoding for text output files.

--utf8_text_in Uses the UTF-8 encoding for text input files.

--version Sends tool output to the console and then exits.

Table 44: iobjmanip options summary

AFE1_AFE2-1:1

540

The IAR ELF Object Tool—iobjmanip

IAR C/C++ Development Guide
Compiling and Linking for Arm

Lm004: Could not open file filename

iobjmanip failed to open the input file.

Lm005: ELF format error msg

The input file is not a valid ELF object file.

Lm006: Unsupported section type nr

The object file contains a section that iobjmanip cannot handle. This section will be
ignored when generating the output file.

Lm007: Unknown section type nr

iobjmanip encountered an unrecognized section. iobjmanip will try to copy the
content as is.

Lm008: Symbol symbol has unsupported format

iobjmanip encountered a symbol that cannot be handled. iobjmanip will ignore this
symbol when generating the output file.

Lm009: Group type nr not supported

iobjmanip only supports groups of type GRP_COMDAT. If any other group type is
encountered, the result is undefined.

Lm010: Unsupported ELF feature in file: msg

The input file uses a feature that iobjmanip does not support.

Lm011: Unsupported ELF file type

The input file is not a relocatable object file.

Lm012: Ambiguous rename for section/symbol name (alt1 and alt2)

An ambiguity was detected while renaming a section or symbol. One of the alternatives
will be used.

Lm013: Section name removed due to transitive dependency on
name

A section was removed as it depends on an explicitly removed section.

AFE1_AFE2-1:1

IAR utilities

541

Lm014: File has no section with index nr

A section index, used as a parameter to --remove_section or --rename_section,
did not refer to a section in the input file.

Ms003: could not open file filename for writing

iobjmanip failed to open the output file for writing. Make sure that it is not write
protected.

Ms004: problem writing to file filename

An error occurred while writing to file filename. A possible reason for this is that the
volume is full.

Ms005: problem closing file filename

An error occurred while closing the file filename.

The IAR Absolute Symbol Exporter—isymexport
The IAR Absolute Symbol Exporter, isymexport, can export absolute symbols from a
ROM image file, so that they can be used when you link an add-on application.

To keep symbols from your symbols file in your final application, the symbols must be
referred to, either from your source code or by using the linker option --keep.

INVOCATION SYNTAX

The invocation syntax for the IAR Absolute Symbol Exporter is:

isymexport [options] inputfile outputfile [options]

AFE1_AFE2-1:1

542

The IAR Absolute Symbol Exporter—isymexport

IAR C/C++ Development Guide
Compiling and Linking for Arm

Parameters

The parameters are:

See also Rules for specifying a filename or directory as parameters, page 260.

In the IDE, to add the export of library symbols, choose Project>Options>Build
Actions and specify your command line in the Post-build command line text field, for
example:

$TOOLKIT_DIR$\bin\isymexport.exe "$TARGET_PATH$"

"$PROJ_DIR$\const_lib.symbols"

Parameter Description

inputfile A ROM image in the form of an executable ELF file (output from
linking).

options Any of the available command line options, see Summary of isymexport
options, page 543.

outputfile A relocatable ELF file that can be used as input to linking, and which
contains all or a selection of the absolute symbols in the input file.
The output file contains only the symbols, not the actual code or data
sections. A steering file can be used for controlling which symbols are
included, and if desired, for also renaming some of the symbols.

Table 45: isymexport parameters

AFE1_AFE2-1:1

IAR utilities

543

SUMMARY OF ISYMEXPORT OPTIONS

This table summarizes the isymexport command line options:

For more information, see Descriptions of options, page 549.

STEERING FILES

A steering file can be used for controlling which symbols are included, and if desired,
for also renaming some of the symbols. In the file, you can use show and hide directives
to select which public symbols from the input file that are to be included in the output
file. rename directives can be used for changing the names of symbols in the input file.

When you use a steering file, only actively exported symbols will be available in the
output file. Therefore, a steering file without show directives will generate an output file
without symbols.

Syntax

The following syntax rules apply:

● Each directive is specified on a separate line.

● C comments (/*...*/) and C++ comments (//...) can be used.

● Patterns can contain wildcard characters that match more than one possible
character in a symbol name.

● The * character matches any sequence of zero or more characters in a symbol name.

Command line option Description

--edit Specifies a steering file.

-f Extends the command line.

--generate_vfe_header Declares that the image does not contain any virtual
function calls to potentially discarded functions.

--no_bom Omits the Byte Order Mark from UTF-8 output files.

--ram_reserve_ranges Generates symbols for the areas in RAM that the image
uses.

--reserve_ranges Generates symbols to reserve the areas in ROM and
RAM that the image uses.

--show_entry_as Exports the entry point of the application with the given
name.

--text_out Specifies the encoding for text output files.

--utf8_text_in Uses the UTF-8 encoding for text input files.

--version Sends tool output to the console and then exits.

Table 46: isymexport options summary

AFE1_AFE2-1:1

544

The IAR Absolute Symbol Exporter—isymexport

IAR C/C++ Development Guide
Compiling and Linking for Arm

● The ? character matches any single character in a symbol name.

Example

rename xxx_* as YYY_* /*Change symbol prefix from xxx_ to YYY_ */
show YYY_* /* Export all symbols from YYY package */
hide *_internal /* But do not export internal symbols */
show zzz? /* Export zzza, but not zzzaaa */
hide zzzx /* But do not export zzzx */

Show directive

Syntax show pattern

Parameters

Description A symbol with a name that matches the pattern will be included in the output file unless
this is overridden by a later hide directive.

Example /* Include all public symbols ending in _pub. */
show *_pub

Show-weak directive

Syntax show-weak pattern

Parameters

Description A symbol with a name that matches the pattern will be included in the output file as a
weak symbol unless this is overridden by a later hide directive.

When linking, no error will be reported if the new code contains a definition for a
symbol with the same name as the exported symbol.

Note: Any internal references in the isymexport input file are already resolved and
cannot be affected by the presence of definitions in the new code.

Example /* Export myFunc as a weak definition */
show-weak myFunc

pattern A pattern to match against a symbol name.

pattern A pattern to match against a symbol name.

AFE1_AFE2-1:1

IAR utilities

545

Hide directive

Syntax hide pattern

Parameters

Description A symbol with a name that matches the pattern will not be included in the output file
unless this is overridden by a later show directive.

Example /* Do not include public symbols ending in _sys. */
hide *_sys

Rename directive

Syntax rename pattern1 as pattern2

Parameters

Description Use this directive to rename symbols from the output file to the input file. No exported
symbol is allowed to match more than one rename pattern.

rename directives can be placed anywhere in the steering file, but they are executed
before any show and hide directives. Therefore, if a symbol will be renamed, all show
and hide directives in the steering file must refer to the new name.

If the name of a symbol matches a pattern1 pattern that contains no wildcard
characters, the symbol will be renamed pattern2 in the output file.

If the name of a symbol matches a pattern1 pattern that contains a wildcard character,
the symbol will be renamed pattern2 in the output file, with part of the name matching
the wildcard character preserved.

Example /* xxx_start will be renamed Y_start_X in the output file,
 xxx_stop will be renamed Y_stop_X in the output file. */
rename xxx_* as Y_*_X

pattern A pattern to match against a symbol name.

pattern1 A pattern used for finding symbols to be renamed. The pattern
can contain no more than one * or ? wildcard character.

pattern2 A pattern used for the new name for a symbol. If the pattern
contains a wildcard character, it must be of the same kind as in
pattern1.

AFE1_AFE2-1:1

546

The IAR Absolute Symbol Exporter—isymexport

IAR C/C++ Development Guide
Compiling and Linking for Arm

DIAGNOSTIC MESSAGES

This section lists the messages produced by isymexport:

Es001: could not open file filename

isymexport failed to open the specified file.

Es002: illegal path pathname

The path pathname is not a valid path.

Es003: format error: message

A problem occurred while reading the input file.

Es004: no input file

No input file was specified.

Es005: no output file

An input file, but no output file was specified.

Es006: too many input files

More than two files were specified.

Es007: input file is not an ELF executable

The input file is not an ELF executable file.

Es008: unknown directive: directive

The specified directive in the steering file is not recognized.

Es009: unexpected end of file

The steering file ended when more input was required.

Es010: unexpected end of line

A line in the steering file ended before the directive was complete.

Es011: unexpected text after end of directive

There is more text on the same line after the end of a steering file directive.

AFE1_AFE2-1:1

IAR utilities

547

Es012: expected text

The specified text was not present in the steering file, but must be present for the
directive to be correct.

Es013: pattern can contain at most one * or ?

Each pattern in the current directive can contain at most one * or one ? wildcard
character.

Es014: rename patterns have different wildcards

Both patterns in the current directive must contain exactly the same kind of wildcard.
That is, both must either contain:

● No wildcards

● Exactly one *

● Exactly one ?

This error occurs if the patterns are not the same in this regard.

Es015: ambiguous pattern match: symbol matches more than one
rename pattern

A symbol in the input file matches more than one rename pattern.

Es016: the entry point symbol is already exported

The option --show_entry_as was used with a name that already exists in the input
file.

The IAR ELF Relocatable Object Creator—iexe2obj
The IAR ELF Relocatable Object Creator, iexe2obj, creates a relocatable ELF object
file from an executable ELF object file.

INVOCATION SYNTAX

The invocation syntax for iexe2obj is:

iexe2obj options inputfile outputfile

AFE1_AFE2-1:1

548

The IAR ELF Relocatable Object Creator—iexe2obj

IAR C/C++ Development Guide
Compiling and Linking for Arm

Parameters

The parameters are:

See also Rules for specifying a filename or directory as parameters, page 260.

BUILDING THE INPUT FILE

The input file must be linked with the linker option --no_entry, using object files
compiled with --rwpi, --ropi, and --ropi_cb. See also --ropi_cb, page 301.

A function symbol FUNC, that should have a wrapper, must be preserved by the linker
when it builds the input file. You can achieve this either by using the keyword __root
in the declaration of FUNC or by using the linker command line option --keep FUNC.

Code and constant data

The input file can contain at most one non-writable, executable section that will be
placed in the output file. To enable placing the executable section in execute-only
memory, you must use the option --no_literal_pool both when compiling and
when linking.

The input file can contain at most one non-writable, non-executable section that will be
placed in the output file. The start address of the section will be used as a constants base
address, CB.

Writable data

The input file can contain at most one writable, non-executable section that will be
placed in the output file. The start address of the section will be used as a static base
address, SB.

The writable data section might need dynamic initialization, in which case iexe2obj
will create a function (__sti_routine) that is called during dynamic initialization of
the client application. For this to work, a label __init is needed (as defined in the
library rt7MQx_tl), and the linker configuration file used for creating your input file
must contain:

Parameter Description

options Command line options that define actions to be performed. These
options can be placed anywhere on the command line. At least one
option must be specified. See Summary of iexe2obj options, page 549

inputfile An executable ELF object file.

outputfile The name of the resulting relocatable ELF object file with all the
requested operations applied.

Table 47: iexe2obj parameters

AFE1_AFE2-1:1

IAR utilities

549

define block INIT with alignment=4,fixed order {
 section .init_start,
 section .init_a,
 section .init_b,
 section .init_end.
};

The linker might issue a warning (Lp005) for mixing sections with content and sections
without content. If that warning concerns sections .data and .bss, it can be ignored.

SUMMARY OF IEXE2OBJ OPTIONS

Descriptions of options
This section gives detailed reference information about each command line option
available for the different utilities.

--a

Syntax --a

For use with ielfdumparm

Description Use this option as a shortcut for --all --no_strtab.

This option is not available in the IDE.

Command line option Description

--hide_symbols Hides all symbols from the input file

--keep_mode_symbols Copies mode symbols from the input file to the output file

--prefix Sets a prefix for symbol and section names

--wrap Generates wrapper functions for function symbols in
inputfile that should be callable by clients of
outputfile.

Table 48: iexe2obj options summary

AFE1_AFE2-1:1

550

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--all

Syntax --all

For use with ielfdumparm

Description Use this option to include the contents of all ELF sections in the output, in addition to
the general properties of the input file. Sections are output in index order, except that
each relocation section is output immediately after the section it holds relocations for.

By default, no section contents are included in the output.

This option is not available in the IDE.

--bin

Syntax --bin[=range]

Parameters

For use with ielftool

Description Sets the format of the output file to raw binary, a binary format that includes only the
raw bytes, with no address information. If no range is specified, the output file will
include all the bytes from the lowest address for which there is content in the ELF file
to the highest address for which there is content. If a range is specified, only bytes from
that range are included. Note that in both cases, any gaps for which there is no content
will be generated as zeros.

To set related options, choose:

Project>Options>Output converter

--bin-multi

Syntax --bin-multi[=range[;range...]]

range The address range content to include in the output file. The
address range can be specified using literals, or by using
symbols present in the ELF file. Examples:
"0x8000-0x8FFF", "START-END"

AFE1_AFE2-1:1

IAR utilities

551

Parameters

For use with ielftool

Description Use this option to produce one or more raw binary output files. If no ranges are
specified, a raw binary output file is generated for each range for which there is content
in the ELF file. If ranges are specified, a raw binary output file is generated for each
range specified. In each case, the name of each output file will include the start address
of its range. For example, if the output file is specified as out.bin and the ranges
0x0-0x1F and 0x8000-0x8147 are output, there will be two files, named
out-0x0.bin and out-0x8000.bin.

This option is not available in the IDE.

--checksum

Syntax --checksum {symbol[+offset]|address}:size,
algorithm[:[1|2][a|m|z][L|W][x][r][R][o][i|p]]
[,start];range[;range...]

Parameters

range An address range to produce an output file for. An address
range can be specified using literals, or by using symbols
present in the ELF file. Examples: "0x8000-0x8FFF",
"START-END"

symbol The name of the symbol where the checksum value should be
stored. Note that it must exist in the symbol table in the input
ELF file.

offset An offset to the symbol.

address The absolute address where the checksum value should be
stored.

size The number of bytes in the checksum—1, 2, or 4. The number
cannot be larger than the size of the checksum symbol.

AFE1_AFE2-1:1

552

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

algorithm The checksum algorithm used. Choose between:

sum, a byte-wise calculated arithmetic sum. The result is
truncated to 8 bits.

sum8wide, a byte-wise calculated arithmetic sum. The result is
truncated to the size of the symbol.

sum32, a word-wise (32 bits) calculated arithmetic sum.

crc16, CRC16 (generating polynomial 0x1021); used by
default.

crc32, CRC32 (generating polynomial 0x04C11DB7).

crc64iso, CRC64iso (generating polynomial 0x1B).

crc64ecma, CRC64ECMA (generating polynomial
0x42F0E1EBA9EA3693).

crc=n, CRC with a generating polynomial of n.

1|2 If specified, choose between:

1, specifies one's complement.

2, specifies two's complement.

a|m|z Reverses the order of the bits for the checksum. Choose between:

a, reverses the input bytes (but nothing else).

m, reverses the input bytes and the final checksum.

z, reverses the final checksum (but nothing else).

Note that using a and z in combination has the same effect as m.

AFE1_AFE2-1:1

IAR utilities

553

L|W Specifies the size of the unit for which a checksum should be
calculated. Choose between:

L, calculates a checksum on 32 bits in every iteration

W, calculates a checksum on 16 bits in every iteration.

If you do not specify a unit size, 8 bits will be used by default.

The input byte sequence will processed as:

• 8-bit checksum unit size —byte0, byte1, byte2,
byte3, etc.

• 16-bit checksum unit size—byte1, byte0, byte3, byte2, etc.

• 32-bit checksum unit size—byte3, byte2, byte1, byte0, byte7,
byte6, byte5, byte4, etc.

Note: The checksum unit size only affects the order in which the
input byte sequence is processed. It does not affect the size of the
checksum symbol, the polynomial, the initial value, the width of
the processor’s address bus, etc.

Most software CRC implementations use a checksum unit size
of 1 byte (8 bits). The L and W parameters are almost exclusively
used when a software CRC implementation has to match the
checksum computed by the hardware CRC implementation. If
you are not trying to cooperate with a hardware CRC
implementation, the L and W parameter will simply compute a
different checksum, because it processes the input byte sequence
in a different order.

x Reverses the byte order of the checksum. This only affects the
checksum value.

r Reverses the byte order of the input data. This has no effect
unless the number of bits per iteration has been set using the L or
W parameters.

AFE1_AFE2-1:1

554

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

R Traverses the checksum range(s) in reverse order.

If the range is, for example, 0x100–0xFFF;0x2000–0x2FFF,
the checksum calculation will normally start on 0x100 and then
calculate every byte up to and including 0xFFF, followed by
calculating the byte on 0x2000 and continue to 0x2FFF.

Using the R parameter, the calculation instead starts on 0x2FFF
and continues by calculating every byte down to 0x2000, then
from 0xFFF down to and including 0x100.

o Outputs the Rocksoft model specification for the checksum.

i|p Use either i or p, if the start value is bigger than 0. Choose
between:

i, initializes the checksum value with the start value.

p, prefixes the input data with a word of size size that contains
the start value.

start By default, the initial value of the checksum is 0. If necessary,
use start to supply a different initial value. If not 0, then either
i or p must be specified.

range range is one or more memory ranges for which the checksum
will be calculated. Hexadecimal and decimal notation is allowed,
for example, 0x8002–0x8FFF. The memory range(s) can also
be expressed as:

● Symbols that are present in ELF file can be used in the range
description, for example, __checksum_begin–
__checksum_end.

● One or more block names where each block is placed inside
a pair of curly braces,{}, like {MY_BLOCK}. A block that is
used in this manner must be specified in the linker
configuration file and must contain only read-only content.
See define block directive, page 492.

It is typically advisable to use symbols or blocks if the memory
range can change. If you use explicit addresses, for example,
0x8000-0x8347, and the code then changes, you need to update
the end address to the new value. If you instead use {CODE} or a
symbol located at the end of the code, you do not need to update
the --checksum command.

AFE1_AFE2-1:1

IAR utilities

555

For use with ielftool

Description Use this option to calculate a checksum with the specified algorithm for the specified
ranges. If you have an external definition for the checksum—for example, a hardware
CRC implementation—use the appropriate parameters to the --checksum option to
match the external design. In this case, learn more about that design in the hardware
documentation. The checksum will then replace the original value in symbol. A new
absolute symbol will be generated, with the symbol name suffixed with _value
containing the calculated checksum. This symbol can be used for accessing the
checksum value later when needed, for example, during debugging.

If the --checksum option is used more than once on the command line, the options are
evaluated from left to right. If a checksum is calculated for a symbol that is specified in
a later evaluated --checksum option, an error is issued.

Example This example shows how to use the crc16 algorithm with the start value 0 over the
address range 0x8000–0x8FFF:

ielftool --checksum=__checksum:2,crc16;0x8000-0x8FFF
sourceFile.out destinationFile.out

The input data i read from sourceFile.out, and the resulting checksum value of size
2 bytes will be stored at the symbol __checksum. The modified ELF file is saved as
destinationFile.out leaving sourceFile.out untouched.

In the next example, a symbol is used for specifying the start of the range:

ielftool --checksum=__checksum:2,crc16;__checksum_begin-0x8FFF
sourceFile.out destinationFile.out

If BLOCK1 occupies 0x4000-0x4337 and BLOCK2 occupies 0x8000-0x87FF, this
example will compute the checksum for the bytes on 0x4000 to 0x4337 and from
0x8000 to 0x87FF:

ielftool --checksum __checksum:2,crc16;{BLOCK1};{BLOCK2}
BlxTest.out BlxTest2.out

See also Checksum calculation for verifying image integrity, page 210

To set related options, choose:

Project>Options>Linker>Checksum

AFE1_AFE2-1:1

556

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--code

Syntax --code

For use with ielfdumparm

Description Use this option to dump all sections that contain executable code—sections with the
ELF section attribute SHF_EXECINSTR.

This option is not available in the IDE.

--create

Syntax --create libraryfile objectfile1 ... objectfileN

Parameters

For use with iarchive

Description Use this command to build a new library from a set of object files (modules). The object
files are added to the library in the exact order that they are specified on the command
line.

If no command is specified on the command line, --create is used by default.

This option is not available in the IDE.

--delete, -d

Syntax --delete libraryfile objectfile1 ... objectfileN
-d libraryfile objectfile1 ... objectfileN

Parameters

libraryfile The library file that the command operates on. See Rules for
specifying a filename or directory as parameters, page 260.

objectfile1 ...

objectfileN

The object file(s) to build the library from.

libraryfile The library file that the command operates on. See Rules for
specifying a filename or directory as parameters, page 260.

AFE1_AFE2-1:1

IAR utilities

557

For use with iarchive

Description Use this command to remove object files (modules) from an existing library. All object
files that are specified on the command line will be removed from the library.

This option is not available in the IDE.

--disasm_data

Syntax --disasm_data

For use with ielfdumparm

Description Use this command to instruct the dumper to dump data sections as if they were code
sections.

This option is not available in the IDE.

--edit

Syntax --edit steering_file

For use with isymexport

Description Use this option to specify a steering file for controlling which symbols are included in
the isymexport output file, and if desired, also for renaming some of the symbols.

See also Steering files, page 543.

This option is not available in the IDE.

--extract, -x

Syntax --extract libraryfile [objectfile1 ... objectfileN]
-x libraryfile [objectfile1 ... objectfileN]

objectfile1 ...

objectfileN

The object file(s) that the command operates on.

AFE1_AFE2-1:1

558

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Parameters

For use with iarchive

Description Use this command to extract object files (modules) from an existing library. If a list of
object files is specified, only these files are extracted. If a list of object files is not
specified, all object files in the library are extracted.

This option is not available in the IDE.

-f

Syntax -f filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.

For use with iarchive, ielfdumparm, iobjmanip, and isymexport.

Description Use this option to make the tool read command line options from the named file, with
the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you can use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

This option is not available in the IDE.

libraryfile The library file that the command operates on. See Rules for
specifying a filename or directory as parameters, page 260.

objectfile1 ...

objectfileN

The object file(s) that the command operates on.

AFE1_AFE2-1:1

IAR utilities

559

--fill

Syntax --fill [v;]pattern;range[;range...]

Parameters

For use with ielftool

Description Use this option to fill all gaps in one or more ranges with a pattern, which can be either
an expression or a hexadecimal string. The contents will be calculated as if the fill
pattern was repeatedly filled from the start address until the end address is passed, and
then the real contents will overwrite that pattern.

If the --fill option is used more than once on the command line, the fill ranges cannot
overlap each other.

To set related options, choose:

Project>Options>Linker>Checksum

--front_headers

Syntax --front_headers

For use with ielftool

v Generates virtual fill for the fill command. Virtual fill is filler
bytes that are included in checksumming, but that are not
included in the output file. The primary use for this is certain
types of hardware where bytes that are not specified by the image
have a known value—typically, 0xFF or 0x0.

pattern A hexadecimal string with the 0x prefix, for example, 0xEF,
interpreted as a sequence of bytes, where each pair of digits
corresponds to one byte, for example 0x123456, for the
sequence of bytes 0x12, 0x34, and 0x56. This sequence is
repeated over the fill area. If the length of the fill pattern is
greater than 1 byte, it is repeated as if it started at address 0.

range Specifies the address range for the fill. Hexadecimal and decimal
notation is allowed, for example, 0x8002–0x8FFF. Note that
each address must be 4-byte aligned.

Symbols that are present in the ELF file can be used in the range
description, for example, __checksum_begin–
__checksum_end.

AFE1_AFE2-1:1

560

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Use this option to output ELF program and section headers in the beginning of the file,
instead of at the end.

This option is not available in the IDE.

--generate_vfe_header

Syntax --generate_vfe_header

For use with isymexport

Description Use this option to declare that the image does not contain any virtual function calls to
potentially discarded functions.

When the linker performs virtual function elimination, it discards virtual functions that
appear not to be needed. For the optimization to be applied correctly, there must be no
virtual function calls in the image that affect the functions that are discarded.

See also Virtual function elimination, page 121.

To set this options, use:

Project>Options>Linker>Extra Options

--hide_symbols

Syntax --hide_symbols

For use with iexe2obj

Description Use this option to hide all symbols from the input file.

This option is not available in the IDE.

--ihex

Syntax --ihex

For use with ielftool

AFE1_AFE2-1:1

IAR utilities

561

Description Sets the format of the output file to 32-bit linear Intel Extended hex, a hexadecimal text
format defined by Intel.

To set related options, choose:

Project>Options>Linker>Output converter

--keep_mode_symbols

Syntax --keep_mode_symbols

For use with iexe2obj

Description Use this option to copy mode symbols from the input file to the output file. This is used,
for example, by the disassembler.

This option is not available in the IDE.

--no_bom

Syntax --no_bom

For use with iarchive, ielfdumparm, iobjmanip, and isymexport

Description Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

See also --text_out, page 575 and Text encodings, page 254

This option is not available in the IDE.

--no_header

Syntax --no_header

For use with ielfdumparm

Description By default, a standard list header is added before the actual file content. Use this option
to suppress output of the list header.

AFE1_AFE2-1:1

562

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

This option is not available in the IDE.

--no_rel_section

Syntax --no_rel_section

For use with ielfdumparm

Description By default, whenever the content of a section of a relocatable file is generated as output,
the associated section, if any, is also included in the output. Use this option to suppress
output of the relocation section.

This option is not available in the IDE.

--no_strtab

Syntax --no_strtab

For use with ielfdumparm

Description Use this option to suppress dumping of string table sections (sections of type
SHT_STRTAB).

This option is not available in the IDE.

--no_utf8_in

Syntax --no_utf8_in

For use with ielfdumparm

Description The dumper can normally determine whether ELF files produced by IAR tools use the
UTF-8 text encoding or not, and produce the correct output. For ELF files produced by
non-IAR tools, the dumper will assume UTF-8 encoding unless this option is used, in
which case the encoding is assumed to be according to the current system default locale.

Note: This only makes a difference if any characters beyond 7-bit ASCII are used in
paths, symbols, etc.

AFE1_AFE2-1:1

IAR utilities

563

See also Text encodings, page 254

This option is not available in the IDE.

--offset

Syntax --offset [-]offset

Parameters

For use with ielftool

Description Use this option to add or subtract an offset to the address of each output record in the
generated output file. The option only works on Motorola S-records, Intel Hex, TI-Txt,
and Simple-Code. The option has no effect when generating an ELF file or when binary
files (--bin contain no address information) are generated. No content, including the
entry point, will be changed by using this option, only the addresses in the output format.

Example --offset 0x30000

This will add an offset of 0x30000 to all addresses. As a result, content that was linked
at address 0x4000 will be placed at 0x34000.

This option is not available in the IDE.

--output, -o

Syntax -o {filename|directory}
--output {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 260.

For use with iarchive and ielfdumparm.

Description iarchive

By default, iarchive assumes that the first argument after the iarchive command is
the name of the destination library. Use this option to explicitly specify a different
filename for the library.

offset The offset will be added (or subtracted if - is specified) to
all addresses in the generated output file.

AFE1_AFE2-1:1

564

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

ielfdumparm

By default, output from the dumper is directed to the console. Use this option to direct
the output to a file instead. The default name of the output file is the name of the input
file with an added id filename extension

You can also specify the output file by specifying a file or directory following the name
of the input file.

This option is not available in the IDE.

--parity

Syntax --parity{symbol[+offset]|address}:size,algo:flashbase[:flags];ran
ge[;range...]

Parameters
symbol The name of the symbol where the parity bytes should be

stored. Note that it must exist in the symbol table in the
input ELF file.

offset An offset to the symbol. By default, 0.

address The absolute address where the parity bytes should be
stored.

size The maximum number of bytes that the parity generation
can use. An error will be issued if this value is exceeded.
Note that the size must fit in the specified symbol in the ELF
file.

algo Choose between:

odd, uses odd parity.
even, uses even parity.

flashbase The start address of the flash memory. Parity bits will not be
generated for the addresses between flashbase and the
start address of the range. If flashbase and the start
address of the range coincide, parity bits will be generated
for all addresses

AFE1_AFE2-1:1

IAR utilities

565

For use with ielftool

Description Use this option to generate parity bytes over specified ranges. The range is traversed left
to the right and the parity bits are generated using the odd or even algorithm. The parity
bits are finally stored in the specified symbol where they can be accessed by your
application.

This option is not available in the IDE.

--prefix

Syntax --prefix prefix

Parameters

For use with iexe2obj

Description By default, the base name of the output file is used as a prefix for symbol and section
names that are defined in wrappers. Use this option to set a custom prefix for these
symbols and section names.

See also --wrap, page 578

This option is not available in the IDE.

flags Choose between:

r, reverses the byte order within each word.
L, processes 4 bytes at a time.
W, processes 2 bytes at a time.
B, processes 1 byte at a time.

range The address range over which the parity bytes should be
generated. Hexadecimal and decimal notation are allowed,
for example, 0x8002–0x8FFF.

prefix A prefix for symbol and section names

AFE1_AFE2-1:1

566

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

--ram_reserve_ranges

Syntax --ram_reserve_ranges[=symbol_prefix]

Parameters

For use with isymexport

Description Use this option to generate symbols for the areas in RAM that the image uses. One
symbol will be generated for each such area. The name of each symbol is based on the
name of the area and is prefixed by the optional parameter symbol_prefix.

Generating symbols that cover an area in this way prevents the linker from placing other
content at the affected addresses. This can be useful when linking against an existing
image.

If --ram_reserve_ranges is used together with --reserve_ranges, the RAM
areas will get their prefix from the --ram_reserve_ranges option and the non-RAM
areas will get their prefix from the --reserve_ranges option.

See also --reserve_ranges, page 569.

This option is not available in the IDE.

--range

Syntax --range start-end

Parameters

For use with ielfdumparm

Description Use this option to specify a range for which code from an executable will be dumped.

This option is not available in the IDE.

symbol_prefix The prefix of symbols created by this option.

start-end Disassemble code where the start address is greater than or
equal to start, and where the end address is less than end.

AFE1_AFE2-1:1

IAR utilities

567

--raw

Syntax --raw

For use with ielfdumparm

Description By default, many ELF sections will be dumped using a text format specific to a
particular kind of section. Use this option to dump each selected ELF section using the
generic text format.

The generic text format dumps each byte in the section in hexadecimal format, and
where appropriate, as ASCII text.

This option is not available in the IDE.

--remove_file_path

Syntax --remove_file_path

For use with iobjmanip

Description Use this option to make iobjmanip remove information about the directory structure
of the project source tree from the generated object file, which means that the file
symbol in the ELF object file is modified.

This option must be used in combination with --remove_section ".comment".

This option is not available in the IDE.

--remove_section

Syntax --remove_section {section|number}

Parameters

For use with iobjmanip

section The section—or sections, if there are more than one section with
the same name—to be removed.

number The number of the section to be removed. Section numbers can
be obtained from an object dump created using ielfdumparm.

AFE1_AFE2-1:1

568

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Description Use this option to make iobjmanip omit the specified section when generating the
output file.

This option is not available in the IDE.

--rename_section

Syntax --rename_section {oldname|oldnumber}=newname

Parameters

For use with iobjmanip

Description Use this option to make iobjmanip rename the specified section when generating the
output file.

This option is not available in the IDE.

--rename_symbol

Syntax --rename_symbol oldname =newname

Parameters

For use with iobjmanip

Description Use this option to make iobjmanip rename the specified symbol when generating the
output file.

This option is not available in the IDE.

oldname The section—or sections, if there are more than one section with
the same name—to be renamed.

oldnumber The number of the section to be renamed. Section numbers can
be obtained from an object dump created using ielfdumparm.

newname The new name of the section.

oldname The symbol to be renamed.

newname The new name of the symbol.

AFE1_AFE2-1:1

IAR utilities

569

--replace, -r

Syntax --replace libraryfile objectfile1 ... objectfileN
-r libraryfile objectfile1 ... objectfileN

Parameters

For use with iarchive

Description Use this command to replace or add object files (modules) to an existing library. The
object files specified on the command line either replace existing object files in the
library—if they have the same name—or are appended to the library.

This option is not available in the IDE.

--reserve_ranges

Syntax --reserve_ranges[=symbol_prefix]

Parameters

For use with isymexport

Description Use this option to generate symbols for the areas in ROM and RAM that the image uses.
One symbol will be generated for each such area. The name of each symbol is based on
the name of the area and is prefixed by the optional parameter symbol_prefix.

Generating symbols that cover an area in this way prevents the linker from placing other
content at the affected addresses. This can be useful when linking against an existing
image.

If --reserve_ranges is used together with --ram_reserve_ranges, the RAM
areas will get their prefix from the --ram_reserve_ranges option and the non-RAM
areas will get their prefix from the --reserve_ranges option.

See also --ram_reserve_ranges, page 566.

libraryfile The library file that the command operates on. See Rules for
specifying a filename or directory as parameters, page 260.

objectfile1 ...

objectfileN

The object file(s) that the command operates on.

symbol_prefix The prefix of symbols created by this option.

AFE1_AFE2-1:1

570

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

This option is not available in the IDE.

--section, -s

Syntax --section section_number|section_name[,...]
--s section_number|section_name[,...]

Parameters

For use with ielfdumparm

Description Use this option to dump the contents of a section with the specified number, or any
section with the specified name. If a relocation section is associated with a selected
section, its contents are output as well.

If you use this option, the general properties of the input file will not be included in the
output.

You can specify multiple section numbers or names by separating them with commas,
or by using this option more than once.

By default, no section contents are included in the output.

Example -s 3,17 /* Sections #3 and #17
-s .debug_frame,42 /* Any sections named .debug_frame and
 also section #42 */

This option is not available in the IDE.

--segment, -g

Syntax --segment segment_number[,...]

-g segment_number[,...]

Parameters

section_number The number of the section to be dumped.

section_name The name of the section to be dumped.

segmnt_number The number of a segment whose contents will be included
in the output.

AFE1_AFE2-1:1

IAR utilities

571

For use with ielfdumparm

Description Use this option to select specific segments—parts of an executable image indicated by
program headers—for inclusion in the output.

This option is not available in the IDE.

--self_reloc

Syntax --self_reloc

For use with ielftool

Description This option is intentionally not documented as it is not intended for general use.

This option is not available in the IDE.

--show_entry_as

Syntax --show_entry_as name

Parameters

For use with isymexport

Description Use this option to export the entry point of the application given as input under the name
name.

This option is not available in the IDE.

--silent

Syntax --silent

For use with ielftool

Description Causes the tool to operate without sending any messages to the standard output stream.

name The name to give to the program entry point in the output file.

AFE1_AFE2-1:1

572

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

By default, the tool sends various messages via the standard output stream. You can use
this option to prevent this. The tool sends error and warning messages to the error output
stream, so they are displayed regardless of this setting.

This option is not available in the IDE.

--simple

Syntax --simple

For use with ielftool

Description Sets the format of the output file to Simple-code, a binary format that includes address
information.

To set related options, choose:

Project>Options>Output converter

--simple-ne

Syntax --simple-ne

For use with ielftool

Description Sets the format of the output file to Simple code, but no entry record is generated.

To set related options, choose:

Project>Options>Output converter

--source

Syntax --source

For use with ielfdumparm

Description Use this option to make ielftool include source for each statement before the code
for that statement, when dumping code from an executable file. To make this work, the
executable image must be built with debug information, and the source code must still
be accessible in its original location.

AFE1_AFE2-1:1

IAR utilities

573

This option is not available in the IDE.

--srec

Syntax --srec

For use with ielftool

Description Sets the format of the output file to Motorola S-records, a hexadecimal text format
defined by Motorola.

Note: You can use the ielftool options --srec-len and --srec-s3only to modify
the exact format used.

To set related options, choose:

Project>Options>Output converter

--srec-len

Syntax --srec-len=length

Parameters

For use with ielftool

Description Restricts the number of data bytes in each S-record. This option can be used in
combination with the --srec option.

This option is not available in the IDE.

--srec-s3only

Syntax --srec-s3only

For use with ielftool

Description Restricts the S-record output to contain only a subset of records, that is S0, S3 and S7
records. This option can be used in combination with the --srec option.

length The number of data bytes in each S-record.

AFE1_AFE2-1:1

574

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

This option is not available in the IDE.

--strip

Syntax --strip

For use with iobjmanip and ielftool.

Description Use this option to remove all sections containing debug information before the output
file is written.

Note: ielftool needs an unstripped input ELF image. If you use the --strip option
in the linker, remove it and use the --strip option in ielftool instead.

To set related options, choose:

Project>Options>Linker>Output>Include debug information in output

--symbols

Syntax --symbols libraryfile

Parameters

For use with iarchive

Description Use this command to list all external symbols that are defined by any object file
(module) in the specified library, together with the name of the object file (module) that
defines it.

In silent mode (--silent), this command performs symbol table-related syntax checks
on the library file and displays only errors and warnings.

This option is not available in the IDE.

libraryfile The library file that the command operates on. See Rules for
specifying a filename or directory as parameters, page 260.

AFE1_AFE2-1:1

IAR utilities

575

--text_out

Syntax --text_out{utf8|utf16le|utf16be|locale}

Parameters

For use with iarchive, ielfdumparm, iobjmanip, and isymexport

Description Use this option to specify the encoding to be used when generating a text output file.

The default for the list files is to use the same encoding as the main source file. The
default for all other text files is UTF-8 with a Byte Order Mark (BOM).

If you want text output in UTF-8 encoding without BOM, you can use the option
--no_bom as well.

See also --no_bom, page 561 and Text encodings, page 254

This option is not available in the IDE.

--titxt

Syntax --titxt

For use with ielftool

Description Sets the format of the output file to Texas Instruments TI–TXT, a hexadecimal text
format defined by Texas Instruments.

To set related options, choose:

Project>Options>Output converter

--toc, -t

Syntax --toc libraryfile
-t libraryfile

utf8 Uses the UTF-8 encoding

utf16le Uses the UTF-16 little-endian encoding

utf16be Uses the UTF-16 big-endian encoding

locale Uses the system locale encoding

AFE1_AFE2-1:1

576

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

Parameters

For use with iarchive

Description Use this command to list the names of all object files (modules) in a specified library.

In silent mode (--silent), this command performs basic syntax checks on the library
file, and displays only errors and warnings.

This option is not available in the IDE.

--use_full_std_template_names

Syntax --use_full_std_template_names

For use with ielfdumparm

Description Normally, the names of some standard C++ templates are used in the output in an
abbreviated form in the unmangled names of symbols, for example, "std::string"
instead of "std::basic_string<char, std::char_traits<char>,
std_::allocator<char>>". Use this option to make ielfdump use the
unabbreviated form.

This option is not available in the IDE.

--utf8_text_in

Syntax --utf8_text_in

For use with iarchive, ielfdumparm, iobjmanip, and isymexport

Description Use this option to specify that the tool shall use the UTF-8 encoding when reading a text
input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

See also Text encodings, page 254

libraryfile The library file that the command operates on. See Rules for
specifying a filename or directory as parameters, page 260.

AFE1_AFE2-1:1

IAR utilities

577

This option is not available in the IDE.

--verbose, -V

Syntax --verbose
-V (iarchive only)

For use with iarchive and ielftool.

Description Use this option to make the tool report which operations it performs, in addition to
giving diagnostic messages.

This option is not available in the IDE because this setting is always enabled.

--version

Syntax --version

For use with iarchive, ielfdumparm, ielftool, iobjmanip, isymexport

Description Use this option to make the tool send version information to the console and then exit.

This option is not available in the IDE.

--vtoc

Syntax --vtoc libraryfile

Parameters

For use with iarchive

Description Use this command to list the names, sizes, and modification times of all object files
(modules) in a specified library.

In silent mode (--silent), this command performs basic syntax checks on the library
file, and displays only errors and warnings.

libraryfile The library file that the command operates on. See Rules for
specifying a filename or directory as parameters, page 260.

AFE1_AFE2-1:1

578

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for Arm

This option is not available in the IDE.

--wrap

Syntax --wrap symbol

Parameters

For use with iexe2obj

Description Use this option to generate a wrapper function for function symbols.

This option is not available in the IDE.

symbol A function symbol that should be callable by clients of the
output file of iexe2obj.

AFE1_AFE2-1:1

579

Implementation-defined
behavior for Standard C++
● Descriptions of implementation-defined behavior for C++

● Implementation quantities

If you are using C instead of C++, see Implementation-defined behavior for
Standard C, page 599 or Implementation-defined behavior for C89, page 619,
respectively.

Descriptions of implementation-defined behavior for C++
This section follows the same order as the C++ 14 standard. Each item includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

Note: The IAR Systems implementation adheres to a freestanding implementation of
Standard C++ 14. This means that parts of a standard library can be excluded from the
implementation.

1 GENERAL

Diagnostics (1.3.6)

Diagnostics are produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

Required libraries for freestanding implementation (1.4)

See C++ header files, page 475 and Not supported C/C++ functionality, page 479,
respectively, for information about which Standard C++ system headers that the IAR
C/C++ Compiler does not support.

AFE1_AFE2-1:1

580

Descriptions of implementation-defined behavior for C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

Bits in a byte (1.7)

A byte contains 8 bits.

Interactive devices (1.9)

The streams stdin, stdout, and stderr are treated as interactive devices.

Number of threads in a program under a freestanding
implementation (1.10)

By default, the IAR Systems runtime environment does not support more than one
thread of execution. With an optional third-party RTOS, it might support several threads
of execution.

2 LEXICAL CONVENTIONS

Mapping physical source file characters to the basic source
character set (2.2)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, it can be UTF-8, UTF-16,
or the system locale. See Text encodings, page 254.

Physical source file characters (2.2)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, it can be UTF-8, UTF-16,
or the system locale. See Text encodings, page 254.

Converting characters from a source character set to the execution
character set (2.2)

The source character set is the set of legal characters that can appear in source files. It is
dependent on the chosen encoding for the source file. See Text encodings, page 254. By
default, the source character set is Raw.

The execution character set is the set of legal characters that can appear in the execution
environment. These are the execution character sets for character constants and string
literals, and their encoding types:

Execution character set Encoding type

L UTF-32

u UTF-16

U UTF-32

Table 49: Execution character sets and their encodings

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C++

581

The DLIB runtime environment needs a multibyte character scanner to support a
multibyte execution character set. See Locale, page 159.

Required availability of the source of translation units to locate
template definitions (2.2)

When locating the template definition related to template instantiations, the source of
the translation units that define the template is not required.

The execution character set and execution wide-character set (2.3)

The values of the members of the execution character set are the values of the ASCII
character set, which can be augmented by the values of the extra characters in the source
file character set. The source file character set is determined by the chosen encoding for
the source file. See Text encodings, page 254.

The wide character set consists of all the code points defined by ISO/IEC 10646.

Mapping header names to headers or external source files (2.9)

The header name is interpreted and mapped into an external source file in the most
intuitive way. In both forms of the #include preprocessing directive, the character
sequences that specify header names are interpreted exactly in the same way as for other
source constructs. They are then mapped to external header source file names.

The value of multi-character literals (2.14.3)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message is issued if the value cannot be represented
in an integer constant.

The value of wide-character literals with single c-char that are not
in the execution wide-character set (2.14.3)

All possible c-chars have a representation in the execution wide-character set.

u8 UTF-8

none The source character set

Execution character set Encoding type

Table 49: Execution character sets and their encodings (Continued)

AFE1_AFE2-1:1

582

Descriptions of implementation-defined behavior for C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

The value of wide-character literal containing multiple characters
(2.14.3)

A diagnostic message is issued, and all but the first c-char is ignored.

The semantics of non-standard escape sequences (2.14.3)

No non-standard escape sequences are supported.

The value of character literal outside range of corresponding type
(2.14.3)

The value is truncated to fit the type.

The encoding of universal character name not in execution
character set (2.14.3)

A diagnostic message is issued.

The choice of larger or smaller value of floating-point literal (2.14.4)

For a floating-point literal whose scaled value cannot be represented as a floating-point
value, the nearest even floating point-value is chosen.

The distinctness of string literals (2.14.5)

All string literals are distinct except when the linker option
--merge_duplicate_sections is used.

Concatenation of various types of string literals (2.14.5)

Differently prefixed string literal tokens cannot be concatenated, except for those
specified by the ISO C++ standard.

3 BASIC CONCEPTS

Defining main in a freestanding environment (3.6.1)

The main function must be defined.

Startup and termination in a freestanding environment (3.6.1)

See Application execution—an overview, page 64 and System startup and termination,
page 145, for descriptions of the startup and termination of applications.

Parameters to main (3.6.1)

The only two permitted definitions for main are:

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C++

583

int main()
int main(int, char **)

Linkage of main (3.6.1)

The main function has external linkage.

Dynamic initialization of static objects before main (3.6.2)

Static objects are initialized before the first statement of main, except when the linker
option --manual_dynamic_initialization is used.

Dynamic initialization of threaded local objects before entry (3.6.2)

By default, the IAR systems runtime environment does not support more than one thread
of execution. With an optional third-party RTOS, it might support several threads of
execution.

Thread-local objects are treated as static objects except when the linker option
--threaded_lib is used. Then they are initialized by the RTOS.

Use of an invalid pointer (3.7.4.2)

Any other use of an invalid pointer than indirection through it and passing it to a
deallocation function works as for a valid pointer.

Relaxed or strict pointer safety for the implementation (3.7.4.3)

The IAR Systems implementation of Standard C++ has relaxed pointer safety.

The value of trivially copyable types (3.9)

All bits in basic types are part of the value representation. Padding between basic types
is copied verbatim.

Representation and signage of char (3.9.1)

A plain char is treated as an unsigned char. See --char_is_signed, page 268 and
--char_is_unsigned, page 269.

Extended signed integer types (3.9.1)

No extended signed integer types exist in the implementation.

Value representation of floating-point types (3.9.1)

See Basic data types—floating-point types, page 356.

AFE1_AFE2-1:1

584

Descriptions of implementation-defined behavior for C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

Value representation of pointer types (3.9.2)

See Pointer types, page 358.

Alignment (3.11)

See Alignment, page 349.

Alignment additional values (3.11)

See Alignment, page 349.

alignof expression additional values (3.11)

See Alignment, page 349.

4 STANDARD CONVERSIONS

lvalue-to-rvalue conversion for objects that contain an invalid
pointer (4.1)

The conversion is made as if the pointer was valid.

The value of the result of unsigned to signed conversion (4.7)

When an integer value is converted to a value of signed integer type, but cannot be
represented by the destination type, the value is truncated to the number of bits of the
destination type and then reinterpreted as a value of the destination type.

The result of inexact floating-point conversion (4.8)

When a floating-point value is converted to a value of a different floating-point type, and
the value is within the range of the destination type but cannot be represented exactly,
the value is rounded to the nearest floating-point value by default.

The value of the result of an inexact integer to floating-point
conversion (4.9)

When an integer value is converted to a value of a floating-point type, and the value is
within the range of the destination type but cannot be represented exactly, the value is
rounded to the nearest floating-point value by default.

The rank of extended signed integer types (4.13)

The implementation has no extended signed integer types.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C++

585

5 EXPRESSIONS

Passing argument of class type through ellipsis (5.2.2)

The result is a diagnostic and is then treated as a trivially copyable object.

The derived type for typeid (5.2.8)

The type of a typeid expression is an expression with dynamic type
std::type_info.

Conversion from a pointer to an integer (5.2.10)

See Casting, page 359.

Conversion from an integer to a pointer (5.2.10)

See Casting, page 359.

Converting a function pointer to an object pointer and vice versa
(5.2.10)

See Casting, page 359.

sizeof applied to fundamental types other than char, signed char,
and unsigned char (5.3.3)

See Basic data types—integer types, page 351, Basic data types—floating-point types,
page 356, and Pointer types, page 358.

Support for over-aligned types (5.3.4)

Over-aligned types are supported in new expressions.

The type of ptrdiff_t (5.7)

See ptrdiff_t, page 359.

The result of right shift of negative value (5.8)

In a bitwise right shift operation of the form E1 >> E2, if E1 is of signed type and has
a negative value, the value of the result is the integral part of the quotient E1/(2**E2),
except when E1 is –1.

AFE1_AFE2-1:1

586

Descriptions of implementation-defined behavior for C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

7 DECLARATIONS

The meaning of the attribute declaration (7)

There are no other attributes supported than what is specified in the C++ standard. See
Extended keywords, page 365, for supported attributes and ways to use them with
objects.

Access to an object that has volatile-qualified type (7.1.6.1)

See Declaring objects volatile, page 361.

The underlying type for enumeration (7.2)

See The enum type, page 352.

The meaning of the asm declaration (7.4)

An asm declaration enables the direct use of assembler instructions.

The semantics of linkage specifiers (7.5)

Only the string-literals "C" and "C++" can be used in a linkage specifier.

Linkage of objects to other languages than C (7.5)

The IAR Systems implementation of Standard C++ does not support linkage to other
languages than C.

The behavior of attribute-scoped tokens (7.6.1)

The use of an attribute-scoped token is not supported.

The behavior of non-standard attributes (7.6.1)

There are no other attributes supported other than what is specified in the C++ standard.
See Extended keywords, page 365, for a list supported attributes and ways to use them
with objects.

8 DECLARATORS

The string resulting from __func__ (8.4.1)

The value of __func__ is the C++ function name.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C++

587

9 CLASSES

Allocation of bitfields within a class object (9.6)

See Bitfields, page 352.

14 TEMPLATES

The semantics of linkage specification on templates (14)

Only the string-literals "C" and "C++" can be used in a linkage specifier.

15 EXCEPTION HANDLING

Stack unwinding before calling std::terminate() (15.3, 15.5.1)

When no suitable catch handler is found, the stack is not unwound before calling
std::terminate().

Stack unwinding before calling std::terminate() when a noexcept
specification is violated (15.5.1)

When a noexcept specification is violated, the stack is not unwound before calling
std::terminate().

Bad throw in std::unexpected (15.5.2)

If std::unexpected throws an exception that is not allowed by the exception
specification for the function that caused the original exception specification violation,
and that exception specification includes std::bad_exception, then the thrown
exception is replaced by a std::bad_exception and the search for another handler
continues.

16 PREPROCESSING DIRECTIVES

The numeric values of character literals in #if directives (16.1)

Numeric values of character literals in the #if and #elif preprocessing directives
match the values that they have in other expressions.

Negative value of character literal in preprocessor (16.1)

A plain char is treated as an unsigned char. See --char_is_signed, page 268 and
--char_is_unsigned, page 269. If a char is treated as a signed character, then character
literals in #if and #elif preprocessing directives can be negative.

AFE1_AFE2-1:1

588

Descriptions of implementation-defined behavior for C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

Search locations for < > header (16.2)

See Include file search procedure, page 251.

The search procedure for included source file (16.2)

See Include file search procedure, page 251.

Search locations for "" header (16.2)

See Include file search procedure, page 251.

The sequence of places searched for a header (16.2)

See Include file search procedure, page 251.

Nesting limit for #include directives (16.2)

The amount of available memory sets the limit.

#pragma (16.6)

See Recognized pragma directives (6.10.6), page 607.

The definition and meaning of __STDC__ (16.8)

__STDC__ is predefined to 1.

The text of __DATE__ when date of translation is not available (16.8)

The date of the translation is always available.

The text of __TIME__ when time of translation is not available (16.8)

The time of the translation is always available.

The definition and meaning of __STDC_VERSION__ (16.8)

__STDC_VERSION__ is predefined to 201112L.

17 LIBRARY INTRODUCTION

Headers for a freestanding implementation (17.6.1.3)

See DLIB runtime environment—implementation details, page 473.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C++

589

Linkage of names from Standard C library (17.6.2.3)

Declarations from the C library have "C" linkage.

Functions in Standard C++ library that can be recursively reentered
(17.6.5.8)

Functions can be recursively reentered, unless specified otherwise by the ISO C++
standard.

Exceptions thrown by standard library functions that do not have an
exception specification (17.6.5.12)

These functions do not throw any additional exceptions.

error_category for errors originating outside of the operating
system (17.6.5.14)

There is no additional error category.

18 LANGUAGE SUPPORT LIBRARY

Definition of NULL (18.2)

NULL is predefined as 0.

The type of ptrdiff_t (18.2)

See ptrdiff_t, page 359.

The type of size_t (18.2)

See size_t, page 359.

Exit status (18.5)

Control is returned to the __exit library function. See __exit, page 152.

The return value of bad_alloc::what (18.6.2.1)

The return value is a pointer to "bad allocation".

The return value of bad_array_new_length::what (18.6.2.2)

The return value is a pointer to "bad allocation".

AFE1_AFE2-1:1

590

Descriptions of implementation-defined behavior for C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

The return value of type_info::name() (18.7.1)

The return value is a pointer to a C string containing the name of the type.

The return value of bad_cast::what (18.7.2)

The return value is a pointer to "bad cast".

The return value of bad_typeid::what (18.7.3)

The return value is a pointer to "bad typeid".

The result of exception::what (18.8.1)

The return value is a pointer to "unknown".

The return value of bad_exception::what (18.8.2)

The return value is a pointer to "bad exception".

The use of non-POF functions as signal handlers (18.10)

Non-Plain Old Functions (POF) can be used as signal handlers if no uncaught
exceptions are thrown in the handler, and if the execution of the signal handler does not
trigger undefined behavior.

20 GENERAL UTILITIES LIBRARY

get_pointer_safety returning pointer_safety::relaxed or
pointer_safety::preferred when the implementation has relaxed
pointer safety (20.7.4)

The function get_pointer_safety always returns
std::pointer_safety::relaxed.

Support for over-aligned types (20.7.9.1, 20.7.11)

Over-aligned types are supported.

The exception type when a shared_ptr constructor fails (20.8.2.2.1)

Only std::bad_alloc is thrown.

The assignability of placeholder objects (20.9.9.1.4)

Placeholder objects are CopyAssignable.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C++

591

Support for extended alignment (20.10.7.6)

Extended alignment is supported.

Rounding or truncating values to the required precision when
converting between time_t values and time_point objects
(20.12.7.1)

Values are truncated to the required precision when converting between time_t values
and time_point objects.

21 STRINGS LIBRARY

The type of streampos (21.2.3.1)

The type of streampos is std::fpos<mbstate_t>.

The type of streamoff (21.2.3.1)

The type of streamoff is long.

Supported multibyte character encoding rules (21.2.3.1)

See Locale, page 159.

The type of u16streampos (21.2.3.2)

The type of u16streampos is streampos.

The return value of char_traits<char16_t>::eof (21.2.3.2)

The return value of char_traits<char16_t>::eof is EOF.

The type of u32streampos (21.2.3.3)

The type of u32streampos is streampos.

The return value of char_traits<char32_t>::eof (21.2.3.3)

The return value of char_traits<char32_t>::eof is EOF.

The type of wstreampos (21.2.3.4)

The type of wstreampos is streampos.

The return value of char_traits<wchar_t>::eof (21.2.3.3)

The return value of char_traits<wchar_t>::eof is EOF.

AFE1_AFE2-1:1

592

Descriptions of implementation-defined behavior for C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

22 LOCALIZATION LIBRARY

Locale object being global or per-thread (22.3.1)

There is one global locale object for the entire application.

Locale names (22.3.1.2)

See Locale, page 159.

The effects on the C locale of calling locale::global (22.3.1.5)

Calling this function with an unnamed locale has no effect.

The value of ctype<char>::table_size (22.4.1.3)

The value of ctype<char>::table_size is 256.

Additional formats for time_get::do_get_date (22.4.5.1.2)

No additional formats are accepted for time_get::do_get_date.

time_get::do_get_year and two-digit year numbers (22.4.5.1.2)

Two-digit year numbers are accepted by time_get::do_get_year. Years from 0 to
68 are parsed as meaning 2000 to 2068, and years from 69 to 99 are parsed as meaning
1969 to 1999.

Formatted character sequences generated by time_put::do_put in
the C locale (22.4.5.3.1)

The behavior is the same as that of the library function strftime.

Mapping from name to catalog when calling messages::do_open
(22.4.7.1.2)

No mapping occurs because this function does not open a catalog.

Mapping to message when calling messages::do_get (22.4.7.1.2)

No mapping occurs because this function does not open a catalog. dflt is returned.

Mapping to message when calling messages::do_close (22.4.7.1.2)

The function cannot be called because no catalog can be open.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C++

593

23 CONTAINERS LIBRARY

The type of array::iterator (23.3.2.1)

The type of array::iterator is T *.

The type of array::const_iterator (23.3.2.1)

The type of array::const_iterator is T const *.

The default number of buckets in unordered_map (23.5.4.2)

The IAR C/C++ Compiler for Arm makes a default construction of the unordered_map
before inserting the elements.

The default number of buckets in unordered_multimap (23.5.5.2)

The IAR C/C++ Compiler for Arm makes a default construction of the
unordered_multimap before inserting the elements.

The default number of buckets in unordered_set (23.5.6.2)

The IAR C/C++ Compiler for Arm makes a default construction of the unordered_set
before inserting the elements.

The default number of buckets in unordered_multiset (23.5.7.2)

The IAR C/C++ Compiler for Arm makes a default construction of the
unordered_multiset before inserting the elements.

25 ALGORITHMS LIBRARY

The underlying source of random numbers for random_shuffle
(25.3.12)

The underlying source is rand().

27 INPUT/OUTPUT LIBRARY

The behavior of iostream classes when traits::pos_type is not
streampos or when traits::off_type is not streamoff (27.2.2)

No specific behavior has been implemented for this case.

AFE1_AFE2-1:1

594

Descriptions of implementation-defined behavior for C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

The effects of calling ios_base::sync_with_stdio after any input or
output operation on standard streams (27.5.3.4)

Previous input/output is not handled in any special way.

Argument values to construct basic_ios::failure (27.5.5.4)

When basic_ios::clear throws an exception, it throws an exception of type
basic_ios::failure constructed with the badbit/failbit/eofbit set.

The basic_stringbuf move constructor and the copying of sequence
pointers (27.8.2.1)

The constructor copies the sequence pointers.

The effects of calling basic_streambuf::setbuf with non-zero
arguments (27.8.2.4)

This function has no effect.

The basic_filebuf move constructor and the copying of sequence
pointers (27.9.1.2)

The constructor copies the sequence pointers.

The effects of calling basic_filebuf::setbuf with non-zero arguments
(27.9.1.5)

This will offer the buffer to the C stream by calling setvbuf() with the associated file.
If anything goes wrong, the stream is reinitialized.

The effects of calling basic_filebuf::sync when a get area exists
(27.9.1.5)

A get area cannot exist.

28 REGULAR EXPRESSIONS LIBRARY

The type of regex_constants::error_type (28.5.3)

The type is an enum. See The enum type, page 352.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C++

595

29 ATOMIC OPERATIONS LIBRARY

The values of various ATOMIC_..._LOCK_FREE macros (29.4)

In cases where atomic operations are supported, these macros will have the value 2. See
Atomic operations, page 479.

30 THREAD SUPPORT LIBRARY

The presence and meaning of native_handle_type and native_handle
(30.2.3)

The thread system header is not supported.

ANNEX D (NORMATIVE): COMPATIBILITY FEATURES

The type of ios_base::streamoff (D.6)

The type of ios_base::streamoff is std::streamoff.

The type of ios_base::streampos (D.6)

The type of ios_base::streampos is std::streampos.

Implementation quantities
The IAR Systems implementation of C++ is, like all implementations, limited in the size
of the applications it can successfully process.

These limitations apply:

C++ feature Limitation

Nesting levels of compound statements, iteration control
structures, and selection control structures.

Limited only by memory.

Nesting levels of conditional inclusion. Limited only by memory.

Pointer, array, and function declarators (in any
combination) modifying a class, arithmetic, or incomplete
type in a declaration.

Limited only by memory.

Nesting levels of parenthesized expressions within a
full-expression.

Limited only by memory.

Number of characters in an internal identifier or macro
name.

Limited only by memory.

Table 50: C++ implementation quantities

AFE1_AFE2-1:1

596

Implementation quantities

IAR C/C++ Development Guide
Compiling and Linking for Arm

Number of characters in an external identifier. Limited only by memory.

External identifiers in one translation unit. Limited only by memory.

Identifiers with block scope declared in a block. Limited only by memory.

Macro identifiers simultaneously defined in one
translation unit.

Limited only by memory.

Parameters in one function definition. Limited only by memory.

Arguments in one function call. Limited only by memory.

Parameters in one macro definition. Limited only by memory.

Arguments in one macro invocation. Limited only by memory.

Characters in one logical source line. Limited only by memory.

Characters in a string literal (after concatenation). Limited only by memory.

Size of an object. Limited only by memory.

Nesting levels for #include files. Limited only by memory.

Case labels for a switch statement (excluding those for
any nested switch statements).

Limited only by memory.

Data members in a single class. Limited only by memory.

Enumeration constants in a single enumeration. Limited only by memory.

Levels of nested class definitions in a single
member-specification.

Limited only by memory.

Functions registered by atexit. Limited by heap memory in the built
application.

Functions registered by at_quick_exit. Limited by heap memory in the built
application.

Direct and indirect base classes. Limited only by memory.

Direct base classes for a single class. Limited only by memory.

Members declared in a single class. Limited only by memory.

Final overriding virtual functions in a class, accessible or
not.

Limited only by memory.

Direct and indirect virtual bases of a class. Limited only by memory.

Static members of a class. Limited only by memory.

Friend declarations in a class. Limited only by memory.

Access control declarations in a class. Limited only by memory.

Member initializers in a constructor definition. Limited only by memory.

C++ feature Limitation

Table 50: C++ implementation quantities (Continued)

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C++

597

Scope qualifiers of one identifier. Limited only by memory.

Nested external specifications. Limited only by memory.

Recursive constexpr function invocations. 1000. This limit can be changed by
using the compiler option
--max_cost_constexpr_call.

Full-expressions evaluated within a core constant
expression.

Limited only by memory.

Template arguments in a template declaration. Limited only by memory.

Recursively nested template instantiations, including
substitution during template argument deduction (14.8.2).

64 for a specific template. This limit
can be changed by using the
compiler option
--pending_instantiations.

Handlers per try block. Limited only by memory.

Throw specifications on a single function declaration. Limited only by memory.

Number of placeholders (20.9.9.1.4). 20 placeholders from _1 to _20.

C++ feature Limitation

Table 50: C++ implementation quantities (Continued)

AFE1_AFE2-1:1

598

Implementation quantities

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

599

Implementation-defined
behavior for Standard C
● Descriptions of implementation-defined behavior

If you are using C89 instead of Standard C, see Implementation-defined behavior
for C89, page 619.

Descriptions of implementation-defined behavior
This section follows the same order as the C standard. Each item includes references to
the ISO chapter and section (in parenthesis) that explains the implementation-defined
behavior.

Note: The IAR Systems implementation adheres to a freestanding implementation of
Standard C. This means that parts of a standard library can be excluded in the
implementation.

J.3.1 TRANSLATION

Diagnostics (3.10, 5.1.1.3)

Diagnostics are produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

White-space characters (5.1.1.2)

At translation phase three, each non-empty sequence of white-space characters is
retained.

AFE1_AFE2-1:1

600

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

J.3.2 ENVIRONMENT

The character set (5.1.1.2)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, it can be UTF-8, UTF-16,
or the system locale. See Text encodings, page 254.

Main (5.1.2.1)

The function called at program startup is called main. No prototype is declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior, see System initialization, page 148.

The effect of program termination (5.1.2.1)

Terminating the application returns the execution to the startup code (just after the call
to main).

Alternative ways to define main (5.1.2.2.1)

There is no alternative ways to define the main function.

The argv argument to main (5.1.2.2.1)

The argv argument is not supported.

Streams as interactive devices (5.1.2.3)

The streams stdin, stdout, and stderr are treated as interactive devices.

Multi-threaded environment (5.1.2.4)

By default, the IAR Systems runtime environment does not support more than one
thread of execution. With an optional third-party RTOS, it might support several threads
of execution.

Signals, their semantics, and the default handling (7.14)

In the DLIB runtime environment, the set of supported signals is the same as in Standard
C. A raised signal will do nothing, unless the signal function is customized to fit the
application.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

601

Signal values for computational exceptions (7.14.1.1)

In the DLIB runtime environment, there are no implementation-defined values that
correspond to a computational exception.

Signals at system startup (7.14.1.1)

In the DLIB runtime environment, there are no implementation-defined signals that are
executed at system startup.

Environment names (7.22.4.6)

In the DLIB runtime environment, there are no implementation-defined environment
names that are used by the getenv function.

The system function (7.22.4.8)

The system function is not supported.

J.3.3 IDENTIFIERS

Multibyte characters in identifiers (6.4.2)

Additional multibyte characters may appear in identifiers depending on the chosen
encoding for the source file. The supported multibyte characters must be translatable to
one Universal Character Name (UCN).

Significant characters in identifiers (5.2.4.1, 6.4.2)

The number of significant initial characters in an identifier with or without external
linkage is guaranteed to be no less than 200.

J.3.4 CHARACTERS

Number of bits in a byte (3.6)

A byte contains 8 bits.

Execution character set member values (5.2.1)

The values of the members of the execution character set are the values of the ASCII
character set, which can be augmented by the values of the extra characters in the source
file character set. The source file character set is determined by the chosen encoding for
the source file. See Text encodings, page 254.

AFE1_AFE2-1:1

602

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

Alphabetic escape sequences (5.2.2)

The standard alphabetic escape sequences have the values \a–7, \b–8, \f–12, \n–10,
\r–13, \t–9, and \v–11.

Characters outside of the basic executive character set (6.2.5)

A character outside of the basic executive character set that is stored in a char is not
transformed.

Plain char (6.2.5, 6.3.1.1)

A plain char is treated as an unsigned char. See --char_is_signed, page 268 and
--char_is_unsigned, page 269.

Source and execution character sets (6.4.4.4, 5.1.1.2)

The source character set is the set of legal characters that can appear in source files. It is
dependent on the chosen encoding for the source file. See Text encodings, page 254. By
default, the source character set is Raw.

The execution character set is the set of legal characters that can appear in the execution
environment. These are the execution character set for character constants and string
literals and their encoding types:

The DLIB runtime environment needs a multibyte character scanner to support a
multibyte execution character set. See Locale, page 159.

Integer character constants with more than one character (6.4.4.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

Execution character set Encoding type

L UTF-32

u UTF-16

U UTF-32

u8 UTF-8

none The source character set

Table 51: Execution character sets and their encodings

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

603

Wide character constants with more than one character (6.4.4.4)

A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Locale used for wide character constants (6.4.4.4)

See Source and execution character sets (6.4.4.4, 5.1.1.2), page 602.

Concatenating wide string literals with different encoding types
(6.4.5)

Wide string literals with different encoding types cannot be concatenated.

Locale used for wide string literals (6.4.5)

See Source and execution character sets (6.4.4.4, 5.1.1.2), page 602.

Source characters as executive characters (6.4.5)

All source characters can be represented as executive characters.

Encoding of wchar_t, char16_t, and char32_t (6.10.8.2)

wchar_t has the encoding UTF-32, char16_t has the encoding UTF-16, and
char32_t has the encoding UTF-32.

J.3.5 INTEGERS

Extended integer types (6.2.5)

There are no extended integer types.

Range of integer values (6.2.6.2)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign—1 for negative, 0 for positive and zero.

For information about the ranges for the different integer types, see Basic data types—
integer types, page 351.

The rank of extended integer types (6.3.1.1)

There are no extended integer types.

Signals when converting to a signed integer type (6.3.1.3)

No signal is raised when an integer is converted to a signed integer type.

AFE1_AFE2-1:1

604

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

Signed bitwise operations (6.5)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers—in other words, the sign-bit will be treated as any other bit, except
for the operator >> which will behave as an arithmetic right shift.

J.3.6 FLOATING POINT

Accuracy of floating-point operations (5.2.4.2.2)

The accuracy of floating-point operations is unknown.

Accuracy of floating-point conversions (5.2.4.2.2)

The accuracy of floating-point conversions is unknown.

Rounding behaviors (5.2.4.2.2)

There are no non-standard values of FLT_ROUNDS.

Evaluation methods (5.2.4.2.2)

There are no non-standard values of FLT_EVAL_METHOD.

Converting integer values to floating-point values (6.3.1.4)

When an integer value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

Converting floating-point values to floating-point values (6.3.1.5)

When a floating-point value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

Denoting the value of floating-point constants (6.4.4.2)

The round-to-nearest rounding mode is used (FLT_ROUNDS is defined to 1).

Contraction of floating-point values (6.5)

Floating-point values are contracted. However, there is no loss in precision and because
signaling is not supported, this does not matter.

Default state of FENV_ACCESS (7.6.1)

The default state of the pragma directive FENV_ACCESS is OFF.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

605

Additional floating-point mechanisms (7.6, 7.12)

There are no additional floating-point exceptions, rounding-modes, environments, and
classifications.

Default state of FP_CONTRACT (7.12.2)

The default state of the pragma directive FP_CONTRACT is OFF.

J.3.7 ARRAYS AND POINTERS

Conversion from/to pointers (6.3.2.3)

For information about casting of data pointers and function pointers, see Casting, page
359.

ptrdiff_t (6.5.6)

For information about ptrdiff_t, see ptrdiff_t, page 359.

J.3.8 HINTS

Honoring the register keyword (6.7.1)

User requests for register variables are not honored.

Inlining functions (6.7.4)

User requests for inlining functions increases the chance, but does not make it certain,
that the function will actually be inlined into another function. See Inlining functions,
page 86.

J.3.9 STRUCTURES, UNIONS, ENUMERATIONS, AND
BITFIELDS

Sign of 'plain' bitfields (6.7.2, 6.7.2.1)

For information about how a 'plain' int bitfield is treated, see Bitfields, page 352.

Possible types for bitfields (6.7.2.1)

All integer types can be used as bitfields in the compiler’s extended mode, see -e, page
278.

Atomic types for bitfields (6.7.2.1)

Atomic types cannot be used as bitfields.

AFE1_AFE2-1:1

606

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

Bitfields straddling a storage-unit boundary (6.7.2.1)

A bitfield is always placed in one—and one only—storage unit, which means that the
bitfield cannot straddle a storage-unit boundary.

Allocation order of bitfields within a unit (6.7.2.1)

For information about how bitfields are allocated within a storage unit, see Bitfields,
page 352.

Alignment of non-bitfield structure members (6.7.2.1)

The alignment of non-bitfield members of structures is the same as for the member
types, see Alignment, page 349.

Integer type used for representing enumeration types (6.7.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

J.3.10 QUALIFIERS

Access to volatile objects (6.7.3)

Any reference to an object with volatile qualified type is an access, see Declaring
objects volatile, page 361.

J.3.11 PREPROCESSING DIRECTIVES

Locations in #pragma for header names (6.4, 6.4.7)

These pragma directives take header names as parameters at the specified positions:

#pragma include_alias ("header", "header")
#pragma include_alias (<header>, <header>)

Mapping of header names (6.4.7)

Sequences in header names are mapped to source file names verbatim. A backslash '\'
is not treated as an escape sequence. See Overview of the preprocessor, page 457.

Character constants in constant expressions (6.10.1)

A character constant in a constant expression that controls conditional inclusion
matches the value of the same character constant in the execution character set.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

607

The value of a single-character constant (6.10.1)

A single-character constant may only have a negative value if a plain character (char)
is treated as a signed character, see --char_is_signed, page 268.

Including bracketed filenames (6.10.2)

For information about the search algorithm used for file specifications in angle brackets
<>, see Include file search procedure, page 251.

Including quoted filenames (6.10.2)

For information about the search algorithm used for file specifications enclosed in
quotes, see Include file search procedure, page 251.

Preprocessing tokens in #include directives (6.10.2)

Preprocessing tokens in an #include directive are combined in the same way as outside
an #include directive.

Nesting limits for #include directives (6.10.2)

There is no explicit nesting limit for #include processing.

inserts \ in front of \u (6.10.3.2)

(stringify argument) inserts a \ character in front of a Universal Character Name
(UCN) in character constants and string literals.

Recognized pragma directives (6.10.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect. If a pragma
directive is listed both in the chapter Pragma directives and here, the information
provided in the chapter Pragma directives overrides the information here.

alias_def

alignment

alternate_target_def

baseaddr

basic_template_matching

building_runtime

can_instantiate

AFE1_AFE2-1:1

608

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

codeseg

constseg

cplusplus_neutral

cspy_support

cstat_dump

dataseg

define_type_info

do_not_instantiate

early_dynamic_initialization

exception_neutral

function

function_category

function_effects

hdrstop

important_typedef

ident

implements_aspect

init_routines_only_for_needed_variables

initialization_routine

inline_template

instantiate

keep_definition

library_default_requirements

library_provides

library_requirement_override

memory

module_name

no_pch

no_vtable_use

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

609

once

pop_macro

preferred_typedef

push_macro

separate_init_routine

set_generate_entries_without_bounds

system_include

uses_aspect

vector

warnings

Default __DATE__ and __TIME__ (6.10.8)

The definitions for __TIME__ and __DATE__ are always available.

J.3.12 LIBRARY FUNCTIONS

Additional library facilities (5.1.2.1)

Most of the standard library facilities are supported. Some of them—the ones that need
an operating system—require a low-level implementation in the application. For more
information, see The DLIB runtime environment, page 123.

Diagnostic printed by the assert function (7.2.1.1)

The assert() function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Representation of the floating-point status flags (7.6.2.2)

There is no representation of floating-point status flags.

Feraiseexcept raising floating-point exception (7.6.2.3)

For information about the feraiseexcept function raising floating-point exceptions,
see Floating-point environment, page 357.

AFE1_AFE2-1:1

610

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

Strings passed to the setlocale function (7.11.1.1)

For information about strings passed to the setlocale function, see Locale, page 159.

Types defined for float_t and double_t (7.12)

The FLT_EVAL_METHOD macro can only have the value 0.

Domain errors (7.12.1)

No function generates other domain errors than what the standard requires.

Return values on domain errors (7.12.1)

Mathematic functions return a floating-point NaN (not a number) for domain errors.

Underflow errors (7.12.1)

Mathematic functions set errno to the macro ERANGE (a macro in errno.h) and return
zero for underflow errors.

fmod return value (7.12.10.1)

The fmod function sets errno to a domain error and returns a floating-point NaN when
the second argument is zero.

remainder return value (7.12.10.2)

The remainder function sets errno to a domain error and returns a floating-point NaN
when the second argument is zero.

The magnitude of remquo (7.12.10.3)

The magnitude is congruent modulo INT_MAX.

remquo return value (7.12.10.3)

The remquo function sets errno to a domain error and returns a floating-point NaN
when the second argument is zero.

signal() (7.14.1.1)

The signal part of the library is not supported.

Note: The default implementation of signal does not perform anything. Use the
template source code to implement application-specific signal handling. See signal,
page 156 and raise, page 154, respectively.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

611

NULL macro (7.19)

The NULL macro is defined to 0.

Terminating newline character (7.21.2)

Stream functions recognize either newline or end of file (EOF) as the terminating
character for a line.

Space characters before a newline character (7.21.2)

Space characters written to a stream immediately before a newline character are
preserved.

Null characters appended to data written to binary streams (7.21.2)

No null characters are appended to data written to binary streams.

File position in append mode (7.21.3)

The file position is initially placed at the beginning of the file when it is opened in
append-mode.

Truncation of files (7.21.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See Briefly about input and output (I/O), page 124.

File buffering (7.21.3)

An open file can be either block-buffered, line-buffered, or unbuffered.

A zero-length file (7.21.3)

Whether a zero-length file exists depends on the application-specific implementation of
the low-level file routines.

Legal file names (7.21.3)

The legality of a filename depends on the application-specific implementation of the
low-level file routines.

Number of times a file can be opened (7.21.3)

Whether a file can be opened more than once depends on the application-specific
implementation of the low-level file routines.

AFE1_AFE2-1:1

612

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

Multibyte characters in a file (7.21.3)

The encoding of multibyte characters in a file depends on the application-specific
implementation of the low-level file routines.

remove() (7.21.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See Briefly about input and output (I/O),
page 124.

rename() (7.21.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See Briefly about
input and output (I/O), page 124.

Removal of open temporary files (7.21.4.3)

Whether an open temporary file is removed depends on the application-specific
implementation of the low-level file routines.

Mode changing (7.21.5.4)

freopen closes the named stream, then reopens it in the new mode. The streams stdin,
stdout, and stderr can be reopened in any new mode.

Style for printing infinity or NaN (7.21.6.1, 7.29.2.1)

The style used for printing infinity or NaN for a floating-point constant is inf and nan
(INF and NAN for the F conversion specifier), respectively. The n-char-sequence is not
used for nan.

%p in printf() (7.21.6.1, 7.29.2.1)

The argument to a %p conversion specifier, print pointer, to printf() is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the %x conversion specifier.

Reading ranges in scanf (7.21.6.2, 7.29.2.1)

A - (dash) character is always treated as a range symbol.

%p in scanf (7.21.6.2, 7.29.2.2)

The %p conversion specifier, scan pointer, to scanf() reads a hexadecimal number and
converts it into a value with the type void *.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

613

File position errors (7.21.9.1, 7.21.9.3, 7.21.9.4)

On file position errors, the functions fgetpos, ftell, and fsetpos store EFPOS in
errno.

An n-char-sequence after nan (7.22.1.3, 7.29.4.1.1)

An n-char-sequence after a NaN is read and ignored.

errno value at underflow (7.22.1.3, 7.29.4.1.1)

errno is set to ERANGE if an underflow is encountered.

Zero-sized heap objects (7.22.3)

A request for a zero-sized heap object will return a valid pointer and not a null pointer.

Behavior of abort and exit (7.22.4.1, 7.22.4.5)

A call to abort() or _Exit() will not flush stream buffers, not close open streams, and
not remove temporary files.

Termination status (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7)

The termination status will be propagated to __exit() as a parameter. exit(),
_Exit(), and quick_exit use the input parameter, whereas abort uses
EXIT_FAILURE.

The system function return value (7.22.4.8)

The system function returns -1 when its argument is not a null pointer.

Range and precision of clock_t and time_t (7.27)

The range and precision of clock_t is up to your implementation. The range and
precision of time_t is 19000101 up to 20351231 in tics of a second if the 32-bit
time_t is used. It is -9999 up to 9999 years in tics of a second if the 64-bit time_t is
used. See time.h, page 481

The time zone (7.27.1)

The local time zone and daylight savings time must be defined by the application. For
more information, see time.h, page 481.

The era for clock() (7.27.2.1)

The era for the clock function is up to your implementation.

AFE1_AFE2-1:1

614

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

TIME_UTC epoch (7.27.2.5)

The epoch for TIME_UTC is up to your implementation.

%Z replacement string (7.27.3.5, 7.29.5.1)

By default, ":" or "" (an empty string) is used as a replacement for %Z. Your application
should implement the time zone handling. See __time32, __time64, page 157.

Math functions rounding mode (F.10)

The functions in math.h honor the rounding direction mode in FLT-ROUNDS.

J.3.13 ARCHITECTURE

Values and expressions assigned to some macros (5.2.4.2, 7.20.2,
7.20.3)

There are always 8 bits in a byte.

MB_LEN_MAX is at the most 6 bytes depending on the library configuration that is used.

For information about sizes, ranges, etc for all basic types, see Data representation, page
349.

The limit macros for the exact-width, minimum-width, and fastest minimum-width
integer types defined in stdint.h have the same ranges as char, short, int, long,
and long long.

The floating-point constant FLT_ROUNDS has the value 1 (to nearest) and the
floating-point constant FLT_EVAL_METHOD has the value 0 (treat as is).

Accessing another thread's autos or thread locals (6.2.4)

The IAR Systems runtime environment does not allow multiple threads. With a
third-party RTOS, the access will take place and work as intended as long as the
accessed item has not gone out of its scope.

The number, order, and encoding of bytes (6.2.6.1)

See Data representation, page 349.

Extended alignments (6.2.8)

For information about extended alignments, see data_alignment, page 388.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

615

Valid alignments (6.2.8)

For information about valid alignments on fundamental types, see the chapter Data
representation.

The value of the result of the sizeof operator (6.5.3.4)

See Data representation, page 349.

J.4 LOCALE

Members of the source and execution character set (5.2.1)

By default, the compiler accepts all one-byte characters in the host’s default character
set. The chapter Encodings describes how to change the default encoding for the source
character set, and by that the encoding for plain character constants and plain string
literals in the execution character set.

The meaning of the additional characters (5.2.1.2)

Any multibyte characters in the extended source character set is translated into the
following encoding for the execution character set:

It is up to your application with the support of the library configuration to handle the
characters correctly.

Shift states for encoding multibyte characters (5.2.1.2)

No shift states are supported.

Direction of successive printing characters (5.2.2)

The application defines the characteristics of a display device.

Execution character set Encoding

L typed UTF-32

u typed UTF-16

U typed UTF-32

u8 typed UTF-8

none typed The same as the source character set

Table 52: Translation of multibyte characters in the extended source character set

AFE1_AFE2-1:1

616

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

The decimal point character (7.1.1)

For a library with the configuration Normal or Tiny, the default decimal-point character
is a '.'. For a library with the configuration Full, the chosen locale defines what character
is used for the decimal point.

Printing characters (7.4, 7.30.2)

The set of printing characters is determined by the chosen locale.

Control characters (7.4, 7.30.2)

The set of control characters is determined by the chosen locale.

Characters tested for (7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10,
7.4.1.11, 7.30.2.1.2, 7.30.5.1.3, 7.30.2.1.7, 7.30.2.1.9, 7.30.2.1.10,
7.30.2.1.11)

The set of characters tested for the character-based functions are determined by the
chosen locale. The set of characters tested for the wchar_t-based functions are the
UTF-32 code points 0x0 to 0x7F.

The native environment (7.11.1.1)

The native environment is the same as the "C" locale.

Subject sequences for numeric conversion functions (7.22.1,
7.29.4.1)

There are no additional subject sequences that can be accepted by the numeric
conversion functions.

The collation of the execution character set (7.24.4.3, 7.29.4.4.2)

Collation is not supported.

AFE1_AFE2-1:1

Implementation-defined behavior for Standard C

617

Message returned by strerror (7.24.6.2)

The messages returned by the strerror function depending on the argument is:

Formats for time and date (7.27.3.5, 7.29.5.1)

Time zone information is as you have implemented it in the low-level function
__getzone.

Character mappings (7.30.1)

The character mappings supported are tolower and toupper.

Character classifications (7.30.1)

The character classifications that are supported are alnum, cntrl, digit, graph,
lower, print, punct, space, upper, and xdigit.

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error

EILSEQ multi-byte encoding error

<0 || >99 unknown error

all others error nnn

Table 53: Message returned by strerror()—DLIB runtime environment

AFE1_AFE2-1:1

618

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

619

Implementation-defined
behavior for C89
● Descriptions of implementation-defined behavior

If you are using Standard C instead of C89, see Implementation-defined behavior
for Standard C, page 599.

Descriptions of implementation-defined behavior
The descriptions follow the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

TRANSLATION

Diagnostics (5.1.1.3)

Diagnostics are produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

ENVIRONMENT

Arguments to main (5.1.2.2.2.1)

The function called at program startup is called main. No prototype was declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior for the DLIB runtime environment, see System initialization,
page 148.

AFE1_AFE2-1:1

620

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

Interactive devices (5.1.2.3)

The streams stdin and stdout are treated as interactive devices.

IDENTIFIERS

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

Identifiers with external linkage are treated as case-sensitive.

CHARACTERS

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. It is
dependent on the chosen encoding for the source file. See Text encodings, page 254. By
default, the source character set is Raw.

The execution character set is the set of legal characters that can appear in the execution
environment. These are the execution character set for character constants and string
literals and their encoding types:

The DLIB runtime environment needs a multibyte character scanner to support a
multibyte execution character set. See Locale, page 159.

Execution character set Encoding type

L UTF-32

u UTF-16

U UTF-32

u8 UTF-8

none The source character set

Table 54: Execution character sets and their encodings

AFE1_AFE2-1:1

Implementation-defined behavior for C89

621

Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT.
The standard include file limits.h defines CHAR_BIT as 8.

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way. In other words, the
same representation value is used for each member in the character sets except for the
escape sequences listed in the ISO standard.

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant generates a diagnostic message, and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Converting multibyte characters (6.1.3.4)

See Locale, page 159.

Range of 'plain' char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.

INTEGERS

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign—1 for negative, 0 for positive and zero.

See Basic data types—integer types, page 351, for information about the ranges for the
different integer types.

AFE1_AFE2-1:1

622

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal
length, the bit-pattern remains the same. In other words, a large enough value will be
converted into a negative value.

Signed bitwise operations (6.3)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers—in other words, the sign-bit will be treated as any other bit, except
for the operator >> which will behave as an arithmetic right shift.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)

The result of a right-shift of a negative-valued signed integral type preserves the sign-bit.
For example, shifting 0xFF00 down one step yields 0xFF80.

FLOATING POINT

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEEE 854–
1987. A typical floating-point number is built up of a sign-bit (s), a biased exponent (e),
and a mantissa (m).

See Basic data types—floating-point types, page 356, for information about the ranges
and sizes for the different floating-point types: float and double.

Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.

Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded (up or down) to the nearest
suitable value.

AFE1_AFE2-1:1

Implementation-defined behavior for C89

623

ARRAYS AND POINTERS

size_t (6.3.3.4, 7.1.1)

See size_t, page 359, for information about size_t.

Conversion from/to pointers (6.3.4)

See Casting, page 359, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff_t, page 359, for information about the ptrdiff_t.

REGISTERS

Honoring the register keyword (6.5.1)

User requests for register variables are not honored.

STRUCTURES, UNIONS, ENUMERATIONS, AND BITFIELDS

Improper access to a union (6.3.2.3)

If a union gets its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alignment of structure members (6.5.2.1)

See the section Basic data types—integer types, page 351, for information about the
alignment requirement for data objects.

Sign of 'plain' bitfields (6.5.2.1)

A 'plain' int bitfield is treated as an unsigned int bitfield. All integer types are
allowed as bitfields.

Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the chosen bitfield integer type.

AFE1_AFE2-1:1

624

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

QUALIFIERS

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.

DECLARATORS

Maximum numbers of declarators (6.5.4)

The number of declarators is not limited. The number is limited only by the available
memory.

STATEMENTS

Maximum number of case statements (6.6.4.2)

The number of case statements (case values) in a switch statement is not limited. The
number is limited only by the available memory.

PREPROCESSING DIRECTIVES

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain' character
is treated as a signed character.

Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A parent file is the file that contains the #include
directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source

AFE1_AFE2-1:1

Implementation-defined behavior for C89

625

file currently being processed. If there is no grandparent file and the file is not found,
the search continues as if the filename was enclosed in angle brackets.

Character sequences (6.8.2)

Preprocessor directives use the source character set, except for escape sequences. Thus,
to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"

Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile","rt");

Recognized pragma directives (6.8.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect. If a pragma
directive is listed both in the chapter Pragma directives and here, the information
provided in the chapter Pragma directives overrides the information here.

alignment

baseaddr

basic_template_matching

building_runtime

can_instantiate

codeseg

constseg

cspy_support

dataseg

define_type_info

do_not_instantiate

early_dynamic_initialization

function

function_effects

hdrstop

important_typedef

instantiate

AFE1_AFE2-1:1

626

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

keep_definition

library_default_requirements

library_provides

library_requirement_override

memory

module_name

no_pch

once

system_include

vector

warnings

Default __DATE__ and __TIME__ (6.8.8)

The definitions for __TIME__ and __DATE__ are always available.

LIBRARY FUNCTIONS FOR THE IAR DLIB RUNTIME
ENVIRONMENT

Note: Some items in this list only apply when file descriptors are supported by the
library configuration. For more information about runtime library configurations, see
the chapter The DLIB runtime environment.

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)

The assert() function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

AFE1_AFE2-1:1

Implementation-defined behavior for C89

627

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to fmod() is zero, the function returns NaN—errno is set to
EDOM.

signal() (7.7.1.1)

The signal part of the library is not supported.

Note: The default implementation of signal does not perform anything. Use the
template source code to implement application-specific signal handling. See signal,
page 156 and raise, page 154, respectively.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

No null characters are appended to data written to binary streams.

Files (7.9.3)

Whether the file position indicator of an append-mode stream is initially positioned at
the beginning or the end of the file, depends on the application-specific implementation
of the low-level file routines.

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See Briefly about input and output (I/O), page 124.

The characteristics of the file buffering is that the implementation supports files that are
unbuffered, line buffered, or fully buffered.

Whether a zero-length file actually exists depends on the application-specific
implementation of the low-level file routines.

AFE1_AFE2-1:1

628

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

Rules for composing valid file names depends on the application-specific
implementation of the low-level file routines.

Whether the same file can be simultaneously open multiple times depends on the
application-specific implementation of the low-level file routines.

remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See Briefly about input and output (I/O),
page 124.

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See Briefly about
input and output (I/O), page 124.

%p in printf() (7.9.6.1)

The argument to a %p conversion specifier, print pointer, to printf() is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the %x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf() reads a hexadecimal number and
converts it into a value with the type void *.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

On file position errors, the functions fgetpos and ftell store EFPOS in errno.

Message generated by perror() (7.9.10.4)

The generated message is:

usersuppliedprefix:errormessage

Allocating zero bytes of memory (7.10.3)

The calloc(), malloc(), and realloc() functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

AFE1_AFE2-1:1

Implementation-defined behavior for C89

629

Behavior of abort() (7.10.4.1)

The abort() function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The argument passed to the exit function will be the return value returned by the main
function to cstartup.

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in getenv, page 152.

system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See system, page 157.

Message returned by strerror() (7.11.6.2)

The messages returned by strerror() depending on the argument is:

The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in __time32,
__time64, page 157.

clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See clock, page 151.

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error

EILSEQ multi-byte encoding error

<0 || >99 unknown error

all others error nnn

Table 55: Message returned by strerror()—DLIB runtime environment

AFE1_AFE2-1:1

630

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
Compiling and Linking for Arm

AFE1_AFE2-1:1

Index

631

A
--a (ielfdump option). 549
__AAPCS__ (predefined symbol) 458
--aapcs (compiler option) . 267
__AAPCS_VFP__ (predefined symbol) 458
ABI, AEABI and IA64 . 218
abort

implementation-defined behavior in C. 613
implementation-defined behavior in C89 (DLIB) 629
system termination (DLIB) . 147

__absolute (extended keyword) . 369
absolute location

data, placing at (@) . 231
language support for . 189
placing data in registers (@) . 233
#pragma location . 396

--advanced_heap (linker option) . 315
--aeabi (compiler option) . 267
_AEABI_PORTABILITY_LEVEL (preprocessor
symbol). 221
_AEABI_PORTABLE (preprocessor symbol) 221
algorithm (library header file). 475
alias_def (pragma directive) . 607
alignment . 349

extended (implementation-defined behavior for C++) . 591
forcing stricter (#pragma data_alignment) 388
implementation-defined behavior for C++. 584
in structures (#pragma pack) . 400
in structures, causing problems 228
of an object (__ALIGNOF__) 190
of data types. 350
restrictions for inline assembler 165

alignment (pragma directive) 607, 625
__ALIGNOF__ (operator) . 190
alignof expression,
implementation-defined behavior for C++ 584
--align_sp_on_irq (compiler option) 268
--all (ielfdump option) . 550

alternate_target_def (pragma directive) 607
anonymous structures . 229
ANSI C. See C89
application

building, overview of . 69
execution, overview of. 64
startup and termination (DLIB) 145

argv (argument), implementation-defined behavior in C. . 600
Arm

and Thumb code, overview . 78
supported devices. 55

__arm (extended keyword) . 369
--arm (compiler option). 268
Arm TrustZone . 222
__ARMVFP__ (predefined symbol) 462
__ARMVFPV2__ (predefined symbol) 462
__ARMVFPV3__ (predefined symbol) 462
__ARMVFPV4__ (predefined symbol) 462
__ARMVFP_D16__ (predefined symbol) 462
__ARMVFP_SP__ (predefined symbol). 462
__ARM_ADVANCED_SIMD__ (predefined symbol) . . 458
__ARM_ARCH (predefined symbol) 459
__ARM_ARCH_ISA_ARM (predefined symbol) 459
__ARM_ARCH_ISA_THUMB (predefined symbol). . . . 459
__ARM_ARCH_PROFILE (predefined symbol) 459
__ARM_BIG_ENDIAN (predefined symbol) 459
__arm_cdp (intrinsic function) . 410
__arm_cdp2 (intrinsic function) . 410
__ARM_FEATURE_CMSE (predefined symbol) 459
__ARM_FEATURE_CRC32 (predefined symbol). 460
__ARM_FEATURE_CRYPTO (predefined symbol) 460
__ARM_FEATURE_DIRECTED_ROUNDING (predefined
symbol). 460
__ARM_FEATURE_DSP (predefined symbol) 460
__ARM_FEATURE_FMA (predefined symbol) 460
__ARM_FEATURE_IDIV (predefined symbol) 460
__ARM_FEATURE_NUMERIC_MAXMIN (predefined
symbol). 461
__ARM_FEATURE_UNALIGNED (predefined symbol) 461
__ARM_FP (predefined symbol) 461

Index

AFE1_AFE2-1:1

632
IAR C/C++ Development Guide
Compiling and Linking for Arm

__arm_ldc (intrinsic function). 411
__arm_ldcl (intrinsic function) . 411
__arm_ldcl2 (intrinsic function) . 411
__arm_ldc2 (intrinsic function). 411
__arm_mcr (intrinsic function) . 412
__arm_mcrr (intrinsic function) . 412
__arm_mcrr2 (intrinsic function) 412
__arm_mcr2 (intrinsic function) . 412
__ARM_MEDIA__ (predefined symbol) 461
__arm_mrc (intrinsic function) . 413
__arm_mrc2 (intrinsic function) . 413
__arm_mrrc (intrinsic function) . 413
__arm_mrrc2 (intrinsic function) 413
__ARM_NEON (predefined symbol) 461
__ARM_NEON_FP (predefined symbol) 461
__ARM_PROFILE_M__ (predefined symbol). 462
__arm_rsr (intrinsic function) . 413
__arm_rsrp (intrinsic function) . 414
__arm_rsr64 (intrinsic function) . 413
__arm_stc (intrinsic function) . 414
__arm_stcl (intrinsic function) 414–415
__arm_stc2 (intrinsic function) . 414
__arm_stc2l (intrinsic function) 414–415
__arm_wsr (intrinsic function) . 415
__ARM4TM__ (predefined symbol) 463
__ARM5__ (predefined symbol) 463
__ARM5E__ (predefined symbol) 463
__ARM6__ (predefined symbol) 463
__ARM6M__ (predefined symbol). 463
__ARM6SM__ (predefined symbol). 463
__ARM7A__ (predefined symbol) 463
__ARM7EM__ (predefined symbol) 463
__ARM7M__ (predefined symbol). 463
__ARM7R__ (predefined symbol) 463
__ARM8A__ (predefined symbol) 463
__ARM8EM_MAINLINE__ (predefined symbol) 463
__ARM8M_BASELINE__ (predefined symbol) 463
__ARM8M_MAINLINE__ (predefined symbol) 463
__ARM8R__ (predefined symbol) 463

array (library header file) . 475
arrays

implementation-defined behavior 605
implementation-defined behavior in C89 623
non-lvalue . 192
of incomplete types . 191
single-value initialization. 193

arrays of incomplete types . 202
array::const_iterator, implementation-defined behavior for
C++. 593
array::iterator, implementation-defined behavior for C++ 593
asm, __asm (language extension) 166

implementation-defined behavior for C++. 586
assembler code

calling from C . 172
calling from C++ . 175
inserting inline . 164

assembler directives
for call frame information . 182
using in inline assembler code 165

assembler instructions
for software interrupts . 84

assembler instructions, inserting inline 164
assembler labels

default for application startup 69, 111
making public (--public_equ). 299

assembler language interface . 163
calling convention. See assembler code

assembler list file, generating . 283
assembler output file. 174
assembler statements. 194
asserts

implementation-defined behavior of in C. 609
implementation-defined behavior of in C89, (DLIB) . . 626
including in application . 468

assert.h (DLIB header file) . 474
assignment of pointer types. 193
@ (operator)

placing at absolute address. 231
placing in sections . 232

AFE1_AFE2-1:1

Index

633

atexit limit, setting up . 112
atexit, reserving space for calls . 112
atomic accesses. 479
atomic operations . 195, 479
atomic types for bitfields

implementation-defined behavior in C. 605
atomic (library header file) . 475
ATOMIC_..._LOCK_FREE macros,
implementation-defined behavior for C++ 595
attribute declaration,
implementation-defined behavior for C++ 586
attributes

non-standard (implementation-
defined behavior for C++) . 586
object . 367
type . 365

auto variables . 74
at function entrance . 178
programming hints for efficient code 240
using in inline assembler statements 165

auto, packing algorithm for initializers 499

B
backtrace information See call frame information
bad_alloc::what,
implementation-defined behavior for C++ 589
bad_array_new_length::what,
implementation-defined behavior for C++ 589
bad_cast::what,
implementation-defined behavior for C++ 590
bad_exception::what,
implementation-defined behavior for C++ 590
bad_typeid::what,
implementation-defined behavior for C++ 590
Barr, Michael . 47
baseaddr (pragma directive) 607, 625
__BASE_FILE__ (predefined symbol). 463
basic_filebuf move
constructor, implementation-defined behavior for C++ . . 594

basic_filebuf::setbuf,
implementation-defined behavior for C++ 594
basic_filebuf::sync,
implementation-defined behavior for C++ 594
--basic_heap (linker option) . 316
basic_ios::failure,
implementation-defined behavior for C++ 594
basic_streambuf::setbuf,
implementation-defined behavior for C++ 594
basic_stringbuf move
constructor, implementation-defined behavior for C++ . . 594
basic_template_matching (pragma directive) 607, 625
batch files

error return codes . 253
none for building library from command line 133

--BE32 (linker option) . 316
--BE8 (linker option) . 316
__big_endian (extended keyword) 370
big-endian (byte order) . 70
--bin (ielftool option) . 550
binary streams. 611
binary streams in C89 (DLIB). 627
--bin-multi (ielftool option). 550
bit negation . 242
bitfields

data representation of. 352
hints . 227
implementation-defined behavior for C++. 587
implementation-defined behavior in C. 605
implementation-defined behavior in C89 623
non-standard types in . 190

bitfields (pragma directive). 386
bits in a byte, implementation-defined behavior in C 601
bitset (library header file) . 475
bits, number of in
one byte (implementation-defined behavior for C++) 580
bold style, in this guide . 48
bool (data type) . 351

adding support for in DLIB 474, 478
--bounds_table_size (linker option) 311

AFE1_AFE2-1:1

634
IAR C/C++ Development Guide
Compiling and Linking for Arm

.bss (ELF section) . 518
building_runtime (pragma directive). 607, 625
__BUILD_NUMBER__ (predefined symbol) 463
byte order . 70

identifying . 465
bytes, number
of bits in (implementation-defined behavior for C++) . . . 580

C
C and C++ linkage . 176
C/C++ calling convention. See calling convention
C header files . 474
C language, overview . 187
call frame information . 182

in assembler list file . 174
in assembler list file (-lA) . 283

call graph root (stack usage control directive). 524
call stack . 182
callee-save registers, stored on stack. 74
calling convention

C++, requiring C linkage . 175
in compiler. 175

calloc (library function) . 75
See also heap
implementation-defined behavior in C89 (DLIB) 628

calls (pragma directive). 387
--call_graph (linker option). 317
call_graph_root (pragma directive) 388
call-info (in stack usage control file). 528
canaries. 87
can_instantiate (pragma directive) 607, 625
cassert (library header file) . 478
casting

implementation-defined behavior for C++. 584–585
of pointers and integers . 359
pointers to integers, language extension. 192

category (in stack usage control file) 527
ccomplex (library header file). 478

cctype (DLIB header file) . 478
__CDP (intrinsic function) . 416
__CDP2 (intrinsic function) . 416
cerrno (DLIB header file) . 478
cexit (system termination code)

customizing system termination. 148
in DLIB . 145

cfenv (library header file) . 478
CFI (assembler directive) . 182
CFI_COMMON_ARM (call frame information macro) . . 185
CFI_COMMON_Thumb (call frame information macro). 185
CFI_NAMES_BLOCK (call frame information macro) . . 185
cfloat (DLIB header file) . 478
char (data type) . 351

changing default representation (--char_is_signed) . . . 269
changing representation (--char_is_unsigned) 269
implementation-defined behavior for C++. 583
implementation-defined behavior in C. 602
signed and unsigned. 352

character literals,
implementation-defined behavior for C++ 582, 587
character set

implementation-defined behavior 580
implementation-defined behavior for C++. 580
implementation-defined behavior in C. 600

characters
implementation-defined behavior in C. 601
implementation-defined behavior in C89 620

--char_is_signed (compiler option) 269
--char_is_unsigned (compiler option) 269
char_traits<char16_t>::eof,
implementation-defined behavior for C++ 591
char_traits<char32_t>::eof,
implementation-defined behavior for C++ 591
char_traits<wchar_t>::eof,
implementation-defined behavior for C++ 591
char16_t (data type) . 352

implementation-defined behavior in C. 603
char32_t (data type) . 352

implementation-defined behavior in C. 603

AFE1_AFE2-1:1

Index

635

check that (linker directive) . 510
checksum

calculation of . 210
display format in C-SPY for symbol 218

--checksum (ielftool option) . 551
chrono (library header file) . 475
cinttypes (DLIB header file) . 478
ciso646 (library header file) . 478
class type, passing
argument of (implementation-defined behavior for C++) . 585
climits (DLIB header file). 478
clobber . 165
clocale (DLIB header file) . 478
clock (DLIB library function),
implementation-defined behavior in C89 629
__CLREX (intrinsic function). 416
clustering (compiler transformation). 239

disabling (--no_clustering) . 287
__CLZ (intrinsic function) . 417
cmain (system initialization code)

in DLIB . 145
cmath (DLIB header file) . 478
CMSE . 222
--cmse (compiler option). 269
__cmse_nonsecure_call (extended keyword) 370
__cmse_nonsecure_entry (extended keyword) 371
CMSIS integration . 221
code

Arm and Thumb, overview . 78
facilitating for good generation of 240
interruption of execution . 80

--code (ielfdump option) . 556
code motion (compiler transformation). 238

disabling (--no_code_motion) 287
codecvt (library header file) . 475
codeseg (pragma directive) . 608, 625
command line options

See also compiler options
See also linker options
part of compiler invocation syntax. 249

part of linker invocation syntax 250
passing . 250
typographic convention . 48

command prompt icon, in this guide 49
.comment (ELF section) . 518
comments

after preprocessor directives . 192
common block (call frame information) 183
common subexpr elimination (compiler transformation) . 238

disabling (--no_cse) . 288
Common.i (CFI header example file) 185
compilation date

exact time of (__TIME__) . 467
identifying (__DATE__) . 464

compiler
environment variables . 251
invocation syntax . 249
output from . 252

compiler listing, generating (-l). 283
compiler object file . 62

including debug information in (--debug, -r) 272
output from compiler . 252

compiler optimization levels . 236
compiler options . 259

passing to compiler . 250
reading from file (-f) . 280
reading from file (--f). 281
specifying parameters . 261
summary . 261
syntax. 259
for creating skeleton code . 174
instruction scheduling . 240
--warnings_affect_exit_code . 253

compiler platform, identifying . 465
compiler transformations . 234
compiler version number . 468
compiling

from the command line . 69
syntax. 249

AFE1_AFE2-1:1

636
IAR C/C++ Development Guide
Compiling and Linking for Arm

complex (library header file). 475
complex.h (library header file) . 474
computer style, typographic convention 48
concatenating strings. 194, 202
concatenating wide string literals with different encoding
types

implementation-defined behavior in C. 603
condition_variable (library header file). 476
--config (linker option) . 317
configuration

basic project settings . 69
__low_level_init . 148

configuration file for linker.See linker configuration file
configuration symbols

for file input and output . 159
in library configuration files. 132
in linker configuration files . 511
specifying for linker. 317

--config_def (linker option) . 317
--config_search (linker option) . 318
consistency, module . 119
const

declaring objects . 363
constseg (pragma directive) 608, 625
contents, of this guide . 44
control characters

implementation-defined behavior in C. 616
conventions, used in this guide . 48
copyright notice . 2
__CORE__ (predefined symbol). 463
core

identifying . 463
selecting. 70

Cortex-M7 . 221
Cortex, special considerations for interrupt functions 79
cos (library function) . 472
cos (library routine) . 143–144
cosf (library routine) . 144
cosl (library routine) . 144
__COUNTER__ (predefined symbol). 463

__cplusplus (predefined symbol) 463
cplusplus_neutral (pragma directive) 608
--cpp_init_routine (linker option) 318
--cpu (compiler option) . 270
--cpu (linker option) . 319
__CPU_MODE__ (predefined symbol) 464
--cpu_mode (compiler option) . 271
CPU, specifying on command line for compiler 270
__crc32b (intrinsic function). 417
__crc32cb (intrinsic function) . 418
__crc32cd (intrinsic function) . 418
__crc32ch (intrinsic function) . 418
__crc32cw (intrinsic function) . 418
__crc32d (intrinsic function). 417
__crc32h (intrinsic function). 417
__crc32w (intrinsic function) . 417
--create (iarchive option). 556
csetjmp (DLIB header file) . 478
csignal (DLIB header file) . 478
cspy_support (pragma directive). 608, 625
CSTACK (ELF block) . 518

See also stack
setting up size for. 111

cstartup (system startup code)
customizing system initialization 148
source files for (DLIB). 145

cstat_disable (pragma directive) . 383
cstat_dump (pragma directive) . 608
cstat_enable (pragma directive) . 383
cstat_restore (pragma directive) . 383
cstat_suppress (pragma directive) 383
cstdalign (DLIB header file) . 478
cstdarg (DLIB header file) . 478
cstdbool (DLIB header file) . 478
cstddef (DLIB header file) . 478
cstdio (DLIB header file) . 478
cstdlib (DLIB header file) . 478
cstdnoreturn (DLIB header file) . 478
cstring (DLIB header file). 478

AFE1_AFE2-1:1

Index

637

ctgmath (library header file) . 478
cthreads (DLIB header file) . 478
ctime (DLIB header file). 478
ctype::table_size,
implementation-defined behavior for C++ 592
ctype.h (library header file). 474
cuchar (DLIB header file) . 478
cwctype.h (library header file) . 479
C_INCLUDE (environment variable) 251
C-RUN runtime error checking, documentation for 46
C-SPY

debug support for C++. 200
interface to system termination 148

C-STAT for static analysis, documentation for 46
C++

absolute location . 232
calling convention . 175
header files. 475
implementation-defined behavior 579
language extensions . 200
static member variables . 232
support for . 55

--c++ (compiler option) . 271
C++ header files . 475
C++ terminology. 48
C++14. 55
C++14. See Standard C++
C18 standard . 187
C18. See Standard C
C89

implementation-defined behavior 619
support for . 187

--c89 (compiler option) . 268

D
-D (compiler option) . 272
-d (iarchive option) . 556

data
alignment of. 349
different ways of storing . 73
located, declaring extern . 232
placing . 230, 303

at absolute location . 231
placing in registers . 233
representation of . 349
storage . 73

data block (call frame information). 183
data pointers . 358
data types . 351

floating point . 356
in C++ . 363
integer types. 351

dataseg (pragma directive) . 608, 625
data_alignment (pragma directive) 388
.data_init (ELF section) . 519
__DATE__ (predefined symbol). 464

implementation-defined behavior for C++. 588
date (library function), configuring support for. 130
DC32 (assembler directive) . 165
--debug (compiler option) . 272
debug information, including in object file 272
.debug (ELF section). 518
--debug_heap (linker option) . 311
decimal point

implementation-defined behavior in C. 616
declarations

empty . 193
Kernighan & Ritchie . 242
of functions . 176

declarators, implementation-defined behavior in C89. . . . 624
default_no_bounds (pragma directive) 383
--default_to_complex_ranges (linker option) 319
define block (linker directive). 492
define memory (linker directive) 485
define overlay (linker directive) . 497
define region (linker directive) . 485

AFE1_AFE2-1:1

638
IAR C/C++ Development Guide
Compiling and Linking for Arm

define section (linker directive) . 494
define symbol (linker directive) . 511
--define_symbol (linker option) . 320
define_type_info (pragma directive) 608, 625
define_without_bounds (pragma directive). 384
define_with_bounds (pragma directive) 384
--delete (iarchive option). 556
delete (keyword) . 75
denormalized numbers. See subnormal numbers
--dependencies (compiler option) 273
--dependencies (linker option) . 320
deprecated (pragma directive). 391
--deprecated_feature_warnings (compiler option). 274
deque (library header file). 476
destructors and interrupts, using . 199
device description files, preconfigured for C-SPY 56
devices, interactive

implementation-defined behavior for C++. 580
diagnostic messages . 256

classifying as compilation errors 274
classifying as compilation remarks 275
classifying as compiler warnings 276
classifying as errors . 288, 335
classifying as linker warnings 322
classifying as linking errors . 321
classifying as linking remarks 321
disabling compiler warnings . 295
disabling linker warnings . 338
disabling wrapping of in compiler 295
disabling wrapping of in linker 338
enabling compiler remarks. 300
enabling linker remarks . 341
listing all used by compiler . 276
listing all used by linker . 322
suppressing in compiler . 275
suppressing in linker . 322

diagnostics
iarchive . 533
iobjmanip. 539

isymexport . 546
--diagnostics_tables (compiler option) 276
--diagnostics_tables (linker option). 322
diagnostics, implementation-defined behavior 599
diagnostics, implementation-defined behavior for C++ . . 579
diag_default (pragma directive) . 391
--diag_error (compiler option) . 274
--diag_error (linker option) . 321
--no_fragments (compiler option) 288
--no_fragments (linker option) . 335
diag_error (pragma directive) . 392
--diag_remark (compiler option). 275
--diag_remark (linker option) . 321
diag_remark (pragma directive) . 392
--diag_suppress (compiler option) 275
--diag_suppress (linker option) . 322
diag_suppress (pragma directive) 393
--diag_warning (compiler option) 276
--diag_warning (linker option) . 322
diag_warning (pragma directive) 393
directives

pragma . 57, 383
to the linker . 483

directory, specifying as parameter 260
disable_check (pragma directive) 384
__disable_fiq (intrinsic function) 418
__disable_interrupt (intrinsic function). 418
__disable_irq (intrinsic function) 419
--disasm_data (ielfdump option) . 557
--discard_unused_publics (compiler option) 276
disclaimer . 2
DLIB. 473

configurations . 134
configuring . 131, 277
naming convention. 49
reference information. See the online help system 471
runtime environment . 123

--dlib_config (compiler option). 277
DLib_Defaults.h (library configuration file) 132

AFE1_AFE2-1:1

Index

639

__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 159
__DMB (intrinsic function) . 419
do not initialize (linker directive) 501
document conventions . 48
documentation

contents of this. 44
how to use this . 43
overview of guides. 45
who should read this . 43

$$ (in reserved identifiers) . 256
domain errors, implementation-defined behavior in C . . . 610
domain errors, implementation-defined behavior in C89
(DLIB) . 626
double underscore (in reserved identifiers) 256
double (data type) . 356
--do_explicit_zero_opt_in_named_sections
(compiler option) . 278
do_not_instantiate (pragma directive). 608, 625
--do_segment_pad (linker option). 323
__DSB (intrinsic function) . 419
duplicate section merging (linker optimization) 121
dynamic initialization . 145

and C++ . 98
dynamic memory . 75
dynamic RTTI data, including in the image 334

E
-e (compiler option) . 278
early_initialization (pragma directive) 608, 625
--edit (isymexport option) . 557
edition, of this guide . 2
ELF utilities . 531
embedded systems, IAR special support for 57
empty region (in linker configuration file) 490
empty translation unit . 193
__enable_fiq (intrinsic function). 419
--enable_hardware_workaround (compiler option) 278
--enable_hardware_workaround (linker option) 323

__enable_interrupt (intrinsic function) 420
__enable_irq (intrinsic function). 420
--enable_restrict (compiler option) 279
enabling restrict keyword . 279
encodings . 254

Raw . 254
system default locale . 255
Unicode . 255
UTF-16 . 255
UTF-8 . 255

endianness. See byte order
--entry (linker option) . 324
entry label, program . 145
--entry_list_in_address_order (linker option) 324
entry, implementation-defined behavior for C++ 583
enumerations

implementation-defined behavior for C++. 586
implementation-defined behavior in C. 605
implementation-defined behavior in C89 623

enums
data representation . 352
forward declarations of . 191

--enum_is_int (compiler option) . 280
environment

implementation-defined behavior in C. 600
implementation-defined behavior in C89 619
runtime (DLIB) . 123

environment names,
implementation-defined behavior in C 601
environment variables

C_INCLUDE . 251
ILINKARM_CMD_LINE . 251
QCCARM . 251

environment (native
implementation-defined behavior in C. 616

EQU (assembler directive) . 299
ERANGE . 610
ERANGE (C89) . 627
errno value at underflow,
implementation-defined behavior in C 613

AFE1_AFE2-1:1

640
IAR C/C++ Development Guide
Compiling and Linking for Arm

errno.h (library header file) . 474
error checking (C-RUN), documentation for 46
error messages . 257

classifying . 288, 335
classifying for compiler . 274
classifying for linker . 321
range . 117

error return codes . 253
error (linker directive). 514
error (pragma directive) . 393
errors and warnings,
listing all used by the compiler (--diagnostics_tables) . . . 276
error_category, implementation-defined behavior for C++589
--error_limit (compiler option) . 280
--error_limit (linker option) . 325
escape sequences

implementation-defined behavior for C++. 582
implementation-defined behavior in C. 602

exception flags, for floating-point values 357
exception (library header file). 476
__EXCEPTIONS__ (predefined symbol) 464
exceptions, code for in section . 519
exception_neutral (pragma directive) 608
--exception_tables (linker option) 325
exception::what,
implementation-defined behavior for C++ 590
exclude (stack usage control directive) 524
.exc.text (ELF section) . 519
execution character set,
implementation-defined behavior in C 601
execution character
set, implementation-defined behavior for C++ 581
execution wide-
character set, implementation-defined behavior for C++ . 581
_Exit (library function) . 147
exit (library function) . 147

implementation-defined behavior for C++. 589
implementation-defined behavior in C. 613
implementation-defined behavior in C89 629

_exit (library function) . 147

__exit (library function) . 147
exp (library routine) . 143
expf (library routine). 144
expl (library routine) . 144
export (linker directive) . 512
--export_builtin_config (linker option) 326
expressions (in linker configuration file) 512
extended alignment,
implementation-defined behavior for C++ 591
extended command line file

for compiler . 280–281
for linker . 326–327
passing options . 250

extended keywords . 365
enabling (-e). 278
overview . 57
summary . 368
syntax

object attributes. 368
type attributes on data objects 366
type attributes on functions 367

extended-selectors (in linker configuration file) 509
extern "C" linkage. 198
--extract (iarchive option) . 557
--extra_init (linker option) . 326

F
-f (compiler option). 280
-f (IAR utility option) . 558
-f (linker option) . 326
--f (compiler option) . 281
--f (linker option) . 327
fast interrupts . 82
fatal error messages . 258
fdopen, in stdio.h . 480
FENV_ACCESS, implementation-defined behavior in C. 604
fenv.h (library header file) . 474, 478

AFE1_AFE2-1:1

Index

641

fgetpos (library function)
implementation-defined behavior in C. 613
implementation-defined behavior in C89 628

__FILE__ (predefined symbol). 464
file buffering, implementation-defined behavior in C 611
file dependencies, tracking . 273
file input and output

configuration symbols for . 159
file paths, specifying for #include files 283
file position, implementation-defined behavior in C 611
file (zero-length), implementation-defined behavior in C . 611
filename

extension for device description files 56
extension for header files . 56
of object executable image. 339
of object file. 297, 339
search procedure for. 251
specifying as parameter . 260

filenames (legal), implementation-defined behavior in C . 611
fileno, in stdio.h . 480
files, implementation-defined behavior in C

handling of temporary . 612
multibyte characters in. 612
opening . 611

--fill (ielftool option). 559
__fiq (extended keyword) . 371
float (data type). 356
floating-point constants

hints . 228
floating-point conversions

implementation-defined behavior in C. 604
floating-point environment, accessing or not 405
floating-point expressions

contracting or not . 405
floating-point format. 356

hints . 227–228
implementation-defined behavior in C. 604
implementation-defined behavior in C89 622
special cases. 358

32-bits . 357
64-bits . 357

floating-point status flags . 480
floating-point unit . 281
floating-point
conversion, implementation-defined behavior for C++. . . 584
floating-point
literals, implementation-defined behavior for C++ 582
floating-point
types, implementation-defined behavior for C++ 583
float.h (library header file) . 474
FLT_EVAL_METHOD, implementation-defined
behavior in C . 604, 610, 614
FLT_ROUNDS, implementation-defined
behavior in C . 604, 614
__fma (intrinsic function) . 420
__fmaf (intrinsic function) . 420
fmod (library function),
implementation-defined behavior in C89 627
--force_exceptions (linker option). 327
--force_output (linker option) . 328
formats

floating-point values . 356
standard IEEE (floating point) 356

forward_list (library header file) . 476
--fpu (compiler option) . 281
--fpu (linker option) . 328
FP_CONTRACT, implementation-defined behavior in C 605
__fp16 (data type). 356
fragmentation, of heap memory . 75
free (library function). See also heap 75
freopen (function) . 482
--front_headers (ielftool option) . 559
fsetpos (library function), implementation-defined
behavior in C . 613
fstream (library header file) . 476
ftell (library function)

implementation-defined behavior in C. 613
implementation-defined behavior in C89 628

Full DLIB (library configuration) 134

AFE1_AFE2-1:1

642
IAR C/C++ Development Guide
Compiling and Linking for Arm

__func__ (predefined symbol) . 464
implementation-defined behavior for C++. 586

__FUNCTION__ (predefined symbol) 465
function calls

calling convention . 175
eliminating overhead of by inlining 86
preserved registers across. 177

function declarations, Kernighan & Ritchie 242
function execution, in RAM . 78
function inlining . 121
function inlining (compiler transformation) 238

disabling (--no_inline) . 289
function pointer to object pointer conversion,
implementation-defined behavior for C++ 585
function pointers . 358
function prototypes . 241

enforcing . 300
function (pragma directive). 608, 625
function (stack usage control directive) 524
functional (library header file) . 476
functions . 77

declaring . 176, 241
inlining. 238, 241, 395
interrupt . 80
intrinsic . 163, 241
parameters . 178
placing in memory . 230, 232, 303
recursive

avoiding . 241
storing data on stack . 74

reentrancy (DLIB) . 472
related extensions. 77
return values from . 179

function_category (pragma directive) 394, 608
function_effects (pragma directive) 608, 625
function-spec (in stack usage control file). 527
future (library header file). 476

G
-g (ielfdump option) . 570
GCC attributes . 380
generate_entry_without_bounds (pragma directive) 384
--generate_vfe_header (isymexport option) 560
getw, in stdio.h . 480
getzone (library function), configuring support for 130
__get_BASEPRI (intrinsic function) 420
__get_CONTROL (intrinsic function) 421
__get_CPSR (intrinsic function) . 421
__get_FAULTMASK (intrinsic function). 421
__get_FPSCR (intrinsic function). 421
__get_interrupt_state (intrinsic function) 422
__get_IPSR (intrinsic function) . 422
__get_LR (intrinsic function) . 422
__get_MSP (intrinsic function). 423
get_pointer_safety,
implementation-defined behavior for C++ 590
__get_PRIMASK (intrinsic function) 423
__get_PSP (intrinsic function) . 423
__get_PSR (intrinsic function) . 423
__get_SB (intrinsic function) . 423
__get_SP (intrinsic function) . 424
global variables

affected by static clustering . 239
handled during system termination 147
hints for not using . 240
initialized during system startup 146

GRP_COMDAT, group type . 540
--guard_calls (compiler option). 282
guidelines, reading . 43

H
Harbison, Samuel P. 47
hardware support in compiler . 123
hash_map (library header file) . 476
hash_set (library header file). 476

AFE1_AFE2-1:1

Index

643

hdrstop (pragma directive) . 608, 625
header files

C . 474
C++ . 475
library . 471
special function registers . 243
DLib_Defaults.h . 132
implementation-defined behavior for C++. 588
including stdbool.h for bool . 351

header names
implementation-defined behavior in C. 606
(implementation-defined behavior for C++ 581

--header_context (compiler option). 282
heap

advanced, basic, and no-free heap 207
dynamic memory . 75
storing data . 73
VLA allocated on. 308

heap sections
placing . 112

heap size
and standard I/O. 208
changing default. 112

HEAP (ELF section). 519
heap (zero-sized), implementation-defined behavior in C. 613
hide (isymexport directive) . 545
--hide_symbols (iexe2obj option) 560
hints

for good code generation . 240
implementation-defined behavior 605
using efficient data types . 227

I
-I (compiler option). 283
IAR Command Line Build Utility. 133
IAR Systems Technical Support . 258
iarbuild.exe (utility) . 133
iarchive . 531

commands summary . 532
options summary . 533

__iar_cos_accurate (library routine) 144
__iar_cos_accuratef (library routine) 144
__iar_cos_accuratef (library function) 472
__iar_cos_accuratel (library routine) 144
__iar_cos_accuratel (library function) 472
__iar_cos_small (library routine) 143
__iar_cos_smallf (library routine). 144
__iar_cos_smalll (library routine). 144
iar_dlmalloc.h (library header file)

additional C functionality. 480
__iar_exp_small (library routine) 143
__iar_exp_smallf (library routine) 144
__iar_exp_smalll (library routine) 144
__iar_log_small (library routine) 143
__iar_log_smallf (library routine). 144
__iar_log_smalll (library routine) 144
__iar_log10_small (library routine) 143
__iar_log10_smallf (library routine) 144
__iar_log10_smalll (library routine) 144
__iar_maximum_atexit_calls . 112
__iar_pow_accurate (library routine) 144
__iar_pow_accuratef (library routine). 144
__iar_pow_accuratef (library function). 472
__iar_pow_accuratel (library routine). 144
__iar_pow_accuratel (library function). 472
__iar_pow_small (library routine) 143
__iar_pow_smallf (library routine) 144
__iar_pow_smalll (library routine) 144
__iar_program_start (label). 145
__iar_ReportAssert (library function) 151
__iar_sin_accurate (library routine) 144
__iar_sin_accuratef (library routine). 144
__iar_sin_accuratef (library function). 472
__iar_sin_accuratel (library routine) 144
__iar_sin_accuratel (library function) 472
__iar_sin_small (library routine). 143
__iar_sin_smallf (library routine) 144

AFE1_AFE2-1:1

644
IAR C/C++ Development Guide
Compiling and Linking for Arm

__iar_sin_smalll (library routine) 144
__IAR_SYSTEMS_ICC__ (predefined symbol) 465
__iar_tan_accurate (library routine) 144
__iar_tan_accuratef (library routine). 144
__iar_tan_accuratef (library function). 472
__iar_tan_accuratel (library routine). 144
__iar_tan_accuratel (library function). 472
__iar_tan_small (library routine) 143
__iar_tan_smallf (library routine) 144
__iar_tan_smalll (library routine) 144
__iar_tls.$$DATA (ELF section) 519
.iar.debug (ELF section) . 518
.iar.dynexit (ELF section) . 520
IA64 ABI . 218
__ICCARM__ (predefined symbol) 465
icons

in this guide . 49
IDE

building a library from. 132
overview of build tools . 53

ident (pragma directive) . 608
identifiers

implementation-defined behavior in C. 601
implementation-defined behavior in C89 620
reserved . 256

IEEE format, floating-point values 356
ielfdump . 536

options summary . 537
ielftool . 535

options summary . 536
iexe2obj . 547
if (linker directive) . 514
--ignore_uninstrumented_pointers (linker option). 312
--ihex (ielftool option) . 560
ILINK options. See linker options
ILINKARM_CMD_LINE (environment variable) 251
ILINK. See linker
--image_input (linker option) . 328
implements_aspect (pragma directive) 608

important_typedef (pragma directive). 608, 625
--import_cmse_lib_in (linker option) 329
--import_cmse_lib_out (linker option) 329
#include directive,
implementation-defined behavior for C++ 588
include files

including before source files . 298
search procedure implementation for C++ 588
specifying . 251

include (linker directive). 515
include_alias (pragma directive) . 394
infinity . 358
infinity (style for printing), implementation-defined
behavior in C . 612
initialization

changing default. 112
C++ dynamic . 98
dynamic . 145
manual . 113
packing algorithm for. 113
single-value . 193
suppressing . 112

initialization_routine (pragma directive). 608
initialize (linker directive). 498
initializers, static . 192
initializer_list (library header file) 476
.init_array (section). 520
init_routines_only_for_needed_variables
(pragma directive). 608
--inline (linker option) . 330
inline assembler . 164

avoiding . 241
for passing values between C and assembler 244
See also assembler language interface

inline functions
in compiler. 238

inline (pragma directive). 395
inline_template (pragma directive) 608
inlining . 121
inlining functions . 86

AFE1_AFE2-1:1

Index

645

implementation-defined behavior 605
installation directory . 48
instantiate (pragma directive) 608, 625
instruction scheduling (compiler option). 240
int (data type) signed and unsigned. 351
integer to floating- point conversion,
implementation-defined behavior for C++ 584
integer to pointer
conversion, implementation-defined behavior for C++. . . 585
integer types . 351

casting . 359
implementation-defined behavior 603
implementation-defined behavior for C++. 583–584
implementation-defined behavior in C89 621
intptr_t . 359
ptrdiff_t . 359
size_t . 359
uintptr_t . 359

integral promotion . 242
Intel hex . 205
Intel IA64 ABI . 218
interactive devices

implementation-defined behavior for C++. 580
internal error . 258
interrupt functions. 80

fast interrupts . 82
in Cortex . 79
nested interrupts. 83
operations . 85
software interrupts . 84

interrupt handler. See interrupt service routine
interrupt service routine . 80
interrupt state, restoring . 436
interrupt vector table. 85

start address for . 81
interrupts

processor state . 74
using with C++ destructors . 199

__interwork (extended keyword) 371
intptr_t (integer type) . 359

__intrinsic (extended keyword). 372
intrinsic functions . 241

for Neon. 409
overview . 163
summary . 409

intrinsics.h (header file) . 409
inttypes.h (library header file). 474
.intvec (ELF section). 520
invocation syntax . 249
iobjmanip . 538

options summary . 539
iomanip (library header file) . 476
ios (library header file) . 476
iosfwd (library header file) . 476
iostream classes
implementation-defined behavior for C++ 593
iostream (library header file). 476
ios_base::streamoff, implementation-defined behavior for
C++. 595
ios_base::streampos, implementation-defined behavior for
C++. 595
ios_base::sync_with_stdio,
implementation-defined behavior for C++ 594
__irq (extended keyword) . 372
IRQ_STACK (section) . 520
__ISB (intrinsic function) . 424
iso646.h (library header file). 474
istream (library header file). 476
iswalnum (function) . 482
iswxdigit (function) . 482
isymexport . 541

options summary . 543
italic style, in this guide . 48
iterator (library header file). 476
I/O register. See SFR

K
--keep (linker option) . 330
keep (linker directive) . 501

AFE1_AFE2-1:1

646
IAR C/C++ Development Guide
Compiling and Linking for Arm

keep_definition (pragma directive) 608, 626
--keep_mode_symbols (iexe2obj option) 561
Kernighan & Ritchie function declarations 242

disallowing . 300
keywords . 365

extended, overview of . 57

L
-L (linker option) . 341
-l (compiler option). 283

for creating skeleton code . 174
labels. 192

assembler, making public. 299
__iar_program_start. 145
__program_start . 145

Labrosse, Jean J. 47
language extensions

enabling using pragma . 395
enabling (-e). 278

language overview . 55
language (pragma directive) . 395
__LDC (intrinsic function) . 424
__LDCL (intrinsic function) . 424
__LDCL_noidx (intrinsic function) 425
__LDC_noidx (intrinsic function). 425
__LDC2 (intrinsic function) . 424
__LDC2L (intrinsic function) . 424
__LDC2L_noidx (intrinsic function) 425
__LDC2_noidx (intrinsic function). 425
__LDREX (intrinsic function) . 426
__LDREXB (intrinsic function) . 426
__LDREXD (intrinsic function) . 426
__LDREXH (intrinsic function) . 426
--legacy (compiler option) . 284
libraries. 221

reason for using . 62
using a prebuilt . 135

libraries, required
(implementation-defined behavior for C++) 579
library configuration files

DLIB . 134
DLib_Defaults.h . 132
modifying . 132
specifying . 277

library documentation . 471
library files, linker search path to (--search) 342
library functions

summary, DLIB . 474
online help for . 46

library header files . 471
library modules

introduction . 90
overriding . 131

library object files . 472
library project, building using a template 132
library_default_requirements (pragma directive) . . . 608, 626
library_provides (pragma directive) 608, 626
library_requirement_override (pragma directive) . . . 608, 626
lightbulb icon, in this guide. 49
limits (library header file) . 476
limits.h (library header file) . 474
__LINE__ (predefined symbol) . 465
linkage, C and C++. 176

implementation-defined behavior for C++. . 586–587, 589
linker. 89

output from . 254
linker configuration file

for placing code and data . 93
in depth . 483, 523
overview of . 483, 523
selecting. 107

linker object executable image
specifying filename of (-o) . 339
linker optimizations . 121

duplicate section merging . 121
small function inlining . 121
virtual function elimination . 121

AFE1_AFE2-1:1

Index

647

linker options . 311
reading from file (-f) . 326
reading from file (--f). 327
summary . 311
typographic convention . 48

linking
from the command line . 69
in the build process . 62
introduction . 89
process for . 91

list (library header file) . 476
listing, generating . 283
literature, recommended . 47
__LITTLE_ENDIAN__ (predefined symbol). 465
__little_endian (extended keyword) 372
little-endian (byte order) . 70
local symbols, removing from ELF image 337
local variables, See auto variables
locale

changing at runtime . 160
implementation-defined behavior for C++. 592
implementation-defined behavior in C. 603, 615
library header file. 476
support for . 159

locale object, implementation-defined behavior for C++ . 592
locale.h (library header file) . 474
located data, declaring extern . 232
location (pragma directive) . 231, 396
--log (linker option) . 331
log (library routine). 143
logf (library routine) . 144
logical (linker directive) . 486
logl (library routine) . 144
--log_file (linker option) . 331
log10 (library routine). 143
log10f (library routine) . 144
log10l (library routine) . 144
long double (data type) . 356
long float (data type), synonym for double 192

long long (data type) signed and unsigned 351
long (data type) signed and unsigned 351
longjmp, restrictions for using . 473
loop unrolling (compiler transformation) 238

disabling . 294
#pragma unroll. 406

loop-invariant expressions . 238
__low_level_init . 145

customizing . 148
initialization phase . 65

low_level_init.c . 145
low-level processor operations . 188

accessing . 163
lvalue-to-rvalue
conversion, implementation-defined behavior for C++. . . 584
lz77, packing algorithm for initializers 499

M
macros

embedded in #pragma optimize 399
ERANGE (in errno.h) . 610, 627
inclusion of assert . 468
NULL, implementation-defined behavior

in C89 for DLIB . 626
NULL, implementation-defined behavior in C 611
substituted in #pragma directives. 188

--macro_positions_in_diagnostics (compiler option) 284
main (function)

definition (C89) . 619
implementation-defined behavior for C++. 582–583
implementation-defined behavior in C. 600

--make_all_definitions_weak (compiler option) 285
malloc (library function)

 See also heap . 75
implementation-defined behavior in C89 628

--mangled_names_in_messages (linker option) 332
Mann, Bernhard . 47
--manual_dynamic_initialization (linker option). 332

AFE1_AFE2-1:1

648
IAR C/C++ Development Guide
Compiling and Linking for Arm

-map (linker option) . 332
map file, producing . 332
map (library header file) . 476
math functions rounding mode,
implementation-defined behavior in C 614
math functions (library functions). 143
math.h (library header file) . 474
max recursion depth (stack usage control directive) 525
--max_cost_constexpr_call (compiler option). 285
--max_depth_constexpr_call (compiler option) 285
MB_LEN_MAX, implementation-defined behavior in C . 614
__MCR (intrinsic function). 426
__MCRR (intrinsic function) . 427
__MCRR2 (intrinsic function) . 427
__MCR2 (intrinsic function). 426
memory

allocating in C++ . 75
dynamic . 75
heap . 75
non-initialized . 244
RAM, saving . 241
releasing in C++. 75
stack. 74

saving . 241
used by global or static variables 73

memory clobber . 165
memory map

initializing SFRs . 148
linker configuration for . 108
output from linker . 254
producing (--map) . 332

memory (library header file) . 476
memory (pragma directive). 608, 626
merge duplicate sections . 121
-merge_duplicate_sections (linker option) 333
message (pragma directive) . 397
messages

disabling . 303, 342
forcing . 397

messages::do_close,
implementation-defined behavior for C++ 592
messages::do_get,
implementation-defined behavior for C++ 592
messages::do_open,
implementation-defined behavior for C++ 592
Meyers, Scott . 47
--mfc (compiler option). 286
migration, from earlier IAR compilers 46
MISRA C

documentation . 46
--misrac (compiler option) . 263
--misrac (linker option) . 313
--misrac_verbose (compiler option) 264
--misrac_verbose (linker option). 313
--misrac1998 (compiler option) . 263
--misrac1998 (linker option) . 313
--misrac2004 (compiler option) . 263
--misrac2004 (linker option) . 313
mode changing, implementation-defined behavior in C . . 612
module consistency. 119

rtmodel. 402
modules, introduction . 90
module_name (pragma directive) 608, 626
module-spec (in stack usage control file) 527
Motorola S-records . 205
__MRC (intrinsic function). 428
__MRC2 (intrinsic function). 428
__MRRC (intrinsic function) . 428
__MRRC2 (intrinsic function) . 428
multibyte characters

implementation-defined behavior for C++. 591
implementation-defined behavior in C. 601, 615

multithreaded environment . 160
multi-character literals,
value of (implementation-defined behavior for C++) 581
multi-file compilation . 235
multi-threaded environment

implementation-defined behavior in C. 600
mutex (library header file) . 476

AFE1_AFE2-1:1

Index

649

N
name (in stack usage control file) 528
names block (call frame information) 182
naming conventions . 49
NaN

implementation of . 358
implementation-defined behavior in C. 612

native environment
implementation-defined behavior in C. 616

native_handle_type, implementation-defined behavior for
C++. 595
native_handle, implementation-defined behavior for C++ 595
NDEBUG (preprocessor symbol) 468
negative values,
right shifting (mplementation-defined behavior for C++) . 585
Neon intrinsic functions . 409
__nested (extended keyword) . 372
nested interrupts . 83
new (keyword) . 75
new (library header file) . 476
no calls from (stack usage control directive). 525
.noinit (ELF section) . 520
--nonportable_path_warnings (compiler option) 296
non-initialized variables, hints for. 244
Non-Plain Old Functions (POF),
implementation-defined behavior for C++ 590
non-scalar parameters, avoiding . 241
non-secure mode. 222
NOP (assembler instruction) . 429
__noreturn (extended keyword) . 374
Normal DLIB (library configuration) 134
Not a number (NaN) . 358
--no_alignment_reduction (compiler option) 286
__no_alloc (extended keyword) . 373
__no_alloc_str (operator) . 373
__no_alloc_str16 (operator) . 373
__no_alloc16 (extended keyword) 373
--no_bom (ielfdump option) . 561

--no_bom (iobjmanip option) . 561
--no_bom (isymexport option) . 561
--no_bom (compiler option) . 286
--no_bom (iarchive option) . 561
--no_bom (linker option). 334
no_bounds (pragma directive). 385
--no_clustering (compiler option) 287
--no_code_motion (compiler option) 287
--no_const_align (compiler option). 287
--no_cse (compiler option) . 288
--no_dynamic_rtti_elimination (linker option) 334
--no_entry (linker option) . 334
--no_exceptions (compiler option) 288
--no_exceptions (linker option). 335
--no_free_heap (linker option) . 335
--no_header (ielfdump option) . 561
__no_init (extended keyword) 244, 374
--no_inline (compiler option) . 289
--no_inline (linker option). 336
--no_library_search (linker option) 336
--no_literal_pool (compiler option). 289
--no_literal_pool (linker option) . 336
--no_locals (linker option) . 337
--no_loop_align (compiler option) 290
--no_mem_idioms (compiler option) 290
__no_operation (intrinsic function). 429
--no_path_in_file_macros (compiler option). 290
no_pch (pragma directive) . 608, 626
--no_range_reservations (linker option) 337
--no_rel_section (ielfdump option) 562
--no_remove (linker option) . 337
--no_rtti (compiler option) . 291
--no_rw_dynamic_init (compiler option) 291
--no_scheduling (compiler option) 291
--no_size_constraints (compiler option) 292
no_stack_protect (pragma directive) 398
--no_static_destruction (compiler option) 292
--no_strtab (ielfdump option) . 562
--no_system_include (compiler option) 292

AFE1_AFE2-1:1

650
IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_tbaa (compiler option) . 293
--no_typedefs_in_diagnostics (compiler option). 293
--no_unaligned_access (compiler option) 293
--no_uniform_attribute_syntax (compiler option) 294
--no_unroll (compiler option) . 294
--no_utf8_in (ielfdump option) . 562
--no_var_align (compiler option) 295
--no_vfe (linker option). 338
no_vtable_use (pragma directive) 608
--no_warnings (compiler option) 295
--no_warnings (linker option) . 338
--no_wrap_diagnostics (compiler option) 295
--no_wrap_diagnostics (linker option) 338
NULL

implementation-defined behavior for C++. 589
implementation-defined behavior in C. 611
implementation-defined behavior in C89 (DLIB) 626
pointer constant, relaxation to Standard C 192

numbers (in linker configuration file) 513
numeric conversion functions

implementation-defined behavior in C. 616
numeric (library header file) . 476

O
-O (compiler option) . 296
-o (compiler option) . 297
-o (iarchive option) . 563
-o (ielfdump option) . 563
-o (linker option). 339
object attributes. 367
object filename, specifying (-o) 297, 339
object files, linker search path to (--search) 342
object pointer to function pointer conversion,
implementation-defined behavior for C++ 585
object_attribute (pragma directive) 245, 398
--offset (ielftool option) . 563
once (pragma directive) . 609, 626
--only_stdout (compiler option) . 297

--only_stdout (linker option) . 338
open_s (function) . 482
operators

 See also @ (operator)
for region expressions . 490
for section control . 190
precision for 32-bit float . 357
precision for 64-bit float . 357
sizeof, implementation-defined behavior in C 615
__ALIGNOF__, for alignment control. 190
?, language extensions for . 201

optimization
clustering, disabling . 287
code motion, disabling . 287
common sub-expression elimination, disabling 288
configuration . 71
disabling . 237
function inlining, disabling (--no_inline) 289
hints . 240
loop unrolling, disabling . 294
scheduling, disabling . 291
specifying (-O). 296
techniques . 237
type-based alias analysis, disabling (--tbaa) 293
using inline assembler code . 165
using pragma directive. 398

optimization levels . 236
optimize (pragma directive) . 398
option parameters . 259
options, compiler. See compiler options
options, iarchive. See iarchive options
options, ielfdump. See ielfdump options
options, ielftool. See ielftool options
options, iobjmanip. See iobjmanip options
options, isymexport. See isymexport options
options, linker. See linker options
--option_name (compiler option) 323
Oram, Andy . 47
ostream (library header file) . 476

AFE1_AFE2-1:1

Index

651

output
from preprocessor . 299
specifying for linker. 69

--output (compiler option). 297
--output (iarchive option) . 563
--output (ielfdump option) . 563
--output (linker option) . 339
overhead, reducing . 238
over-aligned types,
implementation-defined behavior for C++ 585, 590

P
pack (pragma directive) . 400
packbits, packing algorithm for initializers 499
__packed (extended keyword) . 375
packed structure types. 360
packing, algorithms for initializers 499
parameters

function . 178
hidden . 178
non-scalar, avoiding. 241
register . 178
rules for specifying a file or directory 260
specifying . 261
stack. 179
typographic convention . 48

--parity (ielftool option) . 564
part number, of this guide . 2
__pcrel (extended keyword) . 369
--pending_instantiations (compiler option) 297
permanent registers . 177
perror (library function),
implementation-defined behavior in C89 628
--pi_veneers (linker option) . 339
__PKHBT (intrinsic function). 429
__PKHTB (intrinsic function). 430
place at (linker directive) . 502
place in (linker directive) . 503

placeholder objects,
implementation-defined behavior for C++ 590
placement

in named sections. 232
of code and data, introduction to 93

--place_holder (linker option) . 339
plain char

implementation-defined behavior for C++. 583
implementation-defined behavior in C. 602

__PLD (intrinsic function) . 430
__PLDW (intrinsic function) . 430
__PLI (intrinsic function) . 430
pointer safety,
implementation-defined behavior for C++ 583, 590
pointer to integer
conversion, implementation-defined behavior for C++. . . 585
pointer types . 358

mixing . 192
pointer types, implementation-defined behavior for C++ . 584
pointers

casting . 359
data . 358
function . 358
implementation-defined behavior 605
implementation-defined behavior for C++. 583
implementation-defined behavior in C89 623

pointers to different function types 194
pointer_safety::preferred,
implementation-defined behavior for C++ 590
pointer_safety::relaxed,
implementation-defined behavior for C++ 590
polymorphic RTTI data, including in the image 334
pop_macro (pragma directive) . 609
porting, code containing pragma directives. 386
possible calls (stack usage control directive) 526
pow (library routine) . 143–144

alternative implementation of 472
powf (library routine) . 144
powl (library routine) . 144
pragma directives . 57

AFE1_AFE2-1:1

652
IAR C/C++ Development Guide
Compiling and Linking for Arm

summary . 383
for absolute located data . 231
implementation-defined behavior for C++. 588
list of all recognized. 607
list of all recognized (C89). 625
pack . 400

--preconfig (linker option) . 340
predefined symbols

overview . 57
summary . 458

--predef_macro (compiler option). 298
preferred_typedef (pragma directive) 609
Prefetch_Handler (exception function) 82
--prefix (iexe2obj option) . 565
--preinclude (compiler option) . 298
.preinit_array (section) . 521
.prepreinit_array (section). 521
--preprocess (compiler option) . 299
preprocessor

output. 299
preprocessor directives

comments at the end of . 192
implementation-defined behavior in C. 606
implementation-defined behavior in C89 624
#pragma . 383
#pragma (implementation-defined behavior for C++) . 588

preprocessor extensions
#warning message . 469

preprocessor symbols . 458
defining . 272, 320

preserved registers . 177
__PRETTY_FUNCTION__ (predefined symbol). 465
print formatter, selecting. 140
printf (library function) . 139

choosing formatter . 139
implementation-defined behavior in C. 612
implementation-defined behavior in C89 628

__printf_args (pragma directive). 401
--printf_multibytes (linker option) 340

printing characters
implementation-defined behavior in C. 616

processor configuration. 70
processor operations

accessing . 163
low-level . 188

program entry label. 145
program termination,
implementation-defined behavior in C 600
programming hints . 240
__program_start (label). 145
projects

basic settings for . 69
setting up for a library . 132

prototypes, enforcing . 300
ptrdiff_t (integer type) . 359

implementation-defined behavior for C++. 585, 589
PUBLIC (assembler directive) . 299
publication date, of this guide . 2
--public_equ (compiler option) . 299
public_equ (pragma directive) . 401
push_macro (pragma directive). 609
putenv (library function), absent from DLIB 153
putw, in stdio.h . 481

Q
__QADD (intrinsic function) . 431
__QADD8 (intrinsic function) . 431
__QADD16 (intrinsic function) . 431
__QASX (intrinsic function). 431
QCCARM (environment variable) 251
__QCFlag (intrinsic function) . 432
__QDADD (intrinsic function) . 431
__QDOUBLE (intrinsic function). 432
__QDSUB (intrinsic function) . 431
__QFlag (intrinsic function) . 432
__QSAX (intrinsic function). 431
__QSUB (intrinsic function). 431

AFE1_AFE2-1:1

Index

653

__QSUB16 (intrinsic function) . 431
__QSUB8 (intrinsic function) . 431
qualifiers

const and volatile . 361
implementation-defined behavior 606
implementation-defined behavior in C89 624

? (in reserved identifiers) . 256
queue (library header file). 476
quick_exit (library function) . 148

R
-r (compiler option). 272
-r (iarchive option) . 569
RAM

example of declaring region. 94
execution . 78
initializers copied from ROM . 67
running code from . 115
saving memory. 241

__ramfunc (extended keyword) . 376
--ram_reserve_ranges (isymexport option) 566
random (library header file) . 476
random_shuffle,
implementation-defined behavior for C++ 593
--range (ielfdump option) . 566
range errors. 117
ratio (library header file) . 477
--raw (ielfdump option). 567
__RBIT (intrinsic function) . 432
read formatter, selecting . 142
reading guidelines. 43
reading, recommended . 47
realloc (library function) . 75

implementation-defined behavior in C89 628
See also heap

recursive functions
avoiding . 241
implementation-defined behavior for C++. 589

storing data on stack . 74
--redirect (linker option) . 340
reentrancy (DLIB) . 472
reference information, typographic convention. 48
regex_constants::error_type,
implementation-defined behavior for C++ 594
region expression (in linker configuration file) 489
region literal (in linker configuration file). 488
register keyword, implementation-defined behavior 605
register parameters . 178
registered trademarks . 2
registers

assigning to parameters . 179
callee-save, stored on stack . 74
for function returns . 180
implementation-defined behavior in C89 623
in assembler-level routines. 176
preserved . 177
scratch . 177

.rel (ELF section) . 518

.rela (ELF section) . 518
--relaxed_fp (compiler option) . 299
relay, see veneers . 117
relocatable ELF object file

creating . 547
relocation errors, resolving . 117
remark (diagnostic message). 257

classifying for compiler . 275
classifying for linker . 321
enabling in compiler . 300
enabling in linker . 341

--remarks (compiler option) . 300
--remarks (linker option). 341
remove (library function)

implementation-defined behavior in C. 612
implementation-defined behavior in C89 (DLIB) 628

--remove_file_path (iobjmanip option) 567
--remove_section (iobjmanip option) 567
remquo, magnitude of . 610
rename (isymexport directive) . 545

AFE1_AFE2-1:1

654
IAR C/C++ Development Guide
Compiling and Linking for Arm

rename (library function)
implementation-defined behavior in C. 612
implementation-defined behavior in C89 (DLIB) 628

--rename_section (iobjmanip option) 568
--rename_symbol (iobjmanip option) 568
--replace (iarchive option). 569
required (pragma directive). 401
--require_prototypes (compiler option) 300
reserved identifiers . 256
--reserve_ranges (isymexport option) 569
reset vector table . 520
__reset_QC_flag (intrinsic function). 433
__reset_Q_flag (intrinsic function) 433
restrict keyword, enabling. 279
return values, from functions . 179
__REV (intrinsic function) . 433
__REVSH (intrinsic function). 433
__REV16 (intrinsic function) . 433
__rintn (intrinsic function) . 433
__rintnf (intrinsic function). 433
.rodata (ELF section) . 521
ROM to RAM, copying . 115
__root (extended keyword) . 377
__ROPI__ (predefined symbol) . 466
--ropi (compiler option) . 301
--ropi_cb (compiler option). 301
__ROR (intrinsic function) . 434
routines, time-critical . 163, 188
__ro_placement (extended keyword) 377
__RRX (intrinsic function) . 434
rtmodel (assembler directive) . 120
rtmodel (pragma directive) . 402
__RTTI__ (predefined symbol) . 466
RTTI data (dynamic), including in the image 334
runtime environment

DLIB . 123
setting up (DLIB). 129

runtime error checking, documentation for 46

runtime libraries (DLIB)
introduction . 471
customizing system startup code 148
filename syntax . 136
overriding modules in . 131
using prebuilt . 135

runtime model attributes . 119
runtime model definitions . 402
__RWPI__ (predefined symbol) . 466
--rwpi (compiler option) . 302
--rwpi_near (compiler option). 302

S
-s (ielfdump option) . 570
__SADD8 (intrinsic function). 434
__SADD16 (intrinsic function). 434
__SASX (intrinsic function) . 434
__sbrel (extended keyword) . 369
scanf (library function)

choosing formatter (DLIB) . 141
implementation-defined behavior in C. 612
implementation-defined behavior in C89 (DLIB) 628

__scanf_args (pragma directive) . 403
--scanf_multibytes (linker option). 341
scheduling (compiler transformation) 240

disabling . 291
scoped_allocator (library header file) 477
scratch registers . 177
--search (linker option) . 341
search directory, for linker configuration files
(--config_search). 318
search path to library files (--search). 342
search path to object files (--search) 342
--section (ielfdump option) . 570
--section (compiler option) . 303
sections

summary . 517
allocation of . 93

AFE1_AFE2-1:1

Index

655

declaring (#pragma section). 403
introduction . 90
specifying (--section) . 303

__section_begin (extended operator) 190
__section_end (extended operator) 190
__section_size (extended operator) 190
section-selectors (in linker configuration file). 506
secure mode . 222
--segment (ielfdump option) . 570
segment (pragma directive). 403
__SEL (intrinsic function) . 435
--self_reloc (ielftool option) . 571
--semihosting (linker option) . 342
semihosting, overview . 142
separate_init_routine (pragma directive). 609
set (library header file) . 477
setjmp.h (library header file). 474
setlocale (library function) . 160
settings, basic for project configuration 69
__set_BASEPRI (intrinsic function) 435
__set_CONTROL (intrinsic function). 435
__set_CPSR (intrinsic function) . 435
__set_FAULTMASK (intrinsic function) 436
__set_FPSCR (intrinsic function) 436
set_generate_entries_without_bounds (pragma directive). 609
__set_interrupt_state (intrinsic function) 436
__set_LR (intrinsic function) . 436
__set_MSP (intrinsic function) . 436
__set_PRIMASK (intrinsic function) 437
__set_PSP (intrinsic function). 437
__set_SB (intrinsic function) . 437
__set_SP (intrinsic function). 437
__SEV (intrinsic function) . 437
severity level, of diagnostic messages. 257

specifying . 258
SFR

accessing special function registers 243
declaring extern special function registers 232

__SHADD8 (intrinsic function) . 438

__SHADD16 (intrinsic function) 438
shared object . 253, 333
shared_mutex (library header file) 477
shared_ptr constructor,
implementation-defined behavior for C++ 590
__SHASX (intrinsic function). 438
short (data type) . 351
show (isymexport directive) . 544
--show_entry_as (isymexport option) 571
show-weak (isymexport directive) 544
__SHSAX (intrinsic function). 438
.shstrtab (ELF section) . 518
__SHSUB16 (intrinsic function). 438
__SHSUB8 (intrinsic function). 438
signal (library function)

implementation-defined behavior in C. 610
implementation-defined behavior in C89 627

signals, implementation-defined behavior in C 600
at system startup . 601

signal.h (library header file) . 474
signed char (data type) . 351–352

specifying . 269
signed int (data type). 351
signed long long (data type) . 351
signed long (data type) . 351
signed short (data type). 351
--silent (compiler option) . 303
--silent (iarchive option) . 571
--silent (ielftool option). 571
--silent (linker option) . 342
silent operation

specifying in compiler . 303
specifying in linker . 342

--simple (ielftool option). 572
--simple-ne (ielftool option) . 572
sin (library function) . 472
sin (library routine) . 143–144
sinf (library routine) . 144
sinl (library routine) . 144
64-bits (floating-point format) . 357

AFE1_AFE2-1:1

656
IAR C/C++ Development Guide
Compiling and Linking for Arm

size (in stack usage control file) . 529
sizeof, implementation-defined behavior for C++. 585
size_t (integer type) . 359

implementation-defined behavior for C++. 589
skeleton code, creating for assembler language interface . 173
slist (library header file) . 477
small function inlining (linker optimization). 121
smallest, packing algorithm for initializers 499
__SMLABB (intrinsic function) . 439
__SMLABT (intrinsic function) . 439
__SMLAD (intrinsic function) . 439
__SMLADX (intrinsic function). 439
__SMLALBB (intrinsic function). 440
__SMLALBT (intrinsic function) 440
__SMLALD (intrinsic function) . 440
__SMLALDX (intrinsic function) 440
__SMLALTB (intrinsic function) 440
__SMLALTT (intrinsic function) 440
__SMLATB (intrinsic function) . 439
__SMLATT (intrinsic function) . 439
__SMLAWB (intrinsic function) 439
__SMLAWT (intrinsic function) 439
__SMLSD (intrinsic function) . 439
__SMLSDX (intrinsic function) . 439
__SMLSLD (intrinsic function) . 440
__SMLSLDX (intrinsic function) 440
__SMMLA (intrinsic function) . 441
__SMMLAR (intrinsic function) 441
__SMMLS (intrinsic function) . 441
__SMMLSR (intrinsic function) . 441
__SMMUL (intrinsic function) . 441
__SMMULR (intrinsic function) 441
__SMUAD (intrinsic function) . 441
__SMUL (intrinsic function) . 442
__SMULBB (intrinsic function) . 442
__SMULBT (intrinsic function) . 442
__SMULTB (intrinsic function) . 442
__SMULTT (intrinsic function) . 442
__SMULWB (intrinsic function) 442

__SMULWT (intrinsic function) 442
__SMUSD (intrinsic function) . 441
__SMUSDX (intrinsic function) . 441
software interrupts . 84
--source (ielfdump option) . 572
source files, list all referred. 282
--source_encoding (compiler option) 304
space characters, implementation-defined behavior in C . 611
special function registers (SFR) . 243
sprintf (library function) . 139

choosing formatter . 139
__sqrt (intrinsic function) . 442
__sqrtf (intrinsic function) . 442
--srec (ielftool option) . 573
--srec-len (ielftool option). 573
--srec-s3only (ielftool option) . 573
__SSAT (intrinsic function) . 443
__SSAT16 (intrinsic function) . 443
__SSAX (intrinsic function) . 434
sscanf (library function)

choosing formatter (DLIB) . 141
sstream (library header file) . 477
__SSUB16 (intrinsic function) . 434
__SSUB8 (intrinsic function) . 434
stack . 74

advantages and problems using 74
block for holding . 518
cleaning after function return . 180
contents of . 74
layout . 179
saving space. 241
setting up size for. 111
size. 206

stack buffer overflow . 87
stack buffer overrun . 87
stack canaries . 87
stack parameters . 179
stack pointer . 74
stack protection. 87

AFE1_AFE2-1:1

Index

657

stack smashing . 87
stack (library header file) . 477
__stackless (extended keyword) . 378
stack_protect (pragma directive). 404
--sack_protection (compiler option) 304
--stack_usage_control (linker option) 343
stack-size (in stack usage control file) 528
Standard C . 279

library compliance with . 471
specifying strict usage . 304

Standard C++ . 55
implementation quantities . 595
implementation-defined behavior 579

standard error
redirecting in compiler. 297
redirecting in linker . 338
See also diagnostic messages . 253

standard library
functions, implementation-defined behavior for C++ 589
standard output

specifying in compiler . 297
specifying in linker . 338

start up system. See system startup
startup code

cstartup . 148
statements, implementation-defined behavior in C89 624
static analysis

documentation for . 46
static clustering (compiler transformation) 239
static variables . 73

taking the address of . 241
status flags for floating-point . 480
__STC (intrinsic function) . 444
__STCL (intrinsic function) . 444
__STCL_noidx (intrinsic function) 445
__STC_noidx (intrinsic function) 445
__STC2 (intrinsic function) . 444
__STC2L (intrinsic function) . 444
__STC2L_noidx (intrinsic function) 445
__STC2_noidx (intrinsic function) 445

stdalign.h (library header file). 474
stdarg.h (library header file) . 474
stdatomic.h (library header file) . 474
stdbool.h (library header file) 351, 474
__STDC__ (predefined symbol) . 466

implementation-defined behavior for C++. 588
STDC CX_LIMITED_RANGE (pragma directive) 404
STDC FENV_ACCESS (pragma directive) 404
STDC FP_CONTRACT (pragma directive) 405
__STDC_LIB_EXT1__ (predefined symbol) 466
__STDC_NO_ATOMICS__ (preprocessor symbol). 467
__STDC_NO_THREADS__ (preprocessor symbol) 467
__STDC_NO_VLA__ (preprocessor symbol) 467
__STDC_UTF16__ (preprocessor symbol). 467
__STDC_UTF32__ (preprocessor symbol). 467
__STDC_VERSION__ (predefined symbol) 467

implementation-defined behavior for C++. 588
__STDC_WANT_LIB_EXT1__ (preprocessor symbol) . 468
stddef.h (library header file) . 474
stderr. 129, 297, 338
stdexcept (library header file) . 477
stdin . 129

implementation-defined behavior in C89 (DLIB) 627
stdint.h (library header file) 474, 478
stdio.h (library header file) . 474
stdio.h, additional C functionality 480
stdlib.h (library header file) . 475
stdnoreturn.h (library header file) 475
stdout . 129, 297, 338

implementation-defined behavior in C. 611
implementation-defined behavior in C89 (DLIB) 627

std::terminate, implementation-defined behavior for C++ 587
std::unexpected,
implementation-defined behavior for C++ 587
Steele, Guy L. 47
steering file, input to isymexport 543
strcasecmp, in string.h . 481
strcoll (function) . 482
strdup, in string.h . 481
streambuf (library header file) . 477

AFE1_AFE2-1:1

658
IAR C/C++ Development Guide
Compiling and Linking for Arm

streamoff, implementation-defined behavior for C++. . . . 591
streampos, implementation-defined behavior for C++ . . . 591
streams

implementation-defined behavior in C. 600
strerror (library function)

implementation-defined behavior in C. 617
strerror (library function),
implementation-defined behavior in C89 (DLIB) 629
__STREX (intrinsic function) . 446
__STREXB (intrinsic function) . 446
__STREXD (intrinsic function) . 446
__STREXH (intrinsic function) . 446
--strict (compiler option). 304
string literals, implementation-defined behavior for C++ . 582
string (library header file) . 477
string.h (library header file) . 475
string.h, additional C functionality 481
--strip (ielftool option) . 574
--strip (iobjmanip option) . 574
--strip (linker option) . 343
strncasecmp, in string.h. 481
strnlen, in string.h . 481
strstream (library header file) . 477
.strtab (ELF section) . 518
structure types

alignment . 359–360
layout of. 360
packed . 360

structures
aligning . 400
anonymous. 229
implementation-defined behavior in C. 605
implementation-defined behavior in C89 623
packing and unpacking . 229

strxfrm (function) . 482
subnormal numbers. 356, 358
$Sub$$ pattern . 225
$Super$$ pattern. 225
support, technical . 258
Sutter, Herb. 47

SVC #immed, for software interrupts 84
__swi (extended keyword) . 378
SWI_Handler (exception function) 82
swi_number (pragma directive) . 405
SWO, directing stdout/stderr via. 128
__SWP (intrinsic function) . 446
__SWPB (intrinsic function). 446
__SXTAB (intrinsic function). 447
__SXTAB16 (intrinsic function). 447
__SXTAH (intrinsic function) . 447
__SXTB16 (intrinsic function) . 447
symbols

directing from one to another . 340
including in output . 402
local, removing from ELF image 337
overview of predefined . 57
patching using $Super$$ and $Sub$$ 225
preprocessor, defining . 272, 320

--symbols (iarchive option). 574
.symtab (ELF section). 518
syntax

command line options . 259
extended keywords . 366–368
invoking compiler and linker . 249

system function, implementation-defined behavior in C . . 613
system function,
implementation-defined behavior in C 601
system startup

customizing . 148
DLIB . 145
implementation-defined behavior for C++. 582
initialization phase . 65

system termination
C-SPY interface to . 148
DLIB . 147
implementation-defined behavior for C++. 582

system (library function)
implementation-defined behavior in C89 (DLIB) 629

system_error (library header file) 477
system_include (pragma directive) 609, 626

AFE1_AFE2-1:1

Index

659

--system_include_dir (compiler option) 305

T
-t (iarchive option) . 575
tan (library function). 472
tan (library routine). 143–144
tanf (library routine) . 144
tanl (library routine) . 144
__task (extended keyword) . 379
technical support, IAR Systems . 258
template support

in C++ . 198
Terminal I/O window

not supported when . 130–131
termination of system. See system termination
termination status, implementation-defined behavior in C 613
terminology. 48
.text (ELF section) . 521
text encodings . 254
--text_out (iarchive option) . 575
--text_out (ielfdump option) . 575
--text_out (iobjmanip option) . 575
--text_out (isymexport option) . 575
--text_out (linker option). 343
--text_out (compiler option) . 305
tgmath.h (library header file) . 475
32-bits (floating-point format) . 357
this (pointer) . 175
thread (library header file) . 477
threaded environment . 160
--threaded_lib (linker option) . 344
threads, number of
(implementation-defined behavior for C++) 580
threads.h (library header file) . 475
__thumb (extended keyword) . 380
--thumb (compiler option). 306
__TIME__ (predefined symbol) . 467

implementation-defined behavior for C++. 588

time zone (library function)
implementation-defined behavior in C89 629
time zone (library function), implementation-defined
behavior in C . 613
__TIMESTAMP__ (predefined symbol) 468
--timezone_lib (linker option) . 344
time_get::do_get_date,
implementation-defined behavior for C++ 592
time_get::do_get_year,
implementation-defined behavior for C++ 592
time_put::do_put,
implementation-defined behavior for C++ 592
time_t value to time_point object
conversion, implementation-defined behavior for C++. . . 591
time-critical routines . 163, 188
time.h (library header file) . 475

additional C functionality. 481
time32 (library function), configuring support for 130
time64 (library function), configuring support for 130
tips, programming. 240
--titxt (ielftool option) . 575
--toc (iarchive option) . 575
tokens, attribute-
scoped (implementation-defined behavior for C++) 586
tools icon, in this guide . 49
towlower (function) . 482
towupper (function) . 482
trademarks . 2
trailing comma . 203
transformations, compiler . 234
translation

implementation-defined behavior 599
implementation-defined behavior for C++. 579, 581
implementation-defined behavior in C89 619

--treat_rvct_modules_as_softfp (linker option). 344
TrustZone . 88, 222
__TT (intrinsic function). 447
__TTA (intrinsic function) . 447
__TTAT (intrinsic function) . 447
__TTT (intrinsic function) . 447

AFE1_AFE2-1:1

660
IAR C/C++ Development Guide
Compiling and Linking for Arm

tuple (library header file) . 477
type attributes . 365

specifying . 406
type qualifiers

const and volatile . 361
implementation-defined behavior 606
implementation-defined behavior in C89 624

typedefs
excluding from diagnostics . 293
repeated . 192

typeid, derived
type for (implementation-defined behavior for C++) 585
typeindex (library header file). 477
typeinfo (library header file) . 477
types, trivially
copyable (implementation-defined behavior for C++) . . . 583
typetraits (library header file) . 477
type_attribute (pragma directive) 406
type_info::name,
implementation-defined behavior for C++ 590
type-based alias analysis (compiler transformation) 239

disabling . 293
typographic conventions . 48

U
__UADD8 (intrinsic function) . 448
__UADD16 (intrinsic function) . 448
__UASX (intrinsic function). 448
uchar.h (library header file) . 475
__UHADD8 (intrinsic function) . 448
__UHADD16 (intrinsic function) 448
__UHASX (intrinsic function) . 448
__UHSAX (intrinsic function) . 448
__UHSUB16 (intrinsic function) 448
__UHSUB8 (intrinsic function) . 448
uintptr_t (integer type) . 359
__UMAAL (intrinsic function) . 449
underflow errors, implementation-defined behavior in C . 610

underflow range errors,
implementation-defined behavior in C89 627
underscore

double in reserved identifiers . 256
followed by uppercase letter (reserved identifier) 256

__ungetchar, in stdio.h . 481
Unicode . 255
uniform attribute syntax . 366
--uniform_attribute_syntax (compiler option). 306
unions

anonymous. 229
implementation-defined behavior in C. 605
implementation-defined behavior in C89 623

universal character names, implementation-defined
behavior in C . 607
universal character
names, implementation-defined behavior for C++ 582
unordered_map (library header file) 477

implementation-defined behavior for C++. 593
unordered_multimap,
implementation-defined behavior for C++ 593
unordered_multiset,
implementation-defined behavior for C++ 593
unordered_set (library header file) 477

implementation-defined behavior for C++. 593
unroll (pragma directive) . 406
unsigned char (data type) . 351–352

changing to signed char . 269
unsigned int (data type). 351
unsigned long long (data type) . 351
unsigned long (data type) . 351
unsigned short (data type) . 351
unsigned to signed
conversion, implementation-defined behavior for C++. . . 584
__UQADD8 (intrinsic function) . 449
__UQADD16 (intrinsic function) 449
__UQASX (intrinsic function) . 449
__UQSAX (intrinsic function) . 449
__UQSUB16 (intrinsic function) 449
__UQSUB8 (intrinsic function) . 449

AFE1_AFE2-1:1

Index

661

__USADA8 (intrinsic function) . 450
__USAD8 (intrinsic function). 450
__USAT (intrinsic function) . 450
__USAT16 (intrinsic function) . 450
__USAX (intrinsic function). 448
use init table (linker directive) . 505
uses_aspect (pragma directive) . 609
--use_c++_inline (compiler option) 306
--use_full_std_template_names (ielfdump option) 576
--use_full_std_template_names (linker option). 345
--use_paths_as_written (compiler option) 307
--use_unix_directory_separators (compiler option). 307
__USUB16 (intrinsic function) . 448
__USUB8 (intrinsic function) . 448
UTF-16 . 255
UTF-8 . 255
--utf8_text_in (compiler option) . 307
--utf8_text_in (iarchive option). 576
--utf8_text_in (ielfdump option) . 576
--utf8_text_in (iobjmanip option) 576
--utf8_text_in (isymexport option) 576
--utf8_text_in (linker option) . 346
utilities (ELF) . 531
utility (library header file). 477
__UXTAB (intrinsic function) . 451
__UXTAB16 (intrinsic function) 451
__UXTAH (intrinsic function) . 451
__UXTB16 (intrinsic function). 451
u16streampos, implementation-defined behavior for C++ 591
u32streampos, implementation-defined behavior for C++ 591

V
-V (iarchive option) . 577
valarray (library header file) . 477
variables

auto . 74
defined inside a function . 74

global
placement in memory . 73

hints for choosing . 240
local. See auto variables
non-initialized . 244
placing at absolute addresses . 232
placing in named sections . 232
static

placement in memory . 73
taking the address of . 241

vector floating-point unit . 281
vector (library header file) . 477
vector (pragma directive) . 609, 626
--vectorize (compiler option) . 308
vectorize (pragma directive) . 407
__vector_table, array holding vector table 79
veneers . 117
--verbose (iarchive option) . 577
--verbose (ielftool option) . 577
version

identifying C standard in use (__STDC_VERSION__)467
of compiler (__VER__) . 468

--version (linker option) . 346
version number

of this guide . 2
--version (compiler option) . 308
--version (utitilies option) . 577
--vfe (linker option) . 346
__VFMA_F32 (intrinsic function) 452
__VFMA_F64 (intrinsic function) 452
__VFMS_F32 (intrinsic function). 452
__VFMS_F64 (intrinsic function). 452
__VFNMA_F32 (intrinsic function) 452
__VFNMA_F64 (intrinsic function) 452
__VFNMS_F32 (intrinsic function) 452
__VFNMS_F64 (intrinsic function) 452
VFP. 281
virtual function elimination (linker optimization) 121
--vla (compiler option) . 308

AFE1_AFE2-1:1

662
IAR C/C++ Development Guide
Compiling and Linking for Arm

__VMAXNM_F32 (intrinsic function) 453
__VMAXNM_F64 (intrinsic function) 453
__VMINNM_F32 (intrinsic function). 453
__VMINNM_F64 (intrinsic function). 453
void, pointers to . 192
volatile

and const, declaring objects . 362
declaring objects . 361
protecting simultaneously accesses variables. 243
rules for access. 362

volatile-qualified
type, implementation-defined behavior for C++ 586
__VRINTA_F32 (intrinsic function). 455
__VRINTA_F64 (intrinsic function). 454
__VRINTM_F32 (intrinsic function) 455
__VRINTM_F64 (intrinsic function) 454
__VRINTN_F32 (intrinsic function). 455
__VRINTN_F64 (intrinsic function). 454
__VRINTP_F32 (intrinsic function) 455
__VRINTP_F64 (intrinsic function) 454
__VRINTR_F32 (intrinsic function). 455
__VRINTR_F64 (intrinsic function). 454
__VRINTX_F32 (intrinsic function). 455
__VRINTX_F64 (intrinsic function). 454
__VRINTZ_F32 (intrinsic function) 455
__VRINTZ_F64 (intrinsic function) 455
__VSQRT_F32 (intrinsic function) 455
__VSQRT_F64 (intrinsic function) 455
--vtoc (iarchive option) . 577

W
#warning message (preprocessor extension) 469
warnings . 257

classifying in compiler. 276
classifying in linker . 322
disabling in compiler . 295
disabling in linker . 338
exit code in compiler . 309

exit code in linker . 347
warnings icon, in this guide . 49
warnings (pragma directive) 609, 626
--warnings_affect_exit_code (compiler option) 253, 309
--warnings_affect_exit_code (linker option) 347
--warnings_are_errors (compiler option) 309
--warnings_are_errors (linker option) 347
--warn_about_c_style_casts (compiler option) 309
wchar_t (data type) . 352

implementation-defined behavior in C. 603
wchar.h (library header file) 475, 478
wctype.h (library header file) . 475
__weak (extended keyword) . 380
weak (pragma directive) . 407
web sites, recommended . 47
__WFE (intrinsic function) . 456
__WFI (intrinsic function) . 456
white-space characters, implementation-defined behavior 599
--whole_archive (linker option) . 347
wide-character
literals, implementation-defined behavior for C++ 581
--wrap (iexe2obj option) . 578
__write_array, in stdio.h . 481
__write_buffered (DLIB library function) 128
wstreampos, implementation-defined behavior for C++ . . 591

X
-x (iarchive option) . 557

Y
__YIELD (intrinsic function) . 456

Z
zeros, packing algorithm for initializers 499

AFE1_AFE2-1:1

Index

663

Symbols
_AEABI_PORTABILITY_LEVEL (preprocessor
symbol). 221
_AEABI_PORTABLE (preprocessor symbol) 221
_Exit (library function) . 147
_exit (library function) . 147
__AAPCS_VFP__ (predefined symbol) 458
__AAPCS__ (predefined symbol) 458
__absolute (extended keyword) . 369
__ALIGNOF__ (operator) . 190
__arm (extended keyword) . 369
__ARMVFPV2__ (predefined symbol) 462
__ARMVFPV3__ (predefined symbol) 462
__ARMVFPV4__ (predefined symbol) 462
__ARMVFP_D16__ (predefined symbol) 462
__ARMVFP_SP__ (predefined symbol). 462
__ARMVFP__ (predefined symbol) 462
__ARM_ADVANCED_SIMD__ (predefined symbol) . . 458
__ARM_ARCH (predefined symbol) 459
__ARM_ARCH_ISA_ARM (predefined symbol) 459
__ARM_ARCH_ISA_THUMB (predefined symbol). . . . 459
__ARM_ARCH_PROFILE (predefined symbol) 459
__ARM_BIG_ENDIAN (predefined symbol) 459
__arm_cdp (intrinsic function) . 410
__arm_cdp2 (intrinsic function) . 410
__ARM_FEATURE_CMSE (predefined symbol) 459
__ARM_FEATURE_CRC32 (predefined symbol). 460
__ARM_FEATURE_CRYPTO (predefined symbol) 460
__ARM_FEATURE_DIRECTED_ROUNDING (predefined
symbol). 460
__ARM_FEATURE_DSP (predefined symbol) 460
__ARM_FEATURE_FMA (predefined symbol) 460
__ARM_FEATURE_IDIV (predefined symbol) 460
__ARM_FEATURE_NUMERIC_MAXMIN (predefined
symbol). 461
__ARM_FEATURE_UNALIGNED (predefined symbol) 461
__ARM_FP (predefined symbol) 461

__arm_ldc (intrinsic function). 411
__arm_ldcl (intrinsic function) . 411
__arm_ldcl2 (intrinsic function) . 411
__arm_ldc2 (intrinsic function). 411
__arm_mcr (intrinsic function) . 412
__arm_mcrr (intrinsic function) . 412
__arm_mcrr2 (intrinsic function) 412
__arm_mcr2 (intrinsic function) . 412
__ARM_MEDIA__ (predefined symbol) 461
__arm_mrc (intrinsic function) . 413
__arm_mrc2 (intrinsic function) . 413
__arm_mrrc (intrinsic function) . 413
__arm_mrrc2 (intrinsic function) 413
__ARM_NEON (predefined symbol) 461
__ARM_NEON_FP (predefined symbol) 461
__ARM_PROFILE_M__ (predefined symbol). 462
__arm_rsr (intrinsic function) . 413
__arm_rsrp (intrinsic function) . 414
__arm_rsr64 (intrinsic function) . 413
__arm_stc (intrinsic function) . 414
__arm_stcl (intrinsic function) 414–415
__arm_stc2 (intrinsic function) . 414
__arm_stc2l (intrinsic function) 414–415
__arm_wsr (intrinsic function) . 415
__ARM4TM__ (predefined symbol) 463
__ARM5E__ (predefined symbol) 463
__ARM5__ (predefined symbol) 463
__ARM6M__ (predefined symbol). 463
__ARM6SM__ (predefined symbol). 463
__ARM6__ (predefined symbol) 463
__ARM7A__ (predefined symbol) 463
__ARM7EM__ (predefined symbol) 463
__ARM7M__ (predefined symbol). 463
__ARM7R__ (predefined symbol) 463
__ARM8A__ (predefined symbol) 463
__ARM8EM_MAINLINE__ (predefined symbol) 463
__ARM8M_BASELINE__ (predefined symbol) 463
__ARM8M_MAINLINE__ (predefined symbol) 463
__ARM8R__ (predefined symbol) 463

AFE1_AFE2-1:1

664
IAR C/C++ Development Guide
Compiling and Linking for Arm

__asm (language extension) . 166
__BASE_FILE__ (predefined symbol). 463
__big_endian (extended keyword) 370
__BUILD_NUMBER__ (predefined symbol) 463
__CDP (intrinsic function) . 416
__CDP2 (intrinsic function) . 416
__CLREX (intrinsic function). 416
__CLZ (intrinsic function) . 417
__cmse_nonsecure_call (extended keyword) 370
__cmse_nonsecure_entry (extended keyword) 371
__CORE__ (predefined symbol). 463
__COUNTER__ (predefined symbol). 463
__cplusplus (predefined symbol) 463
__CPU_MODE__ (predefined symbol) 464
__crc32b (intrinsic function). 417
__crc32cb (intrinsic function) . 418
__crc32cd (intrinsic function) . 418
__crc32ch (intrinsic function) . 418
__crc32cw (intrinsic function) . 418
__crc32d (intrinsic function). 417
__crc32h (intrinsic function). 417
__crc32w (intrinsic function) . 417
__DATE__ (predefined symbol). 464

implementation-defined behavior for C++. 588
__disable_fiq (intrinsic function) 418
__disable_interrupt (intrinsic function). 418
__disable_irq (intrinsic function) 419
__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 159
__DMB (intrinsic function) . 419
__DSB (intrinsic function) . 419
__enable_fiq (intrinsic function). 419
__enable_interrupt (intrinsic function) 420
__enable_irq (intrinsic function). 420
__EXCEPTIONS__ (predefined symbol) 464
__exit (library function) . 147
__FILE__ (predefined symbol). 464
__fiq (extended keyword) . 371
__fma (intrinsic function) . 420
__fmaf (intrinsic function) . 420

__fp16 (data type). 356
__FUNCTION__ (predefined symbol) 465
__func__ (predefined symbol) . 464

implementation-defined behavior for C++. 586
__gets, in stdio.h. 480
__get_BASEPRI (intrinsic function) 420
__get_CONTROL (intrinsic function) 421
__get_CPSR (intrinsic function) . 421
__get_FAULTMASK (intrinsic function). 421
__get_FPSCR (intrinsic function). 421
__get_interrupt_state (intrinsic function) 422
__get_IPSR (intrinsic function) . 422
__get_LR (intrinsic function) . 422
__get_MSP (intrinsic function). 423
__get_PRIMASK (intrinsic function) 423
__get_PSP (intrinsic function) . 423
__get_PSR (intrinsic function) . 423
__get_SB (intrinsic function) . 423
__get_SP (intrinsic function) . 424
__iar_cos_accurate (library routine) 144
__iar_cos_accuratef (library routine) 144
__iar_cos_accuratel (library routine) 144
__iar_cos_small (library routine) 143
__iar_cos_smallf (library routine). 144
__iar_cos_smalll (library routine). 144
__iar_exp_small (library routine) 143
__iar_exp_smallf (library routine) 144
__iar_exp_smalll (library routine) 144
__iar_log_small (library routine) 143
__iar_log_smallf (library routine). 144
__iar_log_smalll (library routine) 144
__iar_log10_small (library routine) 143
__iar_log10_smallf (library routine) 144
__iar_log10_smalll (library routine) 144
__iar_maximum_atexit_calls . 112
__iar_pow_accurate (library routine) 144
__iar_pow_accuratef (library routine). 144
__iar_pow_accuratel (library routine). 144
__iar_pow_small (library routine) 143

AFE1_AFE2-1:1

Index

665

__iar_pow_smallf (library routine) 144
__iar_pow_smalll (library routine) 144
__iar_program_start (label). 145
__iar_ReportAssert (library function) 151
__iar_sin_accurate (library routine) 144
__iar_sin_accuratef (library routine). 144
__iar_sin_accuratel (library routine) 144
__iar_sin_small (library routine). 143
__iar_sin_smallf (library routine) 144
__iar_sin_smalll (library routine) 144
__IAR_SYSTEMS_ICC__ (predefined symbol) 465
__iar_tan_accurate (library routine) 144
__iar_tan_accuratef (library routine). 144
__iar_tan_accuratel (library routine). 144
__iar_tan_small (library routine) 143
__iar_tan_smallf (library routine) 144
__iar_tan_smalll (library routine) 144
__iar_tls.$$DATA (ELF section) 519
__ICCARM__ (predefined symbol) 465
__interwork (extended keyword) 371
__intrinsic (extended keyword). 372
__irq (extended keyword) . 372
__ISB (intrinsic function) . 424
__LDC (intrinsic function) . 424
__LDCL (intrinsic function) . 424
__LDCL_noidx (intrinsic function) 425
__LDC_noidx (intrinsic function). 425
__LDC2 (intrinsic function) . 424
__LDC2L (intrinsic function) . 424
__LDC2L_noidx (intrinsic function) 425
__LDC2_noidx (intrinsic function). 425
__LDREX (intrinsic function) . 426
__LDREXB (intrinsic function) . 426
__LDREXD (intrinsic function) . 426
__LDREXH (intrinsic function) . 426
__LINE__ (predefined symbol) . 465
__little_endian (extended keyword) 372
__LITTLE_ENDIAN__ (predefined symbol). 465
__low_level_init . 145

initialization phase . 65
__low_level_init, customizing . 148
__MCR (intrinsic function). 426
__MCRR (intrinsic function) . 427
__MCRR2 (intrinsic function) . 427
__MCR2 (intrinsic function). 426
__MRC (intrinsic function). 428
__MRC2 (intrinsic function). 428
__MRRC (intrinsic function) . 428
__MRRC2 (intrinsic function) . 428
__nested (extended keyword) . 372
__noreturn (extended keyword) . 374
__no_alloc (extended keyword) . 373
__no_alloc_str (operator) . 373
__no_alloc_str16 (operator) . 373
__no_alloc16 (extended keyword) 373
__no_init (extended keyword) 244, 374
__no_operation (intrinsic function). 429
__packed (extended keyword) . 375
__pcrel (extended keyword) . 369
__PKHBT (intrinsic function). 429
__PKHTB (intrinsic function). 430
__PLD (intrinsic function) . 430
__PLDW (intrinsic function) . 430
__PLI (intrinsic function) . 430
__PRETTY_FUNCTION__ (predefined symbol). 465
__printf_args (pragma directive). 401
__program_start (label). 145
__QADD (intrinsic function) . 431
__QADD8 (intrinsic function) . 431
__QADD16 (intrinsic function) . 431
__QASX (intrinsic function). 431
__QCFlag (intrinsic function) . 432
__QDADD (intrinsic function) . 431
__QDOUBLE (intrinsic function). 432
__QDSUB (intrinsic function) . 431
__QFlag (intrinsic function) . 432
__QSAX (intrinsic function). 431
__QSUB (intrinsic function). 431

AFE1_AFE2-1:1

666
IAR C/C++ Development Guide
Compiling and Linking for Arm

__QSUB16 (intrinsic function) . 431
__QSUB8 (intrinsic function) . 431
__ramfunc (extended keyword) . 376
__RBIT (intrinsic function) . 432
__reset_QC_flag (intrinsic function). 433
__reset_Q_flag (intrinsic function) 433
__REV (intrinsic function) . 433
__REVSH (intrinsic function). 433
__REV16 (intrinsic function) . 433
__rintn (intrinsic function) . 433
__rintnf (intrinsic function). 433
__root (extended keyword) . 377
__ROPI__ (predefined symbol) . 466
__ROR (intrinsic function) . 434
__ro_placement (extended keyword) 377
__RRX (intrinsic function) . 434
__RTTI__ (predefined symbol) . 466
__RWPI__ (predefined symbol) . 466
__SADD8 (intrinsic function). 434
__SADD16 (intrinsic function). 434
__SASX (intrinsic function) . 434
__sbrel (extended keyword) . 369
__scanf_args (pragma directive) . 403
__section_begin (extended operator) 190
__section_end (extended operator) 190
__section_size (extended operator) 190
__SEL (intrinsic function) . 435
__set_BASEPRI (intrinsic function) 435
__set_CONTROL (intrinsic function). 435
__set_CPSR (intrinsic function) . 435
__set_FAULTMASK (intrinsic function) 436
__set_FPSCR (intrinsic function) 436
__set_interrupt_state (intrinsic function) 436
__set_LR (intrinsic function) . 436
__set_MSP (intrinsic function) . 436
__set_PRIMASK (intrinsic function) 437
__set_PSP (intrinsic function). 437
__set_SB (intrinsic function) . 437
__set_SP (intrinsic function). 437

__SEV (intrinsic function) . 437
__SHADD8 (intrinsic function) . 438
__SHADD16 (intrinsic function) 438
__SHASX (intrinsic function). 438
__SHSAX (intrinsic function). 438
__SHSUB16 (intrinsic function). 438
__SHSUB8 (intrinsic function). 438
__SMLABB (intrinsic function) . 439
__SMLABT (intrinsic function) . 439
__SMLAD (intrinsic function) . 439
__SMLADX (intrinsic function). 439
__SMLALBB (intrinsic function). 440
__SMLALBT (intrinsic function) 440
__SMLALD (intrinsic function) . 440
__SMLALDX (intrinsic function) 440
__SMLALTB (intrinsic function) 440
__SMLALTT (intrinsic function) 440
__SMLATB (intrinsic function) . 439
__SMLATT (intrinsic function) . 439
__SMLAWB (intrinsic function) 439
__SMLAWT (intrinsic function) 439
__SMLSD (intrinsic function) . 439
__SMLSDX (intrinsic function) . 439
__SMLSLD (intrinsic function) . 440
__SMLSLDX (intrinsic function) 440
__SMMLA (intrinsic function) . 441
__SMMLAR (intrinsic function) 441
__SMMLS (intrinsic function) . 441
__SMMLSR (intrinsic function) . 441
__SMMUL (intrinsic function) . 441
__SMMULR (intrinsic function) 441
__SMUAD (intrinsic function) . 441
__SMUL (intrinsic function) . 442
__SMULBB (intrinsic function) . 442
__SMULBT (intrinsic function) . 442
__SMULTB (intrinsic function) . 442
__SMULTT (intrinsic function) . 442
__SMULWB (intrinsic function) 442
__SMULWT (intrinsic function) 442

AFE1_AFE2-1:1

Index

667

__SMUSD (intrinsic function) . 441
__SMUSDX (intrinsic function) . 441
__sqrt (intrinsic function) . 442
__sqrtf (intrinsic function) . 442
__SSAT (intrinsic function) . 443
__SSAT16 (intrinsic function) . 443
__SSAX (intrinsic function) . 434
__SSUB16 (intrinsic function) . 434
__SSUB8 (intrinsic function) . 434
__stackless (extended keyword) . 378
__STC (intrinsic function) . 444
__STCL (intrinsic function) . 444
__STCL_noidx (intrinsic function) 445
__STC_noidx (intrinsic function) 445
__STC2 (intrinsic function) . 444
__STC2L (intrinsic function) . 444
__STC2L_noidx (intrinsic function) 445
__STC2_noidx (intrinsic function) 445
__STDC_LIB_EXT1__ (predefined symbol) 466
__STDC_NO_ATOMICS__ (preprocessor symbol). 467
__STDC_NO_THREADS__ (preprocessor symbol) 467
__STDC_NO_VLA__ (preprocessor symbol) 467
__STDC_UTF16__ (preprocessor symbol). 467
__STDC_UTF32__ (preprocessor symbol). 467
__STDC_VERSION__ (predefined symbol) 467

implementation-defined behavior for C++. 588
__STDC_WANT_LIB_EXT1__ (preprocessor symbol) . 468
__STDC__ (predefined symbol) . 466

implementation-defined behavior for C++. 588
__STREX (intrinsic function) . 446
__STREXB (intrinsic function) . 446
__STREXD (intrinsic function) . 446
__STREXH (intrinsic function) . 446
__swi (extended keyword) . 378
__SWP (intrinsic function) . 446
__SWPB (intrinsic function). 446
__SXTAB (intrinsic function). 447
__SXTAB16 (intrinsic function). 447
__SXTAH (intrinsic function) . 447

__SXTB16 (intrinsic function) . 447
__task (extended keyword) . 379
__thumb (extended keyword) . 380
__TIMESTAMP__ (predefined symbol) 468
__TIME__ (predefined symbol) . 467

implementation-defined behavior for C++. 588
__TT (intrinsic function). 447
__TTA (intrinsic function) . 447
__TTAT (intrinsic function) . 447
__TTT (intrinsic function) . 447
__UADD8 (intrinsic function) . 448
__UADD16 (intrinsic function) . 448
__UASX (intrinsic function). 448
__UHADD8 (intrinsic function) . 448
__UHADD16 (intrinsic function) 448
__UHASX (intrinsic function) . 448
__UHSAX (intrinsic function) . 448
__UHSUB16 (intrinsic function) 448
__UHSUB8 (intrinsic function) . 448
__UMAAL (intrinsic function) . 449
__ungetchar, in stdio.h . 481
__UQADD8 (intrinsic function) . 449
__UQADD16 (intrinsic function) 449
__UQASX (intrinsic function) . 449
__UQSAX (intrinsic function) . 449
__UQSUB16 (intrinsic function) 449
__UQSUB8 (intrinsic function) . 449
__USADA8 (intrinsic function) . 450
__USAD8 (intrinsic function). 450
__USAT (intrinsic function) . 450
__USAT16 (intrinsic function) . 450
__USAX (intrinsic function). 448
__USUB16 (intrinsic function) . 448
__USUB8 (intrinsic function) . 448
__UXTAB (intrinsic function) . 451
__UXTAB16 (intrinsic function) 451
__UXTAH (intrinsic function) . 451
__UXTB16 (intrinsic function). 451
__VFMA_F32 (intrinsic function) 452

AFE1_AFE2-1:1

668
IAR C/C++ Development Guide
Compiling and Linking for Arm

__VFMA_F64 (intrinsic function) 452
__VFMS_F32 (intrinsic function). 452
__VFMS_F64 (intrinsic function). 452
__VFNMA_F32 (intrinsic function) 452
__VFNMA_F64 (intrinsic function) 452
__VFNMS_F32 (intrinsic function) 452
__VFNMS_F64 (intrinsic function) 452
__VMAXNM_F32 (intrinsic function) 453
__VMAXNM_F64 (intrinsic function) 453
__VMINNM_F32 (intrinsic function). 453
__VMINNM_F64 (intrinsic function). 453
__VRINTA_F32 (intrinsic function). 455
__VRINTA_F64 (intrinsic function). 454
__VRINTM_F32 (intrinsic function) 455
__VRINTM_F64 (intrinsic function) 454
__VRINTN_F32 (intrinsic function). 455
__VRINTN_F64 (intrinsic function). 454
__VRINTP_F32 (intrinsic function) 455
__VRINTP_F64 (intrinsic function) 454
__VRINTR_F32 (intrinsic function). 455
__VRINTR_F64 (intrinsic function). 454
__VRINTX_F32 (intrinsic function). 455
__VRINTX_F64 (intrinsic function). 454
__VRINTZ_F32 (intrinsic function) 455
__VRINTZ_F64 (intrinsic function) 455
__VSQRT_F32 (intrinsic function) 455
__VSQRT_F64 (intrinsic function) 455
__weak (extended keyword) . 380
__WFE (intrinsic function) . 456
__WFI (intrinsic function) . 456
__write_array, in stdio.h . 481
__write_buffered (DLIB library function) 128
__YIELD (intrinsic function) . 456
-D (compiler option) . 272
-d (iarchive option) . 556
-e (compiler option) . 278
-f (compiler option). 280
-f (IAR utility option) . 558
-f (linker option) . 326

-g (ielfdump option) . 570
-I (compiler option). 283
-l (compiler option). 283

for creating skeleton code . 174
-L (linker option) . 341
-O (compiler option) . 296
-o (compiler option) . 297
-o (iarchive option) . 563
-o (ielfdump option) . 563
-o (linker option). 339
-r (compiler option). 272
-r (iarchive option) . 569
-s (ielfdump option) . 570
-t (iarchive option) . 575
-V (iarchive option) . 577
-x (iarchive option) . 557
--a (ielfdump option). 549
--aapcs (compiler option) . 267
--advanced_heap (linker option) . 315
--aeabi (compiler option) . 267
--align_sp_on_irq (compiler option) 268
--all (ielfdump option) . 550
--arm (compiler option). 268
--basic_heap (linker option) . 316
--BE32 (linker option) . 316
--BE8 (linker option) . 316
--bin (ielftool option) . 550
--bin-multi (ielftool option). 550
--bounds_table_size (linker option) 311
--call_graph (linker option). 317
--char_is_signed (compiler option) 269
--char_is_unsigned (compiler option) 269
--checksum (ielftool option) . 551
--cmse (compiler option). 269
--code (ielfdump option) . 556
--config (linker option) . 317
--config_def (linker option) . 317
--config_search (linker option) . 318
--cpp_init_routine (linker option) 318

AFE1_AFE2-1:1

Index

669

--cpu (compiler option) . 270
--cpu (linker option) . 319
--cpu_mode (compiler option) . 271
--create (iarchive option). 556
--c++ (compiler option) . 271
--c89 (compiler option) . 268
--debug (compiler option) . 272
--debug_heap (linker option) . 311
--default_to_complex_ranges (linker option) 319
--define_symbol (linker option) . 320
--delete (iarchive option). 556
--dependencies (compiler option) 273
--dependencies (linker option) . 320
--deprecated_feature_warnings (compiler option). 274
--diagnostics_tables (compiler option) 276
--diagnostics_tables (linker option). 322
--diag_error (compiler option) . 274
--diag_error (linker option) . 321
--diag_remark (compiler option). 275
--diag_remark (linker option) . 321
--diag_suppress (compiler option) 275
--diag_suppress (linker option) . 322
--diag_warning (compiler option) 276
--diag_warning (linker option) . 322
--disasm_data (ielfdump option) . 557
--discard_unused_publics (compiler option) 276
--dlib_config (compiler option). 277
--do_explicit_zero_opt_in_named_sections
(compiler option) . 278
--do_segment_pad (linker option). 323
--edit (isymexport option) . 557
--enable_hardware_workaround (compiler option) 278
--enable_hardware_workaround (linker option) 323
--enable_restrict (compiler option) 279
--entry (linker option) . 324
--entry_list_in_address_order (linker option) 324
--enum_is_int (compiler option) . 280
--error_limit (compiler option) . 280
--error_limit (linker option) . 325
--exception_tables (linker option) 325

--export_builtin_config (linker option) 326
--extract (iarchive option) . 557
--extra_init (linker option) . 326
--f (compiler option) . 281
--f (linker option) . 327
--fill (ielftool option). 559
--force_exceptions (linker option). 327
--force_output (linker option) . 328
--fpu (compiler option) . 281
--fpu (linker option) . 328
--front_headers (ielftool option) . 559
--generate_vfe_header (isymexport option) 560
--guard_calls (compiler option). 282
--header_context (compiler option). 282
--hide_symbols (iexe2obj option) 560
--ignore_uninstrumented_pointers (linker option). 312
--ihex (ielftool option) . 560
--image_input (linker option) . 328
--import_cmse_lib_in (linker option) 329
--import_cmse_lib_out (linker option) 329
--inline (linker option) . 330
--keep (linker option) . 330
--keep_mode_symbols (iexe2obj option) 561
--legacy (compiler option) . 284
--log (linker option) . 331
--log_file (linker option) . 331
--macro_positions_in_diagnostics (compiler option) 284
--make_all_definitions_weak (compiler option) 285
--mangled_names_in_messages (linker option) 332
--manual_dynamic_initialization (linker option). 332
--map (linker option). 332
--merge_duplicate_sections (linker option). 333
--mfc (compiler option). 286
--misrac (compiler option) . 263
--misrac (linker option) . 313
--misrac_verbose (compiler option) 264
--misrac_verbose (linker option). 313
--misrac1998 (compiler option) . 263
--misrac1998 (linker option) . 313

AFE1_AFE2-1:1

670
IAR C/C++ Development Guide
Compiling and Linking for Arm

--misrac2004 (compiler option) . 263
--misrac2004 (linker option) . 313
--nonportable_path_warnings (compiler option) 296
--no_alignment_reduction (compiler option) 286
--no_bom (compiler option) . 286
--no_bom (ielfdump option) . 561
--no_bom (iobjmanip option) . 561
--no_bom (isymexport option) . 561
--no_clustering (compiler option) 287
--no_code_motion (compiler option) 287
--no_const_align (compiler option). 287
--no_cse (compiler option) . 288
--no_dynamic_rtti_elimination (linker option) 334
--no_entry (linker option) . 334
--no_exceptions (compiler option) 288
--no_exceptions (linker option). 335
--no_fragments (compiler option) 288
--no_fragments (linker option) . 335
--no_free_heap (linker option) . 335
--no_header (ielfdump option) . 561
--no_inline (compiler option) . 289
--no_inline (linker option). 336
--no_library_search (linker option) 336
--no_literal_pool (compiler option). 289
--no_literal_pool (linker option) . 336
--no_locals (linker option) . 337
--no_loop_align (compiler option) 290
--no_mem_idioms (compiler option) 290
--no_path_in_file_macros (compiler option). 290
--no_range_reservations (linker option) 337
--no_rel_section (ielfdump option) 562
--no_remove (linker option) . 337
--no_rtti (compiler option) . 291
--no_rw_dynamic_init (compiler option) 291
--no_scheduling (compiler option) 291
--no_size_constraints (compiler option) 292
--no_static_destruction (compiler option) 292
--no_strtab (ielfdump option) . 562
--no_system_include (compiler option) 292

--no_typedefs_in_diagnostics (compiler option). 293
--no_unaligned_access (compiler option) 293
--no_unroll (compiler option) . 294
--no_utf8_in (ielfdump option) . 562
--no_var_align (compiler option) 295
--no_vfe (linker option). 338
--no_warnings (compiler option) 295
--no_warnings (linker option) . 338
--no_wrap_diagnostics (compiler option) 295
--no_wrap_diagnostics (linker option) 338
--offset (ielftool option) . 563
--only_stdout (compiler option) . 297
--only_stdout (linker option) . 338
--option_name (compiler option) 323
--output (compiler option). 297
--output (iarchive option) . 563
--output (ielfdump option) . 563
--output (linker option) . 339
--parity (ielftool option) . 564
--pending_instantiations (compiler option) 297
--pi_veneers (linker option) . 339
--place_holder (linker option) . 339
--preconfig (linker option) . 340
--predef_macro (compiler option). 298
--prefix (iexe2obj option) . 565
--preinclude (compiler option) . 298
--preprocess (compiler option) . 299
--printf_multibytes (linker option) 340
--ram_reserve_ranges (isymexport option) 566
--range (ielfdump option) . 566
--raw (ielfdump] option) . 567
--redirect (linker option) . 340
--relaxed_fp (compiler option) . 299
--remarks (compiler option) . 300
--remarks (linker option). 341
--remove_file_path (iobjmanip option) 567
--remove_section (iobjmanip option) 567
--rename_section (iobjmanip option) 568
--rename_symbol (iobjmanip option) 568

AFE1_AFE2-1:1

Index

671

--replace (iarchive option). 569
--require_prototypes (compiler option) 300
--reserve_ranges (isymexport option) 569
--ropi (compiler option) . 301
--ropi_cb (compiler option). 301
--rwpi (compiler option) . 302
--rwpi_near (compiler option). 302
--scanf_multibytes (linker option). 341
--search (linker option) . 341
--section (compiler option) . 303
--section (ielfdump option) . 570
--segment (ielfdump option) . 570
--self_reloc (ielftool option) . 571
--semihosting (linker option) . 342
--show_entry_as (isymexport option) 571
--silent (compiler option) . 303
--silent (iarchive option) . 571
--silent (ielftool option). 571
--silent (linker option) . 342
--simple (ielftool option). 572
--simple-ne (ielftool option) . 572
--source (ielfdump option) . 572
--srec (ielftool option) . 573
--srec-len (ielftool option). 573
--srec-s3only (ielftool option) . 573
--stack_protection (compiler option). 304
--stack_usage_control (linker option) 343
--strict (compiler option). 304
--strip (ielftool option) . 574
--strip (iobjmanip option) . 574
--strip (linker option) . 343
--symbols (iarchive option). 574
--system_include_dir (compiler option) 305
--text_out (iarchive option) . 575
--text_out (ielfdump option) . 575
--text_out (iobjmanip option) . 575
--text_out (isymexport option) . 575
--text_out (linker option). 343
--threaded_lib (linker option) . 344

--thumb (compiler option). 306
--timezone_lib (linker option) . 344
--titxt (ielftool option) . 575
--toc (iarchive option) . 575
--treat_rvct_modules_as_softfp (linker option). 344
--use_c++_inline (compiler option) 306
--use_full_std_template_names (ielfdump option) 576
--use_full_std_template_names (linker option). 345
--use_paths_as_written (compiler option). 307
--use_unix_directory_separators (compiler option). 307
--vectorize (compiler option) . 308
--verbose (iarchive option) . 577
--verbose (ielftool option) . 577
--version (compiler option) . 308
--version (linker option) . 346
--version (utilities option) . 577
--vfe (linker option) . 346
--vla (compiler option) . 308
--vtoc (iarchive option) . 577
--warnings_affect_exit_code (compiler option) 253, 309
--warnings_affect_exit_code (linker option) 347
--warnings_are_errors (compiler option) 309
--warnings_are_errors (linker option) 347
--warn_about_c_style_casts (compiler option) 309
--whole_archive (linker option) . 347
--wrap (iexe2obj option) . 578
? (in reserved identifiers) . 256
.bss (ELF section) . 518
.comment (ELF section) . 518
.data (ELF section) . 519
.data_init (ELF section) . 519
.debug (ELF section). 518
.exc.text (ELF section) . 519
.iar.debug (ELF section) . 518
.iar.dynexit (ELF section) . 520
.init_array (section). 520
.intvec (ELF section). 520
.noinit (ELF section) . 520
.preinit_array (section) . 521

AFE1_AFE2-1:1

672
IAR C/C++ Development Guide
Compiling and Linking for Arm

.prepreinit_array (section). 521

.rel (ELF section) . 518

.rela (ELF section) . 518

.rodata (ELF section) . 521

.shstrtab (ELF section) . 518

.strtab (ELF section) . 518

.symtab (ELF section). 518

.text (ELF section) . 521

.textrw (ELF section) . 521

.textrw_init (ELF section) . 522
@ (operator)

placing at absolute address. 231
placing in sections . 232

#include directive,
implementation-defined behavior for C++ 588
#include files, specifying . 251, 283
#include_next . 194
#pragma directive . 383

implementation-defined behavior for C++. 588
#warning. 194
#warning message (preprocessor extension) 469
%Z replacement string,
implementation-defined behavior in C 614
$Sub$$ pattern . 225
$Super$$ pattern. 225
$$ (in reserved identifiers) . 256

Numerics
32-bits (floating-point format) . 357
64-bits (floating-point format) . 357

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Using the build tools
	Part 2. Reference information

	Other documentation
	User and reference guides
	The online help system
	Further reading
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Using the build tools
	Introduction to the IAR build tools
	The IAR build tools—an overview
	IAR C/C++ Compiler
	IAR Assembler
	The IAR ILINK Linker
	Specific ELF tools
	External tools

	IAR language overview
	Device support
	Supported Arm devices
	Preconfigured support files
	Examples for getting started

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Accessing low-level features

	Developing embedded applications
	Developing embedded software using IAR build tools
	Mapping of memory
	Communication with peripheral units
	Event handling
	System startup
	Real-time operating systems
	Interoperability with other build tools

	The build process—an overview
	The translation process
	The linking process
	After linking

	Application execution—an overview
	The initialization phase
	The execution phase
	The termination phase

	Building applications—an overview
	Basic project configuration
	Processor configuration
	Processor variant
	VFP and floating-point arithmetic
	Byte order

	Optimization for speed and size

	Data storage
	Introduction
	Different ways to store data

	Storage of auto variables and parameters
	The stack
	Advantages
	Potential problems

	Dynamic memory on the heap
	Potential problems

	Functions
	Function-related extensions
	Arm and Thumb code
	Execution in RAM
	Interrupt functions for Cortex-M devices
	Interrupts for Cortex-M

	Interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices
	Interrupt functions
	Interrupt service routines
	Interrupt vectors and the interrupt vector table
	Defining an interrupt function—an example
	Interrupt and C++ member functions

	Installing exception functions
	Interrupts and fast interrupts
	Nested interrupts
	Software interrupts
	Calling a software interrupt function
	The software interrupt handler and functions
	The software interrupt functions
	Setting up the software interrupt stack pointer

	Interrupt operations

	Inlining functions
	C versus C++ semantics
	Features controlling function inlining

	Stack protection
	Stack protection in the IAR C/C++ compiler
	Using stack protection in your application

	TrustZone interface

	Linking using ILINK
	Linking—an overview
	Modules and sections
	The linking process in detail
	Placing code and data—the linker configuration file
	A simple example of a configuration file

	Initialization at system startup
	The initialization process
	C++ dynamic initialization

	Stack usage analysis
	Introduction to stack usage analysis
	Performing a stack usage analysis
	Result of an analysis—the map file contents
	Specifying additional stack usage information
	Limitations
	Situations where warnings are issued
	Call graph log
	Call graph XML output

	Linking your application
	Linking considerations
	Choosing a linker configuration file
	Defining your own memory areas
	Adding an additional region
	Merging different areas into one region

	Placing sections
	Placing a section at a specific address in memory
	Placing a section first or last in a region
	Declare and place your own sections

	Reserving space in RAM
	Keeping modules
	Keeping symbols and sections
	Application startup
	Setting up stack memory
	Setting up heap memory
	Setting up the atexit limit
	Changing the default initialization
	Suppressing initialization
	Choosing a packing algorithm
	Manual initialization
	Initializing code—copying ROM to RAM
	Running all code from RAM

	Interaction between ILINK and the application
	Standard library handling
	Producing other output formats than ELF/DWARF
	Veneers

	Hints for troubleshooting
	Relocation errors
	Possible solutions

	Checking module consistency
	Runtime model attributes
	Example

	Using runtime model attributes

	Linker optimizations
	Virtual function elimination
	Small function inlining
	Duplicate section merging

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Briefly about input and output (I/O)
	Briefly about C-SPY emulated I/O
	Briefly about retargeting

	Setting up the runtime environment
	Setting up your runtime environment
	Retargeting—Adapting for your target system
	Overriding library modules
	Customizing and building your own runtime library

	Additional information on the runtime environment
	Bounds checking functionality
	Runtime library configurations
	Prebuilt runtime libraries
	Formatters for printf
	Formatters for scanf
	The C-SPY emulated I/O mechanism
	The semihosting mechanism
	Math functions
	System startup and termination
	C-SPY debugging support for system termination

	System initialization
	The DLIB low-level I/O interface
	abort
	_ _aeabi_assert
	clock
	_ _close
	_ _exit
	getenv
	_ _getzone
	_ _lseek
	_ _open
	raise
	_ _read
	remove
	rename
	signal
	system
	_ _time32, __time64
	_ _write
	Configuration symbols for file input and output
	Locale
	Specifying which locales that should be available in your application

	Managing a multithreaded environment
	Multithread support in the DLIB runtime environment
	Enabling multithread support
	C++ exceptions in threads

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Mixing C and assembler modules
	Inline assembler
	Limitations
	Risks with inline assembler

	Reference information for inline assembler
	An example of how to use clobbered memory

	Calling assembler routines from C
	Creating skeleton code
	Compiling the skeleton code
	The output file

	Calling assembler routines from C++
	Calling convention
	Function declarations
	Using C linkage in C++ source code
	Preserved versus scratch registers
	Scratch registers
	Preserved registers
	Special registers

	Function entrance
	Hidden parameters
	Register parameters
	Stack parameters and layout

	Function exit
	Registers used for returning values
	Stack layout at function exit
	Return address handling

	Examples
	Example 1
	Example 2
	Example 3

	Call frame information
	CFI directives
	Creating assembler source with CFI support

	Using C
	C language overview
	Extensions overview
	Enabling language extensions

	IAR C language extensions
	Extensions for embedded systems programming
	Dedicated section operators

	Relaxations to Standard C

	Using C++
	Overview—Standard C++
	Modes for exceptions and RTTI support
	Disabling exception support
	Disabling RTTI support

	Exception handling
	The implementation of exceptions

	Enabling support for C++
	C++ feature descriptions
	Using IAR attributes with Classes
	Templates
	Function types
	Example

	Using static class objects in interrupts
	Using New handlers
	New handlers in Standard C++ with exceptions enabled
	New handlers in Standard C++ with exceptions disabled

	Debug support in C-SPY

	C++ language extensions
	Porting code from EC++ or EEC++

	Application-related considerations
	Output format considerations
	Stack considerations
	Stack size considerations
	Stack alignment
	Exception stack

	Heap considerations
	Advanced, basic, and no-free heap
	Heap size and standard I/O

	Interaction between the tools and your application
	Checksum calculation for verifying image integrity
	Briefly about checksum calculation
	Calculating and verifying a checksum
	Troubleshooting checksum calculation

	AEABI compliance
	Linking AEABI-compliant modules using the IAR ILINK linker
	Linking AEABI-compliant modules using a third-party linker
	Enabling AEABI compliance in the compiler

	CMSIS integration
	CMSIS DSP library
	Customizing the CMSIS DSP library
	Building with CMSIS on the command line
	CMSIS only (that is without the DSP library)
	With the DSP library, for Cortex-M4, little-endian, and with FPU

	Building with CMSIS in the IDE

	Arm TrustZone®
	An example using the Armv8-M Security Extensions (CMSE)

	Patching symbol definitions using $Super$$ and $Sub$$
	An example using the $Super$$ and $Sub$$ patterns

	Efficient coding for embedded applications
	Selecting data types
	Using efficient data types
	Floating-point types
	Alignment of elements in a structure
	Anonymous structs and unions
	Example

	Controlling data and function placement in memory
	Data placement at an absolute location
	Examples
	C++ considerations

	Data and function placement in sections
	Examples of placing variables in named sections
	Examples of placing functions in named sections

	Data placement in registers

	Controlling compiler optimizations
	Scope for performed optimizations
	Multi-file compilation units
	Optimization levels
	Speed versus size
	Fine-tuning enabled transformations
	Common subexpression elimination
	Loop unrolling
	Function inlining
	Code motion
	Type-based alias analysis
	Static clustering
	Instruction scheduling

	Facilitating good code generation
	Writing optimization-friendly source code
	Saving stack space and RAM memory
	Function prototypes
	Prototyped style
	Kernighan & Ritchie style

	Integer types and bit negation
	Protecting simultaneously accessed variables
	Accessing special function registers
	Passing values between C and assembler objects
	Non-initialized variables

	Part 2. Reference information
	External interface details
	Invocation syntax
	Compiler invocation syntax
	ILINK invocation syntax
	Passing options
	Environment variables

	Include file search procedure
	Compiler output
	Error return codes

	ILINK output
	Text encodings
	Characters and string literals

	Reserved identifiers
	Diagnostics
	Message format for the compiler
	Message format for the linker
	Severity levels
	Remark
	Warning
	Error
	Fatal error

	Setting the severity level
	Internal error

	Compiler options
	Options syntax
	Types of options
	Rules for specifying parameters
	Rules for optional parameters
	Rules for mandatory parameters
	Rules for options with both optional and mandatory parameters
	Rules for specifying a filename or directory as parameters
	Additional rules

	Summary of compiler options
	Descriptions of compiler options
	--aapcs
	--aeabi
	--align_sp_on_irq
	--arm
	--c89
	--char_is_signed
	--char_is_unsigned
	--cmse
	--cpu
	--cpu_mode
	--c++
	-D
	--debug, -r
	--dependencies
	--deprecated_feature_warnings
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--discard_unused_publics
	--dlib_config
	--do_explicit_zero_opt_in_named_sections
	-e
	--enable_hardware_workaround
	--enable_restrict
	--endian
	--enum_is_int
	--error_limit
	-f
	--f
	--fpu
	--guard_calls
	--header_context
	-I
	-l
	--lock_regs
	--macro_positions_in_diagnostics
	--make_all_definitions_weak
	--max_cost_constexpr_call
	--max_depth_constexpr_call
	--mfc
	--no_alignment_reduction
	--no_bom
	--no_clustering
	--no_code_motion
	--no_const_align
	--no_cse
	--no_exceptions
	--no_fragments
	--no_inline
	--no_literal_pool
	--no_loop_align
	--no_mem_idioms
	--no_path_in_file_macros
	--no_rtti
	--no_rw_dynamic_init
	--no_scheduling
	--no_size_constraints
	--no_static_destruction
	--no_system_include
	--no_tbaa
	--no_typedefs_in_diagnostics
	--no_unaligned_access
	--no_uniform_attribute_syntax
	--no_unroll
	--no_var_align
	--no_warnings
	--no_wrap_diagnostics
	--nonportable_path_warnings
	-O
	--only_stdout
	--output, -o
	--pending_instantiations
	--predef_macros
	--preinclude
	--preprocess
	--public_equ
	--relaxed_fp
	--remarks
	--require_prototypes
	--ropi
	--ropi_cb
	--rwpi
	--rwpi_near
	--section
	--silent
	--source_encoding
	--stack_protection
	--strict
	--system_include_dir
	--text_out
	--thumb
	--uniform_attribute_syntax
	--use_c++_inline
	--use_paths_as_written
	--use_unix_directory_separators
	--utf8_text_in
	--vectorize
	--version
	--vla
	--warn_about_c_style_casts
	--warnings_affect_exit_code
	--warnings_are_errors

	Linker options
	Summary of linker options
	Descriptions of linker options
	--advanced_heap
	--basic_heap
	--BE8
	--BE32
	--call_graph
	--config
	--config_def
	--config_search
	--cpp_init_routine
	--cpu
	--default_to_complex_ranges
	--define_symbol
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--do_segment_pad
	--enable_hardware_workaround
	--enable_stack_usage
	--entry
	--entry_list_in_address_order
	--error_limit
	--exception_tables
	--export_builtin_config
	--extra_init
	-f
	--f
	--force_exceptions
	--force_output
	--fpu
	--image_input
	--import_cmse_lib_in
	--import_cmse_lib_out
	--inline
	--keep
	--log
	--log_file
	--mangled_names_in_messages
	--manual_dynamic_initialization
	--map
	--merge_duplicate_sections
	--no_bom
	--no_dynamic_rtti_elimination
	--no_entry
	--no_exceptions
	--no_fragments
	--no_free_heap
	--no_inline
	--no_library_search
	--no_literal_pool
	--no_locals
	--no_range_reservations
	--no_remove
	--no_vfe
	--no_warnings
	--no_wrap_diagnostics
	--only_stdout
	--output, -o
	--pi_veneers
	--place_holder
	--preconfig
	--printf_multibytes
	--redirect
	--remarks
	--scanf_multibytes
	--search, -L
	--semihosting
	--silent
	--stack_usage_control
	--strip
	--text_out
	--threaded_lib
	--timezone_lib
	--treat_rvct_modules_as_softfp
	--use_full_std_template_names
	--use_optimized_variants
	--utf8_text_in
	--version
	--vfe
	--warnings_affect_exit_code
	--warnings_are_errors
	--whole_archive

	Data representation
	Alignment
	Alignment on the Arm core

	Byte order
	Basic data types—integer types
	Integer types—an overview
	Bool
	The enum type
	The char type
	The wchar_t type
	The char16_t type
	The char32_t type
	Bitfields
	The example in the joined types bitfield allocation strategy
	The example in the disjoint types bitfield allocation strategy

	Basic data types—floating-point types
	Floating-point environment
	32-bit floating-point format
	64-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Function pointers
	Data pointers
	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	Alignment of structure types
	General layout
	Packed structure types

	Type qualifiers
	Declaring objects volatile
	Definition of access to volatile objects
	Rules for accesses

	Declaring objects volatile and const
	Declaring objects const

	Data types in C++

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	Object attributes
	Syntax for object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _absolute
	_ _arm
	_ _big_endian
	_ _cmse_nonsecure_call
	_ _cmse_nonsecure_entry
	_ _fiq
	_ _interwork
	_ _intrinsic
	_ _irq
	_ _little_endian
	_ _nested
	_ _no_alloc, _ _no_alloc16
	_ _no_alloc_str, _ _no_alloc_str16
	_ _no_init
	_ _noreturn
	_ _packed
	_ _ramfunc
	_ _ro_placement
	_ _root
	_ _stackless
	_ _swi
	_ _task
	_ _thumb
	_ _weak

	Supported GCC attributes

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	bitfields
	calls
	call_graph_root
	data_alignment
	default_function_attributes
	default_variable_attributes
	deprecated
	diag_default
	diag_error
	diag_remark
	diag_suppress
	diag_warning
	error
	function_category
	include_alias
	inline
	language
	location
	message
	no_stack_protect
	object_attribute
	optimize
	pack
	_ _printf_args
	public_equ
	required
	rtmodel
	_ _scanf_args
	section
	stack_protect
	STDC CX_LIMITED_RANGE
	STDC FENV_ACCESS
	STDC FP_CONTRACT
	swi_number
	type_attribute
	unroll
	vectorize
	weak

	Intrinsic functions
	Summary of intrinsic functions
	Intrinsic functions for ACLE
	Intrinsic functions for Neon instructions

	Descriptions of IAR Systems intrinsic functions
	_ _arm_cdp
	_ _arm_cdp2
	_ _arm_ldc
	_ _arm_ldcl
	_ _arm_ldc2
	_ _arm_ldc2l
	_ _arm_mcr
	_ _arm_mcr2
	_ _arm_mcrr
	_ _arm_mcrr2
	_ _arm_mrc
	_ _arm_mrc2
	_ _arm_mrrc
	_ _arm_mrrc2
	_ _arm_rsr
	_ _arm_rsr64
	_ _arm_rsrp
	_ _arm_stc
	_ _arm_stcl
	_ _arm_stc2
	_ _arm_stc2l
	_ _arm_wsr
	_ _arm_wsr64
	_ _arm_wsrp
	_ _CDP
	_ _CDP2
	_ _CLREX
	_ _CLZ
	_ _crc32b
	_ _crc32h
	_ _crc32w
	_ _crc32d
	_ _crc32cb
	_ _crc32ch
	_ _crc32cw
	_ _crc32cd
	_ _disable_fiq
	_ _disable_interrupt
	_ _disable_irq
	_ _DMB
	_ _DSB
	_ _enable_fiq
	_ _enable_interrupt
	_ _enable_irq
	_ _fma
	_ _fmaf
	_ _get_BASEPRI
	_ _get_CONTROL
	_ _get_CPSR
	_ _get_FAULTMASK
	_ _get_FPSCR
	_ _get_interrupt_state
	_ _get_IPSR
	_ _get_LR
	_ _get_MSP
	_ _get_PRIMASK
	_ _get_PSP
	_ _get_PSR
	_ _get_SB
	_ _get_SP
	_ _ISB
	_ _LDC
	_ _LDCL
	_ _LDC2
	_ _LDC2L
	_ _LDC_noidx
	_ _LDCL_noidx
	_ _LDC2_noidx
	_ _LDC2L_noidx
	_ _LDREX
	_ _LDREXB
	_ _LDREXD
	_ _LDREXH
	_ _MCR
	_ _MCR2
	_ _MCRR
	_ _MCRR2
	_ _MRC
	_ _MRC2
	_ _MRRC
	_ _MRRC2
	_ _no_operation
	_ _PKHBT
	_ _PKHTB
	_ _PLD
	_ _PLDW
	_ _PLI
	_ _QADD
	_ _QDADD
	_ _QDSUB
	_ _QSUB
	_ _QADD8
	_ _QADD16
	_ _QASX
	_ _QSAX
	_ _QSUB8
	_ _QSUB16
	_ _QCFlag
	_ _QDOUBLE
	_ _QFlag
	_ _RBIT
	_ _reset_Q_flag
	_ _reset_QC_flag
	_ _REV
	_ _REV16
	_ _REVSH
	_ _rintn
	_ _rintnf
	_ _ROR
	_ _RRX
	_ _SADD8
	_ _SADD16
	_ _SASX
	_ _SSAX
	_ _SSUB8
	_ _SSUB16
	_ _SEL
	_ _set_BASEPRI
	_ _set_CONTROL
	_ _set_CPSR
	_ _set_FAULTMASK
	_ _set_FPSCR
	_ _set_interrupt_state
	_ _set_LR
	_ _set_MSP
	_ _set_PRIMASK
	_ _set_PSP
	_ _set_SB
	_ _set_SP
	_ _SEV
	_ _SHADD8
	_ _SHADD16
	_ _SHASX
	_ _SHSAX
	_ _SHSUB8
	_ _SHSUB16
	_ _SMLABB
	_ _SMLABT
	_ _SMLATB
	_ _SMLATT
	_ _SMLAWB
	_ _SMLAWT
	_ _SMLAD
	_ _SMLADX
	_ _SMLSD
	_ _SMLSDX
	_ _SMLALBB
	_ _SMLALBT
	_ _SMLALTB
	_ _SMLALTT
	_ _SMLALD
	_ _SMLALDX
	_ _SMLSLD
	_ _SMLSLDX
	_ _SMMLA
	_ _SMMLAR
	_ _SMMLS
	_ _SMMLSR
	_ _SMMUL
	_ _SMMULR
	_ _SMUAD
	_ _SMUADX
	_ _SMUSD
	_ _SMUSDX
	_ _SMUL
	_ _SMULBB
	_ _SMULBT
	_ _SMULTB
	_ _SMULTT
	_ _SMULWB
	_ _SMULWT
	_ _sqrt
	_ _sqrtf
	_ _SSAT
	_ _SSAT16
	_ _STC
	_ _STCL
	_ _STC2
	_ _STC2L
	_ _STC_noidx
	_ _STCL_noidx
	_ _STC2_noidx
	_ _STC2L_noidx
	_ _STREX
	_ _STREXB
	_ _STREXD
	_ _STREXH
	_ _SWP
	_ _SWPB
	_ _SXTAB
	_ _SXTAB16
	_ _SXTAH
	_ _SXTB16
	_ _TT
	_ _TTT
	_ _TTA
	_ _TTAT
	_ _UADD8
	_ _UADD16
	_ _UASX
	_ _USAX
	_ _USUB8
	_ _USUB16
	_ _UHADD8
	_ _UHADD16
	_ _UHASX
	_ _UHSAX
	_ _UHSUB8
	_ _UHSUB16
	_ _UMAAL
	_ _UQADD8
	_ _UQADD16
	_ _UQASX
	_ _UQSAX
	_ _UQSUB8
	_ _UQSUB16
	_ _USAD8
	_ _USADA8
	_ _USAT
	_ _USAT16
	_ _UXTAB
	_ _UXTAB16
	_ _UXTAH
	_ _UXTB16
	_ _VFMA_F64
	_ _VFMS_F64
	_ _VFNMA_F64
	_ _VFNMS_F64
	_ _VFMA_F32
	_ _VFMS_F32
	_ _VFNMA_F32
	_ _VFNMS_F32
	_ _VMINNM_F64
	_ _VMAXNM_F64
	_ _VMINNM_F32
	_ _VMAXNM_F32
	_ _VRINTA_F64
	_ _VRINTM_F64
	_ _VRINTN_F64
	_ _VRINTP_F64
	_ _VRINTX_F64
	_ _VRINTR_F64
	_ _VRINTZ_F64
	_ _VRINTA_F32
	_ _VRINTM_F32
	_ _VRINTN_F32
	_ _VRINTP_F32
	_ _VRINTX_F32
	_ _VRINTR_F32
	_ _VRINTZ_F32
	_ _VSQRT_F64
	_ _VSQRT_F32
	_ _WFE
	_ _WFI
	_ _YIELD

	The preprocessor
	Overview of the preprocessor
	Description of predefined preprocessor symbols
	_ _AAPCS_ _
	_ _AAPCS_VFP_ _
	_ _ARM_ADVANCED_SIMD_ _
	_ _ARM_ARCH
	_ _ARM_ARCH_ISA_ARM
	_ _ARM_ARCH_ISA_THUMB
	_ _ARM_ARCH_PROFILE
	_ _ARM_BIG_ENDIAN
	_ _ARM_FEATURE_CMSE
	_ _ARM_FEATURE_CRC32
	_ _ARM_FEATURE_CRYPTO
	_ _ARM_FEATURE_DIRECTED_ROUNDING
	_ _ARM_FEATURE_DSP
	_ _ARM_FEATURE_FMA
	_ _ARM_FEATURE_IDIV
	_ _ARM_FEATURE_NUMERIC_MAXMIN
	_ _ARM_FEATURE_UNALIGNED
	_ _ARM_FP
	_ _ARM_MEDIA_ _
	_ _ARM_NEON
	_ _ARM_NEON_FP
	_ _ARM_PROFILE_M_ _
	_ _ARMVFP_ _
	_ _ARMVFP_D16_ _
	_ _ARMVFP_SP_ _
	_ _BASE_FILE_ _
	_ _BUILD_NUMBER_ _
	_ _CORE_ _
	_ _COUNTER_ _
	_ _cplusplus
	_ _CPU_MODE_ _
	_ _DATE_ _
	_ _EXCEPTIONS_ _
	_ _FILE_ _
	_ _func_ _
	_ _FUNCTION_ _
	_ _IAR_SYSTEMS_ICC_ _
	_ _ICCarm_ _
	_ _LINE_ _
	_ _LITTLE_ENDIAN_ _
	_ _PRETTY_FUNCTION_ _
	_ _ROPI_ _
	_ _RTTI_ _
	_ _RWPI_ _
	_ _STDC_ _
	_ _STDC_LIB_EXT1_ _
	_ _STDC_NO_ATOMICS_ _
	_ _STDC_NO_THREADS_ _
	_ _STDC_NO_VLA_ _
	_ _STDC_UTF16_ _
	_ _STDC_UTF32_ _
	_ _STDC_VERSION_ _
	_ _TIME_ _
	_ _TIMESTAMP_ _
	_ _VER_ _

	Descriptions of miscellaneous preprocessor extensions
	NDEBUG
	_ _STDC_WANT_LIB_EXT1_ _
	#warning message

	C/C++ standard library functions
	C/C++ standard library overview
	Header files
	Library object files
	Alternative more accurate library functions
	Reentrancy
	The longjmp function

	DLIB runtime environment—implementation details
	Briefly about the DLIB runtime environment
	C header files
	C++ header files
	The C++ library header files
	Using Standard C libraries in C++

	Library functions as intrinsic functions
	Not supported C/C++ functionality
	Atomic operations
	Added C functionality
	C bounds-checking interface
	DLib_Threads.h
	iar_dlmalloc.h
	LowLevelIOInterface.h
	stdio.h
	string.h
	time.h

	Non-standard implementations
	Symbols used internally by the library

	The linker configuration file
	Overview
	Defining memories and regions
	define memory directive
	define region directive
	logical directive

	Regions
	Region literal
	Region expression
	Empty region

	Section handling
	define block directive
	define section directive
	define overlay directive
	initialize directive
	do not initialize directive
	keep directive
	place at directive
	place in directive
	use init table directive

	Section selection
	section-selectors
	extended-selectors

	Using symbols, expressions, and numbers
	check that directive
	define symbol directive
	export directive
	expressions
	numbers

	Structural configuration
	error directive
	if directive
	include directive

	Section reference
	Summary of sections and blocks
	Descriptions of sections and blocks
	.bss
	CSTACK
	.data
	.data_init
	.exc.text
	HEAP
	_ _iar_tls.$$DATA
	.iar.dynexit
	.init_array
	.intvec
	IRQ_STACK
	.noinit
	.preinit_array
	.prepreinit_array
	.rodata
	.text
	.textrw
	.textrw_init
	Veneer$$CMSE

	The stack usage control file
	Overview
	C++ names

	Stack usage control directives
	call graph root directive
	exclude directive
	function directive
	max recursion depth directive
	no calls from directive
	possible calls directive

	Syntactic components
	category
	func-spec
	module-spec
	name
	call-info
	stack-size
	size

	IAR utilities
	The IAR Archive Tool—iarchive
	Invocation syntax
	Parameters
	Examples

	Summary of iarchive commands
	Summary of iarchive options
	Diagnostic messages
	La001: could not open file filename
	La002: illegal path pathname
	La006: too many parameters to cmd command
	La007: too few parameters to cmd command
	La008: lib is not a library file
	La009: lib has no symbol table
	La010: no library parameter given
	La011: file file already exists
	La013: file confusions, lib given as both library and object
	La014: module module not present in archive lib
	La015: internal error
	Ms003: could not open file filename for writing
	Ms004: problem writing to file filename
	Ms005: problem closing file filename

	The IAR ELF Tool—ielftool
	Invocation syntax
	Parameters
	Example

	Summary of ielftool options

	The IAR ELF Dumper—ielfdump
	Invocation syntax
	Parameters

	Summary of ielfdump options

	The IAR ELF Object Tool—iobjmanip
	Invocation syntax
	Parameters
	Examples

	Summary of iobjmanip options
	Diagnostic messages
	Lm001: No operation given
	Lm002: Expected nr parameters but got nr
	Lm003: Invalid section/symbol renaming pattern pattern
	Lm004: Could not open file filename
	Lm005: ELF format error msg
	Lm006: Unsupported section type nr
	Lm007: Unknown section type nr
	Lm008: Symbol symbol has unsupported format
	Lm009: Group type nr not supported
	Lm010: Unsupported ELF feature in file: msg
	Lm011: Unsupported ELF file type
	Lm012: Ambiguous rename for section/symbol name (alt1 and alt2)
	Lm013: Section name removed due to transitive dependency on name
	Lm014: File has no section with index nr
	Ms003: could not open file filename for writing
	Ms004: problem writing to file filename
	Ms005: problem closing file filename

	The IAR Absolute Symbol Exporter—isymexport
	Invocation syntax
	Parameters

	Summary of isymexport options
	Steering files
	Syntax
	Example

	Show directive
	Show-weak directive
	Hide directive
	Rename directive
	Diagnostic messages
	Es001: could not open file filename
	Es002: illegal path pathname
	Es003: format error: message
	Es004: no input file
	Es005: no output file
	Es006: too many input files
	Es007: input file is not an ELF executable
	Es008: unknown directive: directive
	Es009: unexpected end of file
	Es010: unexpected end of line
	Es011: unexpected text after end of directive
	Es012: expected text
	Es013: pattern can contain at most one * or ?
	Es014: rename patterns have different wildcards
	Es015: ambiguous pattern match: symbol matches more than one rename pattern
	Es016: the entry point symbol is already exported

	The IAR ELF Relocatable Object Creator—iexe2obj
	Invocation syntax
	Parameters

	Building the input file
	Code and constant data
	Writable data

	Summary of iexe2obj options

	Descriptions of options
	--a
	--all
	--bin
	--bin-multi
	--checksum
	--code
	--create
	--delete, -d
	--disasm_data
	--edit
	--extract, -x
	-f
	--fill
	--front_headers
	--generate_vfe_header
	--hide_symbols
	--ihex
	--keep_mode_symbols
	--no_bom
	--no_header
	--no_rel_section
	--no_strtab
	--no_utf8_in
	--offset
	--output, -o
	--parity
	--prefix
	--ram_reserve_ranges
	--range
	--raw
	--remove_file_path
	--remove_section
	--rename_section
	--rename_symbol
	--replace, -r
	--reserve_ranges
	--section, -s
	--segment, -g
	--self_reloc
	--show_entry_as
	--silent
	--simple
	--simple-ne
	--source
	--srec
	--srec-len
	--srec-s3only
	--strip
	--symbols
	--text_out
	--titxt
	--toc, -t
	--use_full_std_template_names
	--utf8_text_in
	--verbose, -V
	--version
	--vtoc
	--wrap

	Implementation-defined behavior for Standard C++
	Descriptions of implementation-defined behavior for C++
	1 General
	Diagnostics (1.3.6)
	Required libraries for freestanding implementation (1.4)
	Bits in a byte (1.7)
	Interactive devices (1.9)
	Number of threads in a program under a freestanding implementation (1.10)

	2 Lexical conventions
	Mapping physical source file characters to the basic source character set (2.2)
	Physical source file characters (2.2)
	Converting characters from a source character set to the execution character set (2.2)
	Required availability of the source of translation units to locate template definitions (2.2)
	The execution character set and execution wide-character set (2.3)
	Mapping header names to headers or external source files (2.9)
	The value of multi-character literals (2.14.3)
	The value of wide-character literals with single c-char that are not in the execution wide-character set (2.14.3)
	The value of wide-character literal containing multiple characters (2.14.3)
	The semantics of non-standard escape sequences (2.14.3)
	The value of character literal outside range of corresponding type (2.14.3)
	The encoding of universal character name not in execution character set (2.14.3)
	The choice of larger or smaller value of floating-point literal (2.14.4)
	The distinctness of string literals (2.14.5)
	Concatenation of various types of string literals (2.14.5)

	3 Basic concepts
	Defining main in a freestanding environment (3.6.1)
	Startup and termination in a freestanding environment (3.6.1)
	Parameters to main (3.6.1)
	Linkage of main (3.6.1)
	Dynamic initialization of static objects before main (3.6.2)
	Dynamic initialization of threaded local objects before entry (3.6.2)
	Use of an invalid pointer (3.7.4.2)
	Relaxed or strict pointer safety for the implementation (3.7.4.3)
	The value of trivially copyable types (3.9)
	Representation and signage of char (3.9.1)
	Extended signed integer types (3.9.1)
	Value representation of floating-point types (3.9.1)
	Value representation of pointer types (3.9.2)
	Alignment (3.11)
	Alignment additional values (3.11)
	alignof expression additional values (3.11)

	4 Standard conversions
	lvalue-to-rvalue conversion for objects that contain an invalid pointer (4.1)
	The value of the result of unsigned to signed conversion (4.7)
	The result of inexact floating-point conversion (4.8)
	The value of the result of an inexact integer to floating-point conversion (4.9)
	The rank of extended signed integer types (4.13)

	5 Expressions
	Passing argument of class type through ellipsis (5.2.2)
	The derived type for typeid (5.2.8)
	Conversion from a pointer to an integer (5.2.10)
	Conversion from an integer to a pointer (5.2.10)
	Converting a function pointer to an object pointer and vice versa (5.2.10)
	sizeof applied to fundamental types other than char, signed char, and unsigned char (5.3.3)
	Support for over-aligned types (5.3.4)
	The type of ptrdiff_t (5.7)
	The result of right shift of negative value (5.8)

	7 Declarations
	The meaning of the attribute declaration (7)
	Access to an object that has volatile-qualified type (7.1.6.1)
	The underlying type for enumeration (7.2)
	The meaning of the asm declaration (7.4)
	The semantics of linkage specifiers (7.5)
	Linkage of objects to other languages than C (7.5)
	The behavior of attribute-scoped tokens (7.6.1)
	The behavior of non-standard attributes (7.6.1)

	8 Declarators
	The string resulting from __func__ (8.4.1)

	9 Classes
	Allocation of bitfields within a class object (9.6)

	14 Templates
	The semantics of linkage specification on templates (14)

	15 Exception handling
	Stack unwinding before calling std::terminate() (15.3, 15.5.1)
	Stack unwinding before calling std::terminate() when a noexcept specification is violated (15.5.1)
	Bad throw in std::unexpected (15.5.2)

	16 Preprocessing directives
	The numeric values of character literals in #if directives (16.1)
	Negative value of character literal in preprocessor (16.1)
	Search locations for < > header (16.2)
	The search procedure for included source file (16.2)
	Search locations for "" header (16.2)
	The sequence of places searched for a header (16.2)
	Nesting limit for #include directives (16.2)
	#pragma (16.6)
	The definition and meaning of __STDC__ (16.8)
	The text of __DATE__ when date of translation is not available (16.8)
	The text of __TIME__ when time of translation is not available (16.8)
	The definition and meaning of __STDC_VERSION__ (16.8)

	17 Library introduction
	Headers for a freestanding implementation (17.6.1.3)
	Linkage of names from Standard C library (17.6.2.3)
	Functions in Standard C++ library that can be recursively reentered (17.6.5.8)
	Exceptions thrown by standard library functions that do not have an exception specification (17.6.5.12)
	error_category for errors originating outside of the operating system (17.6.5.14)

	18 Language support library
	Definition of NULL (18.2)
	The type of ptrdiff_t (18.2)
	The type of size_t (18.2)
	Exit status (18.5)
	The return value of bad_alloc::what (18.6.2.1)
	The return value of bad_array_new_length::what (18.6.2.2)
	The return value of type_info::name() (18.7.1)
	The return value of bad_cast::what (18.7.2)
	The return value of bad_typeid::what (18.7.3)
	The result of exception::what (18.8.1)
	The return value of bad_exception::what (18.8.2)
	The use of non-POF functions as signal handlers (18.10)

	20 General utilities library
	get_pointer_safety returning pointer_safety::relaxed or pointer_safety::preferred when the implementation has relaxed pointer safety (20.7.4)
	Support for over-aligned types (20.7.9.1, 20.7.11)
	The exception type when a shared_ptr constructor fails (20.8.2.2.1)
	The assignability of placeholder objects (20.9.9.1.4)
	Support for extended alignment (20.10.7.6)
	Rounding or truncating values to the required precision when converting between time_t values and time_point objects (20.12.7.1)

	21 Strings library
	The type of streampos (21.2.3.1)
	The type of streamoff (21.2.3.1)
	Supported multibyte character encoding rules (21.2.3.1)
	The type of u16streampos (21.2.3.2)
	The return value of char_traits<char16_t>::eof (21.2.3.2)
	The type of u32streampos (21.2.3.3)
	The return value of char_traits<char32_t>::eof (21.2.3.3)
	The type of wstreampos (21.2.3.4)
	The return value of char_traits<wchar_t>::eof (21.2.3.3)

	22 Localization library
	Locale object being global or per-thread (22.3.1)
	Locale names (22.3.1.2)
	The effects on the C locale of calling locale::global (22.3.1.5)
	The value of ctype<char>::table_size (22.4.1.3)
	Additional formats for time_get::do_get_date (22.4.5.1.2)
	time_get::do_get_year and two-digit year numbers (22.4.5.1.2)
	Formatted character sequences generated by time_put::do_put in the C locale (22.4.5.3.1)
	Mapping from name to catalog when calling messages::do_open (22.4.7.1.2)
	Mapping to message when calling messages::do_get (22.4.7.1.2)
	Mapping to message when calling messages::do_close (22.4.7.1.2)

	23 Containers library
	The type of array::iterator (23.3.2.1)
	The type of array::const_iterator (23.3.2.1)
	The default number of buckets in unordered_map (23.5.4.2)
	The default number of buckets in unordered_multimap (23.5.5.2)
	The default number of buckets in unordered_set (23.5.6.2)
	The default number of buckets in unordered_multiset (23.5.7.2)

	25 Algorithms library
	The underlying source of random numbers for random_shuffle (25.3.12)

	27 Input/output library
	The behavior of iostream classes when traits::pos_type is not streampos or when traits::off_type is not streamoff (27.2.2)
	The effects of calling ios_base::sync_with_stdio after any input or output operation on standard streams (27.5.3.4)
	Argument values to construct basic_ios::failure (27.5.5.4)
	The basic_stringbuf move constructor and the copying of sequence pointers (27.8.2.1)
	The effects of calling basic_streambuf::setbuf with non-zero arguments (27.8.2.4)
	The basic_filebuf move constructor and the copying of sequence pointers (27.9.1.2)
	The effects of calling basic_filebuf::setbuf with non-zero arguments (27.9.1.5)
	The effects of calling basic_filebuf::sync when a get area exists (27.9.1.5)

	28 Regular expressions library
	The type of regex_constants::error_type (28.5.3)

	29 Atomic operations library
	The values of various ATOMIC_..._LOCK_FREE macros (29.4)

	30 Thread support library
	The presence and meaning of native_handle_type and native_handle (30.2.3)

	Annex D (normative): Compatibility features
	The type of ios_base::streamoff (D.6)
	The type of ios_base::streampos (D.6)

	Implementation quantities

	Implementation-defined behavior for Standard C
	Descriptions of implementation-defined behavior
	J.3.1 Translation
	Diagnostics (3.10, 5.1.1.3)
	White-space characters (5.1.1.2)

	J.3.2 Environment
	The character set (5.1.1.2)
	Main (5.1.2.1)
	The effect of program termination (5.1.2.1)
	Alternative ways to define main (5.1.2.2.1)
	The argv argument to main (5.1.2.2.1)
	Streams as interactive devices (5.1.2.3)
	Multi-threaded environment (5.1.2.4)
	Signals, their semantics, and the default handling (7.14)
	Signal values for computational exceptions (7.14.1.1)
	Signals at system startup (7.14.1.1)
	Environment names (7.22.4.6)
	The system function (7.22.4.8)

	J.3.3 Identifiers
	Multibyte characters in identifiers (6.4.2)
	Significant characters in identifiers (5.2.4.1, 6.4.2)

	J.3.4 Characters
	Number of bits in a byte (3.6)
	Execution character set member values (5.2.1)
	Alphabetic escape sequences (5.2.2)
	Characters outside of the basic executive character set (6.2.5)
	Plain char (6.2.5, 6.3.1.1)
	Source and execution character sets (6.4.4.4, 5.1.1.2)
	Integer character constants with more than one character (6.4.4.4)
	Wide character constants with more than one character (6.4.4.4)
	Locale used for wide character constants (6.4.4.4)
	Concatenating wide string literals with different encoding types (6.4.5)
	Locale used for wide string literals (6.4.5)
	Source characters as executive characters (6.4.5)
	Encoding of wchar_t, char16_t, and char32_t (6.10.8.2)

	J.3.5 Integers
	Extended integer types (6.2.5)
	Range of integer values (6.2.6.2)
	The rank of extended integer types (6.3.1.1)
	Signals when converting to a signed integer type (6.3.1.3)
	Signed bitwise operations (6.5)

	J.3.6 Floating point
	Accuracy of floating-point operations (5.2.4.2.2)
	Accuracy of floating-point conversions (5.2.4.2.2)
	Rounding behaviors (5.2.4.2.2)
	Evaluation methods (5.2.4.2.2)
	Converting integer values to floating-point values (6.3.1.4)
	Converting floating-point values to floating-point values (6.3.1.5)
	Denoting the value of floating-point constants (6.4.4.2)
	Contraction of floating-point values (6.5)
	Default state of FENV_ACCESS (7.6.1)
	Additional floating-point mechanisms (7.6, 7.12)
	Default state of FP_CONTRACT (7.12.2)

	J.3.7 Arrays and pointers
	Conversion from/to pointers (6.3.2.3)
	ptrdiff_t (6.5.6)

	J.3.8 Hints
	Honoring the register keyword (6.7.1)
	Inlining functions (6.7.4)

	J.3.9 Structures, unions, enumerations, and bitfields
	Sign of 'plain' bitfields (6.7.2, 6.7.2.1)
	Possible types for bitfields (6.7.2.1)
	Atomic types for bitfields (6.7.2.1)
	Bitfields straddling a storage-unit boundary (6.7.2.1)
	Allocation order of bitfields within a unit (6.7.2.1)
	Alignment of non-bitfield structure members (6.7.2.1)
	Integer type used for representing enumeration types (6.7.2.2)

	J.3.10 Qualifiers
	Access to volatile objects (6.7.3)

	J.3.11 Preprocessing directives
	Locations in #pragma for header names (6.4, 6.4.7)
	Mapping of header names (6.4.7)
	Character constants in constant expressions (6.10.1)
	The value of a single-character constant (6.10.1)
	Including bracketed filenames (6.10.2)
	Including quoted filenames (6.10.2)
	Preprocessing tokens in #include directives (6.10.2)
	Nesting limits for #include directives (6.10.2)
	# inserts \ in front of \u (6.10.3.2)
	Recognized pragma directives (6.10.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.10.8)

	J.3.12 Library functions
	Additional library facilities (5.1.2.1)
	Diagnostic printed by the assert function (7.2.1.1)
	Representation of the floating-point status flags (7.6.2.2)
	Feraiseexcept raising floating-point exception (7.6.2.3)
	Strings passed to the setlocale function (7.11.1.1)
	Types defined for float_t and double_t (7.12)
	Domain errors (7.12.1)
	Return values on domain errors (7.12.1)
	Underflow errors (7.12.1)
	fmod return value (7.12.10.1)
	remainder return value (7.12.10.2)
	The magnitude of remquo (7.12.10.3)
	remquo return value (7.12.10.3)
	signal() (7.14.1.1)
	NULL macro (7.19)
	Terminating newline character (7.21.2)
	Space characters before a newline character (7.21.2)
	Null characters appended to data written to binary streams (7.21.2)
	File position in append mode (7.21.3)
	Truncation of files (7.21.3)
	File buffering (7.21.3)
	A zero-length file (7.21.3)
	Legal file names (7.21.3)
	Number of times a file can be opened (7.21.3)
	Multibyte characters in a file (7.21.3)
	remove() (7.21.4.1)
	rename() (7.21.4.2)
	Removal of open temporary files (7.21.4.3)
	Mode changing (7.21.5.4)
	Style for printing infinity or NaN (7.21.6.1, 7.29.2.1)
	%p in printf() (7.21.6.1, 7.29.2.1)
	Reading ranges in scanf (7.21.6.2, 7.29.2.1)
	%p in scanf (7.21.6.2, 7.29.2.2)
	File position errors (7.21.9.1, 7.21.9.3, 7.21.9.4)
	An n-char-sequence after nan (7.22.1.3, 7.29.4.1.1)
	errno value at underflow (7.22.1.3, 7.29.4.1.1)
	Zero-sized heap objects (7.22.3)
	Behavior of abort and exit (7.22.4.1, 7.22.4.5)
	Termination status (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7)
	The system function return value (7.22.4.8)
	Range and precision of clock_t and time_t (7.27)
	The time zone (7.27.1)
	The era for clock() (7.27.2.1)
	TIME_UTC epoch (7.27.2.5)
	%Z replacement string (7.27.3.5, 7.29.5.1)
	Math functions rounding mode (F.10)

	J.3.13 Architecture
	Values and expressions assigned to some macros (5.2.4.2, 7.20.2, 7.20.3)
	Accessing another thread's autos or thread locals (6.2.4)
	The number, order, and encoding of bytes (6.2.6.1)
	Extended alignments (6.2.8)
	Valid alignments (6.2.8)
	The value of the result of the sizeof operator (6.5.3.4)

	J.4 Locale
	Members of the source and execution character set (5.2.1)
	The meaning of the additional characters (5.2.1.2)
	Shift states for encoding multibyte characters (5.2.1.2)
	Direction of successive printing characters (5.2.2)
	The decimal point character (7.1.1)
	Printing characters (7.4, 7.30.2)
	Control characters (7.4, 7.30.2)
	Characters tested for (7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10, 7.4.1.11, 7.30.2.1.2, 7.30.5.1.3, 7.30.2.1.7, 7.30.2.1.9, 7.30.2.1.10, 7.30.2.1.11)
	The native environment (7.11.1.1)
	Subject sequences for numeric conversion functions (7.22.1, 7.29.4.1)
	The collation of the execution character set (7.24.4.3, 7.29.4.4.2)
	Message returned by strerror (7.24.6.2)
	Formats for time and date (7.27.3.5, 7.29.5.1)
	Character mappings (7.30.1)
	Character classifications (7.30.1)

	Implementation-defined behavior for C89
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized pragma directives (6.8.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.8.8)

	Library functions for the IAR DLIB Runtime Environment
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Symbols
	Numerics

